WorldWideScience

Sample records for enhanced kalman filter

  1. A new iterative speech enhancement scheme based on Kalman filtering

    DEFF Research Database (Denmark)

    Li, Chunjian; Andersen, Søren Vang

    2005-01-01

    A new iterative speech enhancement scheme that can be seen as an approximation to the Expectation-Maximization (EM) algorithm is proposed. The algorithm employs a Kalman filter that models the excitation source as a spectrally white process with a rapidly time-varying variance, which calls...... for a high temporal resolution estimation of this variance. A Local Variance Estimator based on a Prediction Error Kalman Filter is designed for this high temporal resolution variance estimation. To achieve fast convergence and avoid local maxima of the likelihood function, a Weighted Power Spectral...

  2. Enhancement of Spanish Oesophageal Speech vowels using coherent subband modulator Kalman filtering.

    Science.gov (United States)

    Ishaq, Rizwan; Zapirain, Begoña García

    2016-01-01

    This paper proposes an Oesophageal Speech (OES) enhancement method, based on Kalman filtering. The Kalman filter is applied to modulators of OES frequency subbands instead of the fullband signal. The OES frequency subbands are decomposed into modulators and carriers components using coherent demodulation. In comparison with fullband Kalman filtering and pole stabilization, the proposed technique shows better results. The system performance is evaluated objectively and subjectively using the Harmonic to Noise Ratio (HNR) and Mean Opinion Score (MOS) respectively. Results have shown that Kalman filter in subband modulators processing is robust and efficient, improving the HNR by 4 to 5 dB for all Spanish vowels.

  3. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  4. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  5. Kalman filter for speech enhancement in cocktail party scenarios using a codebook-based approach

    DEFF Research Database (Denmark)

    Kavalekalam, Mathew Shaji; Christensen, Mads Græsbøll; Gran, Fredrik

    2016-01-01

    Enhancement of speech in non-stationary background noise is a challenging task, and conventional single channel speech enhancement algorithms have not been able to improve the speech intelligibility in such scenarios. The work proposed in this paper investigates a single channel Kalman filter based...

  6. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model sta...

  7. Multilevel Mixture Kalman Filter

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2004-11-01

    Full Text Available The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

  8. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon

    2016-01-08

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  10. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Hakon

    2016-06-14

    This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  11. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  12. An Enhanced UWB-Based Range/GPS Cooperative Positioning Approach Using Adaptive Variational Bayesian Cubature Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Feng Shen

    2015-01-01

    Full Text Available Precise position awareness is a fundamental requirement for advanced applications of emerging intelligent transportation systems, such as collision warning and speed advisory system. However, the achievable level of positioning accuracy using global navigation satellite systems does not meet the requirements of these applications. Fortunately, cooperative positioning (CP techniques can improve the performance of positioning in a vehicular ad hoc network (VANET through sharing the positions between vehicles. In this paper, a novel enhanced CP technique is presented by combining additional range-ultra-wide bandwidth- (UWB- based measurements. Furthermore, an adaptive variational Bayesian cubature Kalman filtering (AVBCKF algorithm is proposed and used in the enhanced CP method, which can add robustness to the time-variant measurement noise. Based on analytical and experimental results, the proposed AVBCKF-based CP method outperforms the cubature Kalman filtering- (CKF- based CP method and extended Kalman filtering- (EKF- based CP method.

  13. Kalman Filter Desing, Smoothing and Analysis

    OpenAIRE

    Cederkvist, Henrik Rene

    2001-01-01

    Thesis is based on three different aspects of Kalman filtering. >Kalman filters for navigation. Investigate the difference between a Extended Kalman Filter and a Linearized Kalman Filter with feedback. And show how different system models relate to these Kalman Filters when implemented in a filter. >Smoothing. Investigate how much there is to be gained from smoothing. We will only look at the fixed-interval smoother, using the method of forward and backward filtering. ...

  14. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh

    2015-07-26

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  15. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim

    2010-09-19

    Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  16. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  17. Kalman Filtering with Real-Time Applications

    CERN Document Server

    Chui, Charles K

    2009-01-01

    Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering.

  18. Reservoir History Matching Using Ensemble Kalman Filters with Anamorphosis Transforms

    KAUST Repository

    Aman, Beshir M.

    2012-12-01

    This work aims to enhance the Ensemble Kalman Filter performance by transforming the non-Gaussian state variables into Gaussian variables to be a step closer to optimality. This is done by using univariate and multivariate Box-Cox transformation. Some History matching methods such as Kalman filter, particle filter and the ensemble Kalman filter are reviewed and applied to a test case in the reservoir application. The key idea is to apply the transformation before the update step and then transform back after applying the Kalman correction. In general, the results of the multivariate method was promising, despite the fact it over-estimated some variables.

  19. Mixtures of skewed Kalman filters

    KAUST Repository

    Kim, Hyoungmoon

    2014-01-01

    Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew. t distributions is obtained. Our suggested family of distributions is skewed and has heavy tails too, so it is appropriate for robust analysis. Our proposed special sequential Monte Carlo methods use a random mixture of the closed skew-normal distributions to approximate a target distribution. Hence it is possible to handle skewed and heavy tailed data simultaneously. These methods are illustrated with numerical experiments. © 2013 Elsevier Inc.

  20. Kalman filtering with real-time applications

    CERN Document Server

    Chui, Charles K

    2017-01-01

    This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and problems with solutions help de...

  1. A quantum extended Kalman filter

    Science.gov (United States)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2017-06-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

  2. Implementation of Kalman Filter with Python Language

    OpenAIRE

    Laaraiedh, Mohamed

    2009-01-01

    International audience; In this paper, we investigate the implementation of a Python code for a Kalman Filter using the Numpy package. A Kalman Filtering is carried out in two steps: Prediction and Update. Each step is investigated and coded as a function with matrix input and output. These different functions are explained and an example of a Kalman Filter application for the localization of mobile in wireless networks is given.

  3. RSSI based indoor tracking in sensor networks using Kalman filters

    DEFF Research Database (Denmark)

    Tøgersen, Frede Aakmann; Skjøth, Flemming; Munksgaard, Lene

    2010-01-01

    We propose an algorithm for estimating positions of devices in a sensor network using Kalman filtering techniques. The specific area of application is monitoring the movements of cows in a barn. The algorithm consists of two filters. The first filter enhances the signal-to-noise ratio of the obse......We propose an algorithm for estimating positions of devices in a sensor network using Kalman filtering techniques. The specific area of application is monitoring the movements of cows in a barn. The algorithm consists of two filters. The first filter enhances the signal-to-noise ratio...

  4. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    KAUST Repository

    Sana, Furrukh

    2016-02-23

    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  5. Adaptable Iterative and Recursive Kalman Filter Schemes

    Science.gov (United States)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  6. A Tool for Kalman Filter Tuning

    DEFF Research Database (Denmark)

    Åkesson, Bernt Magnus; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad

    2007-01-01

    The Kalman filter requires knowledge about the noise statistics. In practical applications, however, the noise covariances are generally not known. A method for estimating noise covariances from process data has been investigated. The method gives a least-squares estimate of the noise covariances......, which can be used to compute the Kalman filter gain....

  7. Harmonic Detection at Initialization With Kalman Filter

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa

    2014-01-01

    the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized...

  8. A new martingale approach to Kalman Filtering

    NARCIS (Netherlands)

    Bagchi, Arunabha

    1976-01-01

    A new derivation of continuous-time Kalman Filter equations is presented. The underlying idea has been previously used to derive the smoothing equations. A unified approach to filtering and smoothing problems has thus been achieved.

  9. Boundary Value Problems Arising in Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Bashirov Agamirza

    2008-01-01

    Full Text Available The classic Kalman filtering equations for independent and correlated white noises are ordinary differential equations (deterministic or stochastic with the respective initial conditions. Changing the noise processes by taking them to be more realistic wide band noises or delayed white noises creates challenging partial differential equations with initial and boundary conditions. In this paper, we are aimed to give a survey of this connection between Kalman filtering and boundary value problems, bringing them into the attention of mathematicians as well as engineers dealing with Kalman filtering and boundary value problems.

  10. Boundary Value Problems Arising in Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Sinem Ertürk

    2009-01-01

    Full Text Available The classic Kalman filtering equations for independent and correlated white noises are ordinary differential equations (deterministic or stochastic with the respective initial conditions. Changing the noise processes by taking them to be more realistic wide band noises or delayed white noises creates challenging partial differential equations with initial and boundary conditions. In this paper, we are aimed to give a survey of this connection between Kalman filtering and boundary value problems, bringing them into the attention of mathematicians as well as engineers dealing with Kalman filtering and boundary value problems.

  11. Kalman filtering theory and practice with MATLAB

    CERN Document Server

    Grewal, M

    2015-01-01

    The definitive textbook and professional reference on Kalman Filtering fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.

  12. Kalman filter to update forest cover estimates

    Science.gov (United States)

    Raymond L. Czaplewski

    1990-01-01

    The Kalman filter is a statistical estimator that combines a time-series of independent estimates, using a prediction model that describes expected changes in the state of a system over time. An expensive inventory can be updated using model predictions that are adjusted with more recent, but less expensive and precise, monitoring data. The concepts of the Kalman...

  13. Industrial applications of the Kalman filter

    DEFF Research Database (Denmark)

    Auger, François; Hilairet, Mickael; Guerrero, Josep M.

    2013-01-01

    The Kalman filter has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 70s, ranging, without being exhaustive, trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal...... processing and so on. This paper provides a brief overview of the industrial applications and implementation issues of the Kalman filter in six topics of the industrial electronics community, highlighting some relevant reference papers and giving future research trends....

  14. Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*

    KAUST Repository

    Hoteit, Ibrahim

    2012-02-01

    This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an “ensemble of Kalman filters” operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an “ensemble” of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

  15. Nonlinear Kalman Filtering With Divergence Minimization

    Science.gov (United States)

    Gultekin, San; Paisley, John

    2017-12-01

    We consider the nonlinear Kalman filtering problem using Kullback-Leibler (KL) and $\\alpha$-divergence measures as optimization criteria. Unlike linear Kalman filters, nonlinear Kalman filters do not have closed form Gaussian posteriors because of a lack of conjugacy due to the nonlinearity in the likelihood. In this paper we propose novel algorithms to optimize the forward and reverse forms of the KL divergence, as well as the alpha-divergence which contains these two as limiting cases. Unlike previous approaches, our algorithms do not make approximations to the divergences being optimized, but use Monte Carlo integration techniques to derive unbiased algorithms for direct optimization. We assess performance on radar and sensor tracking, and options pricing problems, showing general improvement over the UKF and EKF, as well as competitive performance with particle filtering.

  16. Deterministic Kalman filtering in a behavioral framework

    NARCIS (Netherlands)

    Fagnani, F; Willems, JC

    1997-01-01

    The purpose of this paper is to obtain a deterministic version of the Kalman filtering equations. We will use a behavioral description of the plant, specifically, an image representation. The resulting algorithm requires a matrix spectral factorization. We also show that the filter can be

  17. Restoration of nuclear medicine images using a Kalman filtering approach

    Science.gov (United States)

    Schmitt, Thomas; Gebauer, Heinz-Dieter; Freyer, Richard; Oehme, Liane; Franke, Wolf-Gunter

    1995-03-01

    The discrepancy between diagnostic importance of nuclear medicine images and their quality and the predominating visual interpretation of the images demand quality improvements. Digital image restoration procedures are known for being capable to solve this problem considering both noise and blurring. In this paper we propose the application of a modified 2D Kalman filter for nuclear medicine images (SPECT). In addition to the special capability of processing instationary signals the Kalman filter offers a possibility for controlling the filtering effect in a convenient way. The Kalman filter is based on a state space approach subdividing the imaging process into image generation and image degradation processes. The tested filter operates adaptively by permanent identification of the image generation model. For adaptation to the human visual system the filtering effect is modified depending on image quality represented by the mean information density and the local image contents represented by a structure information. The appropriate filtering effect is determined by modifying filter parameters with a predefined piecewise linear characteristic curve. The both smoothing and structure enhancing effect of our Kalman filtering approach is demonstrated in numerous tests performed with SPECT phantom images and brain SPECT studies.

  18. Reduced Kalman Filters for Clock Ensembles

    Science.gov (United States)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  19. MR fingerprinting reconstruction with Kalman filter.

    Science.gov (United States)

    Zhang, Xiaodi; Zhou, Zechen; Chen, Shiyang; Chen, Shuo; Li, Rui; Hu, Xiaoping

    2017-09-01

    Magnetic resonance fingerprinting (MR fingerprinting or MRF) is a newly introduced quantitative magnetic resonance imaging technique, which enables simultaneous multi-parameter mapping in a single acquisition with improved time efficiency. The current MRF reconstruction method is based on dictionary matching, which may be limited by the discrete and finite nature of the dictionary and the computational cost associated with dictionary construction, storage and matching. In this paper, we describe a reconstruction method based on Kalman filter for MRF, which avoids the use of dictionary to obtain continuous MR parameter measurements. With this Kalman filter framework, the Bloch equation of inversion-recovery balanced steady state free-precession (IR-bSSFP) MRF sequence was derived to predict signal evolution, and acquired signal was entered to update the prediction. The algorithm can gradually estimate the accurate MR parameters during the recursive calculation. Single pixel and numeric brain phantom simulation were implemented with Kalman filter and the results were compared with those from dictionary matching reconstruction algorithm to demonstrate the feasibility and assess the performance of Kalman filter algorithm. The results demonstrated that Kalman filter algorithm is applicable for MRF reconstruction, eliminating the need for a pre-define dictionary and obtaining continuous MR parameter in contrast to the dictionary matching algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A class of quaternion Kalman filters.

    Science.gov (United States)

    Jahanchahi, Cyrus; Mandic, Danilo P

    2014-03-01

    The existing Kalman filters for quaternion-valued signals do not operate fully in the quaternion domain, and are combined with the real Kalman filter to enable the tracking in 3-D spaces. Using the recently introduced HR-calculus, we develop the fully quaternion-valued Kalman filter (QKF) and quaternion-extended Kalman filter (QEKF), allowing for the tracking of 3-D and 4-D signals directly in the quaternion domain. To consider the second-order noncircularity of signals, we employ the recently developed augmented quaternion statistics to derive the widely linear QKF (WL-QKF) and widely linear QEKF (WL-QEKF). To reduce computational requirements of the widely linear algorithms, their efficient implementation are proposed and it is shown that the quaternion widely linear model can be simplified when processing 3-D data, further reducing the computational requirements. Simulations using both synthetic and real-world circular and noncircular signals illustrate the advantages offered by widely linear over strictly linear quaternion Kalman filters.

  1. Nonlinear Kalman filtering in affine term structure models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter with...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....

  2. Target detection by way of Kalman filtering

    Science.gov (United States)

    Sipe, Gary A.

    1993-03-01

    A simple, time domain method is used to analyze moderate to high PRF radar signals. The quantities of interest are the signal's PRF, SNR, and time of arrival. The time of arrival problem is important because it can be used, with multiple sensors, to determine the position of the emitting target. An algorithm is described which will produce these values using Kalman filtering. Individual pulses in a pulsed type radar are measured against a threshold using a two sample detection scheme to provide some glitch rejection. Results of individual time domain measurements of the signal parameter are smoothed with a Kalman filter. Integrating the pulse train envelope during the radar dwell time provides the energy centroid for a scan cycle. This centroid, time differenced with multiple sensors, provides observables for an Extended Kalman Filter for emitter localization. The work here simulates all data. Tests of the algorithms developed were conducted on real, classified data in addition to the work presented here.

  3. Restricted Kalman Filtering Theory, Methods, and Application

    CERN Document Server

    Pizzinga, Adrian

    2012-01-01

    In statistics, the Kalman filter is a mathematical method whose purpose is to use a series of measurements observed over time, containing random variations and other inaccuracies, and produce estimates that tend to be closer to the true unknown values than those that would be based on a single measurement alone. This Brief offers developments on Kalman filtering subject to general linear constraints. There are essentially three types of contributions: new proofs for results already established; new results within the subject; and applications in investment analysis and macroeconomics, where th

  4. Kalman Filter Predictor and Initialization Algorithm for PRI Tracking

    National Research Council Canada - National Science Library

    Hock, Melinda

    1998-01-01

    .... The algorithm uses a Kalman filter for prediction combined with a preprocessing routine to determine the period of the stagger sequence and to construct an uncorrupted data set for Kalman filter initialization...

  5. Kalman Filter Application to Symmetrical Fault Detection during Power Swing

    DEFF Research Database (Denmark)

    Khodaparast, Jalal; Silva, Filipe Miguel Faria da; Khederzadeh, M.

    2016-01-01

    capability of Kalman Filter. The proposed index is calculated by assessing the difference between predicted and actual samples of impedance. The predicted impedance samples are obtained using Kalman filter and Taylor expansion, which is used in this paper to track the phasor precisely. Second order of Taylor...... expansion is used to decrease corrugation effect of impedance estimation and increase the reliability of proposed method. The instantaneous estimation and prediction capability of Kalman filter are two reasons for proposing utilizing Kalman filter....

  6. Cubature/ Unscented/ Sigma Point Kalman Filtering with Angular Measurement Models

    Science.gov (United States)

    2015-07-06

    Cubature/ Unscented/ Sigma Point Kalman Filtering with Angular Measurement Models David Frederic Crouse Naval Research Laboratory 4555 Overlook Ave...measurement and process non- linearities, such as the cubature Kalman filter, can perform ex- tremely poorly in many applications involving angular... Kalman filtering is a realization of the best linear unbiased estimator (BLUE) that evaluates certain integrals for expected values using different forms

  7. Q-Method Extended Kalman Filter

    Science.gov (United States)

    Zanetti, Renato; Ainscough, Thomas; Christian, John; Spanos, Pol D.

    2012-01-01

    A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations.

  8. Towards self-organizing Kalman filters

    NARCIS (Netherlands)

    Sijs, J.; Papp, Z.

    2012-01-01

    Distributed Kalman filtering is an important signal processing method for state estimation in large-scale sensor networks. However, existing solutions do not account for unforeseen events that are likely to occur and thus dramatically changing the operational conditions (e.g. node failure,

  9. A distributed Kalman filter with global covariance

    NARCIS (Netherlands)

    Sijs, J.; Lazar, M.

    2011-01-01

    Most distributed Kalman filtering (DKF) algorithms for sensor networks calculate a local estimate of the global state-vector in each node. An important challenge within distributed estimation is that all sensors in the network contribute to the local estimate in each node. In this paper, a novel DKF

  10. Detection of Harmonic Occurring using Kalman Filtering

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed

    2014-01-01

    As long as the load to a power system is linear which has been the case before 80's, typically no harmonics are produced. However, the modern power electronic equipment for controlled power consumption produces harmonic disturbances, these devices/equipment possess nonlinear voltage/current chara...... using Kalman filter. This may be very useful for example to quickly switching on certain filters based on the harmonic present. We are using a unique technique to detect the occurrence of harmonics....

  11. Ensemble Kalman filtering with residual nudging

    KAUST Repository

    Luo, X.

    2012-10-03

    Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.

  12. Ensemble Kalman filtering with residual nudging

    Directory of Open Access Journals (Sweden)

    Xiaodong Luo

    2012-10-01

    Full Text Available Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF by (in effect adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.

  13. Bridging the ensemble Kalman filter and particle filters

    Energy Technology Data Exchange (ETDEWEB)

    Stordal, Andreas Stoerksen; Karlsen, Hans A.; Naevdal, Geir; Skaug, Hans J.; Valles, Brice

    2009-12-15

    The nonlinear filtering problem occurs in many scientific areas. Sequential Monte Carlo solutions with the correct asymptotic behavior such as particle filters exist but they are computationally too expensive when working with high-dimensional systems. The ensemble Kalman filter is a more robust method that has shown promising results with a small sample size but the samples are not guaranteed to come from the true posterior distribution. By approximating the model error with Gaussian kernels we get the advantage of both a Kalman correction and a weighting step. The resulting Gaussian mixture filter has the advantage of both a local Kalman type correction and the weighting/re sampling step of a particle filter. The Gaussian mixture approximation relies on a tunable bandwidth parameter which often has to be kept quite large in order to avoid weight collapse in high dimensions. As a result, the Kalman correction is too large to capture highly non-Gaussian posterior distributions. In this paper we have extended the Gaussian mixture filter (Hoteit et al., 2008b) and also made the connection to particle filters more transparent. In particular we introduce a tuning parameter for the importance weights. In the last part of the paper we have performed a simulation experiment with the Lorenz40 model where our method has been compared to the EnKF and a full implementation of a particle filter. The results clearly indicate that the new method has advantages compared to the standard EnKF. (Author)

  14. LHCb Kalman Filter cross architecture studies

    Science.gov (United States)

    Hugo, Daniel; Pérez, Cámpora

    2017-10-01

    The 2020 upgrade of the LHCb detector will vastly increase the rate of collisions the Online system needs to process in software, in order to filter events in real time. 30 million collisions per second will pass through a selection chain, where each step is executed conditional to its prior acceptance. The Kalman Filter is a fit applied to all reconstructed tracks which, due to its time characteristics and early execution in the selection chain, consumes 40% of the whole reconstruction time in the current trigger software. This makes the Kalman Filter a time-critical component as the LHCb trigger evolves into a full software trigger in the Upgrade. I present a new Kalman Filter algorithm for LHCb that can efficiently make use of any kind of SIMD processor, and its design is explained in depth. Performance benchmarks are compared between a variety of hardware architectures, including x86_64 and Power8, and the Intel Xeon Phi accelerator, and the suitability of said architectures to efficiently perform the LHCb Reconstruction process is determined.

  15. Design of Kalman filters for mobile robots

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Hansen, Karsten L.; Andersen, Nils Axel

    1999-01-01

    the mobile robot is equipped with a dual encoder system supported by some additional absolute measurements. A common filter type for this setup is the odometric filter, where readings from the odometry system on the robot are used together with the geometry of the robot movement as a model of the robot....... If additional kinematic assumptions are made, for instance regarding the velocity of the robot, an augmented model can be used instead. This kinematic filter has some advantages when used intelligently, and it is shown how this type of filter can be used to suppress noise on encoder readings and velocity...... estimates. The Kalman filter normally consists of a time update followed by one or more data updates. However, it is shown that when using the kinematic filter, the encoder measurements should be fused prior to the time update for better performance....

  16. Estimasi Variabel Dinamik Menggunakan Metode Kalman Filter

    Directory of Open Access Journals (Sweden)

    Nathanael Leon Gozali

    2013-09-01

    Full Text Available Sebuah sistem pengendalian kapal dituntut untuk memiliki akurasi yang tinggi. Hal ini dituntut dengan adanya sistem pengendalian otomatis yang dibuat dengan menjadikan feedback dari alat ukur sebagai nilai yang mempengaruhi  pengendali. Dengan alat ukur yang memiliki noise dan sistem yang memiliki noise sehingga tidak sesuai dengan perancangan sistem tersebut menjadi penyebab ketidaktepatan dalam pengendalian kapal. Meskipun noise bernilai kecil namun dalam waktu yang lama dan terus menerus terakumulasi sehingga pengendalian tidak berjalan dengan baik. Tujuan dari penelitian ini adalah untuk merancang sebuah estimator Kalman Filter pada kondisi noise dari alat ukur, noise dari sistem kapal dan ketidaktepatan dalam pemodelan. Metode Kalman Filter yang digunakan adalah metode Kalman Filter diskrit linier karena model dinamika kapal telah dilinierisai dan didiskritisasi terlebih dahulu. Variabel dinamik kapal yang diestimasi untuk keperluan steering adalah dinamika sway-yaw dengan variabel kecepatan sudut, posisi sudut dan kecepatan arah sway. Perancangan sistem berdasarkan spesifikasi kapal perang kelas SIGMA Extended. Berdasarkan hasil simulasi, estimator yang dirancang  mampu memberikan nilai estimasi pada ketiga variabel dinamika kapal dengan persentase integral absolute error dari sistem dengan noise sistem dan noise pengukuran sebesar 0,41% untuk variabel yaw, 4,30% untuk yaw-rate dan 6,78% untuk sway-rate.

  17. A GPU-accelerated extended Kalman filter

    Science.gov (United States)

    Wei, Shih-Chieh; Huang, Bormin

    2011-11-01

    The extended Kalman filter is one of the most widely used techniques for state estimation of nonlinear systems. In its two steps of forecast and data assimilation, many matrix operations including multiplication and inversion are involved. As recent graphic processor units (GPU) have shown to provide much speedup in matrix operations, we will explore in this work a GPU-based implementation of the extended Kalman filter. The Compute Unified Device Architecture (CUDA) on the Nvidia GeForce GTX 590 GPU hardware will be used for comparison with a single threaded CPU counterpart. Experiments were conducted on typical large-scale over-determined systems with thousands of components in states and measurements. Within the GPU memory limit, a speedup of 1386x is achieved for a system with measurements having 5000 components and states having 3750 components. The speedup profile for various combinations of measurement and state sizes will serve as good reference for future implementation of extended Kalman filter on real large-scale applications.

  18. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation.

    Science.gov (United States)

    Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng; Wang, Meng

    2016-09-20

    A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.

  19. Comparison of the Extended Kalman Filter and the Unscented Kalman Filter for Magnetocardiography activation time imaging

    Science.gov (United States)

    Ahrens, H.; Argin, F.; Klinkenbusch, L.

    2013-07-01

    The non-invasive and radiation-free imaging of the electrical activity of the heart with Electrocardiography (ECG) or Magnetocardiography (MCG) can be helpful for physicians for instance in the localization of the origin of cardiac arrhythmia. In this paper we compare two Kalman Filter algorithms for the solution of a nonlinear state-space model and for the subsequent imaging of the activation/depolarization times of the heart muscle: the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The algorithms are compared for simulations of a (6×6) magnetometer array, a torso model with piecewise homogeneous conductivities, 946 current dipoles located in a small part of the heart (apex), and several noise levels. It is found that for all tested noise levels the convergence of the activation times is faster for the UKF.

  20. A Kalman Filtering Perspective for Multiatlas Segmentation.

    Science.gov (United States)

    Gao, Yi; Zhu, Liangjia; Cates, Joshua; MacLeod, Rob S; Bouix, Sylvain; Tannenbaum, Allen

    In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity-neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy.

  1. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody

    2016-05-03

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  2. Ensemble Kalman filter with the unscented transform

    Science.gov (United States)

    Luo, X.; Moroz, I. M.

    2009-03-01

    A modification scheme to the ensemble Kalman filter (EnKF) is introduced based on the concept of the unscented transform [S. Julier, J. Uhlmann, H. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automat. Control. 45 (2000) 477-482; S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, Proc. IEEE 92 (2004) 401-422], which therefore will be called the ensemble unscented Kalman filter (EnUKF) in this work. When the error distribution of the analysis is symmetric (not necessarily Gaussian), it can be shown that, compared with the ordinary EnKF, the EnUKF has more accurate estimations of the ensemble mean and covariance of the background by examining the multidimensional Taylor series expansion term by term. This implies that, the EnUKF may have better performance in state estimation than the ordinary EnKF in the sense that the deviations from the true states are smaller. For verification, some numerical experiments are conducted on a 40-dimensional system due to Lorenz and Emanuel [E.N. Lorenz, K.A. Emanuel, Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci. 55 (1998) 399-414]. Simulation results support our argument.

  3. Kalman filter tracking on parallel architectures

    Science.gov (United States)

    Cerati, G.; Elmer, P.; Krutelyov, S.; Lantz, S.; Lefebvre, M.; McDermott, K.; Riley, D.; Tadel, M.; Wittich, P.; Wurthwein, F.; Yagil, A.

    2017-10-01

    We report on the progress of our studies towards a Kalman filter track reconstruction algorithm with optimal performance on manycore architectures. The combinatorial structure of these algorithms is not immediately compatible with an efficient SIMD (or SIMT) implementation; the challenge for us is to recast the existing software so it can readily generate hundreds of shared-memory threads that exploit the underlying instruction set of modern processors. We show how the data and associated tasks can be organized in a way that is conducive to both multithreading and vectorization. We demonstrate very good performance on Intel Xeon and Xeon Phi architectures, as well as promising first results on Nvidia GPUs.

  4. Radio Channel State Prediction by Kalman Filter

    Directory of Open Access Journals (Sweden)

    Peter Ziacik

    2005-01-01

    Full Text Available In this article there is the description Kalman filter using as a radio channel state predictor. Simulator of prediction has been created in MATLAB environment and it is capable to simulate the prediction of radio signal envelope by Clark’s model of radio channel, which is implemented to the simulator. Simulations were realized for prediction range 0.41 ms and 6.24 ms and as comparing criterion we used the prediction error. It is clear from simulations, that with the duration of prediction the prediction error is enlarging, which may cause the erroneous decision of adaptation algorithms.

  5. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  6. Kalman Filter Tracking on Parallel Architectures

    Directory of Open Access Journals (Sweden)

    Cerati Giuseppe

    2016-01-01

    Full Text Available Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.

  7. Kalman Filter Tracking on Parallel Architectures

    Science.gov (United States)

    Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2015-12-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques including Cellular Automata or returning to Hough Transform. The most common track finding techniques in use today are however those based on the Kalman Filter [2]. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust and are exactly those being used today for the design of the tracking system for HL-LHC. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedup both with Intel Xeon and Xeon Phi. We report here our further progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic simulation setup.

  8. Kalman filter applied in underwater integrated navigation system

    Directory of Open Access Journals (Sweden)

    Yan Xincun

    2013-02-01

    Full Text Available For the underwater integrated navigation system, information fusion is an important technology. This paper introduces the Kalman filter as the most useful information fusion technology, and then gives a summary of the Kalman filter applied in underwater integrated navigation system at present, and points out the further research directions in this field.

  9. Improving Artificial Neural Network Forecasts with Kalman Filtering ...

    African Journals Online (AJOL)

    ... used to compare the two models over different set of data from different companies over a period of 750 trading days. In all the cases we find that the Kalman filter algorithm significantly adds value to the forecasting process. Keywords: Artificial Neural Networks, Kalman filter, Stock prices, Forecasting, Back propagation ...

  10. An iterative ensemble Kalman filter for reservoir engineering applications

    NARCIS (Netherlands)

    Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.

    2009-01-01

    The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the

  11. Kalman filter estimation of RLC parameters for UMP transmission line

    Directory of Open Access Journals (Sweden)

    Mohd Amin Siti Nur Aishah

    2018-01-01

    Full Text Available This paper present the development of Kalman filter that allows evaluation in the estimation of resistance (R, inductance (L, and capacitance (C values for Universiti Malaysia Pahang (UMP short transmission line. To overcome the weaknesses of existing system such as power losses in the transmission line, Kalman Filter can be a better solution to estimate the parameters. The aim of this paper is to estimate RLC values by using Kalman filter that in the end can increase the system efficiency in UMP. In this research, matlab simulink model is developed to analyse the UMP short transmission line by considering different noise conditions to reprint certain unknown parameters which are difficult to predict. The data is then used for comparison purposes between calculated and estimated values. The results have illustrated that the Kalman Filter estimate accurately the RLC parameters with less error. The comparison of accuracy between Kalman Filter and Least Square method is also presented to evaluate their performances.

  12. Kalman Filter for Spinning Spacecraft Attitude Estimation

    Science.gov (United States)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  13. A Performance Comparison Between Extended Kalman Filter and Unscented Kalman Filter in Power System Dynamic State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve the st...

  14. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    the potential of the unscented Kalmanfilter to properly capture nonlinearities. To illustrate the advantages of the unscented Kalmanfilter, we analyze the cross section of swap rates, which are relatively simple non-linear instruments, and cap prices, which are highly nonlinear in the states. An extensive...... Monte Carlo experiment demonstrates that the unscented Kalman fi…lter is much more accurate than its extended counterpart in fi…ltering the states and forecasting swap rates and caps. Our fi…ndings suggest that the unscented Kalman fi…lter may prove to be a good approach for a number of other problems...

  15. Distributed Kalman-Consensus Filtering for Sparse Signal Estimation

    Directory of Open Access Journals (Sweden)

    Yisha Liu

    2014-01-01

    Full Text Available A Kalman filtering-based distributed algorithm is proposed to deal with the sparse signal estimation problem. The pseudomeasurement-embedded Kalman filter is rebuilt in the information form, and an improved parameter selection approach is discussed. By introducing the pseudomeasurement technology into Kalman-consensus filter, a distributed estimation algorithm is developed to fuse the measurements from different nodes in the network, such that all filters can reach a consensus on the estimate of sparse signals. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach.

  16. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking.

    Science.gov (United States)

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-06-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).

  17. Ensemble Kalman filtering with one-step-ahead smoothing

    KAUST Repository

    Raboudi, Naila F.

    2018-01-11

    The ensemble Kalman filter (EnKF) is widely used for sequential data assimilation. It operates as a succession of forecast and analysis steps. In realistic large-scale applications, EnKFs are implemented with small ensembles and poorly known model error statistics. This limits their representativeness of the background error covariances and, thus, their performance. This work explores the efficiency of the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem to enhance the data assimilation performance of EnKFs. Filtering with OSA smoothing introduces an updated step with future observations, conditioning the ensemble sampling with more information. This should provide an improved background ensemble in the analysis step, which may help to mitigate the suboptimal character of EnKF-based methods. Here, the authors demonstrate the efficiency of a stochastic EnKF with OSA smoothing for state estimation. They then introduce a deterministic-like EnKF-OSA based on the singular evolutive interpolated ensemble Kalman (SEIK) filter. The authors show that the proposed SEIK-OSA outperforms both SEIK, as it efficiently exploits the data twice, and the stochastic EnKF-OSA, as it avoids observational error undersampling. They present extensive assimilation results from numerical experiments conducted with the Lorenz-96 model to demonstrate SEIK-OSA’s capabilities.

  18. Autonomous mobile robot localization using Kalman filter

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Nabil Zhafri

    2017-01-01

    Full Text Available Autonomous mobile robot field has gain interest among researchers in recent years. The ability of a mobile robot to locate its current position and surrounding environment is the fundamental in order for it to operate autonomously, which commonly known as localization. Localization of mobile robot are commonly affected by the inaccuracy of the sensors. These inaccuracies are caused by various factors which includes internal interferences of the sensor and external environment noises. In order to overcome these noises, a filtering method is required in order to improve the mobile robot’s localization. In this research, a 2- wheeled-drive (2WD mobile robot will be used as platform. The odometers, inertial measurement unit (IMU, and ultrasonic sensors are used for data collection. Data collected is processed using Kalman filter to predict and correct the error from these sensors reading. The differential drive model and measurement model which estimates the environmental noises and predict a correction are used in this research. Based on the simulation and experimental results, the x, y and heading was corrected by converging the error to10 mm, 10 mm and 0.06 rad respectively.

  19. Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation

    Science.gov (United States)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  20. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    Science.gov (United States)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  1. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation

    Directory of Open Access Journals (Sweden)

    Xi Liu

    2016-09-01

    Full Text Available A new algorithm called maximum correntropy unscented Kalman filter (MCUKF is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC, the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.

  2. Kalman filter data assimilation: targeting observations and parameter estimation.

    Science.gov (United States)

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  3. Observation bias correction with an ensemble Kalman filter

    OpenAIRE

    Fertig, Elana J.; Baek, Seung-Jong; Hunt, Brian R.; Ott, Edward; Szunyogh, Istvan; Aravéquia, José A.; Kalnay, Eugenia; Li, Hong; Liu, Junjie

    2009-01-01

    This paper considers the use of an ensemble Kalman filter to correct satellite radiance observations for state dependent biases. Our approach is to use state-space augmentation to estimate satellite biases as part of the ensemble data assimilation procedure. We illustrate our approach by applying it to a particular ensemble scheme—the local ensemble transform Kalman filter (LETKF)—to assimilate simulated biased atmospheric infrared sounder brightness temperature observations from 15 channels ...

  4. A LBL Positioning Method Based on Feedback Kalman Filter

    OpenAIRE

    Jucheng Zhang; Dajun Sun; Changlin Ji

    2014-01-01

    LBL (Long Basic Line) positioning is an important and high-precision method for underwater vehicle navigation. Due to its narrow work frequency-band, system would be easily affected by external factors and gave wrong results. A new Kalman filter model based on the feedback from travel time and position information was presented in this paper. By combining travel time with positioning in the Kalman filter, the navigation state of underwater vehicle was accurately estimated. Experimental result...

  5. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  6. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.

    2015-12-03

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  7. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.

    2015-05-08

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  8. A Performance Comparison Between Extended Kalman Filter and Unscented Kalman Filter in Power System Dynamic State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve the st...... and studying the advantages and disadvantages of both methods under transient conditions. It is demonstrated that UKF is easier to implement and accurate in estimation....

  9. Kalman-Takens filtering in the presence of dynamical noise

    Science.gov (United States)

    Hamilton, Franz; Berry, Tyrus; Sauer, Timothy

    2017-12-01

    The use of data assimilation for the merging of observed data with dynamical models is becoming standard in modern physics. If a parametric model is known, methods such as Kalman filtering have been developed for this purpose. If no model is known, a hybrid Kalman-Takens method has been recently introduced, in order to exploit the advantages of optimal filtering in a nonparametric setting. This procedure replaces the parametric model with dynamics reconstructed from delay coordinates, while using the Kalman update formulation to assimilate new observations. In this article, we study the efficacy of this method for identifying underlying dynamics in the presence of dynamical noise. Furthermore, by combining the Kalman-Takens method with an adaptive filtering procedure we are able to estimate the statistics of the observational and dynamical noise. This solves a long-standing problem of separating dynamical and observational noise in time series data, which is especially challenging when no dynamical model is specified.

