WorldWideScience

Sample records for enhanced metal organic

  1. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Light-enhanced acid catalysis over a metal-organic framework.

    Science.gov (United States)

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  3. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.

    Science.gov (United States)

    Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng

    2018-01-31

    In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.

  4. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil

    International Nuclear Information System (INIS)

    Clistenes do Nascimento, Williams A.; Amarasiriwardena, Dula; Xing, Baoshan

    2006-01-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. - Organic acids can be as efficient as synthetic chelates for use in phytoextraction of multi-metal contaminated soils

  5. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salati, S.; Quadri, G.; Tambone, F. [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Adani, F., E-mail: fabrizio.adani@unimi.i [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2010-05-15

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  6. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    International Nuclear Information System (INIS)

    Salati, S.; Quadri, G.; Tambone, F.; Adani, F.

    2010-01-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  7. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    Science.gov (United States)

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  9. Enhanced Emission by Accumulated Charges at Organic/Metal Interfaces Generated during the Reverse Bias of Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Soichiro Nozoe

    2017-10-01

    Full Text Available A high frequency rectangular alternating voltage was applied to organic light emitting diodes (OLEDs with the structure ITO/TPD/Alq3/Al and ITO/CoPc/Alq3/Al, where ITO is indium-tin-oxide, TPD is 4,4′-bis[N-phenyl-N-(m-tolylamino]biphenyl, CoPc is cobalt phthalocyanine, and Alq3 is Tris(8-quinolinolatoaluminum, and the effect on emission of the reverse bias was examined. The results reveal that the emission intensity under an alternating reverse-forward bias is greater than that under an alternating zero-forward bias. The difference in the emission intensity (∆I increased both for decreasing frequency and increasing voltage level of the reverse bias. In particular, the change in emission intensity was proportional to the voltage level of the reverse bias given the same frequency. To understand ΔI, this paper proposes a model in which an OLED works as a capacitor under reverse bias, where positive and negative charges accumulate on the metal/organic interfaces. In this model, the emission enhancement that occurs during the alternating reverse-forward bias is rationalized as a result of the charge accumulation at the organic/metal interfaces during the reverse bias, which possibly modulates the vacuum level shifts at the organic/metal interfaces to reduce both the hole injection barrier at the organic/ITO interface and the electron injection barrier at the organic/Al interface under forward bias.

  10. Enhancement of metal bioremediation by use of microbial surfactants

    International Nuclear Information System (INIS)

    Singh, Pooja; Cameotra, Swaranjit Singh

    2004-01-01

    Metal pollution all around the globe, especially in the mining and plating areas of the world, has been found to have grave consequences. An excellent option for enhanced metal contaminated site bioremediation is the use of microbial products viz. microbial surfactants and extracellular polymers which would increase the efficiency of metal reducing/sequestering organisms for field bioremediation. Important here is the advantage of such compounds at metal and organic compound co-contaminated site since microorganisms have long been found to produce surface-active compounds when grown on hydrocarbons. Other options capable of proving efficient enhancers include exploiting the chemotactic potential and biofilm forming ability of the relevant microorganisms. Chemotaxis towards environmental pollutants has excellent potential to enhance the biodegradation of many contaminants and biofilm offers them a better survival niche even in the presence of high levels of toxic compounds

  11. Enhanced brightness of organic light-emitting diodes based on Mg:Ag cathode using alkali metal chlorides as an electron injection layer

    International Nuclear Information System (INIS)

    Zou Ye; Deng Zhenbo; Xu Denghui; Lü Zhaoyue; Yin Yuehong; Du Hailiang; Chen Zheng; Wang Yongsheng

    2012-01-01

    Different thicknesses of cesium chloride (CsCl) and various alkali metal chlorides were inserted into organic light-emitting diodes (OLEDs) as electron injection layers (EILs). The basic structure of OLED is indium tin oxide (ITO)/N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1.1′-biphenyl-4.4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq 3 )/Mg:Ag/Ag. The electroluminescent (EL) performance curves show that both the brightness and efficiency of the OLEDs can be obviously enhanced by using a thin alkali metal chloride layer as an EIL. The electron injection barrier height between the Alq 3 layer and Mg:Ag cathode is reduced by inserting a thin alkali metal chloride as an EIL, which results in enhanced electron injection and electron current. Therefore, a better balance of hole and electron currents at the emissive interface is achieved and consequently the brightness and efficiency of OLEDs are improved. - Highlights: ► Alkaline metal chlorides were used as electron injection layers in organic light-emitting diodes based on Mg:Ag cathode. ► Brightness and efficiency of OLEDs with alkaline metal chlorides as electron injection layers were all greatly enhanced. ► The Improved OLED performance was attributed to the possible interfacial chemical reaction. ► Electron-only devices are fabricated to demonstrate the electron injection enhancement.

  12. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  13. Neutron powder diffraction of metal-organic frameworks for ...

    Indian Academy of Sciences (India)

    We review recent structural studies that we have undertaken aimed at elucidating the fundamental properties of metal-organic framework materials and their interactions with hydrogen. We have shown that exposing coordinatively unsaturated metal centers can greatly enhance the hydrogen binding energy and that they ...

  14. Chromium metal organic frameworks and synthesis of metal organic frameworks

    Science.gov (United States)

    Zhou, Hong-Cai; Liu, Tian-Fu; Lian, Xizhen; Zou, Lanfang; Feng, Dawei

    2018-04-24

    The present invention relates to monocrystalline metal organic frameworks comprising chromium ions and carboxylate ligands and the use of the same, for example their use for storing a gas. The invention also relates to methods for preparing metal organic frameworks comprising chromium, titanium or iron ions and carboxylate ligands. The methods of the invention allow such metal organic frameworks to be prepared in monocrystalline or polycrystalline forms.

  15. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  16. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  17. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan; Zhang, Zhijuan; Li, Yi; Yao, Kexin; Zhu, Yihan; Deng, Zhiyong; Yang, Fen; Zhou, Xiaojing; Li, Guanghua; Wu, Haohan; Nijem, Nour; Chabal, Yves Jean; Lai, Zhiping; Han, Yu; Shi, Zhan; Feng, Shouhua; Li, Jing

    2011-01-01

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative

  18. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    Science.gov (United States)

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  19. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal$-$Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jacob A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Petersen, Brenna M. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Kormos, Attila [Hungarian Academy of Sciences, Budapest (Hungary); Echeverría, Elena [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Chen, Yu-Sheng [Univ. of Chicago, Argonne, IL (United States). ChemMatCARS, Center for Advanced Radiation Sources; Zhang, Jian [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2017-02-28

    Here, we describe a new strategy to generate non-coordinating anions using zwitterionic metal–organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO2)4]$-$) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of MnIII- and FeIII-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels–Alder cycloaddition of aldehydes with dienes. Lastly, this work paves a new way to design functional MOFs for tunable chemical catalysis.

  20. A tri-metal centered metal-organic framework for solid-phase microextraction of environmental contaminants with enhanced extraction efficiency

    International Nuclear Information System (INIS)

    Liu, Shuqin; Xie, Lijun; Hu, Qingkun; Yang, Huangsheng; Pan, Guanrui; Zhu, Fang; Yang, Shenghong; Ouyang, Gangfeng

    2017-01-01

    This study presents the preparation and the characterizations of six tri-metal centered metal-organic frameworks (tM-MOFs) as solid-phase microextraction (SPME) adsorbents. Possessing different proportions of Al, Ga and In atoms in their frameworks, the tM-MOF-based SPME coatings exhibited different extraction performance towards the organic pollutants. Extraction results showed that the M4 (Al 0.593 Ga 0.167 In 0.240 (O 2 C 2 H 4 )(h 2 fipbb)) coating exhibited the best enrichment ability among six tM-MOFs. In addition, it showed better extraction efficiency towards the analytes than three single-metal centered MOFs coatings and a commercial polydimethylsiloxane (PDMS) coating. The adsorption process of the M4 coating was physical adsorption and it was mainly affected by the diffusion process of the compound from the sample to the material, which is the same with the adsorption processes of the single-metal centered MOFs coatings. Under optimal conditions (extraction time, 3 min; NaCl concentration, 25% (w/v); desorption temperature, 270 °C; extraction temperature, 30 °C), the M4 coating achieved low detection limits (0.13–0.88 ng L −1 ) and good linearity (5–2000 and 5–5000 ng L −1 ) for benzene series compounds. The repeatabilities (n = 5) for single fiber were between 4.3 and 8.1%, while the reproducibilities (n = 3) of fiber-to-fiber were in the range of 7.9–12.7%. Finally, a M4 coated SPME fiber was successfully applied to the analysis of environmental water samples with satisfactory recoveries (80.8%–119.5%). - Highlights: • Six tri-metal centered metal-organic frameworks were synthesized and characterized. • Novel SPME fibers were fabricated with silicone sealant film and tri-metal centered metal-organic frameworks crystals. • The self-made fiber exhibited excellent extraction performance to organic pollutants. • The self-made fiber was used for analysis of benzene series compounds in environmental water samples.

  1. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  2. Plasmon-enhanced fluorescence near nonlocal metallic nanospheres

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Stefanou, N.; Wubs, Martijn

    Spontaneous emission and fluorescence of organic molecules are known to strongly depend on the local electromagnetic environment. Plasmonic nanoparticles are widely explored as templates for controlling light-matter interactions, and can be tailored to optimize the fluorescence rate (Ȗem......) and the generalized nonlocal optical response (GNOR) theory [2] shows that a significant decrease in fluorescence enhancement is obtained for emitters close to small metallic nanospheres or thin metallic nanoshells, while the optimum emitter position is also affected. In this respect, our recent work introduces...

  3. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.

    Science.gov (United States)

    Kim, Sung-Hyun; Lee, In-Sook

    2010-02-01

    Chelates have been shown to enhance the phytoextraction of metal from contaminated soil. In this study, we evaluated the ability of chelates to enhance the phytoextraction of metals by barnyard grass (Echinochloa crus-galli) from soils contaminated with multiple metals. The results revealed that EDTA increased the ability of barnyard grass to take up Cd, Cu and Pb, but that it resulted in increased soil leaching. Conversely, citric acid induced the removal of Cd, Cu and Pb from soil without increasing the risk of leaching. Furthermore, E.crus-galli showed no signs of phytotoxicity in response to treatment with citric acid, whereas its shoot growth decreased in response to treatment with EDTA (p acid is a good agent for the enhancement of the phytoextraction of metals.

  4. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan

    2011-12-23

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative to all other isoreticular rht-type MOFs. The high adsorption capacity and remarkable selectivity of CO 2 are attributed to the high density of open metal and Lewis basic sites in the framework. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Organic/metal interfaces. Electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Duhm, Steffen

    2008-07-17

    measured shift in the vacuum level between monolayer and multilayer coverage was direct evidence for thermodynamically driven charge transfer between molecular layers. (iv) A clear correlation between the strength of chemical bonding of COMs and the bonding distance to metal substrates could be shown. All these findings lead to a better understanding of organic/metal interface physics and may help to enhance performance of organic devices in the future. (orig.)

  6. Enhancement in extraction rates by addition of organic acids to aqueous phase in solvent extraction of rare earth metals in presence of diethylenetriaminepentaacetic acid

    International Nuclear Information System (INIS)

    Matsuyama, Hideto; Azis, A.; Fujita, Mamoru; Teramoto, Masaaki.

    1996-01-01

    It is well known that the selectivity of rare earth metals by solvent extraction is increased by the addition of a chelating agent such as diethylenetriaminepentaacetic acid (DTPA) in the aqueous phase. One of the disadvantages of this method is the decrease in extraction rates due to complexation in the aqueous phase. In this paper, further addition of organic acids to the aqueous phase was examined for the purpose of enhancing the extraction rates in solvent extraction with DTPA. The addition of several kind of organic acids such as formic acid, acetic acid, malonic acid, lactic acid and citric acid was investigated for a Er/Y separation system. A remarkable enhancement in extraction rates was observed with a slight decrease in the selectivity by the addition of citric acid or lactic acid. Extraction rates in the presence of both DTPA and citric acid increased with the increase in citric acid concentration and with the increase in proton concentration. A 150 times enhancement in extraction rates was found in the low proton concentration condition. In order to analyze the extraction rates and selectivities obtained, mass transfer equations were presented by considering both the dissociation reaction of rare earth metal-DTPA complexes and the complex formation between rare earth metal and organic acid in the aqueous phase. The experimental data were analyzed by these equations. (author)

  7. Metal-enhanced fluorescence exciplex emission.

    Science.gov (United States)

    Zhang, Yongxia; Mali, Buddha L; Geddes, Chris D

    2012-01-01

    In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  9. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    OpenAIRE

    PAWAR, Vijay; NAIK, Prashant; GIRIDHAR, Rajani; YADAV, Mange Ram

    2014-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanol-amine, and diethylamine) had lowered ...

  10. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  11. Self-organization in metal complexes

    International Nuclear Information System (INIS)

    Radecka-Paryzek, W.

    1999-01-01

    Inorganic self-organization involves the spontaneous generation of well-defined supramolecular architectures from metal ions and organic ligands. The basic concept of supramolecular chemistry is a molecular recognition. When the substrate are metal ions, recognition is expressed in the stability and selectivity of metal ion complexation by organic ligands and depends on the geometry of the ligand and on their binding sites that it contains. The combination of the geometric features of the ligand units and the coordination geometries of the metal ions provides very efficient tool for the synthesis of novel, intriguing and highly sophisticated species such as catenanes, box structures, double and triple helicates with a variety of interesting properties. The article will focus on the examples of inorganic self-organization involving the templating as a first step for the assembly of supramolecular structures of high complexity. (author)

  12. Increasing the Stability of Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Mathieu Bosch

    2014-01-01

    Full Text Available Metal-organic frameworks (MOFs are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapse upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.

  13. Predicting Metal Speciation & Bioavailability via Estimation of Metal-Organic Thermodynamic Properties

    Science.gov (United States)

    Prasad, A.; Howells, A. E.; Shock, E.

    2017-12-01

    The biological fate of any metal depends on its chemical form in the environment. Arsenic for example, is extremely toxic in the form of inorganic As+3 but completely benign in the organic form of arsenobetaine. Thus, given an exhaustive set of reactions and their equilibrium constants (logK), the bioavailability of any metal can be obtained for blood plasma, hydrothermal fluids or any system of interest. While many data exist for metal-inorganic ligands, logK data covering the temperature range of life for metal-organic complexes are sparse. Hence, we decided to estimate metal-organic logK values from correlations with the commonly available values of ligand pKa. Metal ion specific correlations were made with ligands classified according to their electron donor atoms, denticity and other chemical factors. While this approach has been employed before (Carbonaro et al. 2007, GCA 71, 3958-3968), new correlations were developed that provide estimates even when no metal-organic logK is available. In addition, we have used the same methods to make estimates of metal-organic entropy of association (ΔaS), which can provide logK for any temperature of biological relevance. Our current correlations employ logK and ΔaS data from 30 metal ions (like the biologically relevant Fe+3 & Zn+2) and 74 ligands (like formate and ethylenediamine), which can be expanded to estimate the metal-ligand reaction properties for these 30 metal ions with a possibly limitless number of ligands that may belong to our categories of ligands. With the help of such data, copper speciation was obtained for a defined growth medium for methanotrophs employed by Morton et al. (2000, AEM 66, 1730-1733) that agrees with experimental measurements showing that the free metal ion may not be the bioavailable form in all conditions. These results encourage us to keep filling the gaps in metal-organic logK data and continue finding relationships between biological responses (like metal-accumulation ratios

  14. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  15. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases.

    Science.gov (United States)

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin.

  16. Metal-enhanced galactic winds. I

    International Nuclear Information System (INIS)

    Vader, J.P.

    1986-01-01

    Supernova-driven gas loss during the early evolution of elliptical galaxies is considered as a possible explanation for the correlations among the observed chemical and structural properties of these systems. Mass loss from systems with a chemically homogeneous interstellar medium does not work. It is pointed out that supernova-driven winds are in fact metal-enhanced with respect to the star-forming gas because the metal production of any supernova that drives the wind is directly flushed out of the galaxy. The fraction of the total metal production lost in the wind is thus at least as large as the fraction epsilon(z) of supernovae that power the wind, independent of the total mass loss. As a corollary, the yield of heavy elements that are recycled in the galaxy is reduced by a factor 1 - epsilon(z). Metal-enhanced galactic winds, which can carry away a large fraction of the metal production in spite of a moderate total mass loss, offer a promising explanation for the low metallicities of dwarf elliptical galaxies. 62 references

  17. ENHANCEMENT OF ACIDITY AND CATALYTIC ACTIVITY OF ALUMINA BASED METAL ORGANIC FRAMEWORK (MIL-53 Al)

    OpenAIRE

    Yilmaz, Esra; Sert, Emine; Atalay, Ferhan Sami

    2017-01-01

    Metal organic frameworks are highly porous materials which are formed bycombination of metal precursor and salts as inorganic part and ligand asorganic part. They have many advantages such as low density, high surface area,tunable pore size and high porosity. Due to peculiar features, such asunsaturated metal active sites, high surface area and easily functionalization,its usage as catalyst are promising.  The MIL-53(Al) structure contains chains of transcorner-sharing [AlO4(OH)2] oc...

  18. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    Science.gov (United States)

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  19. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework.

    Science.gov (United States)

    An, Jihyun; Farha, Omar K; Hupp, Joseph T; Pohl, Ehmke; Yeh, Joanne I; Rosi, Nathaniel L

    2012-01-03

    Metal-organic frameworks comprising metal-carboxylate cluster vertices and long, branched organic linkers are the most porous materials known, and therefore have attracted tremendous attention for many applications, including gas storage, separations, catalysis and drug delivery. To increase metal-organic framework porosity, the size and complexity of linkers has increased. Here we present a promising alternative strategy for constructing mesoporous metal-organic frameworks that addresses the size of the vertex rather than the length of the organic linker. This approach uses large metal-biomolecule clusters, in particular zinc-adeninate building units, as vertices to construct bio-MOF-100, an exclusively mesoporous metal-organic framework. Bio-MOF-100 exhibits a high surface area (4,300 m(2) g(-1)), one of the lowest crystal densities (0.302 g cm(-3)) and the largest metal-organic framework pore volume reported to date (4.3 cm(3) g(-1)).

  20. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks.

    Science.gov (United States)

    Liu, Yi; Pan, Jia Hong; Wang, Nanyi; Steinbach, Frank; Liu, Xinlei; Caro, Jürgen

    2015-03-02

    Separation methods based on 2D interlayer galleries are currently gaining widespread attention. The potential of such galleries as high-performance gas-separation membranes is however still rarely explored. Besides, it is well recognized that gas permeance and separation factor are often inversely correlated in membrane-based gas separation. Therefore, breaking this trade-off becomes highly desirable. Here, the gas-separation performance of a 2D laminated membrane was improved by its partial self-conversion to metal-organic frameworks. A ZIF-8-ZnAl-NO3 layered double hydroxide (LDH) composite membrane was thus successfully prepared in one step by partial conversion of the ZnAl-NO3 LDH membrane, ultimately leading to a remarkably enhanced H2 /CH4 separation factor and H2 permeance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 2D Metal-Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors.

    Science.gov (United States)

    Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John

    2017-10-27

    Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries

    DEFF Research Database (Denmark)

    Beliatis, Michail

    2018-01-01

    Incorporating plasmonic nanoparticles in organic photovoltaic (OPV) devices can increase the optical thickness of the organic absorber layer while keeping its physical thickness small. However, trade-offs between various structure parameters have caused contradictions regarding the effectiveness...... of plasmonics in the literature, that have somewhat stunted the progressing of a unified theoretical understanding for practical applications. We examine the optical enhancement mechanisms of practical PCDTBT:PC70BM OPV cells incorporating metal nanoparticles. The plasmonic near- and far-field contributions...... show that an already optimized PCDTBT:PC70BM cell can be further optically enhanced by plasmonic effects by at least 20% with the incorporation of Ag nanoparticles....

  3. Minerals with metal-organic framework structures.

    Science.gov (United States)

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  4. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal-organic frameworks.

    Science.gov (United States)

    Sun, Qi; Chen, Meng; Aguila, Briana; Nguyen, Nicholas; Ma, Shengqian

    2017-09-08

    In this work, the influence of the hydrophilic/hydrophobic nature of metal-organic framework (MOF) materials on the catalytic performance of supported Pd nanoparticles for biofuel upgrade was studied. We show that the introduction of hydrophilic groups on a MOF can greatly enhance the performance of the resultant catalyst. Specifically, Pd nanoparticles supported on MIL-101-SO 3 Na with superhydrophilicity (Pd/MIL-101-SO 3 Na) far outperforms pristine MIL-101 and the benchmark catalyst Pd/C in the hydrodeoxygenation reaction of vanillin, a model component of pyrolysis oil derived from the lignin fraction. This is attributed to a favorable mode of adsorption of the highly water soluble reactants on the more hydrophilic support in the vicinity of the catalytically active Pd nanoparticles, thereby promoting their transformation.

  5. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  6. Greatly enhanced flux pinning properties of fluorine-free metal-organic decomposition YBCO films by co-addition of halogens (Cl, Br) and metals (Zr, Sn, Hf)

    Science.gov (United States)

    Motoki, Takanori; Ikeda, Shuhei; Nakamura, Shin-ichi; Honda, Genki; Nagaishi, Tatsuoki; Doi, Toshiya; Shimoyama, Jun-ichi

    2018-04-01

    Additive-free YBCO films, as well as those with halogen (X) added, metal (M) added and (X, M) co-added, have been prepared by the fluorine-free metal-organic decomposition method on SrTiO3(100) single crystalline substrates, where X = Cl, Br and M = Zr, Sn, Hf. It was revealed that the addition of both Cl and Br to the starting solution resulted in the generation of oxyhalide, Ba2Cu3O4 X 2, in the YBCO films, and that the oxyhalide was found to promote the bi-axial orientation of the YBCO crystals. By adding a decent amount of Cl or Br, highly textured YBCO films with high J c were reproducibly obtained, even when an impurity metal, M, was co-added, while the addition of M without X did not greatly improve J c owing to the poor bi-axial orientation of the YBCO crystals. Our results suggest that the addition of Br more effectively enhances J c than the addition of Cl. The pinning force density at 40 K in 4.8 T reached ˜55 GN m-3 with the co-addition of (Br, M). This value is much larger than that of the pure YBCO film, reaching ˜17 GN m-3.

  7. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    International Nuclear Information System (INIS)

    Yu, Zongchao; Wang, Fengqin; Lin, Xiangyi; Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun; Zhao, Yongnan; Li, Guodong

    2015-01-01

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn_3L_3(DMF)_2 (1) and Zn_3L_3(DMA)_2(H_2O)_3 (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe"3"+ and Al"3"+ by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe"3"+. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe"3"+ or Al"3"+.

  8. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  9. Modulate Organic-Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells.

    Science.gov (United States)

    Li, Chang-Zhi; Huang, Jiang; Ju, Huanxin; Zang, Yue; Zhang, Jianyuan; Zhu, Junfa; Chen, Hongzheng; Jen, Alex K-Y

    2016-09-01

    By creating an effective π-orbital hybridization between the fullerene cage and the aromatic anchor (addend), the azafulleroid interfacial modifiers exhibit enhanced electronic coupling to the underneath metal oxides. High power conversion efficiency of 10.3% can be achieved in organic solar cells using open-cage phenyl C61 butyric acid methyl ester (PCBM)-modified zinc oxide layer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. DOPO-Modified Two-Dimensional Co-Based Metal-Organic Framework: Preparation and Application for Enhancing Fire Safety of Poly(lactic acid).

    Science.gov (United States)

    Hou, Yanbei; Liu, Longxiang; Qiu, Shuilai; Zhou, Xia; Gui, Zhou; Hu, Yuan

    2018-03-07

    Co-based metal-organic framework (Co-MOF) nanosheets were successfully synthesized by the organic ligands with Schiff base structure. The laminated structure gives Co-MOF nanosheets a great advantage in the application in the flame retardant field. Meanwhile, -C═N- from Schiff base potentially provides active sites for further modification. In this work, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was used to modify Co-MOF (DOPO@Co-MOF) to further enhance its flame retardant efficiency. It is attractive that DOPO has a synergistic effect with Co-MOF on improving fire safety of poly(lactic acid) (PLA). The obvious decrease in the values of peak heat release (27%), peak smoke production (56%), and total CO yield (20%) confirmed the enhanced fire safety of PLA composites. The possible flame retardant mechanism was proposed based on characterization results. Moreover, the addition of DOPO@Co-MOF had a positive influence on the mechanical performance, including tensile properties and impact resistance. This work designed and synthesized two-dimensional MOFs with active groups. As-prepared Co-MOF with expected structure shows a novel direction of preparing MOFs for flame retardant application.

  11. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars

    International Nuclear Information System (INIS)

    Wang, Fei; Sun, Hongwen; Ren, Xinhao; Liu, Yarui; Zhu, Hongkai; Zhang, Peng; Ren, Chao

    2017-01-01

    The effects of humic acid (HA) and heavy metals (Cu 2+ and Ag + ) on the sorption of polar and apolar organic pollutants onto biochars that were produced at temperatures of 200 °C (BC200) and 700 °C (BC700) were studied. Due to the plentiful polar functional groups on BC200, cationic propranolol exhibited higher levels of sorption than naphthalene on BC200 while naphthalene and propranolol showed similar sorption capacities on BC700. HA changed the characteristics of biochars and generally inhibited the sorption of target organic pollutants on biochars; however, enhancement occurred in some cases depending on the pollutants involved and their concentrations, biochars used and the addition sequences and concentrations of HA. On BC200, HA modifications mainly influenced sorption by decreasing its polarity and increasing its aromaticity, while on BC700, the surface area and pore volume greatly decreased due to the pore-blocking effects of HA. Residue dissolved HA in solution may also contribute to sorption inhibition. Complexation between polar functional groups on BC200 and heavy metals slightly enhanced the sorption of neutral naphthalene and significantly enhanced that of anionic 4-nitro-1-naphtol, while limited the sorption of cationic propranolol. Heavy metals together with their associated water molecules decreased the sorption of target chemicals on BC700 via pore-filling or pore-mouth-covering. Inhibition of heavy metals for 4-nitro-1-naphthol was found to be the weakest due to the bridge effects of heavy metals between 4-nitro-1-naphtol and BC700. The higher polarizability of Ag + led to the increase of its sorption on biochars in the presence of organic aromatic pollutants. The results of the present study shed light on the sorption mechanisms of bi-solute systems and enable us to select suitable biochar sorbents when chemicals co-exist. - Highlights: • Polar functional groups on low-temperature biochar enhanced propranolol sorption. • Humic acid

  12. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  13. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2013-01-01

    Full Text Available Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  14. Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition

    Science.gov (United States)

    Adriaensen, L.; Vangaever, F.; Gijbels, R.

    2004-06-01

    A series of organic dyes and pharmaceuticals was used to study the secondary ion yield enhancement by metal deposition. The molecules were dissolved in methanol and spincasted on silicon substrates. Subsequently, silver or gold was evaporated on the samples to produce a very thin coating. The coated samples, when measured with TOF-SIMS, showed a considerable increase in characteristic secondary ion intensity. Gold-evaporated samples appear to exhibit the highest signal enhancement. These observations apply to organic samples in general, an advantage that allows to use the technique of metal deposition on real-world samples. However, the observed signal increase does not occur at any given moment. The time between metal deposition on the sample surface and the measuring of the sample with TOF-SIMS appears to have an important influence on the enhancement of the secondary ion intensities. In consideration of these observations several experiments were carried out, in which the spincasted samples were measured at different times after sample preparation, i.e., after gold or silver was deposited on the sample surface. The results show that, depending on the sample and the metal deposited, the secondary ion signals reach their maximum at different times. Further study will be necessary to detect the mechanism responsible for the observed enhancement effect.

  15. Energy-level alignment at metal-organic and organic-organic interfaces

    NARCIS (Netherlands)

    Veenstra, Sjoerd; Jonkman, H.T.

    2003-01-01

    This article reports on the electronic structure at interfaces found in organic semiconductor devices. The studied organic materials are C-60 and poly (para-phenylenevinylene) (PPV)-like oligomers, and the metals are polycrystalline Au and Ag. To measure the energy levels at these interfaces,

  16. Zeolite-like metal-organic frameworks with ana topology

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-20

    Embodiments of the present disclosure describe a zeolite-like metal-organic framework composition comprising a metal-organic framework composition with ana topology characterized by the formula [MIII(4, 5-imidazole dicarboxylic acid)2X(solvent)a]n wherein MIII comprises a trivalent cation of a rare earth element, X comprises an alkali metal element or alkaline earth metal element, and solvent comprises a guest molecule occupying pores. Embodiments of the present disclosure describe a method of separating paraffins comprising contacting a zeolite-like metal-organic framework with ana topology with a flow of paraffins, and separating the paraffins by size.

  17. Impacts of metal and metal oxide nanoparticles on marine organisms

    International Nuclear Information System (INIS)

    Baker, Tony J.; Tyler, Charles R.; Galloway, Tamara S.

    2014-01-01

    Increasing use of metal and metal oxide nanoparticles [Me(O)NPs] in products means many will inevitably find their way into marine systems. Their likely fate here is sedimentation following hetero-aggregation with natural organic matter and/or free anions, putting benthic, sediment-dwelling and filter feeding organisms most at risk. In marine systems, Me(O)NPs can absorb to micro-organisms with potential for trophic transfer following consumption. Filter feeders, especially bivalves, accumulate Me(O)NPs through trapping them in mucus prior to ingestion. Benthic in-fauna may directly ingest sedimented Me(O)NPs. In fish, uptake is principally via the gut following drinking, whilst Me(O)NPs caught in gill mucus may affect respiratory processes and ion transport. Currently, environmentally-realistic Me(O)NP concentrations are unlikely to cause significant adverse acute health problems, however sub-lethal effects e.g. oxidative stresses have been noted in many organisms, often deriving from dissolution of Ag, Cu or Zn ions, and this could result in chronic health impacts. -- Highlights: • Nanoparticle (NP) use increasing, and NPs ultimately discharged to marine systems. • Metal ion dissolution from NPs causes oxidative stress at relevant concentrations. • Bioaccumulation and trophic transfer of NPs likely at all levels of marine food webs. • Biofilms and filter feeders are major NP accumulators, but many Classes lack study. • Current release levels unlikely to cause chronic damage, but may be a future issue. -- Exposure to metal (oxide) nanoparticles causes sub-lethal effects in marine organisms, the extent of which is related principally to the organisms' feeding regime, habitat and lifestyle

  18. Metal organic frameworks for gas storage

    KAUST Repository

    Alezi, Dalal

    2016-06-09

    Embodiments provide a method of storing a compound using a metal organic framework (MOF). The method includes contacting one or more MOFs with a fluid and sorbing one or more compounds, such as O2 and CH4. O2 and CH4 can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF, wherein M can include aluminum, iron, gallium, indium, vanadium, chromium, titanium, or scandium.

  19. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  20. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    Science.gov (United States)

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  1. The metal-organic framework MIL-53(Al) constructed from multiple metal sources: alumina, aluminum hydroxide, and boehmite.

    Science.gov (United States)

    Li, Zehua; Wu, Yi-nan; Li, Jie; Zhang, Yiming; Zou, Xin; Li, Fengting

    2015-04-27

    Three aluminum compounds, namely alumina, aluminum hydroxide, and boehmite, are probed as the metal sources for the hydrothermal synthesis of a typical metal-organic framework MIL-53(Al). The process exhibits enhanced synthetic efficiency without the generation of strongly acidic byproducts. The time-course monitoring of conversion from different aluminum sources into MIL-53(Al) is achieved by multiple characterization that reveals a similar but differentiated crystallinity, porosity, and morphology relative to typical MIL-53(Al) prepared from water-soluble aluminum salts. Moreover, the prepared MIL-53(Al) constructed with the three insoluble aluminum sources exhibit an improved thermal stability of up to nearly 600 °C and enhanced yields. Alumina and boehmite are more preferable than aluminum hydroxide in terms of product porosity, yield, and reaction time. The adsorption performances of a typical environmental endocrine disruptor, dimethyl phthalate, on the prepared MIL-53(Al) samples are also investigated. The improved structural stability of MIL-53(Al) prepared from these alternative aluminum sources enables double-enhanced adsorption performance (up to 206 mg g(-1)) relative to the conventionally obtained MIL-53(Al). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Zeolite-like metal-organic frameworks with ana topology

    KAUST Repository

    Eddaoudi, Mohamed; Mohideen, Mohamed Infas Haja; Adil, Karim; Belmabkhout, Youssef; Bhatt, Prashant M.; Shekhah, Osama; Chernikova, Valeriya

    2017-01-01

    Embodiments of the present disclosure describe a zeolite-like metal-organic framework composition comprising a metal-organic framework composition with ana topology characterized by the formula [MIII(4, 5-imidazole dicarboxylic acid)2X

  3. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gas adsorption on metal-organic frameworks

    Science.gov (United States)

    Willis, Richard R [Cary, IL; Low, John J. , Faheem, Syed A.; Benin, Annabelle I [Oak Forest, IL; Snurr, Randall Q [Evanston, IL; Yazaydin, Ahmet Ozgur [Evanston, IL

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  5. Surface enhanced Raman scattering in organic thin films covered with silver, indium and magnesium

    International Nuclear Information System (INIS)

    Salvan, Georgeta; Zahn, Dietrich R.T.; Paez, Beynor

    2004-01-01

    In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium

  6. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water

    International Nuclear Information System (INIS)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-01-01

    Highlights: ► A novel type of functionalized MOF for heavy metal removal. ► Functionalization of MOF by a facile coordination-based postsynthetic strategy. ► Thiol-functionalization of MOF has been realized for the first time. ► Enhanced removal of Hg 2+ by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu 3 (BTC) 2 (H 2 O) 3 ] n (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu 3 (BTC) 2 ] n samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with –SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N 2 sorption–desorption isothermal. Significantly, the thiol-functionalized [Cu 3 (BTC) 2 ] n exhibited remarkably high adsorption affinity (K d = 4.73 × 10 5 mL g −1 ) and high adsorption capacity (714.29 mg g −1 ) for Hg 2+ adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg 2+ under the same condition.

