WorldWideScience

Sample records for enhanced h2ax phosphorylation

  1. Histone H2AX phosphorylation is associated with most meiotic events in grasshopper.

    Science.gov (United States)

    Cabrero, J; Teruel, M; Carmona, F D; Camacho, J P M

    2007-01-01

    It is widely accepted that the H2AX histone in its phosphorylated form (gamma-H2AX) is related to the repair of DNA double-strand breaks (DSBs). In several organisms, gamma-H2AX presence has been demonstrated in meiotic processes such as recombination and sex chromosome inactivation during prophase I (from leptotene to pachytene). To test whether gamma-H2AX is present beyond pachytene, we have analysed the complete sequence of changes in H2AX phosphorylation during meiosis in grasshopper, a model organism for meiotic studies at the cytological level. We show the presence of phosphorylated H2AX during most of meiosis, with the exception only of diplotene and the end of each meiotic division. During the first meiotic division, gamma-H2AX is associated with i) recombination, as deduced from its presence in leptotene-zygotene over all chromosome length, ii) X chromosome inactivation, since at pachytene gamma-H2AX is present in the X chromosome only, and iii) chromosome segregation, as deduced from gamma-H2AX presence in centromere regions at first metaphase-anaphase. During second meiotic division, gamma-H2AX was very abundant at most chromosome lengths from metaphase to telophase, suggesting its possible association with the maintenance of chromosome condensation and segregation. Copyright 2007 S. Karger AG, Basel.

  2. Phosphorylation of Histone H2AX in the Mouse Brain from Development to Senescence

    Directory of Open Access Journals (Sweden)

    Serena Barral

    2014-01-01

    Full Text Available Phosphorylation of the histone H2AXH2AX form is an early response to DNA damage and a marker of aging and disease in several cells and tissues outside the nervous system. Little is known about in vivo phosphorylation of H2AX in neurons, although it was suggested that γH2AX is an early marker of neuronal endangerment thus opening the possibility to target it as a neuroprotective strategy. After experimental labeling of DNA-synthesizing cells with 5-bromo-2-deoxyuridine (BrdU, we studied the brain occurrence of γH2AX in developing, postnatal, adult and senescent (2 years mice by light and electron microscopic immunocytochemistry and Western blotting. Focal and/or diffuse γH2AX immunostaining appears in interkinetic nuclei, mitotic chromosomes, and apoptotic nuclei. Immunoreactivity is mainly associated with neurogenetic areas, i.e., the subventricular zone (SVZ of telencephalon, the cerebellar cortex, and, albeit to a much lesser extent, the subgranular zone of the hippocampal dentate gyrus. In addition, γH2AX is highly expressed in the adult and senescent cerebral cortex, particularly the piriform cortex. Double labeling experiments demonstrate that γH2AX in neurogenetic brain areas is temporally and functionally related to proliferation and apoptosis of neuronal precursors, i.e., the type C transit amplifying cells (SVZ and the granule cell precursors (cerebellum. Conversely, γH2AX-immunoreactive cortical neurons incorporating the S phase-label BrdU do not express the proliferation marker phosphorylated histone H3, indicating that these postmitotic cells undergo a significant DNA damage response. Our study paves the way for a better comprehension of the role of H2AX phosphorylation in the normal brain, and offers additional data to design novel strategies for the protection of neuronal precursors and mature neurons in central nervous system (CNS degenerative diseases.

  3. H2AX phosphorylation and DNA damage kinase activity are dispensable for herpes simplex virus replication.

    Science.gov (United States)

    Botting, Carolyn; Lu, Xu; Triezenberg, Steven J

    2016-01-27

    Herpes simplex virus type 1 (HSV-1) can establish both lytic and latent infections in humans. The phosphorylation of histone H2AX, a common marker of DNA damage, during lytic infection by HSV-1 is well established. However, the role(s) of H2AX phosphorylation in lytic infection remain unclear. Following infection of human foreskin fibroblasts by HSV-1 or HSV-2, we assayed the phosphorylation of H2AX in the presence of inhibitors of transcription, translation, or viral DNA replication, or in the presence of inhibitors of ATM and ATR kinases (KU-55933 and VE-821, respectively). We also assayed viral replication in fibroblasts in the presence of the kinase inhibitors or siRNAs specific for ATM and ATR, as well as in cell lines deficient for either ATR or ATM. The expression of viral immediate-early and early proteins (including the viral DNA polymerase), but not viral DNA replication or late protein expression, were required for H2AX phosphorylation following HSV-1 infection. Inhibition of ATM kinase activity prevented HSV-stimulated H2AX phosphorylation but had only a minor effect on DNA replication and virus yield in HFF cells. These results differ from previous reports of a dramatic reduction in viral yield following chemical inhibition of ATM in oral keratinocytes or following infection of ATM(-/-) cells. Inhibition of the closely related kinase ATR (whether by chemical inhibitor or siRNA disruption) had no effect on H2AX phosphorylation and reduced viral DNA replication only moderately. During infection by HSV-2, H2AX phosphorylation was similarly dispensable but was dependent on both ATM activity and viral DNA replication. H2AX phosphorylation represents a cell type-specific and virus type-specific host response to HSV infection with little impact on viral infection.

  4. BAZ1B is dispensable for H2AX phosphorylation on Tyrosine 142 during spermatogenesis

    Directory of Open Access Journals (Sweden)

    Tyler J. Broering

    2015-07-01

    Full Text Available Meiosis is precisely regulated by the factors involved in DNA damage response in somatic cells. Among them, phosphorylation of H2AX on Serine 139 (γH2AX is an essential signal for the silencing of unsynapsed sex chromosomes during male meiosis. However, it remains unknown how adjacent H2AX phosphorylation on Tyrosine 142 (pTyr142 is regulated in meiosis. Here we investigate the meiotic functions of BAZ1B (WSTF, the only known Tyr142 kinase in somatic cells, using mice possessing a conditional deletion of BAZ1B. Although BAZ1B deletion causes ectopic γH2AX signals on synapsed autosomes during the early pachytene stage, BAZ1B is dispensable for fertility and critical events during spermatogenesis. BAZ1B deletion does not alter events on unsynapsed axes and pericentric heterochromatin formation. Furthermore, BAZ1B is dispensable for localization of the ATP-dependent chromatin remodeling protein SMARCA5 (SNF2h during spermatogenesis despite the complex formation between BAZ1B and SMARCA5, known as the WICH complex, in somatic cells. Notably, pTyr142 is regulated independently of BAZ1B and is dephosphorylated on the sex chromosomes during meiosis in contrast with the presence of adjacent γH2AX. Dephosphorylation of pTyr142 is regulated by MDC1, a binding partner of γH2AX. These results reveal the distinct regulation of two adjacent phosphorylation sites of H2AX during meiosis, and suggest that another kinase mediates Tyr142 phosphorylation.

  5. Phosphorylated H2AX in parthenogenetically activated, in vitro fertilized and cloned bovine embryos.

    Science.gov (United States)

    Pereira, A F; Melo, L M; Freitas, V J F; Salamone, D F

    2015-08-01

    In vitro embryo production methods induce DNA damage in the embryos. In response to these injuries, histone H2AX is phosphorylatedH2AX) and forms foci at the sites of DNA breaks to recruit repair proteins. In this work, we quantified the DNA damage in bovine embryos undergoing parthenogenetic activation (PA), in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) by measuring γH2AX accumulation at different developmental stages: 1-cell, 2-cell and blastocyst. At the 1-cell stage, IVF embryos exhibited a greater number of γH2AX foci (606.1 ± 103.2) and greater area of γH2AX staining (12923.6 ± 3214.1) than did PA and SCNT embryos. No differences at the 2-cell stage were observed among embryo types. Although PA, IVF and SCNT were associated with different blastocyst formation rates (31.1%, 19.7% and 8.3%, P DNA damage was comparable among those embryos developing to the blastocyst stage among different methods for in vitro embryo production. While IVF resulted in increased damage at the 1-cell embryo stage, no difference was observed between PA and SCNT embryos at any developmental stage. The decrease in the number of double-stranded breaks at the blastocyst stage seems to indicate that DNA repair mechanisms are functional during embryo development.

  6. Mechanism of elimination of phosphorylated histone H2AX from chromatin after repair of DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Svetlova, M.P., E-mail: svetlma@mail.ru [Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg (Russian Federation); Solovjeva, L.V.; Tomilin, N.V. [Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg (Russian Federation)

    2010-03-01

    Covalent modifications of histones in chromatin play an important role in regulation of eukaryotic gene expression and DNA repair. Formation of double-strand breaks (DSBs) in DNA is followed by the rapid local phosphorylation of the C-terminal serine in the replacement histone H2AX in megabase chromatin domains around DSBs and formation of discrete nuclear foci called {gamma}H2AX foci. This epigenetic modification of chromatin represents the 'histone code' for DNA damage signaling and repair and has been extensively studied during last decade. It is known that after DSB rejoining {gamma}H2AX foci are eliminated from the nucleus, but molecular mechanism of this elimination remains to be established. However, {gamma}H2AX elimination can serve as a useful marker of DSB repair in normal cells and tissues. In this paper the available data on kinetics and possible mechanisms of {gamma}H2AX elimination are reviewed.

  7. H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in chronic myelogenous leukemia cells induced by imatinib.

    Science.gov (United States)

    Dong, Yaqiong; Xiong, Min; Duan, Lianning; Liu, Ze; Niu, Tianhui; Luo, Yuan; Wu, Xinpin; Xu, Chengshan; Lu, Chengrong

    2014-08-01

    Increasing evidence suggests that histone H2AX plays a critical role in regulation of tumor cell apoptosis and acts as a novel human tumor suppressor protein. However, the action of H2AX in chronic myelogenous leukemia (CML) cells is unknown. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. Here, we report that H2AX was involved in apoptosis of CML cells. Overexpression of H2AX increased apoptotic sensitivity of CML cells (K562) induced by imatinib. However, overexpression of Ser139-mutated H2AX (blocking phosphorylation) decreased sensitivity of K562 cells to apoptosis. Similarly, knockdown of H2AX made K562 cells resistant to apoptotic induction. These results revealed that the function of H2AX involved in apoptosis is strictly related to its phosphorylation (Ser139). Our data further indicated that imatinib may stimulate mitogen-activated protein kinase (MAPK) family member p38, and H2AX phosphorylation followed a similar time course, suggesting a parallel response. H2AX phosphorylation can be blocked by p38 siRNA or its inhibitor. These data demonstrated that H2AX phosphorylation was regulated by p38 MAPK pathway in K562 cells. However, the p38 MAPK downstream, mitogen- and stress-activated protein kinase-1 and -2, which phosphorylated histone H3, were not required for H2AX phosphorylation during apoptosis. Finally, we provided epigenetic evidence that H2AX phosphorylation regulated apoptosis-related gene Bim expression. Blocking of H2AX phosphorylation inhibited Bim gene expression. Taken together, these data demonstrated that H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in CML cells induced by imatinib.

  8. ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke

    Directory of Open Access Journals (Sweden)

    Traganos Frank

    2007-06-01

    Full Text Available Abstract Background In response to DNA damage or structural alterations of chromatin, histone H2AX may be phosphorylated on Ser139 by phosphoinositide 3-kinase related protein kinases (PIKKs such as ataxia telangiectasia mutated (ATM, ATM-and Rad-3 related (ATR kinase, or by DNA dependent protein kinase (DNA-PKcs. When DNA damage primarily involves formation of DNA double-strand breaks (DSBs, H2AX is preferentially phosphorylated by ATM rather than by the other PIKKs. We have recently reported that brief exposure of human pulmonary adenocarcinoma A549 cells or normal human bronchial epithelial cells (NHBE to cigarette smoke (CS induced phosphorylation of H2AX. Results We report here that H2AX phosphorylation in A549 cells induced by CS was accompanied by activation of ATM, as revealed by ATM phosphorylation on Ser1981 (ATM-S1981P detected immunocytochemically and by Western blotting. No cell cycle-phase specific differences in kinetics of ATM activation and H2AX phosphorylation were observed. When cells were exposed to CS from cigarettes with different tobacco and filter combinations, the expression levels of ATM-S1981P correlated well with the increase in expression of phosphorylated H2AXH2AX (R = 0.89. In addition, we note that while CS-induced γH2AX expression was localized within discrete foci, the activated ATM was distributed throughout the nucleoplasm. Conclusion These data implicate ATM as the PIKK that phosphorylates H2AX in response to DNA damage caused by CS. Based on current understanding of ATM activation, expression and localization, these data would suggest that, in addition to inducing potentially carcinogenic DSB lesions, CS may also trigger other types of DNA lesions and cause chromatin alterations. As checkpoint kinase (Chk 1, Chk2 and the p53 tumor suppressor gene are known to be phosphorylated by ATM, the present data indicate that exposure to CS may lead to their phosphorylation, with the downstream consequences

  9. Phosphorylated fraction of H2AX as a measurement for DNA damage in cancer cells and potential applications of a novel assay.

    Directory of Open Access Journals (Sweden)

    Jiuping Ji

    Full Text Available Phosphorylated H2AX (γ-H2AX is a sensitive marker for DNA double-strand breaks (DSBs, but the variability of H2AX expression in different cell and tissue types makes it difficult to interpret the meaning of the γ-H2AX level. Furthermore, the assays commonly used for γ-H2AX detection utilize laborious and low-throughput microscopy-based methods. We describe here an ELISA assay that measures both phosphorylated H2AX and total H2AX absolute amounts to determine the percentage of γ-H2AX, providing a normalized value representative of the amount of DNA damage. We demonstrate the utility of the assay to measure DSBs introduced by either ionizing radiation or DNA-damaging agents in cultured cells and in xenograft models. Furthermore, utilizing the NCI-60 cancer cell line panel, we show a correlation between the basal fraction of γ-H2AX and cellular mutation levels. This additional application highlights the ability of the assay to measure γ-H2AX levels in many extracts at once, making it possible to correlate findings with other cellular characteristics. Overall, the γ-H2AX ELISA represents a novel approach to quantifying DNA damage, which may lead to a better understanding of mutagenic pathways in cancer and provide a useful biomarker for monitoring the effectiveness of DNA-damaging anticancer agents.

  10. Loss of H3K9me3 Correlates with ATM Activation and Histone H2AX Phosphorylation Deficiencies in Hutchinson-Gilford Progeria Syndrome.

    Directory of Open Access Journals (Sweden)

    Haoyue Zhang

    Full Text Available Compelling evidence suggests that defective DNA damage response (DDR plays a key role in the premature aging phenotypes in Hutchinson-Gilford progeria syndrome (HGPS. Studies document widespread alterations in histone modifications in HGPS cells, especially, the global loss of histone H3 trimethylated on lysine 9 (H3K9me3. In this study, we explore the potential connection(s between H3K9me3 loss and the impaired DDR in HGPS. When cells are exposed to a DNA-damaging agent Doxorubicin (Dox, double strand breaks (DSBs are generated that result in the phosphorylation of histone H2A variant H2AX (gammaH2AX within an hour. We find that the intensities of gammaH2AX foci appear significantly weaker in the G0/G1 phase HGPS cells compared to control cells. This reduction is associated with a delay in the recruitment of essential DDR factors. We further demonstrate that ataxia-telangiectasia mutated (ATM is responsible for the amplification of gammaH2AX signals at DSBs during G0/G1 phase, and its activation is inhibited in the HGPS cells that display significant loss of H3K9me3. Moreover, methylene (MB blue treatment, which is known to save heterochromatin loss in HGPS, restores H3K9me3, stimulates ATM activity, increases gammaH2AX signals and rescues deficient DDR. In summary, this study demonstrates an early DDR defect of attenuated gammaH2AX signals in G0/G1 phase HGPS cells and provides a plausible connection between H3K9me3 loss and DDR deficiency.

  11. Exposure of insect cells to ionising radiation in vivo induces persistent phosphorylation of a H2AX homologue (H2AvB).

    Science.gov (United States)

    Siddiqui, Mohammad S; Filomeni, Erika; François, Maxime; Collins, Samuel R; Cooper, Tamara; Glatz, Richard V; Taylor, Phillip W; Fenech, Michael; Leifert, Wayne R

    2013-09-01

    The response of eukaryotic cells to ionising radiation (IR)-induced double-strand DNA breaks is highly conserved and involves a DNA repair mechanism characterised by the early phosphorylation of histone protein H2AX (producing the active form γH2AX). Although the expression of an induced γH2AX variant has been detected in Drosophila melanogaster, the expression and radiation response of a γH2AX homologue has not been reported in economically important fruit flies. We use Bactrocera tryoni (Diptera: Tephritidae, Queensland fruit fly or 'Q-fly') to investigate this response with a view to developing molecular assays to detect/quantify exposure of fruit flies to IR and consequent DNA damage. Deep sequencing confirmed the presence of a H2AX homologue that we have termed H2AvB (i.e. variant Bactrocera) and has an identical sequence to a histone reported from the human disease vector Glossina morsitans. A linear dose-response of γH2AvB (0-400 Gy IR) was observed in whole Q-fly pupal lysates 24h post-IR and was detected at doses as low as 20 Gy. γH2AvB signal peaked at ~20min after IR exposure and at 24h post-IR the signal remained elevated but declined significantly by 5 days. Persistent and dose-dependent γH2AvB signal could be detected and quantified either by western blot or by laser scanning cytometry up to 17 days post-IR exposure in histone extracts or isolated nuclei from adult Q-flies (irradiated as pupae). We conclude that IR exposure in Q-fly leads to persistent γH2AvB signals (over a period of days) that can easily be detected by western blot or quantitative immunofluorescence techniques. These approaches have potential as the basis for assays for detection and quantification of prior IR exposure in pest fruit flies.

  12. A quasi-quantitative dual multiplexed immunoblot method to simultaneously analyze ATM and H2AX Phosphorylation in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Bakkenist, Christopher J; Czambel, R Kenneth; Hershberger, Pamela A; Tawbi, Hussein; Beumer, Jan H; Schmitz, John C

    2015-01-01

    Pharmacologic inhibition of DNA repair may increase the efficacy of many cytotoxic cancer agents. Inhibitors of DNA repair enzymes including APE1, ATM, ATR, DNA-PK and PARP have been developed and the PARP inhibitor olaparib is the first-in-class approved in Europe and the USA for the treatment of advanced BRCA-mutated ovarian cancer. Sensitive pharmacodynamic (PD) biomarkers are needed to further evaluate the efficacy of inhibitors of DNA repair enzymes in clinical trials. ATM is a protein kinase that mediates cell-cycle checkpoint activation and DNA double-strand break repair. ATM kinase activation at DNA double-strand breaks (DSBs) is associated with intermolecular autophosphorylation on serine-1981. Exquisite sensitivity and high stoichiometry as well as facile extraction suggest that ATM serine-1981 phosphorylation may be a highly dynamic PD biomarker for both ATM kinase inhibitors and radiation- and chemotherapy-induced DSBs. Here we report the pre-clinical analytical validation and fit-for-purpose biomarker method validation of a quasi-quantitative dual multiplexed immunoblot method to simultaneously analyze ATM and H2AX phosphorylation in human peripheral blood mononuclear cells (PBMCs). We explore the dynamics of these phosphorylations in PBMCs exposed to chemotherapeutic agents and DNA repair inhibitors in vitro, and show that ATM serine-1981 phosphorylation is increased in PBMCs in sarcoma patients treated with DNA damaging chemotherapy.

  13. Phosphorylation of H2AX histones in response to double-strand breaks and induction of premature chromatin condensation in hydroxyurea-treated root meristem cells of Raphanus sativus, Vicia faba, and Allium porrum.

    Science.gov (United States)

    Rybaczek, Dorota; Maszewski, Janusz

    2007-01-01

    Histone H2A variant H2AX is rapidly phosphorylated on the induction of DNA double-strand breaks by ionizing radiation and hydroxyurea-mediated replication arrest, resulting in the formation of gamma-H2AX foci along megabase chromatin domains nearby the sites of incurred DNA damage. In an attempt to establish a relationship between species-specific nuclear architecture and H2AX phosphorylation in S/G(2) phase-arrested root meristem cells, immunocytochemical comparisons using an antibody raised against human gamma-H2AX were made among three plants differing with respect to DNA contents: Allium porrum, representing a reticulate type of DNA package, Vicia faba, having semireticulate cell nuclei, and Raphanus sativus, characterised by a chromocentric type of chromatin. Another approach was aimed at determining possible correlations between the extent of hydroxyurea-induced phosphorylation of H2AX histones and the quantities of root meristem cells induced by caffeine to enter aberrant mitotic division (premature chromosome condensation). It was concluded that the higher-order structure of chromatin may contribute to the accessibility of molecular factors engaged in the recognition and repair of genetic lesions. Consequently, in contrast to A. porrum and V. faba, a diffuse chromatin in chromocentric cell nuclei of R. sativus may become more vulnerable both to generate DNA double-strand breaks and to recruit molecular elements needed to arrange the cell cycle checkpoint functions, and thus, more resistant to factors which allow the cells to enter premature chromosome condensation spontaneously. On the other hand, however, caffeine-mediated overriding of the S-M checkpoint control system resulted in the typical appearance of premature chromosome condensation, irrespective of the genomic content of DNA.

  14. Activation of H2AX and ATM in varicella-zoster virus (VZV)-infected cells is associated with expression of specific VZV genes.

    Science.gov (United States)

    Yamamoto, Takenobu; Ali, Mir A; Liu, XueQiao; Cohen, Jeffrey I

    2014-03-01

    Mammalian cells activate DNA damage response pathways in response to virus infections. Activation of these pathways can enhance replication of many viruses, including herpesviruses. Activation of cellular ATM results in phosphorylation of H2AX and recruits proteins to sites of DNA damage. We found that varicella-zoster (VZV) infected cells had elevated levels of phosphorylated H2AX and phosphorylated ATM and that these levels increased in cells infected with VZV deleted for ORF61 or ORF63, but not deleted for ORF67. Expression of VZV ORF61, ORF62, or ORF63 alone did not result in phosphorylation of H2AX. While BGLF4, the Epstein-Barr virus homolog of VZV ORF47 protein kinase, phosphorylates H2AX and ATM, neither VZV ORF47 nor ORF66 protein kinase phosphorylated H2AX or ATM. Cells lacking ATM had no reduction in VZV replication. Thus, VZV induces phosphorylation of H2AX and ATM and this effect is associated with the presence of specific VZV genes in virus-infected cells. Published by Elsevier Inc.

  15. Double strand break repair functions of histone H2AX

    Energy Technology Data Exchange (ETDEWEB)

    Scully, Ralph, E-mail: rscully@bidmc.harvard.edu; Xie, Anyong

    2013-10-15

    Chromosomal double strand breaks provoke an extensive reaction in neighboring chromatin, characterized by phosphorylation of histone H2AX on serine 139 of its C-terminal tail (to form “γH2AX”). The γH2AX response contributes to the repair of double strand breaks encountered in a variety of different contexts, including those induced by ionizing radiation, physiologically programmed breaks that characterize normal immune cell development and the pathological exposure of DNA ends triggered by telomere dysfunction. γH2AX also participates in the evolutionarily conserved process of sister chromatid recombination, a homologous recombination pathway involved in the suppression of genomic instability during DNA replication and directly implicated in tumor suppression. At a biochemical level, the γH2AX response provides a compelling example of how the “histone code” is adapted to the regulation of double strand break repair. Here, we review progress in research aimed at understanding how γH2AX contributes to double strand break repair in mammalian cells.

  16. γ-H2AX induced by linear alkylbenzene sulfonates is due to deoxyribonuclease-1 translocation to the nucleus via actin disruption

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoxu; Toyooka, Tatsushi; Kubota, Toru; Yang, Guang; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2015-07-15

    Graphical abstract: - Highlights: • Non-genotoxic linear alkylbenzene sulfonates (LAS) generated γ-H2AX. • The γ-H2AX was not induced through direct LAS-induced DNA damage. • LAS weakened interactions between actin and DNase I. • Released DNase I translocated to nucleus and broke DNA strands, generating γ-H2AX. • This is a novel pathway for chemically induced γ-H2AX. - Abstract: Phosphorylation of histone H2AX (γ-H2AX) occurs following formation of DNA double strand breaks (DSBs). Other types of DNA damage also generate DSBs through DNA replication and repair, leading to the production of γ-H2AX. In the present study, we demonstrated that linear alkylbenzene sulfonates (LAS), the most widely used and non-genotoxic anionic surfactants, could generate γ-H2AX via a novel pathway. Breast adenocarcinoma MCF-7 cells were treated with five kinds of LAS with alkyl chains ranging from 10 to 14 carbon units (C{sub 10}–C{sub 14}LAS). The generation of DSBs and subsequent production of γ-H2AX increased in a manner that depended on the number of carbon units in LAS. γ-H2AX could also be generated with non-cytotoxic doses of LAS and was independent of the cell cycle, indicating the non-apoptotic and DNA replication-independent formation of DSBs. The generation of γ-H2AX could be attenuated by EGTA and ZnCl{sub 2}, deoxyribonuclease-1 (DNase I) inhibitors, as well as by the knockdown of DNase I. LAS weakened the interaction between DNase I and actin, and the enhanced release of DNase I was dependent on the number of carbon units in LAS. DNase I released by the LAS treatment translocated to the nucleus, in which DNase I attacked DNA and generated γ-H2AX. These results suggested that the LAS-induced generation of γ-H2AX could be attributed to the translocation of DNase I to the nucleus through the disruption of actin, and not to LAS-induced DNA damage.

  17. ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient γH2AX Foci Formation

    Directory of Open Access Journals (Sweden)

    Yuko Atsumi

    2015-12-01

    Full Text Available In response to DNA double-strand breaks (DSBs, H2AX is rapidly phosphorylated at Ser139 to promote DSB repair. Here we show that H2AX is rapidly stabilized in response to DSBs to efficiently generate γH2AX foci. This mechanism operated even in quiescent cells that barely expressed H2AX. H2AX stabilization resulted from the inhibition of proteasome-mediated degradation. Synthesized H2AX ordinarily underwent degradation through poly-ubiquitination mediated by the E3 ligase HUWE1; however, H2AX ubiquitination was transiently halted upon DSB formation. Such rapid H2AX stabilization by DSBs was associated with chromatin incorporation of H2AX and halting of its poly-ubiquitination mediated by the ATM kinase, the sirtuin protein SIRT6, and the chromatin remodeler SNF2H. H2AX Ser139, the ATM phosphorylation site, was essential for H2AX stabilization upon DSB formation. Our results reveal a pathway controlled by ATM, SIRT6, and SNF2H to block HUWE1, which stabilizes H2AX and induces its incorporation into chromatin only when cells are damaged.

  18. Characteristics of {gamma}-H2AX foci at DNA double-strand breaks sites

    Energy Technology Data Exchange (ETDEWEB)

    Pilch, D.R.; Sedelnikova, O.A.; Redon, C. [National Cancer Institute, National Institutes of Health, Lab. of Molecular Pharmacology, Bethesda, Maryland (United States); Celeste, A.; Nussenzweig, A. [National Cancer Institute, National Institutes of Health, Experimental Immunology Branch, Bethesda, Maryland (United States); Bonner, W.M. [National Cancer Institute, National Institutes of Health, Lab. of Molecular Pharmacology, Bethesda, Maryland (United States)

    2003-06-01

    Phosphorylated H2AX ({gamma}-H2AX) is essential to the efficient recognition and (or) repair of DNA double strand breaks (DSBs), and many molecules, often thousands, of H2AX become rapidly phosphorylated at the site of each nascent DSB. An antibody to {gamma}-H2AX reveals that this highly amplified process generates nuclear foci. The phosphorylation site is a serine four residues from the C-terminus which has been evolutionarily conserved in organisms from giardia intestinalis to humans. Mice and yeast lacking the conserved serine residue demonstrate a variety of defects in DNA DSB processing. H2AX{sup {delta}}{sup /{delta}} mice are smaller, sensitive to ionizing radiation, defective in class switch recombination and spermatogenesis while cells from the mice demonstrate substantially increased numbers of genomic defects. {gamma}-H2AX foci formation is a sensitive biological dosimeter and presents new and exciting opportunities to understand important biological processes, human diseases, and individual variations in radiation sensitivity. These potentialities demonstrate the importance of understanding the parameters and functions of {gamma}-H2AX formation. (author)

  19. Soluble histone H2AX is induced by DNA replication stress and sensitizes cells to undergo apoptosis

    Directory of Open Access Journals (Sweden)

    Duensing Stefan

    2008-07-01

    Full Text Available Abstract Background Chromatin-associated histone H2AX is a key regulator of the cellular responses to DNA damage. However, non-nucleosomal functions of histone H2AX are poorly characterized. We have recently shown that soluble H2AX can trigger apoptosis but the mechanisms leading to non-chromatin-associated H2AX are unclear. Here, we tested whether stalling of DNA replication, a common event in cancer cells and the underlying mechanism of various chemotherapeutic agents, can trigger increased soluble H2AX. Results Transient overexpression of H2AX was found to lead to a detectable fraction of soluble H2AX and was associated with increased apoptosis. This effect was enhanced by the induction of DNA replication stress using the DNA polymerase α inhibitor aphidicolin. Cells manipulated to stably express H2AX did not contain soluble H2AX, however, short-term treatment with aphidicolin (1 h resulted in detectable amounts of H2AX in the soluble nuclear fraction and enhanced apoptosis. Similarly, soluble endogenous H2AX was detected under these conditions. We found that excessive soluble H2AX causes chromatin aggregation and inhibition of ongoing gene transcription as evidenced by the redistribution and/or loss of active RNA polymerase II as well as the transcriptional co-activators CBP and p300. Conclusion Taken together, these results show that DNA replication stress rapidly leads to increased soluble H2AX and that non-chromatin-associated H2AX can sensitize cells to undergo apoptosis. Our findings encourage further studies to explore H2AX and the cellular pathways that control its expression as anti-cancer drug targets.