  10. Power system static state estimation using Kalman filter algorithm

    Directory of Open Access Journals (Sweden)

    Saikia Anupam

    2016-01-01

    Full Text Available State estimation of power system is an important tool for operation, analysis and forecasting of electric power system. In this paper, a Kalman filter algorithm is presented for static estimation of power system state variables. IEEE 14 bus system is employed to check the accuracy of this method. Newton Raphson load flow study is first carried out on our test system and a set of data from the output of load flow program is taken as measurement input. Measurement inputs are simulated by adding Gaussian noise of zero mean. The results of Kalman estimation are compared with traditional Weight Least Square (WLS method and it is observed that Kalman filter algorithm is numerically more efficient than traditional WLS method. Estimation accuracy is also tested for presence of parametric error in the system. In addition, numerical stability of Kalman filter algorithm is tested by considering inclusion of zero mean errors in the initial estimates.

  11. Impulse control in Kalman-like filtering problems

    Directory of Open Access Journals (Sweden)

    Michael V. Basin

    1998-01-01

    Full Text Available This paper develops the impulse control approach to the observation process in Kalman-like filtering problems, which is based on impulsive modeling of the transition matrix in an observation equation. The impulse control generates the jumps of the estimate variance from its current position down to zero and, as a result, enables us to obtain the filtering equations for the Kalman estimate with zero variance for all post-jump time moments. The filtering equations for the estimates with zero variances are obtained in the conventional linear filtering problem and in the case of scalar nonlinear state and nonlinear observation equations.

  12. A review of issues in ensemble-based Kalman filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ehrendorfer, M. [Dept. of Meteorology and Geophysics, The Univ. of Reading (United Kingdom)

    2007-12-15

    Ensemble-based data assimilation methods related to the fundamental theory of Kalman filtering have been explored in a variety of mostly non-operational data assimilation contexts over the past decade with increasing intensity. While promising properties have been reported, a number of issues that arise in the development and application of ensemble-based data assimilation techniques, such as in the basic form of the ensemble Kalman filter (EnKF), still deserve particular attention. The necessity of employing an ensemble of small size represents a fundamental issue which in turn leads to several related points that must be carefully considered. In particular, the need to correct for sampling noise in the covariance structure estimated from the finite ensemble must be mentioned. Covariance inflation, localization through a Schur/Hadamard product, preventing the occurrence of filter divergence and inbreeding, as well as the loss of dynamical balances, are all issues directly related to the use of small ensemble sizes. Attempts to reduce effectively the sampling error due to small ensembles and at the same time maintaining an ensemble spread that realistically describes error structures have given rise to the development of variants of the basic form of the EnKF. These include, for example, the Ensemble Adjustment Kalman Filter (EAKF), the Ensemble Transform Kalman Filter (ETKF), the Ensemble Square-Root Filter (EnSRF), and the Local Ensemble Kalman Filter (LEKF). Further important considerations within ensemble-based Kalman filtering concern issues such as the treatment of model error, stochastic versus deterministic updating algorithms, the case of implementation and computational cost, serial processing of observations, avoiding the appearance of undesired dynamic imbalances, and the treatment of non-Gaussianity and nonlinearity. The discussion of the above issues within ensemble-based Kalman filtering forms the central topic of this article, that starts out with a

  13. Reduced-Order Kalman Filtering for Processing Relative Measurements

    Science.gov (United States)

    Bayard, David S.

    2008-01-01

    A study in Kalman-filter theory has led to a method of processing relative measurements to estimate the current state of a physical system, using less computation than has previously been thought necessary. As used here, relative measurements signifies measurements that yield information on the relationship between a later and an earlier state of the system. An important example of relative measurements arises in computer vision: Information on relative motion is extracted by comparing images taken at two different times. Relative measurements do not directly fit into standard Kalman filter theory, in which measurements are restricted to those indicative of only the current state of the system. One approach heretofore followed in utilizing relative measurements in Kalman filtering, denoted state augmentation, involves augmenting the state of the system at the earlier of two time instants and then propagating the state to the later time instant.While state augmentation is conceptually simple, it can also be computationally prohibitive because it doubles the number of states in the Kalman filter. When processing a relative measurement, if one were to follow the state-augmentation approach as practiced heretofore, one would find it necessary to propagate the full augmented state Kalman filter from the earlier time to the later time and then select out the reduced-order components. The main result of the study reported here is proof of a property called reduced-order equivalence (ROE). The main consequence of ROE is that it is not necessary to augment with the full state, but, rather, only the portion of the state that is explicitly used in the partial relative measurement. In other words, it suffices to select the reduced-order components first and then propagate the partial augmented state Kalman filter from the earlier time to the later time; the amount of computation needed to do this can be substantially less than that needed for propagating the full augmented

  14. Mobile indoor localization using Kalman filter and trilateration technique

    Science.gov (United States)

    Wahid, Abdul; Kim, Su Mi; Choi, Jaeho

    2015-12-01

    In this paper, an indoor localization method based on Kalman filtered RSSI is presented. The indoor communications environment however is rather harsh to the mobiles since there is a substantial number of objects distorting the RSSI signals; fading and interference are main sources of the distortion. In this paper, a Kalman filter is adopted to filter the RSSI signals and the trilateration method is applied to obtain the robust and accurate coordinates of the mobile station. From the indoor experiments using the WiFi stations, we have found that the proposed algorithm can provide a higher accuracy with relatively lower power consumption in comparison to a conventional method.

  15. A modified iterative ensemble Kalman filter data assimilation method

    Science.gov (United States)

    Xu, Baoxiong; Bai, Yulong; Wang, Yizhao; Li, Zhe; Ma, Boyang

    2017-08-01

    High nonlinearity is a typical characteristic associated with data assimilation systems. Additionally, iterative ensemble based methods have attracted a large amount of research attention, which has been focused on dealing with nonlinearity problems. To solve the local convergence problem of the iterative ensemble Kalman filter, a modified iterative ensemble Kalman filter algorithm was put forward, which was based on a global convergence strategy from the perspective of a Gauss-Newton iteration. Through self-adaption, the step factor was adjusted to enable every iteration to approach expected values during the process of the data assimilation. A sensitivity experiment was carried out in a low dimensional Lorenz-63 chaotic system, as well as a Lorenz-96 model. The new method was tested via ensemble size, observation variance, and inflation factor changes, along with other aspects. Meanwhile, comparative research was conducted with both a traditional ensemble Kalman filter and an iterative ensemble Kalman filter. The results showed that the modified iterative ensemble Kalman filter algorithm was a data assimilation method that was able to effectively estimate a strongly nonlinear system state.

  16. Estimation of Sideslip Angle Based on Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Yupeng Huang

    2017-01-01

    Full Text Available The sideslip angle plays an extremely important role in vehicle stability control, but the sideslip angle in production car cannot be obtained from sensor directly in consideration of the cost of the sensor; it is essential to estimate the sideslip angle indirectly by means of other vehicle motion parameters; therefore, an estimation algorithm with real-time performance and accuracy is critical. Traditional estimation method based on Kalman filter algorithm is correct in vehicle linear control area; however, on low adhesion road, vehicles have obvious nonlinear characteristics. In this paper, extended Kalman filtering algorithm had been put forward in consideration of the nonlinear characteristic of the tire and was verified by the Carsim and Simulink joint simulation, such as the simulation on the wet cement road and the ice and snow road with double lane change. To test and verify the effect of extended Kalman filtering estimation algorithm, the real vehicle test was carried out on the limit test field. The experimental results show that the accuracy of vehicle sideslip angle acquired by extended Kalman filtering algorithm is obviously higher than that acquired by Kalman filtering in the area of the nonlinearity.

  17. Iterated unscented Kalman filter for phase unwrapping of interferometric fringes.

    Science.gov (United States)

    Xie, Xianming

    2016-08-22

    A fresh phase unwrapping algorithm based on iterated unscented Kalman filter is proposed to estimate unambiguous unwrapped phase of interferometric fringes. This method is the result of combining an iterated unscented Kalman filter with a robust phase gradient estimator based on amended matrix pencil model, and an efficient quality-guided strategy based on heap sort. The iterated unscented Kalman filter that is one of the most robust methods under the Bayesian theorem frame in non-linear signal processing so far, is applied to perform simultaneously noise suppression and phase unwrapping of interferometric fringes for the first time, which can simplify the complexity and the difficulty of pre-filtering procedure followed by phase unwrapping procedure, and even can remove the pre-filtering procedure. The robust phase gradient estimator is used to efficiently and accurately obtain phase gradient information from interferometric fringes, which is needed for the iterated unscented Kalman filtering phase unwrapping model. The efficient quality-guided strategy is able to ensure that the proposed method fast unwraps wrapped pixels along the path from the high-quality area to the low-quality area of wrapped phase images, which can greatly improve the efficiency of phase unwrapping. Results obtained from synthetic data and real data show that the proposed method can obtain better solutions with an acceptable time consumption, with respect to some of the most used algorithms.

  18. Low-Rank Kalman Filtering in Subsurface Contaminant Transport Models

    KAUST Repository

    El Gharamti, Mohamad

    2010-12-01

    Understanding the geology and the hydrology of the subsurface is important to model the fluid flow and the behavior of the contaminant. It is essential to have an accurate knowledge of the movement of the contaminants in the porous media in order to track them and later extract them from the aquifer. A two-dimensional flow model is studied and then applied on a linear contaminant transport model in the same porous medium. Because of possible different sources of uncertainties, the deterministic model by itself cannot give exact estimations for the future contaminant state. Incorporating observations in the model can guide it to the true state. This is usually done using the Kalman filter (KF) when the system is linear and the extended Kalman filter (EKF) when the system is nonlinear. To overcome the high computational cost required by the KF, we use the singular evolutive Kalman filter (SEKF) and the singular evolutive extended Kalman filter (SEEKF) approximations of the KF operating with low-rank covariance matrices. The SEKF can be implemented on large dimensional contaminant problems while the usage of the KF is not possible. Experimental results show that with perfect and imperfect models, the low rank filters can provide as much accurate estimates as the full KF but at much less computational cost. Localization can help the filter analysis as long as there are enough neighborhood data to the point being analyzed. Estimating the permeabilities of the aquifer is successfully tackled using both the EKF and the SEEKF.

  19. A LBL Positioning Method Based on Feedback Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jucheng Zhang

    2014-01-01

    Full Text Available LBL (Long Basic Line positioning is an important and high-precision method for underwater vehicle navigation. Due to its narrow work frequency-band, system would be easily affected by external factors and gave wrong results. A new Kalman filter model based on the feedback from travel time and position information was presented in this paper. By combining travel time with positioning in the Kalman filter, the navigation state of underwater vehicle was accurately estimated. Experimental results show that the influence of random high-frequency measurement noise on positioning results was effectively solved and the navigation precision was improved.

  20. An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors.

    Science.gov (United States)

    Foussier, Jerome; Teichmann, Daniel; Jia, Jing; Misgeld, Berno; Leonhardt, Steffen

    2014-05-09

    Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes. We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case. Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min(-1) (0.3 min(-1)) and -0.7 bpm (1.7 bpm) (compared to -0.2 min(-1) (0.4 min(-1)) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average total computational time needed

  1. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Chien-Hao Tseng

    2016-07-01

    Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.

  2. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    Science.gov (United States)

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  3. Parallelized unscented Kalman filters for carrier recovery in coherent optical communication.

    Science.gov (United States)

    Jignesh, Jokhakar; Corcoran, Bill; Lowery, Arthur

    2016-07-15

    We show that unscented Kalman filters can be used to mitigate local oscillator phase noise and to compensate carrier frequency offset in coherent single-carrier optical communication systems. A parallel processing architecture implementing the unscented Kalman filter is proposed, improving upon a previous parallelized linear Kalman filter (LKF) implementation.

  4. Improving Artificial eural etwork Forecasts with Kalman Filtering

    African Journals Online (AJOL)

    Nafiisah

    In this paper, we show that the post-processing of forecasts produced by an artificial neural networks (ANN) model ... model and the numerical method used for fitting the model and computing the forecasts. Faraway et al. (1998) ..... linear Kalman filters to numerical weather predictions', Annales Geophysicae, Vol. 24, pp.

  5. Improving Artificial Neural Network Forecasts with Kalman Filtering ...

    African Journals Online (AJOL)

    In this paper, we examine the use of the artificial neural network method as a forecasting technique in financial time series and the application of a Kalman filter algorithm to improve the accuracy of the model. Forecasting accuracy criteria are used to compare the two models over different set of data from different companies ...

  6. Implementation of extended Kalman filter-based simultaneous ...

    Indian Academy of Sciences (India)

    Manigandan Nagarajan Santhanakrishnan

    2017-07-03

    Jul 3, 2017 ... Abstract. The implementation of extended Kalman filter-based simultaneous localization and mapping is challenging as the associated system state and covariance matrices along with the memory requirements become significantly large as the information space increases. Unique and consistent point ...

  7. HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.

    Science.gov (United States)

    Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee

    2017-08-01

    Epilepsy forecasting has been extensively studied using high-order time series obtained from scalp-recorded electroencephalography (EEG). An accurate seizure prediction system would not only help significantly improve patients' quality of life, but would also facilitate new therapeutic strategies to manage epilepsy. This paper thus proposes an improved Kalman Filter (KF) algorithm to mine seizure forecasts from neural activity by modeling three properties in the high-order EEG time series: noise, temporal smoothness, and tensor structure. The proposed High-Order Kalman Filter (HOKF) is an extension of the standard Kalman filter, for which higher-order modeling is limited. The efficient dynamic of HOKF system preserves the tensor structure of the observations and latent states. As such, the proposed method offers two main advantages: (i) effectiveness with HOKF results in hidden variables that capture major evolving trends suitable to predict neural activity, even in the presence of missing values; and (ii) scalability in that the wall clock time of the HOKF is linear with respect to the number of time-slices of the sequence. The HOKF algorithm is examined in terms of its effectiveness and scalability by conducting forecasting and scalability experiments with a real epilepsy EEG dataset. The results of the simulation demonstrate the superiority of the proposed method over the original Kalman Filter and other existing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Predicting breeding values in animals by kalman filter

    DEFF Research Database (Denmark)

    Karacaören, Burak; Janss, Luc; Kadarmideen, Haja

    2012-01-01

    The aim of this study was to investigate usefulness of Kalman Filter (KF) Random Walk methodology (KF-RW) for prediction of breeding values in animals. We used body condition score (BCS) from dairy cattle for illustrating use of KF-RW. BCS was measured by Swiss Holstein Breeding Association during...

  9. Adaptive Unscented Kalman Filter using Maximum Likelihood Estimation

    DEFF Research Database (Denmark)

    Mahmoudi, Zeinab; Poulsen, Niels Kjølstad; Madsen, Henrik

    2017-01-01

    The purpose of this study is to develop an adaptive unscented Kalman filter (UKF) by tuning the measurement noise covariance. We use the maximum likelihood estimation (MLE) and the covariance matching (CM) method to estimate the noise covariance. The multi-step prediction errors generated...

  10. Forecasting with the Standardized Self-Perturbed Kalman Filter

    DEFF Research Database (Denmark)

    Grassi, Stefano; Nonejad, Nima; Santucci de Magistris, Paolo

    We propose and study the finite-sample properties of a modified version of the self-perturbed Kalman filter of Park and Jun (1992) for the on-line estimation of models subject to parameter instability. The perturbation term in the updating equation of the state covariance matrix is now weighted b...

  11. On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles

    KAUST Repository

    Luo, Xiaodong

    2010-09-19

    The ensemble square root filter (EnSRF) [1, 2, 3, 4] is a popular method for data assimilation in high dimensional systems (e.g., geophysics models). Essentially the EnSRF is a Monte Carlo implementation of the conventional Kalman filter (KF) [5, 6]. It is mainly different from the KF at the prediction steps, where it is some ensembles, rather then the means and covariance matrices, of the system state that are propagated forward. In doing this, the EnSRF is computationally more efficient than the KF, since propagating a covariance matrix forward in high dimensional systems is prohibitively expensive. In addition, the EnSRF is also very convenient in implementation. By propagating the ensembles of the system state, the EnSRF can be directly applied to nonlinear systems without any change in comparison to the assimilation procedures in linear systems. However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].

  12. Parameter sensitivity of three Kalman Filter Schemes for the assimilation of tide guage data in coastal and self sea models

    DEFF Research Database (Denmark)

    Sørensen, Jacob Viborg Tornfeldt; Madsen, Henrik; Madsen, H.

    2006-01-01

    sensitivity study of three well known Kalman filter approaches for the assimilation of water levels in a three dimensional hydrodynamic modelling system. The filters considered are the ensemble Kalman filter (EnKF), the reduced rank square root Kalman filter (RRSQRT) and the steady Kalman filter...

  13. Ensemble Kalman filtering without the intrinsic need for inflation

    Directory of Open Access Journals (Sweden)

    M. Bocquet

    2011-10-01

    Full Text Available The main intrinsic source of error in the ensemble Kalman filter (EnKF is sampling error. External sources of error, such as model error or deviations from Gaussianity, depend on the dynamical properties of the model. Sampling errors can lead to instability of the filter which, as a consequence, often requires inflation and localization. The goal of this article is to derive an ensemble Kalman filter which is less sensitive to sampling errors. A prior probability density function conditional on the forecast ensemble is derived using Bayesian principles. Even though this prior is built upon the assumption that the ensemble is Gaussian-distributed, it is different from the Gaussian probability density function defined by the empirical mean and the empirical error covariance matrix of the ensemble, which is implicitly used in traditional EnKFs. This new prior generates a new class of ensemble Kalman filters, called finite-size ensemble Kalman filter (EnKF-N. One deterministic variant, the finite-size ensemble transform Kalman filter (ETKF-N, is derived. It is tested on the Lorenz '63 and Lorenz '95 models. In this context, ETKF-N is shown to be stable without inflation for ensemble size greater than the model unstable subspace dimension, at the same numerical cost as the ensemble transform Kalman filter (ETKF. One variant of ETKF-N seems to systematically outperform the ETKF with optimally tuned inflation. However it is shown that ETKF-N does not account for all sampling errors, and necessitates localization like any EnKF, whenever the ensemble size is too small. In order to explore the need for inflation in this small ensemble size regime, a local version of the new class of filters is defined (LETKF-N and tested on the Lorenz '95 toy model. Whatever the size of the ensemble, the filter is stable. Its performance without inflation is slightly inferior to that of LETKF with optimally tuned inflation for small interval between updates, and

  14. Adaptive ensemble Kalman filtering of non-linear systems

    Directory of Open Access Journals (Sweden)

    Tyrus Berry

    2013-07-01

    Full Text Available A necessary ingredient of an ensemble Kalman filter (EnKF is covariance inflation, used to control filter divergence and compensate for model error. There is an on-going search for inflation tunings that can be learned adaptively. Early in the development of Kalman filtering, Mehra (1970, 1972 enabled adaptivity in the context of linear dynamics with white noise model errors by showing how to estimate the model error and observation covariances. We propose an adaptive scheme, based on lifting Mehra's idea to the non-linear case, that recovers the model error and observation noise covariances in simple cases, and in more complicated cases, results in a natural additive inflation that improves state estimation. It can be incorporated into non-linear filters such as the extended Kalman filter (EKF, the EnKF and their localised versions. We test the adaptive EnKF on a 40-dimensional Lorenz96 model and show the significant improvements in state estimation that are possible. We also discuss the extent to which such an adaptive filter can compensate for model error, and demonstrate the use of localisation to reduce ensemble sizes for large problems.

  15. COMPARATIVE STUDY OF MAXIMUM POWER POINT TRACKING USING LINEAR KALMAN FILTER & UNSCENTED KALMAN FILTER FOR SOLAR PHOTOVOLTAIC ARRAY ON FIELD PROGRAMMABLE GATE ARRAY

    OpenAIRE

    Ramchandani, Varun; Pamarthi, Kranthi; Chowdhury, Shubhajit Roy

    2012-01-01

    The paper proposes comparative study of Field Programmable Gate Array implementation of 2 closely related approaches to track maximum power point of a solar photovoltaic array. The current work uses 2 versions of kalman filter viz. linear kalman filter and unscented kalman filter to track maximum power point. Using either of these approach the maximum power point tracking (MPPT) becomes much faster than using the conventional Perturb & Observe approach specifically in case of sudden weather c...

  16. GPS/UWB/MEMS-IMU tightly coupled navigation with improved robust Kalman filter

    Science.gov (United States)

    Li, Zengke; Chang, Guobin; Gao, Jingxiang; Wang, Jian; Hernandez, Alberto

    2016-12-01

    The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been very intensively developed and widely applied in multiple areas. To further enhance the reliability and availability of GPS/INS integrated navigation in GPS challenging environment, range observation through ultra-wideband (UWB) is introduced in GPS/INS tightly coupled navigation. An improved robust Kalman filter is proposed and used to resist the influence of gross error from UWB observation in GPS/UWB/IMU tightly coupled navigation. The variance of the squared Mahalanobis distance in moving window is calculated, which brings as new judgement factor for gross errors in order to decrease the rate of false outlier identification. A simulation analysis shows that the improved robust Kalman filter is able to correctly identify gross errors and the rate of false judgment as zero. In order to validate the new robust filter, a real experiment is conducted. The results indicate that the improved robust Kalman filter used in GPS/UWB/INS tightly coupled navigation is able to remove the harmful effect of gross error in UWB observation. It clearly illustrates that the improved robust Kalman filter is very effective, and all the simulated small and large gross errors added to UWB distance observation are successfully identified.

  17. Star spot location estimation using Kalman filter for star tracker.

    Science.gov (United States)

    Liu, Hai-bo; Yang, Jian-kun; Wang, Jiong-qi; Tan, Ji-chun; Li, Xiu-jian

    2011-04-20

    Star pattern recognition and attitude determination accuracy is highly dependent on star spot location accuracy for the star tracker. A star spot location estimation approach with the Kalman filter for a star tracker has been proposed, which consists of three steps. In the proposed approach, the approximate locations of the star spots in successive frames are predicted first; then the measurement star spot locations are achieved by defining a series of small windows around each predictive star spot location. Finally, the star spot locations are updated by the designed Kalman filter. To confirm the proposed star spot location estimation approach, the simulations based on the orbit data of the CHAMP satellite and the real guide star catalog are performed. The simulation results indicate that the proposed approach can filter out noises from the measurements remarkably if the sampling frequency is sufficient. © 2011 Optical Society of America

  18. Weighted ensemble transform Kalman filter for image assimilation

    Directory of Open Access Journals (Sweden)

    Sebastien Beyou

    2013-01-01

    Full Text Available This study proposes an extension of the Weighted Ensemble Kalman filter (WEnKF proposed by Papadakis et al. (2010 for the assimilation of image observations. The main focus of this study is on a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF, incorporating directly as a measurement model a non-linear image reconstruction criterion. This technique has been compared to the original WEnKF on numerical and real world data of 2-D turbulence observed through the transport of a passive scalar. In particular, it has been applied for the reconstruction of oceanic surface current vorticity fields from sea surface temperature (SST satellite data. This latter technique enables a consistent recovery along time of oceanic surface currents and vorticity maps in presence of large missing data areas and strong noise.

  19. Observation Quality Control with a Robust Ensemble Kalman Filter

    KAUST Repository

    Roh, Soojin

    2013-12-01

    Current ensemble-based Kalman filter (EnKF) algorithms are not robust to gross observation errors caused by technical or human errors during the data collection process. In this paper, the authors consider two types of gross observational errors, additive statistical outliers and innovation outliers, and introduce a method to make EnKF robust to gross observation errors. Using both a one-dimensional linear system of dynamics and a 40-variable Lorenz model, the performance of the proposed robust ensemble Kalman filter (REnKF) was tested and it was found that the new approach greatly improves the performance of the filter in the presence of gross observation errors and leads to only a modest loss of accuracy with clean, outlier-free, observations.

  20. Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter

    KAUST Repository

    Luo, Xiaodong

    2011-12-01

    A robust ensemble filtering scheme based on the H∞ filtering theory is proposed. The optimal H∞ filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used in the Kalman filter. By design, the H∞ filter is more robust than the Kalman filter, in the sense that the estimation error in the H∞ filter in general has a finite growth rate with respect to the uncertainties in assimilation, except for a special case that corresponds to the Kalman filter. The original form of the H∞ filter contains global constraints in time, which may be inconvenient for sequential data assimilation problems. Therefore a variant is introduced that solves some time-local constraints instead, and hence it is called the time-local H∞ filter (TLHF). By analogy to the ensemble Kalman filter (EnKF), the concept of ensemble time-local H∞ filter (EnTLHF) is also proposed. The general form of the EnTLHF is outlined, and some of its special cases are discussed. In particular, it is shown that an EnKF with certain covariance inflation is essentially an EnTLHF. In this sense, the EnTLHF provides a general framework for conducting covariance inflation in the EnKF-based methods. Some numerical examples are used to assess the relative robustness of the TLHF–EnTLHF in comparison with the corresponding KF–EnKF method.

  1. A Novel Robust Interval Kalman Filter Algorithm for GPS/INS Integrated Navigation

    Directory of Open Access Journals (Sweden)

    Chen Jiang

    2016-01-01

    Full Text Available Kalman filter is widely applied in data fusion of dynamic systems under the assumption that the system and measurement noises are Gaussian distributed. In literature, the interval Kalman filter was proposed aiming at controlling the influences of the system model uncertainties. The robust Kalman filter has also been proposed to control the effects of outliers. In this paper, a new interval Kalman filter algorithm is proposed by integrating the robust estimation and the interval Kalman filter in which the system noise and the observation noise terms are considered simultaneously. The noise data reduction and the robust estimation methods are both introduced into the proposed interval Kalman filter algorithm. The new algorithm is equal to the standard Kalman filter in terms of computation, but superior for managing with outliers. The advantage of the proposed algorithm is demonstrated experimentally using the integrated navigation of Global Positioning System (GPS and the Inertial Navigation System (INS.

  2. Orchard navigation using derivative free Kalman filtering

    DEFF Research Database (Denmark)

    Hansen, Søren; Bayramoglu, Enis; Andersen, Jens Christian

    2011-01-01

    This paper describes the use of derivative free filters for mobile robot localization and navigation in an orchard. The localization algorithm fuses odometry and gyro measurements with line features representing the surrounding fruit trees of the orchard. The line features are created on basis of 2......D laser scanner data by a least square algorithm. The three derivative free filters are compared to an EKF based localization method on a typical run covering four rows in the orchard. The Matlab R toolbox Kalmtool is used for easy switching between different filter implementations without the need...

  3. Series load induction heating inverter state estimator using Kalman filter

    Directory of Open Access Journals (Sweden)

    Szelitzky T.

    2011-12-01

    Full Text Available LQR and H2 controllers require access to the states of the controlled system. The method based on description function with Fourier series results in a model with immeasurable states. For this reason, we proposed a Kalman filter based state estimator, which not only filters the input signals, but also computes the unobservable states of the system. The algorithm of the filter was implemented in LabVIEW v8.6 and tested on recorded data obtained from a 10-40 kHz series load frequency controlled induction heating inverter.

  4. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  5. Bayesian fault detection and isolation using Field Kalman Filter

    Science.gov (United States)

    Baranowski, Jerzy; Bania, Piotr; Prasad, Indrajeet; Cong, Tian

    2017-12-01

    Fault detection and isolation is crucial for the efficient operation and safety of any industrial process. There is a variety of methods from all areas of data analysis employed to solve this kind of task, such as Bayesian reasoning and Kalman filter. In this paper, the authors use a discrete Field Kalman Filter (FKF) to detect and recognize faulty conditions in a system. The proposed approach, devised for stochastic linear systems, allows for analysis of faults that can be expressed both as parameter and disturbance variations. This approach is formulated for the situations when the fault catalog is known, resulting in the algorithm allowing estimation of probability values. Additionally, a variant of algorithm with greater numerical robustness is presented, based on computation of logarithmic odds. Proposed algorithm operation is illustrated with numerical examples, and both its merits and limitations are critically discussed and compared with traditional EKF.

  6. On Kalman Filtering With Nonlinear Equality Constraints

    Science.gov (United States)

    2007-06-01

    1)). The filter is updated with the observation to give the unconstrained estimate x̂ ( kjk ). The constraint is applied to give the final estimate x̂... kjk ). II. PROBLEM STATEMENT We seek the minimum-mean squared error estimate of the state vector of the nonlinear discrete time system where is the

  7. Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Li Guangxu

    2015-01-01

    Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.

  8. SUBSTANTIATION OF THE PUBLIC DEBT SUSTAINABILITY USING KALMAN FILTER

    Directory of Open Access Journals (Sweden)

    Bolos Marcel

    2011-12-01

    Full Text Available Global economic conditions have pushed many countries into the delicate situation of contracting foreign loans, leading overnight at alarming volumes of public debt. The need for control and relevant analysis for the sustainability of a country's public debt has led us to use the Kalman filter in predicting future values of the key indicators of public debt. The development of a mathematical model of analysis for public services and the budget deficit was necessary to objectively assess the level of the public debt sustainability.Knowing future values of the public debt or the future evolutions of the revenues for the operational budget, offers the posibility of a better handling of the operational expenditures and finally a better balance for the public budget deficit.Using the mathematical mechanism of Kalman filters implemented in Matlab programming language, we generated the estimated future values of the proposed model proposed and key indicators, the results confirming the fears of a low public debt sustainability for Romania.We predicted the future values for the debt service, the public external debt and the operational public revenues,expenditures and deficit, and compared them, to obtain an image of the future evolution and position of the sustainability of the public debt. The work in this paper is an innovative one for the public science sector, and the results obtained are promising for future researches. The values estimated by the Kalman filter are an orientation for the future public policies, and indicate a rather stable but negative evolution for the public debt service. The sustainability of the public debt depends on the decisions taken for the correction of the estimated values, in changing the negative evolution of the budgetary indicators into a positive one.Taking all this into consideration we will conclude that the mathematical mecanism of the Kalman filters offers valuable informations for Government and future

  9. Relationship between Allan variances and Kalman Filter parameters

    Science.gov (United States)

    Vandierendonck, A. J.; Mcgraw, J. B.; Brown, R. G.

    1984-01-01

    A relationship was constructed between the Allan variance parameters (H sub z, H sub 1, H sub 0, H sub -1 and H sub -2) and a Kalman Filter model that would be used to estimate and predict clock phase, frequency and frequency drift. To start with the meaning of those Allan Variance parameters and how they are arrived at for a given frequency source is reviewed. Although a subset of these parameters is arrived at by measuring phase as a function of time rather than as a spectral density, they all represent phase noise spectral density coefficients, though not necessarily that of a rational spectral density. The phase noise spectral density is then transformed into a time domain covariance model which can then be used to derive the Kalman Filter model parameters. Simulation results of that covariance model are presented and compared to clock uncertainties predicted by Allan variance parameters. A two state Kalman Filter model is then derived and the significance of each state is explained.

  10. A COMPARISON OF TWO METHODS FADING MEMORY FILTER AND ADAPTIVE KALMAN FILTER IN MONITORING CRUSTAL MOVEMENT

    Directory of Open Access Journals (Sweden)

    Cahit Tağı ÇELİK

    2004-01-01

    Full Text Available Monitoring the Crustal Movement in Geodesy is performed by the deformation survey and analysis. If monitoring the crustal movements involves more than two epochs of survey campaign then from the plate tectonic theory, stations do not move randomly from one epoch to the other, therefore Kalman Filter may be suitable to use. However, if sudden movements happened in the crust in particular earthquake happened, the crust moves very fast in a very short period of time. When Kalman Filter used for monitoring these movements, from associated epoch, for a number of epochs the results may be biased. In the paper, comparison of two methods for elimination of the above mentioned biases have been performed. These methods are Fading Memory Filter and Adaptive Kalman Filter for an unknown bias.

  11. Applications of Kalman Filtering to nuclear material control. [Kalman filtering and linear smoothing for detecting nuclear material losses

    Energy Technology Data Exchange (ETDEWEB)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.

  12. Data assimilation the ensemble Kalman filter

    CERN Document Server

    Evensen, Geir

    2007-01-01

    Data Assimilation comprehensively covers data assimilation and inverse methods, including both traditional state estimation and parameter estimation. This text and reference focuses on various popular data assimilation methods, such as weak and strong constraint variational methods and ensemble filters and smoothers. It is demonstrated how the different methods can be derived from a common theoretical basis, as well as how they differ and/or are related to each other, and which properties characterize them, using several examples. Rather than emphasize a particular discipline such as oceanography or meteorology, it presents the mathematical framework and derivations in a way which is common for any discipline where dynamics is merged with measurements. The mathematics level is modest, although it requires knowledge of basic spatial statistics, Bayesian statistics, and calculus of variations. Readers will also appreciate the introduction to the mathematical methods used and detailed derivations, which should b...

  13. Mean-field Ensemble Kalman Filter

    KAUST Repository

    Law, Kody

    2015-01-07

    A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for d < 2 . The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  14. Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability

    Science.gov (United States)

    Kar, Soummya; Moura, José M. F.

    2011-04-01

    The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.

  15. The Ensemble Kalman filter: a signal processing perspective

    Science.gov (United States)

    Roth, Michael; Hendeby, Gustaf; Fritsche, Carsten; Gustafsson, Fredrik

    2017-12-01

    The ensemble Kalman filter (EnKF) is a Monte Carlo-based implementation of the Kalman filter (KF) for extremely high-dimensional, possibly nonlinear, and non-Gaussian state estimation problems. Its ability to handle state dimensions in the order of millions has made the EnKF a popular algorithm in different geoscientific disciplines. Despite a similarly vital need for scalable algorithms in signal processing, e.g., to make sense of the ever increasing amount of sensor data, the EnKF is hardly discussed in our field. This self-contained review is aimed at signal processing researchers and provides all the knowledge to get started with the EnKF. The algorithm is derived in a KF framework, without the often encountered geoscientific terminology. Algorithmic challenges and required extensions of the EnKF are provided, as well as relations to sigma point KF and particle filters. The relevant EnKF literature is summarized in an extensive survey and unique simulation examples, including popular benchmark problems, complement the theory with practical insights. The signal processing perspective highlights new directions of research and facilitates the exchange of potentially beneficial ideas, both for the EnKF and high-dimensional nonlinear and non-Gaussian filtering in general.

  16. Unscented Kalman filters for polarization state tracking and phase noise mitigation.

    Science.gov (United States)

    Jignesh, Jokhakar; Corcoran, Bill; Zhu, Chen; Lowery, Arthur

    2016-09-19

    Simultaneous polarization and phase noise tracking and compensation is proposed based on an unscented Kalman filter (UKF). We experimentally demonstrate the tracking under noise-loading and after 800-km single-mode fiber transmission with 20-Gbaud QPSK and 16-QAM signals. These experiments show that the proposed UKF outperforms both conventional blind tracing algorithms and a previously proposed extended Kalman filter, at the cost of higher complexity. Additionally, we propose and test modified Kalman filter algorithms to reduce computational complexity.

  17. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    OpenAIRE

    Gerasimos G. Rigatos; Pierluigi Siano

    2011-01-01

    The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vec...

  18. Applying Kalman filtering to investigate tropospheric effects in VLBI

    Science.gov (United States)

    Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Heinkelmann, Robert; Liu, Li; Lu, Cuixian; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald

    2014-05-01

    Very Long Baseline Interferometry (VLBI) currently provides results, e.g., estimates of the tropospheric delays, with a delay of more than two weeks. In the future, with the coming VLBI2010 Global Observing System (VGOS) and increased usage of electronic data transfer, it is planned that the time between observations and results is decreased. This may, for instance, allow the integration of VLBI-derived tropospheric delays into numerical weather prediction models. Therefore, future VLBI analysis software packages need to be able to process the observational data autonomously in near real-time. For this purpose, we have extended the Vienna VLBI Software (VieVS) by a Kalman filter module. This presentation describes the filter and discusses its application for tropospheric studies. Instead of estimating zenith wet delays as piece-wise linear functions in a least-squares adjustment, the Kalman filter allows for more sophisticated stochastic modeling. We start with a random walk process to model the time-dependent behavior of the zenith wet delays. Other possible approaches include the stochastic model described by turbulence theory, e.g. the model by Treuhaft and Lanyi (1987). Different variance-covariance matrices of the prediction error, depending on the time of the year and the geographic latitude, have been tested. In winter and closer to the poles, lower variances and covariances are appropriate. The horizontal variations in tropospheric delays have been investigated by comparing three different strategies: assumption of a horizontally stratified troposphere, using north and south gradients modeled, e.g., as Gauss-Markov processes, and applying a turbulence model assuming correlations between observations in different azimuths. By conducting Monte-Carlo simulations of current standard VLBI networks and of future VGOS networks, the different tropospheric modeling strategies are investigated. For this purpose, we use the simulator module of VieVS which takes into

  19. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  20. Kalman Filter Estimation of Spinning Spacecraft Attitude using Markley Variables

    Science.gov (United States)

    Sedlak, Joseph E.; Harman, Richard

    2004-01-01

    There are several different ways to represent spacecraft attitude and its time rate of change. For spinning or momentum-biased spacecraft, one particular representation has been put forward as a superior parameterization for numerical integration. Markley has demonstrated that these new variables have fewer rapidly varying elements for spinning spacecraft than other commonly used representations and provide advantages when integrating the equations of motion. The current work demonstrates how a Kalman filter can be devised to estimate the attitude using these new variables. The seven Markley variables are subject to one constraint condition, making the error covariance matrix singular. The filter design presented here explicitly accounts for this constraint by using a six-component error state in the filter update step. The reduced dimension error state is unconstrained and its covariance matrix is nonsingular.