  7. Hydrogen storage in metal-organic frameworks: A review

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2014-05-01

    Full Text Available Metal-organic frameworks (MOFs) for hydrogen storage have continued to receive intense interest over the past decade. MOFs are a class of organic-inorganic hybrid crystalline materials consisting of metallic moieties that are linked by strong...

  8. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    organic paints, inert metallic layers, and protective oxide layers. 2 Although coatings have been commercially used for many years, the design of new...pigments found in chromates protect the substrate by passivating the metallic surface with an oxide layer. Sacrificial coatings prevent the self...surface, eliminating the components needed for a cathodic reaction to occur. Additionally, organic barrier coatings are protective by preventing

  9. Metal Organic Frameworks (MOFs)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Molecule Matters - Metal Organic Frameworks (MOFs). R Sarvanakumar S Sankararaman. Feature Article Volume 12 Issue 11 November 2007 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  11. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  12. Metal-enhanced luminescence: Current trend and future perspectives- A review

    International Nuclear Information System (INIS)

    Ranjan, Rajeev; Esimbekova, Elena N.; Kirillova, Maria A.; Kratasyuk, Valentina A.

    2017-01-01

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  13. Metal-enhanced luminescence: Current trend and future perspectives- A review

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Rajeev [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Esimbekova, Elena N., E-mail: esimbekova@yandex.ru [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation); Kirillova, Maria A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Kratasyuk, Valentina A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation)

    2017-06-08

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  14. Autometallography: tissue metals demonstrated by a silver enhancement kit

    DEFF Research Database (Denmark)

    Danscher, G; Nørgaard, J O; Baatrup, E

    1987-01-01

    , primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial......In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit...... silver enhancement kit (IntenSE, Janssen Pharmaceutica). It was found that the kit performs adequately to the silver lactate gum arabic developer and to the photographic emulsion technique. The kit can be used as a silver enhancement medium for the demonstration of zinc by the Neo-Timm and selenium...

  15. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids.

    Science.gov (United States)

    Alozie, Nneka; Heaney, Natalie; Lin, Chuxia

    2018-07-15

    A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Disorder and conductivity of organic metal

    International Nuclear Information System (INIS)

    Bouffard, Serge

    1982-02-01

    At high temperature, quasi-one-dimensional organic conductors are metallic; at low temperature, the electron gas instabilities drive either a metal to insulator transition or a metal to superconductor transition. Precursors of these 3-D ordering could be appear at higher temperature. A study of the effects of irradiation induced defects on a few organic complexes has shown that defects are produced by radiolitic process. Their concentration can be easily deduced from resistivity measurement at room temperature. In the metallic state, the defects act as strong potentials which break the conducting chains and force the electron to jump to the neighbourg stack. The defects produce a mixing between longitudinal and transverse conductivities. While, it is the 3-D effect of the defects which pins the charge density waves and thus the 3-D ordering can not be acheived: the metal to insulator transition is destroyed, the metallic state is stabilized. In the same time, the fluctuative conductivity is suppress. The superconducting regime has been found to be extremely sensitive to irradiation induced defects. Thus we can demonstrate that the 1-D superconducting fluctuations contribute to the conductivity and that the transition temperature is correlated to the 3-D superconducting fluctuations. [fr

  17. Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.

    Science.gov (United States)

    Kobayashi, Hirokazu; Mitsuka, Yuko; Kitagawa, Hiroshi

    2016-08-01

    Hybrid materials composed of metal nanoparticles and metal-organic frameworks (MOFs) have attracted much attention in many applications, such as enhanced gas storage and catalytic, magnetic, and optical properties, because of the synergetic effects between the metal nanoparticles and MOFs. In this Forum Article, we describe our recent progress on novel synthetic methods to produce metal nanoparticles covered with a MOF (metal@MOF). We first present Pd@copper(II) 1,3,5-benzenetricarboxylate (HKUST-1) as a novel hydrogen-storage material. The HKUST-1 coating on Pd nanocrystals results in a remarkably enhanced hydrogen-storage capacity and speed in the Pd nanocrystals, originating from charge transfer from Pd nanocrystals to HKUST-1. Another material, Pd-Au@Zn(MeIM)2 (ZIF-8, where HMeIM = 2-methylimidazole), exhibits much different catalytic activity for alcohol oxidation compared with Pd-Au nanoparticles, indicating a design guideline for the development of composite catalysts with high selectivity. A composite material composed of Cu nanoparticles and Cr3F(H2O)2O{C6H3(CO2)3}2 (MIL-100-Cr) demonstrates higher catalytic activity for CO2 reduction into methanol than Cu/γ-Al2O3. We also present novel one-pot synthetic methods to produce composite materials including Pd/ZIF-8 and Ni@Ni2(dhtp) (MOF-74, where H4dhtp = 2,5-dihydroxyterephthalic acid).

  18. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    important for metal substrates, as it is well-known that chloride increases corrosion of metals . 3 For metal -loaded primers, it has been established...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal -rich organic (MRO) coatings. Following design of...pH and chloride ion concentration levels over time. As the corrosion protection of the coating decreases, chloride ion concentration will increase

  19. EVALUATION OF FERRIC CHLORIDE AND ALUM EFFICIENCIES IN ENHANCED COAGULATION FOR TOC REMOVAL AND RELATED RESIDUAL METAL CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    A. Mesdaghinia, M. T. Rafiee, F. Vaezi and A. H. Mahvi

    2005-07-01

    Full Text Available Although the removal of colloidal particles continues to be an important reason for using coagulation, a newer objective, the removal of natural organic matter (NOM to reduce the formation of disinfection by-products (DBPs, is growing in importance. Enhanced coagulation is thus introduced to most water utilities treating surface water. Bench-scale experiments were conducted to compare the effectiveness of alum and ferric chloride in removing DBPs precursors from eight synthetic water samples, each representing a different element of the USEPA’s 3×3 enhanced coagulation matrix. The effect of enhanced coagulation on the residual metal (aluminum/iron concentration in the treated water was assessed as well. The removal of total organic carbon (TOC was dependent on the coagulant type and was enhanced with increasing coagulant dose, but the latter had no further considerable effect in case of increasing to high levels. For all the treated samples coagulation with ferric chloride proved to be more effective than alum at similar doses and the mean values of treatment efficiencies were 51% and 32% for ferric chloride and alum, respectively. Ferric chloride was therefore considered the better chemical for enhancing the coagulation process. Besides, due to less production of sludge by this coagulant, it would be predicted that treatment plants would be confronted to fewer problems with respect to final sludge disposal. Measurements of residual metal in treated water indicated that iron and aluminum concentrations had been increased as expected but the quality of water concerning the residual metal deteriorated much more in cases of under-dosing. Despite expecting high residual Al and Fe concentrations under enhanced coagulation, metal concentrations were frequently remained low and were not increased appreciably.

  20. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  1. Enhancement of device performance of organic solar cells by an interfacial perylene derivative layer

    KAUST Repository

    Kim, Inho

    2010-05-26

    We report that device performance of organic solar cells consisting of zinc phthalocyanine and fullerene (C60) can be enhanced by insertion of a perylene derivative interfacial layer between fullerene and bathocuproine (BCP) exciton blocking layer (EBL). The morphology of the BCP is influenced by the underlying N,N′-dihexyl-perylene-3,4,9,10-bis(dicarboximide) (PTCDI-C6), which promotes migration of the cathode metal into the BCP layer. Insertion of a PTCDI-C6 layer between fullerene and BCP layers enhances the power conversion efficiency to 2.5%, an improvement of 32% over devices without PTCDI-C6 layer. The enhancement in device performance by insertion of PTCDI-C6 is attributed to a reduction in series resistance due to promoted metal migration into BCP and optimized optical interference effects in multilayered devices. © 2010 American Chemical Society.

  2. Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks.

    Science.gov (United States)

    Sumida, Kenji; Stück, David; Mino, Lorenzo; Chai, Jeng-Da; Bloch, Eric D; Zavorotynska, Olena; Murray, Leslie J; Dincă, Mircea; Chavan, Sachin; Bordiga, Silvia; Head-Gordon, Martin; Long, Jeffrey R

    2013-01-23

    Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.

  3. Photoassisted reduction of metal ions and organic dye by titanium dioxide nanoparticles in aqueous solution under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Doong, Ruey-An, E-mail: radoong@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (China); Hsieh, Tien-Chin [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (China); Huang, Chin-Pao [Department of Civil and Environmental Engineering, University of Delaware, Newark, 19716, Delaware (United States)

    2010-07-15

    The photoassisted reduction of metal ions and organic dye by metal-deposited Degussa P25 TiO{sub 2} nanoparticles was investigated. Copper and silver ions were selected as the target metal ions to modify the surface properties of TiO{sub 2} and to enhance the photocatalytic activity of TiO{sub 2} towards methylene blue (MB) degradation. X-ray powder diffraction (XRPD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used to characterize the crystallinity, chemical species and morphology of metal-deposited TiO{sub 2}, respectively. Results showed that the particle size of metal-deposited TiO{sub 2} was larger than that of Degussa P25 TiO{sub 2}. Based on XRPD patterns and XPS spectra, it was observed that the addition of formate promoted the photoreduction of metal ion by lowering its oxidation number, and subsequently enhancing the photodegradation efficiency and rate of MB. The pseudo-first-order rate constant (k{sub obs}) for MB photodegradation by Degussa P25 TiO{sub 2} was 3.94 x 10{sup -2} min{sup -1} and increased by 1.4-1.7 times in k{sub obs} with metal-deposited TiO{sub 2} for MB photodegradation compared to simple Degussa P25 TiO{sub 2}. The increase in mass loading of metal ions significantly enhanced the photodegradation efficiency of MB; the k{sub obs} for MB degradation increased from 3.94 x 10{sup -2} min{sup -1} in the absence of metal ion to 4.64-7.28 x 10{sup -2} min{sup -1} for Ag/TiO{sub 2} and to 5.14-7.61 x 10{sup -2} min{sup -1} for Cu/TiO{sub 2}. In addition, the electrons generated from TiO{sub 2} can effectively reduce metal ions and MB simultaneously under anoxic conditions. However, metal ions and organic dye would compete for electrons from the illuminated TiO{sub 2}.

  4. Reconfigurable electronics using conducting metal-organic frameworks

    Science.gov (United States)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  5. Methane storage in metal-organic frameworks.

    Science.gov (United States)

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  6. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals.

    Science.gov (United States)

    Schmidt, Ulrich

    2003-01-01

    For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective

  7. Charge transfer and injection barrier at the metal-organic interfaces

    Science.gov (United States)

    Yan, Li

    2002-09-01

    The metal-organic interface plays a critical role in determining the functionality and performance of many innovative organic based devices. It has attracted extensive research interests in recent years. This thesis presents investigations of the electronic structures of organic materials, such as tris-(8-hydroxyquinoline) aluminum (Alq3) and copper phthalocyanine (CuPc), during their interface formation with metals. The characterization is accomplished by X-ray and ultraviolet photoelectron spectroscopes (XPS and UPS) and inverse photoelectron spectroscopy (IPES). As discussed herein, both occupied and unoccupied electronic states at the interfaces are carefully examined in different aspects. In Chapter 4, the charge transfer and chemical reaction at various metal/Alq3 interfaces are investigated using XPS and UPS to study the electron injection into the Alga film. Electron transfer from the low work function metal and Al/LiF(CsF) bilayer to the Alga has been observed. The role of the dielectric and possible chemistry at the interface are discussed in comparison of the low work function metals. Further in Chapter 5, the origin of the metal-interface dipole and the estimation of charge injection barrier is explored using several organic materials. A thermodynamic equilibrium model is extended to explain the relation between the charge transfer process ad the interface dipole. Further, in Chapter 6 the combination of XPS, UPS and IPES detailed the evolution of both occupied and unoccupied energy states during the alkali metal doping. The energy gap modification in organic due to metal doping is observed directly for the spectra. Chapter 7 provides stability study of the organic thin films under x-ray and UV light. The results verify the usability of UPS and XPS for the organic materials used in the thesis. Chapter 7 also shows the secondary ion mass spectroscopy results of metal diffusion in organic thin films.

  8. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  9. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Lv, Qinghui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2014-09-19

    Metal-organic framework (MOF) HKUST-1 nanoparticles have been incorporated into poly(glycidyl methacrylate-co-ethylene dimethacrylate) (HKUST-1-poly(GMA-co-EDMA)) monoliths to afford stationary phases with enhanced chromatographic performance of small molecules in the reversed phase capillary liquid chromatography. The effect of HKUST-1 nanoparticles in the polymerization mixture on the performance of the monolithic column was explored in detail. While the bare poly(GMA-co-EDMA) monolith exhibited poor resolution (RsHKUST-1 nanoparticles to the polymerization mixture provide high increased resolution (Rs≥1.3) and high efficiency ranged from 16,300 to 44,300plates/m. Chromatographic performance of HKUST-1-poly(GMA-co-EDMA) monolith was demonstrated by separation of various analytes including polycyclic aromatic hydrocarbons, ethylbenzene and styrene, phenols and aromatic acids using a binary polar mobile phase (CH3CN/H2O). The HKUST-1-poly(GMA-co-EDMA) monolith displayed enhanced hydrophobic and π-π interaction characteristics in the reversed phase separation of test analytes compared to the bare poly(GMA-co-EDMA) monolith. The experiment results showed that HKUST-1-poly(GMA-co-EDMA) monoliths are an alternative to enhance the chromatographic separation of small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bioremediation of Heavy Metals and Organic Toxicants by Composting

    Directory of Open Access Journals (Sweden)

    Allen V. Barker

    2002-01-01

    Full Text Available Hazardous organic and metallic residues or by-products can enter into plants, soils, and sediments from processes associated with domestic, municipal, agricultural, industrial, and military activities. Handling, ingestion, application to land or other distributions of the contaminated materials into the environment might render harm to humans, livestock, wildlife, crops, or native plants. Considerable remediation of the hazardous wastes or contaminated plants, soils, and sediments can be accomplished by composting. High microbial diversity and activity during composting, due to the abundance of substrates in feedstocks, promotes degradation of xenobiotic organic compounds, such as pesticides, polycyclic aromatic hydrocarbons (PAHs, and polychlorinated biphenyls (PCBs. For composting of contaminated soils, noncontaminated organic matter should be cocomposted with the soils. Metallic pollutants are not degraded during composting but may be converted into organic combinations that have less bioavailability than mineral combinations of the metals. Degradation of organic contaminants in soils is facilitated by addition of composted or raw organic matter, thereby increasing the substrate levels for cometabolism of the contaminants. Similar to the composting of soils in vessels or piles, the on-site addition of organic matter to soils (sheet composting accelerates degradation of organic pollutants and binds metallic pollutants. Recalcitrant materials, such as organochlorines, may not undergo degradation in composts or in soils, and the effects of forming organic complexes with metallic pollutants may be nonpermanent or short lived. The general conclusion is, however, that composting degrades or binds pollutants to innocuous levels or into innocuous compounds in the finished product.

  11. Speciation and Distribution of Trace Metals and Organic Matter in Marine Lake as In Situ Laboratory

    Science.gov (United States)

    Mlakar, M.; Fiket, Ž.; Cuculić, V.; Cukrov, N.; Geček, S.

    2016-02-01

    Marine lakes are unique, isolated marine systems, also recognized as in situ "laboratories" in which geochemical processes on a different scale compared to the open sea, can be observed. Impact of organic matter cycling on distribution of trace metals in the marine lake Mir, located on Dugi Otok Island, in the central part of the eastern Adriatic Sea, was investigated. Intense spatial and seasonal variations of physico-chemical parameters and organic matter concentrations in the water column of the Lake are governed predominantly by natural processes. Enhanced oxygen consumption in the Lake during summer season, high organic carbon concentrations and low redox potential result in occasional occurrence of anoxic conditions in the bottom layers. Speciation modelling showed that dissolved trace metals Cu, Pb and Zn, are mostly bound to organic matter, while Cd, Co and Ni are present predominantly as free ions and inorganic complexes. Trace metals removal from the water column and their retention in the sediment was found to depend on the nature of the relationship between specific metal and high proportion of organic matter (up to 9%) and inorganic phases, Fe-oxyhydroxydes or biogenic calcite. Surrounding karstic background, with occasional occurrences of red soil characterize deposited sediments as coarse grained and carbonate rich, whose elemental composition is affected by bathymetry of the basin and overall biological production.

  12. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Soriano, Maria C., E-mail: maria.HernandezSoriano@ees.kuleuven.be [Department of Soil Science, College of Agriculture and Life Sciences, North Carolina State University, Campus Box 7619, 101 Derieux Street, 2232 Williams Hall, Raleigh, NC 27695 (United States); Jimenez-Lopez, Jose C. [Department of Biological Sciences, College of Science, Purdue University, 201 S. University Street, West Lafayette, IN 47907 (United States)

    2012-04-15

    organic matter and formation of metal-organo complexes. - Graphical abstract: For soils incubated at field capacity, increasing soil-derived DOC in solution decreases free ion activities by formation of metal-organo complexes, while for waterlogged soils metal bioavailability is controlled by other soil solution properties. Highlights: Black-Right-Pointing-Pointer Addition of fresh organic matter inputs increases metal solubilisation. Black-Right-Pointing-Pointer Soil waterlogging decreases the effect of fresh organic matter inputs on metal solubility. Black-Right-Pointing-Pointer Metal bioavailability decreased with increasing soil organic matter solubility by the formation of metal-organo complexes. Black-Right-Pointing-Pointer Increasing ratio of metal-organic complex in solution enhanced Pb and Zn uptake. Black-Right-Pointing-Pointer Mobility and bioavailability of metals were controlled by soil solution pH, soluble organic carbon and soluble aluminium.

  13. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  14. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra

    Science.gov (United States)

    Li, Jian-Rong; Zhou, Hong-Cai

    2010-10-01

    Metal-organic polyhedra-discrete molecular architectures constructed through the coordination of metal ions and organic linkers-have recently attracted considerable attention due to their intriguing structures, their potential for a variety of applications and their relevance to biological self-assembly. Several synthetic routes have been investigated to prepare these complexes. However, to date, these preparative methods have typically been based on the direct assembly of metal ions and organic linkers. Although these routes are convenient, it remains difficult to find suitable reaction conditions or to control the outcome of the assembly process. Here, we demonstrate a synthetic strategy based on the substitution of bridging ligands in soluble metal-organic polyhedra. The introduction of linkers with different properties from those of the initial metal-organic polyhedra can thus lead to new metal-organic polyhedra with distinct properties (including size and shape). Furthermore, partial substitution can also occur and form mixed-ligand species that may be difficult to access by means of other approaches.

  15. Metal-organic frameworks for adsorption and separation of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  16. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    Science.gov (United States)

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg -1 ), Ni (1135 mg kg -1 ) and zinc (1200 mg kg -1 ). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  17. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fei [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Qiu, Ling-Guang, E-mail: lgqiu@ahu.edu.cn [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhu, Jun-Fa [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer A novel type of functionalized MOF for heavy metal removal. Black-Right-Pointing-Pointer Functionalization of MOF by a facile coordination-based postsynthetic strategy. Black-Right-Pointing-Pointer Thiol-functionalization of MOF has been realized for the first time. Black-Right-Pointing-Pointer Enhanced removal of Hg{sup 2+} by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu{sub 3}(BTC){sub 2}(H{sub 2}O){sub 3}]{sub n} (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu{sub 3}(BTC){sub 2}]{sub n} samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N{sub 2} sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu{sub 3}(BTC){sub 2}]{sub n} exhibited remarkably high adsorption affinity (K{sub d} = 4.73 Multiplication-Sign 10{sup 5} mL g{sup -1}) and high adsorption capacity (714.29 mg g{sup -1}) for Hg{sup 2+} adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg{sup 2+} under the same condition.

  18. Electronic properties of metal-organic and organic-organic interfaces studied by photoemission and photoabsorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Molodtsova, Olga

    2006-07-01

    In this work systematic studies of the organic semiconductor CuPc have been presented. In general the investigation can be devided in three parts. In the first one we have studied the electronic structure of clean CuPc thin film. The next two parts are devoted to organic-organic and metal-organic interface formation, where one of the interface components is CuPc thin film. The main results of this thesis are: - The electronic structure of the pristine organic semiconductor CuPc has been obtained by a combination of conventional and resonant photoemission, near-edge X-ray absorption, as well as by theoretical ab initio quantum-chemical calculations. The contributions of different atomic species as well as sites of the CuPc molecule to the electronic DOS has been established. A combined experimental and theoretical study of the unoccupied electronic density of states of CuPc was presented. - The electronic properties of the organic heterointerfaces between fullerite and pristine copper phthalocyanine were studied. Both interfaces, CuPc/C{sub 60} and C{sub 60}/CuPc, were found to be non-reactive with pronounced shifts of the vacuum level pointing to the formation of an interfacial dipole mainly at the CuPc side of the heterojunctions. The dipole values are close to the difference of the work functions of the two materials. Important interface parameters and hole-injection barriers were obtained. The sequence of deposition does not influence the electronic properties of the interfaces. - CuPc doped with potassium was studied by means of photoemission and photoabsorption spectroscopy. A detailed analysis of the core-level PE spectra allows one to propose possible lattice sites, which harbor the potassium ions. The films prepared in this thesis showed no finite electronic density of states at the Fermi level. - Two stages of the In/CuPc interface formation have been distinguished. The low-coverage stage is characterized by a strong diffusion of the In atoms into the

  19. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals

    International Nuclear Information System (INIS)

    Hernandez-Soriano, Maria C.; Jimenez-Lopez, Jose C.

    2012-01-01

    organic matter and formation of metal-organo complexes. - Graphical abstract: For soils incubated at field capacity, increasing soil-derived DOC in solution decreases free ion activities by formation of metal-organo complexes, while for waterlogged soils metal bioavailability is controlled by other soil solution properties. Highlights: ►Addition of fresh organic matter inputs increases metal solubilisation. ►Soil waterlogging decreases the effect of fresh organic matter inputs on metal solubility. ►Metal bioavailability decreased with increasing soil organic matter solubility by the formation of metal-organo complexes. ►Increasing ratio of metal–organic complex in solution enhanced Pb and Zn uptake. ►Mobility and bioavailability of metals were controlled by soil solution pH, soluble organic carbon and soluble aluminium.

  20. Current at Metal-Organic Interfaces

    Science.gov (United States)

    Kern, Klaus

    2012-02-01

    Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.

  1. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    Science.gov (United States)

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  2. Supercapacitors of nanocrystalline metal-organic frameworks.

    Science.gov (United States)

    Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo; Zhang, Yue-Biao; Kang, Jeung Ku; Yaghi, Omar M

    2014-07-22

    The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles.

  3. Enhanced Absorption in Organic Thin-Films from Imprinted Concave Nanostructures

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Rubahn, Horst-Günter; Madsen, Morten

    2017-01-01

    In this work, a rapid, replicable method for imprinting concave nanostructures to be used as functional light-trapping nanostructures in organic thin-films is presented. Porous anodic alumina templates were fabricated both by anodization of thick Al foils and by anodization of submicrometer thin Al...... patterns and used for imprinting of spin coated photoresist on glass substrates. We have investigated semi-periodic and aperiodic imprinted large concave patterns fabricated from rigid masters after anodization of Al in H3PO4. We show that metal covered imprinted concaves show enhancement in absorption...

  4. Enhancing CO2 Electroreduction with the Metal-Oxide Interface.

    Science.gov (United States)

    Gao, Dunfeng; Zhang, Yi; Zhou, Zhiwen; Cai, Fan; Zhao, Xinfei; Huang, Wugen; Li, Yangsheng; Zhu, Junfa; Liu, Ping; Yang, Fan; Wang, Guoxiong; Bao, Xinhe

    2017-04-26

    The electrochemical CO 2 reduction reaction (CO 2 RR) typically uses transition metals as the catalysts. To improve the efficiency, tremendous efforts have been dedicated to tuning the morphology, size, and structure of metal catalysts and employing electrolytes that enhance the adsorption of CO 2 . We report here a strategy to enhance CO 2 RR by constructing the metal-oxide interface. We demonstrate that Au-CeO x shows much higher activity and Faradaic efficiency than Au or CeO x alone for CO 2 RR. In situ scanning tunneling microscopy and synchrotron-radiation photoemission spectroscopy show that the Au-CeO x interface is dominant in enhancing CO 2 adsorption and activation, which can be further promoted by the presence of hydroxyl groups. Density functional theory calculations indicate that the Au-CeO x interface is the active site for CO 2 activation and the reduction to CO, where the synergy between Au and CeO x promotes the stability of key carboxyl intermediate (*COOH) and thus facilitates CO 2 RR. Similar interface-enhanced CO 2 RR is further observed on Ag-CeO x , demonstrating the generality of the strategy for enhancing CO 2 RR.

  5. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance.

    Science.gov (United States)

    Liu, Dan; Islam, Ejazul; Li, Tingqiang; Yang, Xiaoe; Jin, Xiaofen; Mahmood, Qaisar

    2008-05-01

    Lab scale and pot experiments were conducted to compare the effects of synthetic chelators and low molecular weight organic acids (LMWOA) on the phytoextraction of multi-contaminated soils by two ecotypes of Sedum alfredii Hance. Through lab scale experiments, the treatment dosage of 5 and 10 mM for synthetic chelators and LMWOA, respectively, and the treatment time of 10 days were selected for pot experiment. In pot experiment, the hyperaccumulating ecotype (HE) was found more tolerant to the metal toxicity compared with the non-hyperaccumulating ecotype (NHE). EDTA for Pb, EDDS for Cu, and DTPA for Cu and Cd were found more effective to enhance heavy metal accumulation in the shoots of S. alfredii Hance. Compared with synthetic chelators, the phytoextraction ability of LMWOA was lesser. Considering the strong post-harvest effects of synthetic chelators, it is suggested that higher dosage of LMWOA could be practiced during phytoextraction, and some additional measures could also be taken to lower the potential environmental risks of synthetic chelators in the future studies.

  6. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  7. Ion implantation enhanced metal-Si-metal photodetectors

    Science.gov (United States)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  8. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  9. Functionalised metal-organic frameworks : A novel approach to stabilising single metal atoms

    NARCIS (Netherlands)

    Szilagyi, P.A.; Rogers, D. M.; Zaiser, I.; Callini, E; Turner, Stuart; Borgschulte, A; Züttel, A.; Geerlings, J.J.C.; Hirscher, M; Dam, B.

    2017-01-01

    We have investigated the potential of metal-organic frameworks for immobilising single atoms of transition metals using a model system of Pd supported on NH2-MIL-101(Cr). Our transmission electron microscopy and in situ Raman spectroscopy results give evidence for the first time that

  10. Insight into the construction of metal-organic polyhedra: Metal-organic cubes as a case study

    KAUST Repository

    Al Kordi, Mohamed; Belof, Jonathan L.; Rivera, Edwin R.; Wojtas, Łukasz; Eddaoudi, Mohamed

    2011-01-01

    Systematic studies were conducted to gain a better understanding of the metal-organic cubes (MOCs) directed assembly and their crystallization under predetermined reaction conditions, i.e. charge and size of metal ions, solvent type, counter anions, pH, and temperature. Four novel metal-organic materials are constructed via solvothermal reactions of different metal ions and 2,2′-(1H-imidazole-4,5-diyl)di-1,4,5,6-tetrahydropyrimidine, namely [Co8(C11N6H15)12]Cl 12·4H2O (1), [Ni4(C11N 6H15)4](NO3)4· 4DMF (2), {Cd(C11N6H15)(NO3) ·DMF}n (3), and [In8(C11N 6H15)12](NO3)12· 4H2O (4). In addition, syntheses and crystal structures for compounds 1(a-f), constructed under deliberately modified reaction conditions of 1, are reported. In compounds 1(a-f), the CoIII-based cationic MOCs crystallize in various packing arrangements in the presence of different counter-ions. Discrete MOCs retain their structural integrity, when crystalline solid was dissolved in water, under various pH (2.03-8.07) and temperatures (298-333 K), as confirmed by solution NMR studies. The assembly of the discrete MOC, from its basic molecular building blocks under mild reaction conditions, is demonstrated and monitored through solution NMR and UV-vis studies. © The Royal Society of Chemistry 2011.

  11. Synergetic scattering of SiO2 and Ag nanoparticles for light-trapping enhancement in organic bulk heterojunction

    Science.gov (United States)

    Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman

    2018-02-01

    Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.

  12. Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell

    Science.gov (United States)

    Mohan, Minu; Ramkumar, S.; Namboothiry, Manoj A. G.

    2017-08-01

    P3HT:PCBM is one of the most studied polymer-fullerene system. However the reported power conversion efficiency (PCE) values falls within the range of 4% to 5%. The thin film architecture in OPVs exhibits low PCE compared to inorganic photovoltaic cells. This is mainly due to the low exciton diffusion length that limits the active layer thickness which in turn reduces the absorption of incident light. Several strategies are adapted in order to increase the absorption in the active layer without increasing the film thickness. Inclusion of metal nanoparticles into the polymer layer of bulk heterojunction (BHJ) solar cells is one of the promising methods. Incorporation of metal nanostructures increases the absorption of organic materials due to the high electromagnetic field strength in the vicinity of the excited surface plasmons. In this work, we used 60 nm Au plasmonic structures to improve the efficiency of organic solar cell. The prepared metal nano structures were characterized through scanning electron microscopy (SEM), and UV-Visible spectroscopy techniques. These prepared metallic nanoparticles can be incorporated either into the electron transport layer (ETL) or into the active P3HT:PC71BM layer. The effect of incorporation of plasmonic gold (Au) nanoparticle in the inverted bulk heterojunction organic photovoltaic cells (OPVs) of P3HT:PC71BM fabricated in ambient air condition is in progress. Initial studies shows an 8.5% enhancement in the PCE with the incorporation of Au nanoparticles under AM1.5G light of intensity 1 Sun.

  13. A highly conducting organic metal derived from an organic-transistor material: benzothienobenzothiophene.

    Science.gov (United States)

    Kadoya, Tomofumi; Ashizawa, Minoru; Higashino, Toshiki; Kawamoto, Tadashi; Kumeta, Shohei; Matsumoto, Hidetoshi; Mori, Takehiko

    2013-11-07

    BTBT ([1]benzothieno[3,2-b][1]benzothiophene) is an organic semiconductor that realizes high mobility in organic transistors. Here we report that the charge-transfer (CT) salt, (BTBT)2PF6, shows a high room-temperature conductivity of 1500 S cm(-1). This compound exhibits a resistivity jump around 150 K, but when it is covered with Apiezon N grease the resistivity jump is suppressed, and the metallic conductivity is maintained down to 60 K. Owing to the very high conductivity, the ESR signal shows a significantly asymmetric Dysonian lineshape (A/B ≅ 3) even at room temperature. Since most organic conductors are based on strong electron donors, it is remarkable that such a weak electron donor as BTBT realizes a stable and highly conducting organic metal.

  14. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars.

    Science.gov (United States)

    Wang, Fei; Sun, Hongwen; Ren, Xinhao; Liu, Yarui; Zhu, Hongkai; Zhang, Peng; Ren, Chao

    2017-12-01

    The effects of humic acid (HA) and heavy metals (Cu 2+ and Ag + ) on the sorption of polar and apolar organic pollutants onto biochars that were produced at temperatures of 200 °C (BC200) and 700 °C (BC700) were studied. Due to the plentiful polar functional groups on BC200, cationic propranolol exhibited higher levels of sorption than naphthalene on BC200 while naphthalene and propranolol showed similar sorption capacities on BC700. HA changed the characteristics of biochars and generally inhibited the sorption of target organic pollutants on biochars; however, enhancement occurred in some cases depending on the pollutants involved and their concentrations, biochars used and the addition sequences and concentrations of HA. On BC200, HA modifications mainly influenced sorption by decreasing its polarity and increasing its aromaticity, while on BC700, the surface area and pore volume greatly decreased due to the pore-blocking effects of HA. Residue dissolved HA in solution may also contribute to sorption inhibition. Complexation between polar functional groups on BC200 and heavy metals slightly enhanced the sorption of neutral naphthalene and significantly enhanced that of anionic 4-nitro-1-naphtol, while limited the sorption of cationic propranolol. Heavy metals together with their associated water molecules decreased the sorption of target chemicals on BC700 via pore-filling or pore-mouth-covering. Inhibition of heavy metals for 4-nitro-1-naphthol was found to be the weakest due to the bridge effects of heavy metals between 4-nitro-1-naphtol and BC700. The higher polarizability of Ag + led to the increase of its sorption on biochars in the presence of organic aromatic pollutants. The results of the present study shed light on the sorption mechanisms of bi-solute systems and enable us to select suitable biochar sorbents when chemicals co-exist. Copyright © 2017. Published by Elsevier Ltd.