  20. Phospho-histone H2AX is a diagnostic and prognostic marker for epithelial ovarian cancer.

    Science.gov (United States)

    Mei, Ling; Hu, Qian; Peng, Jing; Ruan, Jiaying; Zou, Juan; Huang, Qin; Liu, Shanling; Wang, He

    2015-01-01

    Histone H2AX phosphorylation is a sensitive marker for DSB which contributes to both genomic instability and cancer treatment. Monitoring its formation may be a sensitive means to monitor cancer progression and treatment effect. To define the role of phospho-H2AX (pH2AX) expression in development and prognosis of epithelial ovarian cancer (EOC). The expression of pH2AX in 87 EOC samples and 28 samples of normal ovarian tissues were examined by immunohistochemistry (IHC). The results were semi-quantitatively scored and analyzed by chi-square test. The overall survival time (OS) and disease free interval (DFI) were collected by follow-up and analyzed by Kaplan-Meier analysis. The expression level of pH2AX protein in EOC were higher than that in normal tissues (P<0.001). Among the sensitive cases, high expression of pH2AX was found in 53.2% cases while for resistant cases, high expression rate was 80% (P=0.025). However, pH2AX expression was not significantly correlated with age, histopathological type, tumor differentiation, lymph node metastasis or FIGO stages. Kaplan-Meier analysis found that DFI was negatively correlated with the pH2AX expression, where higher expression of pH2AX resulted in shorter DFI while no OS difference was detected in our study. pH2AX may be used to detect EOC at an early stage and identify women at higher risk for relapse.

  1. gammaH2AX foci form preferentially in euchromatin after ionising-radiation.

    Directory of Open Access Journals (Sweden)

    Ian G Cowell

    Full Text Available BACKGROUND: The histone variant histone H2A.X comprises up to 25% of the H2A complement in mammalian cells. It is rapidly phosphorylated following exposure of cells to double-strand break (DSB inducing agents such as ionising radiation. Within minutes of DSB generation, H2AX molecules are phosphorylated in large chromatin domains flanking DNA double-strand breaks (DSBs; these domains can be observed by immunofluorescence microscopy and are termed gammaH2AX foci. H2AX phosphorylation is believed to have a role mounting an efficient cellular response to DNA damage. Theoretical considerations suggest an essentially random chromosomal distribution of X-ray induced DSBs, and experimental evidence does not consistently indicate otherwise. However, we observed an apparently uneven distribution of gammaH2AX foci following X-irradiation with regions of the nucleus devoid of foci. METHODOLOGY/PRINCIPLE FINDINGS: Using immunofluorescence microscopy, we show that focal phosphorylation of histone H2AX occurs preferentially in euchromatic regions of the genome following X-irradiation. H2AX phosphorylation has also been demonstrated previously to occur at stalled replication forks induced by UV radiation or exposure to agents such as hydroxyurea. In this study, treatment of S-phase cells with hydroxyurea lead to efficient H2AX phosphorylation in both euchromatin and heterochromatin at times when these chromatin compartments were undergoing replication. This suggests a block to H2AX phosphorylation in heterochromatin that is at least partially relieved by ongoing DNA replication. CONCLUSIONS/SIGNIFICANCE: We discuss a number of possible mechanisms that could account for the observed pattern of H2AX phosphorylation. Since gammaH2AX is regarded as forming a platform for the recruitment or retention of other DNA repair and signaling molecules, these findings imply that the processing of DSBs in heterochromatin differs from that in euchromatic regions. The

  2. PET imaging of DNA damage using {sup 89}Zr-labelled anti-γH2AX-TAT immunoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Knight, James C.; Topping, Caitriona; Mosley, Michael; Kersemans, Veerle; Cornelissen, Bart [University of Oxford, CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom); Falzone, Nadia [University of Oxford, CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom); Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Fernandez-Varea, Jose M. [Universitat de Barcelona, Facultat de Fisica (ECM and ICC), Barcelona (Spain)

    2015-10-15

    The efficacy of most anticancer treatments, including radiotherapy, depends on an ability to cause DNA double-strand breaks (DSBs). Very early during the DNA damage signalling process, the histone isoform H2AX is phosphorylated to form γH2AX. With the aim of positron emission tomography (PET) imaging of DSBs, we synthesized a {sup 89}Zr-labelled anti-γH2AX antibody, modified with the cell-penetrating peptide, TAT, which includes a nuclear localization sequence. {sup 89}Zr-anti-γH2AX-TAT was synthesized using EDC/NHS chemistry for TAT peptide linkage. Desferrioxamine conjugation allowed labelling with {sup 89}Zr. Uptake and retention of {sup 89}Zr-anti-γH2AX-TAT was evaluated in the breast adenocarcinoma cell line MDA-MB-468 in vitro or as xenografts in athymic mice. External beam irradiation was used to induce DSBs and expression of γH2AX. Since {sup 89}Zr emits ionizing radiation, detailed radiobiological measurements were included to ensure {sup 89}Zr-anti-γH2AX-TAT itself does not cause any additional DSBs. Uptake of {sup 89}Zr-anti-γH2AX-TAT was similar to previous results using {sup 111}In-anti-γH2AX-TAT. Retention of {sup 89}Zr-anti-γH2AX-TAT was eightfold higher at 1 h post irradiation, in cells expressing γH2AX, compared to non-irradiated cells or to non-specific IgG control. PET imaging of mice showed higher uptake of {sup 89}Zr-anti-γH2AX-TAT in irradiated xenografts, compared to non-irradiated or non-specific controls (12.1 ± 1.6 vs 5.2 ± 1.9 and 5.1 ± 0.8 %ID/g, respectively; p < 0.0001). The mean absorbed dose to the nucleus of cells taking up {sup 89}Zr-anti-γH2AX-TAT was twofold lower compared to {sup 111}In-anti-γH2AX-TAT. Additional exposure of neither irradiated nor non-irradiated cells nor tissues to {sup 89}Zr-anti-γH2AX-TAT resulted in any significant changes in the number of observable DNA DSBs, γH2AX foci or clonogenic survival. {sup 89}Zr-anti-γH2AX-TAT allows PET imaging of DNA DSBs in a tumour xenograft mouse model

  3. Calmodulin Mediates DNA Repair Pathways Involving H2AX in Response to Low-Dose Radiation Exposure of RAW 264.7 Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Lopez Ferrer, Daniel; Eberlein, P. Elis; Watson, David J.; Squier, Thomas C.

    2009-02-05

    Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance metastasis. In this respect, we have identified a dose-dependent increase in the abundance of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose exposures. Increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX protein complexes associated with DNA repair following macrophage irradiation, with no change in the extent of double-stranded DNA damage. In comparison, when NFκB-dependent pathways are inhibited, through the expression of a dominant-negative IκB construct, there is no significant increase in phosphorylated H2AX upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX mediated DNA-repair pathways is not the result of nonspecific NFκB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation to enhance macrophage radioresistance through processes that include the upregulation of DNA repair pathways involving histone protein H2AX phosphorylation.

  4. Assessment of γ-H2AX levels in circulating tumor cells from patients receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Alejandra eGarcia-Villa

    2012-10-01

    Full Text Available Circulating tumor cells (CTCs are prognostic markers in a variety of solid tumor malignancies. The potential of CTCs to be used as a liquid biopsy to monitor a patient’s condition and predict drug response and resistance is currently under investigation. Using a negative depletion, enrichment methology, CTCs isolated from the peripheral blood of breast cancer patients with stage IV breast cancer undergoing DNA damaging therapy with platinum based therapy were enriched. The enriched cell suspensions, were stained with an optimized labeling protocol targeting: nuclei, cytokeratins 8, 18, and 19, the surface marker CD45, and the presence of the protein ɣ-H2AX. As a direct or indirect result of platinum therapy, double strand break of DNA initiates phosphorylation of the histone H2AX, at serine 139; this phosphorylated form is referred to as ɣ-H2AX. In addition to ɣ-H2AX staining in specific locations with the cell nuclei, consistent with previous reports and referred to as foci, more general staining in the cell cytoplamim was also observed in some cells suggesting the potential of cell apoptosis. Our study underscores the utility and the complexity of investigating CTCs as predictive markers of response to various therapies. Additional studies are ongoing to evaluate the diverse γ-H2AX staining patterns we report here which needs to be further correlated with patient outcomes

  5. Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation.

    Science.gov (United States)

    Desai, N; Davis, E; O'Neill, P; Durante, M; Cucinotta, F A; Wu, H

    2005-10-01

    We studied the spatial and temporal distributions of foci of the phosphorylated form of the histone protein H2AX (gamma-H2AX), which is known to be activated by double-strand breaks after irradiation of human fibroblast cells with high-energy silicon (54 keV/microm) and iron (176 keV/microm) ions. Here we present data obtained with the ion path parallel to a monolayer of human fibroblast cells that leads to gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane, thus enabling the analysis of the fluorescence distributions along the ion trajectories. Qualitative analyses of these distributions provide insights into DNA damage processing kinetics for high charge and energy (HZE) ions, including evidence of increased clustering of DNA damage and slower processing with increasing LET.

  6. Role of H2AX in DNA damage response and human cancers.

    NARCIS (Netherlands)

    Srivastava, N.; Gochhait, S.; Boer, P. de; Bamezai, R.N.

    2009-01-01

    H2AX, the evolutionarily conserved variant of histone H2A, has been identified as one of the key histones to undergo various post-translational modifications in response to DNA double-strand breaks (DSBs). By virtue of these modifications, that include acetylation, phosphorylation and

  7. Age-related disease association of endogenous γ-H2AX foci in mononuclear cells derived from leukapheresis.

    Directory of Open Access Journals (Sweden)

    Shepherd H Schurman

    Full Text Available The phosphorylated form of histone H2AX (γ-H2AX forms immunohistochemically detectable foci at DNA double strand breaks. In peripheral blood mononuclear cells (PBMCs derived from leukapheresis from patients enrolled in the Baltimore Longitudinal Study of Aging, γ-H2AX foci increased in a linear fashion with regards to age, peaking at ~57 years. The relationship between the frequency of γ-H2AX foci and age-related pathologies was assessed. We found a statistically significant (p = 0.023 50% increase in foci in PBMCs derived from patients with a known history of vitamin D deficiency. In addition, there were trends toward increased γ-H2AX foci in patients with cataracts (34% increase, p<0.10 and in sleep apnea patients (44%, p<0.10. Among patients ≥57 y/o, we found a significant (p = 0.037 36% increase in the number of γ-H2AX foci/cell for patients with hypertension compared to non-hypertensive patients. Our results support a role for increased DNA damage in the morbidity of age-related diseases. γ -H2AX may be a biomarker for human morbidity in age-related diseases.

  8. Nitric Oxide Induces Ataxia Telangiectasia Mutated (ATM) Protein-dependent γH2AX Protein Formation in Pancreatic β Cells*

    Science.gov (United States)

    Oleson, Bryndon J.; Broniowska, Katarzyna A.; Schreiber, Katherine H.; Tarakanova, Vera L.; Corbett, John A.

    2014-01-01

    In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylationH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells. PMID:24610783

  9. Geldanamycin, an inhibitor of Hsp90, increases paclitaxel-mediated toxicity in ovarian cancer cells through sustained activation of the p38/H2AX axis.

    Science.gov (United States)

    Mo, Qingqing; Zhang, Yu; Jin, Xin; Gao, Yue; Wu, Yuan; Hao, Xing; Gao, Qinglei; Chen, Pingbo

    2016-11-01

    Paclitaxel is a mitotic inhibitor used in ovarian cancer chemotherapy. Unfortunately, due to the rapid genetic and epigenetic changes in adaptation to stress induced by anticancer drugs, cancer cells are often able to become resistant to single or multiple anticancer agents. However, it remains largely unknown how paclitaxel resistance happens. In this study, we generated a cell line of acquired resistance to paclitaxel therapy, A2780T, which is cross-resistant to other antimitotic drugs, such as PLK1 inhibitor or AURKA inhibitor. Immunoblotting revealed significant alterations in cell-cycle-related and apoptotic-related proteins involved in key signaling pathways. In particular, phosphorylation of p38, which activates H2AX, was significantly decreased in A2780T cells compared to the parental A2780 cells. Geldanamycin (GA), an inhibitor of Hsp90, sustained activation of the p38/H2AX axis, and A2780T cells were shown to be more sensitive to GA compared to A2780 cells. Furthermore, treatment of A2780 and A2780T cells with GA significantly enhanced sensitivity to paclitaxel. Meanwhile, GA cooperated with paclitaxel to suppress tumor growth in a mouse ovarian cancer xenograft model. In conclusion, GA may sensitize a subset of ovarian cancer to paclitaxel, particularly those tumors in which resistance is driven by inactivation of p38/H2AX axis.

  10. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Aman Wang

    2017-05-01

    Full Text Available Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22 with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.

  11. Accumulation of spontaneous γH2AX foci in long-term cultured mesenchymal stromal cells.

    Science.gov (United States)

    Pustovalova, Margarita; Grekhova, Anna; Astrelina, Тatiana; Nikitina, Viktoria; Dobrovolskaya, Ekaterina; Suchkova, Yulia; Kobzeva, Irina; Usupzhanova, Darya; Vorobyeva, Natalia; Samoylov, Aleksandr; Bushmanov, Andrey; Ozerov, Ivan V; Zhavoronkov, Alex; Leonov, Sergey; Klokov, Dmitry; Osipov, Andreyan N

    2016-12-11

    Expansion of mesenchymal stromal/stem cells (MSCs) used in clinical practices may be associated with accumulation of genetic instability. Understanding temporal and mechanistic aspects of this process is important for improving stem cell therapy protocols. We used γH2AX foci as a marker of a genetic instability event and quantified it in MSCs that undergone various numbers of passage (3-22). We found that γH2AX foci numbers increased in cells of late passages, with a sharp increase at passage 16-18. By measuring in parallel foci of ATM phosphorylated at Ser-1981 and their co-localization with γaH2AX foci, along with differentiating cells into proliferating and resting by using a Ki67 marker, we conclude that the sharp increase in γH2AX foci numbers was ATM-independent and happened predominantly in proliferating cells. At the same time, gradual and moderate increase in γH2AX foci with passage number seen in both resting and proliferating cells may represent a slow, DNA double-strand break related component of the accumulation of genetic instability in MSCs. Our results provide important information on selecting appropriate passage numbers exceeding which would be associated with substantial risks to a patient-recipient, both with respect to therapeutic efficiency and side-effects related to potential neoplastic transformations due to genetic instability acquired by MSCs during expansion.

  12. Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures.

    Directory of Open Access Journals (Sweden)

    Luca G Mariotti

    Full Text Available Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX phosphorylation (γ-H2AX, a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.

  13. Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX

    Energy Technology Data Exchange (ETDEWEB)

    Yamagata, Kazutsune, E-mail: kyamagat@ncc.go.jp [Department of Molecular Oncology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kitabayashi, Issay [Department of Molecular Oncology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2009-12-25

    Sirt1 appear to be NAD(+)-dependent deacetylase that deacetylates histones and several non-histone proteins. In this study, we identified Sirt1 as a physical interaction partner of Tip60, which is a mammalian MYST-type histone acetyl-transferase that specifically acetylates histones H2A and H4. Although Tip60 also acetylates DNA damage-specific histone H2A variant H2AX in response to DNA damage, which is a process required for appropriate DNA damage response, overexpression of Sirt1 represses Tip60-mediated acetylation of H2AX. Furthermore, Sirt1 depletion by RNAi causes excessive acetylation of H2AX, and enhances accumulation of {gamma}-ray irradiation-induced MDC1, BRCA1, and Rad51 foci in nuclei. These findings suggest that Sirt1 functions as negative regulator of Tip60-mediated acetylation of H2AX. Moreover, Sirt1 deacetylates an acetylated Tip60 in response to DNA damage and stimulates proteasome-dependent Tip60 degradation in vivo, suggesting that Sirt1 negatively regulates the protein level of Tip60 in vivo. Sirt1 may thus repress excessive activation of the DNA damage response and Rad51-homologous recombination repair by suppressing the function of Tip60.

  14. Deregulation of BRCA1 leads to impaired spatiotemporal dynamics of γ-H2AX and DNA damage responses in Huntington's disease.

    Science.gov (United States)

    Jeon, Gye Sun; Kim, Ki Yoon; Hwang, Yu Jin; Jung, Min-Kyung; An, Sungkwan; Ouchi, Mutsuko; Ouchi, Toru; Kowall, Neil; Lee, Junghee; Ryu, Hoon

    2012-06-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder of mid-life onset characterized by involuntary movements and progressive cognitive decline caused by a CAG repeat expansion in exon 1 of the Huntingtin (Htt) gene. Neuronal DNA damage is one of the major features of neurodegeneration in HD, but it is not known how it arises or relates to the triplet repeat expansion mutation in the Htt gene. Herein, we found that imbalanced levels of non-phosphorylated and phosphorylated BRCA1 contribute to the DNA damage response in HD. Notably, nuclear foci of γ-H2AX, the molecular component that recruits various DNA damage repair factors to damage sites including BRCA1, were deregulated when DNA was damaged in HD cell lines. BRCA1 specifically interacted with γ-H2AX via the BRCT domain, and this association was reduced in HD. BRCA1 overexpression restored γ-H2AX level in the nucleus of HD cells, while BRCA1 knockdown reduced the spatiotemporal propagation of γ-H2AX foci to the nucleoplasm. The deregulation of BRCA1 correlated with an abnormal nuclear distribution of γ-H2AX in striatal neurons of HD transgenic (R6/2) mice and BRCA1(+/-) mice. Our data indicate that BRCA1 is required for the efficient focal recruitment of γ-H2AX to the sites of neuronal DNA damage. Taken together, our results show that BRCA1 directly modulates the spatiotemporal dynamics of γ-H2AX upon genotoxic stress and serves as a molecular maker for neuronal DNA damage response in HD.

  15. Evaluating γH2AX in spermatozoa from male infertility patients.

    Science.gov (United States)

    Zhong, Hui-zhi; Lv, Fu-tong; Deng, Xue-lian; Hu, Ying; Xie, Dan-ni; Lin, Bin; Mo, Zeng-nan; Lin, Fa-quan

    2015-09-01

    To investigate whether γH2AX levels were different in the spermatozoa of healthy men compared with infertility patients, and to assess the possible correlations between γH2AX and conventional semen parameters and double-stranded breaks (DSBs) identified with the use of comet assay. Prospective study. Clinical laboratory. Semen from 100 male infertile patients and 100 healthy sperm donors. Human sperm samples were analyzed in terms of World Health Organization parameters. The γH2AX levels were detected by means of flow cytometry. DSBs of sperm were detected by means of comet assay. Morphology slides were made and the sperm morphology assessed according to strict criteria. Conventional semen analyses, γH2AX levels in sperm, DNA DSBs in sperm, and correlations among γH2AX, conventional semen analyses, and DSBs. Concentration, viability, motility, and normal sperm morphology were significantly lower in male infertility patients compared with healthy men. Also, γH2AX levels and the number of DSBs were significantly higher in the sperm of infertile subjects compared with healthy men. γH2AX levels correlated negatively with conventional semen parameters and positively with DSBs. A threshold γH2AX level of 18.55% was identified as a cutoff value to discriminate infertile subjects from fertile control subjects with a specificity of 86.0% and a sensitivity of 83.0%. The positive and negative predictive values of the 18.55% γH2AX threshold were high: 87.7% and 85.5%, respectively. γH2AX levels were higher in the sperm of male infertility patients than in healthy men. γH2AX levels in sperm, as evaluated with the use of flow cytometry, might be a useful biomarker for evaluating DSBs in human spermatozoa. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Constitutive expression of gamma-H2AX has prognostic relevance in triple negative breast cancer

    NARCIS (Netherlands)

    Nagelkerke, A.P.; Kuijk, S.J. van; Sweep, F.C.; Nagtegaal, I.D.; Hoogerbrugge, N.; Martens, J.W.; Timmermans, M.A.Y.; Laarhoven, H.W.M. van; Bussink, J.; Span, P.N.

    2011-01-01

    BACKGROUND AND PURPOSE: Constitutive gamma-H2AX expression might indicate disruption of the DNA damage repair pathway, genomic instability, or shortened telomeric ends. Here, we quantified expression of endogenous gamma-H2AX and its downstream factor 53BP1 in a large number of breast cancer cell

  17. Targeting protein for xenopus kinesin-like protein 2 (TPX2) regulates γ-histone 2AX (γ-H2AX) levels upon ionizing radiation.

    Science.gov (United States)

    Neumayer, Gernot; Helfricht, Angela; Shim, Su Yeon; Le, Hoa Thi; Lundin, Cecilia; Belzil, Camille; Chansard, Mathieu; Yu, Yaping; Lees-Miller, Susan P; Gruss, Oliver J; van Attikum, Haico; Helleday, Thomas; Nguyen, Minh Dang

    2012-12-07

    The microtubule-associated protein targeting protein for Xenopus kinesin-like protein 2 (TPX2) plays a key role in spindle assembly and is required for mitosis in human cells. In interphase, TPX2 is actively imported into the nucleus to prevent its premature activity in microtubule organization. To date, no function has been assigned to nuclear TPX2. We now report that TPX2 plays a role in the cellular response to DNA double strand breaks induced by ionizing radiation. Loss of TPX2 leads to inordinately strong and transient accumulation of ionizing radiation-dependent Ser-139-phosphorylated Histone 2AX (γ-H2AX) at G(0) and G(1) phases of the cell cycle. This is accompanied by the formation of increased numbers of high intensity γ-H2AX ionizing radiation-induced foci. Conversely, cells overexpressing TPX2 have reduced levels of γ-H2AX after ionizing radiation. Consistent with a role for TPX2 in the DNA damage response, we found that the protein accumulates at DNA double strand breaks and associates with the mediator of DNA damage checkpoint 1 (MDC1) and the ataxia telangiectasia mutated (ATM) kinase, both key regulators of γ-H2AX amplification. Pharmacologic inhibition or depletion of ATM or MDC1, but not of DNA-dependent protein kinase (DNA-PK), antagonizes the γ-H2AX phenotype caused by TPX2 depletion. Importantly, the regulation of γ-H2AX signals by TPX2 is not associated with apoptosis or the mitotic functions of TPX2. In sum, our study identifies a novel and the first nuclear function for TPX2 in the cellular responses to DNA damage.

  18. Influence of Different Antioxidants on X-Ray Induced DNA Double-Strand Breaks (DSBs Using γ-H2AX Immunofluorescence Microscopy in a Preliminary Study.

    Directory of Open Access Journals (Sweden)

    Michael Brand

    Full Text Available Radiation exposure occurs in X-ray guided interventional procedures or computed tomography (CT and γ-H2AX-foci are recognized to represent DNA double-strand breaks (DSBs as a biomarker for radiation induced damage. Antioxidants may reduce the induction of γ-H2AX-foci by binding free radicals. The aim of this study was to establish a dose-effect relationship and a time-effect relationship for the individual antioxidants on DSBs in human blood lymphocytes.Blood samples from volunteers were irradiated with 10 mGy before and after pre-incubation with different antioxidants (zinc, trolox, lipoic acid, ß-carotene, selenium, vitamin E, vitamin C, N-acetyl-L-cysteine (NAC and Q 10. Thereby, different pre-incubation times, concentrations and combinations of drugs were evaluated. For assessment of DSBs, lymphocytes were stained against the phosphorylated histone variant γ-H2AX.For zinc, trolox and lipoic acid regardless of concentration or pre-incubation time, no significant decrease of γ-H2AX-foci was found. However, ß-carotene (15%, selenium (14%, vitamin E (12%, vitamin C (25%, NAC (43% and Q 10 (18% led to a significant reduction of γ-H2AX-foci at a pre-incubation time of 1 hour. The combination of different antioxidants did not have an additive effect.Antioxidants administered prior to irradiation demonstrated the potential to reduce γ-H2AX-foci in blood lymphocytes.

  19. Influence of Different Antioxidants on X-Ray Induced DNA Double-Strand Breaks (DSBs) Using γ-H2AX Immunofluorescence Microscopy in a Preliminary Study

    Science.gov (United States)

    Brand, Michael; Sommer, Matthias; Ellmann, Stephan; Wuest, Wolfgang; May, Matthias S.; Eller, Achim; Vogt, Sabine; Lell, Michael M.; Kuefner, Michael A.; Uder, Michael

    2015-01-01

    Background Radiation exposure occurs in X-ray guided interventional procedures or computed tomography (CT) and γ-H2AX-foci are recognized to represent DNA double-strand breaks (DSBs) as a biomarker for radiation induced damage. Antioxidants may reduce the induction of γ-H2AX-foci by binding free radicals. The aim of this study was to establish a dose-effect relationship and a time-effect relationship for the individual antioxidants on DSBs in human blood lymphocytes. Materials and Methods Blood samples from volunteers were irradiated with 10 mGy before and after pre-incubation with different antioxidants (zinc, trolox, lipoic acid, ß-carotene, selenium, vitamin E, vitamin C, N-acetyl-L-cysteine (NAC) and Q 10). Thereby, different pre-incubation times, concentrations and combinations of drugs were evaluated. For assessment of DSBs, lymphocytes were stained against the phosphorylated histone variant γ-H2AX. Results For zinc, trolox and lipoic acid regardless of concentration or pre-incubation time, no significant decrease of γ-H2AX-foci was found. However, ß-carotene (15%), selenium (14%), vitamin E (12%), vitamin C (25%), NAC (43%) and Q 10 (18%) led to a significant reduction of γ-H2AX-foci at a pre-incubation time of 1 hour. The combination of different antioxidants did not have an additive effect. Conclusion Antioxidants administered prior to irradiation demonstrated the potential to reduce γ-H2AX-foci in blood lymphocytes. PMID:25996998

  20. γ-H2AX expression detected by immunohistochemistry correlates with prognosis in early operable non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Matthaios D

    2012-10-01

    Full Text Available Dimitrios Matthaios,1 Periklis G Foukas,2 Maria Kefala,2 Panagiotis Hountis,3 Grigorios Trypsianis,4 Ioannis G Panayiotides,2 Ekaterini Chatzaki,5 Ekaterini Pantelidaki,6 Demosthenes Bouros,7 Petros Karakitsos,8 Stylianos Kakolyris11Department of Oncology, Democritus University of Thrace, Alexandroupolis, Greece; 2Department of Pathology, Attikon University Hospital, Athens, Greece; 3Cardiac Surgery Department, Athens Naval and Veterans Hospital, Athens, Greece; 4Laboratory of Statistics, Democritus University of Thrace, Alexandroupolis, Greece; 5Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis, Greece; 6Department of Pathology, Evaggelismos Hospital, Athens, Greece; 7Department of Pneumonology, Democritus University of Thrace, Alexandroupolis, Greece; 8Department of Cytopathology, Attikon University Hospital, Athens, GreeceBackground: Phosphorylation of the H2AX histone is an early indicator of DNA double-strand breaks and of the resulting DNA damage response. In the present study, we assessed the expression and prognostic significance of γ-H2AX in a cohort of 96 patients with operable non-small cell lung carcinoma.Methods: Ninety-six paraffin-embedded specimens of non-small cell lung cancer patients were examined. All patients underwent radical thoracic surgery of primary tumor (lobectomy or pneumonectomy and regional lymph node dissection. γ-H2AX expression was assessed by standard immunohistochemistry. Follow-up was available for all patients; mean duration of follow-up was 27.50 ± 14.07 months (range 0.2–57 months, median 24 months.Results: Sixty-three patients (65.2% died during the follow-up period. The mean survival time was 32.2 ± 1.9 months (95% confidence interval [CI]: 28.5–35.8 months; median 30.0 months; 1-, 2- and 3-year survival rates were 86.5% ± 3.5%, 57.3% ± 5.1%, and 37.1% ± 5.4%, respectively. Low γ-H2AX expression was associated with a significantly better survival as compared with

  1. Induction and Persistence of Large γH2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinase–Deficient Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bracalente, Candelaria; Ibañez, Irene L. [Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Molinari, Beatriz [Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Palmieri, Mónica [Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Kreiner, Andrés [Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Valda, Alejandro [Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); and others

    2013-11-15

    Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of γ-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AXH2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of γH2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of γH2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in γH2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 μm{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of γH2AX foci after high-LET irradiation.