  1. An Adjoint-Based Adaptive Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2013-10-01

    A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

  2. Local Ensemble Kalman Particle Filters for efficient data assimilation

    CERN Document Server

    Robert, Sylvain

    2016-01-01

    Ensemble methods such as the Ensemble Kalman Filter (EnKF) are widely used for data assimilation in large-scale geophysical applications, as for example in numerical weather prediction (NWP). There is a growing interest for physical models with higher and higher resolution, which brings new challenges for data assimilation techniques because of the presence of non-linear and non-Gaussian features that are not adequately treated by the EnKF. We propose two new localized algorithms based on the Ensemble Kalman Particle Filter (EnKPF), a hybrid method combining the EnKF and the Particle Filter (PF) in a way that maintains scalability and sample diversity. Localization is a key element of the success of EnKFs in practice, but it is much more challenging to apply to PFs. The algorithms that we introduce in the present paper provide a compromise between the EnKF and the PF while avoiding some of the problems of localization for pure PFs. Numerical experiments with a simplified model of cumulus convection based on a...

  3. Extracting Steady State Components from Synchrophasor Data Using Kalman Filters

    Directory of Open Access Journals (Sweden)

    Farhan Mahmood

    2016-04-01

    Full Text Available Data from phasor measurement units (PMUs may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.

  4. Data assimilation in the early phase: Kalman filtering RIMPUFF

    DEFF Research Database (Denmark)

    Astrup, P.; Turcanu, C.; Puch, R.O.

    2004-01-01

    In the framework of the DAONEM project (Data Assimilation for Off-site Nuclear Emergency Management), a data assimilation module, ADUM (Atmospheric Dispersion Updating Module), for the mesoscale atmospheric dispersion program RIMPUFF (Risø Mesoscale Puffmodel) – part of the early-phase programs...... of RODOS (Realtime Online DecisiOn Support system for nuclear emergencies) – has been developed. It is built on the Kalman filtering algorithm and it assimilates 10-minute averaged gamma dose rates measured atground level stations. Since the gamma rates are non-linear functions of the state vector...

  5. Adaptive training of feedforward neural networks by Kalman filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-02-01

    Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).

  6. Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario

    Science.gov (United States)

    Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell

    2010-01-01

    Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.

  7. Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second...

  8. Direct and accelerated parameter mapping using the unscented Kalman filter.

    Science.gov (United States)

    Zhao, Li; Feng, Xue; Meyer, Craig H

    2016-05-01

    To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.

  9. Ensemble Kalman filter data assimilation for the MPAS system

    Science.gov (United States)

    Ha, Soyoung; Snyder, Chris

    2015-04-01

    The Model for Prediction Across Scales (MPAS; http://mpas-dev.github.io/) is a global non-hydrostatic numerical atmospheric model based on unstructured centroidal Voronoi meshes that allow both uniform and variable resolutions. The variable resolution allows locally high-resolution meshes that transition smoothly to coarser resolution over the rest of the globe, avoiding the need to drive a limited-area model with lateral boundary conditions from a separate global model. The nonhydrostatic MPAS solver (for both atmospheric and oceanic components) is now coupled to the Data Assimilation Research Testbed (DART; http://www.image.ucar.edu/ DAReS/DART) system with a full capability of ensemble Kalman filter data assimilation. The analysis/forecast cycling experiments using MPAS/DART is successfully tested with real observations for different retrospective cases. Assimilated observations are all conventional data as well as satellite winds and GPS radio occultation refractivity data. Testing on different grid mesh, we examine issues specific to the MPAS grid, such as smoothing in the interpolation and the update of horizontal wind fields, and show their impact on the Ensemble Kalman Filter (EnKF) analysis and the following short-range forecast. Up to 5-day forecasts for a month-long cycle period are verified against observations and compared to the NCEP GFS (Global Forecast System) forecasts.

  10. ERP Estimation using a Kalman Filter in VLBI

    Science.gov (United States)

    Karbon, M.; Soja, B.; Nilsson, T.; Heinkelmann, R.; Liu, L.; Lu, C.; Mora-Diaz, J. A.; Raposo-Pulido, V.; Xu, M.; Schuh, H.

    2014-12-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques, providing the full set of Earth Orientation Parameters (EOP), and it is unique for observing long term Universal Time (UT1). For applications such as satellite-based navigation and positioning, accurate and continuous ERP obtained in near real-time are essential. They also allow the precise tracking of interplanetary spacecraft. One of the goals of VGOS (VLBI Global Observing System) is to provide such near real-time ERP. With the launch of this next generation VLBI system, the International VLBI Service for Geodesy and Astrometry (IVS) increased its efforts not only to reach 1 mm accuracy on a global scale but also to reduce the time span between the collection of VLBI observations and the availability of the final results substantially. Project VLBI-ART contributes to these objectives by implementing an elaborate Kalman filter, which represents a perfect tool for analyzing VLBI data in quasi real-time. The goal is to implement it in the GFZ version of the Vienna VLBI Software (VieVS) as a completely automated tool, i.e., with no need for human interaction. Here we present the methodology and first results of Kalman filtered EOP from VLBI data.

  11. Method for Improving Indoor Positioning Accuracy Using Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Seoung-Hyeon Lee

    2016-01-01

    Full Text Available Beacons using bluetooth low-energy (BLE technology have emerged as a new paradigm of indoor positioning service (IPS because of their advantages such as low power consumption, miniaturization, wide signal range, and low cost. However, the beacon performance is poor in terms of the indoor positioning accuracy because of noise, motion, and fading, all of which are characteristics of a bluetooth signal and depend on the installation location. Therefore, it is necessary to improve the accuracy of beacon-based indoor positioning technology by fusing it with existing indoor positioning technology, which uses Wi-Fi, ZigBee, and so forth. This study proposes a beacon-based indoor positioning method using an extended Kalman filter that recursively processes input data including noise. After defining the movement of a smartphone on a flat two-dimensional surface, it was assumed that the beacon signal is nonlinear. Then, the standard deviation and properties of the beacon signal were analyzed. According to the analysis results, an extended Kalman filter was designed and the accuracy of the smartphone’s indoor position was analyzed through simulations and tests. The proposed technique achieved good indoor positioning accuracy, with errors of 0.26 m and 0.28 m from the average x- and y-coordinates, respectively, based solely on the beacon signal.

  12. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...... numbers and spatial distributions of groundwater head observations and with or without discharge assimilation and parameter estimation. The study shows that (1) more ensemble members are needed when fewer groundwater head observations are assimilated, and (2) assimilating discharge observations...... and estimating parameters requires a much larger ensemble size than just assimilating groundwater head observations. However, the required ensemble size can be greatly reduced with the use of adaptive localization, which by far outperforms distance-based localization. The study is conducted using synthetic data...

  13. Autonomous underwater vehicle motion tracking using a Kalman Filter for sensor fusion

    CSIR Research Space (South Africa)

    Holtzhausen, S

    2008-01-01

    Full Text Available it will be shown how a Kalman Filter is used to estimate the position of an autonomous vehicle in a three dimensional space. The Kalman filter is used to estimate movement and position using measurements from multiple sensors...

  14. Autonomous underwater vehicle motion tracking using a Kalman filter for sensor fusion

    CSIR Research Space (South Africa)

    Holtzhausen, S

    2008-11-01

    Full Text Available it will be shown how a Kalman Filter is used to estimate the position of an autonomous vehicle in a three dimensional space. The Kalman filter is used to estimate movement and position using measurements from multiple sensors...

  15. Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.

    Science.gov (United States)

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  16. Kalman filter for statistical monitoring of forest cover across sub-continental regions

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a multivariate generalization of the composite estimator which recursively combines a current direct estimate with a past estimate that is updated for expected change over time with a prediction model. The Kalman filter can estimate proportions of different cover types for sub-continental regions each year. A random sample of high-resolution...

  17. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor

  18. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    Directory of Open Access Journals (Sweden)

    Min Chul Kim

    2011-10-01

    Full Text Available Recently, the range of available Radio Frequency Identification (RFID tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less Mean Squared Error (MSE than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  19. Kalman Filter for Calibrating a Telescope Focal Plane

    Science.gov (United States)

    Kang, Bryan; Bayard, David

    2006-01-01

    The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.

  20. On a nonlinear Kalman filter with simplified divided difference approximation

    KAUST Repository

    Luo, Xiaodong

    2012-03-01

    We present a new ensemble-based approach that handles nonlinearity based on a simplified divided difference approximation through Stirling\\'s interpolation formula, which is hence called the simplified divided difference filter (sDDF). The sDDF uses Stirling\\'s interpolation formula to evaluate the statistics of the background ensemble during the prediction step, while at the filtering step the sDDF employs the formulae in an ensemble square root filter (EnSRF) to update the background to the analysis. In this sense, the sDDF is a hybrid of Stirling\\'s interpolation formula and the EnSRF method, while the computational cost of the sDDF is less than that of the EnSRF. Numerical comparison between the sDDF and the EnSRF, with the ensemble transform Kalman filter (ETKF) as the representative, is conducted. The experiment results suggest that the sDDF outperforms the ETKF with a relatively large ensemble size, and thus is a good candidate for data assimilation in systems with moderate dimensions. © 2011 Elsevier B.V. All rights reserved.

  1. Using Kalman Filters to Reduce Noise from RFID Location System

    Directory of Open Access Journals (Sweden)

    Pedro Henriques Abreu

    2014-01-01

    Full Text Available Nowadays, there are many technologies that support location systems involving intrusive and nonintrusive equipment and also varying in terms of precision, range, and cost. However, the developers some time neglect the noise introduced by these systems, which prevents these systems from reaching their full potential. Focused on this problem, in this research work a comparison study between three different filters was performed in order to reduce the noise introduced by a location system based on RFID UWB technology with an associated error of approximately 18 cm. To achieve this goal, a set of experiments was devised and executed using a miniature train moving at constant velocity in a scenario with two distinct shapes—linear and oval. Also, this train was equipped with a varying number of active tags. The obtained results proved that the Kalman Filter achieved better results when compared to the other two filters. Also, this filter increases the performance of the location system by 15% and 12% for the linear and oval paths respectively, when using one tag. For a multiple tags and oval shape similar results were obtained (11–13% of improvement.

  2. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    Science.gov (United States)

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  3. Kalman Filter Techniques for Control of Repeated Economic Surveys.

    Science.gov (United States)

    1980-09-30

    jlk) , for T=1,2,...,T m~ max ho tweoen aurvco, (k+jjk) =x( kjk ) , for k=T,2T,... , and j=l,...,T (4) (:(k+jlk) = C(klk) + jQ at EUrveyr’ x( kjk ) = x...klk-T) + K(k) [y(k)- ( kjk -T)] (5) C(klk) = [I- K(k)] C( kjk -T) where K(k) is the Kalman gain K(k) = C( kjk -T) [C(klk-T)+B(k)]- (6) and B(k) is the sample...the error variance equations in the optimal filter theorem for the scalar case of Model A: N (k+jlk) = N 0 ( kjk ) [1 + jQR -I N (klk)]- N0 (kfk) = nd(k

  4. Dynamic Mode Decomposition based on Kalman Filter for Parameter Estimation

    Science.gov (United States)

    Shibata, Hisaichi; Nonomura, Taku; Takaki, Ryoji

    2017-11-01

    With the development of computational fluid dynamics, large-scale data can now be obtained. In order to model physical phenomena from such data, it is required to extract features of flow field. Dynamic mode decomposition (DMD) is a method which meets the request. DMD can compute dominant eigenmodes of flow field by approximating system matrix. From this point of view, DMD can be considered as parameter estimation of system matrix. To estimate such parameters, we propose a novel method based on Kalman filter. Our numerical experiments indicated that the proposed method can estimate the parameters more accurately if it is compared with standard DMD methods. With this method, it is also possible to improve the parameter estimation accuracy if characteristics of noise acting on the system is given.

  5. Kalman Filter Track Fits and Track Breakpoint Analysis

    CERN Document Server

    Astier, Pierre; Cousins, R D; Letessier-Selvon, A A; Popov, B A; Vinogradova, T G; Astier, Pierre; Cardini, Alessandro; Cousins, Robert D.; Letessier-Selvon, Antoine; Popov, Boris A.; Vinogradova, Tatiana

    2000-01-01

    We give an overview of track fitting using the Kalman filter method in the NOMAD detector at CERN, and emphasize how the wealth of by-product information can be used to analyze track breakpoints (discontinuities in track parameters caused by scattering, decay, etc.). After reviewing how this information has been previously exploited by others, we describe extensions which add power to breakpoint detection and characterization. We show how complete fits to the entire track, with breakpoint parameters added, can be easily obtained from the information from unbroken fits. Tests inspired by the Fisher F-test can then be used to judge breakpoints. Signed quantities (such as change in momentum at the breakpoint) can supplement unsigned quantities such as the various chisquares. We illustrate the method with electrons from real data, and with Monte Carlo simulations of pion decays.

  6. Kalman Filter for Mass Property and Thrust Identification (MMS)

    Science.gov (United States)

    Queen, Steven

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties is necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  7. A Study about Kalman Filters Applied to Embedded Sensors.

    Science.gov (United States)

    Valade, Aurélien; Acco, Pascal; Grabolosa, Pierre; Fourniols, Jean-Yves

    2017-12-05

    Over the last decade, smart sensors have grown in complexity and can now handle multiple measurement sources. This work establishes a methodology to achieve better estimates of physical values by processing raw measurements within a sensor using multi-physical models and Kalman filters for data fusion. A driving constraint being production cost and power consumption, this methodology focuses on algorithmic complexity while meeting real-time constraints and improving both precision and reliability despite low power processors limitations. Consequently, processing time available for other tasks is maximized. The known problem of estimating a 2D orientation using an inertial measurement unit with automatic gyroscope bias compensation will be used to illustrate the proposed methodology applied to a low power STM32L053 microcontroller. This application shows promising results with a processing time of 1.18 ms at 32 MHz with a 3.8% CPU usage due to the computation at a 26 Hz measurement and estimation rate.

  8. Estimation of Human Heart Activity Using Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Pradhnya Arun Priyadarshi

    2017-02-01

    Full Text Available Heart beat measurement techniques come across various challenges. Electrocardiogram (ECG obtained sometimes does not reveal complete information about electrochemical activity of human heart, because of which functioning of heart cannot be studied properly. In this paper Ensemble Kalman Filter (EnKF is used to generate ECG signal efficiently with better accuracy such that the drawbacks of current techniques are eliminated. Here EnKF is applied to second order mathematical model of human heart, input applied to this mathematical model is a pacemaker signal. The initial values of heart muscle movements and electrochemical activity as a discrete data set are used and prediction steps are commenced. EnKF uses ensemble integration technique to model error statistics which helps obtaining more precise output. The results are obtained with negligible sum squared error, therefore the ECG obtained using EnKF can diagnose the disease related to heart with better accuracy.

  9. The PV Corrosion Fault Prognosis Based on Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Radouane Ouladsine

    2017-01-01

    Full Text Available The degradation of photovoltaic (PV modules remains a major concern on the control and the development of the photovoltaic field, particularly, in regions with difficult climatic conditions. The main degradation modes of the PV modules are corrosion, discoloration, glass breaks, and cracks of cells. However, corrosion and discoloration remain the predominant degradation modes that still require further investigations. In this paper, a model-based PV corrosion prognostic approach, based on an ensemble Kalman filter (EnKF, is introduced to identify the PV corrosion parameters and then estimate the remaining useful life (RUL. Simulations have been conducted using measured data set, and results are reported to show the efficiency of the proposed approach.

  10. Alignment of the LHCb detector with Kalman filter fitted tracks

    CERN Document Server

    Amoraal, J M

    2009-01-01

    The LHCb detector, operating at the Large Hadron Collider at CERN, is a single arm spectrometer optimised for the detection of forward b and anti-b production for b physics studies. The reconstruction of vertices and tracks is done by silicon micro-strip and gaseous straw-tube based detectors. To obtain excellent momentum, mass and vertex resolutions, the detectors need to be aligned well within the hit resolution for a given detector. We present a general and easy to configure alignment framework which uses the closed from method of alignment with Kalman filter fitted tracks to determine the alignment parameters. This allows us to use the standard LHCb track model and fit, and correctly take complexities such as multiple scattering and energy loss corrections into account. With this framework it is possible to align any detector for any degree of freedom.

  11. L70 life prediction for solid state lighting using Kalman Filter and Extended Kalman Filter based models

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Wei, Junchao; Davis, Lynn

    2013-08-08

    Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life

  12. Prediction of Lumen Output and Chromaticity Shift in LEDs Using Kalman Filter and Extended Kalman Filter Based Models

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Wei, Junchao; Davis, J Lynn

    2014-06-24

    Abstract— Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have

  13. Estimation of time varying system parameters from ambient response using improved Particle-Kalman filter with correlated noise

    Science.gov (United States)

    Sen, Subhamoy; Crinière, Antoine; Mevel, Laurent; Cerou, Frederic; Dumoulin, Jean

    2017-04-01

    within a PF environment that estimates the parameters. This facilitates employing relatively less expensive linear KF for linear state estimation problem while costly PF is employed only for parameter estimation. Additionally, the proposed algorithm also takes care of those systems for which system and measurement noises are not uncorrelated as it is commonly idealized in standard filtering algorithms. As an example, for mechanical systems under ambient vibration it happens when acceleration response is considered as measurement. Thus the process and measurement noise in these system descriptions are obviously correlated. For this, an improved description for the Kalman gain is developed. Further, to enhance the consistency of particle filtering based parameter estimation involving high dimensional parameter space, a new temporal evolution strategy for the particles is defined. This strategy aims at restricting the solution from diverging (up to the point of no return) because of an isolated event of infeasible estimation which is very much likely especially when dealing with high dimensional parameter space.

  14. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    Science.gov (United States)

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  15. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2015-11-01

    Full Text Available Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted “useful” data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  16. A Computationally Efficient and Robust Implementation of the Continuous-Discrete Extended Kalman Filter

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Thomsen, Per Grove; Madsen, Henrik

    2007-01-01

    We present a novel numerically robust and computationally efficient extended Kalman filter for state estimation in nonlinear continuous-discrete stochastic systems. The resulting differential equations for the mean-covariance evolution of the nonlinear stochastic continuous-discrete time systems...... differential equations....... are solved efficiently using an ESDIRK integrator with sensitivity analysis capabilities. This ESDIRK integrator for the mean- covariance evolution is implemented as part of an extended Kalman filter and tested on a PDE system. For moderate to large sized systems, the ESDIRK based extended Kalman filter...

  17. Kalman filtering techniques for focal plane electric field estimation.

    Science.gov (United States)

    Groff, Tyler D; Jeremy Kasdin, N

    2013-01-01

    For a coronagraph to detect faint exoplanets, it will require focal plane wavefront control techniques to continue reaching smaller angular separations and higher contrast levels. These correction algorithms are iterative and the control methods need an estimate of the electric field at the science camera, which requires nearly all of the images taken for the correction. The best way to make such algorithms the least disruptive to science exposures is to reduce the number required to estimate the field. We demonstrate a Kalman filter estimator that uses prior knowledge to create the estimate of the electric field, dramatically reducing the number of exposures required to estimate the image plane electric field while stabilizing the suppression against poor signal-to-noise. In addition to a significant reduction in exposures, we discuss the relative merit of this algorithm to estimation schemes that do not incorporate prior state estimate history, particularly in regard to estimate error and covariance. Ultimately the filter will lead to an adaptive algorithm which can estimate physical parameters in the laboratory for robustness to variance in the optical train.

  18. Data Sketching for Large-Scale Kalman Filtering

    Science.gov (United States)

    Berberidis, Dimitris; Giannakis, Georgios B.

    2017-07-01

    In an age of exponentially increasing data generation, performing inference tasks by utilizing the available information in its entirety is not always an affordable option. The present paper puts forth approaches to render tracking of large-scale dynamic processes via a Kalman filter affordable, by processing a reduced number of data. Three distinct methods are introduced for reducing the number of data involved in the correction step of the filter. Towards this goal, the first two methods employ random projections and innovation-based censoring to effect dimensionality reduction and measurement selection respectively. The third method achieves reduced complexity by leveraging sequential processing of observations and selecting a few informative updates based on an information-theoretic metric. Simulations on synthetic data, compare the proposed methods with competing alternatives, and corroborate their efficacy in terms of estimation accuracy over complexity reduction. Finally, monitoring large networks is considered as an application domain, with the proposed methods tested on Kronecker graphs to evaluate their efficiency in tracking traffic matrices and time-varying link costs.

  19. GPS Interference Mitigation Using Derivative-free Kalman Filter-based RNN

    Directory of Open Access Journals (Sweden)

    W. L. Mao

    2016-09-01

    Full Text Available The global positioning system (GPS with accurate positioning and timing properties has become integral part of all applications around the world. Radio frequency interference can significantly decrease the performance of GPS receivers or even completely prohibit the acquisition or tracking of satellites. The approaches of system performances that can be further enhanced by preprocessing to reject the jamming signal will be investigated. A recurrent neural network (RNN predictor for the GPS anti-jamming applications will be proposed. The adaptive RNN predictor is utilized to accurately predict the narrowband waveform based on an unscented Kalman filter (UKF-based algorithm. The UKF algorithm as a derivative-free alternative to the extended Kalman filter (EKF in the framework of state-estimation is adopted to achieve better performance in terms of convergence rate and quality of solution. The adaptive RNN filter can be successfully applied for the suppression of interference with a number of different narrowband formats, i.e. continuous wave interference (CWI, multi-tone CWI, swept CWI and pulsed CWI, to emulate realistic circumstances. Simulation results show that the proposed UKF-based scheme can offer the superior performances to suppress the interference over the conventional methods by computing mean squared prediction error (MSPE and signal-to-noise ratio (SNR improvements.

  20. Application of Kalman Filter for Estimating a Process Disturbance in a Building Space

    Directory of Open Access Journals (Sweden)

    Deuk-Woo Kim

    2017-10-01

    Full Text Available This paper addresses an application of the Kalman filter for estimating a time-varying process disturbance in a building space. The process disturbance means a synthetic composite of heat gains and losses caused by internal heat sources e.g., people, lights, equipment, and airflows. It is difficult to measure and quantify the internal heat sources and airflows due to their dynamic nature and time-lag impact on indoor environment. To address this issue, a Kalman filter estimation method was used in this study. The Kalman filtering is well suited for situations when state variables of interest cannot be measured. Based on virtual and real experiments conducted in this study, it was found that the Kalman filter can be used to estimate the time-varying process disturbance in a building space.

  1. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  2. Comparison of different Kalman filter approaches in deriving time varying connectivity from EEG data.

    Science.gov (United States)

    Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick

    2015-08-01

    Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.

  3. Analyses of integrated aircraft cabin contaminant monitoring network based on Kalman consensus filter.

    Science.gov (United States)

    Wang, Rui; Li, Yanxiao; Sun, Hui; Chen, Zengqiang

    2017-11-01

    The modern civil aircrafts use air ventilation pressurized cabins subject to the limited space. In order to monitor multiple contaminants and overcome the hypersensitivity of the single sensor, the paper constructs an output correction integrated sensor configuration using sensors with different measurement theories after comparing to other two different configurations. This proposed configuration works as a node in the contaminant distributed wireless sensor monitoring network. The corresponding measurement error models of integrated sensors are also proposed by using the Kalman consensus filter to estimate states and conduct data fusion in order to regulate the single sensor measurement results. The paper develops the sufficient proof of the Kalman consensus filter stability when considering the system and the observation noises and compares the mean estimation and the mean consensus errors between Kalman consensus filter and local Kalman filter. The numerical example analyses show the effectiveness of the algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Centralized Fusion of Unscented Kalman Filter Based on Huber Robust Method for Nonlinear Moving Target Tracking

    Directory of Open Access Journals (Sweden)

    Jue Huang

    2015-01-01

    Full Text Available We propose a robust method for tracking nonlinear target with the fusion unscented Kalman filter (FUKF. We noticed that when some outliers exist in the measurements of the sensors, they cannot track the target accurately by using the standard Kalman filters. The robust statistics theory is used in this paper to solve this problem. The measurement noise variance which is at the time of the outlier is restructured through minimizing the designed cost function. Then, the standard fusion unscented Kalman filter is used to track the target in order to avoid the bias brought by the linear approximation. Compared to the traditional tracking method and Huber robust method (HFUKF, this method has a more accurate performance and can track the target efficiently while the outliers exist. Last, simulation examples in three different conditions are given and the simulation results show the advantages of the proposed method over the fusion unscented Kalman filter (FUKF and the Huber robust method (HFUKF.

  5. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    Science.gov (United States)

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  6. KALREF--A Kalman filter and time series approach to the International Terrestrial Reference Frame realization

    National Research Council Canada - National Science Library

    Xiaoping Wu; Claudio Abbondanza; Zuheir Altamimi; T Mike Chin; Xavier Collilieux; Richard S Gross; Michael B Heflin; Yan Jiang; Jay W Parker

    2015-01-01

    ...) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates...

  7. KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization

    National Research Council Canada - National Science Library

    Wu, Xiaoping; Abbondanza, Claudio; Altamimi, Zuheir; Chin, T. Mike; Collilieux, Xavier; Gross, Richard S; Heflin, Michael B; Jiang, Yan; Parker, Jay W

    2015-01-01

    .... Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates...

  8. Determination of High-Speed Multiple Threat Using Kalman Filter Analysis of Maritime Movement

    Science.gov (United States)

    2015-06-01

    and W. Kazimierski, “A concept of decentralized fusion of maritime radar targets with multisensor Kalman filter,” Vilnius, Lithuania, 16–18 June 2010...reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...feeding data into the Kalman filtering algorithm, which is used in the tracking of moving targets based on simulated radar position measurements

  9. Modified iterated extended Kalman particle filter for single satellite passive tracking

    OpenAIRE

    WU, Panlong; KONG, Jianshou; BO, Yuming

    2013-01-01

    Single satellite-to-satellite passive tracking techniques have great significance in space surveillance systems. A new passive modified iterated extended Kalman particle filter (MIEKPF) using bearings-only measurements in the Earth-Centered Inertial Coordinate System is proposed. The modified iterated extended Kalman filter (MIEKF), with a new maximum likelihood iteration termination criterion, is used to generate the proposal distribution of the MIEKPF. Moreover, a new measurement u...

  10. Application of a Kalman Filter with Augmented Measurement Model in Non-Invasive Cardiac Imaging

    OpenAIRE

    Elies Henar, Francesc

    2011-01-01

    This work will focus on improving the Kalman filter by use of an extended measurement model [Kaipio et Somersalo, 1999] which introduces spatial regularization terms into the filter. This model has been applied in solvers of the inverse problem of electrical impedance tomography [Hiltunen et al., 2010], though this tomography inverse problem is non-linear, it is mathematically very similar to the imaging of electric sources in the heart. Trabajo trata sobre la mejora de un filtro de Kalman...

  11. Application of a Strong Tracking Finite-Difference Extended Kalman Filter to Eye Tracking

    OpenAIRE

    Zhang, Zutao; Zhang, Jiashu

    2010-01-01

    This paper proposes a new eye tracking method using strong finite-difference Kalman filter. Firstly, strong tracking factor is introduced to modify priori covariance matrix to improve the accuracy of the eye tracking algorithm. Secondly, the finite-difference method is proposed to replace partial derivatives of nonlinear functions to eye tracking. From above deduction, the new strong finite-difference Kalman filter becomes very simple because of replacing partial derivatives calculation using...

  12. Parameter Estimation for Observation Bias with an Ensemble Kalman Filter

    Science.gov (United States)

    Lorente-Plazas, R.; Hacker, J.

    2015-12-01

    In this work we evaluate a method to estimate systematic errors of individual in-situ observations. The approach is based on parameter estimation using an augmented state in an ensemble adjustment Kalman filter. Biased observations are assimilated in the highly chaotic Lorenz (2005) model that combines small and large scales. For this purpose, synthetic observations are created by introducing a grid-point dependent bias and random errors to a nature run (truth). The sensitivity of the methodology to model error, the number of ensemble members, the number of parameters, and the parameter variance is evaluated. Results demonstrate that the methodology is able to estimate observation bias for a both a perfect model and an imperfect model if the model error is estimated. The parameter estimation and the rms errors are significantly deteriorated if model error is ignored. Errors are qualitatively independent of model forcing when model error is estimated. By contrast, parameter estimation depends on model error when model error is not estimated, especially if observation biases are estimated. Errors increase with the number of estimated parameters, but they are independent of ensemble size as long as the number of ensembles members is large enough. There is an optimum value of parameter variance that minimizes the errors and improves the parameter estimation, but this value depends on observation bias and model error. Overall, the results suggest more accuracy in observation bias estimates than model error estimates.

  13. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    Science.gov (United States)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  14. Estimating short-period dynamics using an extended Kalman filter

    Science.gov (United States)

    Bauer, Jeffrey E.; Andrisani, Dominick

    1990-01-01

    An extended Kalman filter (EKF) is used to estimate the parameters of a low-order model from aircraft transient response data. The low-order model is a state space model derived from the short-period approximation of the longitudinal aircraft dynamics. The model corresponds to the pitch rate to stick force transfer function currently used in flying qualities analysis. Because of the model chosen, handling qualities information is also obtained. The parameters are estimated from flight data as well as from a six-degree-of-freedom, nonlinear simulation of the aircraft. These two estimates are then compared and the discrepancies noted. The low-order model is able to satisfactorily match both flight data and simulation data from a high-order computer simulation. The parameters obtained from the EKF analysis of flight data are compared to those obtained using frequency response analysis of the flight data. Time delays and damping ratios are compared and are in agreement. This technique demonstrates the potential to determine, in near real time, the extent of differences between computer models and the actual aircraft. Precise knowledge of these differences can help to determine the flying qualities of a test aircraft and lead to more efficient envelope expansion.

  15. IASI Radiance Data Assimilation in Local Ensemble Transform Kalman Filter

    Science.gov (United States)

    Cho, K.; Hyoung-Wook, C.; Jo, Y.

    2016-12-01

    Korea institute of Atmospheric Prediction Systems (KIAPS) is developing NWP model with data assimilation systems. Local Ensemble Transform Kalman Filter (LETKF) system, one of the data assimilation systems, has been developed for KIAPS Integrated Model (KIM) based on cubed-sphere grid and has successfully assimilated real data. LETKF data assimilation system has been extended to 4D- LETKF which considers time-evolving error covariance within assimilation window and IASI radiance data assimilation using KPOP (KIAPS package for observation processing) with RTTOV (Radiative Transfer for TOVS). The LETKF system is implementing semi operational prediction including conventional (sonde, aircraft) observation and AMSU-A (Advanced Microwave Sounding Unit-A) radiance data from April. Recently, the semi operational prediction system updated radiance observations including GPS-RO, AMV, IASI (Infrared Atmospheric Sounding Interferometer) data at July. A set of simulation of KIM with ne30np4 and 50 vertical levels (of top 0.3hPa) were carried out for short range forecast (10days) within semi operation prediction LETKF system with ensemble forecast 50 members. In order to only IASI impact, our experiments used only conventional and IAIS radiance data to same semi operational prediction set. We carried out sensitivity test for IAIS thinning method (3D and 4D). IASI observation number was increased by temporal (4D) thinning and the improvement of IASI radiance data impact on the forecast skill of model will expect.

  16. Dynamics of Electricity Demand in Lesotho: A Kalman Filter Approach

    Directory of Open Access Journals (Sweden)

    Thamae Retselisitsoe Isaiah

    2015-04-01

    Full Text Available This study provides an empirical analysis of the time-varying price and income elasticities of electricity demand in Lesotho for the period 1995-2012 using the Kalman filter approach. The results reveal that economic growth has been one of the main drivers of electricity consumption in Lesotho while electricity prices are found to play a less significant role since they are monopoly-driven and relatively low when compared to international standards. These findings imply that increases in electricity prices in Lesotho might not have a significant impact on consumption in the short-run. However, if the real electricity prices become too high over time, consumers might change their behavior and sensitivity to price and hence, energy policymakers will need to reconsider their impact in the long-run. Furthermore, several exogenous shocks seem to have affected the sensitivity of electricity demand during the period prior to regulation, which made individuals, businesses and agencies to be more sensitive to electricity costs. On the other hand, the period after regulation has been characterized by more stable and declining sensitivity of electricity demand. Therefore, factors such as regulation and changes in the country’s economic activities appear to have affected both price and income elasticities of electricity demand in Lesotho.

  17. A Study about Kalman Filters Applied to Embedded Sensors

    Directory of Open Access Journals (Sweden)

    Aurélien Valade

    2017-12-01

    Full Text Available Over the last decade, smart sensors have grown in complexity and can now handle multiple measurement sources. This work establishes a methodology to achieve better estimates of physical values by processing raw measurements within a sensor using multi-physical models and Kalman filters for data fusion. A driving constraint being production cost and power consumption, this methodology focuses on algorithmic complexity while meeting real-time constraints and improving both precision and reliability despite low power processors limitations. Consequently, processing time available for other tasks is maximized. The known problem of estimating a 2D orientation using an inertial measurement unit with automatic gyroscope bias compensation will be used to illustrate the proposed methodology applied to a low power STM32L053 microcontroller. This application shows promising results with a processing time of 1.18 ms at 32 MHz with a 3.8% CPU usage due to the computation at a 26 Hz measurement and estimation rate.

  18. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor's angular velocity is estimated by an Extended Kalman Filter which processes measurements of the rotor's angle. Sensorless control of the induction motor is again implemented through feedback of the estimated state vector. Additionally, a state estimation-based control loop is implemented using the Unscented Kalman Filter. Moreover, state estimation-based control is developed for the induction motor model using a nonlinear flatness-based controller and the state estimation that is provided by the Extended Kalman Filter. Unlike field oriented control, in the latter approach there is no assumption about decoupling between the rotor speed dynamics and the magnetic flux dynamics. The efficiency of the Kalman Filter-based control schemes, for both the DC and induction motor models, is evaluated through simulation experiments.

  19. A Fixed-Lag Kalman Smoother to Filter Power Line Interference in Electrocardiogram Recordings.

    Science.gov (United States)

    Warmerdam, G J J; Vullings, R; Schmitt, L; Van Laar, J O E H; Bergmans, J W M

    2017-08-01

    Filtering power line interference (PLI) from electrocardiogram (ECG) recordings can lead to significant distortions of the ECG and mask clinically relevant features in ECG waveform morphology. The objective of this study is to filter PLI from ECG recordings with minimal distortion of the ECG waveform. In this paper, we propose a fixed-lag Kalman smoother with adaptive noise estimation. The performance of this Kalman smoother in filtering PLI is compared to that of a fixed-bandwidth notch filter and several adaptive PLI filters that have been proposed in the literature. To evaluate the performance, we corrupted clean neonatal ECG recordings with various simulated PLI. Furthermore, examples are shown of filtering real PLI from an adult and a fetal ECG recording. The fixed-lag Kalman smoother outperforms other PLI filters in terms of step response settling time (improvements that range from 0.1 to 1 s) and signal-to-noise ratio (improvements that range from 17 to 23 dB). Our fixed-lag Kalman smoother can be used for semi real-time applications with a limited delay of 0.4 s. The fixed-lag Kalman smoother presented in this study outperforms other methods for filtering PLI and leads to minimal distortion of the ECG waveform.

  20. Toward the application of the Kalman filter to regional open ocean modeling

    Science.gov (United States)

    Miller, R. N.

    1986-01-01

    A partial differential equation model is defined for ocean meteorological prediction and synoptic analysis. The Kalman filter used for data assimilation is described and applied to the one-dimensional linear barotropic quasi-geostrophic model with periodic and open boundary conditions. The model accounts for eddy scale dynamics in the ocean. The assumptions made in the forecast model are discussed, along with comparisons of the error variances expected with the filter and from an objective analysis method. The effectiveness of the Kalman filter is demonstrated and subsequent efforts to extend the filter to two dimensions are indicated.

  1. Dynamic Mode Decomposition based on Bootstrapping Extended Kalman Filter Application to Noisy data

    Science.gov (United States)

    Nonomura, Taku; Shibata, Hisaichi; Takaki, Ryoji

    2017-11-01

    In this study, dynamic mode decomposition (DMD) based on bootstrapping extended Kalman filter is proposed for time-series data. In this framework, state variables (x and y) are filtered as well as the parameter estimation (aij) which is conducted in the conventional DMD and the standard Kalman-filter-based DMD. The filtering process of state variables enables us to obtain highly accurate eigenvalue of the system with strong noise. In the presentation, formulation, advantages and disadvantages are discussed. This research is partially supported by Presto, JST (JPMJPR1678).

  2. State Space Models and the Kalman-Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing

    Directory of Open Access Journals (Sweden)

    Nataliya Chukhrova

    2017-05-01

    Full Text Available This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.

  3. Kalman Filter-Based Hybrid Indoor Position Estimation Technique in Bluetooth Networks

    Directory of Open Access Journals (Sweden)

    Fazli Subhan

    2013-01-01

    Full Text Available This paper presents an extended Kalman filter-based hybrid indoor position estimation technique which is based on integration of fingerprinting and trilateration approach. In this paper, Euclidian distance formula is used for the first time instead of radio propagation model to convert the received signal to distance estimates. This technique combines the features of fingerprinting and trilateration approach in a more simple and robust way. The proposed hybrid technique works in two stages. In the first stage, it uses an online phase of fingerprinting and calculates nearest neighbors (NN of the target node, while in the second stage it uses trilateration approach to estimate the coordinate without the use of radio propagation model. The distance between calculated NN and detective access points (AP is estimated using Euclidian distance formula. Thus, distance between NN and APs provides radii for trilateration approach. Therefore, the position estimation accuracy compared to the lateration approach is better. Kalman filter is used to further enhance the accuracy of the estimated position. Simulation and experimental results validate the performance of proposed hybrid technique and improve the accuracy up to 53.64% and 25.58% compared to lateration and fingerprinting approaches, respectively.