  15. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  17. Noise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Background Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. Methods We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. Results In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. Conclusion This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks. PMID:24870407

  18. Effects of Ag Nanocubes with Different Corner Shape on the Absorption Enhancement in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Feng Shan

    2014-01-01

    Full Text Available The effects of corner shape of silver (Ag nanocubes (NCs on optical absorptions of organic solar cells (OSCs are theoretically investigated by finite element method (FEM calculations. The absorption of sun light in the active layer is calculated. Significant absorption enhancements have been demonstrated in metallic region with different shapes of Ag NCs, among them corner radius (R is zero result in the best light absorption performance of up to 55% enhancement with respect to bare OSCs. The origins of increased absorption are believed to be the effects of the huge electric field enhancement and increased scattering upon the excitation of localized surface plasmon resonance (LSPR. Apart from using R=0, we show that R=3, 6, and 11.29 of Ag NCs in metallic region of active layer may also result in the maximum comparable absorption enhancement of 49%, 41%, and 28%, respectively. In addition, a significant effect of the period of NCs is observed.

  19. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    Science.gov (United States)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.; Mondloch, Joseph E.

    2017-04-18

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  20. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-01-01

    are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due

  1. Determination of elemental composition of metals using ambient organic mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shiea, Christopher [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Cheng, Sy-Chyi; Chen, Yi-Lun [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Shiea, Jentaie, E-mail: jetea@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China)

    2017-05-22

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  2. Determination of elemental composition of metals using ambient organic mass spectrometry

    International Nuclear Information System (INIS)

    Shiea, Christopher; Huang, Yeou-Lih; Cheng, Sy-Chyi; Chen, Yi-Lun; Shiea, Jentaie

    2017-01-01

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  3. Fuel upgrading and reforming with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-31

    Systems and methods for separating hydrocarbons on an internal combustion powered vehicle via one or more metal organic frameworks are disclosed. Systems and methods can further include utilizing separated hydrocarbons and exhaust to generate hydrogen gas for use as fuel. In one aspect, a method for separating hydrocarbons can include contacting a first component containing a first metal organic framework with a flow of hydrocarbons and separating hydrocarbons by size. In certain embodiments, the hydrocarbons can include alkanes.

  4. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.; Theodorou, I. G.; Centeno, A.; Petrov, P. K.; Alford, N. M.; Ryan, M. P.; Xie, F.

    2016-01-01

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  5. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.

    2016-12-28

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  6. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.

    Science.gov (United States)

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J; Han, Yu; Li, Jing

    2017-09-07

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH 3 I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag 0 @MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  7. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan

    2017-09-01

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  8. Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia

    Science.gov (United States)

    DeCoste, Jared B.; Peterson, Gregory W.

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  9. Nanomaterials derived from metal-organic frameworks

    Science.gov (United States)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  10. Performance limits of plasmon-enhanced organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Salvador, Michael [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Yao, Kai [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Jen, Alex K.-Y. [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-07-21

    We use a combination of experiment and modeling to explore the promise and limitations of using plasmon-resonant metal nanoparticles to enhance the device performance of organic photovoltaics (OPVs). We focus on optical properties typical of the current generation of low-bandgap donor polymers blended with the fullerene (6,6)-phenyl C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) and use the polymer poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline) (PIDT-PhanQ) as our test case. We model the optical properties and performance of these devices both in the presence and absence of a variety of colloidal silver nanoparticles. We show that for these materials, device performance is sensitive to the relative z-position and the density of nanoparticles inside the active layer. Using conservative estimates of the internal quantum efficiency for the PIDT-PhanQ/PC{sub 71}BM blend, we calculate that optimally placed silver nanoparticles could yield an enhancement in short-circuit current density of over 31% when used with ∼ 80-nm-thick active layers, resulting in an absolute increase in power conversion efficiency of up to ∼2% for the device based on optical engineering.

  11. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    International Nuclear Information System (INIS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-01-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi 2 O(1,3,5-BTC) 2 ] n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi 4 O 2 (COO) 12 clusters which are further connected to Mn(COO) 6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4 13 .6 2 )(4 13 .6 8 )(4 16 .6 5 )(4 18 .6 10 )(4 22 .6 14 )(4 3 ) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles

  12. Metals as radio-enhancers in oncology: The industry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, Agnés, E-mail: agnes.pottier@nanobiotix.com; Borghi, Elsa; Levy, Laurent

    2015-12-18

    Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems when the radiation beam is ‘off’. Important decision points support the development of these new type of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective, the interest of developing radio-enhancer agents to improve tumor control, the relevance of nanotechnology to achieve adequate therapeutic attributes, and present some considerations for their development in oncology. - Highlights: • Oncology is a field of high unmet medical need. • Despites of its widespread usage, radiation therapy presents a narrow therapeutic window. • High density material at the nanoscale may enhance radiation dose deposit from cancer cells. • Metal-based nanosized radio-enhancers could unlock the potential of radiotherapy.

  13. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  14. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  15. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  16. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Directory of Open Access Journals (Sweden)

    Yoon-Hyeong Choi

    Full Text Available BACKGROUND: Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. METHODS: We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents and subject-specific health outcomes (e.g., audiometric examination were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA (i.e., means of 2, 3, and 4 kHz were computed. RESULTS: In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. CONCLUSION: This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  17. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains soil fines in suspension......The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  18. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  19. Rational design of metal-organic electronic devices: A computational perspective

    Science.gov (United States)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device

  20. Quasiparticles and Fermi liquid behaviour in an organic metal

    Science.gov (United States)

    Kiss, T.; Chainani, A.; Yamamoto, H.M.; Miyazaki, T.; Akimoto, T.; Shimojima, T.; Ishizaka, K.; Watanabe, S.; Chen, C.-T.; Fukaya, A.; Kato, R.; Shin, S.

    2012-01-01

    Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)3Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 me) and ω2 dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)3Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results. PMID:23011143

  1. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fa-Nian, E-mail: fshi@ua.pt [School of Science, Shenyang University of Technology, 110870 Shenyang (China); Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Rosa Silva, Ana [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Bian, Liang [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China)

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  2. Multiple layered metallic nanostructures for strong surface-enhanced Raman spectroscopy enhancement

    International Nuclear Information System (INIS)

    Xia, Ming; Xie, Ya-Hong; Qiao Kuan; Cheng Zhiyuan

    2016-01-01

    We report a systematic study on a practical way of patterning metallic nanostructures to achieve high surface-enhanced Raman spectroscopy (SERS) enhancement factors (EFs) and high hot-spot density. By simply superimposing a 1-layer Au nanotriangle array on another to form a multilayer nanotriangle array, the SERS signal can be enhanced by 2 orders of magnitude compared with a 1-layer nanotriangle array. The drastic increases in the SERS EF and the hot spot density of the multilayer Au nanotriangle array are due to the increase in the number of gaps formed between Au nanotriangles and the decrease of the gap width. (author)

  3. Self-aligned metallization on organic semiconductor through 3D dual-layer thermal nanoimprint

    International Nuclear Information System (INIS)

    Jung, Y; Cheng, X

    2014-01-01

    High-resolution patterning of metal structures on organic semiconductors is important to the realization of high-performance organic transistors for organic integrated circuit applications. The traditional shadow mask technique has a limited resolution, precluding sub-micron metal structures on organic semiconductors. Thus organic transistors cannot benefit from scaling into the deep sub-micron region to improve their dc and ac performances. In this work, we report an efficient multiple-level metallization on poly (3-hexylthiophene) (P3HT) with a deep sub-micron lateral gap. By using a 3D nanoimprint mold in a dual-layer thermal nanoimprint process, we achieved self-aligned two-level metallization on P3HT. The 3D dual-layer thermal nanoimprint enables the first metal patterns to have suspending side-wings that can clearly define a distance from the second metal patterns. Isotropic and anisotropic side-wing structures can be fabricated through two different schemes. The process based on isotropic side-wings achieves a lateral-gap in the order of 100 nm (scheme 1). A gap of 60 nm can be achieved from the process with anisotropic side-wings (scheme 2). Because of the capability of nanoscale metal patterning on organic semiconductors with high overlay accuracy, this self-aligned metallization technique can be utilized to fabricate high-performance organic metal semiconductor field-effect transistor. (paper)

  4. Enhanced X-ray yields in PIXE analysis of some binary metal fluorides

    International Nuclear Information System (INIS)

    Peisach, M.; Pineda, C.A.; Pillay, A.E.

    1993-01-01

    Enhanced X-ray yields from the metal components of homogeneous thick targets of binary metal fluorides were observed during PIXE irradiations with protons, deuterons and 3 He ions. The absence of these effects in the pure metals and in the corresponding metal oxides, nitrides and borides suggests that the fluoride component in such compounds plays a key role in producing the enhancement. Coulomb excitation of the extremely low-lying levels of the fluorine nucleus is discussed as a possible mechanism for the improved yields via secondary excitation. (orig.)

  5. Current-Voltage Characteristics of the Metal / Organic Semiconductor / Metal Structures: Top and Bottom Contact Configuration Case

    Directory of Open Access Journals (Sweden)

    Šarūnas MEŠKINIS

    2013-03-01

    Full Text Available In present study five synthesized organic semiconductor compounds have been used for fabrication of the planar metal / organic semiconductor / metal structures. Both top electrode and bottom electrode configurations were used. Current-voltage (I-V characteristics of the samples were investigated. Effect of the hysteresis of the I-V characteristics was observed for all the investigated samples. However, strength of the hysteresis was dependent on the organic semiconductor used. Study of I-V characteristics of the top contact Al/AT-RB-1/Al structures revealed, that in (0 – 500 V voltages range average current of the samples measured in air is only slightly higher than current measured in nitrogen ambient. Deposition of the ultra-thin diamond like carbon interlayer resulted in both decrease of the hysteresis of I-V characteristics of top contact Al/AT-RB-1/Al samples. However, decreased current and decreased slope of the I-V characteristics of the samples with diamond like carbon interlayer was observed as well. I-V characteristic hysteresis effect was less pronounced in the case of the bottom contact metal/organic semiconductor/metal samples. I-V characteristics of the bottom contact samples were dependent on electrode metal used.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3816

  6. Dual Mechanism Nonlinear Response of Selected Metal Organic Chromophores

    National Research Council Canada - National Science Library

    Peak, John D

    2007-01-01

    13 The goal for the research described herein is the development of a series of transition metal based metal organic chromophores that display both two-photon and excited state absorption (TPA/ESA) character...

  7. A study on the photocatalytic reaction of the metals and organics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    TiO{sub 2}-based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author).

  8. A study on the photocatalytic reaction of the metals and organics

    International Nuclear Information System (INIS)

    Na, Jeong Won; Cho, Young Hyun; Seong, Ki Woong; Kim, Yong Ik; Kang, Hee

    1995-12-01

    TiO 2 -based photocatalytic reactions in organometallic solution the form of metal(iron and copper)-EDTA complexes in order to examine the metal removal behavior were performed. Photocatalysis technology that have the ability to remove both organics and metal can be applied to efficiently treat the radioactive organic waste in the basis of appropriate process development. 10 tabs., 21 figs. (Author)

  9. Model potential for the description of metal/organic interface states

    Science.gov (United States)

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  10. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    International Nuclear Information System (INIS)

    Butova, V V; Soldatov, M A; Guda, A A; Lomachenko, K A; Lamberti, C

    2016-01-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references

  11. Organ- and species-specific accumulation of metals in two land snail species (Gastropoda, Pulmonata)

    Energy Technology Data Exchange (ETDEWEB)

    Boshoff, Magdalena, E-mail: magdalena.boshoff@ua.ac.be [University of Antwerp, Systemic Physiological and Ecotoxicological Research, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordaens, Kurt [Royal Museum for Central Africa (JEMU), Leuvensesteenweg 13, B-3080 Tervuren (Belgium); University of Antwerp, Evolutionary Ecology Group, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Backeljau, Thierry [University of Antwerp, Evolutionary Ecology Group, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Royal Belgian Institute of Natural Sciences (JEMU), Vautierstraat 29, B-1000 Brussels (Belgium); Lettens, Suzanna [Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels (Belgium); Tack, Filip [Ghent University, Laboratory of Analytical Chemistry and Applied Ecochemistry, Coupure Links 265, B-9000 Ghent (Belgium); Vandecasteele, Bart [Institute for Agricultural and Fisheries Research (ILVO), Burg van Gansberghelaan 109, B-9820 Merelbeke (Belgium); De Jonge, Maarten; Bervoets, Lieven [University of Antwerp, Systemic Physiological and Ecotoxicological Research, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-04-01

    In order to evaluate the usefulness of terrestrial gastropods as bioindicators there is a need for studies that simultaneously compare (1) concentrations of metals in reference and polluted plots, (2) species within the same polluted habitat, (3) metal accumulation patterns in different organs and (4) metal accumulation patterns in relation to soil physicochemical properties. This study aims to assess metal accumulation patterns in two land snail species. Instead of analyzing an organism as a whole, investigating the partitioning of metals in different organs can provide information on the actual toxicological relevant fractions. Therefore, concentrations of Ag, Cd, Cr, Cu, Ni and Zn were examined in five different organs of Cepaea nemoralis, as well as in the foot and the body of Succinea putris. Snails were sampled at four polluted dredged sediment disposal localities and three adjacent less polluted reference plots situated along waterways in Flanders, Belgium. Due to the small size and problematic dissection of S. putris only the concentrations in the foot of both species could be compared. For this reason only, C. nemoralis can be described as a better bioindicator species that allows a far more detailed analysis of organ metal accumulation. This study showed that organs other than the digestive gland may be involved in the immobilization and detoxification of metals. Furthermore, pH, soil fractionation (clay %, silt %, sand %) and organic matter, correlate with metal accumulation in organs. However, most often the soil metal concentrations did not correlate with the concentrations found in snail organs. Metal concentrations in organs of both species (1) differed among polluted plots but rarely between polluted and reference plots within a locality, (2) were organ-specific (digestive gland > foot > albumen gland = spermoviduct = ovotestis), (3) were species-specific and (4) depended on the metal type (high Cd and Cu concentrations were observed in the

  12. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui

    2018-02-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  13. Titanium-Phosphonate-Based Metal-Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution

    KAUST Repository

    Li, Hui; Sun, Ying; Yuan, Zhong-Yong; Zhu, Yun-Pei; Ma, Tianyi

    2018-01-01

    Photocatalytic hydrogen production is crucial for solar-to-chemical conversion process, wherein high-efficiency photocatalysts lie in the heart of this area. Herein a new photocatalyst of hierarchically mesoporous titanium-phosphonate-based metal-organic frameworks, featuring well-structured spheres, periodic mesostructure and large secondary mesoporosity, are rationally designed with the complex of polyelectrolyte and cathodic surfactant serving as the template. The well-structured hierarchical porosity and homogeneously incorporated phosphonate groups can favor the mass transfer and strong optical absorption during the photocatalytic reactions. Correspondingly, the titanium phosphonates exhibit significantly improved photocatalytic hydrogen evolution rate along with impressive stability. This work can provide more insights into designing advanced photocatalysts for energy conversion and render a tunable platform in photoelectrochemical field.

  14. Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean

    Science.gov (United States)

    Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.

    2017-12-01

    Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.

  15. Metal-ion interactions and the structural organization of Sepia eumelanin.

    Science.gov (United States)

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  16. Trace metals in pelagic organisms from the Mediterranean Sea

    International Nuclear Information System (INIS)

    Fowler, S.W.; Oregioni, B.; LaRosa, J.

    1976-01-01

    As a result of current interest in heavy metal pollution in the marine environment much information is accruing on the present levels of metals in certain marine species. By far the majority of the studies have involved elemental analysis of coastal organisms which are relatively easy to collect. However, due to inherent problems in sampling, far less information exists on element concentration in pelagic organisms, species which are important in terms of total marine biomass, their position in the food web, and their ability to concentrate and transport relatively large amounts of metals in various ways. Microplankton and larger zooplanktonic and nektonic species were sampled over a wide geographical range throughout the Mediterranean as well as along selected transects to assess possible gradients in metal concentrations in plankton communities

  17. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  18. Synthesis of metal-organic framework films by pore diffusion method

    Science.gov (United States)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  19. Investigation of buried metal-organic interface with photoelectron spectroscopy (PES)

    Energy Technology Data Exchange (ETDEWEB)

    Vrdoljak, Pavo; Schoell, Achim; Reinert, Friedrich [Universitaet Wuerzburg, Experimentelle Physik II, 97074 Wuerzburg (Germany); Umbach, Eberhard [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)

    2008-07-01

    Metal-organic interfaces are of crucial importance for electronic devices since they influence the layer morphology, the electronic structure at contacts, and the charge carrier transport. Various investigations have addressed this issue from the viewpoint of surface science, applying model systems with thin organic films on flat (single crystalline or amorphous) metal substrates. The contacts in electronic devices, however, can be very different. This is mainly due to the morphological roughness of the interface in case of a metal top contact deposited on an organic layer and the possible influence on the electronic structure. In case of real contacts also interdiffusion has to be taken into account. However, surface sensitive techniques such as photoelectron spectroscopy (PES) and atomic force microscopy (AFM) can not immediately access the buried interface. To tackle this problem we have applied and optimised a lift-off technique which allows the removal of the metal top-contact in the UHV and analyse the interface between the contact and the organic film. We present first PES and AFM results of Au contacts deposited on PTCDA layers.

  20. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Tsang, R.W.

    1981-10-01

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  1. Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells

    KAUST Repository

    Sergeant, Nicholas P.

    2013-04-24

    Dielectric/metal/dielectric (DMD) electrodes have the potential to significantly increase the absorption efficiency and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband cavity resonance. Silver-based semitransparent DMD electrodes with sheet resistances below 10 ohm/sq. are fabricated on flexible polyethylene terephthalate (PET) substrates in a high-throughput roll-to-roll sputtering tool. We carefully study the effect of the semitransparent DMD electrode (here composed of ZnxSnyOz/Ag/InxSn yOz) on the optical device performance of a copper phthalocyanine (CuPc)/fullerene (C60) bilayer cell and illustrate that a resonant cavity enhanced light trapping effect dominates the optical behavior of the device. © 2013 Optical Society of America.

  2. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Jian; Wang, Rong; Liu, Xin-Ling; Peng, Fu-Min [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Li, Chuan-Hao, E-mail: chuanhao.li@yale.edu [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Department of Chemical & Environmental Engineering, Yale University, New Haven 06511 (United States); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-08-15

    Graphical abstract: Enhanced photocatalytic hydrogen generation was achieved though constructing the CdS/UiO-66 MOF hybrids. In addition, the resultant hybrids show excellent photostability for hydrogen generation. - Highlights: • CdS nanoparticles were hydrothermally grown on UiO-66 octahedrons. • The resultant CdS/UiO-66 hybrids show enhanced photocatalytic H{sub 2} generation under visible light irradiation. • CdS/UiO-66 hybrids possess excellent photostability for long-term hydrogen generation. - Abstract: CdS nanoparticles acting as photosensitizer was grown in situ upon UiO-66 metal-organic framework octahedrons through a hydrothermal process. The resultant CdS/UiO-66 hybrid photocatalysts show remarkably active hydrogen evolution under visible light irradiation as compared to CdS and UiO-66 alone. The optimum hybrid with 16 wt% CdS loading shows a hydrogen production rate of 235 μmol h{sup −1}, corresponding to 1.2% quantum efficiency at 420 nm. The improved photocatalytic hydrogen production over hybrid CdS/UiO-66 is ascribed to the efficient interfacial charge transfer from CdS to UiO-66, which effectively suppresses the recombination of photogenerated electron-hole pairs and thereby enhancing the photocatalytic efficiency.

  3. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations.

    Science.gov (United States)

    Lan, Jianhui; Cao, Dapeng; Wang, Wenchuan; Smit, Berend

    2010-07-27

    We use the multiscale simulation approach, which combines the first-principles calculations and grand canonical Monte Carlo simulations, to comprehensively study the doping of a series of alkali (Li, Na, and K), alkaline-earth (Be, Mg, and Ca), and transition (Sc and Ti) metals in nanoporous covalent organic frameworks (COFs), and the effects of the doped metals on CO2 capture. The results indicate that, among all the metals studied, Li, Sc, and Ti can bind with COFs stably, while Be, Mg, and Ca cannot, because the binding of Be, Mg, and Ca with COFs is very weak. Furthermore, Li, Sc, and Ti can improve the uptakes of CO2 in COFs significantly. However, the binding energy of a CO2 molecule with Sc and Ti exceeds the lower limit of chemisorptions and, thus, suffers from the difficulty of desorption. By the comparative studies above, it is found that Li is the best surface modifier of COFs for CO2 capture among all the metals studied. Therefore, we further investigate the uptakes of CO2 in the Li-doped COFs. Our simulation results show that at 298 K and 1 bar, the excess CO2 uptakes of the Li-doped COF-102 and COF-105 reach 409 and 344 mg/g, which are about eight and four times those in the nondoped ones, respectively. As the pressure increases to 40 bar, the CO2 uptakes of the Li-doped COF-102 and COF-105 reach 1349 and 2266 mg/g at 298 K, respectively, which are among the reported highest scores to date. In summary, doping of metals in porous COFs provides an efficient approach for enhancing CO2 capture.

  4. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Jun-ichi [Department of Material Science, Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan)], E-mail: nonoyama@slab.phys.nagoya-u.ac.jp

    2008-10-15

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for {beta}-(BDA-TTP){sub 2}I{sub 3} based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between {beta}-(BDA-TTP){sub 2}I{sub 3} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} are briefly discussed.

  5. Possible mechanism to enhance spin-fluctuation-mediated superconductivity in two-dimensional organic conductor

    International Nuclear Information System (INIS)

    Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi

    2008-01-01

    Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP) 2 I 3 based on the X-ray experiment data and the extended Hueckel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP) 2 I 3 and β-(BDA-TTP) 2 SbF 6 are briefly discussed.

  6. Spontaneous Emission Enhancement at Finite-length Metal

    DEFF Research Database (Denmark)

    Filonenko, K.; Willatzen, Morten; Bordo, V.

    2013-01-01

    We study spontaneous emission enhancement of a two-level atomic emitter placed in a dielectric medium near a finite-length cylindrical metal nanowire. We calculate the dependence of the Purcell factor and the normalized decay rate to a continuous spectrum on the nanowire radius for several emitter...

  7. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance.

    Science.gov (United States)

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-11-15

    Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation

  8. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    Science.gov (United States)

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  9. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Alistair C. McKinlay

    2014-12-01

    Full Text Available The highly porous nature of metal-organic frameworks (MOFs offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  10. Construction of stable Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrids with enhanced visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yinhua, E-mail: yms418@126.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Liu, Peipei; Chen, YeCheng; Zhou, Zhengzhong; Yang, Haijian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Hong, Yuanzhi; Li, Fan; Ni, Liang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Yan, Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Gregory, Duncan H, E-mail: duncan.gregory@glasgow.ac.uk [School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-01-01

    Highlights: • Novel Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrids were synthesized. • The hybrid nitrides showed enhanced visible-light photocatalytic performance. • The Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitride exhibited excellent photostability. • The hole is the main photoactive specie for the degradation of RhB. - Abstract: In this paper, a novel Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrid was successfully synthesized by a facile impregnation method. The photocatalytic activity of Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitrides was evaluated by the degradation of organic dye rhodamine B (RhB) under visible light irradiation, and the result indicated that all Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} samples exhibited distinctly enhanced photocatalytic activities for the degradation of RhB than pure g-C{sub 3}N{sub 4}. The optimal Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} composite sample, with Ta{sub 3}N{sub 5} mass ratio of 2%, demonstrated the highest photocatalytic activity, and its degradation rate constant was 2.71 times as high as that of pure g-C{sub 3}N{sub 4}. The enhanced photocatalytic activity of this Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/metal-free nitride was predominantly attributed to the synergistic effect which increased visible-light absorption and facilitated the efficient separation of photoinduced electrons and holes. The Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitride exhibited excellent photostability and reusability. The possible mechanism for improved photocatalytic performance was proposed. Overall, this work may provide a facile way to synthesize the highly efficient metal/metal-free hybrid nitride photocatalysts with promising applications in environmental purification and energy conversion.

  11. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-01-28

    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one or more layers of a metal organic framework on a substrate. Embodiments further include a defect-free metal organic framework membrane comprising MSiF6(pyz)2, wherein M is a metal, wherein the thickness of the membrane is less than 1,000 µm, and wherein the metal organic has a growth orientation along the [110] plane relative to a substrate.

  12. Metal organic frameworks for gas storage

    KAUST Repository

    Alezi, Dalal; Belmabkhout, Youssef; Eddaoudi, Mohamed

    2016-01-01

    Embodiments provide a method of storing a compound using a metal organic framework (MOF). The method includes contacting one or more MOFs with a fluid and sorbing one or more compounds, such as O2 and CH4. O2 and CH4 can be sorbed simultaneously

  13. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  14. A Simple Approach to Enhance the Water Stability of a Metal-Organic Framework.

    Science.gov (United States)

    Shih, Yung-Han; Kuo, Yu-Ching; Lirio, Stephen; Wang, Kun-Yun; Lin, Chia-Her; Huang, Hsi-Ya

    2017-01-01

    A facile method to improve the feasibility of water-unstable metal-organic frameworks in an aqueous environment has been developed that involves imbedding in a polymer monolith. The effect of compartment type during polymerization plays a significant role in maintaining the crystalline structure and thermal stability of the MOFs, which was confirmed by powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA), respectively. The MOF-polymer composite prepared in a narrow compartment (column, ID 0.8 mm) has better thermal and chemical stability than that prepared in a broad compartment (vial, ID 7 mm). The developed MOF-polymer composite was applied as an adsorbent in solid-phase microextraction of nine non-steroidal anti-inflammatory drugs (NSAIDs) and could be used for extraction more than 30 times, demonstrating that the proposed approach has potential for industrial applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced metal recovery through oxidation in liquid and/or supercritical carbon dioxide

    KAUST Repository

    Blanco, Mario; Buttner, Ulrich

    2017-01-01

    Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock

  16. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  17. Carbon-enhanced metal-poor stars in dwarf galaxies

    OpenAIRE

    Salvadori, Stefania; Skuladottir, Asa; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation with dwarf galaxy luminosity of the observed: i) frequency and [Fe/H] range of CEMP stars; ii) metallicity distribution functions; iii) star formation histories. We show that if primordial faint sup...

  18. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.

    Science.gov (United States)

    Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T

    2015-01-16

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  19. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja; Adil, Karim; Belmabkhout, Youssef; Eddaoudi, Mohamed; Bhatt, Prashant M.

    2017-01-01

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  20. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja

    2017-05-04

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  1. Magnetic behaviour in metal-organic frameworks

    Indian Academy of Sciences (India)

    The article describes the synthesis, structure and magnetic investigations of a series of metal-organic framework compounds formed with Mn+2 and Ni+2 ions. The structures, determined using the single crystal X-ray diffraction, indicated that the structures possess two- and three-dimensional structures with magnetically ...

  2. Expanded Organic Building Units for the Construction of Highly Porous Metal-Organic Frameworks

    NARCIS (Netherlands)

    Kong, G.Q.; Han, Z.D.; He, Y.; Qu, S.; Zhou, W.; Yildirim, T.; Krishna, R.; Zou, C.; Chen, B.; Wu, C.D.

    2013-01-01

    wo new organic building units that contain dicarboxylate sites for their self-assembly with paddlewheel [Cu2(CO2)4] units have been successfully developed to construct two isoreticular porous metal-organic frameworks (MOFs), ZJU-35 and ZJU-36, which have the same tbo topologies (Reticular Chemistry

  3. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  4. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  5. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-03

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  6. Metal organic frameworks for removal of compounds from a fluid

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef

    2016-01-01

    Embodiments provide a method of compound removal from a fluid. The method includes contacting one or more metal organic framework (MOF) compositions with a fluid and sorbing one or more compounds, such as CO2, H2S and condensable hydrocarbons. One or more of CO2, H2S and condensable hydrocarbons can be sorbed simultaneously or in series. The metal organic framework can be an M-soc-MOF.

  7. Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation

    Science.gov (United States)

    Huang, Jie; Zhang, Xibiao; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Wen, Congcong

    2018-05-01

    Most of the reported composites of g-C3N4/metal-organic frameworks (MOFs) were obtained via exfoliation of g-C3N4 and wrapping the nanosheets on MOFs with weak interaction. In this work, chemical protonation of g-C3N4 and dip-coating was adopted as a feasible pathway to achieve the real combination of g-C3N4 derivatives with a familiar MOF material MIL-100(Fe). Structural, chemical and photophysical properties of the novel hybrid photocatalysts were characterized and compared to those of the parent materials. It was verified that the protonated g-C3N4 species of appropriate content were uniformly coated along the frameworks of MIL-100(Fe) with strong interaction. The optimal materials maintained the intact framework structure, surface property and porosity of MIL-100(Fe), as well as the inherent structural units and physicochemical properties of C3N4. In comparison to the parent materials, the protonated g-C3N4 coated MIL-100(Fe) materials exhibited enhanced photocatalytic activity in degradation of rhodamine B or methylene blue dye, as well as in oxidative denitrogenation for pyridine by molecular oxygen under visible light. Introduction of protonated g-C3N4 on MOFs improved the adsorption ability for contaminant molecules. Furthermore, coating effect provided a platform for rapid photoexcited electrons transfer and superior separation of photogenerated electron-hole pairs. Photocatalytic conversion of the three contaminants followed different mechanisms.

  8. High Density Periodic Metal Nanopyramids for Surface Enhanced Raman Spectroscopy

    NARCIS (Netherlands)

    Jin, Mingliang

    2012-01-01

    The work presented in this thesis is focused on two areas. First, a new type of nanotextured noble-metal surface has been developed. The new nanotextured surface is demonstrated to enhance inelastic (Raman) scattering, called surface enhanced Raman scattering (SERS), from molecules adsorbed on the

  9. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  10. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  11. Chelant-enhanced heavy metals uptake by Eucalyptus trees under controlled deficit irrigation

    Science.gov (United States)

    Fine, Pinchas; Rathod, Paresh; Beriozkin, Anna; Ein-Gal, Oz; Hass, Amir

    2014-05-01

    Enhancement of phytoremediation of heavy metal polluted soils employs organic ligands, aimed to solubilize, phytoextract and translocate metals into the canopy. The use of more persistent chelants (e.g. EDTA) is phasing out due to concerns over their role in the environment. We tested the hypothesis that controlled deficit irrigation (CDI) of the fast growing, salinity resistant Eucalyptus camaldulensis coupled with timely EDTA application enhances sediment phytoremediation while minimizing leaching of metal complexes below the root-zone. This was tested in 220-L lysimeters packed with sand mixed with metals polluted biosolids. One year old trees were brought under CDI with tap or RO water for two growing seasons. EDTA, EDDS and citric acid fertigation at 2 mM started in each May for 2.5-3.5 months, and prescribed soil leaching and sampling of tree leaves started thereafter. While all 3 chelants solubilized biosolids metal in batch extraction (EDDS often being the more efficient), EDTA was the only to increased metal concentrations both in the soil solution and in the Eucalyptus leaves. The average concentrations in the soil solution and in the leaves, in the EDTA vs. control (chelant-free) treatments, all respectively, were: Cd - 200 mg L-1 vs. 1.0, and 67 vs. 21 mg kg-1; Cu: 90 vs. 1.5 mg L-1, and 17 vs. 3.0 mg kg-1; Cr: 4.0 vs. 1.4 mg L-1, and 3.0 vs. 1.0 mg kg-1; Ni: 60 mg L-1 vs. 14, and 20 vs. 6.0 mg kg-1; Pb: >44 vs. 0.1 mg L-1, and 9.0 vs. 1.0 mg kg-1; and Zn: 650 vs. 4.0 mg L-1 and 200 vs. 70 mg kg-1. While EDDS was undetectable in all the leachates, EDTA concentrated to up to 100 mM. At 10 mM soil solution concentration, EDDS half-life in acclimated lysimeter media was 5-11 days and that of EDTA was ≥27-d. The study suggests that sustainable phytostabilization and phytoextraction of heavy metals are achievable under CDI with EDTA augmentation at low dose. This was yet futile with the biodegradable EDDS and citric acid. CDI with RO water further widened

  12. Marine lake as in situ laboratory for studies of organic matter influence on speciation and distribution of trace metals

    Science.gov (United States)

    Mlakar, Marina; Fiket, Željka; Geček, Sunčana; Cukrov, Neven; Cuculić, Vlado

    2015-07-01

    Karst marine lakes are unique marine systems, also recognized as in situ "laboratories" in which geochemical processes on a different scale compared to the open sea, can be observed. In this study, organic matter cycle and its impact on distribution of trace metals in the marine lake Mir, located on Dugi Otok Island, in the central part of the eastern Adriatic Sea, was investigated for the first time. Studied marine lake is small, isolated, shallow basin, with limited communication with the open sea. Intense spatial and seasonal variations of organic matter, dissolved and particulate (DOC, POC), and dissolved trace metals concentrations in the water column of the Lake are governed predominantly by natural processes. Enhanced oxygen consumption in the Lake during summer season, high DOC and POC concentrations and low redox potential result in occasional occurrence of anoxic conditions in the bottom layers with appearance of sulfur species. Speciation modeling showed that dissolved trace metals Cu, Pb and Zn, are mostly bound to organic matter, while Cd, Co and Ni are present predominantly as free ions and inorganic complexes. Trace metals removal from the water column and their retention in the sediment was found to depend on the nature of the relationship between specific metal and organic or inorganic phases, sulfides, Fe-oxyhydroxydes or biogenic calcite. The above is reflected in the composition of the sediments, which are, in addition to influence of karstic background and bathymetry of the basin, significantly affected by accumulation of detritus at the bottom of the Lake.