  2. Computational analysis of the number, area and density of gamma-H2AX foci in breast cancer cells exposed to (111)In-DTPA-hEGF or gamma-rays using Image-J software.

    Science.gov (United States)

    Cai, Zhongli; Vallis, Katherine A; Reilly, Raymond M

    2009-03-01

    To develop a simple method for the quantification of gamma-H2AX focus number, density and size. MDA-MB-468 human breast cancer cells were treated overnight with (111)In-diethylenetriaminepentaacetic acid human epidermal growth factor ((111)In-DTPA-hEGF, 0-142 kBq/pmol) or exposed to gamma-radiation to induce DNA double strand breaks (DSB). DNA DSB formation was evaluated by detection of phosphorylated histone H2AX on serine 139 (gamma-H2AX) using immunofluorescence. Confocal microscopy was used to capture images of gamma-H2AX foci and cell nuclei. Image-J software with customized macros was used to quantify gamma-H2AX foci. The number of gamma-H2AX foci per nucleus scored using Image-J correlated strongly with the number scored using direct visual confirmation (coefficient of determination, R(2) = 0.950; 60 nuclei scored). The mean density (grayscale values per pixel), area and integrated density (IntDen) of individual foci increased linearly as the specific radioactivity (SR) increased up to 67 kBq/pmol (R(2) values of 0.826, 0.964, 0.978, respectively). The mean number of foci per nucleus, the combined area of gamma-H2AX foci per nucleus and the IntDen per nucleus also increased linearly with SR, giving R(2) values of 0.926, 0.974 and 0.983, respectively. Similar linear relationships were observed with the gamma-ray absorbed dose up to 3.0 Gy. The density, area and IntDen of individual foci, as well as the number of gamma-H2AX foci, total focus area and IntDen per nucleus were successfully quantified using Image-J with customized macros.

  3. Investigating γ H2AX as a Biomarker of Radiosensitivity Using Flow Cytometry Methods.

    Science.gov (United States)

    Beaton, Lindsay A; Marro, Leonora; Malone, Shawn; Samiee, Sara; Grimes, Scott; Malone, Kyle; Wilkins, Ruth C

    2013-01-01

    Background and Purpose. This project examined the in vitro   γ H2AX response in lymphocytes of prostate cancer patients who had a radiosensitive response after receiving radiotherapy. The goal of this project was to determine whether the γ H2AX response, as measured by flow cytometry, could be used as a marker of individual patient radiosensitivity. Materials and Methods. Patients were selected from a randomized clinical trial evaluating the optimal timing of Dose Escalated Radiation and short-course Androgen Deprivation Therapy. Of 438 patients, 3% developed Grade 3 late radiation proctitis and were considered to be radiosensitive. Blood was drawn from 10 of these patients along with 20 matched samples from patients with Grade 0 proctitis. Dose response curves up to 10 Gy along with time response curves after 2 Gy (0-24 h) were generated for each sample. The γ H2AX response in lymphocytes and lymphocyte subsets was analyzed by flow cytometry. Results. There were no significant differences between the radiosensitive and control samples for either the dose course or the time course. Conclusions. Although γ H2AX response has previously been demonstrated to be an indicator of individual patient radiosensitivity, flow cytometry lacks the sensitivity necessary to distinguish any differences between samples from control and radiosensitive patients.

  4. Effect of prolonging radiation delivery time on retention of gammaH2AX

    Directory of Open Access Journals (Sweden)

    Duzenli Cheryl

    2008-06-01

    Full Text Available Abstract Background and purpose Compared to conventional external beam radiotherapy, IMRT requires significantly more time to deliver the dose. Prolonging dose delivery potentially increases DNA repair which would reduce the biological effect. We questioned whether retention of γH2AX, a measure of lack of repair of DNA damage, would decrease when dose delivery was protracted. Materials and methods Exponentially growing SiHa cervical carinoma cells were irradiated with 6 MV photons in a water tank using a VarianEX linear accelerator. Cells held at 37°C received 2 Gy in 0.5 min and 4 Gy in 1 min. To evaluate effect of dose delivery prolongation, 2 and 4 Gy were delivered in 30 and 60 min. After 24 h recovery, cells were analyzed for clonogenic survival and for residual γH2AX as measured using flow cytometry. Results Increasing the dose delivery time from 0.5 or 1 min to 30 or 60 min produced a signficant increase in cell survival from 0.45 to 0.48 after 2 Gy, and from 0.17 to 0.20 after 4 Gy. Expression of residual γH2AX decreased from 1.27 to 1.22 relative to background after 2 Gy and 1.46 to 1.39 relative to background after 4 Gy, but differences were not statistically significant. The relative differences in the slopes of residual γH2AX versus dose for acute versus prolonged irradiation bordered on significant (p = 0.055, and the magnitude of the change was consistent with the observed increase in surviving fraction. Conclusion These results support the concept that DNA repair underlies the increase in survival observed when dose delivery is prolonged. They also help to establish the limits of sensitivity of residual γH2AX, as measured using flow cytometry, for detecting differences in response to irradiation.

  5. Effect of prolonging radiation delivery time on retention of gammaH2AX.

    Science.gov (United States)

    Moiseenko, Vitali; Banáth, Judit P; Duzenli, Cheryl; Olive, Peggy L

    2008-06-27

    Compared to conventional external beam radiotherapy, IMRT requires significantly more time to deliver the dose. Prolonging dose delivery potentially increases DNA repair which would reduce the biological effect. We questioned whether retention of gammaH2AX, a measure of lack of repair of DNA damage, would decrease when dose delivery was protracted. Exponentially growing SiHa cervical carcinoma cells were irradiated with 6 MV photons in a water tank using a VarianEX linear accelerator. Cells held at 37 degrees C received 2 Gy in 0.5 min and 4 Gy in 1 min. To evaluate effect of dose delivery prolongation, 2 and 4 Gy were delivered in 30 and 60 min. After 24 h recovery, cells were analyzed for clonogenic survival and for residual gammaH2AX as measured using flow cytometry. Increasing the dose delivery time from 0.5 or 1 min to 30 or 60 min produced a significant increase in cell survival from 0.45 to 0.48 after 2 Gy, and from 0.17 to 0.20 after 4 Gy. Expression of residual gammaH2AX decreased from 1.27 to 1.22 relative to background after 2 Gy and 1.46 to 1.39 relative to background after 4 Gy, but differences were not statistically significant. The relative differences in the slopes of residual gammaH2AX versus dose for acute versus prolonged irradiation bordered on significant (p = 0.055), and the magnitude of the change was consistent with the observed increase in surviving fraction. These results support the concept that DNA repair underlies the increase in survival observed when dose delivery is prolonged. They also help to establish the limits of sensitivity of residual gammaH2AX, as measured using flow cytometry, for detecting differences in response to irradiation.

  6. Q{sub {gamma}-H2AX}, an analysis method for partial-body radiation exposure using {gamma}-H2AX in non-human primate lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Redon, Christophe E., E-mail: redonc@mail.nih.gov [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States); Nakamura, Asako J.; Gouliaeva, Ksenia [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States); Rahman, Arifur; Blakely, William F. [Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20889-5603 (United States); Bonner, William M. [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States)

    2011-09-15

    We previously used the {gamma}-H2AX assay as a biodosimeter for total-body irradiation (TBI) exposure ({gamma}-rays) in a rhesus macaque (Macaca mulatta) model. Utilizing peripheral blood lymphocytes and plucked hairs, we obtained statistically significant {gamma}-H2AX responses days after total-body exposure to 1-8.5 Gy ({sup 60}Co {gamma}-rays at 55 cGy min{sup -1}). Here, we introduce a partial-body exposure analysis method, Q{sub {gamma}-H2AX}, which is based on the number of {gamma}-H2AX foci per damaged cells as evident by having one or more {gamma}-H2AX foci per cell. Results from the rhesus monkey - TBI study were used to establish Q{sub {gamma}-H2AX} dose-response calibration curves to assess acute partial-body exposures. {gamma}-H2AX foci were detected in plucked hairs for several days after in vivo irradiation demonstrating this assay's utility for dose assessment in various body regions. The quantitation of {gamma}-H2AX may provide a robust biodosimeter for analyzing partial-body exposures to ionizing radiation in humans.

  7. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  8. Poor prognosis of constitutive gamma-H2AX expressing triple-negative breast cancers is associated with telomere length

    NARCIS (Netherlands)

    Nagelkerke, A.P.; Kuijk, S.J. van; Martens, J.W.; Sweep, F.C.; Hoogerbrugge, N.; Bussink, J.; Span, P.N.

    2015-01-01

    AIM: Here, we set out to establish whether endogenous gamma-H2AX is a biomarker in triple-negative breast cancer. METHODS: We explored the association of gamma-H2AX with mutation status and sensitivity to 139 different anticancer drugs in up to 41 breast cancer cell lines. Further, we correlated

  9. Suberoylanilide hydroxamic acid affects {gamma}H2AX expression in osteosarcoma, atypical teratoid rhabdoid tumor and normal tissue cell lines after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, C.; Oertel, S.; Thiemann, M.; Weber, K.J.; Schmezer, P.; Zelezny, O.; Lopez Perez, R.; Kulozik, A.E.; Debus, J.; Ehemann, V. [Univ. Children' s Hospital, Heidelberg (Germany). Dept. of Pediatric Oncology, Hematology, Immunology and Pulmology

    2012-02-15

    Osteosarcoma and atypical teratoid rhabdoid tumors are tumor entities with varying response to common standard therapy protocols. Histone acetylation affects chromatin structure and gene expression which are considered to influence radiation sensitivity. The aim of this study was to investigate the effect of the combination therapy with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and irradiation on atypical teratoid rhabdoid tumors and osteosarcoma compared to normal tissue cell lines. Clonogenic assay was used to determine cell survival. DNA double-strand breaks (DSB) were examined by pulsed-field electrophoresis (PFGE) as well as by {gamma}H2AX immunostaining involving flow cytometry, fluorescence microscopy, and immunoblot analysis. SAHA lead to an increased radiosensitivity in tumor but not in normal tissue cell lines. {gamma}H2AX expression as an indicator for DSB was significantly increased when SAHA was applied 24 h before irradiation to the sarcoma cell cultures. In contrast, {gamma}H2AX expression in the normal tissue cell lines was significantly reduced when irradiation was combined with SAHA. Analysis of initial DNA fragmentation and fragment rejoining by PFGE, however, did not reveal differences in response to the SAHA pretreatment for either cell type. SAHA increases radiosensitivity in tumor but not normal tissue cell lines. The increased H2AX phosphorylation status of the SAHA-treated tumor cells post irradiation likely reflects its delayed dephosphorylation within the DNA damage signal decay rather than chromatin acetylation-dependent differences in the overall efficacy of DSB induction and rejoining. The results support the hypothesis that combining SAHA with irradiation may provide a promising strategy in the treatment of solid tumors. (orig.)

  10. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology.

    Science.gov (United States)

    Gerić, Marko; Gajski, Goran; Garaj-Vrhovac, Vera

    2014-07-01

    The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure.

    Directory of Open Access Journals (Sweden)

    Simon Horn

    Full Text Available Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci--but not intensity--levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body

  12. High levels of γ-H2AX foci and cell membrane oxidation in adolescents with type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Caterina [Unità di Genetica, Dipartimento di Biologia, Pisa University, Pisa (Italy); Piaggi, Simona [Sezione di Patologia Sperimentale, Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Pisa University, Pisa (Italy); Federico, Giovanni [Unità di Endocrinologia Pediatrica e Diabete, Dipartimento di Medicina Clinica e Sperimentale Pisa University, Pisa (Italy); Scarpato, Roberto, E-mail: roberto.scarpato@unipi.it [Unità di Genetica, Dipartimento di Biologia, Pisa University, Pisa (Italy)

    2014-12-15

    Highlights: • We aimed to detect signs of very early damage in peripheral cells of T1DM adolescents. • T1DM patients had high levels of oxidized cells and reduced expression of iNOS and NO. • Highly mutagenic lesions were markedly increased in the diabetic group, mainly in females. • The observed damage might increase the risk of cancer in the patients later in life. - Abstract: Oxidative stress caused by an excess of free radicals is implicated in the pathogenesis and development of type 1 diabetes mellitus (T1DM) and, in turn, it can lead to genome damage, especially in the form of DNA double-strand break (DSB). The DNA DSB is a potentially carcinogenic lesion for human cells. Thus, we aimed to evaluate whether the level of oxidative stress was increased in peripheral blood lymphocytes of a group of affected adolescents. In 35 T1DM adolescents and 19 healthy controls we assessed: (1) spontaneous and H{sub 2}O{sub 2}-induced oxidation of cell membrane using a fluorescence lipid probe; (2) spontaneous and LPS-induced expression of iNOS protein and indirect NO determination via cytofluorimetric analysis of O{sub 2}{sup −}; (3) immunofluorescent detection of the basal level of histone H2AX phosphorylation (γ-H2AX foci), a well-validated marker of DNA DSB. In T1DM, the frequencies of oxidized cells, both spontaneous and H{sub 2}O{sub 2}-induced (47.13 ± 0.02) were significantly higher than in controls (35.90 ± 0.03). Patients showed, in general, both a reduced iNOS expression and production of NO. Furthermore, the level of spontaneous nuclear damage, quantified as γ-H2AX foci, was markedly increased in T1DM adolescents (6.15 ± 1.08% of γ-H2AX{sup +} cells; 8.72 ± 2.14 γ-H2AXF/n; 9.26 ± 2.37 γ-H2AXF/np), especially in females. In the present study, we confirmed the role that oxidative stress plays in the disease damaging lipids of cell membrane and, most importantly, causing genomic damage in circulating white blood cells of affected adolescents

  13. Induction and disappearance of γH2AX foci and formation of micronuclei after exposure of human lymphocytes to ⁶⁰Co γ-rays and p(66)+ Be(40) neutrons.

    Science.gov (United States)

    Vandersickel, Veerle; Beukes, Philip; Van Bockstaele, Bram; Depuydt, Julie; Vral, Anne; Slabbert, Jacobus

    2014-02-01

    To investigate both the formation of micronuclei (MN) and the induction and subsequent loss of phosphorylated histone H2AX foci (γH2AX foci) after in vitro exposure of human lymphocytes to either (60)Co γ-rays or p(66)+ Be(40) neutrons. MN dose response (DR) curves were obtained by exposing isolated lymphocytes of 10 different donors to doses ranging from 0-4 Gy γ-rays or 0-2 Gy neutrons. Also, γH2AX foci DR curves were obtained following exposure to doses ranging from 0-0.5 Gy of either γ-rays or neutrons. Foci kinetics for lymphocytes for a single donor exposed to 0.5 Gy γ-rays or neutrons were studied up to 24 hours post-irradiation. Micronuclei yields following neutron exposure were consistently higher compared to that from (60)Co γ-rays. All MN yields were over-dispersed compared to a Poisson distribution. Over-dispersion was higher after neutron irradiation for all doses > 0.1 Gy. Up to 4 hours post-irradiation lower yields of neutron-induced γH2AX foci were observed. Between 4 and 24 hours the numbers of foci from neutrons were consistently higher than that from γ-rays. The half-live of foci disappearance is only marginally longer for neutrons compared to that from γ-rays. Foci formations were more likely to be over-dispersed for neutron irradiations. Although neutrons are more effective to induce MN, the absolute number of induced γH2AX foci are less at first compared to γ-rays. With time neutron-induced foci are more persistent. These findings are helpful for using γH2AX foci in biodosimetry and to understand the repair of neutron-induced cellular damage.

  14. Persistence of gamma-H2AX and 53BP1 foci in proliferating and nonproliferating human mammary epithelial cells after exposure to gamma-rays or iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn

    2010-12-22

    To investigate {gamma}-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced {gamma}-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both {gamma}-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after {gamma}-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation induced {gamma}-H2AX and 53BP1 foci in HMEC have different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent {gamma}-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodeling.

  15. Characteristics of changes in the number of yH2AX and Rad51 protein foci in human skin fibroblasts after prolonged exposure to low-dose rate X-ray radiation

    Directory of Open Access Journals (Sweden)

    Ozerov I.V.

    2014-12-01

    Full Text Available Aim: to compare the repair process of DNA double-strand breaks in mammalian cells after acute versus prolonged exposure to X-ray irradiation with different dose rates. Material and methods. Studies were performed on primary human fibroblasts isolated from skin biopsies of healthy volunteers (women, 29 and 30 years. Cells were irradiated using an X-ray machine RUB RUST-M1 (JSC "Ruselectronics", Moscow, Russia at 37°C temperature with a dose rate of 400 mGy/min (200 kV, 2*2.4 mA, a filter of 1.5mm AI or 4 mGy/min (50 kV, 2*0.4 mA, a filter of 1.5 mm AI. Immuno-cytochemical protein staining was utilized for yH2AX and Rad51 foci analysis. Results. Phosphorylated histone H2AX (yH2AX and the key protein of homologous recombination Rad51 foci formation and disappearance kinetics were investigated simultaneously in primary human dermal fibroblasts after acute and prolonged exposure to X-ray radiation at a same dose. It was shown that the relative yield of yH2AX foci per dose reduces with decrease in dose rate, while the relative yield of Rad51 foci conversely increases. Conclusion. Our findings suggest the fundamental differences in the ratio of non-homologous end joining and homologous recombination DNA repair in acute versus prolonged irradiated cells.

  16. High throughput measurement of γH2AX DSB repair kinetics in a healthy human population.

    Directory of Open Access Journals (Sweden)

    Preety M Sharma

    Full Text Available The Columbia University RABiT (Rapid Automated Biodosimetry Tool quantifies DNA damage using fingerstick volumes of blood. One RABiT protocol quantifies the total γ-H2AX fluorescence per nucleus, a measure of DNA double strand breaks (DSB by an immunofluorescent assay at a single time point. Using the recently extended RABiT system, that assays the γ-H2AX repair kinetics at multiple time points, the present small scale study followed its kinetics post irradiation at 0.5 h, 2 h, 4 h, 7 h and 24 h in lymphocytes from 94 healthy adults. The lymphocytes were irradiated ex vivo with 4 Gy γ rays using an external Cs-137 source. The effect of age, gender, race, ethnicity, alcohol use on the endogenous and post irradiation total γ-H2AX protein yields at various time points were statistically analyzed. The endogenous γ-H2AX levels were influenced by age, race and alcohol use within Hispanics. In response to radiation, induction of γ-H2AX yields at 0.5 h and peak formation at 2 h were independent of age, gender, ethnicity except for race and alcohol use that delayed the peak to 4 h time point. Despite the shift in the peak observed, the γ-H2AX yields reached close to baseline at 24 h for all groups. Age and race affected the rate of progression of the DSB repair soon after the yields reached maximum. Finally we show a positive correlation between endogenous γ-H2AX levels with radiation induced γ-H2AX yields (RIY (r=0.257, P=0.02 and a negative correlation with residuals (r=-0.521, P=<0.0001. A positive correlation was also observed between RIY and DNA repair rate (r=0.634, P<0.0001. Our findings suggest age, race, ethnicity and alcohol use influence DSB γ-H2AX repair kinetics as measured by RABiT immunofluorescent assay.

  17. γ-H2AX: A Novel Prognostic Marker in a Prognosis Prediction Model of Patients with Early Operable Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    E. Chatzimichail

    2014-01-01

    Full Text Available Cancer is a leading cause of death worldwide and the prognostic evaluation of cancer patients is of great importance in medical care. The use of artificial neural networks in prediction problems is well established in human medical literature. The aim of the current study was to assess the prognostic value of a series of clinical and molecular variables with the addition of γ-H2AX—a new DNA damage response marker—for the prediction of prognosis in patients with early operable non-small cell lung cancer by comparing the γ-H2AX-based artificial network prediction model with the corresponding LR one. Two prognostic models of 96 patients with 27 input variables were constructed by using the parameter-increasing method in order to compare the predictive accuracy of neural network and logistic regression models. The quality of the models was evaluated by an independent validation data set of 11 patients. Neural networks outperformed logistic regression in predicting the patient’s outcome according to the experimental results. To assess the importance of the two factors p53 and γ-H2AX, models without these two variables were also constructed. JR and accuracy of these models were lower than those of the models using all input variables, suggesting that these biological markers are very important for optimal performance of the models. This study indicates that neural networks may represent a potentially more useful decision support tool than conventional statistical methods for predicting the outcome of patients with non-small cell lung cancer and that some molecular markers, such as γ-H2AX, enhance their predictive ability.

  18. A specific inhibitor of protein kinase CK2 delays gamma-H2Ax foci removal and reduces clonogenic survival of irradiated mammalian cells

    Directory of Open Access Journals (Sweden)

    Huber Peter E

    2011-02-01

    Full Text Available Abstract Background The protein kinase CK2 sustains multiple pro-survival functions in cellular DNA damage response and its level is tightly regulated in normal cells but elevated in cancers. Because CK2 is thus considered as potential therapeutic target, DNA double-strand break (DSB formation and rejoining, apoptosis induction and clonogenic survival was assessed in irradiated mammalian cells upon chemical inhibition of CK2. Methods MRC5 human fibroblasts and WIDR human colon carcinoma cells were incubated with highly specific CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB, or mock-treated, 2 hours prior to irradiation. DSB was measured by pulsed-field electrophoresis (PFGE as well as gamma-H2AX foci formation and removal. Apoptosis induction was tested by DAPI staining and sub-G1 flow cytometry, survival was quantified by clonogenic assay. Results TBB treatment did not affect initial DNA fragmention (PFGE; up to 80 Gy or foci formation (1 Gy. While DNA fragment rejoining (PFGE was not inhibited by the drug, TBB clearly delayed gamma-H2AX foci disappearence during postirradiation incubation. No apoptosis induction could be detected for up to 38 hours for both cell lines and exposure conditions (monotherapies or combination, but TBB treatment at this moderately toxic concentration of 20 μM (about 40% survival enhanced radiation-induced cell killing in the clonogenic assay. Conclusions The data imply a role of CK2 in gamma-H2AX dephosporylation, most likely through its known ability to stimulate PP2A phosphatase, rather than DSB rejoining. The slight but definite clonogenic radiosensitization by TBB does apparently not result from interference with an apoptosis suppression function of CK2 in these cells but could reflect inhibitor-induced uncoupling of DNA damage response decay from break ligation.

  19. Induction and Processing of the Radiation-Induced Gamma-H2AX Signal and Its Link to the Underlying Pattern of DSB: A Combined Experimental and Modelling Study.

    Directory of Open Access Journals (Sweden)

    Francesco Tommasino

    Full Text Available We present here an analysis of DSB induction and processing after irradiation with X-rays in an extended dose range based on the use of the γH2AX assay. The study was performed by quantitative flow cytometry measurements, since the use of foci counting would result in reasonable accuracy only in a limited dose range of a few Gy. The experimental data are complemented by a theoretical analysis based on the GLOBLE model. In fact, original aim of the study was to test GLOBLE predictions against new experimental data, in order to contribute to the validation of the model. Specifically, the γH2AX signal kinetics has been investigated up to 24 h after exposure to increasing photon doses between 2 and 500 Gy. The prolonged persistence of the signal at high doses strongly suggests dose dependence in DSB processing after low LET irradiation. Importantly, in the framework of our modelling analysis, this is related to a gradually increased fraction of DSB clustering at the micrometre scale. The parallel study of γH2AX dose response curves shows the onset of a pronounced saturation in two cell lines at a dose of about 20 Gy. This dose is much lower than expected according to model predictions based on the values usually adopted for the DSB induction yield (≈ 30 DSB/Gy and for the γH2AX foci extension of approximately 2 Mbp around the DSB. We show and discuss how theoretical predictions and experimental findings can be in principle reconciled by combining an increased DSB induction yield with the assumption of a larger genomic extension for the single phosphorylated regions. As an alternative approach, we also considered in our model the possibility of a 3D spreading-mechanism of the H2AX phosphorylation around the induced DSB, and applied it to the analysis of both the aspects considered. Our results are found to be supportive for the basic assumptions on which GLOBLE is built. Apart from giving new insights into the H2AX phosphorylation process

  20. Genome-wide transcriptional analysis of apoptosis-related genes and pathways regulated by H2AX in lung cancer A549 cells.

    Science.gov (United States)

    Lu, Chengrong; Xiong, Min; Luo, Yuan; Li, Jing; Zhang, Yanjun; Dong, Yaqiong; Zhu, Yanjun; Niu, Tianhui; Wang, Zhe; Duan, Lianning

    2013-09-01

    Histone H2AX is a novel tumor suppressor protein and plays an important role in apoptosis of cancer cells. However, the role of H2AX in lung cancer cells is unclear. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. We showed that H2AX was involved in apoptosis of lung cancer A549 cells as in other tumor cells. Knockdown of H2AX strongly suppressed apoptosis of A549 cells. We clarified the molecular mechanisms of apoptosis regulated by H2AX based on genome-wide transcriptional analysis. Microarray data analysis demonstrated that H2AX knockdown in A549 cells affected expression of 3,461 genes, including upregulation of 1,435 and downregulation of 2,026. These differentially expressed genes were subjected to bioinformatic analysis for exploring biological processes regulated by H2AX in lung cancer cells. Gene ontology analysis showed that H2AX affected expression of many genes, through which, many important functions including response to stimuli, gene expression, and apoptosis were involved in apoptotic regulation of lung cancer cells. Pathway analysis identified the mitogen-activated protein kinase signaling pathway and apoptosis as the most important pathways targeted by H2AX. Signal transduction pathway networks analysis and chromatin immunoprecipitation assay showed that two core genes, NFKB1 and JUN, were involved in apoptosis regulated by H2AX in lung cancer cells. Taken together, these data provide compelling clues for further exploration of H2AX function in cancer cells.

  1. Genotoxicity testing: Comparison of the γH2AX focus assay with the alkaline and neutral comet assays.

    Science.gov (United States)

    Nikolova, Teodora; Marini, Federico; Kaina, Bernd

    2017-10-01

    Genotoxicity testing relies on the quantitative measurement of adverse effects, such as chromosome aberrations, micronuclei, and mutations, resulting from primary DNA damage. Ideally, assays will detect DNA damage and cellular responses with high sensitivity, reliability, and throughput. Several novel genotoxicity assays may fulfill these requirements, including the comet assay and the more recently developed γH2AX assay. Although they are thought to be specific for genotoxicants, a systematic comparison of the assays has not yet been undertaken. In the present study, we compare the γH2AX focus assay with the alkaline and neutral versions of the comet assay, as to their sensitivities and limitations for detection of genetic damage. We investigated the dose-response relationships of γH2AX foci and comet tail intensities at various times following treatment with four prototypical genotoxicants, methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), mitomycin C, and hydrogen peroxide (H2O2) and we tested whether there is a correlation between the endpoints, i.e., alkali-labile sites and DNA strand breaks on the one hand and the cell's response to DNA double-strand breaks and blocked replication forks on the other. Induction of γH2AX foci gave a linear dose response and all agents tested were positive in the assay. The increase in comet tail intensity was also a function of dose; however, mitomycin C was almost completely ineffective in the comet assay, and the doses needed to achieve a significant effect were somewhat higher for some treatments in the comet assay than in the γH2AX foci assay, which was confirmed by threshold analysis. There was high correlation between tail intensity and γH2AX foci for MMS and H2O2, less for MNNG, and none for mitomycin C. From this we infer that the γH2AX foci assay is more reliable, sensitive, and robust than the comet assay for detecting genotoxicant-induced DNA damage. Copyright © 2017 Elsevier B

  2. Cell size matters in gamma-H2AX assay for low-dose alpha particle effect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ui seob; Kim, Eun Hee [Seoul National University, Daejeon (Korea, Republic of)

    2016-05-15

    Gamma-H2AX assay is an immuno-fluorescence experiment that enables detecting the location and number of DNA double strand breaks (DSBs) in cells. Under uniform radiation beam intensity, cells would respond with similar numbers of gamma-H2AX if they are similar in cross section. If cells are not represented by a common size, however, a larger cell has a greater chance of radiation exposure and has a better chance of counting a greater number of foci. In other words, the cell size distribution would be reflected in the FPC distribution. In the conventional gamma-H2AX assay, the mean FPC value solely indicates the level of cellular damage under a certain radiation exposure. The purpose of this study is to investigate the FPC distribution in connection with the cell size distribution. The high-LET alpha beam was employed for radiation exposure so that a single track of radiation leaves a meaningful amount of energy in the cell. Gamma-H2AX is a powerful tool for investigating the cellular response at low-dose exposure. If the gamma-H2AX assay is performed with cells of the same size, 'the average number of foci per cell' may accord with the overall response of sample cells to radiation exposure. With cells of non-uniform size, however, one should be cautious in taking the value as an index of the severity in cellular effect of radiation exposure. According to our experiments, a portion of sample cells carried DSBs of more than 5 times greater number than the mean FPC value and might play a critical role in radio-response.