  4. Quantifying Monte Carlo uncertainty in ensemble Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Kristian; Naevdal, Geir; Skaug, Hans Julius; Aanonsen, Sigurd Ivar

    2009-01-15

    This report is presenting results obtained during Kristian Thulin PhD study, and is a slightly modified form of a paper submitted to SPE Journal. Kristian Thulin did most of his portion of the work while being a PhD student at CIPR, University of Bergen. The ensemble Kalman filter (EnKF) is currently considered one of the most promising methods for conditioning reservoir simulation models to production data. The EnKF is a sequential Monte Carlo method based on a low rank approximation of the system covariance matrix. The posterior probability distribution of model variables may be estimated fram the updated ensemble, but because of the low rank covariance approximation, the updated ensemble members become correlated samples from the posterior distribution. We suggest using multiple EnKF runs, each with smaller ensemble size to obtain truly independent samples from the posterior distribution. This allows a point-wise confidence interval for the posterior cumulative distribution function (CDF) to be constructed. We present a methodology for finding an optimal combination of ensemble batch size (n) and number of EnKF runs (m) while keeping the total number of ensemble members ( m x n) constant. The optimal combination of n and m is found through minimizing the integrated mean square error (MSE) for the CDFs and we choose to define an EnKF run with 10.000 ensemble members as having zero Monte Carlo error. The methodology is tested on a simplistic, synthetic 2D model, but should be applicable also to larger, more realistic models. (author). 12 refs., figs.,tabs

  5. ASSIMILATION OF COARSE-SCALEDATAUSINGTHE ENSEMBLE KALMAN FILTER

    KAUST Repository

    Efendiev, Yalchin

    2011-01-01

    Reservoir data is usually scale dependent and exhibits multiscale features. In this paper we use the ensemble Kalman filter (EnKF) to integrate data at different spatial scales for estimating reservoir fine-scale characteristics. Relationships between the various scales is modeled via upscaling techniques. We propose two versions of the EnKF to assimilate the multiscale data, (i) where all the data are assimilated together and (ii) the data are assimilated sequentially in batches. Ensemble members obtained after assimilating one set of data are used as a prior to assimilate the next set of data. Both of these versions are easily implementable with any other upscaling which links the fine to the coarse scales. The numerical results with different methods are presented in a twin experiment setup using a two-dimensional, two-phase (oil and water) flow model. Results are shown with coarse-scale permeability and coarse-scale saturation data. They indicate that additional data provides better fine-scale estimates and fractional flow predictions. We observed that the two versions of the EnKF differed in their estimates when coarse-scale permeability is provided, whereas their results are similar when coarse-scale saturation is used. This behavior is thought to be due to the nonlinearity of the upscaling operator in the case of the former data. We also tested our procedures with various precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the coarse-scale data yielded improved estimates. With better coarse-scale modeling and inversion techniques as more data at multiple coarse scales is made available, the proposed modification to the EnKF could be relevant in future studies.

  6. The extended Kalman filter for forecast of algal bloom dynamics.

    Science.gov (United States)

    Mao, J Q; Lee, Joseph H W; Choi, K W

    2009-09-01

    A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the

  7. Development and flight tests of a Kalman filter for navigation during terminal area and landing operations

    Science.gov (United States)

    Schmidt, S. F.; Flanagan, P. F.; Sorenson, J. A.

    1978-01-01

    A Kalman filter for aircraft terminal area and landing navigation was implemented and flight tested in the NASA Ames STOLAND avionics computer onboard a Twin Otter aircraft. This system combines navaid measurements from TACAN, MODILS, air data, radar altimeter sensors along with measurements from strap-down accelerometer and attitude angle sensors. The flight test results demonstrate that the Kalman filter provides improved estimates of the aircraft position and velocity as compared with estimates from the more standard complementary filter. The onboard computer implementation requirements to achieve this improved performance are discussed.

  8. Square Root Unscented Kalman Filters for State Estimation of Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami

    2013-01-01

    This paper investigates the application, design, and implementation of the square root unscented Kalman filter (UKF) (SRUKF) for induction motor (IM) sensorless drives. The UKF uses nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics...... of a nonlinear system. The advantage of using the UT is its ability to capture the nonlinear behavior of the system, unlike the extended Kalman filter (EKF) that uses linearized models. The SRUKF implements the UKF using square root filtering to reduce computational errors. We discuss the theoretical aspects...

  9. Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Chuanxue Song

    2017-05-01

    Full Text Available To improve the accuracy of insulation monitoring between the battery pack and chassis of electric vehicles, we established a serial battery pack model composed of first-order resistor-capacitor (RC circuit battery cells. We then designed a low-voltage, low-frequency insulation monitoring model based on this serial battery pack model. An extended Kalman filter (EKF was designed for this non-linear system to filter the measured results, thus mitigating the influence of noise. Experimental and simulation results show that the proposed monitoring model and extended Kalman filtering algorithm for insulation resistance monitoring present satisfactory estimation accuracy and robustness.

  10. Kalman Filtering for Discrete Stochastic Systems with Multiplicative Noises and Random Two-Step Sensor Delays

    Directory of Open Access Journals (Sweden)

    Dongyan Chen

    2015-01-01

    Full Text Available This paper is concerned with the optimal Kalman filtering problem for a class of discrete stochastic systems with multiplicative noises and random two-step sensor delays. Three Bernoulli distributed random variables with known conditional probabilities are introduced to characterize the phenomena of the random two-step sensor delays which may happen during the data transmission. By using the state augmentation approach and innovation analysis technique, an optimal Kalman filter is constructed for the augmented system in the sense of the minimum mean square error (MMSE. Subsequently, the optimal Kalman filtering is derived for corresponding augmented system in initial instants. Finally, a simulation example is provided to demonstrate the feasibility and effectiveness of the proposed filtering method.

  11. Free Space Computation From Stochastic Occupancy Grids Based On Iconic Kalman Filtered Disparity Maps

    DEFF Research Database (Denmark)

    Høilund, Carsten; Moeslund, Thomas B.; Madsen, Claus B.

    2010-01-01

    This paper presents a method for determining the free space in a scene as viewed by a vehicle-mounted camera. Using disparity maps from a stereo camera and known camera motion, the disparity maps are first filtered by an iconic Kalman filter, operating on each pixel individually, thereby reducing...

  12. A new Approach for Kalman filtering on Mobile Robots in the presence of uncertainties

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Andersen, Nils Axel; Ravn, Ole

    1999-01-01

    In many practical Kalman filter applications, the quantity of most significance for the estimation error is the process noise matrix. When filters are stabilized or performance is sought to be improved, tuning of this matrix is the most common method. This tuning process cannot be done before the...

  13. Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor.

    Science.gov (United States)

    Wu, Hao; Chen, Shuxin; Yang, Binfeng; Chen, Kun

    2016-05-09

    The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.

  14. Three Revised Kalman Filtering Models for Short-Term Rail Transit Passenger Flow Prediction

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2016-01-01

    Full Text Available Short-term prediction of passenger flow is very important for the operation and management of a rail transit system. Based on the traditional Kalman filtering method, this paper puts forward three revised models for real-time passenger flow forecasting. First, the paper introduces the historical prediction error into the measurement equation and formulates a revised Kalman filtering model based on error correction coefficient (KF-ECC. Second, this paper employs the deviation between real-time passenger flow and corresponding historical data as state variable and presents a revised Kalman filtering model based on Historical Deviation (KF-HD. Third, the paper integrates nonparametric regression forecast into the traditional Kalman filtering method using a Bayesian combined technique and puts forward a revised Kalman filtering model based on Bayesian combination and nonparametric regression (KF-BCNR. A case study is implemented using statistical passenger flow data of rail transit line 13 in Beijing during a one-month period. The reported prediction results show that KF-ECC improves the applicability to historical trend, KF-HD achieves excellent accuracy and stability, and KF-BCNR yields the best performances. Comparisons among different periods further indicate that results during peak periods outperform those during nonpeak periods. All three revised models are accurate and stable enough for on-line predictions, especially during the peak periods.

  15. Diffusion Strategies for Distributed Kalman Filter with Dynamic Topologies in Virtualized Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shujie Yang

    2016-01-01

    Full Text Available Network virtualization has become pervasive and is used in many applications. Through the combination of network virtualization and wireless sensor networks, it can greatly improve the multiple applications of traditional wireless sensor networks. However, because of the dynamic reconfiguration of topologies in the physical layer of virtualized sensor networks (VSNs, it requires a mechanism to guarantee the accuracy of estimate values by sensors. In this paper, we focus on the distributed Kalman filter algorithm with dynamic topologies to support this requirement. As one strategy of distributed Kalman filter algorithms, diffusion Kalman filter algorithm has a better performance on the state estimation. However, the existing diffusion Kalman filter algorithms all focus on the fixed topologies. Considering the dynamic topologies in the physical layer of VSNs mentioned above, we present a diffusion Kalman filter algorithm with dynamic topologies (DKFdt. Then, we emphatically derive the theoretical expressions of the mean and mean-square performance. From the expressions, the feasibility of the algorithm is verified. Finally, simulations confirm that the proposed algorithm achieves a greatly improved performance as compared with a noncooperative manner.

  16. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors

    Directory of Open Access Journals (Sweden)

    Segundo Esteban

    2016-10-01

    Full Text Available Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  17. Signal Conditioning for the Kalman Filter: Application to Satellite Attitude Estimation with Magnetometer and Sun Sensors.

    Science.gov (United States)

    Esteban, Segundo; Girón-Sierra, Jose M; Polo, Óscar R; Angulo, Manuel

    2016-10-31

    Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.

  18. Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction

    Science.gov (United States)

    Sun, He; Kasdin, N. Jeremy

    2018-01-01

    Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.

  19. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    Science.gov (United States)

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  20. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  1. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter

    Science.gov (United States)

    Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry

    2009-03-01

    In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.

  2. Kalman Filters for Time Delay of Arrival-Based Source Localization

    Directory of Open Access Journals (Sweden)

    Klee Ulrich

    2006-01-01

    Full Text Available In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  3. Incorporation of Time Delayed Measurements in a Discrete-time Kalman Filter

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Andersen, Nils Axel; Ravn, Ole

    1998-01-01

    In many practical systems there is a delay in some of the sensor devices, for instance vision measurements that may have a long processing time. How to fuse these measurements in a Kalman filter is not a trivial problem if the computational delay is critical. Depending on how much time there is a......In many practical systems there is a delay in some of the sensor devices, for instance vision measurements that may have a long processing time. How to fuse these measurements in a Kalman filter is not a trivial problem if the computational delay is critical. Depending on how much time...... using past and present estimates of the Kalman filter and calculating an optimal gain for this extrapolated measurement...

  4. Event-triggered Kalman-consensus filter for two-target tracking sensor networks.

    Science.gov (United States)

    Su, Housheng; Li, Zhenghao; Ye, Yanyan

    2017-11-01

    This paper is concerned with the problem of event-triggered Kalman-consensus filter for two-target tracking sensor networks. According to the event-triggered protocol and the mean-square analysis, a suboptimal Kalman gain matrix is derived and a suboptimal event-triggered distributed filter is obtained. Based on the Kalman-consensus filter protocol, all sensors which only depend on its neighbors' information can track their corresponding targets. Furthermore, utilizing Lyapunov method and matrix theory, some sufficient conditions are presented for ensuring the stability of the system. Finally, a simulation example is presented to verify the effectiveness of the proposed event-triggered protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach

    Directory of Open Access Journals (Sweden)

    Jinliang Zhang

    2015-01-01

    Full Text Available Extended Kalman filter (EKF has been widely applied for sensorless direct torque control (DTC in induction machines (IMs. One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.

  6. On the equivalence of Kalman filtering and least-squares estimation

    Science.gov (United States)

    Mysen, E.

    2017-01-01

    The Kalman filter is derived directly from the least-squares estimator, and generalized to accommodate stochastic processes with time variable memory. To complete the link between least-squares estimation and Kalman filtering of first-order Markov processes, a recursive algorithm is presented for the computation of the off-diagonal elements of the a posteriori least-squares error covariance. As a result of the algebraic equivalence of the two estimators, both approaches can fully benefit from the advantages implied by their individual perspectives. In particular, it is shown how Kalman filter solutions can be integrated into the normal equation formalism that is used for intra- and inter-technique combination of space geodetic data.

  7. Kalman filtering for neural prediction of response spectra from mining tremors

    Energy Technology Data Exchange (ETDEWEB)

    Krok, A.; Waszczyszyn, Z. [Cracow University of Technology, Krakow (Poland)

    2007-08-15

    Acceleration response spectra (ARS) for mining tremors in the Upper Silesian Coalfield, Poland are generated using neural networks trained by means of Kalman filtering. The target ARS were computed on the base of measured accelerograms. It was proved that the standard feed-forward, layered neural network, trained by the DEFK (decoupled extended Kalman filter) algorithm is numerically much less efficient than the standard recurrent NN learnt by Recurrent DEKF, cf. (Haykin S, (editor). Kalman filtering and neural networks. New York: John Wiley & Sons; 2001). It is also shown that the studied KF algorithms are better than the traditional Resilient-Propagation learning method. The improvement of the training process and neural prediction due to introduction of an autoregressive input is also discussed in the paper.

  8. Attitude Estimation Based on the Spherical Simplex Transformation Modified Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jianwei Zhao

    2014-01-01

    Full Text Available An antenna attitude estimation algorithm is proposed to improve the antenna pointing accuracy for the satellite communication on-the-move. The extrapolated angular acceleration is adopted to improve the performance of the time response. The states of the system are modified according to the modification rules. The spherical simplex transformation unscented Kalman filter is used to improve the precision of the estimated attitude and decrease the calculation of the unscented Kalman filter. The experiment results show that the proposed algorithm can improve the instantaneity of the estimated attitude and the precision of the antenna pointing, which meets the requirement of the antenna pointing.

  9. Inexpensive CubeSat attitude estimation using COTS components and Unscented Kalman Filtering

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Vinther, Kasper

    2011-01-01

    This paper describes a quaternion implementation of an Unscented Kalman Filter for attitude estimation on CubeSats using measurements of a sun vector, a magnetic field vector and angular velocity. Using unit quaternions provides a singularity free attitude parameterization. However, the unity...... constraint requires a redesign of the Unscented Kalman Filter. Therefore, a quaternion error state is introduced. Emphasis has been put in making the implementation accessible to other CubeSat by using realistic models of COTS components used for attitude sensing and simulations have shown that the extra...

  10. Modeling of HVDC in Dynamic State Estimation Using Unscented Kalman Filter Method

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    HVDC transmission is an integral part of various power system networks. This article presents an Unscented Kalman Filter dynamic state estimator algorithm that considers the presence of HVDC links. The AC - DC power flow analysis, which is implemented as power flow solver for Dynamic State...... Estimation (DSE), creates an updated admittance matrix. First, a hybrid AC/DC network model is developed to combine the AC network and DC links. Then a non-linear state estimator can solve for hybrid AC/DC states by applying the unscented Kalman filter (UKF) algorithm. It is demonstrated that UKF is easy...

  11. An improved TLD algorithm based on Kalman filter and SURF feature matching

    Science.gov (United States)

    Zhao, Linlin; Chen, Yimin; Ye, Qingqun

    2017-05-01

    The TLD algorithm can achieve a better performance on single target tracking. However, it still has some defects in respects of real-time computing and target rotation. In this paper, an improved TLD algorithm based on Kalman filter and SURF feature matching is proposed. In order to reduce the number of invalid sliding windows and improve the real-time performance of TLD, the Kalman filter is introduced to improve the detection module. Meanwhile, in order to solve the problem of target rotation, the SURF feature matching is introduced to improve the reliability of tracking module. The experiment results demonstrate that our method improves the accuracy and robustness of TLD algorithm.

  12. Application Of Kalman Filter In Navigation Process Of Automated Guided Vehicles

    Directory of Open Access Journals (Sweden)

    Śmieszek Mirosław

    2015-09-01

    Full Text Available In the paper an example of application of the Kalman filtering in the navigation process of automatically guided vehicles was presented. The basis for determining the position of automatically guided vehicles is odometry – the navigation calculation. This method of determining the position of a vehicle is affected by many errors. In order to eliminate these errors, in modern vehicles additional systems to increase accuracy in determining the position of a vehicle are used. In the latest navigation systems during route and position adjustments the probabilistic methods are used. The most frequently applied are Kalman filters.

  13. Application of ensemble H-infinity filter in aquifer characterization and comparison to ensemble Kalman filter

    Directory of Open Access Journals (Sweden)

    Tong-chao Nan

    2017-01-01

    Full Text Available Though the ensemble Kalman filter (EnKF has been successfully applied in many areas, it requires explicit and accurate model and measurement error information, leading to difficulties in practice when only limited information on error mechanisms of observational instruments for subsurface systems is accessible. To handle the uncertain errors, we applied a robust data assimilation algorithm, the ensemble H-infinity filter (EnHF, to estimation of aquifer hydraulic heads and conductivities in a flow model with uncertain/correlated observational errors. The impacts of spatial and temporal correlations in measurements were analyzed, and the performance of EnHF was compared with that of the EnKF. The results show that both EnHF and EnKF are able to estimate hydraulic conductivities properly when observations are free of error; EnHF can provide robust estimates of hydraulic conductivities even when no observational error information is provided. In contrast, the estimates of EnKF seem noticeably undermined because of correlated errors and inaccurate error statistics, and filter divergence was observed. It is concluded that EnHF is an efficient assimilation algorithm when observational errors are unknown or error statistics are inaccurate.

  14. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    Science.gov (United States)

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  15. Detecting Power Voltage Dips using Tracking Filters - A Comparison against Kalman

    Directory of Open Access Journals (Sweden)

    STANCIU, I.-R.

    2012-11-01

    Full Text Available Due of its significant economical impact, Power-Quality (PQ analysis is an important domain today. Severe voltage distortions affect the consumers and disturb their activity. They may be caused by short circuits (in this case the voltage drops significantly or by varying loads (with a smaller drop. These two types are the PQ currently issues. Monitoring these phenomena (called dips or sags require powerful techniques. Digital Signal Processing (DSP algorithms are currently employed to fulfill this task. Discrete Wavelet Transforms, (and variants, Kalman filters, and S-Transform are currently proposed by researchers to detect voltage dips. This paper introduces and examines a new tool to detect voltage dips: the so-called tracking filters. Discovered and tested during the cold war, they can estimate a parameter of interest one-step-ahead based on the previously observed values. Two filters are implemented. Their performance is assessed by comparison against the Kalman filter?s results.

  16. Reservoir structural model updating using the Ensemble Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Alexandra

    2010-09-15

    In reservoir characterization, a large emphasis is placed on risk management and uncertainty assessment, and the dangers of basing decisions on a single base-case reservoir model are widely recognized. In the last years, statistical methods for assisted history matching have gained popularity for providing integrated models with quantified uncertainty, conditioned on all available data. Structural modeling is the first step in a reservoir modeling work flow and consists in defining the geometrical framework of the reservoir, based on the information from seismic surveys and well data. Large uncertainties are typically associated with the processing and interpretation of seismic data. However, the structural model is often fixed to a single interpretation in history-matching work flows due to the complexity of updating the structural model and related reservoir grid. This thesis present a method that allows to account for the uncertainties in the structural model and continuously update the model and related uncertainties by assimilation of production data using the Ensemble Kalman Filter (EnKF). We consider uncertainties in the depth of the reservoir horizons and in the fault geometry, and assimilate production data, such as oil production rate, gas-oil ratio and water-cut. In the EnKF model-updating work flow, an ensemble of reservoir models, expressing explicitly the model uncertainty, is created. We present a parameterization that allows to generate different realizations of the structural model to account for the uncertainties in faults and horizons and that maintains the consistency throughout the reservoir characterization project, from the structural model to the prediction of production profiles. The uncertainty in the depth of the horizons is parameterized as simulated depth surfaces, the fault position as a displacement vector and the fault throw as a throw-scaling factor. In the EnKF, the model parameters and state variables are updated sequentially in

  17. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    Science.gov (United States)

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

  18. Unscented Kalman Filter Applied to the Spacecraft Attitude Estimation with Euler Angles

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2012-01-01

    Full Text Available The aim of this work is to test an algorithm to estimate, in real time, the attitude of an artificial satellite using real data supplied by attitude sensors that are on board of the CBERS-2 satellite (China Brazil Earth Resources Satellite. The real-time estimator used in this work for attitude determination is the Unscented Kalman Filter. This filter is a new alternative to the extended Kalman filter usually applied to the estimation and control problems of attitude and orbit. This algorithm is capable of carrying out estimation of the states of nonlinear systems, without the necessity of linearization of the nonlinear functions present in the model. This estimation is possible due to a transformation that generates a set of vectors that, suffering a nonlinear transformation, preserves the same mean and covariance of the random variables before the transformation. The performance will be evaluated and analyzed through the comparison between the Unscented Kalman filter and the extended Kalman filter results, by using real onboard data.

  19. Application of Federal Kalman Filter with Neural Networks in the Velocity and Attitude Matching of Transfer Alignment

    Directory of Open Access Journals (Sweden)

    Lijun Song

    2018-01-01

    Full Text Available The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA. But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.

  20. A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea

    Science.gov (United States)

    Li, Yi; Toumi, Ralf

    2017-08-01

    In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.

  1. A Two-stage Kalman Filter for Sensorless Direct Torque Controlled PM Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Boyu Yi

    2013-01-01

    Full Text Available This paper presents an optimal two-stage extended Kalman filter (OTSEKF for closed-loop flux, torque, and speed estimation of a permanent magnet synchronous motor (PMSM to achieve sensorless DTC-SVPWM operation of drive system. The novel observer is obtained by using the same transformation as in a linear Kalman observer, which is proposed by C.-S. Hsieh and F.-C. Chen in 1999. The OTSEKF is an effective implementation of the extended Kalman filter (EKF and provides a recursive optimum state estimation for PMSMs using terminal signals that may be polluted by noise. Compared to a conventional EKF, the OTSEKF reduces the number of arithmetic operations. Simulation and experimental results verify the effectiveness of the proposed OTSEKF observer for DTC of PMSMs.

  2. An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models

    Science.gov (United States)

    Chow, Sy-Miin; Ferrer, Emilio; Nesselroade, John R.

    2007-01-01

    In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways:…

  3. State Estimation of Induction Motor Drives Using the Unscented Kalman Filter

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami

    2012-01-01

    This paper investigates the application, design, and implementation of unscented Kalman filters (KFs) (UKFs) for induction motor (IM) sensorless drives. UKFs use nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics of a nonlinear system...

  4. Target Centroid Position Estimation of Phase-Path Volume Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Fengjun Hu

    2016-01-01

    Full Text Available For the problem of easily losing track target when obstacles appear in intelligent robot target tracking, this paper proposes a target tracking algorithm integrating reduced dimension optimal Kalman filtering algorithm based on phase-path volume integral with Camshift algorithm. After analyzing the defects of Camshift algorithm, compare the performance with the SIFT algorithm and Mean Shift algorithm, and Kalman filtering algorithm is used for fusion optimization aiming at the defects. Then aiming at the increasing amount of calculation in integrated algorithm, reduce dimension with the phase-path volume integral instead of the Gaussian integral in Kalman algorithm and reduce the number of sampling points in the filtering process without influencing the operational precision of the original algorithm. Finally set the target centroid position from the Camshift algorithm iteration as the observation value of the improved Kalman filtering algorithm to fix predictive value; thus to make optimal estimation of target centroid position and keep the target tracking so that the robot can understand the environmental scene and react in time correctly according to the changes. The experiments show that the improved algorithm proposed in this paper shows good performance in target tracking with obstructions and reduces the computational complexity of the algorithm through the dimension reduction.

  5. Advantages of Square-Root Extended Kalman Filter for Sensorless Control of AC Drives

    Czech Academy of Sciences Publication Activity Database

    Šmídl, Václav; Peroutka, Z.

    2012-01-01

    Roč. 59, č. 11 (2012), s. 4189-4196 ISSN 0278-0046 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : Kalman filters * Mathematical model * AC motors Subject RIV: BC - Control Systems Theory Impact factor: 5.165, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/smidl-0436868.pdf

  6. An Adaptive Object Tracking Using Kalman Filter and Probability Product Kernel

    Directory of Open Access Journals (Sweden)

    Hamd Ait Abdelali

    2016-01-01

    Full Text Available We present a new method for object tracking; we use an efficient local search scheme based on the Kalman filter and the probability product kernel (KFPPK to find the image region with a histogram most similar to the histogram of the tracked target. Experimental results verify the effectiveness of this proposed system.

  7. FPGA Realization of Sensorless PMSM Speed Controller Based on Extended Kalman Filter

    National Research Council Canada - National Science Library

    Kung, Ying-Shieh; Quynh, Nguyen Vu; Hieu, Nguyen Trung; Lin, Jin-Mu

    2013-01-01

    ...]. Those sensorless control strategies have sliding mode observer (SMO), extended Kalman filter (EKF), reduced-order EKF, and so forth. The EKF is basically a full-order stochastic observer for the recursive optimum state estimation of a nonlinear dynamic system in real time by using signals that are in noisy environment [7]. Comparing with SMO, EKF ca...

  8. Correcting unintended perturbation biases in hydrologic data assimilation using Ensemble Kalman filter

    Science.gov (United States)

    Hydrologic data assimilation has become an important tool for improving hydrologic model predictions by utilizing observations from ground, aircraft, and satellite sensors. Among existing data assimilation methods, the ensemble Kalman filter (EnKF) provides a robust framework for optimally updating ...

  9. A Bolus Calculator Based on Continuous-Discrete Unscented Kalman Filtering for Type 1 Diabetics

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Aradóttir, Tinna Björk; Hagdrup, Morten

    2015-01-01

    after or 30 minutes after the beginning of the meal). We implement a continuous-discrete unscented Kalman filter to estimate the states and insulin sensitivity. These estimates are used in a bolus calculator. The numerical results demonstrate that administering the meal bolus 15 minutes after mealtime...

  10. CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS

    Science.gov (United States)

    Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...

  11. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    Science.gov (United States)

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  12. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  13. [Characteristic wavelength variable optimization of near-infrared spectroscopy based on Kalman filtering].

    Science.gov (United States)

    Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou

    2014-04-01

    Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.

  14. Tracking and convergence of multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; van Ophem, S.

    2013-01-01

    The feed-forward broadband active noise control problem can be formulated as a state estimation problem to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output Kalman algorithm

  15. Kalman Filter Based Data Fusion for Bi-Axial Neutral Axis Tracking in Wind Turbine Towers

    DEFF Research Database (Denmark)

    Soman, Rohan; Malinowski, Pawel; Schmidt Paulsen, Uwe

    2015-01-01

    demonstrates a methodology for the selection of threshold for damage detection based on qualitative data acquired from several damage scenarios of a 10 MW wind turbine. The damage indicator is the change of neutral axis (NA) which is tracked using Kalman Filter (KF). Based on the level of damage to be detected...

  16. Assimilating Remotely Sensed Surface Soil Moisture into SWAT using Ensemble Kalman Filter

    Science.gov (United States)

    In this study, a 1-D Ensemble Kalman Filter has been used to update the soil moisture states of the Soil and Water Assessment Tool (SWAT) model. Experiments were conducted for the Cobb Creek Watershed in southeastern Oklahoma for 2006-2008. Assimilation of in situ data proved limited success in the ...

  17. Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels.

    Science.gov (United States)

    Dehghan Niri, E; Farhidzadeh, A; Salamone, S

    2014-02-01

    Nonlinear Kalman Filtering is an established field in applied probability and control systems, which plays an important role in many practical applications from target tracking to weather and climate prediction. However, its application for acoustic emission (AE) source localization has been very limited. In this paper, two well-known nonlinear Kalman Filtering algorithms are presented to estimate the location of AE sources in anisotropic panels: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). These algorithms are applied to two cases: velocity profile known (CASE I) and velocity profile unknown (CASE II). The algorithms are compared with a more traditional nonlinear least squares method. Experimental tests are carried out on a carbon-fiber reinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers to validate the proposed approaches. AE sources are simulated using an instrumented miniature impulse hammer. In order to evaluate the performance of the algorithms, two metrics are used: (1) accuracy of the AE source localization and (2) computational cost. Furthermore, it is shown that both EKF and UKF can provide a confidence interval of the estimated AE source location and can account for uncertainty in time of flight measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Detecting land cover change using an extended Kalman filter on MODIS NDVI time-series data

    CSIR Research Space (South Africa)

    Kleynhans, W

    2011-05-01

    Full Text Available . The NDVI time series for each of these pixels was modeled as a triply (mean, phase, and amplitude) modulated cosine function, and an extended Kalman filter was used to estimate the parameters of the modulated cosine function through time. A spatial...

  19. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    , an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  20. Non-linear DSGE Models and The Central Difference Kalman Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...

  1. Kalman filter for statistical monitoring of forest cover across sub-continental regions [Symposium

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a generalization of the composite estimator. The univariate composite estimate combines 2 prior estimates of population parameter with a weighted average where the scalar weight is inversely proportional to the variances. The composite estimator is a minimum variance estimator that requires no distributional assumptions other than estimates of the...

  2. Upper Atmosphere Research Satellite (UARS) onboard attitude determination using a Kalman filter

    Science.gov (United States)

    Garrick, Joseph

    1993-01-01

    The Upper Atmospheric Research Satellite (UARS) requires a highly accurate knowledge of its attitude to accomplish its mission. Propagation of the attitude state using gyro measurements is not sufficient to meet the accuracy requirements, and must be supplemented by a observer/compensation process to correct for dynamics and observation anomalies. The process of amending the attitude state utilizes a well known method, the discrete Kalman Filter. This study is a sensitivity analysis of the discrete Kalman Filter as implemented in the UARS Onboard Computer (OBC). The stability of the Kalman Filter used in the normal on-orbit control mode within the OBC, is investigated for the effects of corrupted observations and nonlinear errors. Also, a statistical analysis on the residuals of the Kalman Filter is performed. These analysis is based on simulations using the UARS Dynamics Simulator (UARSDSIM) and compared against attitude requirements as defined by General Electric (GE). An independent verification of expected accuracies is performed using the Attitude Determination Error Analysis System (ADEAS).

  3. The use of the Kalman filter in the automated segmentation of EIT lung images.

    Science.gov (United States)

    Zifan, A; Liatsis, P; Chapman, B E

    2013-06-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.

  4. Performance of the ensemble Kalman filter outside of existing wells for a channelized reservoir

    NARCIS (Netherlands)

    Peters, E.

    2010-01-01

    The ensemble Kalman filter (EnKF) appears to give good results for matching production data at existing wells. However, the predictive power of these models outside of the existing wells is much more uncertain. In this paper, for a channelized reservoir for five different cases with different levels

  5. State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2015-06-01

    Full Text Available Accurate state of charge (SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF and cubature Kalman filter (CKF algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.

  6. Distance parameterization for efficient seismic history matching the ensemble Kalman Filters

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Arts, R.J.

    2014-01-01

    The availability of multiple history matched models is essential for proper handling of uncertainty in determining the optimal development of producing hydrocarbon fields. The ensemble Kalman Filter in particular is becoming recognized as an efficient method for quantitative conditioning of multiple

  7. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts

    NARCIS (Netherlands)

    Wit, de A.J.W.; Diepen, van C.A.

    2007-01-01

    Uncertainty in spatial and temporal distribution of rainfall in regional crop yield simulations comprises a major fraction of the error on crop model simulation results. In this paper we used an Ensemble Kalman filter (EnKF) to assimilate coarse resolution satellite microwave sensor derived soil

  8. Distance parameterization for efficient seismic history matching with the ensemble Kalman Filter

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Arts, R.

    2012-01-01

    The Ensemble Kalman Filter (EnKF), in combination with travel-time parameterization, provides a robust and flexible method for quantitative multi-model history matching to time-lapse seismic data. A disadvantage of the parameterization in terms of travel-times is that it requires simulation of

  9. A probabilistic parametrization for geological uncertainty estimation using the ensemble Kalman filter (EnKF)

    NARCIS (Netherlands)

    Sebacher, B.; Hanea, R.G.; Heemink, A.

    2013-01-01

    In the past years, many applications of historymatching methods in general and ensemble Kalman filter in particular have been proposed, especially in order to estimate fields that provide uncertainty in the stochastic process defined by the dynamical system of hydrocarbon recovery. Such fields can

  10. A Kalman filter approach to realize the lowest astronomical tide surface

    NARCIS (Netherlands)

    Slobbe, D.C.; Sumihar, JH; Frederikse, T.; Verlaan, M.; Klees, R.; Zijl, F; Hashemi Farahani, H.; Broekman, R

    2017-01-01

    In this paper, we present a novel Kalman filter approach to combine a hydrodynamic model-derived lowest astronomical tide (LAT) surface with tide gauge record-derived LAT values. In the approach, tidal water levels are assimilated into the model. As such, the combination is guided by the model

  11. Novel Kalman filter algorithm for statistical monitoring of extensive landscapes with synoptic sensor data

    Science.gov (United States)

    Raymond L. Czaplewski

    2015-01-01

    Wall-to-wall remotely sensed data are increasingly available to monitor landscape dynamics over large geographic areas. However, statistical monitoring programs that use post-stratification cannot fully utilize those sensor data. The Kalman filter (KF) is an alternative statistical estimator. I develop a new KF algorithm that is numerically robust with large numbers of...

  12. Modified temporal approach to meta-optimizing an extended Kalman filter's parameters

    CSIR Research Space (South Africa)

    Salmon, BP

    2014-07-01

    Full Text Available meta-optimization approach has been proposed in the literature for setting the parameters of the non-linear Extended Kalman Filter (EKF) to rapidly and efficiently estimate the features for these triply modulated cosine functions using spatial...

  13. In-situ estimation of MOCVD growth rate via a modified Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Woo, W.W.; Svoronos, S.A. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Sankur, H.O.; Bajaj, J. [Rockwell International Corp., Thousand Oaks, CA (United States); Irvine, S.J.C. [North East Wales Inst. Plas Coch, Wrexham (United Kingdom)

    1996-05-01

    In-situ laser reflectance monitoring of metal-organic chemical vapor deposition (MOCVD) is an effective way to monitor growth rate and epitaxial layer thickness of a variety of III-V and II-VI semiconductors. Materials with low optical extinction coefficients, such as ZnTe/GaAs and AlAs/GaAs for a 6,328 {angstrom} HeNe laser, are ideal for such an application. An extended Kalman filter modified to include a variable forgetting factor was applied to the MOCVD systems. The filter was able to accurately estimate thickness and growth rate while filtering out process noise and cope with sudden changes in growth rate, reflectance drift, and bias. Due to the forgetting factor, the Kalman filter was successful, even when based on very simple process models.

  14. Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering

    OpenAIRE

    Chuanxue Song; Yulong Shao; Shixin Song; Silun Peng; Fang Zhou; Cheng Chang; Da Wang

    2017-01-01

    To improve the accuracy of insulation monitoring between the battery pack and chassis of electric vehicles, we established a serial battery pack model composed of first-order resistor-capacitor (RC) circuit battery cells. We then designed a low-voltage, low-frequency insulation monitoring model based on this serial battery pack model. An extended Kalman filter (EKF) was designed for this non-linear system to filter the measured results, thus mitigating the influence of noise. Experimental and...

  15. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    Science.gov (United States)

    Liu, Hua; Wu, Wen

    2017-03-31

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.

  16. Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea

    KAUST Repository

    Triantafyllou, George N.

    2013-09-01

    An application of an ensemble-based robust filter for data assimilation into an ecosystem model of the Cretan Sea is presented and discussed. The ecosystem model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The filtering scheme is based on the Singular Evolutive Interpolated Kalman (SEIK) filter which is implemented with a time-local H∞ filtering strategy to enhance robustness and performances during periods of strong ecosystem variability. Assimilation experiments in the Cretan Sea indicate that robustness can be achieved in the SEIK filter by introducing an adaptive inflation scheme of the modes of the filter error covariance matrix. Twin-experiments are performed to evaluate the performance of the assimilation system and to study the benefits of using robust filtering in an ensemble filtering framework. Pseudo-observations of surface chlorophyll, extracted from a model reference run, were assimilated every two days. Simulation results suggest that the adaptive inflation scheme significantly improves the behavior of the SEIK filter during periods of strong ecosystem variability. © 2012 Elsevier B.V.

  17. Performance and stochastic stability of the adaptive fading extended Kalman filter with the matrix forgetting factor

    Directory of Open Access Journals (Sweden)

    Biçer Cenker

    2016-01-01

    Full Text Available In this paper, the stability of the adaptive fading extended Kalman filter with the matrix forgetting factor when applied to the state estimation problem with noise terms in the non–linear discrete–time stochastic systems has been analysed. The analysis is conducted in a similar manner to the standard extended Kalman filter’s stability analysis based on stochastic framework. The theoretical results show that under certain conditions on the initial estimation error and the noise terms, the estimation error remains bounded and the state estimation is stable.

  18. Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization.

    Science.gov (United States)

    Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng Chai; Xie, Lihua

    2015-01-05

    Location-based services (LBS) have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR) have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m.