  13. Percolation-enhanced nonlinear scattering from semicontinuous metal films

    Science.gov (United States)

    Breit, M.; von Plessen, G.; Feldmann, J.; Podolskiy, V. A.; Sarychev, A. K.; Shalaev, V. M.; Gresillon, S.; Rivoal, J. C.; Gadenne, P.

    2001-03-01

    Strongly enhanced second-harmonic generation (SHG), which is characterized by nearly isotropic distribution, is observed for gold-glass films near the percolation threshold. The diffuse-like SHG scattering, which can be thought of as nonlinear critical opalescence, is in sharp contrast with highly collimated linear reflection and transmission from these nanostructured semicontinuous metal films. Our observations, which can be explained by giant fluctuations of local nonlinear sources for SHG, verify recent predictions of percolation-enhanced nonlinear scattering.

  14. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  15. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    Science.gov (United States)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  16. Study of Modern Nano Enhanced Techniques for Removal of Dyes and Metals

    Directory of Open Access Journals (Sweden)

    Samavia Batool

    2014-01-01

    Full Text Available Industrial effluent often contains the significant amount of hexavalent chromium and synthetic dyes. The discharge of wastewater without proper treatment into water streams consequently enters the soil and disturbs the aquatic and terrestrial life. A range of wastewater treatment technologies have been proposed which can efficiently reduce both Cr(VI and azo dyes simultaneously to less toxic form such as biodegradation, biosorption, adsorption, bioaccumulation, and nanotechnology. Rate of simultaneous reduction of Cr(VI and azo dyes can be enhanced by combining different treatment techniques. Utilization of synergistic treatment is receiving much attention due to its enhanced efficiency to remove Cr(VI and azo dye simultaneously. This review evaluates the removal methods for simultaneous removal of Cr(VI and azo dyes by nanomicrobiology, surface engineered nanoparticles, and nanophotocatalyst. Sorption mechanism of biochar for heavy metals and organic contaminants is also discussed. Potential microbial strains capable of simultaneous removal of Cr(VI and azo dyes have been summarized in some details as well.

  17. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    KAUST Repository

    Cadiau, Amandine; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant; Pillai, Renjith S.; Shkurenko, Aleksander; Martineau-Corcos, Charlotte; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-01-01

    fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas

  18. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  19. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals.

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Liu, Chen; Zhong, Bin; Guo, Hua; He, Lizhi; Liu, Dan

    2016-10-01

    Moso bamboo (Phyllostachys pubescens) has great potential as phytoremediation material in soil contaminated by heavy metals. A hydroponics experiment was conducted to determine organic acid compounds of root exudates of lead- (Pb), zinc- (Zn), copper- (Cu), and cadmium (Cd)-tolerant of Moso bamboo. Plants were grown in nutrients solution which included Pb, Zn, Cu, and Cd applied as Pb(NO 3 ) 2 (200 μM), ZnSO 4 ·7H 2 O (100 μM), CuSO 4 ·5H 2 O (25 μM), and CdCl 2 (10 μM), respectively. Oxalic acid and malic acid were detected in all treatments. Lactic acid was observed in Cu, Cd, and control treatments. The oxalic was the main organic acid exudated by Moso bamboo. In the sand culture experiment, the Moso bamboo significantly activated carbonate heavy metals under activation of roots. The concentration of water-soluble metals (except Pb) in sand were significantly increased as compared with control. Organic acids (1 mM mixed) were used due to its effect on the soil adsorption of heavy metals. After adding mixed organic acids, the Cu and Zn sorption capacity in soils was decreased markedly compared with enhanced Pb and Cd sorption capacity in soils. The sorption was analyzed using Langmuir and Freundlich equations with R 2 values that ranged from 0.956 to 0.999 and 0.919 to 0.997, respectively.

  20. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms

    International Nuclear Information System (INIS)

    Zhang Yonghui; Zhou Kaige; Xie Kefeng; Zeng Jing; Zhang Haoli; Peng Yong

    2010-01-01

    Using density functional theory and nonequilibrium Green's function (NEGF) formalism, we have theoretically investigated the binding of organic donor, acceptor and metal atoms on graphene sheets, and revealed the effects of the different noncovalent functionalizations on the electronic structure and transport properties of graphene. The adsorptions of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tetrathiafulvalene (TTF) induce hybridization between the molecular levels and the graphene valence bands, and transform the zero-gap semiconducting graphene into a metallic graphene. However, the current versus voltage (I-V) simulation indicates that the noncovalent modifications by organic molecules are not sufficient to significantly alter the transport property of the graphene for sensing applications. We found that the molecule/graphene interaction could be dramatically enhanced by introducing metal atoms to construct molecule/metal/graphene sandwich structures. A chemical sensor based on iron modified graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. The results of this work could help to design novel graphene-based sensing or switching devices.

  1. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    Science.gov (United States)

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  2. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity

    Science.gov (United States)

    Tao, Jifang; Wang, Xuerui; Sun, Tao; Cai, Hong; Wang, Yuxiang; Lin, Tong; Fu, Dongliang; Ting, Lennon Lee Yao; Gu, Yuandong; Zhao, Dan

    2017-01-01

    Detection of volatile organic compounds (VOCs) at parts-per-billion (ppb) level is one of the most challenging tasks for miniature gas sensors because of the high requirement on sensitivity and the possible interference from moisture. Herein, for the first time, we present a novel platform based on a hybrid photonic cavity with metal-organic framework (MOF) coatings for VOCs detection. We have fabricated a compact gas sensor with detection limitation ranging from 29 to 99 ppb for various VOCs including styrene, toluene, benzene, propylene and methanol. Compared to the photonic cavity without coating, the MOF-coated solution exhibits a sensitivity enhancement factor up to 1000. The present results have demonstrated great potential of MOF-coated photonic resonators in miniaturized gas sensing applications.

  3. Carbon-enhanced metal-poor stars in dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania; Skúladóttir, Ása; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation

  4. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  5. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  6. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  7. Metal-organic gel enhanced fluorescence anisotropy for sensitive detection of prostate specific antigen

    Science.gov (United States)

    Zhao, Ting Ting; Peng, Zhe Wei; Yuan, Dan; Zhen, Shu Jun; Huang, Cheng Zhi; Li, Yuan Fang

    2018-03-01

    In this contribution, we demonstrated that Cu-based metal-organic gel (Cu-MOG) was able to serve as a novel amplification platform for fluorescence anisotropy (FA) assay for the first time, which was confirmed by the sensitive detection of a common cancer biomarker, prostate specific antigen (PSA). The dye-labeled probe aptamer (PA) product was adsorbed onto the benzimidazole derivative-containing Cu-MOG via electrostatic incorporation and strong π-π stacking interactions, which significantly increased the FA value due to the enlargement of the molecular volume of the PA/Cu-MOG complex. With the introduction of target PSA, the FA value was obviously decreased on account of the specific recognition between PSA and PA which resulted in the detachment of PA from the surface of MOG. The linear range was from 0.5-8 ng/mL, with a detection limit of 0.33 ng/mL. Our work has thus helped to demonstrate promising application of MOG material in the fields of biomolecules analysis and disease diagnosis.

  8. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  9. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.

    Science.gov (United States)

    Li, W C; Deng, H; Wong, M H

    2017-12-01

    This study aims to assess the role of Fe plaque in metal uptake and translocation by different wetland plants and examine the effects of organic acids on metal detoxification in wetland plants. It was found that although exposed to a similar level of metals in rhizosphere soil solution, metal uptake by shoots of Cypercus flabelliformis and Panicum paludosum was greatly reduced, consequently leading to a better growth under flooded than under drained conditions. This may be related to the enhanced Fe plaque in the former, but due to the decreased root permeability in the latter under anoxic conditions. The Fe plaque on root surface has potential to sequester metals and then reduce metal concentrations and translocation in shoot tissues. However, whether the Fe plaque acts as a barrier to metal uptake and translocation may also be dependent on the root anatomy. Although metal tolerance in wetland plants mainly depends upon their metal exclusion ability, the higher-than-toxic-level of metal concentrations in some species indicates that internal metal detoxification might also exist. It was suggested that malic or citric acid in shoots of P. paludosum and C. flabelliformis may account for their internal detoxification for Zn. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhanced Absorption in Organic Thin-Films from Imprinted Concave Nanostructures

    Directory of Open Access Journals (Sweden)

    Arkadiusz Jarosław GOSZCZAK

    2017-02-01

    Full Text Available In this work, a rapid, replicable method for imprinting concave nanostructures to be used as functional light-trapping nanostructures in organic thin-films is presented. Porous anodic alumina templates were fabricated both by anodization of thick Al foils and by anodization of submicrometer thin Al films evaporated via e-beam evaporation on Si substrates. The template formation leads to natural patterning of the underlying Al layers that are used as rigid masters for stamp fabrication, after selective etching of the porous anodic alumina. PDMS stamps were made after replicating the Al concave patterns and used for imprinting of spin coated photoresist on glass substrates. We have investigated semi-periodic and aperiodic imprinted large concave patterns fabricated from rigid masters after anodization of Al in H3PO4. We show that metal covered imprinted concaves show enhancement in absorption that is attributed to field enhancement and diffuse scattering, leading to efficient light trapping for a selected active layer material (P3HT:PCBM.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14188

  11. Small-angle X-ray scattering documents the growth of metal-organic frameworks

    NARCIS (Netherlands)

    Goesten, M.G.; Stavitski, I.; Juan-Alcañiz, J.; Martinez-Joaristi, A.; Petukhov, A.V.; Kapteijn, F.; Gascon, J.

    2013-01-01

    We present a combined in situ small- and wide-angle scattering (SAXS/WAXS) study on the crystallization of two topical metal-organic frameworks synthesized from similar metal and organic precursors: NH2-MIL-53(Al) and NH2-MIL-101(Al). A thorough analysis of SAXS data reveals the most important

  12. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei; Chen, Qian; Shan, Hai-Quan; Xu, Zong-Xiang, E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong, P. R. China, 518055 (China); Yan, Yan; Roy, V. A. L., E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (Hong Kong)

    2015-10-15

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  13. Tetra-methyl substituted copper (II phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2015-10-01

    Full Text Available We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  14. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    Science.gov (United States)

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  15. Chemical principles underpinning the performance of the metal-organic framework HKUST-1.

    Science.gov (United States)

    Hendon, Christopher H; Walsh, Aron

    2015-07-15

    A common feature of multi-functional metal-organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu 3 ( btc ) 2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world application of metal-organic materials. In this perspective, we discuss progress in the understanding of the electronic, magnetic and physical properties of HKUST-1, representative of the larger family of Cu···Cu containing metal-organic frameworks. We highlight the chemical interactions that give rise to its favourable properties, and which make this material well suited to a range of technological applications. From this analysis, we postulate key design principles for tailoring novel high-performance hybrid frameworks.

  16. Fuel upgrading and reforming with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef

    2016-01-01

    Systems and methods for separating hydrocarbons on an internal combustion powered vehicle via one or more metal organic frameworks are disclosed. Systems and methods can further include utilizing separated hydrocarbons and exhaust to generate

  17. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa Tolic, Ljiljana; Koppenaal, David W.; Jansson, Janet K.

    2018-05-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences

  18. Carbon-enhanced metal-poor stars and thermohaline mixing

    NARCIS (Netherlands)

    Stancliffe, R.J.; Glebbeek, E.; Izzard, R.G.; Pols, O.R.

    2007-01-01

    One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until

  19. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  20. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  1. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  2. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong

    2010-04-29

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  3. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    KAUST Repository

    Lee, Jung-Yong; Peumans, Peter

    2010-01-01

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  4. Sorption of heavy metals and radionuclides on mineral surfaces in the presence of organic co-contaminants. 1997 annual progress report

    International Nuclear Information System (INIS)

    Leckie, J.; Redden, G.

    1997-01-01

    metal or the rates of changes in partitioning as a consequence of ligand or metal exchange. Formation of metal ion-ligand-oxide surface ternary complexes can enhance sorption in some cases while highly stable metal-organic complexes in solution will decrease sorption. The preference for these two cases depends on the relative chemical properties of each component as well as system parameters such as pH and ionic strength and the relative reaction rates. In general, there is a fundamental absence of the experimental observations needed to establish the trends needed for predictive modeling and technological developments. If the authors can understand both the equilibrium partitioning in these ternary systems (i.e., metal-ligand-solid) and the types of complexes that form as functions of a set of measurable parameters that characterize the system, the authors should significantly improve the ability to estimate the mass transport rates of contaminants and natural solutes in aquifers and water columns where organic ligands are significant species. The authors will also be better prepared to devise remediation strategies where introduction of organic ligands can bring about either mobilization of contaminants or enhanced retardation. The ligands are likely to prove useful in the direct treatment and remediation of contaminated sites (Francis and Dodge, 1992; Tuin and Tels, 1990) and can be chosen for their long term stability or their ability to degrade by natural biotic processes.'

  5. The relevance of metal organic frameworks (MOFs)

    Indian Academy of Sciences (India)

    The metal organic frameworks (MOFs) have evolved to be an important family and a corner stone for research in the area of inorganic chemistry. The progress made since 2000 has attracted researchers from other disciplines to actively engage themselves in this area. This cooperative synergy of different scientific believes ...

  6. Graphene inclusion controlling conductivity and gas sorption of metal-organic framework

    DEFF Research Database (Denmark)

    Lamagni, Paolo; Pedersen, Birgitte Lodberg; Godiksen, Anita

    2018-01-01

    A general approach to prepare composite films of metal-organic frameworks and graphene has been developed. Films of copper(ii)-based HKUST-1 and HKUST-1/graphene composites were grown solvothermally on glassy carbon electrodes. The films were chemically tethered to the substrate by diazonium...... electrografting resulting in a large electrode coverage and good stability in solution for electrochemical studies. HKUST-1 has poor electrical conductivity, but we demonstrate that the addition of graphene to HKUST-1 partially restores the electrochemical activity of the electrodes. The enhanced activity......, however, does not result in copper(ii) to copper(i) reduction in HKUST-1 at negative potentials. The materials were characterised in-depth: microscopy and grazing incidence X-ray diffraction demonstrate uniform films of crystalline HKUST-1, and Raman spectroscopy reveals that graphene is homogeneously...

  7. Metal-directed topological diversity of three fluorescent metal-organic frameworks based on a new tetracarboxylate strut

    KAUST Repository

    Lou, Xinhua

    2013-01-01

    Three d- or p-block metal ions based metal-organic frameworks (MOFs) were isolated by employing a new tetracarboxylate linker, featuring unusual flu, self-interpenetrated lvt and new (3,5)-c topological nets, respectively. Interesting photoluminescent properties of these solid-state materials were also observed. © 2013 The Royal Society of Chemistry.

  8. Modular assembly of metal-organic super-containers incorporating calixarenes

    Science.gov (United States)

    Wang, Zhenqiang; Dai, Feng-Rong

    2018-01-16

    A new strategy to design container molecules is presented. Sulfonylcalix[4]arenes, which are synthetic macrocyclic containers, are used as building blocks that are combined with various metal ions and tricarboxylate ligands to construct metal-organic `super-containers` (MOSCs). These MOSCs possess both endo and exo cavities and thus mimic the structure of viruses. The synthesis of MOSCs is highly modular, robust, and predictable.

  9. Luminance enhancement in quantum dot light-emitting diodes fabricated with Field’s metal as the cathode

    Science.gov (United States)

    Basilio, Carlos; Oliva, Jorge; Lopez-Luke, Tzarara; Pu, Ying-Chih; Zhang, Jin Z.; Rodriguez, C. E.; de la Rosa, E.

    2017-03-01

    This work reports the fabrication and characterization of blue-green quantum dot light-emitting diodes (QD-LEDs) by using core/shell/shell Cd1-x Zn x Se/ZnSe/ZnS quantum dots. Poly [(9,9-bis(3‧-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was introduced in order to enhance the electron injection and also acted as a protecting layer during the deposition of the cathode (a Field’s metal sheet) on the organic/inorganic active layers at low temperature (63 °C). This procedure permitted us to eliminate the process of thermal evaporation for the deposition of metallic cathodes, which is typically used in the fabrication of OLEDs. The performance of devices made with an aluminum cathode was compared with that of devices which employed Field’s metal (FM) as the cathode. We found that the luminance and efficiency of devices with FM was ~70% higher with respect to those that employed aluminum as the cathode and their consumption of current was similar up to 13 V. We also demonstrated that the simultaneous presence of 1,2-ethanedethiol (EDT) and PFN enhanced the luminance in our devices and improved the current injection in QD-LEDs. Hence, the architecture for QD-LEDs presented in this work could be useful for the fabrication of low-cost luminescent devices.

  10. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  11. Local field enhanced second-harmonic response of organic nanofibers

    DEFF Research Database (Denmark)

    Leißner, Till; Kostiučenko, Oksana; Fiutowski, Jacek

    Organic CNHP4 nanofibers showing a strong second-harmonic (SH) response have been successfully implemented as active components in a metal-organic hybrid system. Using nondestructive roll-on transfer technique nanofibers were transferred from the growing mica substrates onto electron...

  12. Chelation in metal intoxication. V. Lowering of manganese content in poisoned rat organs

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S K; Mathur, A K

    1976-01-01

    Metal chelation has been considered useful in the management of manganese poisoning to a considerable extent. Our own studies in this direction have shown that some polyaminocarboxylic acids and a few amino acids are effective in not only removing manganese from the vital organs of experimentally poisoned animals but also in restoring certain metal induced biochemical and histological changes in such organs. Further, the success of p-aminosalicylic acid (PAS), a chemotherapeutic agent for tuberculosis, in manganese mobilization has led us to examine some other structurally related compounds together with a few other possible metal binding agents for their ability to remove excess metal from the organs, their sub-cellular fractions and blood cells of manganese administered rats and to investigate if there exists any relationship between the structure of such compounds and their metal mobilizing capacity. The present communication deals with the results of these investigations.

  13. Computational modeling of Metal-Organic Frameworks

    Science.gov (United States)

    Sung, Jeffrey Chuen-Fai

    In this work, the metal-organic frameworks MIL-53(Cr), DMOF-2,3-NH 2Cl, DMOF-2,5-NH2Cl, and HKUST-1 were modeled using molecular mechanics and electronic structure. The effect of electronic polarization on the adsorption of water in MIL-53(Cr) was studied using molecular dynamics simulations of water-loaded MIL-53 systems with both polarizable and non-polarizable force fields. Molecular dynamics simulations of the full systems and DFT calculations on representative framework clusters were utilized to study the difference in nitrogen adsorption between DMOF-2,3-NH2Cl and DMOF-2,5-NH 2Cl. Finally, the control of proton conduction in HKUST-1 by complexation of molecules to the Cu open metal site was investigated using the MS-EVB methodology.

  14. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.

    Science.gov (United States)

    Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho

    2008-02-01

    The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic

  15. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-10-13

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided are methods of making metal organic frameworks.

  16. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.

    Science.gov (United States)

    Zhou, Lin; Yu, Xiaoqiang; Zhu, Jia

    2014-02-12

    Nanostructure-based photovoltaic devices have exhibited several advantages, such as reduced reflection, extraordinary light trapping, and so forth. In particular, semiconductor nanostructures provide optical modes that have strong dependence on the size and geometry. Metallic nanostructures also attract a lot of attention because of the appealing plasmonic effect on the near-field enhancement. In this study, we propose a novel design, the metal-core/semiconductor-shell nanocones with the core radius varying in a linearly gradient style. With a thin layer of semiconductor absorber coated on a metallic cone, such a design can lead to significant and broadband absorption enhancement across the entire visible and near-infrared solar spectrum. As an example of demonstration, a layer of 16 nm thick crystalline silicon (c-Si) coated on a silver nanocone can absorb 27% of standard solar radiation across a broad spectral range of 300-1100 nm, which is equivalent to a 700 nm thick flat c-Si film. Therefore, the absorption enhancement factor approaching the Yablonovitch limit is achieved with this design. The significant absorption enhancement can be ascribed to three types of optical modes, that is, Fabry-Perot modes, plasmonic modes, and hybrid modes that combine the features of the previous two. In addition, the unique nanocone geometry enables the linearly gradient radius of the semiconductor shell, which can support multiple optical resonances, critical for the broadband absorption. Our design may find general usage as elements for the low cost, high efficiency solar conversion and water-splitting devices.

  17. Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts.

    Science.gov (United States)

    Li, Xuning; Ao, Zhimin; Liu, Jiayi; Sun, Hongqi; Rykov, Alexandre I; Wang, Junhu

    2016-12-27

    Innovation in transition-metal nitride (TMN) preparation is highly desired for realization of various functionalities. Herein, series of graphene-encapsulated TMNs (Fe x Mn 6-x Co 4 -N@C) with well-controlled morphology have been synthesized through topotactic transformation of metal-organic frameworks in an N 2 atmosphere. The as-synthesized Fe x Mn 6-x Co 4 -N@C nanodices were systematically characterized and functionalized as Fenton-like catalysts for catalytic bisphenol A (BPA) oxidation by activation of peroxymonosulfate (PMS). The catalytic performance of Fe x Mn 6-x Co 4 -N@C was found to be largely enhanced with increasing Mn content. Theoretical calculations illustrated that the dramatically reduced adsorption energy and facilitated electron transfer for PMS activation catalyzed by Mn 4 N are the main factors for the excellent activity. Both sulfate and hydroxyl radicals were identified during the PMS activation, and the BPA degradation pathway mainly through hydroxylation, oxidation, and decarboxylation was investigated. Based on the systematic characterization of the catalyst before and after the reaction, the overall PMS activation mechanism over Fe x Mn 6-x Co 4 -N@C was proposed. This study details the insights into versatile TMNs for sustainable remediation by activation of PMS.

  18. Empirical evaluation of metal deposition for the analysis of organic compounds with static secondary ion mass spectrometry (S-SIMS)

    International Nuclear Information System (INIS)

    Mondt, R. de; Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Vaeck, L. van; Gijbels, R.

    2006-01-01

    Metal-assisted (MetA) SIMS using the deposition of a thin Au or Ag layer on non-conducting samples prior to analysis has been advocated as a means to improve the secondary ion (S.I.) yields of organic analytes. This study focuses on the influence of time and temperature on the yield enhancement in MetA-SIMS using thick layers of poly(vinylbutyral-co-vinylalcohol-co-vinylacetate) (PVB) containing dihydroxybenzophenone (DHBPh) or a cationic carbocyanine dye (CBC) and spin-coated layers of the cationic dye on Si. Pristine samples as well as Au- and Ag-coated ones were kept between -8 deg. C and 80 deg. C and analysed with S-SIMS at intervals of a few days over a period of 1 month. The yield enhancement was found to depend strongly on the kind of evaporated metal, the storage temperature and time between coating and analysis

  19. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    Science.gov (United States)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  20. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  1. Studies on selected organic-metal interactions of importance in the environment

    International Nuclear Information System (INIS)

    Mason, Ian.

    1995-10-01

    This research project investigated the interaction between natural organics acids and selected metal ions. The aims of the project was to provide quantitative data on the speciation of metal ions when placed in systems containing natural organic acids. It was envisaged that such data will assist in the risk assessment of the Drigg low level waste site in Cumbria. The formation and complexing ability of these natural organic acids is discussed and the classing of these acids into high molecular weight organic acids and low molecular weight organic acids. Initial investigations used a potentiometric technique to study the interaction between nickel and europium and selected low molecular weight organic acids which were thought to occur in significant concentrations in soils and groundwaters. These experiments confirmed existing critically assessed literature values, and provided an experimental methodology for further 'in-house' measurement of such values. In addition, studies were also performed on systems containing two competing organic acids. (author)

  2. Alkylamine functionalized metal-organic frameworks for composite gas separations

    Science.gov (United States)

    Long, Jeffrey R.; McDonald, Thomas M.; D'Alessandro, Deanna M.

    2018-01-09

    Functionalized metal-organic framework adsorbents with ligands containing basic nitrogen groups such as alkylamines and alkyldiamines appended to the metal centers and method of isolating carbon dioxide from a stream of combined gases and carbon dioxide partial pressures below approximately 1 and 1000 mbar. The adsorption material has an isosteric heat of carbon dioxide adsorption of greater than -60 kJ/mol at zero coverage using a dual-site Langmuir model.

  3. Nanostructural self-organization and dynamic adaptation of metal-polymer tribosystems

    Science.gov (United States)

    Mashkov, Yu. K.

    2017-02-01

    The results of investigating the effect of nanosize modifiers of a polymer matrix on the nanostructural self-organization of polymer composites and dynamic adaptation of metal-polymer tribosystems, which considerably affect the wear resistance of polymer composite materials, have been analyzed. It has been shown that the physicochemical nanostructural self-organization processes are developed in metal-polymer tribosystems with the formation of thermotropic liquid-crystal structures of the polymer matrix, followed by the transition of the system to the stationary state with a negative feedback that ensures dynamic adaptation of the tribosystem to given operating conditions.

  4. Highly sensitive C-reactive protein (CRP) assay using metal-enhanced fluorescence (MEF)

    International Nuclear Information System (INIS)

    Zhang, Yi; Keegan, Gemma L.; Stranik, Ondrej; Brennan-Fournet, Margaret E.; McDonagh, Colette

    2015-01-01

    Fluorescence has been extensively employed in the area of diagnostic immunoassays. A significant enhancement of fluorescence can be achieved when noble metal nanoparticles are placed in close proximity to fluorophores. This effect, referred to as metal-enhanced fluorescence (MEF), has the potential to produce immunoassays with a high sensitivity and a low limit of detection (LOD). In this study, we investigate the fluorescence enhancement effect of two different nanoparticle systems, large spherical silver nanoparticles (AgNPs) and gold edge-coated triangular silver nanoplates, and both systems were evaluated for MEF. The extinction properties and electric field enhancement of both systems were modeled, and the optimum system, spherical AgNPs, was used in a sandwich immunoassay for human C-reactive protein with a red fluorescent dye label. A significant enhancement in the fluorescence was observed, which corresponded to an LOD improvement of ∼19-fold compared to a control assay without AgNPs

  5. Highly sensitive C-reactive protein (CRP) assay using metal-enhanced fluorescence (MEF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Keegan, Gemma L., E-mail: gemmakeegan@gmail.com [Dublin City University, School of Physical Sciences, Biomedical Diagnostics Institute (Ireland); Stranik, Ondrej [Leibniz Institute of Photonic Technology, Department of NanoBiophotonics (Germany); Brennan-Fournet, Margaret E. [CMP-EMSE, MOC, Department of Bioelectronics, Ecole Nationale Superieure des Mines (France); McDonagh, Colette [Dublin City University, School of Physical Sciences, Biomedical Diagnostics Institute (Ireland)

    2015-07-15

    Fluorescence has been extensively employed in the area of diagnostic immunoassays. A significant enhancement of fluorescence can be achieved when noble metal nanoparticles are placed in close proximity to fluorophores. This effect, referred to as metal-enhanced fluorescence (MEF), has the potential to produce immunoassays with a high sensitivity and a low limit of detection (LOD). In this study, we investigate the fluorescence enhancement effect of two different nanoparticle systems, large spherical silver nanoparticles (AgNPs) and gold edge-coated triangular silver nanoplates, and both systems were evaluated for MEF. The extinction properties and electric field enhancement of both systems were modeled, and the optimum system, spherical AgNPs, was used in a sandwich immunoassay for human C-reactive protein with a red fluorescent dye label. A significant enhancement in the fluorescence was observed, which corresponded to an LOD improvement of ∼19-fold compared to a control assay without AgNPs.

  6. Identifying sources of metal exposure in organic and conventional dairy farming.

    Science.gov (United States)

    López-Alonso, M; Rey-Crespo, F; Herrero-Latorre, C; Miranda, M

    2017-10-01

    In humans the main route of exposure to toxic metals is through the diet, and there is therefore a clear need for this source of contamination to be minimized, particularly in food of animal origin. For this purpose, the various sources of toxic metals in livestock farming (which vary depending on the production system) must be taken into account. The objectives of the present study were to establish the profile of metal exposure in dairy cattle in Spain and to determine, by chemometric (multivariate statistical) analysis, any differences between organic and conventional systems. Blood samples from 522 cows (341 from organic farms and 181 from conventional farms) were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of 14 elements: As, Cd, Co, Cr, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Se and Zn. In conventional systems the generally high and balanced trace element concentrations in the mineral-supplemented concentrate feed strongly determined the metal status of the cattle. However, in organic systems, soil ingestion was an important contributing factor. Our results demonstrate that general information about the effects of mineral supplementation in conventional farming cannot be directly extrapolated to organic farming and special attention should be given to the contribution of ingestion of soil during grazing and/or ingestion of soil contaminated forage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  8. Organic-inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer.

    Science.gov (United States)

    Mitzi, D B

    2000-12-25

    Thin sheetlike crystals of the metal-deficient perovskites (H2AEQT)M2/3I4 [M = Bi or Sb; AEQT = 5,5"'-bis-(aminoethyl)-2,2':5',2'':5'',2'''-quaterthiophene] were formed from slowly cooled ethylene glycol/2-butanol solutions containing the bismuth(III) or antimony(III) iodide and AEQT.2HI salts. Each structure was refined in a monoclinic (C2/m) subcell, with the lattice parameters a = 39.712(13) A, b = 5.976(2) A, c = 6.043(2) A, beta = 92.238(5) degrees, and Z = 2 for M = Bi and a = 39.439(7) A, b = 5.952(1) A, c = 6.031(1) A, beta = 92.245(3) degrees, and Z = 2 for M = Sb. The trivalent metal cations locally adopt a distorted octahedral coordination, with M-I bond lengths ranging from 3.046(1) to 3.218(3) A (3.114 A average) for M = Bi and 3.012(1) to 3.153(2) A (3.073 A average) for M = Sb. The new organic-inorganic hybrids are the first members of a metal-deficient perovskite family consisting of (Mn+)2/nV(n-2)/nX4(2-) sheets, where V represents a vacancy (generally left out of the formula) and the metal cation valence, n, is greater than 2. The organic layers in the AEQT-based organic-inorganic hybrids feature edge-to-face aromatic interactions among the rigid, rodlike quaterthiophene moieties, which may help to stabilize the unusual metal-deficient layered structures.

  9. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xianglin [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074 (China); Toh, Yong Siang [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Zhao, Jun [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Nie, Lina [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ye, Kaiqi; Wang, Yue [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Li, Dongsheng [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering and School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA){sub 3}[Co{sub 3}(BTC){sub 3}] (NTU-Z33) and (HTEA)[Co{sub 3}(HBTC){sub 2}(BTC)] (NTU-Z34) (H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co{sub 3}(COO){sub 9}] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) have been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.

  10. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    International Nuclear Information System (INIS)

    Yu, Xianglin; Toh, Yong Siang; Zhao, Jun; Nie, Lina; Ye, Kaiqi; Wang, Yue; Li, Dongsheng; Zhang, Qichun

    2015-01-01

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA)_3[Co_3(BTC)_3] (NTU-Z33) and (HTEA)[Co_3(HBTC)_2(BTC)] (NTU-Z34) (H_3BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co_3(COO)_9] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) have been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.

  11. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    Science.gov (United States)

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  12. EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes

    NARCIS (Netherlands)

    Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.; Japenga, J.

    2005-01-01

    Phytoextraction of heavy metals is a promising technology to remediate slightly and moderately contaminated soils. To enhance crops' uptake of heavy metals, chelates such as EDGA are being tested as soil additives. Heavy metal loaded EDGA can affect soil organisms such as bacteria and nematodes in

  13. Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces

    International Nuclear Information System (INIS)

    Micic, Miodrag; Klymyshyn, Nicholas A.; Lu, H Peter

    2004-01-01

    Near-field optical enhancement at metal surfaces and methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescent quenching and enhancement, and various near-field scanning microscopies (NSOM) all depend on a metals surface properties, mainly on its morphology and SPR resonant frequency. We report on simulations of the influence of different surface morphologies on electromagnetic field enhancements at the rough surfaces of noble metals and also evaluate the optimal conditions for the generation of a surface-enhanced Raman signal of absorbed species on a metallic substrate. All simulations were performed with a classical electrodynamics approach using the full set of Maxwells equations, which were solved with the three-dimensional finite element method (FEM). Two different classes of surfaces where modeled using fractals, representing diffusion limited aggregation growth dendritic structures, such as one on the surface of electrodes, and second one representing the sponge-like structure used to model surfaces of particles with high porosity, such as metal coated catalyst supports. The simulations depict the high inhomogeneity of an enhanced electromagnetic field as both a field enhancement and field attenuation near the surface. While the diffusion limited aggregation dendritical fractals enhanced the near-field electromagnetic field, the sponge fractals significantly reduced the local electromagnetic field intensity. Moreover, the fractal orders of the fractal objects did not significantly alter the total enhancement, and the distribution of a near-field enhancement was essentially invariant to the changes in the angle of an incoming laser beam

  14. Metal-organic molecular device for non-volatile memory storage

    International Nuclear Information System (INIS)

    Radha, B.; Sagade, Abhay A.; Kulkarni, G. U.

    2014-01-01

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organic complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.

  15. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Grecea, S.