  3. X-ray induced formation of γ-H2AX foci after full-field digital mammography and digital breast-tomosynthesis.

    Directory of Open Access Journals (Sweden)

    Siegfried A Schwab

    Full Text Available PURPOSE: To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM and to estimate foci after FFDM and digital breast-tomosynthesis (DBT using a biological phantom model. MATERIALS AND METHODS: The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified. RESULTS: Median in-vivo foci level/cell was 0.086 (range 0.067-0.116 before and 0.094 (0.076-0.126 after FFDM (p = 0.0004. In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086-0.140 at skin level and 0.035 (range 0.030-0.050 at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040-0.081 at skin level and 0.015 (range 0.006-0.020 at glandular level. CONCLUSION: In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.

  4. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci.

    Science.gov (United States)

    Jezkova, Lucie; Zadneprianetc, Mariia; Kulikova, Elena; Smirnova, Elena; Bulanova, Tatiana; Depes, Daniel; Falkova, Iva; Boreyko, Alla; Krasavin, Evgeny; Davidkova, Marie; Kozubek, Stanislav; Valentova, Olga; Falk, Martin

    2018-01-18

    Biological effects of high-LET (linear energy transfer) radiation have received increasing attention, particularly in the context of more efficient radiotherapy and space exploration. Efficient cell killing by high-LET radiation depends on the physical ability of accelerated particles to generate complex DNA damage, which is largely mediated by LET. However, the characteristics of DNA damage and repair upon exposure to different particles with similar LET parameters remain unexplored. We employed high-resolution confocal microscopy to examine phosphorylated histone H2AXH2AX)/p53-binding protein 1 (53BP1) focus streaks at the microscale level, focusing on the complexity, spatiotemporal behaviour and repair of DNA double-strand breaks generated by boron and neon ions accelerated at similar LET values (∼135 keV μm-1) and low energies (8 and 47 MeV per n, respectively). Cells were irradiated using sharp-angle geometry and were spatially (3D) fixed to maximize the resolution of these analyses. Both high-LET radiation types generated highly complex γH2AX/53BP1 focus clusters with a larger size, increased irregularity and slower elimination than low-LET γ-rays. Surprisingly, neon ions produced even more complex γH2AX/53BP1 focus clusters than boron ions, consistent with DSB repair kinetics. Although the exposure of cells to γ-rays and boron ions eliminated a vast majority of foci (94% and 74%, respectively) within 24 h, 45% of the foci persisted in cells irradiated with neon. Our calculations suggest that the complexity of DSB damage critically depends on (increases with) the particle track core diameter. Thus, different particles with similar LET and energy may generate different types of DNA damage, which should be considered in future research.

  5. Effect of antioxidants on X-ray-induced γ-H2AX foci in human blood lymphocytes: preliminary observations.

    Science.gov (United States)

    Kuefner, Michael A; Brand, Michael; Ehrlich, James; Braga, Larissa; Uder, Michael; Semelka, Richard C

    2012-07-01

    To investigate the effect of a radioprotective oral agent containing a formulation of antioxidants and glutathione-elevating compounds on the extent of x-ray-induced γ-H2AX foci formation. The study was approved by local ethics committee and informed consent was obtained from each subject. In vitro experiments with blood lymphocytes of 25 healthy volunteers were performed without antioxidants and with antioxidants added either before or immediately after irradiation (10 mGy). For in vivo/in vitro tests, blood samples were obtained before, 15, 30, and 60 minutes (n=17) after, and 2, 3, and 5 hours (n=11) after oral ingestion of antioxidant pills and were irradiated (10 mGy). DNA double-strand breaks (DSBs) were quantified in isolated lymphocytes 5 minutes (in vitro and in vivo/in vitro) and 15 minutes (in vitro) after irradiation by enumerating γ-H2AX foci. To validate the data, additional in vitro experiments with use of 53BP1 as another independent marker for DSBs were performed. Nonirradiated samples served as controls. Statistical analyses were performed by using Wilcoxon rank-sum tests (in vitro), repeated-measures test, and Dunnett test (in vivo/in vitro). In the in vitro experiments, 15-minute preincubation with antioxidants significantly reduced mean γ-H2AX foci levels by 23% (Plead to a reduction of x-ray-induced foci (P=.6905). Mean 53BP1 foci were also reduced by preincubation with the radioprotectant. In the in vivo/in vitro tests, oral pretreatment with antioxidants also led to a significant reduction of γ-H2AX foci formation; administration 60 minutes before irradiation resulted in a mean foci reduction of 58% (Pleads to a significant reduction in foci. © RSNA, 2012.

  6. Onset of quiescence following p53 mediated down-regulation of H2AX in normal cells.

    Directory of Open Access Journals (Sweden)

    Yuko Atsumi

    Full Text Available Normal cells, both in vivo and in vitro, become quiescent after serial cell proliferation. During this process, cells can develop immortality with genomic instability, although the mechanisms by which this is regulated are unclear. Here, we show that a growth-arrested cellular status is produced by the down-regulation of histone H2AX in normal cells. Normal mouse embryonic fibroblast cells preserve an H2AX diminished quiescent status through p53 regulation and stable-diploidy maintenance. However, such quiescence is abrogated under continuous growth stimulation, inducing DNA replication stress. Because DNA replication stress-associated lesions are cryptogenic and capable of mediating chromosome-bridge formation and cytokinesis failure, this results in tetraploidization. Arf/p53 module-mutation is induced during tetraploidization with the resulting H2AX recovery and immortality acquisition. Thus, although cellular homeostasis is preserved under quiescence with stable diploidy, tetraploidization induced under growth stimulation disrupts the homeostasis and triggers immortality acquisition.

  7. Quantitative image analysis of gamma-H2AX foci induced by ionizing radiation applying open source programs.

    Science.gov (United States)

    González, Jorge Ernesto; Lee, Manual; Barquinero, Joan Francesc; Valente, Marco; Roch-Lefèvre, Sandrine; García, Omar

    2012-04-01

    To test a CellProfiler pipeline for automated counting and characterization of gamma-H2AX foci in color images of human cultured cells. A431 cells were irradiated and stained for gamma-H2AX foci detection. Sets of color images were analyzed visually, and findings were compared with those using FociCounter and CellProfiler software. The CellProfiler pipeline includes some proprieties not present in FociCounter, such as the automatic detection of nuclei, the detection of touching nuclei and the rejection of nuclei that touch the border of the image. The time required for manual operation is associated with the number of images analyzed visually or by FociCounter but not for the CellProfiler program. CellProfiler reduced manual operation time and is about 4 times faster than semiautomatic detection using FociCounter and 10 times faster than visual counting. We conclude that CellProfiler and FociCounter are reliable tools for measuring gamma-H2AX foci. However, CellProfiler overcomes the limitations of the FociCounter program and is able to detect nuclei automatically, saving considerable manual operation.

  8. Effect of mild temperature shift on poly(ADP-ribose) and γH2AX levels in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Sachiko [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Tanaka, Masakazu [Department of Microbiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka 573-1010 (Japan); Sato, Teruaki [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Ida, Chieri [Department of Applied Life Studies, College of Nagoya Women’s University, 3-40 Shioji-cho, Mizuho-ku, Nagoya-shi, Aichi 467-8610 (Japan); Ohta, Narumi; Hamada, Takashi; Uetsuki, Taichi; Nishi, Yoshisuke [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Moss, Joel [Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590 (United States); Miwa, Masanao, E-mail: m_miwa@nagahama-i-bio.ac.jp [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2016-08-05

    Poly (ADP-ribose) (PAR) is rapidly synthesized by PAR polymerases (PARPs) upon activation by DNA single- and double-strand breaks. In this study, we examined the quantitative amount of PAR in HeLa cells cultured within the physiological temperatures below 41 °C for verification of the effect of shifting-up or -down the temperature from 37.0 °C on the DNA breaks, whether the temperature-shift caused breaks that could be monitored by the level of PAR. While PAR level did not change significantly when HeLa cells were cultured at 33.5 °C or 37.0 °C, it was significantly increased 2- and 3-fold when cells were cultured for 12 h and 24 h, respectively, at 40.5 °C as compared to 37.0 °C. Similar to the results with HeLa cells, PAR level was increased 2-fold in CHO-K1 cells cultured at 40.5 °C for 24 h as compared to 37.0 °C. As the cellular levels of PAR polymerase1 (PARP1) and PAR glycohydrolase (PARG), a major degradation enzyme for PAR, did not seem to change significantly, this increase could be caused by activation of PARP1 by DNA strand breaks. In fact, γH2AX, claimed to be a marker of DNA double-strand breaks, was found in cell extracts of HeLa cells and CHO-K1 cells at elevated temperature vs. 37.0 °C, and these γH2AX signals were intensified in the presence of 3-aminobenzamide, a PARP inhibitor. The γH2AX immunohistochemistry results in HeLa cells were consistent with Western blot analyses. In HeLa cells, proliferation was significantly suppressed at 40.5 °C in 72 h-continuous cultures and decreased viabilities were also observed after 24–72 h at 40.5 °C. Flow cytometric analyses showed that the HeLa cells were arrested at G2/M after temperature shift-up to 40.5 °C. These physiological changes were potentiated in the presence of 3-aminobenzamide. Decrease in growth rates, increased cytotoxicity and G2/M arrest, were associated with the temperature-shift to 40.5 °C and are indirect evidence of DNA breaks. In addition to γH2AX

  9. Ratio of γ-H2AX level in lymphocytes to that in granulocytes detected using flow cytometry as a potential biodosimeter for radiation exposure.

    Science.gov (United States)

    Wang, Zhidong; Hu, Hailiang; Hu, Ming; Zhang, Xueqing; Wang, Qi; Qiao, Yulei; Liu, Haixiang; Shen, Liping; Zhou, Pingkun; Chen, Ying

    2014-05-01

    This study aims to assess utilisation of the ratio of γ-H2AX in lymphocytes to that in granulocytes (RL/G of γ-H2AX) in blood as a rapid method for population triage and dose estimation during large-scale radiation emergencies. Blood samples from healthy volunteers exposed to 0-10 Gy of (60)Co irradiation were collected. The samples were cultured for 0-24 h and then analysed using flow cytometry to measure the levels of γ-H2AX in lymphocytes and granulocytes. The basal RL/G levels of γ-H2AX in healthy human blood, the response of RL/G of γ-H2AX to ionising radiation and its relationship with doses, time intervals after exposure and individual differences were also analysed. The level of γ-H2AX in lymphocytes increased in a dose-dependent manner after irradiation, whereas the level in granulocytes was not affected. A linear dose-effect relationship with low inter-experimental and inter-individual variations was observed. The RL/G of γ-H2AX may be used as a biomarker for population triage and dose estimation during large-scale radiation emergencies if blood samples can be collected within 24 h.

  10. Measurement of DNA damage in peripheral blood by the γ-H2AX assay as predictor of colorectal cancer risk.

    Science.gov (United States)

    Zhao, Lina; Chang, David W; Gong, Yilei; Eng, Cathy; Wu, Xifeng

    2017-05-01

    The detection of γ-H2AX focus is one of the most sensitive ways to monitor DNA double-strand breaks (DSBs). Although changes in γ-H2AX activity have been studied in tumor cells in colorectal cancer (CRC), changes in peripheral blood lymphocytes (PBLs) have not been examined previously. We hypothesize that higher levels of irradiation-induced γ-H2AX in PBLs may be associated with an elevated risk of colorectal cancer (CRC). In a case-control study, the baseline and ionizing radiation (IR)-induced γ-H2AX levels in PBLs from frequency-matched 320 untreated CRC patients and 320 controls were detected by a laser scanning cytometer-based immunocytochemical method. We used unconditional multivariable logistic regression to evaluate CRC risk by using the ratio of IR-induced γ-H2AX to the baseline levels with adjustment of age, sex and smoking status. We found CRC cases had significantly higher γ-H2AX ratio (1.5 vs. 1.41, Prisk of CRC (OR=6.72, 95% CI=4.54-9.94). Quartile analyses also showed significant dose-response relationship between higher γ-H2AX ratio and increased risk of CRC (P for trendrisk; however, no interactions with γ-H2AX ratio were observed. These results support the premise that DSBs in peripheral blood as measured by γ-H2AX level might represent an intermediate phenotype to assess the risk of CRC. Future prospective studies are necessary to confirm our findings in independent populations. Copyright © 2017. Published by Elsevier B.V.

  11. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis.

    Science.gov (United States)

    Ivashkevich, Alesia N; Martin, Olga A; Smith, Andrea J; Redon, Christophe E; Bonner, William M; Martin, Roger F; Lobachevsky, Pavel N

    2011-06-03

    The γH2AX focus assay represents a fast and sensitive approach for the detection of one of the critical types of DNA damage - double-strand breaks (DSB) induced by various cytotoxic agents including ionising radiation. Apart from research applications, the assay has a potential in clinical medicine/pathology, such as assessment of individual radiosensitivity, response to cancer therapies, as well as in biodosimetry. Given that generally there is a direct relationship between numbers of microscopically visualised γH2AX foci and DNA DSB in a cell, the number of foci per nucleus represents the most efficient and informative parameter of the assay. Although computational approaches have been developed for automatic focus counting, the tedious and time consuming manual focus counting still remains the most reliable way due to limitations of computational approaches. We suggest a computational approach and associated software for automatic focus counting that minimises these limitations. Our approach, while using standard image processing algorithms, maximises the automation of identification of nuclei/cells in complex images, offers an efficient way to optimise parameters used in the image analysis and counting procedures, optionally invokes additional procedures to deal with variations in intensity of the signal and background in individual images, and provides automatic batch processing of a series of images. We report results of validation studies that demonstrated correlation of manual focus counting with results obtained using our computational algorithm for mouse jejunum touch prints, mouse tongue sections and human blood lymphocytes as well as radiation dose response of γH2AX focus induction for these biological specimens. 2011 Elsevier B.V. All rights reserved.

  12. {gamma}H2AX foci as a measure of DNA damage: A computational approach to automatic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivashkevich, Alesia N. [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia); Martin, Olga A. [Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892 (United States); Smith, Andrea J. [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia); Redon, Christophe E.; Bonner, William M. [Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892 (United States); Martin, Roger F. [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia); Lobachevsky, Pavel N., E-mail: pavel.lobachevsky@petermac.org [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia)

    2011-06-03

    The {gamma}H2AX focus assay represents a fast and sensitive approach for the detection of one of the critical types of DNA damage - double-strand breaks (DSB) induced by various cytotoxic agents including ionising radiation. Apart from research applications, the assay has a potential in clinical medicine/pathology, such as assessment of individual radiosensitivity, response to cancer therapies, as well as in biodosimetry. Given that generally there is a direct relationship between numbers of microscopically visualised {gamma}H2AX foci and DNA DSB in a cell, the number of foci per nucleus represents the most efficient and informative parameter of the assay. Although computational approaches have been developed for automatic focus counting, the tedious and time consuming manual focus counting still remains the most reliable way due to limitations of computational approaches. We suggest a computational approach and associated software for automatic focus counting that minimises these limitations. Our approach, while using standard image processing algorithms, maximises the automation of identification of nuclei/cells in complex images, offers an efficient way to optimise parameters used in the image analysis and counting procedures, optionally invokes additional procedures to deal with variations in intensity of the signal and background in individual images, and provides automatic batch processing of a series of images. We report results of validation studies that demonstrated correlation of manual focus counting with results obtained using our computational algorithm for mouse jejunum touch prints, mouse tongue sections and human blood lymphocytes as well as radiation dose response of {gamma}H2AX focus induction for these biological specimens.

  13. Biochemical Kinetics Model of DSB Repair and GammaH2AX FOCI by Non-homologous End Joining

    Science.gov (United States)

    Cucinotta, Francis, A.; Pluth, Janice M.; Anderson, Jennifer A.; Harper, Jane V.; O'Neill, Peter

    2007-01-01

    We developed a biochemical kinetics approach to describe the repair of double strand breaks (DSB) produced by low LET radiation by modeling molecular events associated with the mechanisms of non-homologous end-joining (NHEJ). A system of coupled non-linear ordinary differential equations describes the induction of DSB and activation pathways for major NHEJ components including Ku(sub 70/80), DNA-PK(sub cs), and the Ligase IV-XRCC4 hetero-dimer. The autophosphorylation of DNA-PK(sub cs and subsequent induction of gamma-H2AX foci observed after ionizing radiation exposure were modeled. A two-step model of DNA-PK(sub cs) regulation of repair was developed with the initial step allowing access of other NHEJ components to breaks, and a second step limiting access to Ligase IV-XRCC4. Our model assumes that the transition from the first to second-step depends on DSB complexity, with a much slower-rate for complex DSB. The model faithfully reproduced several experimental data sets, including DSB rejoining as measured by pulsed-field electrophoresis (PFGE), quantification of the induction of gamma-H2AX foci, and live cell imaging of the induction of Ku(sub 70/80). Predictions are made for the behaviors of NHEJ components at low doses and dose-rates, where a steady-state is found at dose-rates of 0.1 Gy/hr or lower.

  14. Micronucleus and H2AX phosphorylation assessment of silica-coated iron oxide nanoparticles in human neuronal cells

    OpenAIRE

    Sánchez-Flores, Maria; Valdiglesias, Vanessa; Kiliç, Gozde; Costa, Carla; Fernandez-Bertolez, Natalia; Costa, Solange; Teixeira, João Paulo; Pasaro, Eduardo; Laffon, Blanca

    2015-01-01

    As clinically approved metal oxide nanoparticles, iron oxide nanoparticles (ION) hold immense potential in a vast variety of applications in various fields of biomedicine and biotechnology. With the increase in ION usage, particularly in diagnostics and therapeutics, concerns regarding their interactions with cellular components and possible deleterious effects are also growing. This work was supported by Xunta de Galicia (EM 2012/079), the project NanoToxClass (ERA ERASllNN/00...

  15. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    See-Hyoung Park

    2015-08-01

    Full Text Available BACKGROUND: Poly(ADP-ribose polymerase 1 (PARP1, γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS, and relapse-free survival (RFS by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph was an additional independent prognostic predictor for OS (P < .001 and RFS (P < .001. The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1 subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4 subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.

  16. γ-H2AX as a marker for dose deposition in the brain of wistar rats after synchrotron microbeam radiation.

    Directory of Open Access Journals (Sweden)

    Cristian Fernandez-Palomo

    Full Text Available Synchrotron radiation has shown high therapeutic potential in small animal models of malignant brain tumours. However, more studies are needed to understand the radiobiological effects caused by the delivery of high doses of spatially fractionated x-rays in tissue. The purpose of this study was to explore the use of the γ-H2AX antibody as a marker for dose deposition in the brain of rats after synchrotron microbeam radiation therapy (MRT.Normal and tumour-bearing Wistar rats were exposed to 35, 70 or 350 Gy of MRT to their right cerebral hemisphere. The brains were extracted either at 4 or 8 hours after irradiation and immediately placed in formalin. Sections of paraffin-embedded tissue were incubated with anti γ-H2AX primary antibody.While the presence of the C6 glioma does not seem to modulate the formation of γ-H2AX in normal tissue, the irradiation dose and the recovery versus time are the most important factors affecting the development of γ-H2AX foci. Our results also suggest that doses of 350 Gy can trigger the release of bystander signals that significantly amplify the DNA damage caused by radiation and that the γ-H2AX biomarker does not only represent DNA damage produced by radiation, but also damage caused by bystander effects.In conclusion, we suggest that the γ-H2AX foci should be used as biomarker for targeted and non-targeted DNA damage after synchrotron radiation rather than a tool to measure the actual physical doses.

  17. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    Science.gov (United States)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  18. Histone H2AX Is Involved in FoxO3a-Mediated Transcriptional Responses to Ionizing Radiation to Maintain Genome Stability

    Directory of Open Access Journals (Sweden)

    Stephane Tarrade

    2015-12-01

    Full Text Available Histone H2AX plays a crucial role in molecular and cellular responses to DNA damage and in the maintenance of genome stability. It is downstream of ataxia telangiectasia mutated (ATM damage signaling pathway and there is an emerging role of the transcription factor FoxO3a, a regulator of a variety of other pathways, in activating this signaling. We asked whether H2AX may feedback to FoxO3a to affect respective FoxO3a-dependent pathways. We used a genetically matched pair of mouse embryonic fibroblast H2AX+/+ and H2AX−/− cell lines to carry out comprehensive time-course and dose-response experiments and to show that the expression of several FoxO3a-regulated genes was altered in H2AX−/− compared to H2AX+/+ cells at both basal and irradiated conditions. Hspa1b and Gadd45a were down-regulated four- to five-fold and Ddit3, Cdkn1a and Sod2 were up-regulated 2–3-fold in H2AX−/− cells. Using the luciferase reporter assay, we directly demonstrated that transcriptional activity of FoxoO3a was reduced in H2AX−/− cells. FoxO3a localization within the nuclear phospho-ATM (Ser1981 foci in irradiated cells was affected by the H2AX status, as well as its posttranslational modification (phospho-Thr32. These differences were associated with genomic instability and radiosensitivity in H2AX−/− cells. Finally, knockdown of H2AX in H2AX+/+ cells resulted in FoxO3a-dependent gene expression patterns and increased radiosensitivity that partially mimicked those found in H2AX−/− cells. Taken together, our data suggest a role for FoxO3a in the maintenance of genome integrity in response to DNA damage that is mediated by H2AX via yet unknown mechanisms.

  19. Relative biological efficiency of protons at low and therapeutic doses in induction of 53BP1/γH2AX foci in lymphocytes from umbilical cord blood.

    Science.gov (United States)

    Sorokina, Svetlana; Markova, Eva; Gursky, Jan; Dobrovodsky, Jozef; Belyaev, Igor

    2013-09-01

    In order to evaluate DNA damage induced by protons at low and radiotherapeutic doses at the therapeutic proton complex at Ružomberok, Slovak Republic, lymphocytes from umbilical cord blood (UCB) of the same four probands were irradiated in the dose range of 1-200 cGy with γ-rays and protons (200 MeV, irradiation in the Bragg peak). DNA repair γH2AX/53BP1 foci were analyzed by fluorescent microscopy and flow cytometry. Statistically significant effects of radiations were detected by fluorescent microscopy at all doses higher 1 cGy. Almost all distributions of foci in irradiated cells fitted to the Poisson distribution. In general, there was no difference in the levels of γH2AX and 53BP1 foci in irradiated cells. Flow cytometry was less sensitive and detected radiation induced effects at doses of 50 cGy and higher. Factorial analysis of variance in the whole studied dose range has shown no significant effect of radiation quality on number of γH2AX and 53BP1 foci. The ratio of proton-induced foci to γ-ray-induced foci was 0.86 ± 0.16 (53BP1) and 0.99 ± 0.34 (γH2AX) as measured by fluorescent microscopy and 0.99 ± 0.16 (γH2AX) as measured by flow cytometry at the radiotherapeutic dose of 2 Gy. Both flow cytometry and fluorescent microscopy indicated that the average value of relative biological efficiency (RBE) at radiation doses ≥ 20 cGy was about 1.0. Our data that RBE increased at low doses ≤ 20 cGy are relevant both to the development of treatment modalities and exposures that take place during space exploration and should be verified by further studies.

  20. Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in cultured human cells: applications for microbeam radiation therapy

    Science.gov (United States)

    Anderson, D.; Andrais, B.; Mirzayans, R.; Siegbahn, E. A.; Fallone, B. G.; Warkentin, B.

    2013-06-01

    Microbeam radiation therapy (MRT) delivers single fractions of very high doses of synchrotron x-rays using arrays of microbeams. In animal experiments, MRT has achieved higher tumour control and less normal tissue toxicity compared to single-fraction broad beam irradiations of much lower dose. The mechanism behind the normal tissue sparing of MRT has yet to be fully explained. An accurate method for evaluating DNA damage, such as the γ-H2AX immunofluorescence assay, will be important for understanding the role of cellular communication in the radiobiological response of normal and cancerous cell types to MRT. We compare two methods of quantifying γ-H2AX nuclear fluorescence for uniformly irradiated cell cultures: manual counting of γ-H2AX foci by eye, and an automated, MATLAB-based fluorescence intensity measurement. We also demonstrate the automated analysis of cell cultures irradiated with an array of microbeams. In addition to offering a relatively high dynamic range of γ-H2AX signal versus irradiation dose ( > 10 Gy), our automated method provides speed, robustness, and objectivity when examining a series of images. Our in-house analysis facilitates the automated extraction of the spatial distribution of the γ-H2AX intensity with respect to the microbeam array — for example, the intensities in the peak (high dose area) and valley (area between two microbeams) regions. The automated analysis is particularly beneficial when processing a large number of samples, as is needed to systematically study the relationship between the numerous dosimetric and geometric parameters involved with MRT (e.g., microbeam width, microbeam spacing, microbeam array dimensions, peak dose, valley dose, and geometric arrangement of multiple arrays) and the resulting DNA damage.

  1. Visualisation of γH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non-Track Damage

    Science.gov (United States)

    Nakajima, Nakako Izumi; Brunton, Holly; Watanabe, Ritsuko; Shrikhande, Amruta; Hirayama, Ryoichi; Matsufuji, Naruhiro; Fujimori, Akira; Murakami, Takeshi; Okayasu, Ryuichi; Jeggo, Penny; Shibata, Atsushi

    2013-01-01

    Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle. PMID:23967070

  2. Visualisation of γH2AX foci caused by heavy ion particle traversal; distinction between core track versus non-track damage.

    Directory of Open Access Journals (Sweden)

    Nakako Izumi Nakajima

    Full Text Available Heavy particle irradiation produces complex DNA double strand breaks (DSBs which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle.

  3. Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, M., E-mail: marc.audebert@toulouse.inra.fr [INRA UMR1331, TOXALIM (Research Center in Food Toxicology), 180 chemin de Tournefeuille, F-31027 Toulouse (France); Université de Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toxalim, F-31076 Toulouse (France); Zeman, F.; Beaudoin, R.; Péry, A. [Unité “Modèles pour l' écotoxicologie et la toxicologie” (METO), INERIS, BP2, F-60550 Verneuil-en-Halatte (France); Cravedi, J.-P. [INRA UMR1331, TOXALIM (Research Center in Food Toxicology), 180 chemin de Tournefeuille, F-31027 Toulouse (France); Université de Toulouse, INP, ENVT, EIP, UPS, UMR1331, Toxalim, F-31076 Toulouse (France)

    2012-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) constitute a family of over one hundred compounds and can generally be found in complex mixtures. PAHs metabolites cause DNA damage which can lead to the development of carcinogenesis. Toxicity assessment of PAH complex mixtures is currently expressed in terms of toxic equivalents, based on Toxicity Equivalent Factors (TEFs). However, the definition of new TEFs for a large number of PAH could overcome some limitations of the current method and improve cancer risk assessment. The current investigation aimed at deriving the relative potency factors of PAHs, based on their genotoxic effect measured in vitro and analyzed with mathematical models. For this purpose, we used a new genotoxic assay (γH2AX) with two human cell lines (HepG2 and LS-174T) to analyze the genotoxic properties of 13 selected PAHs at low doses after 24 h treatment. The dose–response for genotoxic effects was modeled with a Hill model; equivalency between PAHs at low dose was assessed by applying constraints to the model parameters. In the two cell lines tested, we observed a clear dose–response for genotoxic effects for 11 tested compounds. LS-174T was on average ten times more sensitive than HepG2 towards PAHs regarding genotoxicity. We developed new TEFs, which we named Genotoxic Equivalent Factor (GEF). Calculated GEF for the tested PAHs were generally higher than the TEF usually used. Our study proposed a new in vitro based method for the establishment of relevant TEFs for PAHs to improve cancer risk assessment. -- Highlights: ► Examination of the genotoxic properties of 13 PAHs on two human cell lines. ► Modelization with a Hill model of the genotoxic dose–response. ► First investigation of the genotoxicity of benzo[c]fluorene on human cell lines. ► Establishment of relevant TEFs for PAHs to improve cancer risk assessment.

  4. Evaluation of low-dose proton beam radiation efficiency in MIA PaCa-2 pancreatic cancer cell line vitality and H2AX formation.