  19. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization

    Directory of Open Access Journals (Sweden)

    Zhenghua Chen

    2015-01-01

    Full Text Available Location-based services (LBS have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m.

  20. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2016-08-12

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model\\'s state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.

  1. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Science.gov (United States)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2017-08-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  2. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Directory of Open Access Journals (Sweden)

    Cerati Giuseppe

    2017-01-01

    Full Text Available For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU, ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC, for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  3. Enhanced Optical Filter Design

    CERN Document Server

    Cushing, David

    2011-01-01

    This book serves as a supplement to the classic texts by Angus Macleod and Philip Baumeister, taking an intuitive approach to the enhancement of optical coating (or filter) performance. Drawing from 40 years of experience in thin film design, Cushing introduces the basics of thin films, the commonly used materials and their deposition, the major coatings and their applications, and improvement methods for each.

  4. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  5. Derivative free Kalman filtering used for orchard navigation

    DEFF Research Database (Denmark)

    Hansen, Søren; Bayramoglu, Enis; Andersen, Jens Christian

    2010-01-01

    In this paper the use of derivative free filters for mobile robot localisation is investigated. Three different filters are tested on real life data from an autonomous tractor running in an orchard environment. The localisation algorithm fuses odometry and gyro measurements with line features...

  6. Low-rank Kalman filtering for efficient state estimation of subsurface advective contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad

    2012-04-01

    Accurate knowledge of the movement of contaminants in porous media is essential to track their trajectory and later extract them from the aquifer. A two-dimensional flow model is implemented and then applied on a linear contaminant transport model in the same porous medium. Because of different sources of uncertainties, this coupled model might not be able to accurately track the contaminant state. Incorporating observations through the process of data assimilation can guide the model toward the true trajectory of the system. The Kalman filter (KF), or its nonlinear invariants, can be used to tackle this problem. To overcome the prohibitive computational cost of the KF, the singular evolutive Kalman filter (SEKF) and the singular fixed Kalman filter (SFKF) are used, which are variants of the KF operating with low-rank covariance matrices. Experimental results suggest that under perfect and imperfect model setups, the low-rank filters can provide estimates as accurate as the full KF but at much lower computational effort. Low-rank filters are demonstrated to significantly reduce the computational effort of the KF to almost 3%. © 2012 American Society of Civil Engineers.

  7. Gravity Matching Aided Inertial Navigation Technique Based on Marginal Robust Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2015-01-01

    Full Text Available This paper is concerned with the topic of gravity matching aided inertial navigation technology using Kalman filter. The dynamic state space model for Kalman filter is constructed as follows: the error equation of the inertial navigation system is employed as the process equation while the local gravity model based on 9-point surface interpolation is employed as the observation equation. The unscented Kalman filter is employed to address the nonlinearity of the observation equation. The filter is refined in two ways as follows. The marginalization technique is employed to explore the conditionally linear substructure to reduce the computational load; specifically, the number of the needed sigma points is reduced from 15 to 5 after this technique is used. A robust technique based on Chi-square test is employed to make the filter insensitive to the uncertainties in the above constructed observation model. Numerical simulation is carried out, and the efficacy of the proposed method is validated by the simulation results.

  8. STATISTICAL CHARACTERISTICS INVESTIGATION OF PREDICTION ERRORS FOR INTERFEROMETRIC SIGNAL IN THE ALGORITHM OF NONLINEAR KALMAN FILTERING

    Directory of Open Access Journals (Sweden)

    E. L. Dmitrieva

    2016-05-01

    Full Text Available Basic peculiarities of nonlinear Kalman filtering algorithm applied to processing of interferometric signals are considered. Analytical estimates determining statistical characteristics of signal values prediction errors were obtained and analysis of errors histograms taking into account variations of different parameters of interferometric signal was carried out. Modeling of the signal prediction procedure with known fixed parameters and variable parameters of signal in the algorithm of nonlinear Kalman filtering was performed. Numerical estimates of prediction errors for interferometric signal values were obtained by formation and analysis of the errors histograms under the influence of additive noise and random variations of amplitude and frequency of interferometric signal. Nonlinear Kalman filter is shown to provide processing of signals with randomly variable parameters, however, it does not take into account directly the linearization error of harmonic function representing interferometric signal that is a filtering error source. The main drawback of the linear prediction consists in non-Gaussian statistics of prediction errors including cases of random deviations of signal amplitude and/or frequency. When implementing stochastic filtering of interferometric signals, it is reasonable to use prediction procedures based on local statistics of a signal and its parameters taken into account.

  9. Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms

    Science.gov (United States)

    Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin

    2014-01-01

    This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

  10. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  11. Air-to-Air Missile Enhanced Scoring with Kalman Smoothing

    Science.gov (United States)

    2012-03-01

    i.e., x̂k is an estimate of the vector x at time k) • Apriori Estimate: An estimate of a system’s navigation parameters prior to incorporating a...k +Qd (2.9) where x̂k|k−1 is the apriori state estimate and P k|k−1 is the associated covariance. Measurement updates are calculated by 8 x̂k|k = x̂k...and the aposteriori state estimate, x̂k|k, becomes the new apriori state estimate for next propagation step x̂k+1|k. 2.2.1 Extended Kalman Filter

  12. Dynamic Inverse Problem Solution Using a Kalman Filter Smoother for Neuronal Activity Estimation

    Directory of Open Access Journals (Sweden)

    Eduardo Giraldo-Suárez

    2011-12-01

    Full Text Available This article presents an estimation method of neuronal activity into the brain using a Kalman smoother approach that takes into account in the solution of the inverse problem the dynamic variability of the time series. This method is applied over a realistic head model calculated with the boundary element method. A comparative analysis for the dynamic estimation methods is made up from simulated EEG signals for several noise conditions. The solution of the inverse problem is achieved by using high performance computing techniques and an evaluation of the computational cost is performed for each method. As a result, the Kalman smoother approach presents better performance in the estimation task than the regularized static solution, and the direct Kalman filter.

  13. Dynamic electrical impedance imaging of a chest phantom using the Kalman filter.

    Science.gov (United States)

    Kim, Bong Seok; Kim, Kyung Youn; Kao, Tzu-Jen; Newell, Jonathan C; Isaacson, David; Saulnier, Gary J

    2006-05-01

    A dynamic complex impedance imaging technique is developed with the aid of the linearized Kalman filter (LKF) for real-time reconstruction of the human chest. The forward problem is solved by an analytical method based on the separation of variables and Fourier series. The inverse problem is treated as a state estimation problem. The nonlinear measurement equation is linearized about the best homogeneous impedivity value as an initial guess, and the impedivity distribution is estimated with the aid of the Kalman estimator. The Kalman gain matrix is pre-computed and stored off-line to minimize the on-line computational time. Simulation and phantom experiment are reported to illustrate the reconstruction performances in the sense of spatio-temporal resolution in a simplified geometry of the human chest.

  14. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    Science.gov (United States)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2013-01-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  15. Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior

    Science.gov (United States)

    Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.

    2017-01-01

    A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.

  16. Optical flow based Kalman filter for body joint prediction and tracking using HOG-LBP matching

    Science.gov (United States)

    Nair, Binu M.; Kendricks, Kimberley D.; Asari, Vijayan K.; Tuttle, Ronald F.

    2014-03-01

    We propose a real-time novel framework for tracking specific joints in the human body on low resolution imagery using optical flow based Kalman tracker without the need of a depth sensor. Body joint tracking is necessary for a variety of surveillance based applications such as recognizing gait signatures of individuals, identifying the motion patterns associated with a particular action and the corresponding interactions with objects in the scene to classify a certain activity. The proposed framework consists of two stages; the initialization stage and the tracking stage. In the initialization stage, the joints to be tracked are either manually marked or automatically obtained from other joint detection algorithms in the first few frames within a window of interest and appropriate image descriptions of each joint are computed. We employ the use of a well-known image coding scheme known as the Local Binary Patterns (LBP) to represent the joint local region where this image coding removes the variance to non-uniform lighting conditions as well as enhances the underlying edges and corner. The image descriptions of the joint region would then include a histogram computed from the LBP-coded ROI and a HOG (Histogram of Oriented Gradients) descriptor to represent the edge information. Next the tracking stage can be divided into two phases: Optical flow based detection of joints in corresponding frames of the sequence and prediction /correction phases of Kalman tracker with respect to the joint coordinates. Lucas Kanade optical flow is used to locate the individual joints in consecutive frames of the video based on their location in the previous frame. But more often, mismatches can occur due to the rotation of the joint region and the rotation variance of the optical flow matching technique. The mismatch is then determined by comparing the joint region descriptors using Chi-squared metric between a pair of frames and depending on this statistic, either the prediction

  17. Ensemble unscented Kalman filter for state inference in continuous–discrete systems

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2014-05-01

    Full Text Available The authors consider non-linear state filtering problem in continuous–discrete systems, where the system dynamics is modelled by a stochastic differential equation, and noisy measurements of the system are obtained at discrete time instances. A novel particle method is proposed based on sequential importance sampling. This approach uses a bank of the continuous–discrete unscented Kalman filters (CDUKFs to obtain the importance proposal distribution, retaining the advantage of the CDUKF in continuous–discrete systems as well as the accuracy of particle filter in highly non-linear systems. Simulation results show that the algorithm outperforms some other benchmarks substantially in estimation accuracy.

  18. Kalman Filter for Estimation of Sensor Acceleration Using Six - axis Inertial Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Keun [Hankyong National University, Anseong (Korea, Republic of)

    2015-02-15

    Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.

  19. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.

    Science.gov (United States)

    Ligorio, Gabriele; Sabatini, Angelo M

    2015-08-01

    Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.

  20. RSSI-Based Distance Estimation Framework Using a Kalman Filter for Sustainable Indoor Computing Environments

    Directory of Open Access Journals (Sweden)

    Yunsick Sung

    2016-11-01

    Full Text Available Given that location information is the key to providing a variety of services in sustainable indoor computing environments, it is required to obtain accurate locations. Locations can be estimated by three distances from three fixed points. Therefore, if the distance between two points can be measured or estimated accurately, the location in indoor environments can be estimated. To increase the accuracy of the measured distance, noise filtering, signal revision, and distance estimation processes are generally performed. This paper proposes a novel framework for estimating the distance between a beacon and an access point (AP in a sustainable indoor computing environment. Diverse types of received strength signal indications (RSSIs are used for WiFi, Bluetooth, and radio signals, and the proposed distance estimation framework is unique in that it is independent of the specific wireless signal involved, being based on the Bluetooth signal of the beacon. Generally, RSSI measurement, noise filtering, and revision are required for distance estimation using RSSIs. The employed RSSIs are first measured from an AP, with multiple APs sometimes used to increase the accuracy of the distance estimation. Owing to the inevitable presence of noise in the measured RSSIs, the application of noise filtering is essential, and further revision is used to address the inaccuracy and instability that characterizes RSSIs measured in an indoor environment. The revised RSSIs are then used to estimate the distance. The proposed distance estimation framework uses one AP to measure the RSSIs, a Kalman filter to eliminate noise, and a log-distance path loss model to revise the measured RSSIs. In the experimental implementation of the framework, both a RSSI filter and a Kalman filter were respectively used for noise elimination to comparatively evaluate the performance of the latter for the specific application. The Kalman filter was found to reduce the accumulated errors by 8

  1. Interferometric signals analysis based on the extended Kalman filter tuned by machine learning technique

    Science.gov (United States)

    Ermolaev, Petr A.; Volynsky, Maxim A.

    2017-06-01

    The paper deals with the machine learning approach to automatic tuning of extended Kalman filter in application to interferometric signals processing. The representation of interferometric signals as output of dynamic systems with varying state vector is presented. It is shown that the challenge of the extended Kalman filter application to interferometric data processing is selection of initial parameters for the filter. The complex tuning problem is described in a formal form. The machine learning approach to the automatic filter tuning is proposed. The combination of Monte Carlo optimization and the gradient descent are implemented for initial filter parameters selection. The optimization criterion in the form of sum differences between measured and estimated signal value is presented and discussed. The results of simulated and experimental interferometric signals processing are presented and analyzed. The quality of amplitude and phase estimation by the automatically tuned filter is at the same level as hand tuned filter. It is shown, that proposed approach allows to obtain robust results of experimental data processing.

  2. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  3. Sampled-Data Kalman Filtering and Multiple Model Adaptive Estimation for Infinite-Dimensional Continuous-Time Systems

    National Research Council Canada - National Science Library

    Sallberg, Scott A

    2007-01-01

    Kalman filtering and multiple model adaptive estimation (MMAE) methods have been applied by researchers in several engineering disciplines to a multitude of problems featuring a linear (or mildly nonlinear...

  4. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    Science.gov (United States)

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  5. Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System

    Directory of Open Access Journals (Sweden)

    Jurkiewicz Andrzej

    2017-09-01

    Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.

  6. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    Science.gov (United States)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  7. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter.

    Science.gov (United States)

    Huang, Lei

    2015-09-30

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required.

  8. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    Science.gov (United States)

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  9. Low-signal, coronagraphic wavefront estimation with Kalman filtering in the high contrast imaging testbed

    Science.gov (United States)

    Riggs, A. J. Eldorado; Cady, Eric J.; Prada, Camilo M.; Kern, Brian D.; Zhou, Hanying; Kasdin, N. Jeremy; Groff, Tyler D.

    2016-07-01

    For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.

  10. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles

    Science.gov (United States)

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  11. Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer.

    Science.gov (United States)

    Lepine, Nicholas N; Tajima, Takuro; Ogasawara, Takayuki; Kasahara, Ryoichi; Koizumi, Hiroshi

    2016-08-01

    An adaptive Kalman filter-based fusion algorithm capable of estimating respiration rate for unobtrusive respiratory monitoring is proposed. Using both signal characteristics and a priori information, the Kalman filter is adaptively optimized to improve accuracy. Furthermore, the system is able to combine the respiration-related signals extracted from a textile ECG sensor and an accelerometer to create a single robust measurement. We measured derived respiratory rates and, when compared to a reference, found root-mean-square error of 2.11 breaths-per-minute (BrPM) while lying down, 2.30 BrPM while sitting, 5.97 BrPM while walking, and 5.98 BrPM while running. These results demonstrate that the proposed system is applicable to unobtrusive monitoring for various applications.

  12. Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems

    Directory of Open Access Journals (Sweden)

    Man Hong

    2013-01-01

    Full Text Available To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR is proposed. A predictive control algorithm based on the Kalman filter for constrained Hammerstein-Wiener systems is designed. An output feedback control law regarding the linear subsystem is derived by state observation. The size of reaction heat produced and its influence on the output are evaluated by the Kalman filter. The observation and evaluation results are calculated by the multistep predictive approach. Actual control variables are computed while considering the constraints of the optimal control problem in a finite horizon through the receding horizon. The simulation example of the CSTR tester shows the effectiveness and feasibility of the proposed algorithm.

  13. Thermal Error Modeling of the CNC Machine Tool Based on Data Fusion Method of Kalman Filter

    Directory of Open Access Journals (Sweden)

    Haitong Wang

    2017-01-01

    Full Text Available This paper presents a modeling methodology for the thermal error of machine tool. The temperatures predicted by modified lumped-mass method and the temperatures measured by sensors are fused by the data fusion method of Kalman filter. The fused temperatures, instead of the measured temperatures used in traditional methods, are applied to predict the thermal error. The genetic algorithm is implemented to optimize the parameters in modified lumped-mass method and the covariances in Kalman filter. The simulations indicate that the proposed method performs much better compared with the traditional method of MRA, in terms of prediction accuracy and robustness under a variety of operating conditions. A compensation system is developed based on the controlling system of Siemens 840D. Validated by the compensation experiment, the thermal error after compensation has been reduced dramatically.

  14. Identification of parameters in nonlinear geotechnical models using extenden Kalman filter

    Directory of Open Access Journals (Sweden)

    Nestorović Tamara

    2014-01-01

    Full Text Available Direct measurement of relevant system parameters often represents a problem due to different limitations. In geomechanics, measurement of geotechnical material constants which constitute a material model is usually a very diffcult task even with modern test equipment. Back-analysis has proved to be a more effcient and more economic method for identifying material constants because it needs measurement data such as settlements, pore pressures, etc., which are directly measurable, as inputs. Among many model parameter identification methods, the Kalman filter method has been applied very effectively in recent years. In this paper, the extended Kalman filter – local iteration procedure incorporated with finite element analysis (FEA software has been implemented. In order to prove the effciency of the method, parameter identification has been performed for a nonlinear geotechnical model.

  15. Quaternion normalization in additive EKF for spacecraft attitude determination. [Extended Kalman Filters

    Science.gov (United States)

    Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.

    1991-01-01

    This work introduces, examines and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter to spacecraft attitude determination, which is based on vector measurements. Three new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstate the performance of all four schemes.

  16. Kalman Filter Chemical Data Assimilation: A Case Study in January 1992

    Science.gov (United States)

    Lary, D. J.; Khattatov, B.; Atlas, Robert; Mussa, H.

    2002-01-01

    This paper describes a Kalman filter chemical data assimilation system and its use for analysing a vertical atmospheric profile during January 1992. The vertical profile was at an equivalent PV latitude (phi(sub e)) of 55 deg S and consisted of 21 potential temperature (theta) levels spaced equally in log(theta) between 400 K and 2000 K. This equivalent latitude was chosen as it was well observed during January 1992 by instruments on board the Upper Atmosphere Research Satellite (UARS).

  17. Distributed Estimation of Oscillations in Power Systems: an Extended Kalman Filtering Approach

    OpenAIRE

    Yu, Zhe; Shi, Di; Wang, Zhiwei; Zhang, Qibing; Huang, Junhui; Pan, Sen

    2017-01-01

    Online estimation of electromechanical oscillation parameters provides essential information to prevent system instability and blackout and helps to identify event categories and locations. We formulate the problem as a state space model and employ the extended Kalman filter to estimate oscillation frequencies and damping factors directly based on data from phasor measurement units. Due to considerations of communication burdens and privacy concerns, a fully distributed algorithm is proposed ...

  18. Environment reconstruction and navigation with electric sense based on a Kalman filter

    OpenAIRE

    Lebastard, Vincent; Chevallereau, Christine; Girin, Alexis; Servagent, Noël; Gossiaux, Pol-Bernard; Boyer, Frédéric

    2013-01-01

    International audience; Electric fish sense the perturbations of a self generated electric field through their electro- receptive skin. This sense allows them to navigate and reconstruct their environment in conditions where vision and sonar cannot work. In this article, we use a sensor inspired by this sense to address the problem of locating and reconstructing small objects (electrolocation) and navigating in a tank. Based on a Kalman filter, any small object in the surroundings of the moti...

  19. Localization of small objects with electric sense based on kalman filter

    OpenAIRE

    Lebastard, Vincent; Chevallereau, C; Girin, A; Boyer, Frédéric; Gossiaux, P.

    2012-01-01

    International audience; — Electric fish feel the perturbations of a self-generated electric field through their electro-receptive skin. This sense allows them to navigate and reconstruct their environment in conditions where vision and sonar cannot work. In this article, we use a sensor bio-inspired from this active sense to address the problem of small objects reconstruction and electrolocation. Based on a Kalman filter, any small object in the surrounding of the motion controlled sensor can...

  20. Analysis of spatial and temporal variations of PM 10 concentrations in the Netherlands using Kalman filtering

    Science.gov (United States)

    van der Wal, J. T.; Janssen, L. H. J. M.

    The spatial and temporal variations of PM10 concentrations in the Netherlands as measured by the National Air Quality Monitoring Network in the period of 1993-1994 have been analysed using descriptive statistics, principal component analysis (PCA) and Kalman filtering. Spatial differences in PM10 concentrations in the Netherlands are rather small. PM10 concentrations may be elevated by about 10-20% with respect to the yearly average, which is about 40 μg/m 3, in areas with local sources such as traffic or other urban, industrial or agricultural sources. Actual PM10 concentrations vary between 20 and 50 μg/m 3 throughout the year. During episodes, PM10 concentrations may increase to 4 to 5 times the annual average (>200 μg/m 3). The large amount of variance explained by the first component of PCA, i.e. 85%, shows that all measuring stations observe the same pattern of daily variations which is mainly governed by large-scale weather systems.The daily variations are analysed using multiple-linear regression and Kalman filtering; the latter employed as a time-varying linear regression technique. The results of the both methods are compared and show that using wind direction, temperature and duration of precipitation as variables, ordinary linear regression explains about 25% of the variance of PM10 concentrations, while the application of the Kalman filter explains about 45% of the variance. The improvement using the Kalman filter is primarily obtained by making the explaining variables time dependent. This shows a significant effect of seasonal variation on temperature and wind direction at PM10 levels.

  1. Forecasting optimal duration of a beer main fermentation process using the Kalman filter

    OpenAIRE

    Niyonsaba T.; Pavlov V. A.

    2016-01-01

    One of the most important processes of beer production is the main process of fermentation. In this process, the wort transforms into beer. The quality of beer depends on the dynamics of wort parameters. The main fermentation process continues for 10 days and requires high costs. Therefore, the main purpose of this article is to forecast the optimal duration of the beer main fermentation process and provide its optimal control. The Kalman filter can provide optimal control of the main ferment...

  2. Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

    Directory of Open Access Journals (Sweden)

    Xiu Kan

    2012-01-01

    Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.

  3. On-chip implementation of Extended Kalman Filter for adaptive battery states monitoring

    OpenAIRE

    Nejad, S.; Gladwin, D.T.; Stone, D. A.

    2016-01-01

    This paper reports the development and implementation of an adaptive lithium-ion battery monitoring system. The monitoring algorithm is based on the nonlinear Dual Extended Kalman Filter (DEKF), which allows for simultaneous states and parameters estimation. The hardware platform consists of an ARM cortex-M0 processor with six embedded analogue-to-digital converters (ADCs) for data acquisition. Two definitions for online state-of-health (SOH) characterisation are presented; one energy-based a...

  4. Application of Kalman filter in detecting pre-earthquake ionospheric TEC anomaly

    Directory of Open Access Journals (Sweden)

    Zhu Fuying

    2011-05-01

    Full Text Available : As an attempt, the Kalman filter was used to study the anomalous variations of ionospheric Total Electron Content (TEC before and after Wenchuan Ms8.0 earthquake, these TEC data were calculated from the GPS data observed by the Crustal Movement Observation Network of China. The result indicates that this method is reasonable and reliable in detecting TEC anomalies associated with large earthquakes.

  5. Examining dynamic interactions among experimental factors influencing hydrologic data assimilation with the ensemble Kalman filter

    Science.gov (United States)

    Wang, S.; Huang, G. H.; Baetz, B. W.; Cai, X. M.; Ancell, B. C.; Fan, Y. R.

    2017-11-01

    The ensemble Kalman filter (EnKF) is recognized as a powerful data assimilation technique that generates an ensemble of model variables through stochastic perturbations of forcing data and observations. However, relatively little guidance exists with regard to the proper specification of the magnitude of the perturbation and the ensemble size, posing a significant challenge in optimally implementing the EnKF. This paper presents a robust data assimilation system (RDAS), in which a multi-factorial design of the EnKF experiments is first proposed for hydrologic ensemble predictions. A multi-way analysis of variance is then used to examine potential interactions among factors affecting the EnKF experiments, achieving optimality of the RDAS with maximized performance of hydrologic predictions. The RDAS is applied to the Xiangxi River watershed which is the most representative watershed in China's Three Gorges Reservoir region to demonstrate its validity and applicability. Results reveal that the pairwise interaction between perturbed precipitation and streamflow observations has the most significant impact on the performance of the EnKF system, and their interactions vary dynamically across different settings of the ensemble size and the evapotranspiration perturbation. In addition, the interactions among experimental factors vary greatly in magnitude and direction depending on different statistical metrics for model evaluation including the Nash-Sutcliffe efficiency and the Box-Cox transformed root-mean-square error. It is thus necessary to test various evaluation metrics in order to enhance the robustness of hydrologic prediction systems.

  6. An Adaptive Approach to Mitigate Background Covariance Limitations in the Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2010-07-01

    A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF from fully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a preselected stationary background covariance matrix, as in the hybrid EnKF–three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members. The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF–3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF–3DVAR approach, depending on ensemble size and data coverage.

  7. A Kalman filter approach to track fast impedance changes in electrical impedance tomography.

    Science.gov (United States)

    Vauhkonen, M; Karjalainen, P A; Kaipio, J P

    1998-04-01

    In electrical impedance tomography (EIT), an estimate for the cross-sectional impedance distribution is obtained from the body by using current and voltage measurements made from the boundary. All well-known reconstruction algorithms use a full set of independent current patterns for each reconstruction. In some applications, the impedance changes may be so fast that information on the time evolution of the impedance distribution is either lost or severely blurred. In this paper, we propose an algorithm for EIT reconstruction that is able to track fast changes in the impedance distribution. The method is based on the formulation of EIT as a state-estimation problem and the recursive estimation of the state with the aid of the Kalman filter. The performance of the proposed method is evaluated with a simulation of human thorax in a situation in which the impedances of the ventricles change rapidly. We show that with optimal current patterns and proper parameterization, the proposed approach yields significant enhancement of the temporal resolution over the conventional reconstruction strategy.

  8. Quaternion-Based Kalman Filter for AHRS Using an Adaptive-Step Gradient Descent Algorithm

    Directory of Open Access Journals (Sweden)

    Li Wang

    2015-09-01

    Full Text Available This paper presents a quaternion-based Kalman filter for real-time estimation of the orientation of a quadrotor. Quaternions are used to represent rotation relationship between navigation frame and body frame. Processing of a 3-axis accelerometer using Adaptive-Step Gradient Descent (ASGD produces a computed quaternion input to the Kalman filter. The step-size in GD is set in direct proportion to the physical orientation rate. Kalman filter combines 3-axis gyroscope and computed quaternion to determine pitch and roll angles. This combination overcomes linearization error of the measurement equations and reduces the calculation cost. 3-axis magnetometer is separated from ASGD to independently calculate yaw angle for Attitude Heading Reference System (AHRS. This AHRS algorithm is able to remove the magnetic distortion impact. Experiments are carried out in the small-size flight controller and the real world flying test shows the proposed AHRS algorithm is adequate for the real-time estimation of the orientation of a quadrotor.

  9. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  10. Robust cubature Kalman filter for GNSS/INS with missing observations and colored measurement noise.

    Science.gov (United States)

    Cui, Bingbo; Chen, Xiyuan; Tang, Xihua; Huang, Haoqian; Liu, Xiao

    2017-10-10

    In order to improve the accuracy of GNSS/INS working in GNSS-denied environment, a robust cubature Kalman filter (RCKF) is developed by considering colored measurement noise and missing observations. First, an improved cubature Kalman filter (CKF) is derived by considering colored measurement noise, where the time-differencing approach is applied to yield new observations. Then, after analyzing the disadvantages of existing methods, the measurement augment in processing colored noise is translated into processing the uncertainties of CKF, and new sigma point update framework is utilized to account for the bounded model uncertainties. By reusing the diffused sigma points and approximation residual in the prediction stage of CKF, the RCKF is developed and its error performance is analyzed theoretically. Results of numerical experiment and field test reveal that RCKF is more robust than CKF and extended Kalman filter (EKF), and compared with EKF, the heading error of land vehicle is reduced by about 72.4%. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    Science.gov (United States)

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  12. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Cerati, Giuseppe [Fermilab; Elmer, Peter [Princeton U.; Krutelyov, Slava [UC, San Diego; Lantz, Steven [Cornell U., Phys. Dept.; Lefebvre, Matthieu [Princeton U.; Masciovecchio, Mario [UC, San Diego; McDermott, Kevin [Cornell U., Phys. Dept.; Riley, Daniel [Cornell U., Phys. Dept.; Tadel, Matevž [UC, San Diego; Wittich, Peter [Cornell U., Phys. Dept.; Würthwein, Frank [UC, San Diego; Yagil, Avi [UC, San Diego

    2017-11-16

    Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems is expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.

  13. Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering.

    Science.gov (United States)

    Poupon, Cyril; Roche, Alexis; Dubois, Jessica; Mangin, Jean-François; Poupon, Fabrice

    2008-10-01

    Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an incremental algorithm, it naturally enables updating the model estimate after the acquisition of any new diffusion-weighted volume. Processing diffusion models and maps during ongoing scans provides a new useful tool for clinicians, especially when it is not possible to predict how long a subject may remain still in the magnet. First, we introduce the general linear models corresponding to the two diffusion tensor and analytical Q-ball models of interest. Then, we present the Kalman filtering framework and we focus on the optimization of the diffusion orientation sets in order to speed up the convergence of the online processing. Last, we give some results on a healthy volunteer for the online tensor and the Q-ball model, and we make some comparisons with the conventional offline techniques used in the literature. We could achieve full real-time for diffusion tensor imaging and deferred time for Q-ball imaging, using a single workstation.

  14. Detection of Sensor Faults in Small Helicopter UAVs Using Observer/Kalman Filter Identification

    Directory of Open Access Journals (Sweden)

    Guillermo Heredia

    2011-01-01

    Full Text Available Reliability is a critical issue in navigation of unmanned aerial vehicles (UAVs since there is no human pilot that can react to any abnormal situation. Due to size and cost limitations, redundant sensor schemes and aeronautical-grade navigation sensors used in large aircrafts cannot be installed in small UAVs. Therefore, other approaches like analytical redundancy should be used to detect faults in navigation sensors and increase reliability. This paper presents a sensor fault detection and diagnosis system for small autonomous helicopters based on analytical redundancy. Fault detection is accomplished by evaluating any significant change in the behaviour of the vehicle with respect to the fault-free behaviour, which is estimated by using an observer. The observer is obtained from input-output experimental data with the Observer/Kalman Filter Identification (OKID method. The OKID method is able to identify the system and an observer with properties similar to a Kalman filter, directly from input-output experimental data. Results are similar to the Kalman filter, but, with the proposed method, there is no need to estimate neither system matrices nor sensor and process noise covariance matrices. The system has been tested with real helicopter flight data, and the results compared with other methods.

  15. The Kalman Filter and High Performance Computing at NASA's Data Assimilation Office (DAO)

    Science.gov (United States)

    Lyster, Peter M.

    1999-01-01

    Atmospheric data assimilation is a method of combining actual observations with model simulations to produce a more accurate description of the earth system than the observations alone provide. The output of data assimilation, sometimes called "the analysis", are accurate regular, gridded datasets of observed and unobserved variables. This is used not only for weather forecasting but is becoming increasingly important for climate research. For example, these datasets may be used to assess retrospectively energy budgets or the effects of trace gases such as ozone. This allows researchers to understand processes driving weather and climate, which have important scientific and policy implications. The primary goal of the NASA's Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. This presentation will: (1) describe ongoing work on the advanced Kalman/Lagrangian filter parallel algorithm for the assimilation of trace gases in the stratosphere; and (2) discuss the Kalman filter in relation to other presentations from the DAO on Four Dimensional Data Assimilation at this meeting. Although the designation "Kalman filter" is often used to describe the overarching work, the series of talks will show that the scientific software and the kind of parallelization techniques that are being developed at the DAO are very different depending on the type of problem being considered, the extent to which the problem is mission critical, and the degree of Software Engineering that has to be applied.

  16. A probabilistic collocation based iterative Kalman filter for landfill data assimilation

    Science.gov (United States)

    Zheng, Qiang; Xu, Wenjie; Man, Jun; Zeng, Lingzao; Wu, Laosheng

    2017-11-01

    Accurate forecast of landfill gas (LFG) transport has remained as an active research area, due to the safety and environmental concerns, as well as the green energy potential. The iterative ensemble Kalman filter (IEnKF) has been used to characterize the heterogeneous permeability field of landfills. As a Monte Carlo-based method, IEnKF requires a sufficiently large ensemble size to guarantee its accuracy, which may result in a huge computational cost, especially for large-scale problems. In this study, an efficient probabilistic collocation based iterative Kalman filter (PCIKF) is developed. The polynomial chaos expansion (PCE) is employed to represent and propagate the uncertainties, and an iterative form of Kalman filter is used to assimilate the measurements. To further reduce the computational cost, only the zeroth and first-order ANOVA (analysis of variance) components are kept in the PCE approximation. As demonstrated by two numerical case studies, PCIKF shows significant superiority over IEnKF in terms of accuracy and efficiency. The developed method has the potential to reliably predict and develop best management practices for landfill gas production.

  17. Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation

    Directory of Open Access Journals (Sweden)

    E. Crestani

    2013-04-01

    Full Text Available Estimating the spatial variability of hydraulic conductivity K in natural aquifers is important for predicting the transport of dissolved compounds. Especially in the nonreactive case, the plume evolution is mainly controlled by the heterogeneity of K. At the local scale, the spatial distribution of K can be inferred by combining the Lagrangian formulation of the transport with a Kalman-filter-based technique and assimilating a sequence of time-lapse concentration C measurements, which, for example, can be evaluated on site through the application of a geophysical method. The objective of this work is to compare the ensemble Kalman filter (EnKF and the ensemble smoother (ES capabilities to retrieve the hydraulic conductivity spatial distribution in a groundwater flow and transport modeling framework. The application refers to a two-dimensional synthetic aquifer in which a tracer test is simulated. Moreover, since Kalman-filter-based methods are optimal only if each of the involved variables fit to a Gaussian probability density function (pdf and since this condition may not be met by some of the flow and transport state variables, issues related to the non-Gaussianity of the variables are analyzed and different transformation of the pdfs are considered in order to evaluate their influence on the performance of the methods. The results show that the EnKF reproduces with good accuracy the hydraulic conductivity field, outperforming the ES regardless of the pdf of the concentrations.

  18. A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

    Directory of Open Access Journals (Sweden)

    Elias D. Nino-Ruiz

    2017-07-01

    Full Text Available In this paper, a matrix-free posterior ensemble Kalman filter implementation based on a modified Cholesky decomposition is proposed. The method works as follows: the precision matrix of the background error distribution is estimated based on a modified Cholesky decomposition. The resulting estimator can be expressed in terms of Cholesky factors which can be updated based on a series of rank-one matrices in order to approximate the precision matrix of the analysis distribution. By using this matrix, the posterior ensemble can be built by either sampling from the posterior distribution or using synthetic observations. Furthermore, the computational effort of the proposed method is linear with regard to the model dimension and the number of observed components from the model domain. Experimental tests are performed making use of the Lorenz-96 model. The results reveal that, the accuracy of the proposed implementation in terms of root-mean-square-error is similar, and in some cases better, to that of a well-known ensemble Kalman filter (EnKF implementation: the local ensemble transform Kalman filter. In addition, the results are comparable to those obtained by the EnKF with large ensemble sizes.

  19. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so-called "curse of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF could be even more computationally expensive than EnKF. Motivated by most recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to eliminate the inconsistency between model parameters and states. The performance of RAPCKF is tested with numerical cases of unsaturated flow models. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  20. Neural network-aided variational Bayesian adaptive cubature Kalman filtering for nonlinear state estimation

    Science.gov (United States)

    Miao, Zhiyong; Shi, Hongyang; Zhang, Yi; Xu, Fan

    2017-10-01

    In this paper, a new variational Bayesian adaptive cubature Kalman filter (VBACKF) is proposed for nonlinear state estimation. Although the conventional VBACKF performs better than cubature Kalman filtering (CKF) in solving nonlinear systems with time-varying measurement noise, its performance may degrade due to the uncertainty of the system model. To overcome this drawback, a multilayer feed-forward neural network (MFNN) is used to aid the conventional VBACKF, generalizing it to attain higher estimation accuracy and robustness. In the proposed neural-network-aided variational Bayesian adaptive cubature Kalman filter (NN-VBACKF), the MFNN is used to turn the state estimation of the VBACKF adaptively, and it is used for both state estimation and in the online training paradigm simultaneously. To evaluate the performance of the proposed method, it is compared with CKF and VBACKF via target tracking problems. The simulation results demonstrate that the estimation accuracy and robustness of the proposed method are better than those of the CKF and VBACKF.

  1. A Quantum Kalman Filter-Based PID Controller

    OpenAIRE

    Gough, John E.

    2017-01-01

    We give a concrete description of a controlled quantum stochastic dynamical model corresponding to a quantum system (a cavity mode) under going continual quadrature measurements, with a PID controller acting on the filtered estimate for the mode operator. Central use is made of the input and output pictures when constructing the model: these unitarily equivalent pictures are presented in the paper, and used to transfer concepts relating to the controlled internal dynamics to those relating to...

  2. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    Science.gov (United States)

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  3. Extended and Unscented Kalman Filtering Applied to a Flexible-Joint Robot with Jerk Estimation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Badamchizadeh

    2010-01-01

    Full Text Available Robust nonlinear control of flexible-joint robots requires that the link position, velocity, acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and unscented Kalman filters to estimate the link acceleration and jerk from position and velocity measurements. Both observers are designed for the same model and run with the same covariance matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is considered as a case study. Simulation results verify the effectiveness of the proposed filters.

  4. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    Science.gov (United States)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  5. Performance analysis of improved iterated cubature Kalman filter and its application to GNSS/INS.