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the

  16. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    Science.gov (United States)

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  17. Vapor phase coatings of metals and organics for laser fusion target applications

    International Nuclear Information System (INIS)

    Simonsic, G.A.; Powell, B.W.

    Techniques for applying a variety of metal and organic coatings to 50- to 500 μm diameter glass micro-balloons are discussed. Coating thicknesses vary from 1- to 10 μm. Physical vapor deposition (PVD), chemical vapor deposition (CVD), and electrolytic and electroless plating are some of the techniques being evaluated for metal deposition. PVD and glow discharge polymerization are being used for the application of organic coatings. (U.S.)

  18. Nano-architecture of metal-organic frameworks

    Science.gov (United States)

    Milichko, Valentin A.; Zalogina, Anastasiia; Mingabudinova, Leila R.; Vinogradov, Alexander V.; Ubyivovk, Evgeniy; Krasilin, Andrei A.; Mukhin, Ivan; Zuev, Dmitry A.; Makarov, Sergey V.; Pidko, Evgeny A.

    2017-09-01

    Change the shape and size of materials supports new functionalities never found in the sources. This strategy has been recently applied for porous crystalline materials - metal-organic frameworks (MOFs) to create hollow nanoscale structures or mesostructures with improved functional properties. However, such structures are characterized by amorphous state or polycrystallinity which limits their applicability. Here we follow this strategy to create such nano- and mesostructures with perfect crystallinity and new photonics functionalities by laser or focused ion beam fabrication.

  19. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I; Xie, Y; Carota, G; Chen, Y; Dackow, J; Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A; Coulter, J; Civale, L

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I c ) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 μm thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I c in the orientation of field parallel to the c-axis and retain 28% of their self-field I c value at 77 K and 1 T. BaZrO 3 (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I c value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  20. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX 77059 (United States); Xie, Y; Carota, G; Chen, Y; Dackow, J [SuperPower Incorporated, 450 Duane Avenue Schenectady, NY 12304 (United States); Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Coulter, J; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-01-15

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  1. Enhanced and Uniform in-Field Performance in Long (Gd,Y)-Ba-Cu-O Tapes with Zirconium Doping Fabricated by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Guevara, A. [University of Houston, Houston; Zhang, Y. [University of Houston, Houston; Kesign, I. [University of Houston, Houston; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Carota, G. [SuperPower Incorporated, Schenectady, New York; Chen, Y. [SuperPower Incorporated, Schenectady, New York; Dackow, J. [SuperPower Incorporated, Schenectady, New York; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Goyal, Amit [ORNL; Coulter, J. [Los Alamos National Laboratory (LANL); Civale, L. [Los Alamos National Laboratory (LANL)

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of {beta} {parallel} c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  2. Enhanced photochemistry on metal surfaces

    International Nuclear Information System (INIS)

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-01-01

    Due to the fast relaxation of molecular excited states in the vicinity of a metal or semiconductor surface, few observations of surface photochemistry have been reported. The following work concerns the surface-enhanced photo-reactions of a variety of physisorbed molecules on roughened Ag surfaces. In summary, photodecomposition leads to a graphitic surface carbon product which is monitored via surface-enhanced Raman scattering. In most cases an initial two-photon molecular absorption step followed by further absorption and fragmentation is thought to occur. Enhancement of the incident fields occurs through roughness-mediated surface plasmon resonances. This mechanism provides the amplified electromagnetic surface fields responsible for the observed photodecomposition. The photodecomposition experiments are performed under ultra-high vacuum. Surface characterization of the roughened surfaces was done by Scanning Electron Microscopy (SEM), and electron-stimulated emission. The SEM revealed morphology on the order of 300-400 A. This size of roughness feature, when modelled as isolated spheres should exhibit the well-known Mie resonances for light of the correct wavelengths. For protrusions existing on a surface these Mie resonances can be thought of as a coupling of the light with the surface plasmon. Experimental verification of these resonances was provided by the electron-stimulated light emission results. These showed that a polished Ag surface emitted only the expected transition radiation at the frequency of the Ag bulk plasmon. Upon roughening, however, a broad range of lower frequencies extending well into the visible are seen from electron irradiation of the surface. Large enhancements are expected for those frequencies which are able to couple into the surface modes

  3. Homochiral metal-organic frameworks and their application in chromatography enantioseparations.

    Science.gov (United States)

    Peluso, Paola; Mamane, Victor; Cossu, Sergio

    2014-10-10

    The last frontier in the chiral stationary phases (CSPs) field for chromatography enantioseparations is represented by homochiral metal-organic frameworks (MOFs), a class of organic-inorganic hybrid materials built from metal-connecting nodes and organic-bridging ligands. The modular nature of these materials allows to design focused structures by combining properly metal, organic ligands and rigid polytopic spacers. Intriguingly, chiral ligands introduce molecular chirality in the MOF-network as well as homochirality in the secondary structure of materials (such as homohelicity) producing homochiral nets in a manner mimicking biopolymers (proteins, polysaccharides) which are characterized by a definite helical sense associated with the chirality of their building blocks (amino acids or sugars). Nowadays, robust and flexible materials characterized by high porosity and surface area became available by using preparative procedures typical of the so-called reticular synthesis. This review focuses on recent developments in the synthesis and applications of homochiral MOFs as supports for chromatography enantioseparations. Indeed, despite this field is in its infancy, interesting results have been produced and a critical overview of the 12 reported applications for gas chromatography (GC) and high-performance liquid chromatography (HPLC) can orient the reader approaching the field. Mechanistic aspects are shortly discussed and a view regarding future trends in this field is provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Science.gov (United States)

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  5. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2013-05-01

    Full Text Available Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation, treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  6. Green methods for preparing highly co2 selective and h2s tolerant metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2015-12-23

    A green route for preparing a metal organic framework include mixing metal precursor with a ligand precursor to form a solvent-free mixture; adding droplets of water to the mixture; heating the mixture at a first temperature after adding the water; and isolating the metal organic framework material including the metal and the ligand.

  7. Tuning the Morphology and Activity of Electrospun Polystyrene/UiO-66-NH2 Metal-Organic Framework Composites to Enhance Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Epps, Thomas H

    2017-09-20

    This work investigates the processing-structure-activity relationships that ultimately facilitate the enhanced performance of UiO-66-NH 2 metal-organic frameworks (MOFs) in electrospun polystyrene (PS) fibers for chemical warfare agent detoxification. Key electrospinning processing parameters including solvent type (dimethylformamide [DMF]) vs DMF/tetrahydrofuran [THF]), PS weight fraction in solution, and MOF weight fraction relative to PS were varied to optimize MOF incorporation into the fibers and ultimately improve composite performance. It was found that composites spun from pure DMF generally resulted in MOF crystal deposition on the surface of the fibers, while composites spun from DMF/THF typically led to MOF crystal deposition within the fibers. For cases in which the MOF was incorporated on the periphery of the fibers, the composites generally demonstrated better gas uptake (e.g., nitrogen, chlorine) because of enhanced access to the MOF pores. Additionally, increasing both the polymer and MOF weight percentages in the electrospun solutions resulted in larger diameter fibers, with polymer concentration having a more pronounced effect on fiber size; however, these larger fibers were generally less efficient at gas separations. Overall, exploring the electrospinning parameter space resulted in composites that outperformed previously reported materials for the detoxification of the chemical warfare agent, soman. The data and strategies herein thus provide guiding principles applicable to the design of future systems for protection and separations as well as a wide range of environmental remediation applications.

  8. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  9. A Kind of Energy Storage Technology: Metal Organic Frameworks

    OpenAIRE

    Ozturk, Zeynel; Kose, D. A.; Asan, A.; Ozturk, B.

    2016-01-01

    For last fifteen years energy has been transferred by using electricity and as an energy carrier media electricity has some disadvantages like its wire need for transportation and its being non-storable for large amounts. To store more energy safely and for transportation it easily, new storing medias and devices are needed. For easy and safe energy transport there are many technologies and some of these contain hydrogen energy. Metal hydrides, carbon nanotubes, metal organic frameworks (MOFs...

  10. Simultaneous removal of metals and organic compounds from a heavily polluted soil

    International Nuclear Information System (INIS)

    Szpyrkowicz, L.; Radaelli, M.; Bertini, S.; Daniele, S.; Casarin, F.

    2007-01-01

    The paper describes the results of treatment of soil samples, deriving from a dismissed industrial site, contaminated with several metals: Hg, Ni, Co, Zn, Pb, Cu, Cr, As and organic substances. The soil was subjected to remediation based on a process in which an oxidising leaching agent was produced electrochemically in-line in an undivided electrochemical cell reactor equipped with a Ti/Pt-Ir anode and a stainless steel cathode. Leaching of the soil samples was performed under dynamic conditions using a leaching column. A subsequent regeneration of the leaching solution, which consisted in electrodeposition of metals and electro-oxidation of organic substances, was carried out in a packed-bed reactor equipped with a centrally positioned graphite rod, serving as an anode, and stainless steel three-dimensional filling as a cathode. The study was focused on how and to which extent the metals present in the soil, as organic complexes, can be solubilised and how the process rates are impacted by the solution pH and other process variables. Data obtained under non-oxidising conditions, typically adopted for leaching of metals, are compared with the performance of chlorine-enriched leaching solutions. The results obtained under various conditions are also discussed in terms of the total organic carbon (TOC) removal from the water phase

  11. Metal Nanoshells for Plasmonically Enhanced Solar to Fuel Photocatalytic Conversion

    Science.gov (United States)

    2016-05-18

    transfer, we anticipate this interlayer will modulate charge transfer from the metal to the semiconductor and vice versa. These new core-shell particles ...enhancement mechanism. In an extensive study using ten different samples, we found that GS-NS@ZIS particles with an LSPR absorption at ~700 nm and a silica...then coated with a thin layer of silica (SiO2), followed by a zinc indium sulfide (ZnIn2S4; ZIS) semiconductor shell. The blended-metal GS-NS cores

  12. Functionalized metal organic frameworks for effective capture of radioactive organic iodides

    KAUST Repository

    Li, Baiyan

    2017-06-27

    Highly efficient capture of radioactive organic iodides (ROIs) from off-gas mixtures remains a substantial challenge for nuclear waste treatment. Current materials utilized for ROI sequestration suffer from low capacity, high cost (e.g. use of noble metals), and poor recyclability. Recently, we have developed a new strategy to tackle this challenge by functionalizing MOF materials with tertiary amines to create molecular traps for the effective capture and removal of ROIs (e.g. radioactive methyl iodide) from nuclear wastes. To further enhance the uptake capacity and performance of CH3I capture by ROI molecular traps, herein, we carry out a systematic study to investigate the effect of different amine molecules on ROI capture. The results demonstrate a record-high CH3I saturation uptake capacity of 80% for MIL-101-Cr-DMEDA at 150 °C, which is 5.3 times that of Ag0@MOR (15 wt%), a leading adsorbent material for capturing ROIs during nuclear fuel reprocessing. Furthermore, the CH3I decontamination factors (DFs) for MIL-101-Cr-DMEDA are as high as 5000 under simulated reprocessing conditions, largely exceeding that of facility regulatory requirements (DF = 3000). In addition, MIL-101-Cr-DMEDA can be recycled without loss of capacity, illustrating yet another advantage compared to known industrial adsorbents, which are typically of a

  13. Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis

    KAUST Repository

    Ming, Fangwang

    2017-08-12

    In this work, we demonstrate that the electrocatalytic activity of transition metal chalcogenides can be greatly enhanced by simultaneously engineering the active sites, surface area, and conductivity. Using metal-organic frameworks-derived (Ni,Co)Se2/C hollow rhombic dodecahedra (HRD) as a demonstration, we show that the incorporation of Ni into CoSe2 could generates additional active sites, the hierarchical hollow structure promotes the electrolyte diffusion, the in-situ hybridization with C improves the conductivity. As a result, the (Ni,Co)Se2/C HRD exhibit superior performance toward the overall water-splitting electrocatalysis in 1M KOH with a cell voltage as low as 1.58V at the current density of 10mAcm−2, making the (Ni,Co)Se2/C HRD as a promising alternative to noble metal catalysts for water splitting.

  14. Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis

    KAUST Repository

    Ming, Fangwang; Liang, Hanfeng; Shi, Huanhuan; Mei, Gui; Xu, Xun; Wang, Zhoucheng

    2017-01-01

    In this work, we demonstrate that the electrocatalytic activity of transition metal chalcogenides can be greatly enhanced by simultaneously engineering the active sites, surface area, and conductivity. Using metal-organic frameworks-derived (Ni,Co)Se2/C hollow rhombic dodecahedra (HRD) as a demonstration, we show that the incorporation of Ni into CoSe2 could generates additional active sites, the hierarchical hollow structure promotes the electrolyte diffusion, the in-situ hybridization with C improves the conductivity. As a result, the (Ni,Co)Se2/C HRD exhibit superior performance toward the overall water-splitting electrocatalysis in 1M KOH with a cell voltage as low as 1.58V at the current density of 10mAcm−2, making the (Ni,Co)Se2/C HRD as a promising alternative to noble metal catalysts for water splitting.

  15. Formation and Evolution of Carbon-Enhanced Metal-Poor Stars

    NARCIS (Netherlands)

    Abate, C.; Pols, O.R.; Izzard, R.G.

    2010-01-01

    Very metal-poor stars observed in the Galactic halo constitute a window on the primordial conditions under which the Milky Way was formed. A large fraction of these stars show a great enhancement in the abundance of carbon and other heavy elements. One explanation of this observation is that these

  16. A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-free Metal-Organic Framework Composite Membrane

    KAUST Repository

    Barankova, Eva

    2017-02-06

    Since the discovery of size-selective metal-organic frameworks (MOFs), researchers have tried to incorporate these materials into gas separation membranes. Impressive gas selectivities were found, but these MOF membranes were mostly made on inorganic supports, which are generally too bulky and expensive for industrial gas separation. Forming MOF layers on porous polymer supports is industrially attractive but technically challenging. Two features to overcome these problems are described: 1) a metal chelating support polymer to bind the MOF layer, and 2) control of MOF crystal growth by contra-diffusion, aiming at a very thin nanocrystalline MOF layer. Using a metal chelating polythiosemicarbazide (PTSC) support and adjusting the metal and organic ligand concentrations carefully, a very compact ZIF-8 (ZIF=zeolitic imidazolate framework) layer was produced that displayed interference colors because of its smooth surface and extreme thinness-within the range of visible light. High performances were measured in terms of hydrogen/propane (8350) and propylene/propane (150) selectivity.

  17. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    Science.gov (United States)

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  18. The impact of the Fermi-Dirac distribution on charge injection at metal/organic interfaces.

    Science.gov (United States)

    Wang, Z B; Helander, M G; Greiner, M T; Lu, Z H

    2010-05-07

    The Fermi level has historically been assumed to be the only energy-level from which carriers are injected at metal/semiconductor interfaces. In traditional semiconductor device physics, this approximation is reasonable as the thermal distribution of delocalized states in the semiconductor tends to dominate device characteristics. However, in the case of organic semiconductors the weak intermolecular interactions results in highly localized electronic states, such that the thermal distribution of carriers in the metal may also influence device characteristics. In this work we demonstrate that the Fermi-Dirac distribution of carriers in the metal has a much more significant impact on charge injection at metal/organic interfaces than has previously been assumed. An injection model which includes the effect of the Fermi-Dirac electron distribution was proposed. This model has been tested against experimental data and was found to provide a better physical description of charge injection. This finding indicates that the thermal distribution of electronic states in the metal should, in general, be considered in the study of metal/organic interfaces.

  19. Metal Distribution and Mobility under alkaline conditions

    International Nuclear Information System (INIS)

    Dario, Maarten

    2004-01-01

    The adsorption of an element, expressed as its distribution between liquid (aquatic) and solid phases in the bio geosphere, largely determines its mobility and transport properties. This is of fundamental importance in the assessment of the performance of e.g. geologic repositories for hazardous elements like radionuclides. Geologic repositories for low and intermediate level nuclear waste will most likely be based on concrete constructions in a suitable bedrock, leading to a local chemical environment with pH well above 12. At this pH metal adsorption is very high, and thus the mobility is hindered. Organic complexing agents, such as natural humic matter from the ground and in the groundwater, as well as components in the waste (cleaning agents, degradation products from ion exchange resins and cellulose, cement additives etc.) would affect the sorption properties of the various elements in the waste. Trace element migration from a cementitious repository through the pH- and salinity gradient created around the repository would be affected by the presence and creation of particulate matter (colloids) that may serve as carriers that enhance the mobility. The objective of this thesis was to describe and quantify the sorption of some selected elements representative of spent nuclear fuel (Eu, Am) and other heavy metals (Zn, Cd, Hg) in a clay/cement environment (pH 10-13) and in the pH-gradient outside this environment. The potential of organic complexing agents and colloids to enhance metal migration was also investigated. It was shown that many organic ligands are able to reduce trace metal sorption under these conditions. It was not possible to calculate the effect of well-defined organic ligands on the metal sorption in a cement environment by using stability constants from the literature. A simple method for comparing the effect of different complexing agents on metal sorption is, however, suggested. The stability in terms of the particle size of suspended

  20. On nutrients and trace metals: Effects from Enhanced Weathering

    Science.gov (United States)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  1. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama

    2016-01-01

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  2. Fabrication of metal organic framework materials using a layer-by-layer spin coating approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    Embodiments describe a method of depositing an MOF, including depositing a metal solution onto a substrate, spinning the substrate sufficient to spread the metal solution, depositing an organic ligand solution onto the substrate and spinning the substrate sufficient to spread the organic ligand solution and form a MOF layer.

  3. Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Sholl, David S.

    2012-01-01

    Metal organic frameworks (MOFs) have experimentally been demonstrated to be capable of supporting isolated transition-metal clusters, but the stability of these clusters with respect to aggregation is unclear. In this letter we use a genetic algorithm together with density functional theory...... calculations to predict the structure of Pd clusters in UiO-66. The cluster sizes examined are far larger than those in any previous modeling studies of metal clusters in MOFs and allow us to test the hypothesis that the physically separated cavities in UiO-66 could stabilize isolated Pd clusters. Our...... calculations show that Pd clusters in UiO-66 are, at best, metastable and will aggregate into connected pore filling structures at equilibrium....

  4. Metal-organic frameworks in chromatography.

    Science.gov (United States)

    Yusuf, Kareem; Aqel, Ahmad; ALOthman, Zeid

    2014-06-27

    Metal-organic frameworks (MOFs) emerged approximately two decades ago and are the youngest class of porous materials. Despite their short existence, MOFs are finding applications in a variety of fields because of their outstanding chemical and physical properties. This review article focuses on the applications of MOFs in chromatography, including high-performance liquid chromatography (HPLC), gas chromatography (GC), and other chromatographic techniques. The use of MOFs in chromatography has already had a significant impact; however, the utilisation of MOFs in chromatography is still less common than other applications, and the number of MOF materials explored in chromatography applications is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef

    2016-01-01

    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one

  6. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  7. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol

    Science.gov (United States)

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-01

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  8. Effect of some colloid surfactants on spectrophotometric characteristics of metal chelates with chromophore organic reagents

    International Nuclear Information System (INIS)

    Chernova, R.K.

    1977-01-01

    Theoretical regularities and prospects of using surface active substances (SAS) in spectrophotometric determination of metal ions (including ions of rare-earth elements, transition metals, Be(3)) with chromophore chelating reagents were investigated. The chromophore reagents investigated were pyrocatechol violet, phenolcarboxylic acids of the triarylmethane series, fluorones, phthalexones and azo-compounds. As SAS certain long-chain quaternary ammonium and pyridinium salts (LQAS) were employed. From the results reported it follows that the introduction of LQAS in the system of Mesup(n+)-chromophore reagent is a rather effective method of enhancing the contrast rendition and, in some cases, the sensitivity and selectivity of the reagents. Explanations are suggested as to the factors which cause the changes observed in the contrast of the reactions in the presence of SAS; the underlying phenomena are the ligand-ligand interactions between the organic reagents and SAS and solubilization processes of the reaction products by the micelles of SAS

  9. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  10. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Nanophotonics Center, Korea Institute of Science and Technology, Seoul 02792 South Korea; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Zheng, Jian [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Platero-Prats, Ana E. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Mavrandonakis, Andreas [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Pellizzeri, Steven [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Lab, 9700 S. Cass Ave. Argonne IL 60439 USA; Vjunov, Aleksei [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Gallington, Leighanne C. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Webber, Thomas E. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Penn, R. Lee [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Getman, Rachel B. [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Cramer, Christopher J. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Chapman, Karena W. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Fulton, John L. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, Technische Universität München, Lichtenbergstrasse 4 85748 Garching Germany; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Hupp, Joseph T. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Martinson, Alex B. F. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA

    2018-01-02

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

  11. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed; Adil, Karim; Belmabkhout, Youssef; Shekhah, Osama; Bhatt, Prashant M.; Cadiau, Amandine

    2016-01-01

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided

  12. Evaluation of Trichoptera as an indicator organism for environmental pollution by heavy metals

    International Nuclear Information System (INIS)

    Aizawa, Shoichi; Tsunoda, Kin-ichi; Akatsuka, Masayoshi; Inoue, Sadao; Akaiwa, Hideo

    1994-01-01

    A method of analysis for heavy metals in trichopteran larvae by AAS was established to evaluate this aquatic insect as an indicator organism for environmental pollution by heavy metals. A wet digestion method with nitric acid and hydrogen peroxide was found to be suitable for the decomposition of trichopteran larva samples. No serious variation in heavy metal contents was found in individual samples collected from one sampling point. A weak negative correlation was observed between the body length and the heavy metal contents of trichopteran larvae. In addition, the heavy metal content of trichopteran larvae seems to show a seasonal fluctuation. Trichopteran larvae in the Watarase River, which has abandoned copper and manganese mines along its upper stream, show an enriched heavy metal content as compared with those in other non-polluted rivers. Moreover, this aquatic insect in the Kiryu River also shows enrichment of manganese due to abandoned manganese mines situated upstream. These facts suggest that the trichopteran larva in a useful indicator organism for environmental pollution by heavy metals. (author)

  13. Thin porphyrin composite membranes with enhanced organic solvent transport

    KAUST Repository

    Phuoc, Duong

    2018-05-01

    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block. Hybrid polyamide films are formed by interfacial polymerization of 5,10,15,20-(tetra-4-aminophenyl)porphyrin/m-phenylene diamine (MPD) mixtures with trimesoyl chloride. Porphyrin is a non-planar molecule, containing a heterocyclic tetrapyrrole unit. Its incorporation into a polyamide film leads to higher free volume than that of a standard polyamide film. Polyamide films derived from porphyrin and MPD amines with a fixed total amine concentration of 1wt% and various porphyrin/MPD ratios were fabricated and characterized. The porphyrin/MPD polyamide film was complexed with Cu(II), due to the binding capacity of porphyrin to metal ions. By coupling scanning transmission electron microscopy (STEM) with electron energy-loss spectroscopy (EELS), Cu mapping was obtained, revealing the distribution of porphyrin in the interfacial polymerized layer. By using porphyrin as amine-functionalized monomer a membrane with thin selective skin and enhanced solvent transport is obtained, with good dye selectivity in the nanofiltration range. For instance, an ultra-fast hexane permeance, 40-fold increased, was confirmed when using 0.5/0.5 porphyrin/MPD mixtures, instead of only MPD as amine monomer. A rejection of 94.2% Brilliant Blue R (826g/mol) in methanol was measured.

  14. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni

    2009-01-01

    By use of specular X-ray reflectivity (XR) the structure of a metal-covered organic thin film device is measured with angstrom resolution. The model system is a Langmuir-Blodgett (LB) film, sandwiched between a silicon substrate and a top electrode consisting of 25 Å titanium and 100 Å aluminum....... By comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  15. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    Science.gov (United States)

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Occurrence of antibiotic and metal resistance in bacteria from organs of river fish

    International Nuclear Information System (INIS)

    Pathak, S.P.; Gopal, K.

    2005-01-01

    Bacterial populations in some organs, viz., liver, spleen, kidney, gill, and arborescent organ of the catfish Clarias batrachus were enumerated followed by determination of resistance for antibiotics and metals. The total viable counts in these organs, observed, were 2.24x10 4 , 2.08x10 4 , 1.44x10 4 , 1.23x10 4 , and 6.40x10 3 colony-forming units/mL, respectively. The random bacterial isolates from these fish organs showed resistance in decreasing order for colistin (98%), ampicillin (82%), gentamycin (34%), carbenicillin (28%), tetracyline (20%), streptomycin (12%), and ciprofloxacin (02%). Most of the isolates exhibited an increasing order of tolerance for the metals (μg/mL) copper (100), lead (200), manganese (400), cadmium (200), and chromium (50), with minimum inhibitory concentration (MIC) ranging from <50 to 1600 μg/mL. These observations indicate that the significant occurrence of bacterial population in organs of fish with high incidence of resistance for antibiotics and metals may pose risk to fish fauna and public health

  17. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    Science.gov (United States)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  18. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  19. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  20. White organic light-emitting diodes with 4 nm metal electrode

    Science.gov (United States)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  1. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Directory of Open Access Journals (Sweden)

    Keiko Yamaji

    Full Text Available Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  2. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water.

    Science.gov (United States)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-11-30

    The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu(3)(BTC)(2)(H(2)O)(3)](n) (HKUST-1, BTC=benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu(3)(BTC)(2)](n) samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N(2) sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu(3)(BTC)(2)](n) exhibited remarkably high adsorption affinity (K(d)=4.73 × 10(5)mL g(-1)) and high adsorption capacity (714.29 mg g(-1)) for Hg(2+) adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg(2+) under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Liquid metal-organic frameworks

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  4. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework.

    Science.gov (United States)

    Mohideen, M Infas H; Xiao, Bo; Wheatley, Paul S; McKinlay, Alistair C; Li, Yang; Slawin, Alexandra M Z; Aldous, David W; Cessford, Naomi F; Düren, Tina; Zhao, Xuebo; Gill, Rachel; Thomas, K Mark; Griffin, John M; Ashbrook, Sharon E; Morris, Russell E

    2011-04-01

    Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.

  5. Contrary interfacial exciton dissociation at metal/organic interface in regular and reverse configuration organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bo; Wu, Zhenghui; Tam, Hoi Lam; Zhu, Furong, E-mail: frzhu@hkbu.edu.hk [Department of Physics, Institute of Advanced Materials, and Institute of Research and Continuing Education (Shenzhen), Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, NT (Hong Kong)

    2014-09-08

    An opposite interfacial exciton dissociation behavior at the metal (Al)/organic cathode interface in regular and inverted organic solar cells (OSCs) was analyzed using transient photocurrent measurements. It is found that Al/organic contact in regular OSCs, made with the blend layer of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] -[3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl

  6. Contact engineering for efficient charge injection in organic transistors with low-cost metal electrodes

    Science.gov (United States)

    Panigrahi, D.; Kumar, S.; Dhar, A.

    2017-10-01

    Controlling charge injection at the metal-semiconductor interface is very crucial for organic electronic devices in general as it can significantly influence the overall device performance. Herein, we report a facile, yet efficient contact modification approach, to enhance the hole injection efficiency through the incorporation of a high vacuum deposited TPD [N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine] interlayer between the electrodes and the active semiconducting layer. The device performance parameters such as mobility and on/off ratio improved significantly after the inclusion of the TPD buffer layer, and more interestingly, the devices with cost effective Ag and Cu electrodes were able to exhibit a superior device performance than the typically used Au source-drain devices. We have also observed that this contact modification technique can be even more effective than commonly used metal oxide interface modifying layers. Our investigations demonstrate the efficacy of the TPD interlayer in effectively reducing the interfacial contact resistance through the modification of pentacene energy levels, which consequently results in the substantial improvement in the device performances.

  7. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  8. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  9. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    Science.gov (United States)

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tunable photoluminescent metal-organic-frameworks and method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Rohwer, Lauren E.S.

    2017-08-22

    The present disclosure is directed to new photoluminescent metal-organic frameworks (MOFs). The newly developed MOFs include either non rare earth element (REE) transition metal atoms or limited concentrations of REE atoms, including: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Ru, Ag, Cd, Sn, Sb, Ir, Pb, Bi, that are located in the MOF framework in site isolated locations, and have emission colors ranging from white to red, depending on the metal concentration levels and/or choice of ligand.

  11. Interactions between excitation and extraction modes in an organic-based plasmon-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Nan-Fu, E-mail: nfchiu@ntnu.edu.tw [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Le Ster, Maxime [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Material Sciences and Engineering, Institut National des Sciences Appliquées de Rennes, Rennes 35708 (France); Yang, Cheng-Du [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Tseng, Ming-Hung; Tsai, Feng-Yu [Department of Material Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-03-30

    Highlights: • Directional emission properties give rise to a spectral band-gap response enhancement. • The subsequent emission intensity can increase by up to 3.5 times. • FWHM of approximately 60 nm in a defined direction is achieved. • SP coupling rate is approximately 80% on the metal grating structure. - Abstract: This study demonstrates the feasibility of enhancing an organic-based plasmon-emitting diode on the directional light beaming efficiency by near-field surface plasmon polaritons (SPPs) in both metal grating and polymer grating nanostructures. The interaction between organic/metal and PR/metal interfaces to cause SPPs can facilitate specific directional emission. Directional emission properties give rise to a spectral band-gap response enhancement. Our results also verify that efficient surface plasmon grating coupled emissions (SPGCEs) can improve directionality under index-mediated tuning. Experimental results indicate SP decoupling emission in the visible light. The subsequent emission intensity can increase by up to 3.5 times. Moreover, a narrow FWHM of approximately 60 nm in a defined direction is achieved, and an SP coupling rate is approximately 80% on the metal grating structure. The proposed method is highly promising for use as an active plasmonic emitter and discoloration biosensors with enhanced SPPs resonance energy, owing to interactions with the organic/metal nanostructure.

  12. A comparison of four porewater sampling methods for metal mixtures and dissolved organic carbon and the implications for sediment toxicity evaluations.

    Science.gov (United States)

    Cleveland, Danielle; Brumbaugh, William G; MacDonald, Donald D

    2017-11-01

    Evaluations of sediment quality conditions are commonly conducted using whole-sediment chemistry analyses but can be enhanced by evaluating multiple lines of evidence, including measures of the bioavailable forms of contaminants. In particular, porewater chemistry data provide information that is directly relevant for interpreting sediment toxicity data. Various methods for sampling porewater for trace metals and dissolved organic carbon (DOC), which is an important moderator of metal bioavailability, have been employed. The present study compares the peeper, push point, centrifugation, and diffusive gradients in thin films (DGT) methods for the quantification of 6 metals and DOC. The methods were evaluated at low and high concentrations of metals in 3 sediments having different concentrations of total organic carbon and acid volatile sulfide and different particle-size distributions. At low metal concentrations, centrifugation and push point sampling resulted in up to 100 times higher concentrations of metals and DOC in porewater compared with peepers and DGTs. At elevated metal levels, the measured concentrations were in better agreement among the 4 sampling techniques. The results indicate that there can be marked differences among operationally different porewater sampling methods, and it is unclear if there is a definitive best method for sampling metals and DOC in porewater. Environ Toxicol Chem 2017;36:2906-2915. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  13. Extraordinary Magnetic Field Enhancement with Metallic Nanowire: Role of Surface Impedance in Babinet's Principle for Sub-Skin-Depth Regime

    Science.gov (United States)

    Koo, Sukmo; Kumar, M. Sathish; Shin, Jonghwa; Kim, Daisik; Park, Namkyoo

    2009-12-01

    We propose and analyze the “complementary” structure of a metallic nanogap, namely, the metallic nanowire for magnetic field enhancement. A huge enhancement of the field up to a factor of 300 was achieved. Introducing the surface impedance concept, we also develop and numerically confirm a new analytic theory which successfully predicts the field enhancement factors for metal nanostructures. Compared to the predictions of the classical Babinet principle applied to a nanogap, an order of magnitude difference in the field enhancement factor was observed for the sub-skin-depth regime nanowire.

  14. Metal-organic aerogel as a coating for solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Mohammad, E-mail: saraji@cc.iut.ac.ir; Shahvar, Ali

    2017-06-22

    An iron-based metal-organic aerogel was synthesized using metal-organic framework nanoparticles and applied as a fiber coating for solid-phase microextraction (SPME). Chemical, thermal and morphological characteristics of the material were investigated. Headspace SPME followed by gas chromatography-electron capture detection was used for the determination of chlorobenzenes in the environmental samples. The key experimental factors affecting the extraction efficiency of the analytes, such as ionic strength, extraction and desorption temperature, and extraction time were investigated and optimized. The applicability of the coating for the extraction of chlorobenzenes from the environmental samples including river and tap water, sludge, and coastal soil was evaluated. The detection limits were in the range of 0.1–60 ng L{sup −1}. The relative standard deviations were between 2.0 and 5.0%. The extraction recovery of the analytes was in the range of 88–100%. Compared to the commercial PDMS fiber, the present fiber showed better extraction efficiency. - Highlights: • Metal-organic aerogel was synthesized and used as a novel fiber coating for SPME. • The new coating material showed high surface area and good thermal stability. • GC-ECD was used for determination of chlorobenzenes in environmental samples. • The method showed fast extraction and better efficiency than PDMS commercial fiber.

  15. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peifu; Hu, Yun Hang

    2016-01-01

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C_2H_2 adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C_2H_2 adsorption on MOFs are consistent with BET surface areas from N_2 adsorption. • C_2H_2 on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C_2H_2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C_2H_2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C_2H_2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C_2H_2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C_2H_2 adsorption on those MOFs.