    Science.gov (United States)

    Liubavičiūtė, Aušra; Kraśko, Jan Aleksander; Mlynska, Agata; Lagzdina, Jelena; Sužiedėlis, Kęstutis; Pašukonienė, Vita

    2015-11-01

    The aim of this study was to evaluate the efficiency of proton beam irradiation in pancreatic cancer cell line MIA PaCa-2 and its role in the cell cycle, apoptosis, and formation of histone γH2AX in different reparation times (72-h follow-up). The MIA PaCa-2 pancreatic carcinoma cell line was irradiated with 1.6-Gy proton beam. After irradiation, cell viability was measured colorimetrically, and the cell cycle, apoptosis, and γH2AX expression were evaluated on a FACScan cytometer. Low-dose proton beam irradiation had an effect on the MIA PaCa-2 tumor cell line already 1h after exposure, but maximal lethality was reached after 72h postirradiation with a cell viability rate of 24%. The cell cycle went into partial G1/0 arrest, and was released after 72h. The expression of γH2AX was strong and its levels were significantly elevated as late as 48h post radiation. The apoptosis levels increased with post radiation incubation time to reach 79% after 72h. Our data demonstrate that low-doses proton beam irradiation had an effect on MIA PaCa-2 pancreatic carcinoma cell line. Full extent of irradiation had an impact only 24h postirradiation, triggering DNA arrested cell cycle in G1/0 phase. Formed DNA DSBs were found to be repaired via the NHEJ pathway mechanism within 72h. Unsuccessful repaired DSBs induced apoptotic cell death. After 72h reparation processes were completed, and cell cycle was released from arrest in G1/0 phase. Copyright © 2015 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Mean frequency and relative fluorescence intensity measurement of γ‐H2AX foci dose response in PBL exposed to γ‐irradiation: An inter‐ and intra‐laboratory comparison and its relevance for radiation triage

    National Research Council Canada - National Science Library

    Venkateswarlu, Raavi; Tamizh, Selvan G; Bhavani, Manivannan; Kumar, Arun; Alok, Amit; Karthik, Kanagaraj; Kalra, Namita; Vijayalakshmi, J; Paul, Solomon F. D; Chaudhury, N. K; Venkatachalam, Perumal

    2015-01-01

    Measurement of γ‐H2AX protein changes in the peripheral blood lymphocytes (PBL) of individuals exposed to ionizing radiation is a simple, sensitive, and rapid assay for radiation triage and early marker of dose estimation...

  6. Survival Fraction at 2 Gy and γH2AX Expression Kinetics in Peripheral Blood Lymphocytes From Cancer Patients: Relationship With Acute Radiation-Induced Toxicities

    Energy Technology Data Exchange (ETDEWEB)

    Pouliliou, Stamatia E. [Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece); Lialiaris, Theodoros S. [Department of Medical Genetics, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece); Dimitriou, Thespis [Department of Anatomy, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece); Giatromanolaki, Alexandra [Department of Pathology, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece); Papazoglou, Dimitrios [Department of Internal Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece); Pappa, Aglaia [Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece); Pistevou, Kyriaki [Department of Radiotherapy/Oncology, Aristotle University of Thessalonica, Thessalonica (Greece); Kalamida, Dimitra [Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece); Koukourakis, Michael I., E-mail: targ@her.forthnet.gr [Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, School of Health Sciences, Democritus University of Thrace, Alexandroupolis (Greece)

    2015-07-01

    Purpose: Predictive assays for acute radiation toxicities would be clinically relevant in radiation oncology. We prospectively examined the predictive role of the survival fraction at 2 Gy (SF2) and of γH2AX (double-strand break [DSB] DNA marker) expression kinetics in peripheral blood mononuclear cells (PBMCs) from cancer patients before radiation therapy. Methods and Materials: SF2 was measured with Trypan Blue assay in the PBMCs from 89 cancer patients undergoing radiation therapy at 4 hours (SF2{sub [4h]}) and 24 hours (SF2{sub [24h]}) after ex vivo irradiation. Using Western blot analysis and band densitometry, we further assessed the expression of γH2AX in PBMC DNA at 0 hours, 30 minutes, and 4 hours (33 patients) and 0 hour, 4 hours, and 24 hours (56 patients), following ex vivo irradiation with 2 Gy. Appropriate ratios were used to characterize each patient, and these were retrospectively correlated with early radiation therapy toxicity grade. Results: The SF2{sub (4h)} was inversely correlated with the toxicity grade (P=.006). The γH2AX-ratio{sub (30min)} (band density of irradiated/non-irradiated cells at 30 minutes) revealed, similarly, a significant inverse association (P=.0001). The DSB DNA repair rate from 30 minutes to 4 hours, calculated as the relative RγH2AX-ratio (γH2AX-ratio{sub (4h)}/γH2AX-ratio{sub (30min)}) showed a significant direct association with high toxicity grade (P=.01). Conclusions: Our results suggest that SF2 is a significant radiation sensitivity index for patients undergoing radiation therapy. γH2AX Western blot densitometry analysis provided 2 important markers of normal tissue radiation sensitivity. Low γH2AX expression at 30 minutes was linked with high toxicity grade, suggesting that poor γH2AX repair activity within a time frame of 30 minutes after irradiation predicts for poor radiation tolerance. On the other hand, rapid γH2AX content restoration at 4 hours after irradiation, compatible with

  7. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong [Fudan University, Department of Radiation Biology, Institute of Radiation Medicine, Shanghai (China)

    2016-08-15

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies. (orig.)

  8. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays.

    Science.gov (United States)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-08-01

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies.

  9. Microwaves from UMTS/GSM mobile phones induce long-lasting inhibition of 53BP1/gamma-H2AX DNA repair foci in human lymphocytes.

    Science.gov (United States)

    Belyaev, Igor Y; Markovà, Eva; Hillert, Lena; Malmgren, Lars O G; Persson, Bertil R R

    2009-02-01

    We have recently described frequency-dependent effects of mobile phone microwaves (MWs) of global system for mobile communication (GSM) on human lymphocytes from persons reporting hypersensitivity to electromagnetic fields and healthy persons. Contrary to GSM, universal global telecommunications system (UMTS) mobile phones emit wide-band MW signals. Hypothetically, UMTS MWs may result in higher biological effects compared to GSM signal because of eventual "effective" frequencies within the wideband. Here, we report for the first time that UMTS MWs affect chromatin and inhibit formation of DNA double-strand breaks co-localizing 53BP1/gamma-H2AX DNA repair foci in human lymphocytes from hypersensitive and healthy persons and confirm that effects of GSM MWs depend on carrier frequency. Remarkably, the effects of MWs on 53BP1/gamma-H2AX foci persisted up to 72 h following exposure of cells, even longer than the stress response following heat shock. The data are in line with the hypothesis that the type of signal, UMTS MWs, may have higher biological efficiency and possibly larger health risk effects compared to GSM radiation emissions. No significant differences in effects between groups of healthy and hypersensitive subjects were observed, except for the effects of UMTS MWs and GSM-915 MHz MWs on the formation of the DNA repair foci, which were different for hypersensitive (P 0.05). The non-parametric statistics used here did not indicate specificity of the differences revealed between the effects of GSM and UMTS MWs on cells from hypersensitive subjects and more data are needed to study the nature of these differences. Copyright 2008 Wiley-Liss, Inc.

  10. Multispectral imaging flow cytometry reveals distinct frequencies of γ-H2AX foci induction in DNA double strand break repair defective human cell lines.

    Science.gov (United States)

    Bourton, Emma C; Plowman, Piers N; Zahir, Sheba Adam; Senguloglu, Gonul Ulus; Serrai, Hiba; Bottley, Graham; Parris, Christopher N

    2012-02-01

    The measurement of γ-H2AX foci induction in cells provides a sensitive and reliable method for the quantitation of DNA damage responses in a variety of cell types. Accurate and rapid methods to conduct such observations are desirable. In this study, we have employed the novel technique of multispectral imaging flow cytometry to compare the induction and repair of γ-H2AX foci in three human cell types with different capacities for the repair of DNA double strand breaks (DSB). A repair normal fibroblast cell line MRC5-SV1, a DSB repair defective ataxia telangiectasia (AT5BIVA) cell line, and a DNA-PKcs deficient cell line XP14BRneo17 were exposed to 2 Gy gamma radiation from a (60)Cobalt source. Thirty minutes following exposure, we observed a dramatic induction of foci in the nuclei of these cells. After 24 hrs, there was a predictable reduction on the number of foci in the MRC5-SV1 cells, consistent with the repair of DNA DSB. In the AT5BIVA cells, persistence of the foci over a 24-hr period was due to the failure in the repair of DNA DSB. However, in the DNA-PKcs defective cells (XP14BRneo17), we observed an intermediate retention of foci in the nuclei indicative of partial repair of DNA DSB. In summary, the application of imaging flow cytometry has permitted an evaluation of foci in a large number of cells (20,000) for each cell line at each time point. This provides a novel method to determine differences in repair kinetics between different cell types. We propose that imaging flow cytometry provides an alternative platform for accurate automated high through-put analysis of foci induction in a variety of cell types. Copyright © 2011 International Society for Advancement of Cytometry.

  11. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Chad M.; Wolf, Jeffrey C.; Elbekai, Reem H.; Paranjpe, Madhav G.; Seiter, Jennifer M.; Chappell, Mark A.; Tappero, Ryan V.; Suh, Mina; Proctor, Deborah M.; Bichteler, Anne; Haws, Laurie C.; Harris, Mark A.

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. A single oral gavage of 50 mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.

  12. Gamma-H2AX biodosimetry for use in large scale radiation incidents: comparison of a rapid ‘96 well lyse/fix’ protocol with a routine method

    Directory of Open Access Journals (Sweden)

    Jayne Moquet

    2014-03-01

    Full Text Available Following a radiation incident, preliminary dose estimates made by γ-H2AX foci analysis can supplement the early triage of casualties based on clinical symptoms. Sample processing time is important when many individuals need to be rapidly assessed. A protocol was therefore developed for high sample throughput that requires less than 0.1 ml blood, thus potentially enabling finger prick sampling. The technique combines red blood cell lysis and leukocyte fixation in one step on a 96 well plate, in contrast to the routine protocol, where lymphocytes in larger blood volumes are typically separated by Ficoll density gradient centrifugation with subsequent washing and fixation steps. The rapid ‘96 well lyse/fix’ method reduced the estimated sample processing time for 96 samples to about 4 h compared to 15 h using the routine protocol. However, scoring 20 cells in 96 samples prepared by the rapid protocol took longer than for the routine method (3.1 versus 1.5 h at zero dose; 7.0 versus 6.1 h for irradiated samples. Similar foci yields were scored for both protocols and consistent dose estimates were obtained for samples exposed to 0, 0.2, 0.6, 1.1, 1.2, 2.1 and 4.3 Gy of 250 kVp X-rays at 0.5 Gy/min and incubated for 2 h. Linear regression coefficients were 0.87 ± 0.06 (R2 = 97.6% and 0.85 ± 0.05 (R2 = 98.3% for estimated versus actual doses for the routine and lyse/fix method, respectively. The lyse/fix protocol can therefore facilitate high throughput processing for γ-H2AX biodosimetry for use in large scale radiation incidents, at the cost of somewhat longer foci scoring times.

  13. Mean frequency and relative fluorescence intensity measurement of γ-H2AX foci dose response in PBL exposed to γ-irradiation: An inter- and intra-laboratory comparison and its relevance for radiation triage.

    Science.gov (United States)

    Venkateswarlu, Raavi; Tamizh, Selvan G; Bhavani, Manivannan; Kumar, Arun; Alok, Amit; Karthik, Kanagaraj; Kalra, Namita; Vijayalakshmi, J; Paul, Solomon F D; Chaudhury, N K; Venkatachalam, Perumal

    2015-12-01

    Measurement of γ-H2AX protein changes in the peripheral blood lymphocytes (PBL) of individuals exposed to ionizing radiation is a simple, sensitive, and rapid assay for radiation triage and early marker of dose estimation. The qualitative and quantitative measurements of the protein changes were examined using flow cytometry and microscopy. Whole blood and isolated lymphocytes were exposed in vitro between 0.1 and 5 Gy doses of (60) Co γ-radiation at a dose rate of 1 Gy/min. Radiation induced γ-H2AX foci frequency (n = 3) and relative fluorescence intensity (n = 7) in PBL was measured at 0.5 and 2 hrs postexposure. The observed dose response for γ-H2AX foci frequency at both time points, for whole blood and isolated lymphocytes did not show any significant (P > 0.05) differences. However, when compared with γ-H2AX foci frequency scored manually (microscopy), the semiautomated analysis (captured images) showed a better correlation (r(2) = 0.918) than that obtained with automated (Metafer) scoring (r(2) = 0.690). It is noteworthy to mention that, the γ-H2AX foci frequency quantified using microscopy showed a dose dependent increase up to 2 Gy and the relative fluorescence intensity (RFI) measured with flow cytometry revealed an increase up to 5 Gy in the PBL exposed in vitro. Moreover, a better correlation was observed between the γ-H2AX foci frequency obtained by manual scoring and RFI (r(2) = 0.910). Kinetic studies showed that the γ-H2AX foci remain more or less unchanged up to 4 hrs and reduces gradually over 48 hrs of postexposure at 37°C. Further, inter and intra-laboratory comparisons showed consistency in the scoring of γ-H2AX foci frequency by manual and semiautomated scoring. The overall results suggest that measurement of γ-H2AX (microscopy and flow cytometry) should be employed within 4 to 6 hrs for a reliable dosimetry either by sharing the work load between the laboratories or investing more manpower; however, triage can be possible even up

  14. γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity - preliminary methodological study and discussion

    Science.gov (United States)

    Falk, Martin; Horakova, Zuzana; Svobodova, Marketa; Masarik, Michal; Kopecna, Olga; Gumulec, Jaromir; Raudenska, Martina; Depes, Daniel; Bacikova, Alena; Falkova, Iva; Binkova, Hana

    2017-09-01

    In order to improve patients' post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures - CD90-, CD90+, and a mixed culture of these cells - were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV-HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance.

  15. MRE11-RAD50-NBS1 COMPLEX INHIBITOR MIRIN ENHANCES RADIOSENSITIVITY IN HUMAN GLIOBLASTOMA CELLS

    Science.gov (United States)

    Mishima, Kazuhiko; Mishima-Kaneko, Masayo; Kawata, Tetsuya; Saya, Hideyuki; Ishimaru, Naozumi; Yamada, Kouichi; Nishikawa, Ryo; Shigematsu, Naoyuki

    2014-01-01

    BACKGROUND: (blind field) METHODS: Glioma cell lines (U251, LN229 and LN428) were irradiated with and without Mirin and then clonogenicity, apoptosis, and cell cycle change were examined. Western blot analysis was performed to determine the relative potency of Mirin to inhibit the radioresistance, through the signaling activity of AKT. We also examined the levels of H2AX phosphorylationH2AX), which is a marker of DNA double-strand breaks (DSBs) using Western blot. RESULTS: Glioblastoma cells pretreated with Mirin demonstrated an enhanced sensitivity to radiation. FACS analysis revealed that Mirin and radiation caused the glioma cells to accumulate in the G2/M-phase of the cell cycle and the combination of these two treatments further increased the G2/M fraction of the glioma cells. Mirin significantly enhanced radiation-induced apoptotic cell death. Also, Mirin blocked the basal and increase of radiation-induced AKT phosphorylation. We observed that the combination of Mirin and radiation increased persistence of γH2AX at 24 h suggesting the inhibition of DNA DSBs repair. CONCLUSIONS: These results indicate that Mirin can effectively enhance glioma cell radiosensitivity. It suggests that Mirin is a potent radiosensitizer for treating glioma cells. SECONDARY CATEGORY: n/a.

  16. The comparative in vitro assessment of e-cigarette and cigarette smoke aerosols using the γH2AX assay and applied dose measurements.

    Science.gov (United States)

    Thorne, David; Larard, Sophie; Baxter, Andrew; Meredith, Clive; Gaҫa, Marianna

    2017-01-04

    DNA damage can be caused by a variety of external and internal factors and together with cellular responses, can establish genomic instability through multiple pathways. DNA damage therefore, is considered to play an important role in the aetiology and early stages of carcinogenesis. The DNA-damage inducing potential of tobacco smoke aerosols in vitro has been extensively investigated; however, the ability of e-cigarette aerosols to induce DNA damage has not been extensively investigated. E-cigarette use has grown globally in recent years and the health implications of long term e-cigarette use are still unclear. Therefore, this study has assessed the induction of double-strand DNA damage in vitro using human lung epithelial cells to e-cigarette aerosols from two different product variants (a "cigalike" and a closed "modular" system) and cigarette smoke. A Vitrocell® VC 10 aerosol exposure system was used to generate and dilute cigarette smoke and e-cigarette aerosols, which were delivered to human bronchial epithelial cells (BEAS-2Bs) housed at the air-liquid-interface (ALI) for up to 120min exposure (diluting airflow, 0.25-1L/min). Following exposure, cells were immediately fixed, incubated with primary (0.1% γH2AX antibody in PBS) and secondary antibodies (DyLight™ 549 conjugated goat anti-mouse IgG) containing Hoechst dye DNA staining solution (0.2% secondary antibody and 0.01% Hoechst in PBS), and finally screened using the Cellomics Arrayscan VTI platform. The results from this study demonstrate a clear DNA damage-induced dose response with increasing smoke concentrations up to cytotoxic levels. In contrast, e-cigarette aerosols from two product variants did not induce DNA damage at equivalent to or greater than doses of cigarette smoke aerosol. In this study dosimetry approaches were used to contextualize exposure, define exposure conditions and facilitate comparisons between cigarette smoke and e-cigarette aerosols. Quartz crystal microbalance (QCM

  17. Application of translocation, γ-H2AX, and Sam68 as a biological indicators for the assessment of radiation exposure in nuclear power plant workers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kwang Hee; Park, Hyung Sun; Nam, Seon Young [Korea Hydro Nuclear Power Co., Seoul (Korea, Republic of)

    2014-05-15

    This study showed that confirmation of the initial dose estimated by dicentric analysis is provided by the subsequent FISH analysis for translocation frequency and provides further evidence for the valid use of FISH as a retrospective biological dosimeter. The IAEA manual on cytogenetic dosimetry recommends a halftime value of 3 y to correct for the decrease of dicentrics in case of delayed sampling based on the patient data of Buckton. Support for this comes from the cytogenetic follow up of an individual exposed to tritium, which also indicated a decline in dicentrics with a half-time of ∼3 y. Naturally, the RBE of tritium, as well as other kinds of ionizing radiation, depends on the dose, exposure conditions, and studied parameters. The information about the RBE of tritium that is most important from an applied standpoint is that associated with the range of low doses. In our study, the dose dependence of tritium RBE was not identified because of very low dose Tritium (< 1mSv). However, The strong smooth relationship between translocation yield and age is shown in Table 2. The translocation yields reported here are only slightly lower than already published. The implication is that the increase of yield with age could be due to environmental factors, to a natural aging process or both. In addition, we confirmed that γ-H2AX and Sam68 associated with DNA damage and apoptosis, can be new biological indicators for radiation exposure. Radiation workers are exposed to ionizing radiation from various sources. Ionizing radiation produces several types of DNA lesion, including DNA base alterations, DNA. DNA cross-links, and single- and double-strand breaks. As a protocol for biological dosimetry recommended by IAEA (2001), the analysis of solid stained dicentric chromosomes has been used since the mid 1960s. The intervening years have seen great improvements bringing the technique to a point where dicentric analysis has become a routine component of the radiological

  18. Utility of γH2AX as a molecular marker of DNA double-strand breaks in nuclear medicine: applications to radionuclide therapy employing auger electron-emitting isotopes.

    Science.gov (United States)

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-01-01

    There is an intense interest in the development of radiopharmaceuticals for cancer therapy. In particular, radiopharmaceuticals which involve targeting radionuclides specifically to cancer cells with the use of monoclonal antibodies (radioimmunotherapy) or peptides (targeted radiotherapy) are being widely investigated. For example, the ultra-short range Auger electron-emitting isotopes, which are discussed in this review, are being considered in the context of DNAtargeted radiotherapy. The efficient quantitative evaluation of the levels of damage caused by such potential radiopharmaceuticals is required for assessment of therapeutic efficacy and determination of relevant doses for successful treatment. The DNA double-strand break surrogate marker, γH2AX, has emerged as a useful biomonitor of damage and thus effectiveness of treatment, offering a highly specific and sensitive means of assessment. This review will cover the potential applications of γH2AX in nuclear medicine, in particular radionuclide therapy.

  19. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China); Kakadiya, Rajesh B.; Su, Tsann-Long [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Yih, Ling-Huei, E-mail: lhyih@gate.sinica.edu.tw [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China)

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  20. Utilisation de l'essai comete et du biomarqueur gamma-H2AX pour detecter les dommages induits a l'ADN cellulaire par le 5-bromodeoxyuridine post-irradiation

    Science.gov (United States)

    La Madeleine, Carole

    Ce memoire est presente a la Faculte de medecine et des sciences de la sante de l'Universite de Sherbrooke en vue de l'obtention du grade de maitre es sciences (M.Sc.) en radiobiologie (2009). Un jury a revise les informations contenues dans ce memoire. Il etait compose de professeurs de la Faculte de medecine et des sciences de la sante soit : Darel Hunting PhD, directeur de recherche (departement de medecine nucleaire et radiobiologie), Leon Sanche PhD, directeur de recherche (departement de medecine nucleaire et radiobiologie), Richard Wagner PhD, membre du programme (departement de medecine nucleaire et radiobiologie) et Guylain Boissonneault PhD, membre exterieur au programme (departement de biochimie). Le 5-bromodeoxyuridine (BrdU), un analogue halogene de la thymidine reconnu depuis les annees 60 comme etant un excellent radiosensibilisateur. L'hypothese la plus repandue au sujet de l'effet radio sensibilisant du BrdU est qu'il augmente le nombre de cassures simple et double brin lorsqu'il est incorpore dans l'ADN de la cellule et expose aux radiations ionisantes. Toutefois, de nouvelles recherches semblent remettre en question les observations precedentes. Ces dernieres etudes ont confirme que le BrdU est un bon radiosensibilisateur, car il augmente les dommages radio-induits dans l'ADN. Mais, c'est en etant incorpore dans une region simple brin que le BrdU radiosensibilise l'ADN. Ces recherches ont egalement revele pour la premiere fois un nouveau type de dommages produits lors de l'irradiation de l'ADN contenant du BrdU : les dimeres interbrins. Le but de ces travaux de recherche est de determiner si la presence de bromodeoxyuridine dans l'ADN augmente l'induction de bris simple et / ou double brin chez les cellules irradiees en utilisant de nouvelles techniques plus sensibles et specifiques que celles utilisees auparavant. Pour ce faire, les essais cometes et la detection des foci H2AX phosphorylee pourraient permettre d'etablir les effets engendres par

  1. RT-21Mre11-Rad50-Nbs1 COMPLEX INHIBITOR MIRIN ENHANCES RADIOSENSITIVITY IN HUMAN GLIOBLASTOMA CELLS

    Science.gov (United States)

    Mishima, Kazuhiko; Mishima-Kaneko, Masayo; Saya, Hideyuki; Ishimaru, Naozumi; Yamada, Kouichi; Fukada, Junichi; Nishikawa, Ryo; Kawata, Tetsuya

    2014-01-01

    PURPOSE: Radiation therapy plays a central part in the treatment of glioblastoma, however, it is not curative due to the high tumor radioresistance. Therefore, increasing the sensitivity of glioblastoma cells to radiation is a promising approach to improve survival in patients with glioblastoma. The Mre11, Rad 50 and Nbs1 proteins form a complex (MRN) that has a critical role in DNA damage detection and signaling. Because defects in MRN enhance radiosensitivity, it has been proposed that small molecule inhibitors targeted to these proteins might be used as radiosensitizers. Here, we investigated the effects of the MRN complex inhibitor, Mirin, on radiation response of human glioma cells. MATERIALS AND METHODS: Glioma cell lines (U251, LN229 and LN428) were irradiated with and without Mirin and then clonogenicity, apoptosis, and cell cycle change were examined. Western blot analysis was performed to determine the relative potency of Mirin to inhibit the radioresistance, through the signaling activity of AKT. We also examined the levels of H2AX phosphorylationH2AX), which is a marker of DNA double-strand breaks (DSBs) using Western blot. RESULTS: Glioblastoma cells pretreated with Mirin demonstrated an enhanced sensitivity to radiation. FACS analysis revealed that Mirin and radiation caused the glioma cells to accumulate in the G2/M-phase of the cell cycle and the combination of these two treatments further increased the G2/M fraction of the glioma cells. Mirin significantly enhanced radiation-induced apoptotic cell death. Also, Mirin blocked the basal and increase of radiation-induced AKT phosphorylation. We observed that the combination of Mirin and radiation increased persistence of γH2AX at 24 h suggesting the inhibition of DNA DSBs repair. CONCLUSION: These results indicate that Mirin can effectively enhance glioma cell radiosensitivity. It suggests that Mirin is a potent radiosensitizer for treating glioma cells.

  2. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2014-12-15

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  3. Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity.

    Science.gov (United States)

    Su, Yee-Fun; Yang, Tsunghan; Huang, Hoting; Liu, Leroy F; Hwang, Jaulang

    2012-01-01

    Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9.

  4. Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity.

    Directory of Open Access Journals (Sweden)

    Yee-Fun Su

    Full Text Available Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9.

  5. MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.

    2014-01-01

    Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651

  6. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice.

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R; Hegde, Muralidhar L; Chakraborty, Sharmistha; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh, Mayank; Ramnarain, Deepti B; Hittelman, Walter N; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K; Ludwig, Thomas; Pandita, Raj K; Tyler, Jessica K; Pandita, Tej K

    2014-07-10

    Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes.

    Science.gov (United States)

    Yoshida, Ikuma; Ibuki, Yuko

    2014-12-01

    Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. MRE11-RAD50-NBS1 COMPLEX INHIBITOR MIRIN ENHANCES RADIOSENSITIVITY IN HUMAN GLIOBLASTOMA CELLS

    OpenAIRE

    Mishima, Kazuhiko; Mishima-Kaneko, Masayo; Kawata, Tetsuya; Saya, Hideyuki; Ishimaru, Naozumi; Yamada, Kouichi; Nishikawa, Ryo; Shigematsu, Naoyuki

    2014-01-01

    BACKGROUND: (blind field) METHODS: Glioma cell lines (U251, LN229 and LN428) were irradiated with and without Mirin and then clonogenicity, apoptosis, and cell cycle change were examined. Western blot analysis was performed to determine the relative potency of Mirin to inhibit the radioresistance, through the signaling activity of AKT. We also examined the levels of H2AX phosphorylationH2AX), which is a marker of DNA double-strand breaks (DSBs) using Western blot. RESULTS: Glioblastoma cel...

  9. Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity.

    Science.gov (United States)

    Shajahan, Ayesha N; Wang, Aifen; Decker, Markus; Minshall, Richard D; Liu, Minetta C; Clarke, Robert

    2007-02-23

    Caveolin-1 (CAV1), a highly conserved membrane-associated protein, is a putative regulator of cellular transformation. CAV1 is localized in the plasmalemma, secretory vesicles, Golgi, mitochondria, and endoplasmic reticulum membrane and associates with the microtubule cytoskeleton. Taxanes such as paclitaxel (Taxol) are potent anti-tumor agents that repress the dynamic instability of microtubules and arrest cells in the G(2)/M phase. Src phosphorylation of Tyr-14 on CAV1 regulates its cellular localization and function. We report that phosphorylation of CAV1 on Tyr-14 regulates paclitaxel-mediated apoptosis in MCF-7 breast cancer cells. Befitting its role as a multitasking molecule, we show that CAV1 sensitizes cells to apoptosis by regulating cell cycle progression and activation of the apoptotic signaling molecules BCL2, p53, and p21. We demonstrate that phosphorylated CAV1 triggers apoptosis by inactivating BCL2 and increasing mitochondrial permeability more efficiently than non-phosphorylated CAV1. Furthermore, expression of p21, which correlates with taxane sensitivity, is regulated by CAV1 phosphorylation in a p53-dependent manner. Collectively, our findings underscore the importance of CAV1 phosphorylation in apoptosis and suggest that events that negate CAV1 tyrosine phosphorylation may contribute to anti-microtubule drug resistance.

  10. Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    Mitochondrial dysfunction and oxidative stress are important players in the development of various cardiovascular diseases, but their roles in hypertrophic cardiomyopathy (HCM) remain unknown. We examined whether mitochondrial oxidative phosphorylation (OXPHOS) capacity was impaired with enhanced...