    Science.gov (United States)

    Cui, Bingbo; Chen, Xiyuan; Xu, Yuan; Huang, Haoqian; Liu, Xiao

    2017-01-01

    In order to improve the accuracy and robustness of GNSS/INS navigation system, an improved iterated cubature Kalman filter (IICKF) is proposed by considering the state-dependent noise and system uncertainty. First, a simplified framework of iterated Gaussian filter is derived by using damped Newton-Raphson algorithm and online noise estimator. Then the effect of state-dependent noise coming from iterated update is analyzed theoretically, and an augmented form of CKF algorithm is applied to improve the estimation accuracy. The performance of IICKF is verified by field test and numerical simulation, and results reveal that, compared with non-iterated filter, iterated filter is less sensitive to the system uncertainty, and IICKF improves the accuracy of yaw, roll and pitch by 48.9%, 73.1% and 83.3%, respectively, compared with traditional iterated KF. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Location Estimation for an Autonomously Guided Vehicle using an Augmented Kalman Filter to Autocalibrate the Odometry

    DEFF Research Database (Denmark)

    Larsen, Thomas Dall; Bak, Martin; Andersen, Nils Axel

    1998-01-01

    A Kalman filter using encoder readings as inputs and vision measurements as observations is designed as a location estimator for an autonomously guided vehicle (AGV). To reduce the effect of modelling errors an augmented filter that estimates the true system parameters is designed. The traditional...... way of reducing these errors is by fictitious noise injection in the filter model. The main problem with that approach however is that the filter does not learn about its bad model, it just puts more confidence in incoming measurements and less in the model. As a result the estimates will drift...... and the covariance grow rapidly between measurements causing these to be fused at a very high gain. This not only leads to a very ``bumpy'' behavior of the estimates and a high sensitivity to measurement noise but will also lead to large estimation errors in the absence of measurements. The taken approach offers...

  7. A Kalman filter for a two-dimensional shallow-water model

    Science.gov (United States)

    Parrish, D. F.; Cohn, S. E.

    1985-01-01

    A two-dimensional Kalman filter is described for data assimilation for making weather forecasts. The filter is regarded as superior to the optimal interpolation method because the filter determines the forecast error covariance matrix exactly instead of using an approximation. A generalized time step is defined which includes expressions for one time step of the forecast model, the error covariance matrix, the gain matrix, and the evolution of the covariance matrix. Subsequent time steps are achieved by quantifying the forecast variables or employing a linear extrapolation from a current variable set, assuming the forecast dynamics are linear. Calculations for the evolution of the error covariance matrix are banded, i.e., are performed only with the elements significantly different from zero. Experimental results are provided from an application of the filter to a shallow-water simulation covering a 6000 x 6000 km grid.

  8. Structural Functional Associations of the Orbit in Thyroid Eye Disease: Kalman Filters to Track Extraocular Rectal Muscles.

    Science.gov (United States)

    Chaganti, Shikha; Nelson, Katrina; Mundy, Kevin; Luo, Yifu; Harrigan, Robert L; Damon, Steve; Fabbri, Daniel; Mawn, Louise; Landman, Bennett

    2016-02-27

    Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic accuracy, improve timely intervention and eventually preserve visual function. Recent studies have shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges arise in the identification of the individual extraocular rectus muscles that control eye movement. This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and artifacts. The purpose of our study is to investigate a method of automatically generating orbital metrics from CT imaging and demonstrate the utility of the approach by correlating structural metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly correlated with several clinical characteristics. Moreover, the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each correlated with different categories of functional deficit. These findings serve as foundation for further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.

  9. Structural functional associations of the orbit in thyroid eye disease: Kalman filters to track extraocular rectal muscles

    Science.gov (United States)

    Chaganti, Shikha; Nelson, Katrina; Mundy, Kevin; Luo, Yifu; Harrigan, Robert L.; Damon, Steve; Fabbri, Daniel; Mawn, Louise; Landman, Bennett

    2016-03-01

    Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic accuracy, improve timely intervention, and eventually preserve visual function. Recent studies have shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges arise in the identification of the individual extraocular rectus muscles that control eye movement. This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and artifacts. The purpose of our study is to investigate a method of automatically generating orbital metrics from CT imaging and demonstrate the utility of the approach by correlating structural metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly correlated with several clinical characteristics. Moreover, it is shown that the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each correlated with different categories of functional deficit. These findings serve as foundation for further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.

  10. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions.

    Science.gov (United States)

    Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu

    2017-07-03

    The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.

  11. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bingbing Gao

    2018-02-01

    Full Text Available This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system integrated navigation.

  12. ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy.

    Science.gov (United States)

    Hesar, Hamed Danandeh; Mohebbi, Maryam

    2017-05-01

    In this paper, a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian nonstationary situations (such as presence of pink noise, brown noise, and real MA). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our proposed

  13. The effect of sampling noise in ensemble-based Kalman filters

    Science.gov (United States)

    Sacher, William

    Ensemble-based Kalman filters have drawn a lot of attention in the atmospheric and ocean scientific community because of their potential to be used as a data assimilation tool for numerical prediction in a strongly nonlinear context at an affordable cost. However, many studies have noted practical problems in their implementation. Indeed, being Monte-Carlo methods, the useful parameters are estimated from a sample of limited size of independent realizations of the process. As a consequence, the unavoidable sampling noise impacts the quality of the analysis. An idealized perfect model context is considered in which the analytical expression for the analysis accuracy and reliability as a function of the ensemble size is established, from a second-order moment perspective. It is proved that one can analytically explain the general tendency for ensemble-based Kalman filters to underestimate, on average, the analysis variance and therefore the likeliness for these filters to diverge. Performance of alternative methods, designed to reduce or eliminate sampling error effects, such as the double ensemble Kalman filter or covariance inflation are also analytically explored. For methods using perturbed observations, it is shown that the covariance inflation is the easiest and least expensive method to obtain the most accurate and reliable analysis. These analytical results agreed well with means over a large number of experiments using a perfect, low-resolution, and quasi-geostrophic barotropic model, in a series of observation system simulation experiments of single analysis cycles as well as in a simulated forecast system. In one-analysis cycle experiments with rank histograms, non-perturbed-observation methods show a lack of reliability regardless of the number of members. For small ensemble sizes, sampling error effects are dominant but have a smaller impact than in the perturbed observation method, making non-perturbed-observation method filters much less subject to

  14. A cascaded two-step Kalman filter for estimation of human body segment orientation using MEMS-IMU.

    Science.gov (United States)

    Zihajehzadeh, S; Loh, D; Lee, M; Hoskinson, R; Park, E J

    2014-01-01

    Orientation of human body segments is an important quantity in many biomechanical analyses. To get robust and drift-free 3-D orientation, raw data from miniature body worn MEMS-based inertial measurement units (IMU) should be blended in a Kalman filter. Aiming at less computational cost, this work presents a novel cascaded two-step Kalman filter orientation estimation algorithm. Tilt angles are estimated in the first step of the proposed cascaded Kalman filter. The estimated tilt angles are passed to the second step of the filter for yaw angle calculation. The orientation results are benchmarked against the ones from a highly accurate tactical grade IMU. Experimental results reveal that the proposed algorithm provides robust orientation estimation in both kinematically and magnetically disturbed conditions.

  15. LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing

    Science.gov (United States)

    Busnardo, David M.; Aitken, Matthew L.; Tolson, Robert H.; Pierrottet, Diego; Amzajerdian, Farzin

    2011-01-01

    In support of NASA s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project, an extended Kalman filter routine has been developed for estimating the position, velocity, and attitude of a spacecraft during the landing phase of a planetary mission. The proposed filter combines measurements of acceleration and angular velocity from an inertial measurement unit (IMU) with range and Doppler velocity observations from an onboard light detection and ranging (LIDAR) system. These high-precision LIDAR measurements of distance to the ground and approach velocity will enable both robotic and manned vehicles to land safely and precisely at scientifically interesting sites. The filter has been extensively tested using a lunar landing simulation and shown to improve navigation over flat surfaces or rough terrain. Experimental results from a helicopter flight test performed at NASA Dryden in August 2008 demonstrate that LIDAR can be employed to significantly improve navigation based exclusively on IMU integration.

  16. Comparison of complementary and Kalman filter based data fusion for attitude heading reference system

    Science.gov (United States)

    Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md

    2017-12-01

    An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.

  17. Multi Data Reservoir History Matching using the Ensemble Kalman Filter

    KAUST Repository

    Katterbauer, Klemens

    2015-05-01

    Reservoir history matching is becoming increasingly important with the growing demand for higher quality formation characterization and forecasting and the increased complexity and expenses for modern hydrocarbon exploration projects. History matching has long been dominated by adjusting reservoir parameters based solely on well data whose spatial sparse sampling has been a challenge for characterizing the flow properties in areas away from the wells. Geophysical data are widely collected nowadays for reservoir monitoring purposes, but has not yet been fully integrated into history matching and forecasting fluid flow. In this thesis, I present a pioneering approach towards incorporating different time-lapse geophysical data together for enhancing reservoir history matching and uncertainty quantification. The thesis provides several approaches to efficiently integrate multiple geophysical data, analyze the sensitivity of the history matches to observation noise, and examine the framework’s performance in several settings, such as the Norne field in Norway. The results demonstrate the significant improvements in reservoir forecasting and characterization and the synergy effects encountered between the different geophysical data. In particular, the joint use of electromagnetic and seismic data improves the accuracy of forecasting fluid properties, and the usage of electromagnetic data has led to considerably better estimates of hydrocarbon fluid components. For volatile oil and gas reservoirs the joint integration of gravimetric and InSAR data has shown to be beneficial in detecting the influx of water and thereby improving the recovery rate. Summarizing, this thesis makes an important contribution towards integrated reservoir management and multiphysics integration for reservoir history matching.

  18. Large-scale characterization of geologic formations for CO2 injection using Compressed State Kalman Filter

    Science.gov (United States)

    Kokkinaki, A.; Li, J. Y.; Zhou, Q.; Birkholzer, J. T.; Kitanidis, P. K.

    2014-12-01

    Carbon dioxide (CO2) storage in deep geologic formations is gaining ground as a potential measure for climate change mitigation. Such storage projects typically operate at large scales (~km), but their performance is often governed by smaller-scale (~m) heterogeneities. The large domain sizes prohibit detailed site characterization and dense monitoring networks, leading to predictions of CO2 migration and trapping based on rough geologic models that cannot capture preferential flow. Kalman Filtering can be used to improve these prior models by assimilating available monitoring data, thereby tracking system performance and reducing prediction uncertainty. However, for large systems with fine discretization, the number of unknowns is in the order of tens of thousands or more, in which case the textbook version of the Kalman Filter has prohibitively expensive computation and storage costs. We present the Compressed State Kalman Filter (CSKF) that can be effectively used for systems with a large number of unknowns to estimate the underlying heterogeneity and to predict the state of interest (e.g., pressure and CO2 saturation). The algorithm's computational efficiency is achieved by using a low-rank approximation of the covariance matrix, as well as a Jacobian-free approach. We demonstrate the estimation and computational performance of our method in a typical CO2 storage scenario with a spatially sparse monitoring network, but with multiple datasets obtained before and during CO2 injection. Our data assimilation framework provides an efficient and practical way to characterize geological formations intended for CO2 injection and storage using monitoring data commonly collected in field applications, as well as to quantify the reduction in uncertainty brought by different types of monitoring data.

  19. Application of unscented Kalman filter for robust pose estimation in image-guided surgery

    Science.gov (United States)

    Vaccarella, Alberto; De Momi, Elena; Valenti, Marta; Ferrigno, Giancarlo; Enquobahrie, Andinet

    2012-02-01

    Image-guided surgery (IGS) allows clinicians to view current, intra-operative scenes superimposed on preoperative images (typically MRI or CT scans). IGS systems use localization systems to track and visualize surgical tools overlaid on top of preoperative images of the patient during surgery. The most commonly used localization systems in the Operating Rooms (OR) are optical tracking systems (OTS) due to their ease of use and cost effectiveness. However, OTS' suffer from the major drawback of line-of-sight requirements. State space approaches based on different implementations of the Kalman filter have recently been investigated in order to compensate for short line-of-sight occlusion. However, the proposed parameterizations for the rigid body orientation suffer from singularities at certain values of rotation angles. The purpose of this work is to develop a quaternion-based Unscented Kalman Filter (UKF) for robust optical tracking of both position and orientation of surgical tools in order to compensate marker occlusion issues. This paper presents preliminary results towards a Kalman-based Sensor Management Engine (SME). The engine will filter and fuse multimodal tracking streams of data. This work was motivated by our experience working in robot-based applications for keyhole neurosurgery (ROBOCAST project). The algorithm was evaluated using real data from NDI Polaris tracker. The results show that our estimation technique is able to compensate for marker occlusion with a maximum error of 2.5° for orientation and 2.36 mm for position. The proposed approach will be useful in over-crowded state-of-the-art ORs where achieving continuous visibility of all tracked objects will be difficult.

  20. A Novel Fifth-Degree Cubature Kalman Filter for Real-Time Orbit Determination by Radar

    Directory of Open Access Journals (Sweden)

    Zhaoming Li

    2017-01-01

    Full Text Available A novel fifth-degree cubature Kalman filter is proposed to improve the accuracy of real-time orbit determination by ground-based radar. A fully symmetric cubature rule, approaching the Gaussian weighted integral of a nonlinear function in general form, is introduced, and the specific points and weights are calculated by matching the monomials of degree not greater than five with the exact values. On the basis of the above rule, a novel fifth-degree cubature Kalman filter, which can achieve a higher accuracy than UKF and CKF, is derived under the Bayesian filtering framework. Then, to describe the nonlinear system more accurately, the orbital dynamics equation with J2 perturbation is used as the state equation, and the nonlinear relationship between the radar measurement elements and orbital states is built as the measurement equation. The simulation results show that, compared with the traditional third-degree algorithm, the proposed fifth-degree algorithm has a higher accuracy of orbit determination.

  1. Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot attitude estimation.

    Science.gov (United States)

    Sadaghzadeh N, Nargess; Poshtan, Javad; Wagner, Achim; Nordheimer, Eugen; Badreddin, Essameddin

    2014-03-01

    Based on a cascaded Kalman-Particle Filtering, gyroscope drift and robot attitude estimation method is proposed in this paper. Due to noisy and erroneous measurements of MEMS gyroscope, it is combined with Photogrammetry based vision navigation scenario. Quaternions kinematics and robot angular velocity dynamics with augmented drift dynamics of gyroscope are employed as system state space model. Nonlinear attitude kinematics, drift and robot angular movement dynamics each in 3 dimensions result in a nonlinear high dimensional system. To reduce the complexity, we propose a decomposition of system to cascaded subsystems and then design separate cascaded observers. This design leads to an easier tuning and more precise debugging from the perspective of programming and such a setting is well suited for a cooperative modular system with noticeably reduced computation time. Kalman Filtering (KF) is employed for the linear and Gaussian subsystem consisting of angular velocity and drift dynamics together with gyroscope measurement. The estimated angular velocity is utilized as input of the second Particle Filtering (PF) based observer in two scenarios of stochastic and deterministic inputs. Simulation results are provided to show the efficiency of the proposed method. Moreover, the experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method. © 2013 ISA Published by ISA All rights reserved.

  2. Delay Kalman Filter to Estimate the Attitude of a Mobile Object with Indoor Magnetic Field Gradients

    Directory of Open Access Journals (Sweden)

    Christophe Combettes

    2016-05-01

    Full Text Available More and more services are based on knowing the location of pedestrians equipped with connected objects (smartphones, smartwatches, etc.. One part of the location estimation process is attitude estimation. Many algorithms have been proposed but they principally target open space areas where the local magnetic field equals the Earth’s field. Unfortunately, this approach is impossible indoors, where the use of magnetometer arrays or magnetic field gradients has been proposed. However, current approaches omit the impact of past state estimates on the current orientation estimate, especially when a reference field is computed over a sliding window. A novel Delay Kalman filter is proposed in this paper to integrate this time correlation: the Delay MAGYQ. Experimental assessment, conducted in a motion lab with a handheld inertial and magnetic mobile unit, shows that the novel filter better estimates the Euler angles of the handheld device with an 11.7° mean error on the yaw angle as compared to 16.4° with a common Additive Extended Kalman filter.

  3. Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter

    Science.gov (United States)

    Ward, Douglas T.; Dang, Ket D.; Slojkowski, Steve; Blizzard, Mike; Jenkins, Greg

    2007-01-01

    Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented.

  4. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  5. Wavefront correction with Kalman filtering for the WFIRST-AFTA coronagraph instrument

    Science.gov (United States)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler D.

    2015-09-01

    The only way to characterize most exoplanets spectrally is via direct imaging. For example, the Coronagraph Instrument (CGI) on the proposed Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission plans to image and characterize several cool gas giants around nearby stars. The integration time on these faint exoplanets will be many hours to days. A crucial assumption for mission planning is that the time required to dig a dark hole (a region of high star-to-planet contrast) with deformable mirrors is small compared to science integration time. The science camera must be used as the wavefront sensor to avoid non-common path aberrations, but this approach can be quite time intensive. Several estimation images are required to build an estimate of the starlight electric field before it can be partially corrected, and this process is repeated iteratively until high contrast is reached. Here we present simulated results of batch process and recursive wavefront estimation schemes. In particular, we test a Kalman filter and an iterative extended Kalman filter (IEKF) to reduce the total exposure time and improve the robustness of wavefront correction for the WFIRST-AFTA CGI. An IEKF or other nonlinear filter also allows recursive, real-time estimation of sources incoherent with the star, such as exoplanets and disks, and may therefore reduce detection uncertainty.

  6. A comparison of robust Kalman filtering methods for artifact correction in heart rate variability analysis.

    Directory of Open Access Journals (Sweden)

    Carlos D. Zuluaga-Ríos

    2015-01-01

    Full Text Available Heart rate variability (HRV has received considerable attention for many years, since it provides a quantitative marker for examining the sinus rhythm modulated by the autonomic nervous system (ANS. The ANS plays an important role in clinical and physiological fields. HRV analysis can be performed by computing several time and frequency domain measurements. However, the computation of such measurements can be affected by the presence of artifacts or ectopic beats in the electrocardiogram (ECG recording. This is particularly true for ECG recordings from Holter monitors. The aim of this work was to study the performance of several robust Kalman filters for artifact correction in Inter-beat (RR interval time series. For our experiments, two data sets were used: the first data set included 10 RR interval time series from a realistic RR interval time series generator. The second database contains 10 sets of RR interval series from five healthy patients and five patients suffering from congestive heart failure. The standard deviation of the RR interval was computed over the filtered signals. Results were compared with a state of the art processing software, showing similar values and behavior. In addition, the proposed methods offer satisfactory results in contrast to standard Kalman filtering.

  7. DYNAMIC ESTIMATION FOR PARAMETERS OF INTERFERENCE SIGNALS BY THE SECOND ORDER EXTENDED KALMAN FILTERING

    Directory of Open Access Journals (Sweden)

    P. A. Ermolaev

    2014-03-01

    Full Text Available Data processing in the interferometer systems requires high-resolution and high-speed algorithms. Recurrence algorithms based on parametric representation of signals execute consequent processing of signal samples. In some cases recurrence algorithms make it possible to increase speed and quality of data processing as compared with classic processing methods. Dependence of the measured interferometer signal on parameters of its model and stochastic nature of noise formation in the system is, in general, nonlinear. The usage of nonlinear stochastic filtering algorithms is expedient for such signals processing. Extended Kalman filter with linearization of state and output equations by the first vector parameters derivatives is an example of these algorithms. To decrease approximation error of this method the second order extended Kalman filtering is suggested with additionally usage of the second vector parameters derivatives of model equations. Examples of algorithm implementation with the different sets of estimated parameters are described. The proposed algorithm gives the possibility to increase the quality of data processing in interferometer systems in which signals are forming according to considered models. Obtained standard deviation of estimated amplitude envelope does not exceed 4% of the maximum. It is shown that signal-to-noise ratio of reconstructed signal is increased by 60%.

  8. A New Adaptive Square-Root Unscented Kalman Filter for Nonlinear Systems with Additive Noise

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2015-01-01

    Full Text Available The Kalman filter (KF, extended KF, and unscented KF all lack a self-adaptive capacity to deal with system noise. This paper describes a new adaptive filtering approach for nonlinear systems with additive noise. Based on the square-root unscented KF (SRUKF, traditional Maybeck’s estimator is modified and extended to nonlinear systems. The square root of the process noise covariance matrix Q or that of the measurement noise covariance matrix R is estimated straightforwardly. Because positive semidefiniteness of Q or R is guaranteed, several shortcomings of traditional Maybeck’s algorithm are overcome. Thus, the stability and accuracy of the filter are greatly improved. In addition, based on three different nonlinear systems, a new adaptive filtering technique is described in detail. Specifically, simulation results are presented, where the new filter was applied to a highly nonlinear model (i.e., the univariate nonstationary growth model (UNGM. The UNGM is compared with the standard SRUKF to demonstrate its superior filtering performance. The adaptive SRUKF (ASRUKF algorithm can complete direct recursion and calculate the square roots of the variance matrixes of the system state and noise, which ensures the symmetry and nonnegative definiteness of the matrixes and greatly improves the accuracy, stability, and self-adaptability of the filter.

  9. Nonlinear Kalman filter based on duality relations between continuous and discrete-state stochastic processes.

    Science.gov (United States)

    Ohkubo, Jun

    2015-10-01

    An alternative application of duality relations of stochastic processes is demonstrated. Although conventional usages of the duality relations need analytical solutions for the dual processes, here I employ numerical solutions of the dual processes and investigate the usefulness. As a demonstration, estimation problems of hidden variables in stochastic differential equations are discussed. Employing algebraic probability theory, a little complicated birth-death process is derived from the stochastic differential equations, and an estimation method based on the ensemble Kalman filter is proposed. As a result, the possibility for making faster computational algorithms based on the duality concepts is shown.

  10. A Quantised State Systems Approach for Jacobian Free Extended Kalman Filtering

    DEFF Research Database (Denmark)

    Alminde, Lars; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2007-01-01

    Model based methods for control of intelligent autonomous systems rely on a state estimate being available. One of the most common methods to obtain a state estimate for non-linear systems is the Extended Kalman Filter (EKF) algorithm. In order to apply the EKF an expression must be available...... for the Jacobian of the driving function; for complex systems this can be difficult to obtain. This paper presents an EKF variation that makes use of integrated quantised state simulation to propagate the state and obtain a backward difference estimate of the Jacobian at a small computational cost. A simulation...... case study involving a deep space probe is presented....

  11. On Convergence of the Unscented Kalman-Bucy Filter using Contraction Theory

    DEFF Research Database (Denmark)

    Maree, J.P.; Imsland, Lars; Jouffroy, Jerome

    2016-01-01

    Contraction theory entails a theoretical framework in which convergence of a nonlinear system can be analysed differentially in an appropriate contraction metric. This paper is concerned with utilizing stochastic contraction theory to conclude on exponential convergence of the Unscented Kalman......-Bucy Filter. The underlying process and measurement models of interest are Itô-type stochastic differential equations. In particular, statistical linearisation techniques are employed in a virtual-actual systems framework to establish deterministic contraction of the estimated expected mean of process values...

  12. Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms Based on Kalman Filter Estimation

    Science.gov (United States)

    Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.

  13. Sensorless Speed / Position Estimation for Permanent Magnet Synchronous Machine via Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Meherdad Jafarboland

    2010-07-01

    Full Text Available Permanent Magnet Synchronous Machines (PMSM are increasingly used because of their advantages over other machines, which include compactness, high efficiency, and well developed drives.. The substitution of the position sensors by advanced algorithms embedded in the controls hardware and software has been investigated for the last couple of decades. This Paper presents the modeling, analysis, design and experimental validation of a robust sensor less control method for PMSM based on Extended Kalman Filter. The position/speed sensor less control scheme along with the power electronic circuitry is modeled. The performance of the proposed control is assessed and verified for different types of dynamic and static torque loads.

  14. The Performance of A Sampled Data Delay Lock Loop Implemented with a Kalman Loop Filter.

    Science.gov (United States)

    1980-01-01

    terms to yield nearly zero determinants result in a loss of significant bits in the computation. If the machine precision (i.e., word length) is not...STEADY (Appendix V) is structured to make extensive use of subroutines. Because the input signal to the Kalman filters is the difference between the time...P 19 SET I z/ JSOP I t A 𔃻[J 1-7 EP " I SOT HE!’ AI LG OP SST rk SIP(E. ASTP 82 Appendix VI The Computer Program TRNS L’ **~~ * ***,&**PP0C’iA-! TkA

  15. Fast Bayesian reconstruction of chaotic dynamical systems via extended Kalman filtering

    Science.gov (United States)

    Meyer, Renate; Christensen, Nelson

    2002-01-01

    We present an improved Markov chain Monte Carlo (MCMC) algorithm for posterior computation in chaotic dynamical systems. Recent Bayesian approaches to estimate the parameters of chaotic maps have used the Gibbs sampler which exhibits slow convergence due to high posterior correlations. Using the extended Kalman filter to compute the likelihood function by integrating out all unknown system states, we obtain a very efficient MCMC technique. We compare the new algorithm to the Gibbs sampler using the logistic, the tent, and the Moran-Ricker maps as applications, measuring the performance in terms of CPU and integrated autocorrelation time.

  16. Removal of jitter noise in 3D shape recovery from image focus by using Kalman filter.

    Science.gov (United States)

    Jang, Hoon-Seok; Muhammad, Mannan Saeed; Choi, Tae-Sun

    2018-02-01

    In regard to Shape from Focus, one critical factor impacting system application is mechanical vibration of the translational stage causing jitter noise along the optical axis. This noise is not detectable by simply observing the image. However, when focus measures are applied, inaccuracies in the depth occur. In this article, jitter noise and focus curves are modeled by Gaussian distribution and quadratic function, respectively. Then Kalman filter is designed and applied to eliminate this noise in the focus curves, as a post-processing step after the focus measure application. Experiments are implemented with simulated objects and real objects to show usefulness of proposed algorithm. © 2017 Wiley Periodicals, Inc.

  17. Application of Ensemble Kalman Filter in Power System State Tracking and Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Huang, Zhenyu; Zhou, Ning; Lee, Barry; Diao, Ruisheng; Du, Pengwei

    2012-05-01

    Ensemble Kalman Filter (EnKF) is proposed to track dynamic states of generators. The algorithm of EnKF and its application to generator state tracking are presented in detail. The accuracy and sensitivity of the method are analyzed with respect to initial state errors, measurement noise, unknown fault locations, time steps and parameter errors. It is demonstrated through simulation studies that even with some errors in the parameters, the developed EnKF can effectively track generator dynamic states using disturbance data.

  18. Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter

    KAUST Repository

    Dreano, Denis

    2015-04-27

    A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.

  19. Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.

    Science.gov (United States)

    Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M

    2015-01-01

    The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Gyro Drift Correction for An Indirect Kalman Filter Based Sensor Fusion Driver.

    Science.gov (United States)

    Lee, Chan-Gun; Dao, Nhu-Ngoc; Jang, Seonmin; Kim, Deokhwan; Kim, Yonghun; Cho, Sungrae

    2016-06-11

    Sensor fusion techniques have made a significant contribution to the success of the recently emerging mobile applications era because a variety of mobile applications operate based on multi-sensing information from the surrounding environment, such as navigation systems, fitness trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing information plays an important role to improve the user experience (UX) quality, especially with gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve the gyro drift problem, which negatively affects the accuracy of orientation computations in the indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of external feedback loops and non-gyro error elements contained in the state vectors of an indirect Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing lower process latency and transparency capabilities for the upper applications. These advances are relevant to millions of legacy applications since utilizing our mechanism does not require the existing applications to be re-programmed. The experimental results show that the root mean square errors (RMSE) before and after applying our mechanism are significantly reduced from 6.3 × 10(-1) to 5.3 × 10(-7), respectively.

  1. Gyro Drift Correction for An Indirect Kalman Filter Based Sensor Fusion Driver

    Directory of Open Access Journals (Sweden)

    Chan-Gun Lee

    2016-06-01

    Full Text Available Sensor fusion techniques have made a significant contribution to the success of the recently emerging mobile applications era because a variety of mobile applications operate based on multi-sensing information from the surrounding environment, such as navigation systems, fitness trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing information plays an important role to improve the user experience (UX quality, especially with gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve the gyro drift problem, which negatively affects the accuracy of orientation computations in the indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of external feedback loops and non-gyro error elements contained in the state vectors of an indirect Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing lower process latency and transparency capabilities for the upper applications. These advances are relevant to millions of legacy applications since utilizing our mechanism does not require the existing applications to be re-programmed. The experimental results show that the root mean square errors (RMSE before and after applying our mechanism are significantly reduced from 6.3 × 10−1 to 5.3 × 10−7, respectively.

  2. Attitude Modeling Using Kalman Filter Approach for Improving the Geometric Accuracy of Cartosat-1 Data Products

    Directory of Open Access Journals (Sweden)

    Nita H. SHAH

    2010-07-01

    Full Text Available This paper deals with the rigorous photogrammetric solution to model the uncertainty in the orientation parameters of Indian Remote Sensing Satellite IRS-P5 (Cartosat-1. Cartosat-1 is a three axis stabilized spacecraft launched into polar sun-synchronous circular orbit at an altitude of 618 km. The satellite has two panchromatic (PAN cameras with nominal resolution of ~2.5 m. The camera looking ahead is called FORE mounted with +26 deg angle and the other looking near nadir is called AFT mounted with -5 deg, in along track direction. Data Product Generation Software (DPGS system uses the rigorous photogrammetric Collinearity model in order to utilize the full system information, together with payload geometry & control points, for estimating the uncertainty in attitude parameters. The initial orbit, attitude knowledge is obtained from GPS bound orbit measurement, star tracker and gyros. The variations in satellite attitude with time are modelled using simple linear polynomial model. Also, based on this model, Kalman filter approach is studied and applied to improve the uncertainty in the orientation of spacecraft with high quality ground control points (GCPs. The sequential estimator (Kalman filter is used in an iterative process which corrects the parameters at each time of observation rather than at epoch time. Results are presented for three stereo data sets. The accuracy of model depends on the accuracy of the control points.

  3. Neuromorphic Kalman filter implementation in IBM’s TrueNorth

    Science.gov (United States)

    Carney, R.; Bouchard, K.; Calafiura, P.; Clark, D.; Donofrio, D.; Garcia-Sciveres, M.; Livezey, J.

    2017-10-01

    Following the advent of a post-Moore’s law field of computation, novel architectures continue to emerge. With composite, multi-million connection neuromorphic chips like IBM’s TrueNorth, neural engineering has now become a feasible technology in this novel computing paradigm. High Energy Physics experiments are continuously exploring new methods of computation and data handling, including neuromorphic, to support the growing challenges of the field and be prepared for future commodity computing trends. This work details the first instance of a Kalman filter implementation in IBM’s neuromorphic architecture, TrueNorth, for both parallel and serial spike trains. The implementation is tested on multiple simulated systems and its performance is evaluated with respect to an equivalent non-spiking Kalman filter. The limits of the implementation are explored whilst varying the size of weight and threshold registers, the number of spikes used to encode a state, size of neuron block for spatial encoding, and neuron potential reset schemes.

  4. Dynamic displacement estimation by fusing LDV and LiDAR measurements via smoothing based Kalman filtering

    Science.gov (United States)

    Kim, Kiyoung; Sohn, Hoon

    2017-01-01

    This paper presents a smoothing based Kalman filter to estimate dynamic displacement in real-time by fusing the velocity measured from a laser Doppler vibrometer (LDV) and the displacement from a light detection and ranging (LiDAR). LiDAR can measure displacement based on the time-of-flight information or the phase-shift of the laser beam reflected off form a target surface, but it typically has a high noise level and a low sampling rate. On the other hand, LDV primarily measures out-of-plane velocity of a moving target, and displacement is estimated by numerical integration of the measured velocity. Here, the displacement estimated by LDV suffers from integration error although LDV can achieve a lower noise level and a much higher sampling rate than LiDAR. The proposed data fusion technique estimates high-precision and high-sampling rate displacement by taking advantage of both LiDAR and LDV measurements and overcomes their limitations by adopting a real-time smoothing based Kalman filter. To verify the performance of the proposed dynamic displacement estimation technique, a series of lab-scale tests are conducted under various loading conditions.

  5. Phase Center Interpolation Algorithm for Airborne GPS through the Kalman Filter

    Directory of Open Access Journals (Sweden)

    Edson A. Mitishita

    2005-12-01

    Full Text Available The aerial triangulation is a fundamental step in any photogrammetric project. The surveying of the traditional control points, depending on region to be mapped, still has a high cost. The distribution of control points at the block, and its positional quality, influence directly in the resulting precisions of the aero triangulation processing. The airborne GPS technique has as key objectives cost reduction and quality improvement of the ground control in the modern photogrammetric projects. Nowadays, in Brazil, the greatest photogrammetric companies are acquiring airborne GPS systems, but those systems are usually presenting difficulties in the operation, due to the need of human resources for the operation, because of the high technology involved. Inside the airborne GPS technique, one of the fundamental steps is the interpolation of the position of the phase center of the GPS antenna, in the photo shot instant. Traditionally, low degree polynomials are used, but recent studies show that those polynomials is reduced in turbulent flights, which are quite common, mainly in great scales flights. This paper has as objective to present a solution for that problem, through an algorithm based on the Kalman Filter, which takes into account the dynamic aspect of the problem. At the end of the paper, the results of a comparison between experiments done with the proposed methodology and a common linear interpolator are shown. These results show a significant accuracy gain at the procedure of linear interpolation, when the Kalman filter is used.

  6. Reverse Engineering Sparse Gene Regulatory Networks Using Cubature Kalman Filter and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Amina Noor

    2013-01-01

    Full Text Available This paper proposes a novel algorithm for inferring gene regulatory networks which makes use of cubature Kalman filter (CKF and Kalman filter (KF techniques in conjunction with compressed sensing methods. The gene network is described using a state-space model. A nonlinear model for the evolution of gene expression is considered, while the gene expression data is assumed to follow a linear Gaussian model. The hidden states are estimated using CKF. The system parameters are modeled as a Gauss-Markov process and are estimated using compressed sensing-based KF. These parameters provide insight into the regulatory relations among the genes. The Cramér-Rao lower bound of the parameter estimates is calculated for the system model and used as a benchmark to assess the estimation accuracy. The proposed algorithm is evaluated rigorously using synthetic data in different scenarios which include different number of genes and varying number of sample points. In addition, the algorithm is tested on the DREAM4 in silico data sets as well as the in vivo data sets from IRMA network. The proposed algorithm shows superior performance in terms of accuracy, robustness, and scalability.

  7. Distributed Extended Kalman Filter for Position, Velocity, Time, Estimation in Satellite Navigation Receivers

    Directory of Open Access Journals (Sweden)

    O. Jakubov

    2013-09-01

    Full Text Available Common techniques for position-velocity-time estimation in satellite navigation, iterative least squares and the extended Kalman filter, involve matrix operations. The matrix inversion and inclusion of a matrix library pose requirements on a computational power and operating platform of the navigation processor. In this paper, we introduce a novel distributed algorithm suitable for implementation in simple parallel processing units each for a tracked satellite. Such a unit performs only scalar sum, subtraction, multiplication, and division. The algorithm can be efficiently implemented in hardware logic. Given the fast position-velocity-time estimator, frequent estimates can foster dynamic performance of a vector tracking receiver. The algorithm has been designed from a factor graph representing the extended Kalman filter by splitting vector nodes into scalar ones resulting in a cyclic graph with few iterations needed. Monte Carlo simulations have been conducted to investigate convergence and accuracy. Simulation case studies for a vector tracking architecture and experimental measurements with a real-time software receiver developed at CTU in Prague were conducted. The algorithm offers compromises in stability, accuracy, and complexity depending on the number of iterations. In scenarios with a large number of tracked satellites, it can outperform the traditional methods at low complexity.

  8. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors.

    Science.gov (United States)

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M

    2016-07-19

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  9. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    Science.gov (United States)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  10. A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows

    Science.gov (United States)

    Meldi, M.; Poux, A.

    2017-10-01

    A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%- 15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.

  11. Recursive starlight and bias estimation for high-contrast imaging with an extended Kalman filter

    Science.gov (United States)

    Riggs, A. J. Eldorado; Kasdin, N. Jeremy; Groff, Tyler D.

    2016-01-01

    For imaging faint exoplanets and disks, a coronagraph-equipped observatory needs focal plane wavefront correction to recover high contrast. The most efficient correction methods iteratively estimate the stellar electric field and suppress it with active optics. The estimation requires several images from the science camera per iteration. To maximize the science yield, it is desirable both to have fast wavefront correction and to utilize all the correction images for science target detection. Exoplanets and disks are incoherent with their stars, so a nonlinear estimator is required to estimate both the incoherent intensity and the stellar electric field. Such techniques assume a high level of stability found only on space-based observatories and possibly ground-based telescopes with extreme adaptive optics. In this paper, we implement a nonlinear estimator, the iterated extended Kalman filter (IEKF), to enable fast wavefront correction and a recursive, nearly-optimal estimate of the incoherent light. In Princeton's High Contrast Imaging Laboratory, we demonstrate that the IEKF allows wavefront correction at least as fast as with a Kalman filter and provides the most accurate detection of a faint companion. The nonlinear IEKF formalism allows us to pursue other strategies such as parameter estimation to improve wavefront correction.

  12. Kalman Filter Sensor Fusion for Mecanum Wheeled Automated Guided Vehicle Localization

    Directory of Open Access Journals (Sweden)

    Sang Won Yoon

    2015-01-01

    Full Text Available The Mecanum automated guided vehicle (AGV, which can move in any direction by using a special wheel structure with a LIM-wheel and a diagonally positioned roller, holds considerable promise for the field of industrial electronics. A conventional method for Mecanum AGV localization has certain limitations, such as slip phenomena, because there are variations in the surface of the road and ground friction. Therefore, precise localization is a very important issue for the inevitable slip phenomenon situation. So a sensor fusion technique is developed to cope with this drawback by using the Kalman filter. ENCODER and StarGazer were used for sensor fusion. StarGazer is a position sensor for an image recognition device and always generates some errors due to the limitations of the image recognition device. ENCODER has also errors accumulating over time. On the other hand, there are no moving errors. In this study, we developed a Mecanum AGV prototype system and showed by simulation that we can eliminate the disadvantages of each sensor. We obtained the precise localization of the Mecanum AGV in a slip phenomenon situation via sensor fusion using a Kalman filter.