  16. New metal-organic nanomaterials synthesized by laser irradiation of organic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Stanislav L.; Wesolowski, Michal J.; Duley, Walter W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)

    2014-03-31

    A new type of metal-organic composition consisting of clusters of nanoparticles has been synthesised by laser irradiation of metallocene/benzene solutions. The metallocene molecules in this reaction become the source of the metal. Exposure to high-energy femtosecond laser pulses dehydrogenate benzene molecules and initiate the high-temperature high-pressure conditions that results in the synthesis of new materials. Irradiation experiments have been carried out on ferrocene/benzene and on other solutions. With ferrocene the synthesis of a new compound has been confirmed by X-ray powder diffraction as the peaks detected do not correspond to any known substance in the Crystallography Open Database. Theoretical simulation of the periodic structure of this new carbide predicts that it has hexagonal symmetry and a unit cell with a = 3.2A and c =2.8A. The exact structure is still uncertain but may be determined from scanning tunneling microscope (STM) studies.

  17. Combining Nitrilotriacetic Acid and Permeable Barriers for Enhanced Phytoextraction of Heavy Metals from Municipal Solid Waste Compost by and Reduced Metal Leaching.

    Science.gov (United States)

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2016-05-01

    Phytoextraction has the potential to remove heavy metals from contaminated soil, and chelants can be used to improve the capabilities of phytoextraction. However, environmentally persistent chelants can cause metal leaching and groundwater pollution. A column experiment was conducted to evaluate the viability of biodegradable nitrilotriacetic acid (NTA) to increase the uptake of heavy metals (Cd, Cr, Ni, Pb, Cu, and Zn) by L. in municipal solid waste (MSW) compost and to evaluate the effect of two permeable barrier materials, bone meal and crab shell, on metal leaching. The application of NTA significantly increased the concentrations and uptake of heavy metals in . The enhancement was more pronounced at higher dosages of NTA. In the 15 mmol kg NTA treatment using a crab shell barrier, the Cr and Ni concentrations in the plant shoots increased by approximately 8- and 10-fold, respectively, relative to the control. However, the addition of NTA also caused significant heavy metal leaching from the MSW compost. Bone meal and crab shell barriers positioned between the compost and the subsoil were effective in preventing metal leaching down through the soil profile by the retention of metals in the barrier. The application of a biodegradable chelant and the use of permeable barriers is a viable form of enhanced phytoextraction to increase the removal of metals and to reduce possible leaching. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Synthesis of organically-capped metallic zinc nanoparticles using electrical explosion of wires (EEW) coupled with PIERMEN

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, Elseddik M.; Jelliss, Paul A., E-mail: jellissp@slu.edu; Buckner, Steven W., E-mail: buckners@slu.edu

    2015-01-15

    In this study zinc nanoparticles (ZNPs) were produced using electrical explosion of wires (EEW) with NP size around 100 nm. The explosion chamber was constructed from Teflon to withstand the shockwave, to allow growth and reaction of the incipient ZNPs in various organic solvents, and to allow a constant flow of argon creating an inert atmosphere. We utilized polymerization initiation by electron-rich metallic nanoparticles (PIERMEN) as the capping technique for the reactive ZNPs. Epoxides and alkenes served as the capping monomers. Epoxide caps underwent oligomerization on the surface of the NPs to form a protective polyether cap which renders the particles stable, non-pyrophoric in air, and dispersible in organic solvents. We investigated various Zn to monomer molar ratios varying from 1:1 to 10:1. Polyethylene glycol was also used as a capping agent and was found to give the smallest average Zn core sizes with the metal core diameters varying from 15 to 20 nm. Several solvents were used to study differences in resultant particle size and we observe toluene to give the smallest metal cores. Transmission electron microscopy shows the spherical particles with the metallic core embedded in a polymer matrix. The sample consists of predominantly smaller particles, but there was also a broad size distribution giving a range of 20–150 nm. Powder X-ray diffraction (PXRD) was used to confirm the identity of the metallic NPs. The capping agents were characterized using both attenuated total reflectance-Fourier transform infra-red (ATR-FTIR) and Raman spectroscopies. There was no evidence for formation of zinc oxide with appropriate organic capping agents and solvent combinations; thus, this is the first report of production of pure metallic zinc nanoparticles with an organic cap using EEW. - Highlights: • Organically-capped Zn metal nanoparticles are produced by EEW in organic solution. • Incipient Zn metal nanoparticles initiate oligomerization of epoxide and

  19. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    Science.gov (United States)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  20. Effects of ultrasound on properties of ni-metal organic framework nanostructures

    Directory of Open Access Journals (Sweden)

    Abbas Pardakhty

    2016-10-01

    Full Text Available Objective(s: According to the unique properties of magnetic nanoparticles, Nickel Metal-Organic Frameworks (MOF was synthesized successfully by ultrasound irradiation. Metal-organic frameworks (MOFs are organic–inorganic hybrid extended networks that are constructed via covalent linkages between metal ions/metal clusters and organic ligands called a linker. Materials and Methods: The nanoparticles were synthesized by Ultrasound  Method Under a synthesis conditions, All chemicals were used as received without further purification. Scanning electron microscopy (SEM images were obtained on LEO- 1455VP equipped with an energy dispersive X-ray spectroscopy at university of Kashan in Iran. Transition electron microscopy (TEM images were obtained on EM208 Philips transmission electron microscope with an accelerating voltage of 200 kV. Results: Results showed that Ni-MOF synthesized by this method, had smaller particle size distribution and It was found that the different kinds of ligand leads to preparation products with different morphologies and textural properties. Moreover, ultrasound irradiation method has significant effect on microstructures of as-synthesized MOFs and can improve their textural properties compared to method without using hydrothermal route.The XRD patterns of the samples obtained from ultrasound irradiation was well matched with that of as-prepared Ni-MOF by solvothermal method. Conclusion: This rapid method of ultrasonic radiation as compared to the classical solvothermal synthesis, showed promising results in terms of size distribution, surface area, pore diameter and pore volume.

  1. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  2. Fully solution-processed organic solar cells on metal foil substrates

    KAUST Repository

    Gaynor, Whitney; Lee, Jung-Yong; Peumans, Peter

    2009-01-01

    We demonstrate fully solution-processed organic photovoltaic cells on metal foil substrates with power conversion efficiencies similar to those obtained in devices on transparent substrates. The cells are based on the regioregular poly- (3

  3. Metal-doped organic foam and method of making same. [Patent application

    Science.gov (United States)

    Rinde, J.A.

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  4. Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Neeraj K., E-mail: neerajkjaiswal@gmail.com [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Tyagi, Neha [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Kumar, Amit [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior 474015 (India)

    2017-02-28

    Highlights: • F passivated zigzag graphene nanoribbon (F-ZGNR) are more favorable than pristine ones. • External electric field induces half metallicity in F-ZGNR. • The observed half metallicity is independent of ribbon widths. • Enhanced stability makes F-ZGNR preferable over pristine ribbon. - Abstract: Half metals are the primary ingredients for the realization of novel spintronic devices. In the present work, by employing density functional theory based first-principles calculation, we predict half metallic behavior in fluorine passivated zigzag graphene nanoribbons (F-ZGNR). Four different structures have been investigated viz. one edge F passivated ZGNR (F-ZGNR-1), both edges F passivated ZGNR (F-ZGNR-2), F passivation on alternate sites in first configuration (alt-1) and F passivation on alternate sites in second configuration (alt-2). Interestingly, it is noticed that F passivation is analogous to H passivation (pristine), however, F-ZGNR are reckoned energetically more stable than pristine ones. An spin induced band gap is noticed for all F-ZGNR irrespective of their widths although its magnitude is slightly less than the pristine counterparts. With an external transverse electric field, ribbons undergo semiconducting to half metallic transformation. The observed half metallic character with enhanced stability present F-ZGNR as a better candidate than pristine ZGNR towards the realization of upcoming spintronic devices.

  5. A simple method to prepare self-assembled organic-organic heterobilayers on metal substrates

    Directory of Open Access Journals (Sweden)

    L. D. Sun

    2011-06-01

    Full Text Available We demonstrate a self-assembly based simple method to prepare organic-organic heterobilayers on a metal substrate. By either sequential- or co-deposition of para-sexiphenyl (p-6P and pentacene molecules onto the Cu(110 surface in ultrahigh vacuum, p-6P/pentacene/Cu(110 heterobilayer is synthesized at room temperature. The layer sequence of the heterostructure is independent of the growth scenario indicating the p-6P/pentacene/Cu(110 is a self-assembled structure with lowest energy. Besides, the bilayer shows a very high orientational ordering and is thermally stable up to 430K.

  6. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    Directory of Open Access Journals (Sweden)

    Mathieu Bosch

    2014-12-01

    Full Text Available Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in {Li [In(1,3 − BDC2]}n and enhancement of the H2 uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  7. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  8. CFA-7: an interpenetrated metal-organic framework of the MFU-4 family.

    Science.gov (United States)

    Schmieder, Phillip; Grzywa, Maciej; Denysenko, Dmytro; Hambach, Manuel; Volkmer, Dirk

    2015-08-07

    The novel interpenetrated metal-organic framework CFA-7 (Coordination Framework Augsburg University-7), [Zn5Cl4(tqpt)3], has been synthesized containing the organic linker {H2-tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquinoxalino[2,3-b]phenazinebistriazole}. Reaction of H2-tqpt and anhydrous ZnCl2 in N,N-dimethylformamide (DMF) yields CFA-7 as pseudo-cubic crystals. CFA-7 serves as precursor for the synthesis of isostructural frameworks with redox-active metal centers, which is demonstrated by postsynthetic metal exchange of Zn(2+) by different M(2+) (M = Co, Ni, Cu) ions. The novel framework is robust upon solvent removal and has been structurally characterized by single-crystal X-ray diffraction, TGA and IR spectroscopy, as well as gas sorption (Ar, CO2 and H2).

  9. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    Science.gov (United States)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Liu, Junhong

    2011-01-01

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  11. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  12. Hydrogen storage in metal-organic frameworks: An investigation of structure-property relationships

    Science.gov (United States)

    Rowsell, Jesse

    Metal-organic frameworks (MOFs) have been identified as candidate hydrogen storage materials due to their ability to physisorb large quantities of small molecules. Thirteen compounds (IRMOF-1, -2, -3, -6, -8, -9, -11, -13, -18, -20, MOF-74, MOF-177 and HKUST-1) have been prepared and fully characterized for the evaluation of their dihydrogen (H2) adsorption properties. All compounds display approximately type I isotherms with no hysteresis at 77 K up to 1 atm. The amount adsorbed ranges from 0.89 to 2.54 wt%; however, saturation is not achieved under these conditions. The influences of link functionalization, catenation and topology are examined for the eleven MOFs composed of Zn4O(O2C-)6 clusters. Enhanced H2 uptake by catenated compounds is rationalized by increased overlap of the surface potentials within their narrower pores. This is corroborated by the larger isosteric heat of adsorption of IRMOF-11 compared to IRMOF-1. Inelastic neutron scattering spectroscopic analysis of four Zn4O-based materials (IRMOF-1, -8, -11, and MOF-74) under a range of H2 loading suggests the presence of multiple localized adsorption sites on both the inorganic and organic moieties. To determine the structural details of the adsorption sites, variable temperature single crystal X-ray diffraction was used to analyze adsorbed argon and dinitrogen molecules in IRMOF-1. The principle binding site was found to be the same for both adsorbates and is located on faces of the octahedral Zn4O(O2C-)6 clusters with close contacts to three carboxylate groups. A total of eight symmetry-independent adsorption sites were identified for argon at 30 K. Similar sites were observed for dinitrogen, suggesting that they are good model adsorbates for the behaviour of dihydrogen. Two additional materials composed of inorganic clusters with coordinatively unsaturated metal sites (MOF-74, HKUST-1) were examined and their increased capacities and isosteric heats of adsorption provide further evidence that the

  13. Synthesis of Pd and Rh metal nanoparticles in the interlayer space of organically modified montmorillonite

    International Nuclear Information System (INIS)

    Patel, Hasmukh A.; Bajaj, Hari C.; Jasra, Raksh Vir

    2008-01-01

    This study reports the synthesis of palladium and rhodium metal nanoparticles supported on montmorillonite (MMT) and partially organically modified MMT (POMM) using tetraamine palladium and hexaamine rhodium complex as precursor for palladium and rhodium respectively. The synthesized nanoparticles were characterized by powder X-ray diffraction PXRD and TEM. The PXRD study shows characteristic crystallographic planes for Pd and Rh metal and confirm the formation of metal nanoparticles in MMT and POMM. The TEM images reveal the effect of organic modification of MMT on decreasing particle size of Pd and Rh metal. The Pd and Rh metal nanoparticles are agglomerated in pristine MMT while nanoparticles are well dispersed in POMM. ICP-AES analysis was carried out to estimate quantitative amount of Pd and Rh metal in MMT and POMM

  14. Metal-organic frameworks with dynamic interlocked components

    Science.gov (United States)

    Vukotic, V. Nicholas; Harris, Kristopher J.; Zhu, Kelong; Schurko, Robert W.; Loeb, Stephen J.

    2012-06-01

    The dynamics of mechanically interlocked molecules such as rotaxanes and catenanes have been studied in solution as examples of rudimentary molecular switches and machines, but in this medium, the molecules are randomly dispersed and their motion incoherent. As a strategy for achieving a higher level of molecular organization, we have constructed a metal-organic framework material using a [2]rotaxane as the organic linker and binuclear Cu(II) units as the nodes. Activation of the as-synthesized material creates a void space inside the rigid framework that allows the soft macrocyclic ring of the [2]rotaxane to rotate rapidly, unimpeded by neighbouring molecular components. Variable-temperature 13C and 2H solid-state NMR experiments are used to characterize the nature and rate of the dynamic processes occurring inside this unique material. These results provide a blueprint for the future creation of solid-state molecular switches and molecular machines based on mechanically interlocked molecules.

  15. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  16. Enhanced Photocatalytic Activity of Rare Earth Metal (Nd and Gd doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    P. Logamani

    2017-06-01

    Full Text Available Presence of harmful organic pollutants in wastewater effluents causes serious environmental problems and therefore purification of this contaminated water by a cost effective treatment method is one of the most important issue which is in urgent need of scientific research. One such promising treatment technique uses semiconductor photocatalyst for the reduction of recalcitrant pollutants in water. In the present work, rare earth metals (Nd and Gd doped ZnO nanostructured photocatalyst have been synthesized by wet chemical method. The prepared samples were characterized by X-ray diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and energy dispersive X-ray spectroscopy (EDS. The XRD results showed that the prepared samples were well crystalline with hexagonal Wurtzite structure. The results of EDS revealed that rare earth elements were doped into ZnO structure. The effect of rare earth dopant on morphology and photocatalytic degradation properties of the prepared samples were studied and discussed. The results revealed that the rare earth metal doped ZnO samples showed enhanced visible light photocatalytic activity for the degradation of methylene blue dye than pure nano ZnO photocatalyst.

  17. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils

    International Nuclear Information System (INIS)

    Dumat, C.; Quenea, K.; Bermond, A.; Toinen, S.; Benedetti, M.F.

    2006-01-01

    The role of metals in the behaviour of soil organic matter (SOM) is not well documented. Therefore, we investigated the influence of metals (Pb, Zn, Cu and Cd) on the dynamic of SOM in contaminated soils where maize (C 4 plant) replaced C 3 cultures. Three pseudogley brown leached soil profiles under maize with a decreasing gradient in metals concentrations were sampled. On size fractions, stable carbon isotopic ratio (δ 13 C), metals, organic carbon and nitrogen concentrations were measured in function of depth. The determined sequence for the amount of C 4 organic matter in the bulk fractions: M 3 (0.9) > M 2 (0.4) > M 1 (0.3) is in agreement with a significant influence of metals on the SOM turnover. New C 4 SOM, mainly present in the labile coarser fractions and less contaminated by metals than the stabilised C 3 SOM of the clay fraction, is more easily degraded by microorganisms. - Measure of δ 13 C and total metal concentrations in size fractions of contaminated soils suggests an influence of metals on the soil organic matter dynamic

  18. Enhanced metal recovery through oxidation in liquid and/or supercritical carbon dioxide

    KAUST Repository

    Blanco, Mario

    2017-08-24

    Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock can be a mineral such as a refractory mineral. The mineral can be an ore with high sulfide content or an ore rich in carbonaceous material. Waste can also be used as the metal-containing feedstock. The metal-containing feedstock can be used which is not subjected to ultrafine grinding. Relatively low temperatures and pressures can be used. The metal-containing feedstock can be fed into the reactor at a temperature below the critical temperature of the carbon dioxide, and an exotherm from the oxidation reaction can provide the supercritical temperature. The oxidant can be added to the reactor at a rate to maintain isothermal conditions in the reactor. Minimal amounts of water can be used as an extractive medium.

  19. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Adholeya, A. [Energy & Resources Institute, New Delhi (India). India Habitat Centre

    2009-04-15

    Experiments were conducted to investigate the effect of coal ash on organic acid exudation and subsequent metal uptake by ectomycorrhizal fungi. Four isolates of ectomycorrhizal fungi namely, Pisolithus tinctorius (EM-1293 and EM-1299), Scleroderma verucosum (EM-1283) and Scleroderma cepa (EM-1233) were grown on pond ash moistened with Modified Melin-Norkans medium in vitro. Exudation of formic acid, malic acid and succinic acid by these fungi were detected by HPLC. Mycelial accumulation of Al, As, Cd, Cr, Ni and Pb by these fungi was assayed by atomic absorption spectrophotometer. Relationship between organic acid exudation and metal uptake was determined using classical multivariate linear regression model. Correlation between organic acid exudation and metal uptake could be substantiated when several metals are considered collectively. The finding supports the widespread role of low molecular weight organic acid as a function of tolerance, when exposed to metals in vitro.

  20. Enhanced chlorine dioxide decay in the presence of metal oxides: Relevance to drinking water distribution systems

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2013-01-01

    Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10 6 M-2 s-1 in the presence of 0.1 g L -1 CuO at 21 ± 1 C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO 2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO 2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH- is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes. © 2013 American Chemical Society.

  1. Enhanced chlorine dioxide decay in the presence of metal oxides: Relevance to drinking water distribution systems

    KAUST Repository

    Liu, Chao

    2013-07-19

    Chlorine dioxide (ClO2) decay in the presence of typical metal oxides occurring in distribution systems was investigated. Metal oxides generally enhanced ClO2 decay in a second-order process via three pathways: (1) catalytic disproportionation with equimolar formation of chlorite and chlorate, (2) reaction to chlorite and oxygen, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly stronger abilities than goethite (α-FeOOH) to catalyze the ClO2 disproportionation (pathway 1), which predominated at higher initial ClO2 concentrations (56-81 μM). At lower initial ClO2 concentrations (13-31 μM), pathway 2 also contributed. The CuO-enhanced ClO2 decay is a base-assisted reaction with a third-order rate constant of 1.5 × 10 6 M-2 s-1 in the presence of 0.1 g L -1 CuO at 21 ± 1 C, which is 4-5 orders of magnitude higher than in the absence of CuO. The presence of natural organic matter (NOM) significantly enhanced the formation of chlorite and decreased the ClO 2 disproportionation in the CuO-ClO2 system, probably because of a higher reactivity of CuO-activated ClO2 with NOM. Furthermore, a kinetic model was developed to simulate CuO-enhanced ClO 2 decay at various pH values. Model simulations that agree well with the experimental data include a pre-equilibrium step with the rapid formation of a complex, namely, CuO-activated Cl2O4. The reaction of this complex with OH- is the rate-limiting and pH-dependent step for the overall reaction, producing chlorite and an intermediate that further forms chlorate and oxygen in parallel. These novel findings suggest that the possible ClO2 loss and the formation of chlorite/chlorate should be carefully considered in drinking water distribution systems containing copper pipes. © 2013 American Chemical Society.

  2. Amino-functionalized metal-organic frameworks as tunable heterogeneous basic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M.; Hartmann, M. [Erlangen-Nuernberg Univ., Erlangen (Germany). Erlangen Catalysis Resource Center

    2011-07-01

    Metal-organic framework (MOF) materials have been explored for applications in heterogeneous catalysis in recent years. In addition to the use of MOFs as supports for the deposition of highly dispersed metal particles, the incorporation of active centers such as coordinatively unsaturated metal sites and the functionalization of the organic linkers with acidic or basic groups seems to be most promising. In our contribution, three different MOFs carrying amino groups at their organic linkers, namely Fe-MIL-101-NH{sub 2} (S{sub BET} = 3438 m{sup 2}g{sup -1}), Al-MIL-101-NH{sub 2} (S{sub BET} = 3099 m{sup 2}g{sup -1}) and CAU-1 (S{sub BET} = 1492 m{sup 2}g{sup -1}), were synthesized and tested in the Knoevenagel condensation of benzaldehyde with malononitrile and with ethyl cyanoacetate, respectively. It is shown that the expected products benzylidenemalononitrile (BzMN) and ethyl a-cyanocinnamate (EtCC) are formed with selectivities of more than 99 % and yields of 90 to 95 % after 3 h (for BzMN). Due to the very small pore windows of CAU-1 (0.3 to 0.4 nm) the reaction proceeds much slower over this catalyst in comparison to the amino-MIL-101 derivatives, which possess open pore windows of up to 1.6 nm. Finally, leaching tests confirm that the reaction is heterogeneously catalyzed. Moreover, the catalysts are recyclable without significant loss of activity. (orig.)

  3. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peifu; Hu, Yun Hang, E-mail: yunhangh@mtu.edu

    2016-07-30

    Graphical abstract: It was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model for C2H2 adsorption on metal-organic frameworks (MOFs), including MOF-5, ZIF-8, HKUST-1, and MIL-53. - Highlights: • Dubinin-Astakhov equation is demonstrated to be a general model for C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs). • Surface areas obtained with Dubinin-Astakhov equation from C{sub 2}H{sub 2} adsorption on MOFs are consistent with BET surface areas from N{sub 2} adsorption. • C{sub 2}H{sub 2} on MOF-5, ZIF-8, and MIL-53 is a physical adsorption, whereas its adsorption on HKUST-1 is due to a chemical bonding. - Abstract: Acetylene (C{sub 2}H{sub 2}) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C{sub 2}H{sub 2} adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C{sub 2}H{sub 2} adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C{sub 2}H{sub 2} adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C{sub 2}H{sub 2} adsorption on those MOFs.

  4. Water-enhanced solvation of organics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jane H. [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log γs vs xw/xs curve. From graph shape Δ(log γs) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid, propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement Δ(log γacid)/Δ(xw/xacid) = -0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was -0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.

  5. Trace Metals And Organic Matter Diagenesis At The Oman Margin

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    Trace Metals (e.g. Mn and Fe) play an important role as secondary oxidants in the degradation of sedimentary OM under sub-oxic conditions. Hence the remineralisation of organic constituents of sediments in the marine environment may significantly...

  6. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis.

    Science.gov (United States)

    Liu, Wan-Ling; Yang, Ni-Shin; Chen, Ya-Ting; Lirio, Stephen; Wu, Cheng-You; Lin, Chia-Her; Huang, Hsi-Ya

    2015-01-02

    A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase-supported metal-organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness

    International Nuclear Information System (INIS)

    Linn, Nicholas C; Sun, C-H; Arya, Ajay; Jiang Peng; Jiang Bin

    2009-01-01

    This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10 8 ). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.

  8. Breaking Down Chemical Weapons by Metal-Organic Frameworks.

    Science.gov (United States)

    Mondal, Suvendu Sekhar; Holdt, Hans-Jürgen

    2016-01-04

    Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photoluminescence emission from Alq3 organic layer in metal–Alq3–metal plasmonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohr-Ran; Liao, Chung-Chi [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Fan, Wan-Ting [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Wu, Jin-Han; Chen, Cheng-Chang; Lin, Yi-Ping; Li, Jung-Yu; Chen, Shih-Pu [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute (ITRI), 195, Sec. 4, Chung-Hsin Road, Chutung 310, Taiwan (China); Ke, Wen-Cheng [Department of Mechanical Engineering, Yuan Ze University, Tao-Yuan 320, Taiwan (China); Chen, Nai-Chuan, E-mail: ncchen001@mail.cgu.edu.tw [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2014-06-01

    The emission properties of an organic layer embedded in a metal–organic–metal (MOM) structure were investigated. A partially radiative odd-SPW as well as a non-radiative even-SPW modes are supported by hybridization of the SPW modes on the opposite organic/metal interface in the structure. Because of the competition by this radiative SPW, the population of excitons that recombine to form non-radiative SPW should be reduced. This may account for why the photoluminescence intensity of the MOM sample is higher than that of an organic–metal sample even though the MOM sample has an additional metal layer that should intuitively act as a filter.

  10. Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage

    Science.gov (United States)

    Pérez del Pino, A.; György, E.; Alshaikh, I.; Pantoja-Suárez, F.; Andújar, J. L.; Pascual, E.; Amade, R.; Bertran-Serra, E.

    2017-09-01

    Carbon nanotubes-transition metal oxide systems are intensively studied due to their excellent properties for electrochemical applications. In this work, an innovative procedure is developed for the synthesis of vertically aligned multi-walled carbon nanotubes (VACNTs) coated with transition metal oxide nanostructures. VACNTs are grown by plasma enhanced chemical vapor deposition and coated with a manganese-based metal organic precursor (MOP) film based on manganese acetate solution. Subsequent UV pulsed laser irradiation induces the effective heating-decomposition of the MOP leading to the crystallization of manganese oxide nanostructures on the VACNT surface. The study of the morphology, structure and composition of the synthesized materials shows the formation of randomly oriented MnO2 crystals, with few nanometers in size, and to their alignment in hundreds of nm long filament-like structures, parallel to the CNT’s long axis. Electrochemical measurements reveal a significant increase of the specific capacitance of the MnO2-VACNT system (100 F g-1) as compared to the initial VACNT one (21 F g-1).

  11. Oxidized Metal Powders for Mechanical Shock and Crush Safety Enhancers; TOPICAL

    International Nuclear Information System (INIS)

    GARINO, TERRY J.

    2002-01-01

    The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented

  12. Ultrastructural observations of target-organs of the crayfish Orconectes limosus exposed to metallic pollutants: application to uranium

    International Nuclear Information System (INIS)

    Grasset, G.; Simon, O.; Floriani, M.

    2004-01-01

    Using electron microscopy associated with energy dispersive X-ray microanalysis (EDAXTEM), ultrastructure and elemental analysis in subcellular micro-localization can bring understanding to both metabolic cycle of a metallic pollutant and its potential effects at the subcellular scale. The approach consists in comparing both structures and micro-localization in various tissues/organs ultrathin sections (70-140 nm thickness) obtained from control organisms (i.e. not exposed to a given metal) and exposed organisms. However, the observations of ultrastructural effects of metal exposure involved robust comparison to reference subcellular and cellular organization. Consequently, preliminary developments presented in this poster have been performed from the non-contaminated freshwater crayfish Orconectes limosus (adult at inter-moult state). Studies of ultrastructural images and elemental composition of subcellular mineral deposits were carried out on target organs of uranium accumulation such as the digestive gland, the gills, the intestine and the antennal gland, organs participating in the detoxification, primary accumulation and depuration mechanisms. Observations indicated cell-specific architecture (identification of main organelles, frequency, length of cells), the range of natural variation of the cell organisation between individuals and identification of cellular types. Information will allow then to focus on these identified specific organization after metallic exposure. These ultrastructural observations performed on reference organisms constitute necessarily a first set of data for the cellular metallic effects analysis. (author)

  13. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A metal-free organic-inorganic aqueous flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  15. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro

    2013-06-01

    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  16. Highly stable ni-m f6-nh2o/onpyrazine2(solvent)x metal organic frameworks and methods of use

    KAUST Repository

    Eddaoudi, Mohamed; Adil, Karim; Belmabkhout, Youssef; Cadiau, Amandine

    2016-01-01

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands. Methods for capturing chemical species from fluid compositions comprise contacting a metal organic framework characterized by the formula [MaMbF6-n(O/H2

  17. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang

    2015-03-24

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  18. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang; Cai, Rong; Pham, Tony T.; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick S.; Williams, Kia R.; Wojtas, Łukasz; Luebke, Ryan; Weselinski, Lukasz Jan; Zaworotko, Michael J.; Space, Brian; Chen, Yusheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian

    2015-01-01

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  19. Accumulation of trace metals in coastal marine organisms

    International Nuclear Information System (INIS)

    Weers, A.W. van; Raaphorst, J.G. van

    1980-01-01

    ECN at Petten carries out a survey on the occurrence of trace metals in coastal marine organisms. The survey is aimed to provide an estimate of concentration factors in local marine organisms for neutron activation products released as low-level liquid radioactive waste into the North Sea. The organisms studied are red and brown seaweed, edible mussels ans shrimp. A summary of the results of analyses of iron, cobalt, zinc, silver and antimony in these organisms is presented. Concentration factors derived from mean stable-element concentrations range from about 50 for Sb in red seaweed and shrimp to about 10 4 for Fe in red seaweed and mussels. The largest variation is shown for zinc in seaweed, which variation is seasonal and most pronounced in brown seaweed. A discussion of the data is presented in relation to data from other West-European coastal areas and to data used for the radiological assessment of deep sea disposal of radioactive waste

  20. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  1. Lymphoid Aggregates That Resemble Tertiary Lymphoid Organs Define a Specific Pathological Subset in Metal-on-Metal Hip Replacements

    Science.gov (United States)

    Barone, Francesca; Hardie, Debbie L.; Matharu, Gulraj S.; Davenport, Alison J.; Martin, Richard A.; Grant, Melissa; Mosselmans, Frederick; Pynsent, Paul; Sumathi, Vaiyapuri P.; Addison, Owen; Revell, Peter A.; Buckley, Christopher D.

    2013-01-01

    Aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) has been used to describe the histological lesion associated with metal-on-metal (M-M) bearings. We tested the hypothesis that the lymphoid aggregates, associated with ALVAL lesions resemble tertiary lymphoid organs (TLOs). Histopathological changes were examined in the periprosthetic tissue of 62 M-M hip replacements requiring revision surgery, with particular emphasis on the characteristics and pattern of the lymphocytic infiltrate. Immunofluorescence and immunohistochemistry were used to study the classical features of TLOs in cases where large organized lymphoid follicles were present. Synchrotron X-ray fluorescence (XRF) measurements were undertaken to detect localisation of implant derived ions/particles within the samples. Based on type of lymphocytic infiltrates, three different categories were recognised; diffuse aggregates (51%), T cell aggregates (20%), and organised lymphoid aggregates (29%). Further investigation of tissues with organised lymphoid aggregates showed that these tissues recapitulate many of the features of TLOs with T cells and B cells organised into discrete areas, the presence of follicular dendritic cells, acquisition of high endothelial venule like phenotype by blood vessels, expression of lymphoid chemokines and the presence of plasma cells. Co-localisation of implant-derived metals with lymphoid aggregates was observed. These findings suggest that in addition to the well described general foreign body reaction mediated by macrophages and a T cell mediated type IV hypersensitivity response, an under-recognized immunological reaction to metal wear debris involving B cells and the formation of tertiary lymphoid organs occurs in a distinct subset of patients with M-M implants. PMID:23723985

  2. Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence

    OpenAIRE

    Aslan, Kadir; Malyn, Stuart N.; Zhang, Yongxia; Geddes, Chris D.

    2008-01-01

    We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little ...

  3. Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy

    Science.gov (United States)

    Chen, Rui; Zhang, Jinfeng; Wang, Yu; Chen, Xianfeng; Zapien, J. Antonio; Lee, Chun-Sing

    2015-10-01

    Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX and the PDT effect of g-C3N4 nanosheets can lead to considerably enhanced efficacy. Furthermore, the red fluorescence of DOX and the blue fluorescence of g-C3N4 nanosheets provide the additional function of dual-color imaging for monitoring the drug release process.Recently, nanoscale metal-organic frameworks (NMOFs) have started to be developed as a promising platform for bioimaging and drug delivery. On the other hand, combination therapies using multiple approaches are demonstrated to achieve much enhanced efficacy. Herein, we report, for the first time, core-shell nanoparticles consisting of a photodynamic therapeutic (PDT) agent and a MOF shell while simultaneously carrying a chemotherapeutic drug for effective combination therapy. In this work, core-shell nanoparticles of zeolitic-imadazolate framework-8 (ZIF-8) as shell embedded with graphitic carbon nitride (g-C3N4) nanosheets as core are fabricated by growing ZIF-8 in the presence of g-C3N4 nanosheets. Doxorubicin hydrochloride (DOX) is then loaded into the ZIF-8 shell of the core-shell nanoparticles. The combination of the chemotherapeutic effects of DOX

  4. Enhanced vasculotoxic metal excretion in post-myocardial infarction patients following a single edetate disodium-based infusion.