  11. XIAP is essential for shear stress-enhanced Tyr-576 phosphorylation of FAK

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sunyoung [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Park, Heonyong, E-mail: heonyong@dankook.ac.kr [Department of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)

    2010-08-20

    Research highlights: {yields} Laminar shear stress phosphorylates Tyr-576 in FAK. {yields} XIAP is essential for shear stress-induced phosphorylation of Tyr-576. {yields} XIAP knockdown induces shear stress-triggered translocation of FAK into nucleus. {yields} XIAP regulates ERK activation by maintaining the Src-accessible location of FAK. -- Abstract: In endothelial cells, X-chromosome linked inhibitor of apoptosis protein (XIAP) regulates cell survival, migration and adhesion. We have recently found that XIAP recruits focal adhesion kinase (FAK) into integrin-associated focal adhesions, controlling cell migration. However, little is understood about the molecular mechanisms by which FAK modulation is controlled by XIAP. In this study, we show that XIAP modulates FAK activity through the control of FAK phosphorylation. In bovine aortic endothelial cells (BAEC), phosphorylation of Tyr-576 in FAK is elevated by laminar shear stress. This elevated phosphorylation appears to be responsible for shear stress-stimulated ERK activation. We found that XIAP knockdown reduces shear stress-enhanced phosphorylation of Tyr-576 and induces shear stress-triggered translocation of FAK into nucleus. Nuclear translocation of FAK reduces contact between FAK and Src, a kinase which phosphorylates Tyr-576. This spatial segregation of FAK from Src decreases Tyr-576 phosphorylation and thus shear-stimulated ERK activation. Taken together, our results demonstrate that XIAP plays a key role in shear stress-stimulated ERK activation by maintaining the Src-accessible location of FAK.

  12. Phosphorylation impact on Spleen Tyrosine kinase conformation by Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Cottat, Maximilien; Yasukuni, Ryohei; Homma, Yo; Lidgi-Guigui, Nathalie; Varin-Blank, Nadine; Lamy de La Chapelle, Marc; Le Roy, Christine

    2017-01-01

    Spleen Tyrosine Kinase (Syk) plays a crucial role in immune cell signalling and its altered expression or activation are involved in several cancers. Syk activity relies on its phosphorylation status and its multiple phosphorylation sites predict several Syk conformations. In this report, we characterized Syk structural changes according to its phosphorylation/activation status by Surface Enhanced Raman Spectroscopy (SERS). Unphosphorylated/inactive and phosphorylated/active Syk forms were produced into two expression systems with different phosphorylation capability. Syk forms were then analysed by SERS that was carried out in liquid condition on a lithographically designed gold nanocylinders array. Our study demonstrated that SERS signatures of the two Syk forms were drastically distinct, indicating structural modifications related to their phosphorylation status. By comparison with the atomic structure of the unphosphorylated Syk, the SERS peak assignments of the phosphorylated Syk nearest gold nanostructures revealed a differential interaction with the gold surface. We finally described a model for Syk conformational variations according to its phosphorylation status. In conclusion, SERS is an efficient technical approach for studying in vitro protein conformational changes and might be a powerful tool to determine protein functions in tumour cells.

  13. Phosphorylation: The Molecular Switch of Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    K. C. Summers

    2011-01-01

    Full Text Available Repair of double-stranded breaks (DSBs is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ, homologous recombination (HR, or the inclusive DNA damage response (DDR. These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.

  14. Baculovirus F-Box Protein LEF-7 Modifies the Host DNA Damage Response To Enhance Virus Multiplication

    Science.gov (United States)

    Mitchell, Jonathan K.; Byers, Nathaniel M.

    2013-01-01

    The DNA damage response (DDR) of a host organism represents an effective antiviral defense that is frequently manipulated and exploited by viruses to promote multiplication. We report here that the large DNA baculoviruses, which require host DDR activation for optimal replication, encode a conserved replication factor, LEF-7, that manipulates the DDR via a novel mechanism. LEF-7 suppresses DDR-induced accumulation of phosphorylated host histone variant H2AX (γ-H2AX), a critical regulator of the DDR. LEF-7 was necessary and sufficient to block γ-H2AX accumulation caused by baculovirus infection or DNA damage induced by means of pharmacological agents. Deletion of LEF-7 from the baculovirus genome allowed γ-H2AX accumulation during virus DNA synthesis and impaired both very late viral gene expression and production of infectious progeny. Thus, LEF-7 is essential for efficient baculovirus replication. We determined that LEF-7 is a nuclear F-box protein that interacts with host S-phase kinase-associated protein 1 (SKP1), suggesting that LEF-7 acts as a substrate recognition component of SKP1/Cullin/F-box (SCF) complexes for targeted protein polyubiquitination. Site-directed mutagenesis demonstrated that LEF-7's N-terminal F-box is necessary for γ-H2AX repression and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replication events. We concluded that LEF-7 expedites virus replication most likely by selective manipulation of one or more host factors regulating the DDR, including γ-H2AX. Thus, our findings indicate that baculoviruses utilize a unique strategy among viruses for hijacking the host DDR by using a newly recognized F-box protein. PMID:24027328

  15. XIAP is essential for shear stress-enhanced Tyr-576 phosphorylation of FAK.

    Science.gov (United States)

    Ahn, Sunyoung; Park, Heonyong

    2010-08-20

    In endothelial cells, X-chromosome linked inhibitor of apoptosis protein (XIAP) regulates cell survival, migration and adhesion. We have recently found that XIAP recruits focal adhesion kinase (FAK) into integrin-associated focal adhesions, controlling cell migration. However, little is understood about the molecular mechanisms by which FAK modulation is controlled by XIAP. In this study, we show that XIAP modulates FAK activity through the control of FAK phosphorylation. In bovine aortic endothelial cells (BAEC), phosphorylation of Tyr-576 in FAK is elevated by laminar shear stress. This elevated phosphorylation appears to be responsible for shear stress-stimulated ERK activation. We found that XIAP knockdown reduces shear stress-enhanced phosphorylation of Tyr-576 and induces shear stress-triggered translocation of FAK into nucleus. Nuclear translocation of FAK reduces contact between FAK and Src, a kinase which phosphorylates Tyr-576. This spatial segregation of FAK from Src decreases Tyr-576 phosphorylation and thus shear-stimulated ERK activation. Taken together, our results demonstrate that XIAP plays a key role in shear stress-stimulated ERK activation by maintaining the Src-accessible location of FAK. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Enhancement of native and phosphorylated TDP-43 immunoreactivity by proteinase K treatment following autoclave heating.

    Science.gov (United States)

    Mori, Fumiaki; Tanji, Kunikazu; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2011-08-01

    TDP-43 is a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). To evaluate the effectiveness of proteinase K (PK) treatment in antigen retrieval for native and phosphorylated TDP-43 protein, we examined the temporal cortex and spinal cord from patients with sporadic ALS and FTLD-TDP and control subjects. PK treatment following heat retrieval enhanced the immunoreactivity for native TDP-43 in controls as well as for native and phosphorylated TDP-43 in ALS and FTLD-TDP. A significant number of TDP-43-positive neuropil threads were demonstrated in lesions, in which routine immunohistochemistry revealed that the predominant inclusions are cytoplasmic. This retrieval method is the best of immunohistochemical techniques for demonstrating TDP-43 pathology, especially in the neuropil. © 2010 Japanese Society of Neuropathology.

  17. NVP-BEZ235 and NVP-BGT226, dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors, enhance tumor and endothelial cell radiosensitivity

    Directory of Open Access Journals (Sweden)

    Fokas Emmanouil

    2012-03-01

    Full Text Available Abstract Background The phosphatidylinositol 3-kinase (PI3K/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR, more effective inhibition might be expected by targeting both PI3K and mTOR inhibition. Materials and methods We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2 inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells. Analysis of target protein phosphorylation, clonogenic survival, number of residual γH2AX foci, cell cycle and apoptosis after radiation was performed in both tumor and endothelial cells. In vitro angiogenesis assays were conducted as well. Results Both compounds effectively inhibited phosphorylation of Akt, mTOR and S6 target proteins and reduced clonogenic survival in irradiated tumor cells. Persistence of DNA damage, as evidenced by increased number of γH2AX foci, was detected after irradiation in the presence of PI3K/mTOR inhibition, together with enhanced G2 cell cycle delay. Treatment with one of the inhibitors, NVP-BEZ235, also resulted in decreased clonogenicity after irradiation of tumor cells under hypoxic conditions. In addition, NVP-BEZ235 blocked VEGF- and IR-induced Akt phosphorylation and increased radiation killing in human umbilical venous endothelial cells (HUVEC and human dermal microvascular dermal cells (HDMVC. NVP-BEZ235 inhibited VEGF-induced cell migration and capillary tube formation in vitro and enhanced the antivascular effect of irradiation. Treatment with NVP-BEZ235 moderately increased apoptosis in SQ20B and HUVEC cells but not in FaDu cells, and increased necrosis in both tumor and endothelial all cells tumor

  18. Phosphorylation of ectopically expressed L-plastin enhances invasiveness of human melanoma cells.

    Science.gov (United States)

    Klemke, Martin; Rafael, Maria T; Wabnitz, Guido H; Weschenfelder, Tatjana; Konstandin, Mathias H; Garbi, Natalio; Autschbach, Frank; Hartschuh, Wolfgang; Samstag, Yvonne

    2007-06-15

    The leukocyte specific actin-binding protein L-plastin is aberrantly expressed in several nonhematopoetic malignant tumors. However, little is known about the functional consequences of L-plastin expression. Here, we investigated the function of L-plastin in human malignant melanoma cells. Knock-down of endogenous L-plastin by siRNA treatment reduced migration of the melanoma cell line IF6. However, in melanoma patients, no correlation existed between L-plastin expression and tumor stages. This implied that additional factors such as phosphorylation of L-plastin may influence its function in tumor cells. To investigate this further, EGFP-tagged wild-type L-plastin (wt-LPL-EGFP) and a mutated, nonphosphorylatable L-plastin protein (5A7A-LPL-EGFP), were expressed in the L-plastin negative melanoma cell line MV3. Biochemical analysis revealed that wt-LPL-EGFP is phosphorylated in MV3 cells while 5A7A-LPL-EGFP is not. Although both wt-LPL-EGFP and 5A7A-LPL-EGFP were targeted to, and promote the formation of, vinculin-containing adhesion sites, static adhesion to either Matrigel or isolated extracellular matrix molecules was neither influenced by expression of wt-LPL-EGFP nor by expression of 5A7A-LPL-EGFP when compared with EGFP expressing control cells. In contrast, haptotactic, but not chemotactic, migration of melanoma cells towards either Matrigel or isolated extracellular matrix molecules was similarly enhanced, if either 5A7A-LPL-EGFP or wt-LPL-EGFP were expressed in MV3 cells. Interestingly, only cells expressing the phosphorylatable wt-LPL-EGFP protein showed enhanced invasion into Matrigel. In line with these findings the in vivo metastatic capacity of mouse B16 melanoma cells correlates with expression and phosphorylation of L-plastin. These data show that an increase in melanoma cell invasiveness requires not only expression but also phosphorylation of L-plastin.

  19. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Lu, Yan, E-mail: luyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Shen, Pingping, E-mail: ppshen@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Model Animal Research Center (MARC), Nanjing University, Nanjing (China)

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  20. Akt phosphorylation of merlin enhances its binding to phosphatidylinositols and inhibits the tumor-suppressive activities of merlin.

    Science.gov (United States)

    Okada, Masashi; Wang, Yanru; Jang, Sung-Wuk; Tang, Xiaoling; Neri, Luca M; Ye, Keqiang

    2009-05-01

    The NF2 tumor suppressor gene encodes an intracellular membrane-associated protein, called merlin, which belongs to the band 4.1 family of cytoskeleton-associated proteins that link cell surface glycoproteins to the actin cytoskeleton. Merlin suppresses phosphatidylinositol 3-kinase (PI3K)/Akt signaling by directly binding and inhibiting the stimulatory activity of PIKE-L on PI3K. Akt feeds back and phosphorylates merlin and provokes its polyubiquitination and degradation. Here, we show that Akt phosphorylation and PI(3,4,5)P(3) binding mediate the tumor-suppressive activity of merlin. The extreme NH(2) terminus of merlin directly interacts with phosphatidylinositols, for which the unfolded conformation is required. Moreover, Akt phosphorylation enhances merlin binding affinity to phosphatidylinositols and inhibits its proapoptotic actions. Furthermore, Akt phosphorylation and phosphatidylinositols increase merlin binding to CD44. Epidermal growth factor treatment and Akt phosphorylation provoke merlin to aggregate in the ruffled plasma membrane and promote cell migration. Thus, these results suggest that PI3K signaling regulates the tumor-suppressive activity of merlin via both Akt phosphorylation and phosphatidylinositol lipids binding to merlin.

  1. Functional characterisation of the regulation of CAAT enhancer binding protein alpha by GSK-3 phosphorylation of Threonines 222/226

    Directory of Open Access Journals (Sweden)

    Hastie CJ

    2006-04-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK3 activity is repressed following insulin treatment of cells. Pharmacological inhibition of GSK3 mimics the effect of insulin on Phosphoenolpyruvate Carboxykinase (PEPCK, Glucose-6 Phosphatase (G6Pase and IGF binding protein-1 (IGFBP1 gene expression. CAAT/enhancer binding protein alpha (C/EBPα regulates these gene promoters in liver and is phosphorylated on two residues (T222/T226 by GSK3, although the functional outcome of the phosphorylation has not been established. We aimed to establish whether CEBPα is a link between GSK3 and these gene promoters. Results C/EBPα represses the IGFBP1 thymine-rich insulin response element (TIRE, but mutation of T222 or T226 of C/EBPα to non-phosphorylatable alanines has no effect on C/EBPα activity in liver cells (towards the TIRE or a consensus C/EBP binding sequence. Phosphorylation of T222/T226 is decreased by GSK3 inhibition, suggesting GSK3 does phosphorylate T222/226 in intact cells. However, phosphorylation was not altered by treatment of liver cells with insulin. Meanwhile C/EBPα activity in 3T3 L1 preadipocytes was enhanced by mutation of T222/T226 and/or S230 to alanine residues. Finally, we demonstrate that C/EBPα is a very poor substrate for GSK3 in vitro and in cells. Conclusion The work demonstrates an important role for this domain in the regulation of C/EBPα activity in adipocytes but not hepatocytes, however GSK3 phosphorylation of these residues does not mediate regulation of this C/EBP activity. In short, we find no evidence that C/EBPα activity is regulated by direct phosphorylation by GSK3.

  2. Functionalized gold nanostars for label-free detection of PKA phosphorylation using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    He, Shuai; Kah, James C. Y.

    2017-04-01

    Protein phosphorylation controls fundamental biological processes. Dysregulation of protein kinase is associated with a series of human diseases including cancer. Protein kinase A (PKA) activity has been reported to serve as a potential prognostic marker for cancer. To this end, we developed a non-radioactive, rapid, cheap and robust scheme based on surface-enhanced Raman spectroscopy (SERS) for label-free detection of PKA phosphorylation using gold nanostars (AuNS) functionalized with BSA-kemptide. While bovine serum albumin (BSA) proteins stabilized the AuNS, kemptide, which is a high affinity substrate peptide specific for PKA, were phosphorylated in vitro to generate Raman signals that were identified by performing principal component analysis (PCA) on the acquired SERS spectra.

  3. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    Science.gov (United States)

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  4. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells.

    Science.gov (United States)

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen; Lu, Yan; Shen, Pingping

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21(Waf1/Cip1) and p27(Kip1) descended in PPARγ1(S84D) stable HT1080 cell, whereas the expression of p18(INK4C) was not changed. Moreover, compared to the PPARγ1(S84A), PPARγ1(S84D) up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hidenori; Fujimori, Hiroaki [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Gunji, Akemi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Maeda, Daisuke [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Hirai, Takahisa [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Poetsch, Anna R. [ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Harada, Hiromi [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Yoshida, Tomoko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minatoku, Tokyo 105-8512 (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Masutani, Mitsuko, E-mail: mmasutan@ncc.go.jp [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  6. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AXH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  7. Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-d-aspartate receptor subunit 1

    OpenAIRE

    Suen, Piin-Chau; Wu, Kuo; Levine, Eric S; Mount, Howard T. J.; Xu, Jia-Ling; LIN, SIANG-YO; Black, Ira B.

    1997-01-01

    Although neurotrophins have traditionally been regarded as neuronal survival factors, recent work has suggested a role for these factors in synaptic plasticity. In particular, brain-derived neurotrophic factor (BDNF) rapidly enhances synaptic transmission in hippocampal neurons through trkB receptor stimulation and postsynaptic phosphorylation mechanisms. Activation of trkB also modulates hippocampal long-term potentiation, in which postsynaptic N-methyl-d-aspartate glutamate receptors play a...

  8. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation.

    Science.gov (United States)

    Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J

    2015-07-28

    The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal

  9. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.

    Science.gov (United States)

    Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei

    2015-01-16

    The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of

  10. Multistep Phosphorylation by Oncogenic Kinases Enhances the Degradation of the NF2 Tumor Suppressor Merlin1

    Science.gov (United States)

    Laulajainen, Minja; Muranen, Taru; Nyman, Tuula A; Carpén, Olli; Grönholm, Mikaela

    2011-01-01

    Mutations in the Neurofibromatosis 2 gene (NF2) predispose to tumors of the nervous system, mainly schwannomas and meningiomas. The NF2 gene encodes for the tumor suppressor protein merlin (moesin-ezrin-radixin-like protein), which functions as a linker between the plasma membrane and the cytoskeleton. Carboxyterminal phosphorylation affects merlin activity, but many open questions on the regulation of merlin function still remain. The phosphoinositide 3-kinase/Akt pathway is activated in human vestibular schwannoma, suggesting a role for Akt-dependent merlin regulation in the formation of these tumors. In this study, we identify merlin serine 10 as a novel substrate for Akt phosphorylation. We demonstrate that this N-terminal phosphorylation directs merlin for proteasome-mediated degradation and affects merlin binding to the E3 ligase component DCAF1. Our data indicate that sequential phosphorylation of merlin C- and N-terminus by different oncogenic kinases targets merlin for degradation and thus downregulates its activity. On the basis of these findings, we propose a model for a posttranslational mechanism of merlin inactivation. PMID:21750658

  11. Multistep phosphorylation by oncogenic kinases enhances the degradation of the NF2 tumor suppressor merlin.

    Science.gov (United States)

    Laulajainen, Minja; Muranen, Taru; Nyman, Tuula A; Carpén, Olli; Grönholm, Mikaela

    2011-07-01

    Mutations in the Neurofibromatosis 2 gene (NF2) predispose to tumors of the nervous system, mainly schwannomas and meningiomas. The NF2 gene encodes for the tumor suppressor protein merlin (moesin-ezrin-radixin-like protein), which functions as a linker between the plasma membrane and the cytoskeleton. Carboxyterminal phosphorylation affects merlin activity, but many open questions on the regulation of merlin function still remain. The phosphoinositide 3-kinase/Akt pathway is activated in human vestibular schwannoma, suggesting a role for Akt-dependent merlin regulation in the formation of these tumors. In this study, we identify merlin serine 10 as a novel substrate for Akt phosphorylation. We demonstrate that this N-terminal phosphorylation directs merlin for proteasome-mediated degradation and affects merlin binding to the E3 ligase component DCAF1. Our data indicate that sequential phosphorylation of merlin C- and N-terminus by different oncogenic kinases targets merlin for degradation and thus downregulates its activity. On the basis of these findings, we propose a model for a posttranslational mechanism of merlin inactivation.

  12. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Shu-Jun, E-mail: chiusj@mail.tcu.edu.tw [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan (China); Hsaio, Ching-Hui; Tseng, Ho-Hsing; Su, Yu-Han [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China); Shih, Wen-Ling [Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung, Taiwan (China); Lee, Jeng-Woei; Chuah, Jennifer Qiu-Yu [Department of Life Science, Tzu Chi University, Hualien, Taiwan (China)

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116 cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.

  13. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs.

    Science.gov (United States)

    Knecht, W; Rozpedowska, E; Le Breton, C; Willer, M; Gojkovic, Z; Sandrini, M P B; Joergensen, T; Hasholt, L; Munch-Petersen, B; Piskur, J

    2007-09-01

    Transduced deoxyribonucleoside kinases (dNK) can be used to kill recipient cells in combination with nucleoside prodrugs. The Drosophila melanogaster multisubstrate dNK (Dm-dNK) displays a superior turnover rate and has a great plasticity regarding its substrates. We used directed evolution to create Dm-dNK mutants with increased specificity for several nucleoside analogs (NAs) used as anticancer or antiviral drugs. Four mutants were characterized for the ability to sensitize Escherichia coli toward analogs and for their substrate specificity and kinetic parameters. The mutants had a reduced ability to phosphorylate pyrimidines, while the ability to phosphorylate purine analogs was relatively similar to the wild-type enzyme. We selected two mutants, for expression in the osteosarcoma 143B, the glioblastoma U-87M-G and the breast cancer MCF7 cell lines. The sensitivities of the transduced cell lines in the presence of the NAs fludarabine (F-AraA), cladribine (CdA), vidarabine and cytarabine were compared to the parental cell lines. The sensitivity of 143B cells was increased by 470-fold in the presence of CdA and of U-87M-G cells by 435-fold in the presence of F-AraA. We also show that a choice of the selection and screening system plays a crucial role when optimizing suicide genes by directed evolution.

  14. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Yuichi; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  15. gammaH2AX signalling during sperm chromatin remodelling in the mouse zygote.

    NARCIS (Netherlands)

    Derijck, A.H.A.; Heijden, G.W. van der; Giele, M.M.; Philippens, M.E.P.; Bavel, C.C.A.W. van; Boer, P. de

    2006-01-01

    In the mouse, the paternal post-meiotic chromatin is assumed to be devoid of DNA repair after nuclear elongation and protamine-induced compaction. Hence, DNA lesions induced thereafter will have to be restored upon gamete fusion in the zygote. Misrepair of such lesions often results in chromosome

  16. Inhibition of p38 MAPK Phosphorylation Is Critical for Bestatin to Enhance ATRA-Induced Cell Differentiation in Acute Promyelocytic Leukemia NB4 Cells.

    Science.gov (United States)

    Qian, Xijun; He, Jingsong; Zhao, Yi; Lin, Maofang

    2016-01-01

    Bestatin has been known as an immunomodulating agent in anti-leukemia treatment. The mechanism by which Bestatin enhances all-trans retinoic acid (ATRA)-induced cell differentiation of acute promyelocytic leukemia (APL) cells is generally attributed to inhibition of cell surface CD13/aminopeptidase N activity. Bestatin also exerts its biological activities besides its ability to inhibit aminopeptidase N enzymatic activity. This article provides data to support an alternative mechanism regarding an important role of inhibition of p38 mitogen-activated protein kinase (MAPK) signal pathway in Bestatin's anti-leukemia effect. Bestatin enhanced ATRA-induced differentiation and inhibited ATRA-driven phosphorylation of p38 MAPK in ATRA-sensitive APL NB4 cells. In contrast, Bestatin could not reverse the differentiation block in ATRA-resistant APL MR2 cells, in which ATRA was unable to induce phosphorylation of p38 MAPK. Moreover, CD13 ligation with anti-CD13 antibody WM-15 resulted in phosphorylation of p38 MAPK, reduced the inhibition of Bestatin on the phosphorylation of p38 MAPK, and completely abolished the enhancement of Bestatin on ATRA-inducing differentiation in NB4 cells. This study shows that inhibition of p38 MAPK phosphorylation is critical for Bestatin to enhance ATRA-induced cell differentiation in ATRA-sensitive APL NB4 cells. Results suggested that pharmacological inhibition of the p38 MAPK pathway might enhance ATRA-dependent differentiation.

  17. Stress-induced Cdk5 activity enhances cytoprotective basal autophagy in Drosophila melanogaster by phosphorylating acinus at serine437.

    Science.gov (United States)

    Nandi, Nilay; Tyra, Lauren K; Stenesen, Drew; Krämer, Helmut

    2017-12-11

    Cdk5 is a post-mitotic kinase with complex roles in maintaining neuronal health. The various mechanisms by which Cdk5 inhibits and promotes neurodegeneration are still poorly understood. Here, we show that in Drosophila melanogaster Cdk5 regulates basal autophagy, a key mechanism suppressing neurodegeneration. In a targeted screen, Cdk5 genetically interacted with Acinus (Acn), a primarily nuclear protein, which promotes starvation-independent, basal autophagy. Loss of Cdk5, or its required cofactor p35, reduces S437-Acn phosphorylation, whereas Cdk5 gain-of-function increases pS437-Acn levels. The phospho-mimetic S437D mutation stabilizes Acn and promotes basal autophagy. In p35 mutants, basal autophagy and lifespan are reduced, but restored to near wild-type levels in the presence of stabilized AcnS437D. Expression of aggregation-prone polyQ-containing proteins or the Amyloid-b42 peptide, but not alpha-Synuclein, enhances Cdk5-dependent phosphorylation of S437-Acn. Our data indicate that Cdk5 is required to maintain the protective role of basal autophagy in the initial responses to a subset of neurodegenerative challenges.

  18. Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2 - protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells.

    Science.gov (United States)

    Mandal, Tapashi; Bhowmik, Arijit; Chatterjee, Anirban; Chatterjee, Uttara; Chatterjee, Sandip; Ghosh, Mrinal Kanti

    2014-08-01

    Signal transducer and activator of transcription 3 (Stat3) is a transcription factor that is involved in cell survival and proliferation and has been found to be persistently activated in most human cancers mainly through its phosphorylation at Tyr-705. However, the role and regulation of Stat3 Ser-727 phosphorylation in cancer cells have not been clearly evaluated. In our findings, correlation studies on the expression of CK2 and Stat3 Ser-727 phosphorylation levels in human glioma patient samples as well as rat orthotopic tumor model show a degree of negative correlation. Moreover, brain tumor cell lines were treated with various pharmacological inhibitors to inactivate the CK2 pathway. Here, increased Stat3 Ser-727 phosphorylation upon CK2 inhibition was observed. Overexpression of CK2 (α, α' or β subunits) by transient transfection resulted in decreased Stat3 Ser-727 phosphorylation. Stat3 Tyr-705 residue was conversely phosphorylated in similar situations. Interestingly, we found PP2A, a protein phosphatase, to be a mediator in the negative regulation of Stat3 Ser-727 phosphorylation by CK2. In vitro assays prove that Ser-727 phosphorylation of Stat3 affects the transcriptional activity of its downstream targets like SOCS3, bcl-xl and Cyclin D1. Stable cell lines constitutively expressing Stat3 S727A mutant showed increased survival, proliferation and invasion which are characteristics of a cancer cell. Rat tumor models generated with the Stat3 S727A mutant cell line formed more aggressive tumors when compared to the Stat3 WT expressing stable cell line. Thus, in glioma, reduced Stat3 Ser-727 phosphorylation enhances tumorigenicity which may be regulated in part by CK2-PP2A pathway. Copyright © 2014. Published by Elsevier Inc.

  19. Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of Zanthoxylum armatum DC.

    Science.gov (United States)

    Singh, Thangjam Davis; Meitei, Heikrujam Thoihen; Sharma, Adhikarimayum Lakhikumar; Robinson, Asem; Singh, Lisam Shanjukumar; Singh, Thiyam Ramsing

    2015-08-20

    Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE) induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin). This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP) cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK) pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK), p38 and c-Jun N-terminal kinase (JNK). Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

  20. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Ding, Nan [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Qi, Yongmei; Zhang, Yingmei [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Jufang [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Huang, Dejun, E-mail: huangdj@lzu.edu.cn [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China)

    2015-09-15

    Highlights: • Cadmium (Cd) exposure delayed the repair of DNA damage induced by X-ray. • Cd exposure altered the phosphorylation of DNA-PKcs on Thr-2609 and Ser-2056 sites. • Cd impaired the formation of XRCC4 and Ligase IV foci, and down-regulated their protein expression. • Zinc mitigated the effects of Cd on DDR by regulating pDNA-PKcs (Thr-2609), XRCC4 and Ligase IV. - Abstract: Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1–8 h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.

  1. Mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation.

    Science.gov (United States)

    Liu, Jia; Saito, Kan; Maruya, Yuriko; Nakamura, Takashi; Yamada, Aya; Fukumoto, Emiko; Ishikawa, Momoko; Iwamoto, Tsutomu; Miyazaki, Kanako; Yoshizaki, Keigo; Ge, Lihong; Fukumoto, Satoshi

    2016-03-31

    Bone morphogenetic proteins (BMPs) regulate hard tissue formation, including bone and tooth. Growth differentiation factor 5 (GDF5), a known BMP, is expressed in cartilage and regulates chondrogenesis, and mutations have been shown to cause osteoarthritis. Notably, GDF5 is also expressed in periodontal ligament tissue; however, its role during tooth development is unclear. Here, we used cell culture and in vivo analyses to determine the role of GDF5 during tooth development. GDF5 and its associated BMP receptors are expressed at the protein and mRNA levels during postnatal tooth development, particularly at a stage associated with enamel formation. Furthermore, whereas BMP2 was observed to induce evidently the differentiation of enamel-forming ameloblasts, excess GDF5 induce mildly this differentiation. A mouse model harbouring a mutation in GDF5 (W408R) showed enhanced enamel formation in both the incisors and molars, but not in the tooth roots. Overexpression of the W408R GDF5 mutant protein was shown to induce BMP2-mediated mRNA expression of enamel matrix proteins and downstream phosphorylation of Smad1/5/8. These results suggest that mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-signalling.