  13. Gait speed estimation using Kalman Filtering on inertial measurement unit data.

    Science.gov (United States)

    Alam, Md Nafiul; Khan Munia, Tamanna Tabassum; Fazel-Rezai, Reza

    2017-07-01

    Gait speed measurement is vital for diagnosis of motor disorder and monitoring the progress of patient rehabilitation. This study presents an algorithm for moderate distance gait speed measurement from data acquired with inertial motion sensors comprised of a tri-axial accelerometer and a tri-axial gyroscope. Gait speed was measured in four different speed levels set by a treadmill: 0.5, 1, 2, and 3 miles/hour. The calculated speed was tuned by implementing Kalman Filter. The performance of the proposed algorithm was evaluated by calculating the mean square error between estimated speed and the actual treadmill speed. The preliminary results obtained from various treadmill speeds suggest that proposed algorithm estimated speed in a reasonable accuracy. The average error rate was 0.23 m/h which is nearly similar to other studies in this area. Algorithm performance evaluation for various speeds implied that the best performance was exhibited when the speed was set at 1 mile/hour. Moreover, the use of Kalman Filter helped to fine-tune the estimated speed by removing uncertainty and eventually provided a better approximation of the speed measured from the inertial measurement unit.

  14. Application of the Multimodel Ensemble Kalman Filter Method in Groundwater System

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2015-02-01

    Full Text Available With the development of in-situ monitoring techniques, the ensemble Kalman filter (EnKF has become a popular data assimilation method due to its capability to jointly update model parameters and state variables in a sequential way, and to assess the uncertainty associated with estimation and prediction. To take the conceptual model uncertainty into account during the data assimilation process, a novel multimodel ensemble Kalman filter method has been proposed by incorporating the standard EnKF with Bayesian model averaging framework. In this paper, this method is applied to analyze the dataset obtained from the Hailiutu River Basin located in the northwest part of China. Multiple conceptual models are created by considering two important factors that control groundwater dynamics in semi-arid areas: the zonation pattern of the hydraulic conductivity field and the relationship between evapotranspiration and groundwater level. The results show that the posterior model weights of the postulated models can be dynamically adjusted according to the mismatch between the measurements and the ensemble predictions, and the multimodel ensemble estimation and the corresponding uncertainty can be quantified.

  15. Markov models and the ensemble Kalman filter for estimation of sorption rates.

    Energy Technology Data Exchange (ETDEWEB)

    Vugrin, Eric D.; McKenna, Sean Andrew (Sandia National Laboratories, Albuquerque, NM); Vugrin, Kay White

    2007-09-01

    Non-equilibrium sorption of contaminants in ground water systems is examined from the perspective of sorption rate estimation. A previously developed Markov transition probability model for solute transport is used in conjunction with a new conditional probability-based model of the sorption and desorption rates based on breakthrough curve data. Two models for prediction of spatially varying sorption and desorption rates along a one-dimensional streamline are developed. These models are a Markov model that utilizes conditional probabilities to determine the rates and an ensemble Kalman filter (EnKF) applied to the conditional probability method. Both approaches rely on a previously developed Markov-model of mass transfer, and both models assimilate the observed concentration data into the rate estimation at each observation time. Initial values of the rates are perturbed from the true values to form ensembles of rates and the ability of both estimation approaches to recover the true rates is examined over three different sets of perturbations. The models accurately estimate the rates when the mean of the perturbations are zero, the unbiased case. For the cases containing some bias, addition of the ensemble Kalman filter is shown to improve accuracy of the rate estimation by as much as an order of magnitude.

  16. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-07-01

    Full Text Available The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  17. Auxiliary Truncated Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking.

    Science.gov (United States)

    Li, Liang-Qun; Wang, Xiao-Li; Liu, Zong-Xiang; Xie, Wei-Xin

    2017-04-27

    Novel auxiliary truncated unscented Kalman filtering (ATUKF) is proposed for bearings-only maneuvering target tracking in this paper. In the proposed algorithm, to deal with arbitrary changes in motion models, a modified prior probability density function (PDF) is derived based on some auxiliary target characteristics and current measurements. Then, the modified prior PDF is approximated as a Gaussian density by using the statistical linear regression (SLR) to estimate the mean and covariance. In order to track bearings-only maneuvering target, the posterior PDF is jointly estimated based on the prior probability density function and the modified prior probability density function, and a practical algorithm is developed. Finally, compared with other nonlinear filtering approaches, the experimental results of the proposed algorithm show a significant improvement for both the univariate nonstationary growth model (UNGM) case and bearings-only target tracking case.

  18. Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter

    Science.gov (United States)

    Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong

    2018-01-01

    We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.

  19. Fuzzy modeling, maximum likelihood estimation, and Kalman filtering for target tracking in NLOS scenarios

    Science.gov (United States)

    Yan, Jun; Yu, Kegen; Wu, Lenan

    2014-12-01

    To mitigate the non-line-of-sight (NLOS) effect, a three-step positioning approach is proposed in this article for target tracking. The possibility of each distance measurement under line-of-sight condition is first obtained by applying the truncated triangular probability-possibility transformation associated with fuzzy modeling. Based on the calculated possibilities, the measurements are utilized to obtain intermediate position estimates using the maximum likelihood estimation (MLE), according to identified measurement condition. These intermediate position estimates are then filtered using a linear Kalman filter (KF) to produce the final target position estimates. The target motion information and statistical characteristics of the MLE results are employed in updating the KF parameters. The KF position prediction is exploited for MLE parameter initialization and distance measurement selection. Simulation results demonstrate that the proposed approach outperforms the existing algorithms in the presence of unknown NLOS propagation conditions and achieves a performance close to that when propagation conditions are perfectly known.

  20. Using frequency analysis to improve the precision of human body posture algorithms based on Kalman filters.

    Science.gov (United States)

    Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G

    2016-05-01

    With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Online damage detection in structural systems applications of proper orthogonal decomposition, and Kalman and particle filters

    CERN Document Server

    Eftekhar Azam, Saeed

    2014-01-01

    This monograph assesses in depth the application of recursive Bayesian filters in structural health monitoring. Although the methods and algorithms used here are well established in the field of automatic control, their application in the realm of civil engineering has to date been limited. The monograph is therefore intended as a reference for structural and civil engineers who wish to conduct research in this field. To this end, the main notions underlying the families of Kalman and particle filters are scrutinized through explanations within the text and numerous numerical examples. The main limitations to their application in monitoring of high-rise buildings are discussed, and a remedy based on a synergy of reduced order modeling (based on proper orthogonal decomposition) and Bayesian estimation is proposed. The performance and effectiveness of the proposed algorithm is demonstrated via pseudo-experimental evaluations.

  2. Robust Distributed Kalman Filter for Wireless Sensor Networks with Uncertain Communication Channels

    Directory of Open Access Journals (Sweden)

    Du Yong Kim

    2012-01-01

    Full Text Available We address a state estimation problem over a large-scale sensor network with uncertain communication channel. Consensus protocol is usually used to adapt a large-scale sensor network. However, when certain parts of communication channels are broken down, the accuracy performance is seriously degraded. Specifically, outliers in the channel or temporal disconnection are avoided via proposed method for the practical implementation of the distributed estimation over large-scale sensor networks. We handle this practical challenge by using adaptive channel status estimator and robust L1-norm Kalman filter in design of the processor of the individual sensor node. Then, they are incorporated into the consensus algorithm in order to achieve the robust distributed state estimation. The robust property of the proposed algorithm enables the sensor network to selectively weight sensors of normal conditions so that the filter can be practically useful.

  3. An estimate of the inflation factor and analysis sensitivity in the ensemble Kalman filter

    Directory of Open Access Journals (Sweden)

    G. Wu

    2017-07-01

    Full Text Available The ensemble Kalman filter (EnKF is a widely used ensemble-based assimilation method, which estimates the forecast error covariance matrix using a Monte Carlo approach that involves an ensemble of short-term forecasts. While the accuracy of the forecast error covariance matrix is crucial for achieving accurate forecasts, the estimate given by the EnKF needs to be improved using inflation techniques. Otherwise, the sampling covariance matrix of perturbed forecast states will underestimate the true forecast error covariance matrix because of the limited ensemble size and large model errors, which may eventually result in the divergence of the filter. In this study, the forecast error covariance inflation factor is estimated using a generalized cross-validation technique. The improved EnKF assimilation scheme is tested on the atmosphere-like Lorenz-96 model with spatially correlated observations, and is shown to reduce the analysis error and increase its sensitivity to the observations.

  4. EEG-fMRI fusion of paradigm-free activity using Kalman filtering.

    Science.gov (United States)

    Deneux, Thomas; Faugeras, Olivier

    2010-04-01

    We address here the use of EEG and fMRI, and their combination, in order to estimate the full spatiotemporal patterns of activity on the cortical surface in the absence of any particular assumptions on this activity such as stimulation times. For handling such a high-dimension inverse problem, we propose the use of (1) a global forward model of how these measures are functions of the "neural activity" of a large number of sources distributed on the cortical surface, formalized as a dynamical system, and (2) adaptive filters, as a natural solution to solve this inverse problem iteratively along the temporal dimension. This estimation framework relies on realistic physiological models, uses EEG and fMRI in a symmetric manner, and takes into account both their temporal and spatial information. We use the Kalman filter and smoother to perform such an estimation on realistic artificial data and demonstrate that the algorithm can handle the high dimensionality of these data and that it succeeds in solving this inverse problem, combining efficiently the information provided by the two modalities (this information being naturally predominantly temporal for EEG and spatial for fMRI). It performs particularly well in reconstructing a random temporally and spatially smooth activity spread over the cortex. The Kalman filter and smoother show some limitations, however, which call for the development of more specific adaptive filters. First, they do not cope well with the strong nonlinearity in the model that is necessary for an adequate description of the relation between cortical electric activities and the metabolic demand responsible for fMRI signals. Second, they fail to estimate a sparse activity (i.e., presenting sharp peaks at specific locations and times). Finally their computational cost remains high. We use schematic examples to explain these limitations and propose further developments of our method to overcome them.

  5. Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time

    KAUST Repository

    Kelly, D. T B

    2014-09-22

    The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so for small ensemble size. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with respect to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz \\'63 and \\'96 models, together with the incompressible Navier-Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier-Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise.

  6. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    Science.gov (United States)

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  7. Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman Filter and Adjoint with a focus on the Indian Ocean and the Intraseasonal Oscillation

    Science.gov (United States)

    2015-09-30

    1 Approved for public release; distribution is unlimited. Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman Filter and Adjoint...system at NCAR. (2) Compare the performance of the Ensemble Kalman Filter (EnKF) using the Data Assimilation Research Testbed (DART) and 4

  8. Real-time noise reduction for Mössbauer spectroscopy through online implementation of a modified Kalman filter

    Science.gov (United States)

    Abrecht, David G.; Schwantes, Jon M.; Kukkadapu, Ravi K.; McDonald, Benjamin S.; Eiden, Gregory C.; Sweet, Lucas E.

    2015-02-01

    Spectrum-processing software that incorporates a Gaussian smoothing kernel within the statistics of first-order Kalman filtration has been developed to provide cross-channel spectral noise reduction for increased real-time signal-to-noise ratios for Mössbauer spectroscopy. The filter was optimized for the breadth of the Gaussian using the Mössbauer spectrum of natural iron foil, and comparisons among the peak broadening, signal-to-noise ratios, and shifts in the calculated hyperfine parameters are presented. The results of optimization give a maximum improvement in the signal-to-noise ratio of 51.1% over the unfiltered spectrum at a Gaussian breadth of 27 channels, or 2.5% of the total spectrum width. The full-width half-maximum of the spectrum peaks showed an increase of 19.6% at this optimum point, indicating a relatively weak increase in the peak broadening relative to the signal enhancement, leading to an overall increase in the observable signal. Calculations of the hyperfine parameters showed that no statistically significant deviations were introduced from the application of the filter, confirming the utility of this filter for spectroscopy applications.

  9. A Method for SINS Alignment with Large Initial Misalignment Angles Based on Kalman Filter with Parameters Resetting

    Directory of Open Access Journals (Sweden)

    Xixiang Liu

    2014-01-01

    Full Text Available In the initial alignment process of strapdown inertial navigation system (SINS, large initial misalignment angles always bring nonlinear problem, which causes alignment failure when the classical linear error model and standard Kalman filter are used. In this paper, the problem of large misalignment angles in SINS initial alignment is investigated, and the key reason for alignment failure is given as the state covariance from Kalman filter cannot represent the true one during the steady filtering process. According to the analysis, an alignment method for SINS based on multiresetting the state covariance matrix of Kalman filter is designed to deal with large initial misalignment angles, in which classical linear error model and standard Kalman filter are used, but the state covariance matrix should be multireset before the steady process until large misalignment angles are decreased to small ones. The performance of the proposed method is evaluated by simulation and car test, and the results indicate that the proposed method can fulfill initial alignment with large misalignment angles effectively and the alignment accuracy of the proposed method is as precise as that of alignment with small misalignment angles.

  10. A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Xiangyu Cui

    2018-01-01

    Full Text Available State of charge (SOC is a key parameter for lithium-ion battery management systems. The square root cubature Kalman filter (SRCKF algorithm has been developed to estimate the SOC of batteries. SRCKF calculates 2n points that have the same weights according to cubature transform to approximate the mean of state variables. After these points are propagated by nonlinear functions, the mean and the variance of the capture can achieve third-order precision of the real values of the nonlinear functions. SRCKF directly propagates and updates the square root of the state covariance matrix in the form of Cholesky decomposition, guarantees the nonnegative quality of the covariance matrix, and avoids the divergence of the filter. Simulink models and the test bench of extended Kalman filter (EKF, Unscented Kalman filter (UKF, cubature Kalman filter (CKF and SRCKF are built. Three experiments have been carried out to evaluate the performances of the proposed methods. The results of the comparison of accuracy, robustness, and convergence rate with EKF, UKF, CKF and SRCKF are presented. Compared with the traditional EKF, UKF and CKF algorithms, the SRCKF algorithm is found to yield better SOC estimation accuracy, higher robustness and better convergence rate.

  11. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-02-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  12. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2015-08-13

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  13. Ensemble Kalman Filtering with Residual Nudging: An Extension to State Estimation Problems with Nonlinear Observation Operators

    KAUST Repository

    Luo, Xiaodong

    2014-10-01

    The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.

  14. High Resolution Order Tracking at Extreme Slew Rates Using Kalman Tracking Filters

    Directory of Open Access Journals (Sweden)

    Håvard Vold

    1995-01-01

    Full Text Available The analysis of the periodic components in noise and vibration signals measured on rotating equipment such as car power trains, must be done more and more under rapid changes of an axle, or reference RPM. Normal tracking filters (analog or digital implementations have limited resolution in such situations; wavelet methods, even when applied after resampling the data to be proportional to an axle RPM, must compromise between time and frequency resolution. The authors propose the application of nonstationary Kalman filters for the tracking of periodic components in such noise and vibration signals. These filters are designed to accurately track signals with a known structure among noise and signal components of different, “unknown,” structure. The tracking characteristics of these filters, i.e., the predicted signal amplitude versus time values versus exact signal amplitude versus time values, can be tailored to accurate tracking of harmonics buried in other signal components and noise, even at high rates of change of the reference RPM. A key to the successful construction is the precise knowledge of the structure of the signal to be tracked. For signals that vary with an axle RPM, an accurate estimate of the instantaneous RPM is essential, and procedures to this end will also be presented.

  15. Ensemble-Type Kalman Filter Algorithm conserving mass, total energy and enstrophy

    Science.gov (United States)

    Zeng, Yuefei; Janjic, Tijana; Ruckstuhl, Yvonne; Verlaan, Martin

    2017-04-01

    In a recent study (Zeng and Janjic 2016), we explored the effect on conservation properties of data assimilation using perfect model experiments with a 2D shallow water model preserving important properties of the true nonlinear flow. It was found that during the assimilation with the ensemble Kalman filter algorithm, the total energy of the analysis ensemble mean converges towards the nature run value with time. However, the enstrophy, divergence and energy spectra were strongly affected by the data assimilation settings. We tested the effects on the prediction depending on the type of error in the initial condition and showed that the accumulated noise during assimilation and the error of analysis are good indicators of the quality of the prediction. Having in mind that the conservation of both the kinetic energy and enstrophy by momentum advection schemes in the case of non-divergent flow prevents a systematic and unrealistic energy cascade towards the high wave numbers, we constructed the ensemble data assimilation algorithm that conserves both energy and enstrophy. This is done by extending QPEns (Janjic et al. 2014) to allow for nonlinear constraints using, instead of quadratic programming, the sequential quadratic programming algorithm. Experiments with the 2D shallow water model show similar RMSEs of the algorithm without constraints and the algorithm with only the total energy constrained. The algorithm which constraints enstrophy as well as energy and enstrophy during data assimilation showed smaller RMSE to the one without the constraint on enstrophy. Similar behavior can be seen in the energy spectrum where algorithms which include the constraint on enstrophy are closer to the true spectrum, in particular for wavelengths between 200 km and 1000 km. The enstrophy constraint resulted in a reduction of noise during data assimilation. Finally, the algorithm, with both energy and enstrophy constraint showed the smallest error growth during the two weeks

  16. A new deterministic Ensemble Kalman Filter with one-step-ahead smoothing for storm surge forecasting

    KAUST Repository

    Raboudi, Naila

    2016-11-01

    The Ensemble Kalman Filter (EnKF) is a popular data assimilation method for state-parameter estimation. Following a sequential assimilation strategy, it breaks the problem into alternating cycles of forecast and analysis steps. In the forecast step, the dynamical model is used to integrate a stochastic sample approximating the state analysis distribution (called analysis ensemble) to obtain a forecast ensemble. In the analysis step, the forecast ensemble is updated with the incoming observation using a Kalman-like correction, which is then used for the next forecast step. In realistic large-scale applications, EnKFs are implemented with limited ensembles, and often poorly known model errors statistics, leading to a crude approximation of the forecast covariance. This strongly limits the filter performance. Recently, a new EnKF was proposed in [1] following a one-step-ahead smoothing strategy (EnKF-OSA), which involves an OSA smoothing of the state between two successive analysis. At each time step, EnKF-OSA exploits the observation twice. The incoming observation is first used to smooth the ensemble at the previous time step. The resulting smoothed ensemble is then integrated forward to compute a "pseudo forecast" ensemble, which is again updated with the same observation. The idea of constraining the state with future observations is to add more information in the estimation process in order to mitigate for the sub-optimal character of EnKF-like methods. The second EnKF-OSA "forecast" is computed from the smoothed ensemble and should therefore provide an improved background. In this work, we propose a deterministic variant of the EnKF-OSA, based on the Singular Evolutive Interpolated Ensemble Kalman (SEIK) filter. The motivation behind this is to avoid the observations perturbations of the EnKF in order to improve the scheme\\'s behavior when assimilating big data sets with small ensembles. The new SEIK-OSA scheme is implemented and its efficiency is demonstrated

  17. Prediction of L70 lumen maintenance and chromaticity for LEDs using extended Kalman filter models

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Wei, Junchao; Davis, Lynn

    2013-09-30

    Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life

  18. Achieving High Contrast for Exoplanet Imaging with a Kalman Filter and Stroke Minimization

    Science.gov (United States)

    Eldorado Riggs, A. J.; Groff, T. D.; Kasdin, N. J.; Carlotti, A.; Vanderbei, R. J.

    2014-01-01

    High contrast imaging requires focal plane wavefront control and estimation to correct aberrations in an optical system; non-common path errors prevent the use of conventional estimation with a separate wavefront sensor. The High Contrast Imaging Laboratory (HCIL) at Princeton has led the development of several techniques for focal plane wavefront control and estimation. In recent years, we developed a Kalman filter for optimal wavefront estimation. Our Kalman filter algorithm is an improvement upon DM Diversity, which requires at least two images pairs each iteration and does not utilize any prior knowledge of the system. The Kalman filter is a recursive estimator, meaning that it uses the data from prior estimates along with as few as one new image pairs per iteration to update the electric field estimate. Stroke minimization has proven to be a feasible controller for achieving high contrast. While similar to a variation of Electric Field Conjugation (EFC), stroke minimization achieves the same contrast with less stroke on the DMs. We recently utilized these algorithms to achieve high contrast for the first time in our experiment at the High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory (JPL). Our HCIT experiment was also the first demonstration of symmetric dark hole correction in the image plane using two DMs--this is a major milestone for future space missions. Our ongoing work includes upgrading our optimal estimator to include an estimate of the incoherent light in the system, which allows for simultaneous estimation of the light from a planet along with starlight. The two-DM experiment at the HCIT utilized a shaped pupil coronagraph. Those tests utilized ripple style, free-standing masks etched out of silicon, but our current work is in designing 2-D optimized reflective shaped pupils. In particular, we have created several designs for the AFTA telescope, whose pupil presents major hurdles because of its atypical pupil obstructions. Our

  19. Continuous updating of a coupled reservoir-seismic model using an ensemble Kalman filter technique

    Energy Technology Data Exchange (ETDEWEB)

    Skjervheim, Jan-Arild

    2007-07-01

    This work presents the development of a method based on the ensemble Kalman filter (EnKF) for continuous reservoir model updating with respect to the combination of production data, 3D seismic data and time-lapse seismic data. The reservoir-seismic model system consists of a commercial reservoir simulator coupled to existing rock physics and seismic modelling software. The EnKF provides an ideal-setting for real time updating and prediction in reservoir simulation models, and has been applied to synthetic models and real field cases from the North Sea. In the EnKF method, static parameters as the porosity and permeability, and dynamic variables, as fluid saturations and pressure, are updated in the reservoir model at each step data become available. In addition, we have updated a lithology parameter (clay ratio) which is linked to the rock physics model, and the fracture density in a synthetic fractured reservoir. In the EnKF experiments we have assimilated various types of production and seismic data. Gas oil ratio (GOR), water cut (WCT) and bottom-hole pressure (BHP) are used in the data assimilation. Furthermore, inverted seismic data, such as Poisson's ratio and acoustic impedance, and seismic waveform data have been assimilated. In reservoir applications seismic data may introduce a large amount of data in the assimilation schemes, and the computational time becomes expensive. In this project efficient EnKF schemes are used to handle such large datasets, where challenging aspects such as the inversion of a large covariance matrix and potential loss of rank are considered. Time-lapse seismic data may be difficult to assimilate since they are time difference data, i.e. data which are related to the model variable at two or more time instances. Here we have presented a general sequential Bayesian formulation which incorporates time difference data, and we show that the posterior distribution includes both a filter and a smoother solution. Further, we show

  20. An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

    KAUST Repository

    Gharamti, M. E.

    2015-05-11

    The ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances. Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model

  1. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    Science.gov (United States)

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  2. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model parame...

  3. Simultaneous Estimation of Model State Variables and Observation and Forecast Biases Using a Two-Stage Hybrid Kalman Filter

    Science.gov (United States)

    Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.

    2013-01-01

    In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.

  4. Land cover change detection using the internal covariance matrix of the extended kalman filter over multiple spectral bands

    CSIR Research Space (South Africa)

    Salmon, Brian P

    2013-06-01

    Full Text Available In this paper, the internal operations of an Extended Kalman Filter is investigated to observe if information can be derived to detect land cover change in a MODerate-resolution Imaging Spectroradiometer (MODIS) time series. The concept is based...

  5. Adaptive Two-Stage Extended Kalman Filter Theory in Application of Sensorless Control for Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Boyu Yi

    2013-01-01

    Full Text Available Extended Kalman filters (EKF have been widely used for sensorless field oriented control (FOC in permanent magnet synchronous motor (PMSM. The first key problem associated with EKF is that the estimator requires all the plant dynamics and noise processes are exactly known. To compensate inaccurate model information and improve tracking ability, adaptive fading extended Kalman filtering algorithms have been proposed for the nonlinear system. The second key problem is that the EKF suffers from computational burden and numerical problems when state dimension is large. The two-stage extended Kalman filter (TSEKF with respect to this problem has been extensively studied in the past. Combining the advantages of both AFEKF and TSEKF, this paper presents an adaptive two-stage extended Kalman filter (ATEKF for closed-loop position and speed estimation of a PMSM to achieve sensorless operation. Experimental results demonstrate that the proposed ATEKF algorithm for PMSMs has strong robustness against model uncertainties and very good real-time state tracking ability.

  6. Joint history matching of well data and surface subsidence observations using the Ensemble Kalman Filter: A field study

    NARCIS (Netherlands)

    Wilschut, F.; Peters, E.; Visser, K.; Fokker, P.A.; Hooff, P.M.E. van

    2011-01-01

    The number of reported applications of the Ensemble Kalman Filter (EnKF) for history matching reservoir models is increasing steadily for various reasons. Here, we report on exploiting the capability of EnKF to handle observations from different sources simultaneously. While traditionally only well

  7. Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea

    NARCIS (Netherlands)

    Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.

    2007-01-01

    The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis

  8. Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-07-01

    Full Text Available . This paper proposes a meta-optimization approach for setting the parameters of the non-linear Extended Kalman Filter to rapidly and efficiently estimate the features for the pair of triply modulated cosine functions. The approach is based on a unsupervised...

  9. Evidence of speculative bubbles on the BOVESPA: an application of the Kalman filter

    Directory of Open Access Journals (Sweden)

    Thiago Bergmann de Queiroz

    2011-06-01

    Full Text Available The existence of bubbles in asset prices is a matter of great importance to governments and investors due to possible serious effects they may have on economies. In the case of shares, the presence of a price bubble can be seen by comparing prices and dividends in the long run. This study aimed to assess the occurrence of price bubbles in the Brazilian stock market, by comparing the IBOVESPA as price index and an index of dividends, built based on the methodology of IBOVESPA. The bubble was considered a unobserved state vector in a state-space model and was estimated using the Kalman filter. The results were compared with the standard present value model and intrinsic bubbles model (Froot e Obstfeld, 1991. Although the model establishes the presence of bubbles, the intrinsic bubbles model (Froot e Obstfeld, 1991 showed similar results with greater accuracy.

  10. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors

    Science.gov (United States)

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-01-01

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684

  11. Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.

    Science.gov (United States)

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance.

  12. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.

    Science.gov (United States)

    Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent

    2017-01-01

    In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Autonomous space target recognition and tracking approach using star sensors based on a Kalman filter.

    Science.gov (United States)

    Ye, Tao; Zhou, Fuqiang

    2015-04-10

    When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.

  14. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    Science.gov (United States)

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  15. [Simulation of cropland soil moisture based on an ensemble Kalman filter].

    Science.gov (United States)

    Liu, Zhao; Zhou, Yan-Lian; Ju, Wei-Min; Gao, Ping

    2011-11-01

    By using an ensemble Kalman filter (EnKF) to assimilate the observed soil moisture data, the modified boreal ecosystem productivity simulator (BEPS) model was adopted to simulate the dynamics of soil moisture in winter wheat root zones at Xuzhou Agro-meteorological Station, Jiangsu Province of China during the growth seasons in 2000-2004. After the assimilation of observed data, the determination coefficient, root mean square error, and average absolute error of simulated soil moisture were in the ranges of 0.626-0.943, 0.018-0.042, and 0.021-0.041, respectively, with the simulation precision improved significantly, as compared with that before assimilation, indicating the applicability of data assimilation in improving the simulation of soil moisture. The experimental results at single point showed that the errors in the forcing data and observations and the frequency and soil depth of the assimilation of observed data all had obvious effects on the simulated soil moisture.

  16. Odometry and Laser Scanner Fusion Based on a Discrete Extended Kalman Filter for Robotic Platooning Guidance

    Directory of Open Access Journals (Sweden)

    Fernando Valdés

    2011-08-01

    Full Text Available This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a an odometric system and (b a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications.

  17. Battery State-of-Charge and Parameter Estimation Algorithm Based on Kalman Filter

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stjepan; Guerrero, Josep M.

    2013-01-01

    Electrochemical battery is the most widely used energy storage technology, finding its application in various devices ranging from low power consumer electronics to utility back-up power. All types of batteries show highly non-linear behaviour in terms of dependence of internal parameters...... on operating conditions, momentary replenishment and a number of past charge/discharge cycles. A good indicator for the quality of overall customer service in any battery based application is the availability and reliability of these informations, as they point out important runtime variables...... such as the actual state of charge (SOC) and state of health (SOH). Therefore, a modern battery management systems (BMSs) should incorporate functions that accommodate real time tracking of these nonlinearities. For that purpose, Kalman filter based algorithms emerged as a convenient solution due to their ability...

  18. Estimating short-period dynamics using an extended Kalman filter. [for aircraft controllability

    Science.gov (United States)

    Bauer, Jeffrey E.; Andrisani, Dominick

    1990-01-01

    An extended Kalman filter is used to estimate the parameters of a low-order model from aircraft transient response data. The low-order model is a state-space model derived from the short-period approximation of the longitudinal aircraft dynamics. The model corresponds to the pitch rate to stick force transfer function currently used in flying qualities analysis. The parameters are estimated from flight data as well as from a 6-DOF nonlinear simulation of the aircraft. These two estimates are then compared, and the discrepancies noted. The low-order model is able to satisfactorily match both flight data and simulation data from a high-order computer simulation.

  19. Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters

    Science.gov (United States)

    Brandhorst, N.; Erdal, D.; Neuweiler, I.

    2017-12-01

    For predicting flow in the unsaturated zone, an adequate choice of the model parameters, especially the soil hydraulic parameters, is essential. It is difficult to determine these parameters, as the parameter estimation problem easily becomes ill-posed, e.g. due to pseudo-correlations among two or more of the unknown parameters. In the field, this problem is strongly related to the available observations which, in monitoring networks, are not optimized to be used for parameter estimation. In this paper, we investigate the potential of data assimilation using the ensemble Kalman filter (EnKF) with unsaturated zone models under conditions where model parameters are highly uncertain and not identifiable. Different ways of dealing with the parameter uncertainty, such as parameter updates and bias correction, are discussed and compared. It is shown that jointly updating all uncertain parameters and states is the best method to account for the error induced by parameter uncertainty.

  20. An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.

    Science.gov (United States)

    Li, Jian; Wei, Xinguo; Zhang, Guangjun

    2017-08-21

    Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.

  1. Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter

    Science.gov (United States)

    Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao

    2017-11-01

    Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.

  2. Comparison of a VLBI TRF Solution Based on Kalman Filtering and Recent ITRS Realizations

    Science.gov (United States)

    Soja, Benedikt; Nilsson, Tobias; Glaser, Susanne; Balidakis, Kyriakos; Karbon, Maria; Heinkelmann, Robert; Gross, Richard; Schuh, Harald

    2016-12-01

    Terrestrial reference frames (TRFs) of high quality are indispensable for many geoscientific and geodetic applications including very long baseline interferometry (VLBI) data analysis. While secular station coordinate changes, for instance due to tectonic plate motion, are well represented by a linear model, current accuracy requirements demand modeling of non-linear signals such as surface deformations due to mass loading or post-seismic deformations. In this paper, we portray a TRF solution solely based on VLBI data, employing Kalman filtering and smoothing for the computation of session-wise coordinates of 104 VLBI radio telescopes over more than 30 years. We compare our VLBI TRF to the multi-technique ITRF solutions ITRF2014 and JTRF2014, focusing on the different approaches of modeling non-linear signals. Overall, a good agreement is found for strong post-seismic deformations, but the three solutions diverge in terms of seasonal signals.

  3. Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Roh

    2011-09-01

    Full Text Available A strategy for geostationary orbit (or geostationary earth orbit [GEO] surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997 is used to improve computation performance and the unscented Kalman filer (UKF is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.

  4. Design of Power Cable UAV Intelligent Patrol System Based on Adaptive Kalman Filter Fuzzy PID Control

    Directory of Open Access Journals (Sweden)

    Chen Siyu

    2017-01-01

    Full Text Available Patrol UAV has poor aerial posture stability and is largely affected by anthropic factors, which lead to some shortages such as low power cable tracking precision, captured image loss and inconvenient temperature measurement, etc. In order to solve these disadvantages, this article puts forward a power cable intelligent patrol system. The core innovation of the system is a 360° platform. This collects the position information of power cables by using far infrared sensors and carries out real-time all-direction adjustment of UAV lifting platform through the adaptive Kalman filter fuzzy PID control algorithm, so that the precise tracking of power cables is achieved. An intelligent patrol system is established to detect the faults more accurately, so that a high intelligence degree of power cable patrol system is realized.

  5. Particle tracking with iterated Kalman filters and smoothers the PMHT algorithm

    CERN Document Server

    Strandlie, A

    1999-01-01

    We introduce the Probabilistic Multi-Hypothesis Tracking (PMHT) algorithm for particle tracking in high-energy physics detectors. This algorithm has been developed recently for tracking multiple targets in clutter, and it is based on maximum likelihood estimation with help of the EM algorithm. The resulting algorithm basically consists of running several iterated and coupled Kalman filters and smoothers in parallel. It is similar to the Elastic Arms algorithm, but it possesses the additional feature of being able to take process noise into account, as for instance multiple Coulomb scattering. Herein, we review its basic properties and derive a generalized version of the algorithm by including a deterministic annealing scheme. Further developments of the algorithm in order to improve the performance are also discussed. In particular, we propose to modify the hit-to-track assignment probabilities in order to obtain competition between hits in the same detector layer. Finally, we present results of an implementa...

  6. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.

    Science.gov (United States)

    Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J

    2015-08-01

    This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.

  7. New efficient optimizing techniques for Kalman filters and numerical weather prediction models

    Science.gov (United States)

    Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis

    2016-06-01

    The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.

  8. Output regularization of SVM seizure predictors: Kalman Filter versus the "Firing Power" method.

    Science.gov (United States)

    Teixeira, Cesar; Direito, Bruno; Bandarabadi, Mojtaba; Dourado, António

    2012-01-01

    Two methods for output regularization of support vector machines (SVMs) classifiers were applied for seizure prediction in 10 patients with long-term annotated data. The output of the classifiers were regularized by two methods: one based on the Kalman Filter (KF) and other based on a measure called the "Firing Power" (FP). The FP is a quantification of the rate of the classification in the preictal class in a past time window. In order to enable the application of the KF, the classification problem was subdivided in a two two-class problem, and the real-valued output of SVMs was considered. The results point that the FP method raise less false alarms than the KF approach. However, the KF approach presents an higher sensitivity, but the high number of false alarms turns their applicability negligible in some situations.

  9. Joint identification of contaminant source and barrier information in a sandbox experiment via ensemble kalman filter

    Science.gov (United States)

    Chen, Zi; Zanini, Andrea; Gómez-Hernández, J. Jaime; Xu, Teng; Cupola, Fausto

    2017-04-01

    In this work , the ensemble Kalman filter(EnKF) is employed to identify the contaminant source and barrier information in a laboratory sandbox experiment. A typical single point pollution experiment was performed in the sandbox with a barrier by using sodium fluorescein as the tracer.The movement of the contaminant was recorded by a digital camera and the contaminant concentration was obtained by the analysis of the luminosity of the pictures. The capability of the EnKF is tested through the experiment data. With a vague prior speculation of the contaminant source and barrier information, EnKF is applied to simultaneously identify these parameters through assimilating the concentration observations. The updated parameters match the actually sandbox parameters quite well implying that EnKF is an effective approach to identify the source location, barrier position, contaminant concentration and releasing history.

  10. MACV/Radio integrated navigation for Mars powered descent via robust desensitized central difference Kalman filter

    Science.gov (United States)

    Lou, Taishan; Liu, Jie; Jin, Pan; Wang, Yan

    2017-01-01

    An innovative integrated navigation scheme based on MCAV/Radio measurement information during Mars powered descent phase, and a robust desensitized central difference Kalman filter (DCDKF) for systems with uncertain parameters or biases are proposed to improve the navigation descent accuracy. Based on the altitude and velocity information of the Miniature Coherent Altimeter and Velocimeter (MCAV), the radio-range information is added into the integrated navigation system to correct the horizontal position error of the vehicle during the Mars powered descent phase. Based the central difference transform, the sensitivity propagation of the state estimate errors in the DCDKF is described, and a designed desensitized cost function is minimized to obtain the gain matrix of the DCDKF. The performances of the innovative navigation scheme and the proposed DCDKF are all demonstrated by two Monte Carlo simulations with the Inertial Measurement Unit biases during the Mars power descent phase.

  11. Cellular automaton and Kalman filter based track search in the HERA-B pattern tracker

    CERN Document Server

    Abt, I; Gorbounov, I; Kisel, I

    2002-01-01

    The paper describes track reconstruction package OTR/ITR-CATS developed for the Pattern Tracker of the HERA-B experiment. This package employs a combined approach for track reconstruction based on the use of a cellular automaton for track searching and the Kalman filter techniques for track fitting. A similar reconstruction strategy is already successfully applied to the Vertex Detector System (VDS) (Nucl. Instr. and Meth. A 489 (2002) 389). However, hit efficiencies and resolutions of the Pattern Tracker lower than those of the VDS require much more delicate implementation of the method. The package developed has been tested on simulated data. The results of the tests regarding reconstruction efficiency, accuracy of estimates and computing time are presented.