    Science.gov (United States)

    Arenas, Ivan A; Navas-Acien, Ana; Ergui, Ian; Lamas, Gervasio A

    2017-10-01

    Toxic metals have been associated with cardiovascular mortality and morbidity. We have hypothesized that enhanced excretion of vasculotoxic metals might explain the positive results of the Trial to Assess Chelation Therapy (TACT). The purpose of this study was to determine whether a single infusion of the edetate disodium- based infusion used in TACT led to enhanced excretion of toxic metals known to be associated with cardiovascular events. Twenty six patients (post-MI, age > 50 years, serum creatinine ≤ 2.0mg/dL) were enrolled in this open-label study. Urinary levels of 20 toxic metals normalized to urinary creatinine concentrations were measured at baseline in overnight urine collections, for 6h following a placebo infusion of 500mL normal saline and 1.2% dextrose, and for 6h following a 3g edetate disodium-based infusion. Self-reported metal exposure, smoking status, food frequency, occupational history, drinking water source, housing and hobbies were collected at baseline by a metal exposure questionnaire. The mean age was 65 years (range 51-81 years). All patients were male. 50% had diabetes mellitus and 58% were former smokers. Mean (SD) serum creatinine was 0.95 (0.31) mg/dL. Toxic metals were detected in the baseline urine of >80% of patients. After placebo infusion there were no significant changes in total urinary metal levels. After edetate infusion, total urinary metal level increased by 71% compared to baseline (1500 vs. 2580µg/g creatinine; P<0.0001). The effect of edetate was particularly large for lead (3835% increase) and cadmium (633% increase). Edetate disodium-based infusions markedly enhanced the urinary excretion of lead and cadmium, toxic metals with established epidemiologic evidence and mechanisms linking them to coronary and vascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hybrid Glasses from Strong and Fragile Metal-Organic Framework Liquids

    DEFF Research Database (Denmark)

    Bennett, T.D.; Tan, J.C.; Yue, Yuanzheng

    2015-01-01

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship betwee...

  6. Separation of polar compounds using a flexible metal-organic framework

    NARCIS (Netherlands)

    Motkuri, R.K.; Thallapally, P.K.; Annapureddy, H.V.R.; Dang, L.X.; Krishna, R.; Nune, S.K.; Fernandez, C.A.; Liu, J.; McGrail, B.P.

    2015-01-01

    A flexible metal-organic framework constructed from a flexible linker is shown to possess the capability of separating mixtures of polar compounds (propanol isomers) by exploiting the differences in the saturation capacities of the constituents. Transient breakthrough simulations show that these

  7. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness.

    Science.gov (United States)

    Xun, Erna; Zhang, Yanwen; Zhao, Jimin; Guo, Jixun

    2017-11-01

    Metals and metalloids in soil could be transferred into reproductive organs and floral rewards of hyperaccumulator plants and influence their reproductive success, yet little is known whether non-hyperaccumulator plants can translocate heavy metals from soil into their floral organs and rewards (i.e., nectar and pollen) and, if so, whether plant reproduction will be affected. In our studies, summer squash (Cucurbita pepo L. cv. Golden Apple) was exposed to heavy-metal treatments during bud stage to investigate the translocation of soil-supplemented zinc, copper, nickel and lead into its floral organs (pistil, anther and nectary) and rewards (nectar and pollen) as well as floral metal accumulation effects on its reproduction. The results showed that metals taken up by squash did translocate into its floral organs and rewards, although metal accumulation varied depending on different metal types and concentrations as well as floral organ/reward types. Mean foraging time of honey bees to each male and female flower of squash grown in metal-supplemented soils was shorter relative to that of plants grown in control soils, although the visitation rate of honeybees to both male and female flowers was not affected by metal treatments. Pollen viability, pollen removal and deposition as well as mean mass per seed produced by metal-treated squash that received pollen from plants grown in control soils decreased with elevated soil-supplemented metal concentrations. The fact that squash could translocate soil-supplemented heavy metals into floral organs and rewards indicated possible reproductive consequences caused either directly (i.e., decreasing pollen viability or seed mass) or indirectly (i.e., affecting pollinators' visitation behavior to flowers) to plant fitness. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    Science.gov (United States)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  9. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    Science.gov (United States)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  10. Heavy metals in benthic organisms from Todos os Santos Bay, Brazil

    Directory of Open Access Journals (Sweden)

    GM. Amado-Filho

    Full Text Available The marine ecosystems of Todos os Santos Bay (TSB, The State of Bahia, Brazil have been impacted by the presence on its coast of a large metropolitan area as well as of chemical and petrochemical activities. Despite its ecological importance, there is a lack of scientific information concerning metal contamination in TSB marine biota. Thus, we analyzed concentrations of metals in four species of marine benthic organisms (two seaweeds, Padina gymnospora and Sargassum sp. one seagrass, Halodule wrightii and one oyster, Crassostrea rhizophorae in three sites from the TSB region that have been most affected by industrial activities. The concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined by Atomic Absorption Spectrophometry. The obtained data indicates that cadmium and copper in seaweeds, oysters and seagrass, as well as Ni concentrations in oysters, were in range of contaminated coastal areas. Cadmium and copper are available to organisms through suspended particles, dissolved fraction of water column and bottom sediment interstitial water. As oysters and other mollusks are used as food sources by the local population, the metal levels found in oysters in TSB may constitute a health risk for this population. Our results suggest implanting a heavy metals biomonitoring program in the TSB marine ecosystems.

  11. Organic modification of metal / semiconductor Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Pinzon, H.A.

    2006-07-10

    In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe-PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic-modified Ag / GaAs Schottky diodes. The device was tested by combining surface-sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current-voltage, capacitance-voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S-GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe-PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I-V measurements. This allows fitting of the I-V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I-V, C-V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe-PTCDI was assessed via C-V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C-V and impedance measurements in the range 1 kHz-1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the

  12. Metal-organic extended 2D structures: Fe-PTCDA on Au(111)

    International Nuclear Information System (INIS)

    Alvarez, Lucia; Caillard, Renaud; MartIn-Gago, Jose A; Mendez, Javier; Pelaez, Samuel; Serena, Pedro A

    2010-01-01

    In this work we combine organic molecules of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with iron atoms on an Au (111) substrate in ultra-high vacuum conditions at different temperatures. By means of scanning tunnelling microscopy (STM) we study the formation of stable 2D metal-organic structures. We show that at certain growth conditions (temperature, time and coverage) stable 'ladder-like' nanostructures are obtained. These are the result of connecting together two metal-organic chains through PTCDA molecules placed perpendicularly, as rungs of a ladder. These structures, stable up to 450 K, can be extended in a 2D layer covering the entire surface and presenting different rotation domains. STM images at both polarities show a contrast reversal between the two molecules at the unit cell. By means of density functional theory (DFT) calculations, we confirm the stability of these structures and that their molecular orbitals are placed separately at the different molecules.

  13. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors

    International Nuclear Information System (INIS)

    Martin Munoz, M.; Alvarez Gonzalez, F.

    1969-01-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs

  14. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    Science.gov (United States)

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  16. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  17. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar; Ilyas, Saad; Shekhah, Osama; Eddaoudi, Mohamed; Younis, Mohammad I.

    2017-01-01

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  18. Sensitive resonant gas sensor operating in air with metal organic frameworks coating

    KAUST Repository

    Jaber, Nizar

    2017-08-09

    We report a practical resonant gas sensor that is uniformly coated with metal organic frameworks (MOFs) and excited near the higher order modes for a higher attained sensitivity. The resonator is based on an electrostatically excited clamped-clamped microbeam. The microbeam is fabricated from a polyimide layer coated from the top with Cr/Au and from the bottom with Cr/Au/Cr layer. The geometry of the resonator is optimized to reduce the effect of the squeeze film damping, thereby allowing operation under atmospheric pressure. The electrostatic force electrode is designed to enhance the excitation of the second mode of vibration with the minimum power required. Significant frequency shift (kHz) is demonstrated for the first time upon water vapor, acetone, and ethanol exposure due to the MOFs functionalization and the higher order modes excitation. Also, the adsorption dynamics and MOF selectivity is investigated by studying the decaying time constants of the response upon gas exposure.

  19. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  20. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    Science.gov (United States)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  1. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  2. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  3. Microscopic model of the THz field enhancement in a metal nanoslit

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zalkovskij, Maksim; Malureanu, Radu

    2011-01-01

    We discuss the strong THz-field enhancement effect in a metal slit of dozens of nanometers sizes reported recently. Proposed simple microscopic model considers electric charges induced at the edges of the slit by a polarized incident wave. These charges contribute then to the field in the slit...

  4. A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY

    International Nuclear Information System (INIS)

    Placco, Vinicius M.; Rossi, Silvia; Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Christlieb, Norbert; Sivarani, Thirupathi; Reimers, Dieter; Wisotzki, Lutz

    2010-01-01

    We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 ≤ [Fe/H] ≤ -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B< 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 A. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.

  5. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  6. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds

    Energy Technology Data Exchange (ETDEWEB)

    Luo Chunling [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Shen Zhenguo [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lou Laiqing [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: cexdli@polyu.edu.hk

    2006-12-15

    The potential of 18 different plants to be used in the chemically enhanced phytoextraction of Cu, Pb, Zn and Cd was assessed using pot experiments. Chrysanthemum coronarium L. was the species most sensitive to the application of EDTA, and had the highest enhancement of Cu and Pb concentrations in its shoots. Compared with EDTA, EDDS was more effective in enhancing the concentration of Cu in the shoots of Chrysanthemum coronarium L. and Zea mays L. grown on multi-metal contaminated soils. The EDTA-treated soil still had a significant ability to enhance the concentrations of Cu and Pb in the shoots of Zea mays L. six months after the chelant treatment. However, the EDDS-treated soil did not have any effect in enhancing the concentrations of metals in the shoots of Zea mays L. in the second crop test. The results may indicate that EDDS biodegrades more rapidly than EDTA in soil and is better in limiting potential metal leaching. - Chrysanthemum coronarium L. was the most sensitive species to the application of chelants, and EDDS biodegrades much more rapidly than EDTA in soil.

  7. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds

    International Nuclear Information System (INIS)

    Luo Chunling; Shen Zhenguo; Lou Laiqing; Li Xiangdong

    2006-01-01

    The potential of 18 different plants to be used in the chemically enhanced phytoextraction of Cu, Pb, Zn and Cd was assessed using pot experiments. Chrysanthemum coronarium L. was the species most sensitive to the application of EDTA, and had the highest enhancement of Cu and Pb concentrations in its shoots. Compared with EDTA, EDDS was more effective in enhancing the concentration of Cu in the shoots of Chrysanthemum coronarium L. and Zea mays L. grown on multi-metal contaminated soils. The EDTA-treated soil still had a significant ability to enhance the concentrations of Cu and Pb in the shoots of Zea mays L. six months after the chelant treatment. However, the EDDS-treated soil did not have any effect in enhancing the concentrations of metals in the shoots of Zea mays L. in the second crop test. The results may indicate that EDDS biodegrades more rapidly than EDTA in soil and is better in limiting potential metal leaching. - Chrysanthemum coronarium L. was the most sensitive species to the application of chelants, and EDDS biodegrades much more rapidly than EDTA in soil

  8. Metal mobilization from metallurgical wastes by soil organic acids.

    Science.gov (United States)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.

    Science.gov (United States)

    Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng

    2010-05-03

    To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5

  10. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  11. Influence of EDDS on metal speciation in soil extracts: Measurement and mechanistic multicomponent modeling

    NARCIS (Netherlands)

    Koopmans, G.F.; Schenkeveld, W.D.C.; Song, J.; Luo, Y.; Japenga, J.; Temminghoff, E.J.M.

    2008-01-01

    The use of the [S,S]-isomer of EDDS to enhance phytoextraction has been proposed for the remediation of heavy metal contaminated soils. Speciation of metals in soil solution in the presence of EDDS and dissolved organic matter (DOM) received, however, almost no attention, whereas metal speciation

  12. Controlling Thermal Expansion: A Metal?Organic Frameworks Route

    OpenAIRE

    Balestra, Salvador R. G.; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A. Rabdel; Calero, Sofia

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal?organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model m...

  13. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.

    Science.gov (United States)

    Islamoglu, Timur; Goswami, Subhadip; Li, Zhanyong; Howarth, Ashlee J; Farha, Omar K; Hupp, Joseph T

    2017-04-18

    Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe

  14. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  15. Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage

    International Nuclear Information System (INIS)

    Lin, Rong; Yue, Wenbo; Niu, Fangzhou; Ma, Jie

    2016-01-01

    As potential anode materials for lithium-ion batteries, mesoporous metal oxides show high reversible capacities but relatively poor cycle stability due to the structural collapse during cycles. Graphene-encapsulated mesoporous metal oxides may increase the electronic conductivity of the composite as well as stabilize the mesostructure of metal oxides, thereby enhancing the electrochemical performance of mesoporous metal oxides. Herein we describe a novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides (SnO_2, Mn_3O_4), which exhibit superior electrochemical performance compared to pure mesoporous metal oxides. Moreover, some mesoporous metal oxides may be further reduced to low-valence metal oxides when calcined in presence of graphene. Mesoporous metal oxides with high isoelectric points are not essential for this synthesis method since metal oxides are connected with graphene through mesoporous silica template, thus expanding the types of graphene-encapsulated mesoporous metal oxides.

  16. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K.

    Science.gov (United States)

    Lee, Hiang Kwee; Lee, Yih Hong; Morabito, Joseph V; Liu, Yejing; Koh, Charlynn Sher Lin; Phang, In Yee; Pedireddy, Srikanth; Han, Xuemei; Chou, Lien-Yang; Tsung, Chia-Kuang; Ling, Xing Yi

    2017-08-23

    We demonstrate a molecular-level observation of driving CO 2 molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO 2 accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO 2 is observed at the interface. The high surface concentration leads CO 2 molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO 2 molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO 2 is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>10 5 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO 2 conversion and ambient solid-gas operation.

  17. Supramolecular Assembly of Calcium Metal - Organic Frameworks with Structural Transformation

    Czech Academy of Sciences Publication Activity Database

    Liang, P.-Ch.; Liu, H.-K.; Yeh, Ch.-T.; Lin, Ch.-H.; Zima, Vítězslav

    2011-01-01

    Roč. 11, č. 3 (2011), 699-708 ISSN 1528-7483 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : metal - organic frameworks * calcium * structure Subject RIV: CA - Inorganic Chemistry Impact factor: 4.720, year: 2011

  18. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor.

    Science.gov (United States)

    Campos, Antonio; Riera-Galindo, Sergi; Puigdollers, Joaquim; Mas-Torrent, Marta

    2018-05-09

    Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.

  19. Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    F Claret; C Tournassat; C Crouzet; E Gaucher; T Schäfer; G Braibant; D Guyonnet

    2011-12-31

    This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

  20. Comparison of Nanohole-Type and Nanopillar-Type Patterned Metallic Electrodes Incorporated in Organic Solar Cells

    Science.gov (United States)

    Wang, Wenyan; Cui, Yanxia; Fung, Kin Hung; Zhang, Ye; Ji, Ting; Hao, Yuying

    2017-09-01

    Both the nanohole- and nanopillar-type patterned metallic electrodes (PMEs) have been introduced in organic solar cells (OSCs) for improving device performances experimentally, but there is few work addressing the similarities and differences between them. In this theoretical work, we systematically compare the impact of the nanohole- and nanopillar-type PMEs on the performance of an OSC based on hybridized cavity resonances. By optimizing the geometrical parameters of each PME, we obtained an interesting result that the integrated absorption efficiencies in the active layer with different optimized PMEs are almost the same (both are equal to 82.4%), outperforming that of the planar control by 9.9%. Though the absorption enhancement spectra of the two different optimal devices are similar as well, the mechanisms of light trapping at the corresponding enhancement peaks are distinct from each other. In a comprehensive view, the nanopillar-type PME is suggested to be applied in the present system, since its optimal design has a moderate filling ratio, which is much easier to fabricate than its counterpart. This work could contribute to the development of high-efficiency OSCs.

  1. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    Science.gov (United States)

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  2. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    Science.gov (United States)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  3. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, JunShuai, E-mail: junshuaixue@hotmail.com; Zhang, JinCheng; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2016-01-04

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm{sup 2}/V s along with a sheet carrier density of 1.88 × 10{sup 13 }cm{sup −2} were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  4. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Univ. of New Mexico, Albuquerque, NM (United States); Xiang, Guolei [Univ. of Cambridge (United Kingdom); Shang, Jin [Univ. of Hong Kong (China); Guo, Jimin [Univ. of New Mexico, Albuquerque, NM (United States); Motevalli, Benyamin [Monash Univ., Clayton, VIC (Australia); Durfee, Paul [Univ. of New Mexico, Albuquerque, NM (United States); Agola, Jacob Ongudi [Univ. of New Mexico, Albuquerque, NM (United States); Coker, Eric N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-22

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.

  5. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    Science.gov (United States)

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  6. Enhanced pycnonuclear reactions in ultrahigh-pressure metals

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo; Kitamura, Hikaru

    1995-01-01

    By combining the concepts of pycnonuclear reactions at low temperatures and their enhancement due to strong internuclear Coulomb correlations, we predict the possibilities of a novel scheme for fusion in ultrahigh-pressure liquid-metallic hydrogen near the freezing conditions, for the reactions 2 H(p,γ) 3 He, 3 H(d,n) 4 He, and 7 Li(p,α) 4 He. Time evolution is followed for p-d reaction after a pulsed compression with 1 kJ input and the initial conditions of mass density ≅ 20 g/cm 3 , temperature ≅ 1400 K, pressure ≅ 490 Mbar, and radius ≅ 0.017 cm; an energy yield of 33 kJ in 0.03 fs is thus predicted. (author)

  7. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bioleaching of heavy metals from soil using fungal-organic acids : bench scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, S.J.; Ousmanova, D.; Somers, A.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Brown, C.E. [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Division]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre

    2006-07-01

    The ability of fungi to solubilize metals from solid materials may present new opportunities in environmental remediation. This paper presented details of a bench scale experiment that evaluated the leaching of heavy metals from contaminated soil using in situ fungal-generated organic acids. Rice was used as the growing media for organic acid production by A. foetidus. The cultivated fungus was placed on large pieces of potato-dextrose agar (PDA) plates and suspended in 5 L of sterilized water. The cooked rice was inoculated by pouring the 5 L spore suspension over the rice layer. Soil was obtained from a soil pile impacted with heavy metals at a private industrial site and augmented with Pb-contaminated soil. A polyethylene tub was used with a drain pipe leading to a leachate vessel. Crushed stone was spread over the bottom of the tub to assist leachate drainage. Approximately 45 kg of the contaminated soil was spread evenly over the stone layer to a depth of 10 cm. The concentrated spore suspension was sprinkled over the rice. Each week the leachate collection vessel was removed from the bioleaching system and the fine soil particles were allowed to settle. A control was run using the contaminated soil and solid substrate without fungus. Growth of A. foetidus was observed in both control experiment and test experiment after a period of 35 days. The pH of the leachate was measured as the fungal growth progressed. The process was assessed using ICP Mass Spectroscopy and electron spectroscopy, which showed that approximately 65 g of heavy metals were mobilized from 45 kg of soil, and that the biological leaching process resulted in greater mobilization of heavy metals relative to the control experiment. It was concluded that organic acids generated by A. foetidus were capable of leaching heavy metals from the soil. 30 refs., 4 tabs., 15 figs.

  9. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.

    Science.gov (United States)

    Wang, Jing; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2018-01-01

    Metal-free carbon materials have been presented to be potential alternatives to metal-based catalysts for heterogeneous catalytic ozonation, yet the catalytic performance still needs to be enhanced. Doping carbon with non-metallic heteroatoms (e.g., N, B, and F) could alter the electronic structure and electrochemical properties of original carbon materials, has been considered to be an effective method for improving the catalytic activity of carbon materials. Herein, fluorine-doped carbon nanotubes (F-CNTs) were synthesized via a facile method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The as-synthesized F-CNTs exhibited notably enhanced catalytic activity towards catalytic ozonation for the degradation of organic pollutants. The oxalic acid removal efficiency of optimized F-CNTs was approximately two times as much as that of pristine CNTs, and even exceeded those of four conventional metal-based catalysts (ZnO, Al 2 O 3 , Fe 2 O 3 , and MnO 2 ). The XPS and Raman studies confirmed that the covalent CF bonds were formed at the sp 3 C sites instead of sp 2 C sites on CNTs, not only resulting in high positive charge density of C atoms adjacent to F atoms, but remaining the delocalized π-system with intact carbon structure of F-CNTs, which then favored the conversion of ozone molecules (O 3 ) into reactive oxygen species (ROS) and contributed to the high oxalic acid removal efficiency. Furthermore, electron spin resonance (ESR) studies revealed that superoxide radicals (O 2 - ) and singlet oxygen ( 1 O 2 ) might be the dominant ROS that responsible for the degradation of oxalic acid in these catalytic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Applications of Total Scattering & Pair Distribution Function Analysis in Metal-Organic Framework Materials

    DEFF Research Database (Denmark)

    Xu, Hui; Birgisson, Steinar; Sommer, Sanna

    structure. At the same time, there is an ongoing debate on whether the SBU is present prior, or during MOF crystallization in MOF chemistry. However, little is known about MOFs formation mechanism. Currently techniques to study the in situ MOF formation process mainly focused on after......-crystallization process, for example in situ XRD and SAXS/WAXS study on MOF formation. However, the pre-crystallization process in the early stage of MOF formation is still unexplored. In this project, total scattering and PDF study will be carried out to explore the MOF formation process in early stage. This includes......Metal-Organic Frameworks (MOFs) is constructed by metal-oxide nodes and organic ligands. The formation of different structures of metal-oxide nodes (also called secondary building units, SBU) is crucial for MOF final structures, because the connectivity of SBU greatly influence the final MOF...

  11. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  12. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    Science.gov (United States)

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Heavy metal stabilization in contaminated road-derived sediments.

    Science.gov (United States)

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3−δ metal oxide

    International Nuclear Information System (INIS)

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-01-01

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O 2 · − is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment

  15. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Phase-coherent electron transport through metallic atomic-sized contacts and organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, F.

    2007-02-02

    This work is concerned with the theoretical description of systems at the nanoscale, in particular the electric current through atomic-sized metallic contacts and organic molecules. In the first part, the characteristic peak structure in conductance histograms of different metals is analyzed within a tight-binding model. In the second part, an ab-initio method for quantum transport is developed and applied to single-atom and single-molecule contacts. (orig.)

  17. Surface stress and large-scale self-organization at organic-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pollinger, Florian

    2009-01-22

    The role of elastic interactions, particularly for the self-organized formation of periodically faceted interfaces, was investigated in this thesis for archetype organic-metal interfaces. The cantilever bending technique was applied to study the change of surface stress upon formation of the interface between 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) and Ag(111). The main focus of this work was on the investigation of the formation of the long-range ordered, self-organized faceted PTCDA/Ag(10 8 7) interface. Reciprocal space maps of this interface were recorded both by spot profile analysis low energy electron diffraction (SPA-LEED) and low energy electron microscopy (LEEM) in selected area LEED mode. Complementary to the reciprocal data, also microscopic real-space LEEM data were used to characterize the morphology of this interface. Six different facet faces ((111), (532), (743), (954), (13 9 5), and (542)) were observed for the preparation path of molecular adsorption on the substrate kept at 550 K. Facet-sensitive dark-field LEEM localized these facets to grow in homogeneous areas of microscopic extensions. The temperature-dependence of the interface formation was studied in a range between 418 K and 612 K in order to learn more about the kinetics of the process. Additional steeper facets of 27 inclination with respect to the (111) surface were observed in the low temperature regime. Furthermore, using facet-sensitive dark-field LEEM, spatial and size distributions of specific facets were studied for the different temperatures. Moreover, the facet dimensions were statistically analyzed. The total island size of the facets follows an exponential distribution, indicating a random growth mode in absence of any mutual facet interactions. While the length distribution of the facets also follows an exponential distribution, the width distribution is peaked, reflecting the high degree of lateral order. This anisotropy is temperature-dependent and occurs

  18. Plasmon-enhanced absorption in a metal nanoparticles and photosynthetic molecules hybrid system

    Science.gov (United States)

    Fan, Zhiyuan; Govorov, Alexander

    2010-03-01

    Photosystem I from cyanobacteria is one of nature's most efficient light harvesting complexes, converting light energy into electronic energy with a quantum yield of 100% and an energy yield about 58%. It is very attractive to the nanotechnology community because of its nanoscale dimensions and excellent optoelectronic properties. This protein has the potential to be utilized in devices such as solar cells, electric switches, photo-detectors, etc. However, there is one limiting factor for potential applications of a single monolayer of these photosynthetic proteins. One monolayer absorbs less than 1% of sunlight's energy, despite their excellent optoelectronic properties. Recently, experiments [1] have been conducted to enhance light absorption with the assistance of metal nanoparticles as artificial antenna for the photosystem I. Here, we present a theoretical description of the strong plasmon-assisted interactions between the metal nanoparticles and the optical dipoles of the reaction centers observed in the experiments. The resonance and off-resonance plasmon effects enhance the electromagnetic fields around the photosystem-I molecules and, in this way, lead to enhanced absorption. [4pt] [1] I. Carmeli, I. Lieberman, L. Kraversky, Zhiyuan Fan, A. O. Govorov, G. Markovich, and S. Richter, submitted.

  19. FORMATION OF CARBON-ENHANCED METAL-POOR STARS IN THE PRESENCE OF FAR-ULTRAVIOLET RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, S.; Schleicher, D. R. G.; Latif, M. A. [Institut für Astrophysik Georg-August-Universität, Friedrich-Hund Platz 1, 37077 Göttingen (Germany); Grassi, T., E-mail: sbovino@astro.physik.uni-goettingen.de [Centre for Star and Planet Formation, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen (Denmark)

    2014-08-01

    Recent discoveries of carbon-enhanced metal-poor stars like SMSS J031300.36–670839.3 provide increasing observational insights into the formation conditions of the first second-generation stars in the universe, reflecting the chemical conditions after the first supernova explosion. Here, we present the first cosmological simulations with a detailed chemical network including primordial species as well as C, C{sup +}, O, O{sup +}, Si, Si{sup +}, and Si{sup 2+} following the formation of carbon-enhanced metal-poor stars. The presence of background UV flux delays the collapse from z = 21 to z = 15 and cool the gas down to the cosmic microwave background temperature for a metallicity of Z/Z {sub ☉} = 10{sup –3}. This can potentially lead to the formation of lower-mass stars. Overall, we find that the metals have a stronger effect on the collapse than the radiation, yielding a comparable thermal structure for large variations in the radiative background. We further find that radiative backgrounds are not able to delay the collapse for Z/Z {sub ☉} = 10{sup –2} or a carbon abundance as in SMSS J031300.36–670839.3.

  20. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework

    KAUST Repository

    Sun, Xiaohui

    2017-11-16

    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.

  1. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  2. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.

    Science.gov (United States)

    Li, Chuncheng; Xie, Fengchun; Ma, Yang; Cai, Tingting; Li, Haiying; Huang, Zhiyuan; Yuan, Gaoqing

    2010-06-15

    An ultrasonically enhanced two-stage acid leaching process on extracting and recovering multiple heavy metals from actual electroplating sludge was studied in lab tests. It provided an effective technique for separation of valuable metals (Cu, Ni and Zn) from less valuable metals (Fe and Cr) in electroplating sludge. The efficiency of the process had been measured with the leaching efficiencies and recovery rates of the metals. Enhanced by ultrasonic power, the first-stage acid leaching demonstrated leaching rates of 96.72%, 97.77%, 98.00%, 53.03%, and 0.44% for Cu, Ni, Zn, Cr, and Fe respectively, effectively separated half of Cr and almost all of Fe from mixed metals. The subsequent second-stage leaching achieved leaching rates of 75.03%, 81.05%, 81.39%, 1.02%, and 0% for Cu, Ni, Zn, Cr, and Fe that further separated Cu, Ni, and Zn from mixed metals. With the stabilized two-stage ultrasonically enhanced leaching, the resulting over all recovery rates of Cu, Ni, Zn, Cr and Fe from electroplating sludge could be achieved at 97.42%, 98.46%, 98.63%, 98.32% and 100% respectively, with Cr and Fe in solids and the rest of the metals in an aqueous solution discharged from the leaching system. The process performance parameters studied were pH, ultrasonic power, and contact time. The results were also confirmed in an industrial pilot-scale test, and same high metal recoveries were performed. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Highly stable ni-m f6-nh2o/onpyrazine2(solvent)x metal organic frameworks and methods of use

    KAUST Repository

    Eddaoudi, Mohamed

    2016-10-13

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands. Methods for capturing chemical species from fluid compositions comprise contacting a metal organic framework characterized by the formula [MaMbF6-n(O/H2O)w(Ligand)x(solvent)y]z with a fluid composition and capturing one or more chemical species from the fluid composition.

  4. The trace metals accumulation in marine organisms of the southeastern Adriatic coast, Montenegro

    Directory of Open Access Journals (Sweden)

    Joksimovic Danijela

    2012-01-01

    Full Text Available The concentration and accumulation of trace metals (Co, Ni, As, Cd, Pb and Hg were measured in sea water, sediments and marine organisms in the coastline of the Montenegro. The obtained results of trace metals in seagrass and mussels were compared with those found in the water column and sediment. Sampling was performed in the fall of 2005 at five locations in the Montenegrin coastline, Sveta Stasija, Herceg Novi, Zanjice, Budva and Bar, which present different levels and sources of human impact. The heavy metals analyses in seawater, sediment, P. oceanica and M. galloprovincialis identified the harbor of Bar as the most Hg-contaminated site, Zanjice as the most As contaminated and Sveta Stasija as the most Pb-contaminated areas of the Montenegrin coastal area. This study showed that P. oceanica may have a greater bioaccumulation capacity than M. galloprovincialis for the considered metals, except for As and Hg, and both organisms may reflect contamination in the water column and in the sediment. For the first time, seagrass P. oceanica and M. galloprovincialis were employed as metal bioindicators for the southeastern Adriatic. The results of this study could serve as a baseline in the future for the assessment of anthropogenic effects in this marine ecosystem.

  5. Organic derivatives of lanthanides containing metal in cycle

    International Nuclear Information System (INIS)

    Syutkina, O.P.; Rybakova, L.F.; Egorova, E.N.; Sigalov, A.B.; Beletskaya, I.P.

    1983-01-01

    The reaction of 2.2'-dilithium biphenyl with LnBr 3 (Ln=Pr, Sm, Gd, Ho, Yb here bromium atoms are comparatively easily replaced. Previously unknown organic derivatives of lanthanides containing metal in the cycle are obtained. It is established that a successful extraction of the compound requires reaction conditions, such as the use of ether as a solvent with the followinq addition of TGP, the order of addition of reagents. Compounds are extracted in the form of solvates containing TGP melecules. The complexes prepared are coloured, depending on the metal, beige (Pr, Sm) brown (Gd, Yb) and red-brown (Ho). They dissolve readily in TGP moderately in benzen toluene, CCl 4 . When stored their solubility in benzene and CCl 4 decreases considerably, and after 3-2 days, they are practically insoluhle. The compounds prepared are characterized by the elementary analysis, IR and PMR spectra

  6. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  7. Enhancement of deuteron-fusion reactions in metals and experimental implications

    International Nuclear Information System (INIS)

    Huke, A.; Heide, P.; Czerski, K.; Ruprecht, G.; Targosz, N.; Zebrowski, W.

    2008-01-01

    Recent measurements of the reaction 2 H(d,p) 3 H in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for diverse host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls that make them and the data analysis particularly error prone. There are multiparameter collateral effects that are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations owing to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. To address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-Hueckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays can be clearly excluded

  8. Possibility of a ferromagnetic and conducting metal-organic network

    Science.gov (United States)

    Mabrouk, Manel; Hayn, Roland; Denawi, Hassan; Ben Chaabane, Rafik

    2018-05-01

    In this paper, we present first principles calculations based on the spin-polarized generalized gradient approximation with on-site Coulomb repulsion term (SGGA + U), to explore the electronic and magnetic properties of the novel planar metal-organic networks TM-Pc and TM-TCNB (where TM means a transition metal of the 3d series: Ti, V, Cr, …, or Zn, Pc - Phthalocyanine, and TCNB - Tetracyanobenzene) as free-standing sheets. This work is an extension of two earlier research works dealing with the Mn (Mabrouk et al., 2015) and Fe (Mabrouk et al., 2017) cases. Our theoretical investigations demonstrate that TM-Pc are more stable than TM-TCNB. Our results unveil that all the TM-Pc frameworks have an insulating behavior with the exception of Mn-Pc which is half-metallic and favor antiferromagnetic order in the case of our magnetic systems except for V-Pc which is ferromagnetic. In contrast, the TM-TCNB networks are metallic at least in one spin direction and exhibit long-range ferromagnetic coupling in case for magnetic structures, which represent ideal candidates and an interesting prospect of unprecedented applications in spintronics. In addition, these results may shed light to achieve a new pathway on further experimental research in molecular spintronics.

  9. Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metal films

    Science.gov (United States)

    Breit, M.; Podolskiy, V. A.; Grésillon, S.; von Plessen, G.; Feldmann, J.; Rivoal, J. C.; Gadenne, P.; Sarychev, Andrey K.; Shalaev, Vladimir M.

    2001-09-01

    Strongly enhanced second-harmonic generation (SHG), which is characterized by a nearly isotropic intensity distribution, is observed for gold-glass films near the percolation threshold. The diffuselike SHG scattering, which can be thought of as nonlinear critical opalescence, is in sharp contrast with highly collimated linear reflection and transmission from these nanostructured semicontinuous metal films. Our observations, which can be explained by giant fluctuations of local nonlinear sources for SHG due to plasmon localization, verify recent predictions of percolation-enhanced nonlinear scattering.