  2. Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny

    DEFF Research Database (Denmark)

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    The Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling cascade enhances tumor cell proliferation in many cases. Here, we show that adenovirus type 5, a small DNA tumor virus used in experimental cancer therapy, strongly induces ERK phosphorylation...... during the late phase of infection. Pharmacologic inhibition of ERK phosphorylation reduced virus recovery by >100-fold. Blocking MEK/ERK signaling affected virus DNA replication and mRNA levels only weakly but strongly reduced the amount of viral proteins, independently of the kinases MNK1 and PKR...

  3. Salmon nasal cartilage proteoglycan enhances growth of normal human dermal fibroblast through Erk1/2 phosphorylation.

    Science.gov (United States)

    Sano, Masahiro; Shang, Yi; Nakane, Akio; Saito, Tomoaki

    2017-07-01

    Proteoglycan (PG) is a heavily glycosylated protein, localized to cell surface and extracellular matrix, and has various functions. Recently, it has been gradually revealed that PG interacts with various growth factors and morphogens and regulates cellular functions. Although salmon nasal cartilage PG (Salmon-PG) increases proliferation of immortalized cells, its mechanism remains unclear. In this study, we confirmed the effect of Salmon-PG on normal human dermal fibroblast (NHDF) and investigated the mechanism of PG action on NHDF. Salmon-PG dose- and time-dependently increased NHDF proliferation. Receptor tyrosine kinase array revealed that Salmon-PG increased only Erk1/2 signaling. Erk1/2 phosphorylation was significantly increased by Salmon-PG in a time-(10 min) and dose-(400 or 800 μg/mL) dependent manner. MEK inhibitor suppressed the enhancement of NHDF proliferation by Salmon-PG. The overall findings indicate that Salmon-PG plays a role as a growth factor in NHDF via Erk1/2 activation, suggesting that Salmon-PG contributes to the maintenance of skin homeostasis.

  4. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid.

    Directory of Open Access Journals (Sweden)

    Sujit Roy

    Full Text Available Abscisic acid (ABA acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ pathway genes, and mutants related to homologous recombination (HR pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0 during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0 and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis.

  5. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Parry, Renate [Varian Medical Systems, Palo Alto, California (United States); Barcellos-Hoff, Mary Helen, E-mail: mhbarcellos-hoff@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  6. The antihypertension drug doxazosin suppresses JAK/STATs phosphorylation and enhances the effects of IFN-α/γ-induced apoptosis.

    Science.gov (United States)

    Park, Mi Sun; Kim, Boh-Ram; Kang, Sokbom; Kim, Dae-Yong; Rho, Seung Bae

    2014-11-01

    Doxazosin, a commonly prescribed treatment for patients with benign prostatic hyperplasia, serves as an α1-blocker of the adrenergic receptors. In this study, we calculated its effect on the ovarian carcinoma cells. Doxazosin induces dose-dependent growth suppression and is additively activated through IFN-α or IFN-γ stimulation. They both enhanced G1 phase arrest, as well as the activity of caspase-3, and the reduction of cyclin D1 and CDK4 protein levels. Doxazosin growth suppression was abolished either by the Janus family of tyrosine kinase (JAK) or the signal transducer and activator of transcription (STAT) inhibitor treatment. The activity of JAK/STAT was dependent on the level of doxazosin, suggesting a requirement of doxazosin for the activation of JAK/STAT. Furthermore, doxazosin plus IFN-α or doxazosin plus IFN-γ additively suppressed the activation of the JAK/STAT signals through phosphorylation of JAK and STAT, thus affecting the activation of subsequent downstream signaling components PI3K, mTOR, 70S6K, and PKCδ. In vivo study demonstrated that doxazosin significantly suppressed tumor growth in an ovarian cancer cell xenograft mouse model, inducing apoptotic cell death by up-regulating the expression of p53, whereas c-Myc expression was markedly reduced. Our data indicate that doxazosin can modulate the apoptotic effects of IFN-α- and IFN-γ through the JAK/STAT signaling pathways. Collectively, we indicate that this action may be a potent chemotherapeutic property against ovarian carcinoma.

  7. Myoferlin depletion elevates focal adhesion kinase and paxillin phosphorylation and enhances cell-matrix adhesion in breast cancer cells.

    Science.gov (United States)

    Blackstone, B N; Li, R; Ackerman, W E; Ghadiali, S N; Powell, H M; Kniss, D A

    2015-04-15

    Breast cancer is the second leading cause of malignant death among women. A crucial feature of metastatic cancers is their propensity to lose adhesion to the underlying basement membrane as they transition to a motile phenotype and invade surrounding tissue. Attachment to the extracellular matrix is mediated by a complex of adhesion proteins, including integrins, signaling molecules, actin and actin-binding proteins, and scaffolding proteins. Focal adhesion kinase (FAK) is pivotal for the organization of focal contacts and maturation into focal adhesions, and disruption of this process is a hallmark of early cancer invasive potential. Our recent work has revealed that myoferlin (MYOF) mediates breast tumor cell motility and invasive phenotype. In this study we demonstrate that noninvasive breast cancer cell lines exhibit increased cell-substrate adhesion and that silencing of MYOF using RNAi in the highly invasive human breast cancer cell line MDA-MB-231 also enhances cell-substrate adhesion. In addition, we detected elevated tyrosine phosphorylation of FAK (FAK(Y397)) and paxillin (PAX(Y118)), markers of focal adhesion protein activation. Morphometric analysis of PAX expression revealed that RNAi-mediated depletion of MYOF resulted in larger, more elongated focal adhesions, in contrast to cells transduced with a control virus (MDA-231(LVC) cells), which exhibited smaller focal contacts. Finally, MYOF silencing in MDA-MB-231 cells exhibited a more elaborate ventral cytoskeletal structure near focal adhesions, typified by pronounced actin stress fibers. These data support the hypothesis that MYOF regulates cell adhesions and cell-substrate adhesion strength and may account for the high degree of motility in invasive breast cancer cells. Copyright © 2015 the American Physiological Society.

  8. Androgen Receptor Phosphorylation at Serine 308 and Serine 791 Predicts Enhanced Survival in Castrate Resistant Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Mark A. Underwood

    2013-08-01

    Full Text Available We previously reported that AR phosphorylation at serine 213 was associated with poor outcome and may contribute to prostate cancer development and progression. This study investigates if specific AR phosphorylation sites have differing roles in the progression of hormone naïve prostate cancer (HNPC to castrate resistant disease (CRPC. A panel of phosphospecific antibodies were employed to study AR phosphorylation in 84 matched HNPC and CRPC tumours. Immunohistochemistry measured Androgen receptor expression phosphorylated at serine residues 94 (pAR94, 308 (pAR308, 650(pAR650 and 791 (pAR791. No correlations with clinical parameters were observed for pAR94 or pAR650 in HNPC or CRPC tumours. In contrast to our previous observation with serine 213, high pAR308 is significantly associated with a longer time to disease specific death (p = 0.011 and high pAR791 expression significantly associated with a longer time to disease recurrence (p = 0.018 in HNPC tumours and longer time to death from disease recurrence (p = 0.040 in CRPC tumours. This observation in CRPC tumours was attenuated in high apoptotic tumours (p = 0.022 and low proliferating tumours (p = 0.004. These results demonstrate that understanding the differing roles of AR phosphorylation is necessary before this can be exploited as a target for castrate resistant prostate cancer.

  9. MORC2 Signaling Integrates Phosphorylation-Dependent, ATPase-Coupled Chromatin Remodeling during the DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Da-Qiang Li

    2012-12-01

    Full Text Available Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2, an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1, an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes.

  10. Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin.

    Science.gov (United States)

    Wang, Xuerong; Yue, Ping; Tao, Hui; Sun, Shi-Yong

    2017-08-01

    It has been suggested that the mTOR complex 1 (mTORC1)/p70S6K axis represses upstream PI3K/Akt signaling through phosphorylation of IRS-1 and its subsequent degradation. One potential and current model that explains Akt activation induced by the mTOR inhibitor rapamycin is the relief of mTORC1/p70S6K-mediated feedback inhibition of IRS-1/PI3K/Akt signaling, although this has not been experimentally proven. In this study, we found that chemical inhibition of p70S6K did not increase Akt phosphorylation. Surprisingly, knockdown of p70S6K even substantially inhibited Akt phosphorylation. Hence, p70S6K inhibition clearly does not mimic the activation of Akt by rapamycin. Inhibition or enforced activation of p70S6K did not affect the ability of rapamycin to increase Akt phosphorylation. Moreover, inhibition of mTORC1 with either rapamycin or raptor knockdown did not elevate IRS-1 levels, despite potently increasing Akt phosphorylation. Critically, knockdown or knockout of IRS-1 or IRS-2 failed to abolish the ability of rapamycin to increase Akt phosphorylation. Therefore, IRS-1 and IRS-2 are not essential for mediating rapamycin-induced Akt activation. Collectively, our findings suggest that Akt activation by rapamycin or mTORC1 inhibition is unlikely due to relief of p70S6K-mediated feedback inhibition of IRS-1/PI3K/Akt signaling.

  11. TU-H-CAMPUS-TeP3-01: Gold Nanoparticle-Enhanced Radiation Therapy in In Vitro A549 Lung Carcinoma: Studies in Both Traditional Monolayer and Three Dimensional Cell Culture Models

    Energy Technology Data Exchange (ETDEWEB)

    Oumano, M [Baystate Medical Center, Springfield, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Harvard Medical School, Boston, MA (United States); Celli, J; Hempstead, J; Petrovic, L [University of Massachusetts Boston, Boston, MA (United States); Arnoldussen, M; Hanlon, J [Oraya Therapeutics inc., Newark, CA (United States)

    2016-06-15

    Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factor reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.

  12. Imaging of native transcription factors and histone phosphorylation at high resolution in live cells.

    Science.gov (United States)

    Conic, Sascha; Desplancq, Dominique; Ferrand, Alexia; Fischer, Veronique; Heyer, Vincent; Reina San Martin, Bernardo; Pontabry, Julien; Oulad-Abdelghani, Mustapha; Babu N, Kishore; Wright, Graham D; Molina, Nacho; Weiss, Etienne; Tora, László

    2018-02-12

    Fluorescent labeling of endogenous proteins for live-cell imaging without exogenous expression of tagged proteins or genetic manipulations has not been routinely possible. We describe a simple versatile antibody-based imaging approach (VANIMA) for the precise localization and tracking of endogenous nuclear factors. Our protocol can be implemented in every laboratory allowing the efficient and nonharmful delivery of organic dye-conjugated antibodies, or antibody fragments, into different metazoan cell types. Live-cell imaging permits following the labeled probes bound to their endogenous targets. By using conventional and super-resolution imaging we show dynamic changes in the distribution of several nuclear transcription factors (i.e., RNA polymerase II or TAF10), and specific phosphorylated histones (γH2AX), upon distinct biological stimuli at the nanometer scale. Hence, considering the large panel of available antibodies and the simplicity of their implementation, VANIMA can be used to uncover novel biological information based on the dynamic behavior of transcription factors or posttranslational modifications in the nucleus of single live cells. © 2018 Conic et al.

  13. Roles of Kruppel-associated Box (KRAB)-associated Co-repressor KAP1 Ser-473 Phosphorylation in DNA Damage Response.

    Science.gov (United States)

    Hu, Chen; Zhang, Shengping; Gao, Xuan; Gao, Xiaojing; Xu, Xiaohong; Lv, Ya; Zhang, Yan; Zhu, Zhenhong; Zhang, Changqing; Li, Qiao; Wong, Jiemin; Cui, Yongping; Zhang, Wen; Ma, Lin; Wang, Chuangui

    2012-06-01

    The Kruppel-associated box (KRAB)-associated co-repressor KAP1 is an essential nuclear co-repressor for the KRAB zinc finger protein superfamily of transcriptional factors. Ataxia telangiectasia mutated (ATM)-Chk2 and ATM- and Rad3-related (ATR)-Chk1 are two primary kinase signaling cascades activated in response to DNA damage. A growing body of evidence suggests that ATM and ATR phosphorylate KAP1 at Ser-824 in response to DNA damage and regulate KAP1-dependent chromatin condensation, DNA repair, and gene expression. Here, we show that, depending on the type of DNA damage that occurs, KAP1 Ser-473 can be phosphorylated by ATM-Chk2 or ATR-Chk1 kinases. Phosphorylation of KAP1 at Ser-473 attenuated its binding to the heterochromatin protein 1 family proteins and inhibited its transcriptional repression of KRAB-zinc finger protein (KRAB-ZFP) target genes. Moreover, KAP1 Ser-473 phosphorylation induced by DNA damage stimulated KAP1-E2F1 binding. Overexpression of heterochromatin protein 1 significantly inhibited E2F1-KAP1 binding. Elimination of KAP1 Ser-473 phosphorylation increased E2F1-targeted proapoptotic gene expression and E2F1-induced apoptosis in response to DNA damage. Furthermore, loss of phosphorylation of KAP1 Ser-473 led to less BRCA1 focus formation and slower kinetics of loss of γH2AX foci after DNA damage. KAP1 Ser-473 phosphorylation was required for efficient DNA repair and cell survival in response to DNA damage. Our studies reveal novel functions of KAP1 Ser-473 phosphorylation under stress.

  14. Phosphorylation site prediction in plants.

    Science.gov (United States)

    Yao, Qiuming; Schulze, Waltraud X; Xu, Dong

    2015-01-01

    Protein phosphorylation events on serine, threonine, and tyrosine residues are the most pervasive protein covalent bond modifications in plant signaling. Both low and high throughput studies reveal the importance of phosphorylation in plant molecular biology. Although becoming more and more common, the proteome-wide screening on phosphorylation by experiments remains time consuming and costly. Therefore, in silico prediction methods are proposed as a complementary analysis tool to enhance the phosphorylation site identification, develop biological hypothesis, or help experimental design. These methods build statistical models based on the experimental data, and they do not have some of the technical-specific bias, which may have advantage in proteome-wide analysis. More importantly computational methods are very fast and cheap to run, which makes large-scale phosphorylation identifications very practical for any types of biological study. Thus, the phosphorylation prediction tools become more and more popular. In this chapter, we will focus on plant specific phosphorylation site prediction tools, with essential illustration of technical details and application guidelines. We will use Musite, PhosPhAt and PlantPhos as the representative tools. We will present the results on the prediction of the Arabidopsis protein phosphorylation events to give users a general idea of the performance range of the three tools, together with their strengths and limitations. We believe these prediction tools will contribute more and more to the plant phosphorylation research community.

  15. Phosphorylation of CSF-1R Y721 mediates its association with PI3K to regulate macrophage motility and enhancement of tumor cell invasion.

    Science.gov (United States)

    Sampaio, Natalia G; Yu, Wenfeng; Cox, Dianne; Wyckoff, Jeffrey; Condeelis, John; Stanley, E Richard; Pixley, Fiona J

    2011-06-15

    Colony stimulating factor-1 (CSF-1) regulates macrophage morphology and motility, as well as mononuclear phagocytic cell proliferation and differentiation. The CSF-1 receptor (CSF-1R) transduces these pleiotropic signals through autophosphorylation of eight intracellular tyrosine residues. We have used a novel bone-marrow-derived macrophage cell line system to examine specific signaling pathways activated by tyrosine-phosphorylated CSF-1R in macrophages. Screening of macrophages expressing a single species of CSF-1R with individual tyrosine-to-phenylalanine residue mutations revealed striking morphological alterations upon mutation of Y721. M⁻/⁻.Y721F cells were apolar and ruffled poorly in response to CSF-1. Y721-P-mediated CSF-1R signaling regulated adhesion and actin polymerization to control macrophage spreading and motility. Moreover, the reduced motility of M⁻/⁻.Y721F macrophages was associated with their reduced capacity to enhance carcinoma cell invasion. Y721 phosphorylation mediated the direct association of the p85 subunit of phosphoinositide 3-kinase (PI3K) with the CSF-1R, but not that of phospholipase C (PLC) γ2, and induced polarized PtdIns(3,4,5)P₃ production at the putative leading edge, implicating PI3K as a major regulator of CSF-1-induced macrophage motility. The Y721-P-motif-based motility signaling was at least partially independent of both Akt and increased Rac and Cdc42 activation but mediated the rapid and transient association of an unidentified ~170 kDa phosphorylated protein with either Rac-GTP or Cdc42-GTP. These studies identify CSF-1R-Y721-P-PI3K signaling as a major pathway in CSF-1-regulated macrophage motility and provide a starting point for the discovery of the immediate downstream signaling events.

  16. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available BACKGROUND: Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. METHODOLOGY/PRINCIPAL FINDINGS: To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry. CONCLUSIONS/SIGNIFICANCE: Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  17. The Quiescent Cellular State is Arf/p53-Dependent and Associated with H2AX Downregulation and Genome Stability

    Directory of Open Access Journals (Sweden)

    Mitsuko Masutani

    2012-05-01

    Full Text Available Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability.

  18. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1.

    Science.gov (United States)

    Michlewski, Gracjan; Sanford, Jeremy R; Cáceres, Javier F

    2008-04-25

    The SR protein SF2/ASF has been initially characterized as a splicing factor but has also been shown to mediate postsplicing activities such as mRNA export and translation. Here we demonstrate that SF2/ASF promotes translation initiation of bound mRNAs and that this activity requires the presence of the cytoplasmic cap-binding protein eIF4E. SF2/ASF promotes translation initiation by suppressing the activity of 4E-BP, a competitive inhibitor of cap-dependent translation. This activity is mediated by interactions of SF2/ASF with both mTOR and the phosphatase PP2A, two key regulators of 4E-BP phosphorylation. These findings suggest the model whereby SF2/ASF functions as an adaptor protein to recruit the signaling molecules responsible for regulation of cap-dependent translation of specific mRNAs. Taken together, these data suggest a novel mechanism for the activation of translation initiation of a subset of mRNAs bound by the shuttling protein SF2/ASF.

  19. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  20. Vegetable peptones increase production of type I collagen in human fibroblasts by inducing the RSK-CCAAT/enhancer binding protein-β phosphorylation pathway.

    Science.gov (United States)

    Jung, Eunsun; Cho, Jae Youl; Park, Deokhoon; Kim, Min Hee; Park, Beomseok; Lee, Sang Yeol; Lee, Jongsung

    2015-02-01

    Skin aging appears to be principally attributed to a decrease in type I collagen level and the regeneration ability of dermal fibroblasts. We hypothesized that vegetable peptones promote cell proliferation and production of type I collagen in human dermal fibroblasts. Therefore, we investigated the effects of vegetable peptones on cell proliferation and type I collagen production and their possible mechanisms in human dermal fibroblasts. Vegetable peptones significantly promoted cell proliferation in a concentration-dependent manner. In addition, the human luciferase type I collagen α2 promoter and type I procollagen synthesis assays showed that the vegetable peptones induced type I procollagen production by activating the type I collagen α2 promoter. Moreover, the vegetable peptones activated p90 ribosomal s6 kinase, which was mediated by activating the Raf-p44/42 mitogen-activated protein kinase signaling pathway. Furthermore, the vegetable peptone-induced increase in cell proliferation and type I collagen production decreased upon treatment with the ERK inhibitor PD98059. Taken together, these findings suggest that increased proliferation of human dermal fibroblasts and enhanced production of type I collagen by vegetable peptones occur primarily by inducing the p90 ribosomal s6 kinase-CCAAT/enhancer binding protein β phosphorylation pathway, which is mediated by activating Raf-ERK signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. How lithium treatment generates neutrophilia by enhancing phosphorylation of GSK-3, increasing HIF-1 levels and how this path is important during engraftment.

    Science.gov (United States)

    Kast, R E

    2008-01-01

    Lithium is commonly used in psychiatry for mood stabilization. Lithium treatment results in neutrophilia, increased platelets and increased circulating CD34+ haematopoietic stem cells, HSC. This paper outlines the newly discovered mechanism by which this occurs. Glycogen synthase kinase-3, GSK-3, phosphorylates and thereby inactivates hypoxia-induced factor-1, HIF-1. HIF-1 is a transcription factor triggering transcription of multiple genes related to adaptation to hypoxia, among which is CXCL12. CXCL12 forms the primary homing gradient for CD34+ HSCs towards the hypoxic, trophic bone marrow niche to which they must go to thrive. Lithium inhibits GSK-3 thereby increasing active HIF-1 that results in a stronger CXCL12 homing gradient. Trophic niche function is enhanced, ultimately resulting in increased production of neutrophils, platelets and CD34+ cells. Sitagliptin is a new drug to treat diabetes that coincidentally inhibits destruction of CXCL12. Thus, lithium and sitagliptin enhance CXCL12 by different paths, potentially increasing trophic niche function. Awareness of this path is important in HSC transplantation.

  2. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    Directory of Open Access Journals (Sweden)

    Nikki A McLean

    Full Text Available Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.

  3. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Schneider, H R; Reichert, G H; Issinger, O G

    1986-01-01

    Mouse embryos at various stages of development were used to study the relationship of protein kinase activities with normal embryogenesis. Casein kinase II (CKII) activity in developing mouse embryos shows a 3-4-fold activity increase at day 12 of gestation. Together with the CKII activity...... mouse tumour cells also show an enhanced CKII activity. Here too, a 110-kDa phosphoprotein was the major phosphoryl acceptor. Partial proteolytic digestion shows that both proteins are identical. Other protein kinases tested (cAMP- and cGMP-dependent protein kinases) only show a basal level of enzyme......, increased phosphorylation of a 110-kDa protein is observed. Treatment of the embryo extracts with heparin, a highly specific inhibitor of CKII activity, results in a drastic reduction of the 110-kDa protein phosphorylation indicating that the protein might be a CKII-specific substrate. Rapidly proliferating...

  4. Enhanced thermal and structural properties of partially phosphorylated polyvinyl alcohol - Aluminum phosphate (PPVA-Alpo4) nanocomposites with aluminium nitrate source

    Science.gov (United States)

    Saat, Asmalina Mohamed; Johan, Mohd Rafie

    2017-12-01

    Synthesis of AlPO4 nanocomposite depends on the ratio of aluminum to phosphate, method of synthesis and the source for aluminum and phosphate source used. Variation of phosphate and aluminum source used will form multiple equilibria reactions and affected by ions variability and concentration, stoichiometry, temperature during reaction process and especially the precipitation pH. Aluminum nitrate was used to produce a partially phosphorylated poly vinyl alcohol-aluminum phosphate (PPVA-AlPO4) nanocomposite with various nanoparticle shapes, structural and properties. Synthesis of PPVA-AlPO4 nanocomposite with aluminum nitrate shows enhancement of thermal and structural in comparison with pure PVA and modified PPVA. Thermogravimetric (TGA) analysis shows that the weight residue of PPVA-AlPO4 composite was higher than PPVA and PVA. X-ray diffraction (XRD) pattern of PVA shows a single peak broadening after the addition of phosphoric acid. Meanwhile, XRD pattern of PPVA-AlPO4 demonstrates multiple phases of AlPO4 in the nanocomposite. Field Emission Scanning Electron Microscopy (FESEM) confirmed the existence of multiple geometrical phases and nanosize of spherical particles.

  5. ADP-ribosylation factor-like GTPase 15 enhances insulin-induced AKT phosphorylation in the IR/IRS1/AKT pathway by interacting with ASAP2 and regulating PDPK1 activity.

    Science.gov (United States)

    Zhao, Jie; Wang, Min; Deng, Wuquan; Zhong, Daping; Jiang, Youzhao; Liao, Yong; Chen, Bing; Zhang, Xiaoli

    2017-05-13

    Decreased phosphorylation in the insulin signalling pathway is a hallmark of insulin resistance. The causes of this phenomenon are complicated and multifactorial. Recently, genomic analyses have identified ARL15 as a new candidate gene related to diabetes. However, the ARL15 protein function remains unclear. Here, we show that ARL15 is upregulated by insulin stimulation. This effect was impaired in insulin-resistant pathophysiology in TNF-α-treated C2C12 myotubes and in the skeletal muscles of leptin knockout mice. In addition, ARL15 localized to the cytoplasm in the resting state and accumulated in the Golgi apparatus around the nucleus upon insulin stimulation. ARL15 overexpression can enhance the phosphorylation of the key insulin signalling pathway molecules IR, IRS1 and AKT in C2C12 myotubes. Moreover, ARL15 knockdown can also specifically inhibit the phosphorylation of PDPK1 Ser241, thereby reducing PDPK1 activity and its downstream phosphorylation of AKT Thr308. Co-immunoprecipitation assays identified ASAP2 as an ARL15-interacting protein. In conclusion, we have identified that ARL15 acts as an insulin-sensitizing effector molecule to upregulate the phosphorylation of members of the canonical IR/IRS1/PDPK1/AKT insulin pathway by interacting with its GAP ASAP2 and activating PDPK1. This research may provide new insights into GTPase-mediated insulin signalling regulation and facilitate the development of new pharmacotherapeutic targets for insulin sensitization. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage.

    Science.gov (United States)

    Peng, Bin; Wang, Jing; Hu, Yuan; Zhao, Hongli; Hou, Wenya; Zhao, Hongchang; Wang, Hailong; Liao, Ji; Xu, Xingzhi

    2015-07-13

    Proper DNA damage response is essential for the maintenance of genome integrity. The E3 ligase RNF168 deficiency fully prevents both the initial recruitment and retention of 53BP1 at sites of DNA damage. In response to DNA damage, RNF168-dependent recruitment of the lysine-specific demethylase LSD1 to the site of DNA damage promotes local H3K4me2 demethylation and ubiquitination of H2A/H2AX, facilitating 53BP1 recruitment to sites of DNA damage. Alternatively, RNF168-mediated K63-linked ubiquitylation of 53BP1 is required for the initial recruitment of 53BP1 to sites of DNA damage and for its function in repair. We demonstrated here that phosphorylation and dephosphorylation of LSD1 at S131 and S137 was mediated by casein kinase 2 (CK2) and wild-type p53-induced phosphatase 1 (WIP1), respectively. LSD1, RNF168 and 53BP1 interacted with each other directly. CK2-mediated phosphorylation of LSD1 exhibited no impact on its interaction with 53BP1, but promoted its interaction with RNF168 and RNF168-dependent 53BP1 ubiquitination and subsequent recruitment to the DNA damage sites. Furthermore, overexpression of phosphorylation-defective mutants failed to restore LSD1 depletion-induced cellular sensitivity to DNA damage. Taken together, our results suggest that LSD1 phosphorylation modulated by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment directly in response to DNA damage and cellular sensitivity to DNA damaging agents. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Galangin enhances TGF-β1-mediated growth inhibition by suppressing phosphorylation of threonine 179 residue in Smad3 linker region.

    Science.gov (United States)

    Kwak, Mi-Kyung; Yang, Kyung-Min; Park, Jinah; Lee, Siyoung; Park, Yuna; Hong, Eunji; Sun, Eun Jin; An, Haein; Park, Sujin; Pang, Kyoungwha; Lee, Jihee; Kang, Jin Muk; Kim, Pyunggang; Ooshima, Akira; Kim, Seong-Jin

    2017-12-16

    Smad3 linker phosphorylation is a candidate target for several kinases that play important roles in cancer cell initiation, proliferation and progression. Also, Smad3 is an essential intracellular mediator of TGF-β1-induced transcriptional responses during carcinogenesis. Therefore, it is highly advantageous to identify and develop inhibitors targeting Smad3 linker phosphorylation for the treatment of cancers. Galangin (3,5,7-trihydroxyflavone) has been known to be an active flavonoid showing a cytotoxic effect on several cancer cells. However, the mechanism of action of galangin in various cancers remains unclear, and there has been no report concerning regulation of Smad3 phosphorylation by galangin. In the present study, we show that galangin significantly induced apoptosis and inhibited cell proliferation in the presence of TGF-β1 in both human prostate and pancreatic cancer cell lines. Particularly, galangin effectively inhibits phosphorylation of the Thr-179 site at Smad3 linker region through suppression of CDK4 phosphorylation. Thus, galangin can be a promising candidate as a selective inhibitor to suppress phosphorylation of Smad3 linker region. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Fuyuan Decoction Enhances SOX9 and COL2A1 Expression and Smad2/3 Phosphorylation in IL-1β-Activated Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yudi Zhang

    2015-01-01

    Full Text Available Fuyuan Decoction (FYD, a herbal formula in China, has been widely used for osteoarthritis (OA treatment. Herein, we determined the effects of FYD on the expression of transcription factor SOX9 and its target gene collagen type II, alpha 1 (COL2A1 as well as the activation of Smad2/3 in interleukin- (IL- 1β-stimulated SW1353 chondrosarcoma cells. Serum-derived FYD (FYD-CS was prepared to treat SW1353 cells with or without SB431542, a TGF-β1 receptor inhibitor. Cell cycle progression was tested by flow cytometry. The expression of SOX9 and COL2A1 and the activation of Smad2/3 (p-Smad2/3 were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR and/or western blot. The results showed that, after treatment, FYD-CS, while inducing S-phase cell cycle arrest, enhanced cell proliferation and protected the cells against IL-1β- and/or SB431542-induced cell growth inhibition. Furthermore, FYD-CS reversed the decreased expression of COL2A1 and SOX9 induced by IL-1β and SB431542 and blocked the decreased phosphorylation of Smad2/3 induced by IL-1β alone or in combination with SB431542. Our results suggest that FYD promotes COL2A1 and SOX9 expression as well as Smad2/3 activation in IL-1β-induced chondrocytes, thus benefiting cell survival.