  12. Odometry and Laser Scanner Fusion Based on a Discrete Extended Kalman Filter for Robotic Platooning Guidance

    Science.gov (United States)

    Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier

    2011-01-01

    This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications. PMID:22164079

  13. Determining Key Model Parameters of Rapidly Intensifying Hurricane Guillermo(1997) using the Ensemble Kalman Filter

    CERN Document Server

    Godinez, Humberto C; Fierro, Alexandre O; Guimond, Stephen R; Kao, Jim

    2011-01-01

    In this work we present the assimilation of dual-Doppler radar observations for rapidly intensifying hurricane Guillermo (1997) using the Ensemble Kalman Filter (EnKF) to determine key model parameters. A unique aspect of Guillermo was that during the period of radar observations strong convective bursts, attributable to wind shear, formed primarily within the eastern semicircle of the eyewall. To reproduce this observed structure within a hurricane model, background wind shear of some magnitude must be specified; as well as turbulence and surface parameters appropriately specified so that the impact of the shear on the simulated hurricane vortex can be realized. To first illustrate the complex nonlinear interactions induced by changes in these parameters, an ensemble of 120 simulations have been conducted in which individual members were formulated by sampling the parameters within a certain range via a Latin hypercube approach. Next, data from the 120 simulations and two distinct derived fields of observati...

  14. An R implementation of a Recurrent Neural Network Trained by Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2016-06-01

    Full Text Available Nowadays there are several techniques used for forecasting with different performances and accuracies. One of the most performant techniques for time series prediction is neural networks. The accuracy of the predictions greatly depends on the network architecture and training method. In this paper we describe an R implementation of a recurrent neural network trained by the Extended Kalman Filter. For the implementation of the network we used the Matrix package that allows efficient vector-matrix and matrix-matrix operations. We tested the performance of our R implementation comparing it with a pure C++ implementation and we showed that R can achieve about 75% of the C++ programs. Considering the other advantages of R, our results recommend R as a serious alternative to classical programming languages for high performance implementations of neural networks.

  15. A partial ensemble Kalman filtering approach to enable use of range limited observations

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Madsen, Henrik

    2015-01-01

    The ensemble Kalman filter (EnKF) relies on the assumption that an observed quantity can be regarded as a stochastic variable that is Gaussian distributed with mean and variance that equals the measurement and the measurement noise, respectively. When a gauge has a minimum and/or maximum detection...... limit and the observed quantity is outside this range, the signal from the gauge can, however, not be related to the observed quantity in this way. The current study proposes a method for utilizing this kind of out-of-range observations with the EnKF by explicitly treating the out-of-range observations...... the same model and noise descriptions are used for the truth simulation and for the EnKF. The results show that the positive impact of the method in case of range-limited observations can exceed that of increasing the ensemble size from 10 to 100 and that the method makes it possible to improve model...

  16. Application of the ensemble Kalman filter for characterization and history matching of unconventional oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha, S.B.; Trivedi, J.J.; Shah, S.L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    The ensemble Kalman filter (EnKF) was used to continuously update and history match the petroleum reservoir characteristics of 2 unconventional oil reservoir models, notably (1) a highly heterogenous black oil reservoir model, and (2) a heterogenous steam assisted gravity drainage (SAGD) reservoir model. The method was used to sequentially update the spatial properties of the reservoir models through the integration of dynamic production data. Monte Carlo simulations of the model ensembles were used. The method considered production uncertainty by using error covariance matrices for measurement and state vectors. Results of the study demonstrated the advantages of using a localized EnKF for effective history matching. Significant computational time was saved by running the ensemble simulations on independent processors in a parallel mode. 28 refs., 16 figs.

  17. Optimal initial perturbations for El Nino ensemble prediction with ensemble Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Yoo-Geun; Kang, In-Sik [Seoul National University, School of Earth and Environment Sciences, Seoul (Korea); Kug, Jong-Seong [Korea Ocean Research and Development Institute, Ansan (Korea)

    2009-12-15

    A method for selecting optimal initial perturbations is developed within the framework of an ensemble Kalman filter (EnKF). Among the initial conditions generated by EnKF, ensemble members with fast growing perturbations are selected to optimize the ENSO seasonal forecast skills. Seasonal forecast experiments show that the forecast skills with the selected ensemble members are significantly improved compared with other ensemble members for up to 1-year lead forecasts. In addition, it is found that there is a strong relationship between the forecast skill improvements and flow-dependent instability. That is, correlation skills are significantly improved over the region where the predictable signal is relatively small (i.e. an inverse relationship). It is also shown that forecast skills are significantly improved during ENSO onset and decay phases, which are the most unpredictable periods among the ENSO events. (orig.)

  18. Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rui; Huang, Zhenyu; Wang, Shaobu; Diao, Ruisheng; Meng, Da

    2015-07-30

    With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKF method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.

  19. Application of unscented Kalman filter for condition monitoring of an organic Rankine cycle turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu

    2014-01-01

    emphasis on compactness and reliability. In such context, organic Rankine cycle turbogenerators are a promising technology. The implementation of an organic Rankine cycle unit is thus considered for the power system of the Draugen offshore platform in the northern sea, which is the case study......This work relates to a project focusing on energy optimization on offshore facilities. On oil and gas platforms it is common practice to employ gas turbines for power production. So as to increase the system performance and reduce emissions, a bottoming cycle unit can be designed with particular...... for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...

  20. LHCb: Alignment of the LHCb Detector with Kalman Filter Fitted Tracks

    CERN Multimedia

    Amoraal, J; Hulsbergen, W; Needham, M; Nicolas, L; Pozzi, S; Raven, G; Vecchi, S

    2009-01-01

    We report on an implementation of a global chisquare algorithm for the simultaneous alignment of all tracking systems in the LHCb detector. Our algorithm uses hit residuals from the standard LHCb track fit which is based on a Kalman filter. The algorithm is implemented in the LHCb reconstruction framework and exploits the fact that all sensitive detector elements have the same geometry interface. A vertex constraint is implemented by fitting tracks to a common point and propagating the change in track parameters to the hit residuals. To remove unconstrained or poorly constrained degrees of freedom (so-called weak modes) the average movements of (subsets of) alignable detector elements can be fixed with Lagrange constraints. Alternatively, weak modes can be removed with a cutoff in the eigenvalue spectrum of the second derivative of the chisquare. As for all LHCb reconstruction and analysis software the configuration of the algorithm is done in python and gives detailed control over the selection of alignable ...

  1. Processing Functional Near Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during Simulated Flight.

    Science.gov (United States)

    Durantin, Gautier; Scannella, Sébastien; Gateau, Thibault; Delorme, Arnaud; Dehais, Frédéric

    2015-01-01

    Working memory (WM) is a key executive function for operating aircraft, especially when pilots have to recall series of air traffic control instructions. There is a need to implement tools to monitor WM as its limitation may jeopardize flight safety. An innovative way to address this issue is to adopt a Neuroergonomics approach that merges knowledge and methods from Human Factors, System Engineering, and Neuroscience. A challenge of great importance for Neuroergonomics is to implement efficient brain imaging techniques to measure the brain at work and to design Brain Computer Interfaces (BCI). We used functional near infrared spectroscopy as it has been already successfully tested to measure WM capacity in complex environment with air traffic controllers (ATC), pilots, or unmanned vehicle operators. However, the extraction of relevant features from the raw signal in ecological environment is still a critical issue due to the complexity of implementing real-time signal processing techniques without a priori knowledge. We proposed to implement the Kalman filtering approach, a signal processing technique that is efficient when the dynamics of the signal can be modeled. We based our approach on the Boynton model of hemodynamic response. We conducted a first experiment with nine participants involving a basic WM task to estimate the noise covariances of the Kalman filter. We then conducted a more ecological experiment in our flight simulator with 18 pilots who interacted with ATC instructions (two levels of difficulty). The data was processed with the same Kalman filter settings implemented in the first experiment. This filter was benchmarked with a classical pass-band IIR filter and a Moving Average Convergence Divergence (MACD) filter. Statistical analysis revealed that the Kalman filter was the most efficient to separate the two levels of load, by increasing the observed effect size in prefrontal areas involved in WM. In addition, the use of a Kalman filter increased

  2. Processing Functional Near Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during Simulated Flight.

    Directory of Open Access Journals (Sweden)

    Gautier eDurantin

    2016-01-01

    Full Text Available Working memory is a key executive function for operating aircraft, especially when pilots have to recall series of air traffic control instructions. There is a need to implement tools to monitor working memory as its limitation may jeopardize flight safety. An innovative way to address this issue is to adopt a Neuroergonomics approach that merges knowledge and methods from Human Factors, System Engineering and Neuroscience. A challenge of great importance for Neuroergonomics is to implement efficient brain imaging techniques to measure the brain at work and to design Brain Computer Interfaces. We used functional near infrared spectroscopy as it has been already successfully tested to measure working memory capacity in complex environment with air traffic controllers, pilots or unmanned vehicle operators. However, the extraction of relevant features from the raw signal in ecological environment is still a critical issue due to the complexity of implementing real-time signal processing techniques without a priori knowledge. We proposed to implement the Kalman filtering approach, a signal processing technique that is efficient when the dynamics of the signal can be modeled. We based our approach on the Boynton model of hemodynamic response. We conducted a first experiment with 9 participants involving a basic working memory task to estimate the noise covariances of the Kalman filter. We then conducted a more ecological experiment in our flight simulator with 18 pilots who interacted with air traffic controller instructions (two levels of difficulty. The data was processed with the same Kalman filter settings implemented in the first experiment. This filter was benchmarked with a classical pass-band IIR filter and a Moving Average Convergence Divergence filter. Statistical analysis revealed that the Kalman filter was the most efficient to separate the two levels of load, by increasing the observed effect size in prefrontal areas involved in working

  3. Structural damage detection using extended Kalman filter combined with statistical process control

    Science.gov (United States)

    Jin, Chenhao; Jang, Shinae; Sun, Xiaorong

    2015-04-01

    Traditional modal-based methods, which identify damage based upon changes in vibration characteristics of the structure on a global basis, have received considerable attention in the past decades. However, the effectiveness of the modalbased methods is dependent on the type of damage and the accuracy of the structural model, and these methods may also have difficulties when applied to complex structures. The extended Kalman filter (EKF) algorithm which has the capability to estimate parameters and catch abrupt changes, is currently used in continuous and automatic structural damage detection to overcome disadvantages of traditional methods. Structural parameters are typically slow-changing variables under effects of operational and environmental conditions, thus it would be difficult to observe the structural damage and quantify the damage in real-time with EKF only. In this paper, a Statistical Process Control (SPC) is combined with EFK method in order to overcome this difficulty. Based on historical measurements of damage-sensitive feathers involved in the state-space dynamic models, extended Kalman filter (EKF) algorithm is used to produce real-time estimations of these features as well as standard derivations, which can then be used to form control ranges for SPC to detect any abnormality of the selected features. Moreover, confidence levels of the detection can be adjusted by choosing different times of sigma and number of adjacent out-of-range points. The proposed method is tested using simulated data of a three floors linear building in different damage scenarios, and numerical results demonstrate high damage detection accuracy and light computation of this presented method.

  4. A Low Cost Approach to Simultaneous Orbit, Attitude, and Rate Estimation Using an Extended Kalman Filter

    Science.gov (United States)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    1998-01-01

    An innovative approach to autonomous attitude and trajectory estimation is available using only magnetic field data and rate data. The estimation is performed simultaneously using an Extended Kalman Filter, a well known algorithm used extensively in onboard applications. The magnetic field is measured on a satellite by a magnetometer, an inexpensive and reliable sensor flown on virtually all satellites in low earth orbit. Rate data is provided by a gyro, which can be costly. This system has been developed and successfully tested in a post-processing mode using magnetometer and gyro data from 4 satellites supported by the Flight Dynamics Division at Goddard. In order for this system to be truly low cost, an alternative source for rate data must be utilized. An independent system which estimate spacecraft rate has been successfully developed and tested using only magnetometer data or a combination of magnetometer data and sun sensor data, which is less costly than a gyro. This system also uses an Extended Kalman Filter. Merging the two systems will provide an extremely low cost, autonomous approach to attitude and trajectory estimation. In this work we provide the theoretical background of the combined system. The measurement matrix is developed by combining the measurement matrix of the orbit and attitude estimation EKF with the measurement matrix of the rate estimation EKF, which is composed of a pseudo-measurement which makes the effective measurement a function of the angular velocity. Associated with this is the development of the noise covariance matrix associated with the original measurement combined with the new pseudo-measurement. In addition, the combination of the dynamics from the two systems is presented along with preliminary test results.

  5. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.

    Science.gov (United States)

    Li, Liangping; Zhang, Meijing; Katzenstein, Kurt

    2017-05-23

    The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.

  6. Tracking magma volume recovery at okmok volcano using GPS and an unscented kalman filter

    Science.gov (United States)

    Fournier, T.; Freymueller, Jeffrey T.; Cervelli, Peter

    2009-01-01

    Changes beneath a volcano can be observed through position changes in a GPS network, but distinguishing the source of site motion is not always straightforward. The records of continuous GPS sites provide a favorable data set for tracking magma migration. Dense campaign observations usually provide a better spatial picture of the overall deformation field, at the expense of an episodic temporal record. Combining these observations provides the best of both worlds. A Kalman filter provides a means for integrating discrete and continuous measurements and for interpreting subtle signals. The unscented Kalman filter (UKF) is a nonlinear method for time-dependent observations. We demonstrate the application of this technique to deformation data by applying it to GPS data collected at Okmok volcano. Seven years of GPS observations at Okmok are analyzed using a Mogi source model and the UKF. The deformation source at Okmok is relatively stable at 2.5 km depth below sea level, located beneath the center of the caldera, which means the surface deformation is caused by changes in the strength of the source. During the 7 years of GPS observations more than 0.5 m of uplift has occurred, a majority of that during the time period January 2003 to July 2004. The total volume recovery at Okmok since the last eruption in 1997 is ??60-80%. The UKF allows us to solve simultaneously for the time-dependence of the source strength and for the location without a priori information about the source. ?? 2009 by the American Geophysical Union.

  7. Unscented Kalman filter assimilation of time-lapse self-potential data for monitoring solute transport

    Science.gov (United States)

    Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong

    2017-08-01

    Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.

  8. Kalman Filter Inversion of Regional NOx Emissions based on OMI NO2 Observations

    Science.gov (United States)

    Cohan, D. S.; Tang, W.

    2012-12-01

    Nitrogen oxides (NOx) are crucial precursors of tropospheric ozone and particulate matter. Uncertain emissions inventories for NOx are among the leading causes of uncertainty in photochemical models used to inform air quality management. Emission inventories derived from bottom-up approaches typically serve as the basis for state implementation plans and other regulatory modeling. However, inverse modeling can be used to create top-down estimates of emissions based on observed pollutant levels in order to evaluate or supplement traditional inventories. Here, we apply NO2 column densities observed by the OMI instrument aboard the Aura satellite (OMI Standard Product version 2.0) to estimate top-down NOx emission rates for seven urban and rural regions of east Texas. The CAMx photochemical model with Decoupled Direct Method (DDM) sensitivity analysis is applied to simulate 3-dimensional fields of NO2 concentrations and their sensitivities to NOx emissions from each region, starting from an emissions inventory used in recent Texas ozone attainment planning. Averaging kernels from the OMI retrievals are used to adjust CAMx results to corresponding column densities. Lightning NO emissions are added to the a priori inventory based on National Lightning Detection Network data, which rectifies a portion of the underprediction of NO2 in rural regions. A Kalman Filter inversion is applied to estimate regional emissions scaling factors that yield best agreement between CAMx and OMI results, using an iterative approach until convergence is achieved. Pseudo-data testing demonstrates that the Kalman Filter can rectify known perturbations to a base field within four iterations. Ambient observations of NOx from regulatory monitors and from the Texas Air Quality Study 2006 field campaign are used to evaluate the original and top-down emissions inventories. Both inventories are applied in the CAMx simulations of Texas ozone attainment modeling episodes to evaluate differences in

  9. Ensemble Kalman filter for the reconstruction of the Earth's mantle circulation

    Directory of Open Access Journals (Sweden)

    M. Bocher

    2018-02-01

    Full Text Available Recent advances in mantle convection modeling led to the release of a new generation of convection codes, able to self-consistently generate plate-like tectonics at their surface. Those models physically link mantle dynamics to surface tectonics. Combined with plate tectonic reconstructions, they have the potential to produce a new generation of mantle circulation models that use data assimilation methods and where uncertainties in plate tectonic reconstructions are taken into account. We provided a proof of this concept by applying a suboptimal Kalman filter to the reconstruction of mantle circulation (Bocher et al., 2016. Here, we propose to go one step further and apply the ensemble Kalman filter (EnKF to this problem. The EnKF is a sequential Monte Carlo method particularly adapted to solve high-dimensional data assimilation problems with nonlinear dynamics. We tested the EnKF using synthetic observations consisting of surface velocity and heat flow measurements on a 2-D-spherical annulus model and compared it with the method developed previously. The EnKF performs on average better and is more stable than the former method. Less than 300 ensemble members are sufficient to reconstruct an evolution. We use covariance adaptive inflation and localization to correct for sampling errors. We show that the EnKF results are robust over a wide range of covariance localization parameters. The reconstruction is associated with an estimation of the error, and provides valuable information on where the reconstruction is to be trusted or not.

  10. Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing

    Science.gov (United States)

    Rodriguez, G.; Scheid, R. E., Jr.

    1987-01-01

    This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.

  11. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.

    Science.gov (United States)

    Szczęsna, Agnieszka; Pruszowski, Przemysław

    2016-01-01

    Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.

  12. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    Science.gov (United States)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.

  13. HIGH-PRECISION ATTITUDE ESTIMATION METHOD OF STAR SENSORS AND GYRO BASED ON COMPLEMENTARY FILTER AND UNSCENTED KALMAN FILTER

    Directory of Open Access Journals (Sweden)

    C. Guo

    2017-07-01

    Full Text Available Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite’s attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF and Unscented Kalman Filter (UKF. In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  14. High-Precision Attitude Estimation Method of Star Sensors and Gyro Based on Complementary Filter and Unscented Kalman Filter

    Science.gov (United States)

    Guo, C.; Tong, X.; Liu, S.; Liu, S.; Lu, X.; Chen, P.; Jin, Y.; Xie, H.

    2017-07-01

    Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite's attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF) and Unscented Kalman Filter (UKF). In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  15. Development of integrated approaches for hydrological data assimilation through combination of ensemble Kalman filter and particle filter methods

    Science.gov (United States)

    Fan, Y. R.; Huang, G. H.; Baetz, B. W.; Li, Y. P.; Huang, K.; Chen, X.; Gao, M.

    2017-07-01

    This study improved hydrologic data assimilation through integrating the capabilities of particle filter (PF) and ensemble Kalman filter (EnKF) methods, leading to two integrated data assimilation schemes: the coupled EnKF and PF (CEnPF) and parallelized EnKF and PF (PEnPF) approaches. The applicability and usefulness of CEnPF and PEnPF were demonstrated using a conceptual rainfall-runoff model. The performance of two new developed data assimilation methods and traditional EnKF and PF approaches was tested through a synthetic experiment and two real-world cases with one located in the Jing River basin and one located in the Yangtze River basin. The results show that both PEnPF and CEnPF approaches have more opportunities to provide better results for both deterministic and probabilistic predictions than traditional EnKF and PF approaches. Moreover, the computational time of the two integrated methods is manageable. But the proposed PEnPF may need much more time for some large-scale or time-consuming hydrologic models since it generally needs three times of model runs used by EnKF, PF and CEnPF.

  16. ESTIMATION OF NEURONAL ACTIVITY AND BRAIN DYNAMICS USING A DUAL KALMAN FILTER WITH PHYSIOLOGYCAL BASED LINEAR MODEL

    Directory of Open Access Journals (Sweden)

    Eduardo Giraldo

    2013-06-01

    Full Text Available In this research article a dynamic estimation of neuronal activity and brain dynamics from electroencephalographic (EEG signals is presented using a dual Kalman filter. The dynamic model for brain behavior is evaluated using physiological-based linear models. Filter performance is analyzed for simulated and clinical EEG data, over several noise conditions. As a result a better performance on the solution of the dynamic inverse problem is achieved, in case of time varying parameters compared with the system with fixed parameters and the static case. An evaluation of computational load is performed when predicted dynamic cases, estimated using the Kalman filter, are up to ten times faster than the static case.

  17. A Statistical Investigation of the Sensitivity of Ensemble-Based Kalman Filters to Covariance Filtering

    Science.gov (United States)

    2011-09-01

    several in- dependent, locally stationary processes with simple parametric stationary (or isotropic) covariance func- tions ( Fuentes 2001). Parametric...230, 99–111. ——, and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimi- lations and...Q. Yao, 2003: Nonlinear Time Series: Nonparametric and Parametric Methods. Springer-Verlag, 552 pp. Fuentes , M., 2001: A high frequency kriging

  18. Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

    Directory of Open Access Journals (Sweden)

    Sung-Woo Kim

    2009-03-01

    Full Text Available An Unscented Kalman Filter (UKF for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler`s rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

  19. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.

    Science.gov (United States)

    Madi, Mahmoud K; Karameh, Fadi N

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate

  20. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.

    Directory of Open Access Journals (Sweden)

    Mahmoud K Madi

    Full Text Available Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF. Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP observations, and (ii estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR, process noise structures, and observation sampling intervals (dt. When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more

  1. A Bioinspired Neural Model Based Extended Kalman Filter for Robot SLAM

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2014-01-01

    Full Text Available Robot simultaneous localization and mapping (SLAM problem is a very important and challenging issue in the robotic field. The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the robustness and accuracy of the algorithms. The extended Kalman filter (EKF based method is one of the most popular methods for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.

  2. Variable-State-Dimension Kalman-Based Filter for Orientation Determination Using Inertial and Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2012-06-01

    Full Text Available In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1, and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2. Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately.

  3. Particle velocity estimation based on a two-microphone array and Kalman filter.

    Science.gov (United States)

    Bai, Mingsian R; Juan, Shen-Wei; Chen, Ching-Cheng

    2013-03-01

    A traditional method to measure particle velocity is based on the finite difference (FD) approximation of pressure gradient by using a pair of well matched pressure microphones. This approach is known to be sensitive to sensor noise and mismatch. Recently, a double hot-wire sensor termed Microflown became available in light of micro-electro-mechanical system technology. This sensor eliminates the robustness issue of the conventional FD-based methods. In this paper, an alternative two-microphone approach termed the u-sensor is developed from the perspective of robust adaptive filtering. With two ordinary microphones, the proposed u-sensor does not require novel fabrication technology. In the method, plane wave and spherical wave models are employed in the formulation of a Kalman filter with process and measurement noise taken into account. Both numerical and experimental investigations were undertaken to validate the proposed u-sensor technique. The results have shown that the proposed approach attained better performance than the FD method, and comparable performance to a Microflown sensor.

  4. A Kalman Filter for SINS Self-Alignment Based on Vector Observation

    Science.gov (United States)

    Xu, Xiang; Xu, Xiaosu; Zhang, Tao; Li, Yao; Tong, Jinwu

    2017-01-01

    In this paper, a self-alignment method for strapdown inertial navigation systems based on the q-method is studied. In addition, an improved method based on integrating gravitational apparent motion to form apparent velocity is designed, which can reduce the random noises of the observation vectors. For further analysis, a novel self-alignment method using a Kalman filter based on adaptive filter technology is proposed, which transforms the self-alignment procedure into an attitude estimation using the observation vectors. In the proposed method, a linear psuedo-measurement equation is adopted by employing the transfer method between the quaternion and the observation vectors. Analysis and simulation indicate that the accuracy of the self-alignment is improved. Meanwhile, to improve the convergence rate of the proposed method, a new method based on parameter recognition and a reconstruction algorithm for apparent gravitation is devised, which can reduce the influence of the random noises of the observation vectors. Simulations and turntable tests are carried out, and the results indicate that the proposed method can acquire sound alignment results with lower standard variances, and can obtain higher alignment accuracy and a faster convergence rate. PMID:28146059

  5. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing.

    Science.gov (United States)

    Sabatini, Angelo M

    2006-07-01

    In this paper, a quaternion based extended Kalman filter (EKF) is developed for determining the orientation of a rigid body from the outputs of a sensor which is configured as the integration of a tri-axis gyro and an aiding system mechanized using a tri-axis accelerometer and a tri-axis magnetometer. The suggested applications are for studies in the field of human movement. In the proposed EKF, the quaternion associated with the body rotation is included in the state vector together with the bias of the aiding system sensors. Moreover, in addition to the in-line procedure of sensor bias compensation, the measurement noise covariance matrix is adapted, to guard against the effects which body motion and temporary magnetic disturbance may have on the reliability of measurements of gravity and earth's magnetic field, respectively. By computer simulations and experimental validation with human hand orientation motion signals, improvements in the accuracy of orientation estimates are demonstrated for the proposed EKF, as compared with filter implementations where either the in-line calibration procedure, the adaptive mechanism for weighting the measurements of the aiding system sensors, or both are not implemented.

  6. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    Directory of Open Access Journals (Sweden)

    Doo Yong Choi

    2016-04-01

    Full Text Available Rapid detection of bursts and leaks in water distribution systems (WDSs can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA systems and the establishment of district meter areas (DMAs. Nonetheless, no consideration has been given to how frequently a flow meter measures and transmits data for predicting breaks and leaks in pipes. This paper analyzes the effect of sampling interval when an adaptive Kalman filter is used for detecting bursts in a WDS. A new sampling algorithm is presented that adjusts the sampling interval depending on the normalized residuals of flow after filtering. The proposed algorithm is applied to a virtual sinusoidal flow curve and real DMA flow data obtained from Jeongeup city in South Korea. The simulation results prove that the self-adjusting algorithm for determining the sampling interval is efficient and maintains reasonable accuracy in burst detection. The proposed sampling method has a significant potential for water utilities to build and operate real-time DMA monitoring systems combined with smart customer metering systems.

  7. Rigid Body Inertia Estimation Using Extended Kalman and Savitzky-Golay Filters

    Directory of Open Access Journals (Sweden)

    Donghoon Kim

    2016-01-01

    Full Text Available Inertia properties of rigid body such as ground, aerial, and space vehicles may be changed by several occasions, and this variation of the properties influences the control accuracy of the rigid body. For this reason, accurate inertia properties need to be obtained for precise control. An estimation process is required for both noisy gyro measurements and the time derivative of the gyro measurements. In this paper, an estimation method is proposed for having reliable estimates of inertia properties. First, the Euler equations of motion are reformulated to obtain a regressor matrix. Next, the extended Kalman filter is adopted to reduce the noise effects in gyro angular velocity measurements. Last, the inertia properties are estimated using linear least squares. To achieve reliable and accurate angular accelerations, a Savitzky-Golay filter based on an even number sampled data is utilized. Numerical examples are presented to demonstrate the performance of the proposed algorithm for the case of a space vehicle. The numerical simulation results show that the proposed algorithm provides accurate inertia property estimates in the presence of noisy measurements.

  8. "A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models"

    Science.gov (United States)

    Briseño, Jessica; Herrera, Graciela S.

    2010-05-01

    Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one

  9. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation.

    Science.gov (United States)

    Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente

    2016-08-31

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.

  10. Development of a Kalman Filter in the Gauss-Helmert Model for Reliability Analysis in Orientation Determination with Smartphone Sensors.

    Science.gov (United States)

    Ettlinger, Andreas; Neuner, Hans; Burgess, Thomas

    2018-01-31

    The topic of indoor positioning and indoor navigation by using observations from smartphone sensors is very challenging as the determined trajectories can be subject to significant deviations compared to the route travelled in reality. Especially the calculation of the direction of movement is the critical part of pedestrian positioning approaches such as Pedestrian Dead Reckoning ("PDR"). Due to distinct systematic effects in filtered trajectories, it can be assumed that there are systematic deviations present in the observations from smartphone sensors. This article has two aims: one is to enable the estimation of partial redundancies for each observation as well as for observation groups. Partial redundancies are a measure for the reliability indicating how well systematic deviations can be detected in single observations used in PDR. The second aim is to analyze the behavior of partial redundancy by modifying the stochastic and functional model of the Kalman filter. The equations relating the observations to the orientation are condition equations, which do not exhibit the typical structure of the Gauss-Markov model ("GMM"), wherein the observations are linear and can be formulated as functions of the states. To calculate and analyze the partial redundancy of the observations from smartphone-sensors used in PDR, the system equation and the measurement equation of a Kalman filter as well as the redundancy matrix need to be derived in the Gauss-Helmert model ("GHM"). These derivations are introduced in this article and lead to a novel Kalman filter structure based on condition equations, enabling reliability assessment of each observation.

  11. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters.

    Science.gov (United States)

    Menegaldo, Luciano L

    2017-12-01

    State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.

  12. Study of the Jacobian of an extended Kalman filter for soil analysis in SURFEXv5

    Directory of Open Access Journals (Sweden)

    A. Duerinckx

    2015-03-01

    Full Text Available An externalised surface scheme like SURFEX allows computationally cheap offline runs. This is a major advantage for surface assimilation techniques such as the extended Kalman filter (EKF, where the offline runs allow a cheaper numerical estimation of the observation operator Jacobian. In the recent past an EKF has been developed within SURFEX for the initialisation of soil water content and soil temperature based on screen-level temperature and relative humidity observations. In this paper we make a comparison of the Jacobian calculated with offline SURFEX runs and with runs coupled to the atmospheric ALARO model. Comparisons are made with respect to spatial structure and average value of the Jacobian, gain values and increments. We determine the optimal perturbation size of the Jacobian for the offline and coupled approaches and compare the linearity of the Jacobian for these cases. Results show that the offline Jacobian approach gives similar results to the coupled approach and that it allows for smaller perturbation sizes that better approximate this linearity assumption. We document a new case of non-linearities that can hamper this linearity assumption and cause spurious 2Δ t oscillations in small parts of the domain for the coupled as well as offline runs. While these oscillations do not have a detrimental effect on the model run, they can introduce some noise in the Jacobian at the affected locations. The oscillations influence both the surface fluxes and the screen-level variables. The oscillations occur in the late afternoon in summer when a stable boundary layer starts to form near the surface. We propose a filter to remove the oscillations and show that this filter works accordingly.

  13. Estimation and correction of different flavors of surface observation biases in ensemble Kalman filter

    Science.gov (United States)

    Lorente-Plazas, Raquel; Hacker, Josua P.; Collins, Nancy; Lee, Jared A.

    2017-04-01

    The impact of assimilating surface observations has been shown in several publications, for improving weather prediction inside of the boundary layer as well as the flow aloft. However, the assimilation of surface observations is often far from optimal due to the presence of both model and observation biases. The sources of these biases can be diverse: an instrumental offset, errors associated to the comparison of point-based observations and grid-cell average, etc. To overcome this challenge, a method was developed using the ensemble Kalman filter. The approach consists on representing each observation bias as a parameter. These bias parameters are added to the forward operator and they extend the state vector. As opposed to the observation bias estimation approaches most common in operational systems (e.g. for satellite radiances), the state vector and parameters are simultaneously updated by applying the Kalman filter equations to the augmented state. The method to estimate and correct the observation bias is evaluated using observing system simulation experiments (OSSEs) with the Weather Research and Forecasting (WRF) model. OSSEs are constructed for the conventional observation network including radiosondes, aircraft observations, atmospheric motion vectors, and surface observations. Three different kinds of biases are added to 2-meter temperature for synthetic METARs. From the simplest to more sophisticated, imposed biases are: (1) a spatially invariant bias, (2) a spatially varying bias proportional to topographic height differences between the model and the observations, and (3) bias that is proportional to the temperature. The target region characterized by complex terrain is the western U.S. on a domain with 30-km grid spacing. Observations are assimilated every 3 hours using an 80-member ensemble during September 2012. Results demonstrate that the approach is able to estimate and correct the bias when it is spatially invariant (experiment 1). More

  14. A simpler formulation of forecast sensitivity to observations: application to ensemble Kalman filters

    Directory of Open Access Journals (Sweden)

    Eugenia Kalnay

    2012-10-01

    Full Text Available We introduce a new formulation of the ensemble forecast sensitivity developed by Liu and Kalnay with a small correction from Li et al. The new formulation, like the original one, is tested on the simple Lorenz 40-variable model. We find that, except for short-range forecasts, the use of localization in the analysis, necessary in ensemble Kalman filter (EnKF when the number of ensemble members is much smaller than the model's degrees of freedom, has a negative impact on the accuracy of the sensitivity. This is because the impact of an observation during the analysis (i.e. the analysis increment associated with the observation is transported by the flow during the integration, and this is ignored when the ensemble sensitivity uses a fixed localization. To address this problem, we introduce two approaches that could be adapted to evolve the localization during the estimation of forecast sensitivity to the observations. The first one estimates the non-linear evolution of the initial localization but is computationally expensive. The second one moves the localization with a constant estimation of the group velocity. Both methods succeed in improving the ensemble estimations for longer forecasts.Overall, the adjoint and ensemble forecast impact estimations give similarly accurate results for short-range forecasts, except that the new formulation gives an estimation of the fraction of observations that improve the forecast closer to that obtained by data denial (Observing System Experiments. For longer-range forecasts, they both deteriorate for different reasons. The adjoint sensitivity becomes noisy due to the forecast non-linearities not captured in the linear tangent model and the adjoint. The ensemble sensitivity becomes less accurate due to the use of a fixed localization, a problem that could be ameliorated with an evolving adaptive localization. Advantages of the new formulation include it being simpler than the original formulation and

  15. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  16. Fast, accurate, and robust frequency offset estimation based on modified adaptive Kalman filter in coherent optical communication system

    Science.gov (United States)

    Yang, Yanfu; Xiang, Qian; Zhang, Qun; Zhou, Zhongqing; Jiang, Wen; He, Qianwen; Yao, Yong

    2017-09-01

    We propose a joint estimation scheme for fast, accurate, and robust frequency offset (FO) estimation along with phase estimation based on modified adaptive Kalman filter (MAKF). The scheme consists of three key modules: extend Kalman filter (EKF), lock detector, and FO cycle slip recovery. The EKF module estimates time-varying phase induced by both FO and laser phase noise. The lock detector module makes decision between acquisition mode and tracking mode and consequently sets the EKF tuning parameter in an adaptive manner. The third module can detect possible cycle slip in the case of large FO and make proper correction. Based on the simulation and experimental results, the proposed MAKF has shown excellent estimation performance featuring high accuracy, fast convergence, as well as the capability of cycle slip recovery.

  17. A Kalman filtering approach to code positioning for GNSS using Cayley-Menger determinants in distance geometry

    Science.gov (United States)

    Tabatabaee, Mohammad Hadi; Ravani, Bahram

    2018-01-01

    The common approach for code-based point positioning using GNSS involves linearizing the observation equations about an estimated position and solving the equations iteratively in a least squares fashion. The solution provides estimates for the receiver coordinates and clock error. In this paper, a method based on distance geometry and Kalman filtering is presented. Distance geometry is used to provide a closed form solution for the receiver clock bias which is then used to correct the pseudorange observations before proceeding to locate the receiver coordinates. This two step method guarantees a solution for when a minimum of four satellites are available and facilitates direct utilization of a simple Kalman filter without any need for linearization. Results indicate that the method presented can provide improved estimates under poor satellite coverage as compared to the conventional iterative methods while performing similar to the conventional methods when there is good coverage.

  18. Estimation of State of Charge for Lithium-Ion Battery Based on Finite Difference Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Ze Cheng

    2014-01-01

    Full Text Available An accurate estimation of the state of charge (SOC of the battery is of great significance for safe and efficient energy utilization of electric vehicles. Given the nonlinear dynamic system of the lithium-ion battery, the parameters of the second-order RC equivalent circuit model were calibrated and optimized using a nonlinear least squares algorithm in the Simulink parameter estimation toolbox. A comparison was made between this finite difference extended Kalman filter (FDEKF and the standard extended Kalman filter in the SOC estimation. The results show that the model can essentially predict the dynamic voltage behavior of the lithium-ion battery, and the FDEKF algorithm can maintain good accuracy in the estimation process and has strong robustness against modeling error.

  19. Kalman-Filter-Based State Estimation for System Information Exchange in a Multi-bus Islanded Microgrid

    DEFF Research Database (Denmark)

    Wang, Yanbo; Tian, Yanjun; Wang, Xiongfei

    2014-01-01

    with consideration of voltage performance and load characteristic is developed. Then, a Kalman-Filter-Based state estimation method is proposed to estimate system information instead of using communication facilities, where the estimator of each DG unit can dynamically obtain information of all the DG units as well...... as network voltages just by local voltage and current itself. The proposed estimation method is able to provide accurate states information to support system operation without any communication facilities. Simulation and experimental results are given for validating the proposed small signal model and state......State monitoring and analysis of distribution systems has become an urgent issue, and state estimation serves as an important tool to deal with it. In this paper, a Kalman-Filter-based state estimation method for a multi-bus islanded microgrid is presented. First, an overall small signal model...

  20. Estimation of State of Charge for Lithium-Ion Battery Based on Finite Difference Extended Kalman Filter

    OpenAIRE

    Ze Cheng; Jikao Lv; Yanli Liu; Zhihao Yan

    2014-01-01

    An accurate estimation of the state of charge (SOC) of the battery is of great significance for safe and efficient energy utilization of electric vehicles. Given the nonlinear dynamic system of the lithium-ion battery, the parameters of the second-order RC equivalent circuit model were calibrated and optimized using a nonlinear least squares algorithm in the Simulink parameter estimation toolbox. A comparison was made between this finite difference extended Kalman filter (FDEKF) and the stand...