  10. Symbiosis of zeolite-like metal-organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release

    KAUST Repository

    Ananthoji, Ramakanth

    2011-01-01

    The design and synthesis of new finely tunable porous materials has spurred interest in developing novel uses in a variety of systems. Zeolites, inorganic materials with high thermal and mechanical stability, in particular, have been widely examined for use in applications such as catalysis, ion exchange and separation. A relatively new class of inorganic-organic hybrid materials known as metal-organic frameworks (MOFs) have recently surfaced, and many have exhibited their efficiency in potential applications such as ion exchange and drug delivery. A more recent development is the design and synthesis of a subclass of MOFs based on zeolite topologies (i.e. ZMOFs), which often exhibit traits of both zeolites and MOFs. Bio-compatible hydrogels already play an important role in drug delivery systems, but are often limited by stability issues. Thus, the addition of ZMOFs to hydrogel formulations is expected to enhance the hydrogel mechanical properties, and the ZMOF-hydrogel composites should present improved, symbiotic drug storage and release for delivery applications. Herein we present the novel composites of a hydrogel with a zeolite-like metal-organic framework, rho-ZMOF, using 2-hydroxyethyl methacrylate (HEMA), 2,3-dihydroxypropyl methacrylate (DHPMA), N-vinyl-2-pyrolidinone (VP) and ethylene glycol dimethacrylate (EGDMA), and the corresponding drug release. An ultraviolet (UV) polymerization method is employed to synthesize the hydrogels, VP 0, VP 15, VP 30, VP 45 and the ZMOF-VP 30 composite, by varying the VP content (mol%). The rho-ZMOF, VP 30, and ZMOF-VP 30 composite are all tested for the controlled release of procainamide (protonated, PH), an anti-arrhythmic drug, in phosphate buffer solution (PBS) using UV spectroscopy. © 2011 The Royal Society of Chemistry.

  11. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef; Shekhah, Osama

    2016-01-01

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from

  12. Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO 2/CH 4 selectivity

    KAUST Repository

    Zhang, ZhenJie

    2012-08-21

    Keeping MOM: Reaction of biphenyl-3,4\\',5-tricarboxylate and Cd(NO 3) 2 in the presence of meso-tetra(N-methyl-4-pyridyl) porphine tetratosylate afforded porph@MOM-11, a microporous metal-organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M +Cl -) in a stoichiometric fashion. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO 2/CH 4 selectivity

    KAUST Repository

    Zhang, ZhenJie; Gao, Wenyang; Wojtas, Łukasz; Ma, Shengqian; Eddaoudi, Mohamed; Zaworotko, Michael J.

    2012-01-01

    Keeping MOM: Reaction of biphenyl-3,4',5-tricarboxylate and Cd(NO 3) 2 in the presence of meso-tetra(N-methyl-4-pyridyl) porphine tetratosylate afforded porph@MOM-11, a microporous metal-organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M +Cl -) in a stoichiometric fashion. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Experimental investigation of solidification in metal foam enhanced phase change material

    Science.gov (United States)

    Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.

    2017-10-01

    A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.

  15. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Dummi Mahadevan, Gurumurthy [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Zhao, Feng, E-mail: fzhao@iue.ac.cn [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China)

    2016-12-15

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media.

  16. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar

    International Nuclear Information System (INIS)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang; Dummi Mahadevan, Gurumurthy; Zhao, Feng

    2016-01-01

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media.

  17. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar.

    Science.gov (United States)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang; Dummi Mahadevan, Gurumurthy; Zhao, Feng

    2016-12-15

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  19. Simultaneous enhancement of sludge dewaterability and removal of sludge-borne heavy metals through a novel oxidative leaching induced by nano-CaO2.

    Science.gov (United States)

    Wu, Boran; Dai, Xiaohu; Chai, Xiaoli

    2017-07-01

    The production of sewage sludge with the presence of various contaminants has been a serious issue for the operation of wastewater treatment plants on both the economical and environmental sides. To minimize the sludge volume to be handled and limit the potential environmental risk, this study developed a novel oxidative leaching process for enhanced sewage sludge dewatering and simultaneous removal of heavy metals based on nano-CaO 2 . Response surface methodology determined the following optimal conditioning parameters in terms of capillary suction time reduction: 0.0906 g/g dry solid (DS) nano-CaO 2 , 0.9969 mmol/g DS Fe 2+ , and pH of 5.59. The speciation partitioning analysis of the heavy metals pre and post nano-CaO 2 peroxidation indicated that the content of organically bound metals decreased and the percentage of soluble fraction increased substantially, which was beneficial for the removal of heavy metals through the dewatering unit. Nano-CaO 2 peroxidation could also induce the transformation of extracellular polymeric substances (EPS) from the tightly bound layers to the loosely bound layers of sewage sludge flocs. Through the decline of the Ryan-Weber constant of fluorescence titration and the pseudo-first-order kinetic constant of complexation, it was verified that the binding capacity of EPS with metal ions could be damaged by nano-CaO 2 peroxidation, which was the primary mechanism behind the substantial reduction of organically bound metals. This study is believed to provide novel insights into the application of nanotechnology in terms of the simultaneous volume and toxicity reduction of sewage sludge. Graphical abstract.

  20. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  1. Comparison of Au and Ag nanoshells' metal-enhanced fluorescence

    International Nuclear Information System (INIS)

    Liaw, Jiunn-Woei; Chen, Huang-Chih; Kuo, Mao-Kuen

    2014-01-01

    The average enhancement factors of Au and Ag nanoshells (NSs) were analyzed theoretically to compare their overall performances on metal-enhanced fluorescence. We used the Mie theory and dyadic Green's functions to calculate the excitation rate and apparent quantum yield of NS interacting with a plane wave and a dipole, respectively, and then to obtain the enhancement factor. Moreover, the average enhancement factor (AEF) of NS on the fluorescence of a nearby molecule was obtained by averaging all possible orientations and locations of the molecule with a constant distance from NS. Our results show that the maximum AEF of Au NS occurs at the wavelength of the dipole mode, which is broadband. In contrast, the maximum AEF of Ag NS is at the narrowband quadrupole mode. In addition, the Stokes shift effect on AEF was studied for Au and Ag NSs. - Highlights: • The average enhancement factors of Au and Ag nanoshells were analyzed theoretically. • The maximum AEF of Au NS occurs at the wavelength of the dipole mode. • The maximum AEF of Ag NS is at the narrowband quadrupole mode. • The Stokes shift effect on AEF is discussed for Au and Ag NSs

  2. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    Science.gov (United States)

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  3. Distribution of heavy metals in muscles and internal organs of Korean cephalopods and crustaceans: risk assessment for human health.

    Science.gov (United States)

    Mok, Jong Soo; Kwon, Ji Young; Son, Kwang Tae; Choi, Woo Seok; Shim, Kil Bo; Lee, Tae Seek; Kim, Ji Hoe

    2014-12-01

    Samples of seven species of cephalopods and crustaceans were collected from major fish markets on the Korean coast and analyzed for mercury (Hg) using a direct Hg analyzer and for the metals cadmium (Cd), lead (Pb), chromium, silver, nickel, copper, and zinc using inductively coupled plasma mass spectrometry. The distributions of heavy metals in muscles, internal organs, and whole tissues were determined, and a risk assessment was conducted to provide information concerning consumer safety. The heavy metals accumulated to higher levels (P octopus (relatively large cephalopods), red snow crab, and snow crab exceeded the European Union limits. The estimated dietary intake of Cd, Pb, and Hg for each part of all species accounted for 1.73 to 130.57%, 0.03 to 0.39%, and 0.93 to 1.67%, respectively, of the provisional tolerable daily intake adopted by the Joint Food and Agriculture Organization and World Health Organization Expert Committee on Food Additives; the highest values were found in internal organs. The hazard index (HI) is recognized as a reasonable parameter for assessing the risk of heavy metal consumption associated with contaminated food. Because of the high HI (>1.0) of the internal organs of cephalopods and the maximum HI for whole tissue of 0.424, consumers eating internal organs or whole tissues of cephalopods could be at risk of high heavy metal exposure. Therefore, the internal organs of relatively large cephalopods and crabs (except blue crab) are unfit for consumption. However, consumption of flesh after removing internal organs is a suitable approach for decreasing exposure to harmful metals.

  4. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium.

    Science.gov (United States)

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-02-23

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O8(2-) system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01-100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore.

  5. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    Science.gov (United States)

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.

  7. Interface properties of Fe/MgO/Cu-phthalocyanine metal-insulator-organic semiconductor structures

    International Nuclear Information System (INIS)

    Lee, Nyunjong; Bae, Yujeong; Kim, Taehee; Ito, Eisuke; Hara, Masahiko

    2014-01-01

    Hybrid interface structures consisting of organic copper-phthalocyanine (CuPc) and ferromagnetic metal Fe(001) with and without a MgO(001) cover were investigated by using surface sensitive techniques of X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. A systematic study of the energy level alignment at the interfaces was carried out. For the hybrid interfaces considered here, our results indicate that the insertion of an artificially-grown ultra-thin oxide layer MgO(001) can prevent Femi level pinning and induce a rather large interface dipole, thereby resulting in remarkable CuPc Fermi level shifts when the thickness of the CuPc film is less than 3 nm. This study provides a better understanding of spin filtering in MgO-based organic spin devices and a new way to alter the interface electronic structure of metal/organic semiconductor hybrid systems.

  8. Effects of heavy metals (other than mercury) on marine and estuarine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, G W

    1971-01-01

    Heavy metals such as copper, zinc and lead are normal constituents of marine and estuarine environments. When additional quantities are introduced from industrial wastes or sewage they enter the biogeochemical cycle and, as a result of being potentially toxic, may interfere with the ecology of a particular environment. In different marine organisms, the behavior of heavy metals is described in terms of their absorption, storage, excretion and regulation when different concentrations are available in the environment. At higher concentrations, the detrimental effects of heavy metals become apparent and their different toxic effects and factors affecting them are also described. 78 references, 9 figures, 4 tables.

  9. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1.

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Junhong; Zhou, Yuanming; Gong, Tingyun; Wang, Jing; Ge, Yinlin

    2013-09-15

    Soil contamination is a global environmental problem and many efforts have been made to find efficient remediation methods over the last decade. Moreover, remediation of mixed contaminated soils are more difficult. In the present study, transgenic alfalfa plants pKHCG co-expressing glutathione S-transferase (GST) and human P450 2E1 (CYP2E1) genes were used for phytoremediation of mixed mercury (Hg)-trichloroethylene (TCE) contaminants. Simultaneous expression of GST and CYP2E1 may produce a significant synergistic effect, and leads to improved resistance and accumulation to heavy metal-organic complex contaminants. Based on the tolerance and accumulation assays, pKHCG transgenic plants were more resistant to Hg/TCE complex pollutants and many folds higher in Hg/TCE-accumulation than the non-transgenic control plants in mixed contaminated soil. It is confirmed that GST and CYP2E1 co-expression may be a useful strategy to help achieve mixed heavy metal-organic pollutants phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    International Nuclear Information System (INIS)

    Li, Song; Feng, Guang; Cummings Peter, T; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Dai, Sheng

    2014-01-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance–electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation. (paper)

  11. Metal-Organic Frameworks: Building Block Design Strategies for the Synthesis of MOFs.

    KAUST Repository

    Luebke, Ryan

    2014-01-01

    A significant and ongoing challenge in materials chemistry and furthermore solid state chemistry is to design materials with the desired properties and characteristics. The field of Metal-Organic Frameworks (MOFs) offers several strategies

  12. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO{sub 3−δ} metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Leiw, Ming Yian, E-mail: LEIW0003@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Guai, Guan Hong [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Wang, Xiaoping [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Chee Mang [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Tan, Ooi Kiang [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-09-15

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O{sub 2}·{sup −} is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment.

  13. Naturally-assisted metal phytoextraction by Brassica carinata: Role ofroot exudates

    Energy Technology Data Exchange (ETDEWEB)

    Quartacci, Mike F., E-mail: mfquart@agr.unipi.i [Dipartimento di Chimica e Biotecnologie Agrarie, Universita di Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Irtelli, Barbara [Dipartimento di Chimica e Biotecnologie Agrarie, Universita di Pisa, Via del Borghetto 80, 56124 Pisa (Italy); Gonnelli, Cristina; Gabbrielli, Roberto [Dipartimento di Biologia Vegetale, Sezione di Ecologia e Fisiologia Vegetale, Universita di Firenze, Via Micheli 1, 50121 Firenze (Italy); Navari-Izzo, Flavia [Dipartimento di Chimica e Biotecnologie Agrarie, Universita di Pisa, Via del Borghetto 80, 56124 Pisa (Italy)

    2009-10-15

    Due to relatively high chelant dosages and potential environmental risks it is necessary to explore different approaches in the remediation of metal-contaminated soils. The present study focussed on the removal of metals (As, Cd, Cu, Pb and Zn) from a multiple metal-contaminated soil by growing Brassica carinata plants in succession to spontaneous metallicolous populations of Pinus pinaster, Plantago lanceolata and Silene paradoxa. The results showed that the growth of the metallicolous populations increased the extractable metal levels in the soil, which resulted in a higher accumulation of metals in the above-ground parts of B. carinata. Root exudates of the three metallicolous species were analysed to elucidate their possible role in the enhanced metal availability. The presence of metals stimulated the exudation of organic and phenolic acids as well as flavonoids. It was suggested that root exudates played an important role in solubilising metals in soil and in favouring their uptake by roots. - Phytoextraction of metals is enhanced in Brassica carinata grown in succession to metallicolous populations of spontaneous species.

  14. Naturally-assisted metal phytoextraction by Brassica carinata: Role ofroot exudates

    International Nuclear Information System (INIS)

    Quartacci, Mike F.; Irtelli, Barbara; Gonnelli, Cristina; Gabbrielli, Roberto; Navari-Izzo, Flavia

    2009-01-01

    Due to relatively high chelant dosages and potential environmental risks it is necessary to explore different approaches in the remediation of metal-contaminated soils. The present study focussed on the removal of metals (As, Cd, Cu, Pb and Zn) from a multiple metal-contaminated soil by growing Brassica carinata plants in succession to spontaneous metallicolous populations of Pinus pinaster, Plantago lanceolata and Silene paradoxa. The results showed that the growth of the metallicolous populations increased the extractable metal levels in the soil, which resulted in a higher accumulation of metals in the above-ground parts of B. carinata. Root exudates of the three metallicolous species were analysed to elucidate their possible role in the enhanced metal availability. The presence of metals stimulated the exudation of organic and phenolic acids as well as flavonoids. It was suggested that root exudates played an important role in solubilising metals in soil and in favouring their uptake by roots. - Phytoextraction of metals is enhanced in Brassica carinata grown in succession to metallicolous populations of spontaneous species.

  15. Generation of nanospikes via laser ablation of metals in liquid environment and their activity in surface-enhanced Raman scattering of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Truong, S. Lau; Levi, G.; Bozon-Verduraz, F. [ITODYS, UMR-CNRS 7086, Universite Paris 7-Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France); Petrovskaya, A.V.; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov street, 119991 Moscow (Russian Federation)], E-mail: shafeev@kapella.gpi.ru

    2007-12-15

    The formation of dense arrays of nanospikes occurs under laser ablation of bulk targets (Ag, Au, Ta, Ti) immersed in liquids such as water or ethanol. The average height of spikes is 50 nm and their density on the target amounts to 10{sup 10} cm{sup -2}. The effect is observed with sufficiently short laser pulses. In particular, either a 350 ps or a 90 ps Nd:YAG lasers are used in their fundamental harmonics. The nanospikes are characterized by UV-Visible reflection spectrometry and atomic force microscopy. The oscillations of electrons within nanospikes result in a permanent coloration of the surface and a modification of the optical reflection spectra of the metal. Scanning the laser beam along the metal surface allows its nanostructuring over extended areas ({approx}1 cm{sup 2}). The nanostructured Ag surface shows enhanced Raman scattering of acridine molecules at a concentration of 10{sup -5} M/l, whereas the initial Ag targets do not show any signal within the accuracy of measurements.

  16. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6leaching behavior of heavy metals. The geochemical speciation modeling revealed that heavy metal speciation in the solid phase were similar between the reference soil and the amended soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  18. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    Science.gov (United States)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  19. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  20. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    International Nuclear Information System (INIS)

    Muhlbachova, G.; Sagova-Mareckova, M.; Omelka, M.; Szakova, J.; Tlustos, P.

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  1. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Science.gov (United States)

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation

    Directory of Open Access Journals (Sweden)

    Hikaru Iwami

    2017-01-01

    Full Text Available Lanthanoid metal-organic frameworks (Ln-MOFs can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III and Tb(III ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB as a ligand, two new Ln-MOFs, [Dy(TATB(DMF2] (1 and [Tb(TATB(DMF2] (2, were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets.

  4. Block Copolymer-Templated Approach to Nanopatterned Metal-Organic Framework Films.

    Science.gov (United States)

    Zhou, Meimei; Wu, Yi-Nan; Wu, Baozhen; Yin, Xianpeng; Gao, Ning; Li, Fengting; Li, Guangtao

    2017-08-17

    The fabrication of patterned metal-organic framework (MOF) films with precisely controlled nanoscale resolution has been a fundamental challenge in nanoscience and nanotechnology. In this study, nanopatterned MOF films were fabricated using a layer-by-layer (LBL) growth method on functional templates (such as a bicontinuous nanoporous membrane or a structure with highly long-range-ordered nanoscopic channels parallel to the underlying substrate) generated by the microphase separation of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymers. HKUST-1 can be directly deposited on the templates without any chemical modification because the pyridine groups in P2VP interact with metal ions via metal-BCP complexes. As a result, nanopatterned HKUST-1 films with feature sizes below 50 nm and controllable thicknesses can be fabricated by controlling the number of LBL growth cycles. The proposed fabrication method further extends the applications of MOFs in various fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China

    International Nuclear Information System (INIS)

    Ip, C.C.M.; Li, X.D.; Zhang, G.; Wong, C.S.C.; Zhang, W.L.

    2005-01-01

    The accumulation of trace metals in aquatic organisms may lead to serious health problems through the food chain. The present research project aims to study the accumulation and potential sources of trace metals in aquatic organisms of the Pearl River Estuary (PRE). Four groups of aquatic organisms, including fish, crab, shrimp, and shellfish, were collected in the PRE for trace metal and Pb isotopic analyses. The trace metal concentrations in the aquatic organism samples ranged from 0.01 to 2.10 mg/kg Cd, 0.02 to 4.33 mg/kg Co, 0.08 to 4.27 mg/kg Cr, 0.15 to 77.8 mg/kg Cu, 0.17 to 31.0 mg/kg Ni, 0.04 to 30.7 mg/kg Pb, and 8.78 to 86.3 mg/kg Zn (wet weight). High concentrations of Cd were found in crab, shrimp and shellfish samples, while high concentration of Pb was found in fish. In comparison with the baseline reference values in other parts of the world, fish in the PRE had the highest elevated trace metals. The results of Pb isotopic compositions indicated that the bioaccumulation of Pb in fish come from a wide variety of food sources and/or exposure pathways, particularly the anthropogenic inputs. - Relative high concentrations of Cd were found in crab, shrimp and shellfish samples while high concentration of Pb was found in fish, particularly from the anthropogenic inputs

  6. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.

    Science.gov (United States)

    Moody, Amber S; Sharma, Bhavya

    2018-04-05

    The development of a sensor for the rapid and sensitive detection of neurotransmitters could provide a pathway for the diagnosis of neurological diseases, leading to the discovery of more effective treatment methods. We investigate the use of surface enhanced Raman spectroscopy (SERS) based sensors for the rapid detection of melatonin, serotonin, glutamate, dopamine, GABA, norepinephrine, and epinephrine. Previous studies have demonstrated SERS detection of neurotransmitters; however, there has been no comprehensive study on the effect of the metal used as the SERS substrate or the excitation wavelength used for detection. Here, we present the detection of 7 neurotransmitters using both silver and gold nanoparticles at excitation wavelengths of 532, 633, and 785 nm. Over the range of wavelengths investigated, the SERS enhancement on the silver and gold nanoparticles varies, with an average enhancement factor of 10 5 -10 6 . The maximum SERS enhancement occurs at an excitation wavelength of 785 nm for the gold nanoparticles and at 633 nm for the silver nanoparticles.

  7. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  8. Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures

    Directory of Open Access Journals (Sweden)

    Qingyang Yue

    2012-01-01

    Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.

  9. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.

    Science.gov (United States)

    Wu, Hui; Chua, Yong Shen; Krungleviciute, Vaiva; Tyagi, Madhusudan; Chen, Ping; Yildirim, Taner; Zhou, Wei

    2013-07-17

    UiO-66 is a highly important prototypical zirconium metal-organic framework (MOF) compound because of its excellent stabilities not typically found in common porous MOFs. In its perfect crystal structure, each Zr metal center is fully coordinated by 12 organic linkers to form a highly connected framework. Using high-resolution neutron power diffraction technique, we found the first direct structural evidence showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs. The concentration of the missing-linker defects is surprisingly high, ∼10% in our sample, effectively reducing the framework connection from 12 to ∼11. We show that by varying the concentration of the acetic acid modulator and the synthesis time, the linker vacancies can be tuned systematically, leading to dramatically enhanced porosity. We obtained samples with pore volumes ranging from 0.44 to 1.0 cm(3)/g and Brunauer-Emmett-Teller surface areas ranging from 1000 to 1600 m(2)/g, the largest values of which are ∼150% and ∼60% higher than the theoretical values of defect-free UiO-66 crystal, respectively. The linker vacancies also have profound effects on the gas adsorption behaviors of UiO-66, in particular CO2. Finally, comparing the gas adsorption of hydroxylated and dehydroxylated UiO-66, we found that the former performs systematically better than the latter (particularly for CO2) suggesting the beneficial effect of the -OH groups. This finding is of great importance because hydroxylated UiO-66 is the practically more relevant, non-air-sensitive form of this MOF. The preferred gas adsorption on the metal center was confirmed by neutron diffraction measurements, and the gas binding strength enhancement by the -OH group was further supported by our first-principles calculations.

  10. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    Science.gov (United States)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  11. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2 , respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  12. Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment

    KAUST Repository

    Jang, Ji-Wook

    2017-08-25

    Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). Here, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Time-resolved microwave and terahertz conductivity measurements reveal more than twofold enhancement of the carrier lifetime for the hydrogen-treated BiVO4, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO4, although hydrogen is also a donor type dopant in BiVO4. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation or reduction of deep trap states related to vanadium antisite on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxides, which benefit the development of low-cost, highly-efficient solar energy conversion devices.

  13. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli.

    Science.gov (United States)

    Sharma, Preeti; Melkania, Uma

    2018-05-01

    In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH 2 /gCarbo initial with 10 mg/L copper supplementation as compared to 24.2 mLH 2 /gCarbo initial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu 2+  metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Comparative studies of metals in fish organs, sediments and water from Nigerian fresh water fish ponds

    International Nuclear Information System (INIS)

    Ipinmoroti, K.O.; Oshodi, A.A.; Owolabi, R.A.

    1997-01-01

    Fish samples (Illisha africana) were collected from six man-made fish pond in Edo and Ondo states, Nigeria. Some organs of the fish sediment and water from the fish habitat were analysed for Cd, Pb, Hg, Ca, Fe, Zn, Cu and Cr, Physico-chemical properties of water samples from the ponds were also re-corded. The concentration of the metals varied in the sediment water as well as in different organs of the fish. However, chromium was absent in all the samples. The descending order of metal concentration in fish organs was: gills intestine, head and muscle. To avoid harmful accumulation of these metals in the human system, the gills and the intestine should preferably be discarded while processing fish for consumption. The head with a relatively high concentration of calcium might be useful in feed formulation. (author)

  15. Organic pollutants and heavy metals in rainwater runoff and their fate in the unsaturated soil zone. Final report

    International Nuclear Information System (INIS)

    Grotehusmann, D.; Rohlfing, R.; Weyer, G.; Dittrich, D.; Gowik, P.; Pernak, P.

    1991-01-01

    This bibliographic study is part of the BMFT intergrated project ''Possibilitiis and limits of [ drainage in consederation of the soil and groundwater protection''. Subjects: Environmental relevance and general distribution of organic pollutants; organic pollutants in rain water, soil, and groundwater; fate of organic pollutants in soil; environmental relevance of heavy metals in soil, rain water, and runof; fate of heavy metals in the unsaturated soil rare. (orig./BBR) [de

  16. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  17. A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition

    Science.gov (United States)

    Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo

    2014-03-01

    A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.

  18. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-01-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good

  19. Metal organic framework absorbent platforms for removal of co2 and h2s from natural gas

    KAUST Repository

    Belmabkhout, Youssef; Eddaoudi, Mohamed; Adil, Karim; Cadiau, Amandine; Bhatt, Prashant M.

    2016-01-01

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands which have high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Methods include capturing one or more of H2S, H2O, and CO2 from fluid compositions, such as natural gas.

  20. Metal organic framework absorbent platforms for removal of co2 and h2s from natural gas

    KAUST Repository

    Belmabkhout, Youssef

    2016-10-13

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands which have high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Methods include capturing one or more of H2S, H2O, and CO2 from fluid compositions, such as natural gas.

  1. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  2. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    Science.gov (United States)

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  3. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  4. Enhancement of isotope exchange reactions over ceramic breeder material by deposition of catalyst metal

    International Nuclear Information System (INIS)

    Narisato, Y.; Munakata, K.; Koga, A.; Yokoyama, Y.; Takata, T.; Okabe, H.

    2004-01-01

    The deposition of catalyst metals in ceramic breeders could enhance the release rate of tritium due to the promotion of isotope exchange reactions taking place at the interface of the breeder surface and the sweep gas. In this work, the authors examined the effects of catalytic active metal deposited on lithium titanate on the isotope exchange reactions. With respect to the virgin lithium titanate, it was found that the rate of the isotope exchange reactions taking place on the surface is quite low. However, the deposition of palladium greatly increased the exchange reaction rate. The effect of the amounts of deposited palladium on the isotope exchange reaction rate was also investigated. The results indicate that the exchange reactions are still enhanced even if the amounts of deposited palladium are as low as 0.04%

  5. From metal-organic squares to porous zeolite-like supramolecular assemblies

    KAUST Repository

    Wang, Shuang

    2010-12-29

    We report the synthesis, structure, and characterization of two novel porous zeolite-like supramolecular assemblies, ZSA-1 and ZSA-2, having zeolite gis and rho topologies, respectively. The two compounds were assembled from functional metal-organic squares (MOSs) via directional hydrogen-bonding interactions and exhibited permanent microporosity and thermal stability up to 300 °C. © 2010 American Chemical Society.

  6. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Science.gov (United States)

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  7. Heavy metal pollution in sediment from Sisimiut, Greenland. Adsorption to organic matter and fine particles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Villumsen, Arne

    2006-01-01

    . The pollution could be linked to human activities in Sisimiut, a link that have not been investigated previously in Greenland. Except from the most polluted samples there was good correlation between heavy metal concentration and organic matter. Also some relation between fine fraction and heavy metal...

  8. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb TM to remove heavy metals and organics from ground water and surface water streams

  9. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  10. Biochemically enhanced oil recovery and oil treatment

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  11. Metal-Organic Frameworks Triggered High-Efficiency Li storage in Fe-Based Polyhedral Nanorods for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Shen, Lisha; Song, Huawei; Wang, Chengxin

    2017-01-01

    Recently, metal organic framework (MOF) nanostructures have been frequently reported in the field of energy storage, specifically for Li-ion or Na-ion storage. By inter-separating the active sites of metal cluster and organic ligands, MOF nanostructures are exceptionally promising for realizing fast ion exchange and high-efficiency transportation and addressing the intricate issues that the energy-intensive Li-ion batteries have faced over many years. The related ion-storage mechanism remains to be explored. Is the traditional redox reaction mechanism operative for these nanostructure, as it is for transitional metal oxide? Herein, taking [Fe_3O(BDC)_3(H_2O)_2(NO_3)]n (Fe-MIL-88B) as an example, an Fe-based metal organic polyhedral nanorods of MIL–88 B structure was designed as an anode for Li-ion storage. When tested at 60 mA g"−"1, the nanoporous Fe-MIL–88 B polyhedral nanorods retained a reversible capacity of 744.5 mAh g"−"1 for more than 400 cycles. Ex situ characterizations of the post-cycled electrodes revealed that both the transition metal ions and the organic ligands contributed to the high reversible specific capacity. The polyhedral nanorods electrodes held the metal-organic skeleton together throughout the battery operation, although in a somewhat different manner than the pristine ones. This further substantiated that some MOF nanostructures are more appropriate than others for stable lithiation/delithiation processes. State-of-the-art CR2032 full cells showed that a high capacity of 86.8 mAh g"−"1 that was retained after 100 cycles (herein, the capacity for the full cell was calculated based on both the weight of the anode and the cathode, and the charge-discharge rate was 0.25C), when commercial LiFePO_4 powders were used as the cathode.

  12. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and protons and metal cations. A concise definition of natural organic matter is given and their properties are outlined. These materials are macromolecules which exhibit a polyelectrolyte character owing to numerous dissociable functional groups which are attached to their carbon backbone or from integral parts of the structure. The polyelectrolyte character is thought to be responsible for their conformation, hydrogen bonding or bridging by metal cations between subunits being important mechanisms. Environmental parameters like pH and ionic strength thus will have profound effects on the conformation of natural organic matter, the properties of which can change from being a flexible polymer to being a rigid gel. Binding mechanisms and binding strengh are discussed and an overview of relevant techniques of investigation is given. This work is part of the Commission's Mirage project - Phase 2, research area Geochemistry of actinides and fission products in natural aquifer systems

  13. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  14. Enhanced photoconductivity by melt quenching method for amorphous organic photorefractive materials

    Science.gov (United States)

    Tsujimura, S.; Fujihara, T.; Sassa, T.; Kinashi, K.; Sakai, W.; Ishibashi, K.; Tsutsumi, N.

    2014-10-01

    For many optical semiconductor fields of study, the high photoconductivity of amorphous organic semiconductors has strongly been desired, because they make the manufacture of high-performance devices easy when controlling charge carrier transport and trapping is otherwise difficult. This study focuses on the correlation between photoconductivity and bulk state in amorphous organic photorefractive materials to probe the nature of the performance of photoconductivity and to enhance the response time and diffraction efficiency of photorefractivity. The general cooling processes of the quenching method achieved enhanced photoconductivity and a decreased filling rate for shallow traps. Therefore, sample processing, which was quenching in the present case, for photorefractive composites significantly relates to enhanced photorefractivity.

  15. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  16. Heavy metal bioaccumulation in the organisms at hydrothermal fields of the Mid-Atlantic Ridge and East-Pacific Rise

    International Nuclear Information System (INIS)

    Demina, L.L.; Galkin, S.V.

    2008-01-01

    The influence of geochemical environment as well as biological parameters on the heavy metal bioaccumulation in the hydrothermal fauna at certain fields of the Mid-Atlantic ridge (MAR) and East Pacific Rise (EPR) are studied. The highest concentration of Fe, Zn, Cu, Mn, Ni, Cr, Co, Pb, Cd, Ag, Se, Sb, As, and Hg were detected in the tubes of the most thermophilic organism Alvinella caudata inhabited sulfide chimneys at 9 0 50 ' N EPR, i.e. at place where the influence of hydrothermal fluids was the maximal. Elevated heavy metals levels were typical for organs associated with the endo symbiotic bacteria activity, such as gills of specialized mussels Bathymodiolus, clams Archivestica gigas (Calyptogena magnifica), trophosome of vestimentifera Riftia, maxillipeds of shrimps Rimicaris exoculata. Inter-site (Broken Spur vs. Rainbow) comparison of the partitioning of metals within soft tissues has revealed that metal concentrations in the fauna habitats is an important albeit not the single factor that controls the metal content in the interior organs of the taxa. The external parts of mussels, such as shells, demonstrate patterns of bioaccumulation reflecting the metal concentrations in the micro-habitats. In spite of the minimal metal content was found in the mussel shells, they serve as a great reservoirs for heavy metal deposition and storage at the hydrothermal regions. For some elements a trend of heavy metal transferring through the food chains was revealed. There were no clear dependence between age of mussels and metal content (except Hg) in the soft tissues

  17. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  18. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  19. Green methods for preparing highly co2 selective and h2s tolerant metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed; Shekhah, Osama; Belmabkhout, Youssef

    2015-01-01

    A green route for preparing a metal organic framework include mixing metal precursor with a ligand precursor to form a solvent-free mixture; adding droplets of water to the mixture; heating the mixture at a first temperature after adding the water

  20. Angular-dependent photodetection enhancement by a metallic circular disk optical antenna

    Directory of Open Access Journals (Sweden)

    Thitikorn Kemsri

    2017-02-01

    Full Text Available In this paper, we analyze the plasmonic resonance excited by linearly polarized longwave infrared (LWIR plane waves in a metallic circular disk optical antenna (MCDA. The surface current distributions are simulated at different wavelengths, incident angles, and polarizations. The excited surface plasmonic resonance waves (SPRs are different from the Bessel-type of SPR modes and closely resemble those in a monopole antenna. An MCDA coupled LWIR quantum dot infrared photodetector (QDIP was fabricated and measured at different LWIR plane wave wavelengths and incident angles. A linear correlation between the enhancement ratio and the integrated square of the current is obtained, indicating the monopole antenna effect is a dominating factor for the plasmonic enhancement.