  9. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation.

    Science.gov (United States)

    Yang, Lina; Liu, Yuanyuan; Sun, Chao; Yang, Xinrui; Yang, Zhen; Ran, Juntao; Zhang, Qiuning; Zhang, Hong; Wang, Xinyu; Wang, Xiaohu

    2015-11-01

    Non-small cell lung cancer (NSCLC) exhibits radioresistance to conventional rays, due to its DNA damage repair systems. NSCLC may potentially be sensitized to radiation treatment by reducing those factors that continuously enhance the repair of damaged DNA. In the present study, normal lung fibroblast MRC-5 and lung cancer A549 cells were treated with NU7026 and CGK733, which are inhibitors of the DNA-dependent protein kinase catalytic subunit (PKcs) and ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR), respectively, followed by exposure to X-rays and carbon ion irradiation. The cytotoxic activity, cell survival rate, DNA damage repair ability, cell cycle arrest and apoptosis rate of the treated cells were analyzed with MTT assay, colony formation assay, immunofluorescence and flow cytometry, respectively. The transcription and translation levels of the ATM, ATR and DNA-PKcs genes were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results indicated that the radiosensitivity and DNA repair ability of A549 cells were reduced, and the percentages of apoptotic cells and those arrested at the G2/M phase of the cell cycle were significantly increased, following ionizing radiation with inhibitor-pretreatment. The expression levels of ATM, ATR, DNA-PKcs and phosphorylated histone H2AX, a biomarker for DNA double-strand breaks, were all upregulated at the transcriptional or translational level in A549 cells treated with carbon ion irradiation, compared with the control and X-rays-treated cells. In addition, the treatment with 5-50 µM NU7026 or CGK733 did not produce any obvious cytotoxicity in MRC-5 cells, and the effect of the DNA-PKcs-inhibitor on enhancing the radiosensitivity of A549 cells was stronger than that observed for the ATM and ATR-inhibitor. These findings demonstrated a minor role for ATM and ATR in radiation-induced cell death, since the upregulation of

  10. Multisite phosphorylation of human liver cytochrome P450 3A4 enhances Its gp78- and CHIP-mediated ubiquitination: a pivotal role of its Ser-478 residue in the gp78-catalyzed reaction.

    Science.gov (United States)

    Wang, YongQiang; Guan, Shenheng; Acharya, Poulomi; Liu, Yi; Thirumaran, Ranjit K; Brandman, Relly; Schuetz, Erin G; Burlingame, Alma L; Correia, Maria Almira

    2012-02-01

    CYP3A4, an integral endoplasmic reticulum (ER)-anchored protein, is the major human liver cytochrome P450 enzyme responsible for the disposition of over 50% of clinically relevant drugs. Alterations of its protein turnover can influence drug metabolism, drug-drug interactions, and the bioavailability of chemotherapeutic drugs. Such CYP3A4 turnover occurs via a classical ER-associated degradation (ERAD) process involving ubiquitination by both UBC7/gp78 and UbcH5a/CHIP E2-E3 complexes for 26 S proteasomal targeting. These E3 ligases act sequentially and cooperatively in CYP3A4 ERAD because RNA interference knockdown of each in cultured hepatocytes results in the stabilization of a functionally active enzyme. We have documented that UBC7/gp78-mediated CYP3A4 ubiquitination requires protein phosphorylation by protein kinase (PK) A and PKC and identified three residues (Ser-478, Thr-264, and Ser-420) whose phosphorylation is required for intracellular CYP3A4 ERAD. We document herein that of these, Ser-478 plays a pivotal role in UBC7/gp78-mediated CYP3A4 ubiquitination, which is accelerated and enhanced on its mutation to the phosphomimetic Asp residue but attenuated on its Ala mutation. Intriguingly, CYP3A5, a polymorphically expressed human liver CYP3A4 isoform (containing Asp-478) is ubiquitinated but not degraded to a greater extent than CYP3A4 in HepG2 cells. This suggests that although Ser-478 phosphorylation is essential for UBC7/gp78-mediated CYP3A4 ubiquitination, it is not sufficient for its ERAD. Additionally, we now report that CYP3A4 protein phosphorylation by PKA and/or PKC at sites other than Ser-478, Thr-264, and Ser-420 also enhances UbcH5a/CHIP-mediated ubiquitination. Through proteomic analyses, we identify (i) 12 additional phosphorylation sites that may be involved in CHIP-CYP3A4 interactions and (ii) 8 previously unidentified CYP3A4 ubiquitination sites within spatially associated clusters of Asp/Glu and phosphorylatable Ser/Thr residues that may

  11. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells.

    Science.gov (United States)

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne

    2016-09-08

    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis.

  12. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    Science.gov (United States)

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  13. Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer's disease.

    Science.gov (United States)

    Liu, Xiang-Hua; Geng, Zhao; Yan, Jing; Li, Ting; Chen, Qun; Zhang, Qun-Ye; Chen, Zhe-Yu

    2015-02-01

    Endocytosis of tropomyosin related kinase B (TrkB) receptors has critical roles in brain-derived neurotrophic factor (BDNF) mediated signal transduction and biological function, however the mechanism that is governing TrkB endocytosis is still not completely understood. In this study, we showed that GSK3β, a key kinase in neuronal development and survival, could regulate TrkB endocytosis through phosphorylating dynamin1 (Dyn1) but not dynamin2 (Dyn2). Moreover, we found that beta-amyloid (Aβ) oligomer exposure could impair BDNF-dependent TrkB endocytosis and Akt activation through enhancing GSK3β activity in cultured hippocampal neurons, which suggested that BDNF-induced TrkB endocytosis and the subsequent signaling were impaired in neuronal model of Alzheimer's disease (AD). Notably, we found that inhibiting GSK3β phosphorylating Dyn1 by using TAT-Dyn1SpS could rescue the impaired TrkB endocytosis and Akt activation upon BDNF stimuli under Aβ exposure. Finally, TAT-Dyn1SpS could facilitate BDNF-mediated neuronal survival and cognitive enhancement in mouse models of AD. These results clarified a role of GSK3β in BDNF-dependent TrkB endocytosis and the subsequent signaling, and provided a potential new strategy by inhibiting GSK3β-induced Dyn1 phosphorylation for AD treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Identification of the elementary structural units of the DNA damage response

    OpenAIRE

    De Natale, F.; Rapp, A.; Yu, W.; Maiser, A.; Harz, H; Scholl, A.; Grulich, S.; Anton, T.; Hoerl, D.; Chen, W.; Durante, M; Taucher-Scholz, G.; Leonhardt, H.; Cardoso, M. C.

    2017-01-01

    Histone H2AX phosphorylation is an early signalling event triggered by DNA double-strand breaks (DSBs). To elucidate the elementary units of phospho-H2AX-labelled chromatin, we integrate super-resolution microscopy of phospho-H2AX during DNA repair in human cells with genome-wide sequencing analyses. Here we identify phospho-H2AX chromatin domains in the nanometre range with median length of ∼75 kb. Correlation analysis with over 60 genomic features shows a time-dependent euchromatin-to-heter...

  15. CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells.

    Science.gov (United States)

    Chang, Fiona T M; Chan, F Lyn; R McGhie, James D; Udugama, Maheshi; Mayne, Lynne; Collas, Philippe; Mann, Jeffrey R; Wong, Lee H

    2015-03-11

    Human ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.3 deposition and post-translational modification in the global genome remains unclear. Here, we explore the dynamics of phosphorylated H3.3 serine 31 (H3.3S31ph) in human ALT cancer cells. While H3.3S31ph is found only at pericentric satellite DNA repeats during mitosis in most somatic human cells, a high level of H3.3S31ph is detected on the entire chromosome in ALT cells, attributable to an elevated CHK1 activity in these cells. Drug inhibition of CHK1 activity during mitosis and expression of mutant H3.3S31A in these ALT cells result in a decrease in H3.3S31ph levels accompanied with increased levels of phosphorylated H2AX serine 139 on chromosome arms and at the telomeres. Furthermore, the inhibition of CHK1 activity in these cells also reduces cell viability. Our findings suggest a novel role of CHK1 as an H3.3S31 kinase, and that CHK1-mediated H3.3S31ph plays an important role in the maintenance of chromatin integrity and cell survival in ALT cancer cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy*

    Science.gov (United States)

    Mori, Yugo; Akita, Kaoru; Yashiro, Masakazu; Sawada, Tetsuji; Hirakawa, Kosei; Murata, Takeomi; Nakada, Hiroshi

    2015-01-01

    Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway. PMID:26342075

  17. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy.

    Science.gov (United States)

    Mori, Yugo; Akita, Kaoru; Yashiro, Masakazu; Sawada, Tetsuji; Hirakawa, Kosei; Murata, Takeomi; Nakada, Hiroshi

    2015-10-23

    Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells.

    Science.gov (United States)

    Finger, Elizabeth C; Castellini, Laura; Rankin, Erinn B; Vilalta, Marta; Krieg, Adam J; Jiang, Dadi; Banh, Alice; Zundel, Wayne; Powell, Marianne Broome; Giaccia, Amato J

    2015-04-07

    Scaffold proteins are critical hubs within cells that have the ability to modulate upstream signaling molecules and their downstream effectors to fine-tune biological responses. Although they can serve as focal points for association of signaling molecules and downstream pathways that regulate tumorigenesis, little is known about how the tumor microenvironment affects the expression and activity of scaffold proteins. This study demonstrates that hypoxia, a common element of solid tumors harboring low oxygen levels, regulates expression of a specific variant of the scaffold protein AKAP12 (A-kinase anchor protein 12), AKAP12v2, in metastatic melanoma. In turn, through a kinome-wide phosphoproteomic and MS study, we demonstrate that this scaffolding protein regulates a shift in protein kinase A (PKA)-mediated phosphorylation events under hypoxia, causing alterations in tumor cell invasion and migration in vitro, as well as metastasis in an in vivo orthotopic model of melanoma. Mechanistically, the shift in AKAP12-dependent PKA-mediated phosphorylations under hypoxia is due to changes in AKAP12 localization vs. structural differences between its two variants. Importantly, our work defines a mechanism through which a scaffold protein can be regulated by the tumor microenvironment and further explains how a tumor cell can coordinate many critical signaling pathways that are essential for tumor growth through one individual scaffolding protein.

  19. Redox-Sensitive Oxidation and Phosphorylation of PTEN Contribute to Enhanced Activation of PI3K/Akt Signaling in Rostral Ventrolateral Medulla and Neurogenic Hypertension in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Wu, Kay L.H.; Wu, Chiung-Ai; Wu, Chih-Wei; Chan, Samuel H.H.; Chang, Alice Y.W.

    2013-01-01

    Abstract Aims: The activity of phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (Akt) is enhanced under hypertension. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of PI3K signaling, and its activity is redox-sensitive. In the rostral ventrolateral medulla (RVLM), which is responsible for the maintenance of blood pressure, oxidative stress plays a pivotal role in neurogenic hypertension. The present study evaluated the hypothesis that redox-sensitive inactivation of PTEN results in enhanced PI3K/Akt signaling in RVLM, leading to neurogenic hypertension. Results: Compared to age-matched normotensive Wistar-Kyoto (WKY) rats, PTEN inactivation in the form of oxidation and phosphorylation were greater in RVLM of spontaneously hypertensive rats (SHR). PTEN inactivation was accompanied by augmented PI3K activity and PI3K/Akt signaling, as reflected by the increase in phosphorylation of Akt and mammalian target of rapamycin. Intracisternal infusion of tempol or microinjection into the bilateral RVLM of adenovirus encoding superoxide dismutase significantly antagonized the PTEN inactivation and blunted the enhanced PI3K/Akt signaling in SHR. Gene transfer of PTEN to RVLM in SHR also abrogated the enhanced Akt activation and promoted antihypertension. Silencing PTEN expression in RVLM with small-interfering RNA, on the other hand, augmented PI3K/Akt signaling and promoted long-term pressor response in normotensive WKY rats. Innovation: The present study demonstrated for the first time that the redox-sensitive check-and-balance process between PTEN and PI3K/Akt signaling is engaged in the pathogenesis of hypertension. Conclusion: We conclude that an aberrant interplay between the redox-sensitive PTEN and PI3k/Akt signaling in RVLM underpins neural mechanism of hypertension. Antioxid. Redox Signal. 18, 36–50. PMID:22746319

  20. Jueming prescription and its ingredients, semen cassiae and Rhizoma Curcumae Longae, stimulate lipolysis and enhance the phosphorylation of hormone‑sensitive lipase in cultured rat white adipose tissue.

    Science.gov (United States)

    Zhang, Yue; Li, Jiaojiao; Wen, Xiuying

    2017-11-01

    The present study aimed to investigate the effect of jueming prescription (JMP) and its ingredients, semen cassiae (SC) and Rhizoma Curcumae Longae (RCL), on lipolysis, and to examine their effect on the phosphorylation of hormone‑sensitive lipase (HSL) in cultured rat white adipose tissue (WAT). Retroperitoneal WAT was aseptically excised from adult male Sprague‑Dawley rats, minced into uniform sections and subjected to ex vivo culture for 24 h. The tissue sections were then distributed into a 24‑well culture plate and treated with normal saline (vehicle), isoproterenol (ISO), JMP, SC and RCL. Non‑esterified fatty acid (NEFA) and glycerol release from the intact WAT explants were determined as a measurement of lipolysis, which were measured using NEFA and glycerol assay kits. The phosphorylation of HSL at Ser563 (P‑HSL S563) and 660 residues (P‑HSL S660) were determined using western blot analysis. The size of the adipocytes was visualized using hematoxylin and eosin (H&E) staining. It was found that JMP‑, SC‑ and RCL‑stimulated lipolysis was responsible for increasing the release of NEFAs and glycerol from the intact WAT in vitro. In addition, JMP, SC and RCL increased the levels of P‑HSL Ser563: JMP water (JW) extract, 3.52‑fold; JMP ethanol (JE) extract, 3.38‑fold; SC water (SW) extract, 4.60‑fold; SC ethanol (SE) extract, 4.20‑fold; RCL water (RW) extract, 6.98‑fold; RCL ethanol (RE) extract, 6.60‑fold. JMP, SC and RCL also increased the levels of P‑HSL Ser660: JW extract, 3.16‑fold; JE extract, 2.92‑fold; SW extract, 4.57‑fold; SE extract, 4.13‑fold; RW extract, 5.41‑fold; RE 4.96‑fold) in the WAT. The RW extract had the most marked effect. The HE staining revealed that JMP, SC and RCL reduced the size of adipocytes in the WAT. In conclusion, JMP and its ingredients, SC and RC, stimulated lipolysis and reduced the size of adipocytes, possibly via the phosphorylation of HSL in cultured rat WAT.

  1. Mining Conditional Phosphorylation Motifs.

    Science.gov (United States)

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/.

  2. Identification of the elementary structural units of the DNA damage response.

    Science.gov (United States)

    Natale, Francesco; Rapp, Alexander; Yu, Wei; Maiser, Andreas; Harz, Hartmann; Scholl, Annina; Grulich, Stephan; Anton, Tobias; Hörl, David; Chen, Wei; Durante, Marco; Taucher-Scholz, Gisela; Leonhardt, Heinrich; Cardoso, M Cristina

    2017-06-12

    Histone H2AX phosphorylation is an early signalling event triggered by DNA double-strand breaks (DSBs). To elucidate the elementary units of phospho-H2AX-labelled chromatin, we integrate super-resolution microscopy of phospho-H2AX during DNA repair in human cells with genome-wide sequencing analyses. Here we identify phospho-H2AX chromatin domains in the nanometre range with median length of ∼75 kb. Correlation analysis with over 60 genomic features shows a time-dependent euchromatin-to-heterochromatin repair trend. After X-ray or CRISPR-Cas9-mediated DSBs, phospho-H2AX-labelled heterochromatin exhibits DNA decondensation while retaining heterochromatic histone marks, indicating that chromatin structural and molecular determinants are uncoupled during repair. The phospho-H2AX nano-domains arrange into higher-order clustered structures of discontinuously phosphorylated chromatin, flanked by CTCF. CTCF knockdown impairs spreading of the phosphorylation throughout the 3D-looped nano-domains. Co-staining of phospho-H2AX with phospho-Ku70 and TUNEL reveals that clusters rather than nano-foci represent single DSBs. Hence, each chromatin loop is a nano-focus, whose clusters correspond to previously known phospho-H2AX foci.

  3. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L. Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yerra Koteswara Rao

    2011-01-01

    Full Text Available Citrus grandis (L. Osbeck (red wendun leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w. In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation.

  4. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  5. Phosphorylation in hydrogen bacteria.

    Science.gov (United States)

    Bongers, L

    1967-05-01

    The electron-transport system of cell-free extracts obtained from Hydrogenomonas H-20 has been studied with particular reference to phosphorylation associated with the oxyhydrogen reaction. Cell-free preparations of this organism exhibit oxidative phosphorylation with hydrogen and succinate as electron donors. This activity could be uncoupled with a number of agents. Ratios of phosphorylative activity to oxidative activity observed varied from 0.2 to 0.7. Factors affecting the efficiency of phosphorylation were examined. Inhibitor and spectrophotometric studies indicated that phosphorylation with hydrogen as electron donor occurs exclusively at a site in an abbreviated electron transport chain between H(2) and cytochrome b. The possible occurrence of a cytochrome b oxidase and the requirement for a quinone are discussed, as well as the correlation between the abbreviated pathway and the energy generation by the cell. Evidence is presented which indicates that nicotinamide adenine dinucleotide does not participate in the hydrogen oxidation path which is coupled to adenosine triphosphate formation.

  6. A phosphorylation cascade controls the degradation of active SREBP1.

    Science.gov (United States)

    Bengoechea-Alonso, Maria T; Ericsson, Johan

    2009-02-27

    Sterol regulatory element-binding proteins (SREBPs) are a family of transcription factors that regulates cholesterol and lipid metabolism. The active forms of these transcription factors are targeted by a number of post-translational modifications, including phosphorylation. Phosphorylation of Thr-426 and Ser-430 in SREBP1a creates a docking site for the ubiquitin ligase Fbw7, resulting in the degradation of the transcription factor. Here, we identify a novel phosphorylation site in SREBP1a, Ser-434, which regulates the Fbw7-dependent degradation of SREBP1. We demonstrate that both SREBP1a and SREBP1c are phosphorylated on this residue (Ser-410 in SREBP1c). Importantly, we demonstrate that the mature form of endogenous SREBP1 is phosphorylated on Ser-434. Glycogen synthase kinase-3 phosphorylates Ser-434, and the phosphorylation of this residue is attenuated in response to insulin signaling. Interestingly, phosphorylation of Ser-434 promotes the glycogen synthase kinase-3-dependent phosphorylation of Thr-426 and Ser-430 and destabilizes SREBP1. Consequently, mutation of Ser-434 blocks the interaction between SREBP1 and Fbw7 and attenuates Fbw7-dependent degradation of SREBP1. Importantly, insulin fails to enhance the levels of mature SREBP1 in cells lacking Fbw7. Thus, the degradation of mature SREBP1 is controlled by cross-talk between multiple phosphorylated residues in its C-terminal domain and the phosphorylation of Ser-434 could function as a molecular switch to control these processes.

  7. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair.

    Science.gov (United States)

    Ford, James B; Baturin, Dmitry; Burleson, Tamara M; Van Linden, Annemie A; Kim, Yong-Mi; Porter, Christopher C

    2015-09-29

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia.

  8. Evaluation of low-dose proton beam radiation efficiency in MIA PaCa-2 pancreatic cancer cell line vitality and H2AX formation

    Directory of Open Access Journals (Sweden)

    Aušra Liubavičiūtė

    2015-11-01

    Conclusions: Our data demonstrate that low-doses proton beam irradiation had an effect on MIA PaCa-2 pancreatic carcinoma cell line. Full extent of irradiation had an impact only 24 h postirradiation, triggering DNA arrested cell cycle in G1/0 phase. Formed DNA DSBs were found to be repaired via the NHEJ pathway mechanism within 72 h. Unsuccessful repaired DSBs induced apoptotic cell death. After 72 h reparation processes were completed, and cell cycle was released from arrest in G1/0 phase.

  9. gamma H2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity preliminary methodological study and discussion

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Hořáková, Z.; Svobodová, M.; Masařík, M.; Kopečná, Olga; Gumulec, J.; Raudenská, M.; Depeš, Daniel; Bačíková, Alena; Falková, Iva; Binkova, H.

    2017-01-01

    Roč. 71, č. 9 (2017), č. článku 241. ISSN 1434-6079 R&D Projects: GA ČR(CZ) GA16-12454S Institutional support: RVO:68081707 Keywords : squamous-cell carcinoma * cancer -associated fibroblasts Subject RIV: EB - Genetics ; Molecular Biology

  10. Double-strand break induction and DNA damage response after {sup 12}C ion and photon radiation in U87 glioblastoma cells; Doppelstrangbruch-Induktion und DNA-Schadensantwort nach {sup 12}C-Ionen- und Photonenstrahlung in U87 Glioblastomzellen

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Perez, Ramon

    2015-04-22

    Heavy ion radiation has greater biological effectiveness than the same physical dose of photon radiation. In this work the underlying reasons in the DNA damage response were analyzed in U87 glioblastoma cells. DNA double-strand breaks (DSBs) are the decicive lesions for the effectiveness of ionizing radiation. Their induction and repair was measured in the context of the cell cycle based on the DSB marker γH2AX (the phosphorylated form of the histone variant H2AX). Further, radiation-specific differences in choice of the DSB repair pathway was analyzed, as well as the consequences of repair failure. The results showed that in contrast to photons, {sup 12}C ion radiation produces more severe DSBs that are repaired delayed and with slower kinetics. Accordingly, stronger and longer lasting cell cycle delays, predominantly at the G2/M border, and a higher rate of apoptosis was detected for {sup 12}C ion radiation. Autophagy, an alternative mechanism of programmed cell death, was not relevant for neither of the two types of radiation. The effect of {sup 12}C ion radiation was less dependent on the cell cycle stage than for photon radiation. This became particularly evident in the DSB repair velocities during S- and G2-phase. After {sup 12}C ion radiation, cells were more dependent on homologous recombination repair (HRR) compared to photon radiation. The reason therefore that in contrast to photons, {sup 12}C ion radiation induced graver DSBs that were repaired slower and more dependent on HRR, was most probably enhanced clustering of DSBs due to the higher ionization density of {sup 12}C ion radiation. Microscopic inspection of immunofluorently stained γH2AX revealed that {sup 12}C ion radiation induced bigger DSB repair foci containing more γH2AX molecules (higher fluorescence intensity), although their initial number was smaller. Besides the foci, a weaker pan-nuclear γH2AX staining was observed that increased in a dose-dependent manner and was more pronounced

  11. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats.

    Science.gov (United States)

    Oomura, Y; Hori, N; Shiraishi, T; Fukunaga, K; Takeda, H; Tsuji, M; Matsumiya, T; Ishibashi, M; Aou, S; Li, X L; Kohno, D; Uramura, K; Sougawa, H; Yada, T; Wayner, M J; Sasaki, K

    2006-11-01

    Leptin, an adipocytokine encoded by an obesity gene and expressed in adipose tissue, affects feeding behavior, thermogenesis, and neuroendocrine status via leptin receptors distributed in the brain, especially in the hypothalamus. Leptin may also modulate the synaptic plasticity and behavioral performance related to learning and memory since: leptin receptors are found in the hippocampus, and both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines that modulate long-term potentiation (LTP) in the hippocampus. We therefore examined the effect of leptin on (1) behavioral performance in emotional and spatial learning tasks, (2) LTP at Schaffer collateral-CA1 synapses, (3) presynaptic and postsynaptic activities in hippocampal CA1 neurons, (4) the intracellular Ca(2+) concentration ([Ca(2+)](i)) in CA1 neurons, and (5) the activity of Ca(2+)/calmodulin protein kinase II (CaMK II) in the hippocampal CA1 tissue that exhibits LTP. Intravenous injection of 5 and/or 50mug/kg, but not of 500mug/kg leptin, facilitated behavioral performance in passive avoidance and Morris water-maze tasks. Bath application of 10(-12)M leptin in slice experiments enhanced LTP and increased the presynaptic transmitter release, whereas 10(-10)M leptin suppressed LTP and reduced the postsynaptic receptor sensitivity to N-methyl-d-aspartic acid. The increase in the [Ca(2+)](i) induced by 10(-10)M leptin was two times greater than that induced by 10(-12)M leptin. In addition, the facilitation (10(-12)M) and suppression (10(-10)M) of LTP by leptin was closely associated with an increase and decrease in Ca(2+)-independent activity of CaMK II. Our results show that leptin not only affects hypothalamic functions (such as feeding, thermogenesis, and neuroendocrine status), but also modulates higher nervous functions, such as the behavioral performance related to learning and memory and hippocampal synaptic plasticity.

  12. Jumonji domain-containing protein 2B silencing induces DNA damage response via STAT3 pathway in colorectal cancer

    National Research Council Canada - National Science Library

    Chen, L; Fu, L; Kong, X; Xu, J; Wang, Z; Ma, X; Akiyama, Y; Chen, Y; Fang, J

    2014-01-01

    .... Immunofluorescence and western blotting detected phosphorylated histone H2AX, characteristic of double-strand breaks, and comet assay was used to investigate DNA damage, in CRC cells after JMJD2B small interfering RNA (siRNA) transfection...

  13. Sequence Classification: 891841 [

    Lifescience Database Archive (English)

    Full Text Available mosomes; involved in establishing sister chromatid cohesion during double-strand break repair via phosphorylated histone H2AX; Scc4p || http://www.ncbi.nlm.nih.gov/protein/6320995 ...

  14. A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  15. Predictive Biomarkers of Radiation Sensitivity in Rectal Cancer

    Science.gov (United States)

    Tut, Thein Ga

    Colorectal cancer (CRC) is the third most common cancer in the world. Australia, New Zealand, Canada, the United States, and parts of Europe have the highest incidence rates of CRC. China, India, South America and parts of Africa have the lowest risk of CRC. CRC is the second most common cancer in both sexes in Australia. Even though the death rates from CRC involving the colon have diminished, those arising from the rectum have revealed no improvement. The greatest obstacle in attaining a complete surgical resection of large rectal cancers is the close anatomical relation to surrounding structures, as opposed to the free serosal surfaces enfolding the colon. To assist complete resection, pre-operative radiotherapy (DXT) can be applied, but the efficacy of ionising radiation (IR) is extremely variable between individual tumours. Reliable predictive marker/s that enable patient stratification in the application of this otherwise toxic therapy is still not available. Current therapeutic management of rectal cancer can be improved with the availability of better predictive and prognostic biomarkers. Proteins such as Plk1, gammaH2AX and MMR proteins (MSH2, MSH6, MLH1 and PMS2), involved in DNA damage response (DDR) pathway may be possible biomarkers for radiation response prediction and prognostication of rectal cancer. Serine/threonine protein kinase Plk1 is overexpressed in most of cancers including CRC. Plk1 functional activity is essential in the restoration of DNA damage following IR, which causes DNA double strand break (DSB). The earliest manifestation of this reparative process is histone H2AX phosphorylation at serine 139, leading to gammaH2AX. Colorectal normal mucosa showed the lowest level of gammaH2AX with gradually increasing levels in early adenoma and then in advanced malignant colorectal tissues, leading to the possibility that gammaH2AX may be a prospective biomarker in rectal cancer management. There are numerous publications regarding DNA mismatch

  16. Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes.

    Science.gov (United States)

    Wen, Ling; Yue, Ling; Shi, Yi; Ren, Lili; Chen, Tingting; Li, Na; Zhang, Shuyu; Yang, Wei; Yang, Zhanshan

    2016-03-29

    PprI accelerates radiation-induced DNA damage repair via regulating the expression of DNA repair genes and enhances antioxidative enzyme activity in Deinococcus radiodurans after radiation. The main aim of our study was to determine whether the expression of pprI gene could fulfil its DNA repair function in eukaryotes and enhance the radioresistance of eukaryotic organism or not. In this study, we constructed pEGFP-c1-pprI eukaryotic expression vector and established a human lung epithelial cell line BEAS-2B with stable integration of pprI gene. We found that pprIexpression enhanced radioresistance of BEAS-2B cells, decreased γ-H2AX foci formation and apoptosis in irradiated BEAS-2B cells and alleviated radiation induced G2/M arrest of BEAS-2B cells. Moreover, we transferred pEGFP-c1-pprI vector into muscle of BALB/c mice by in vivo electroporation and studied the protective effect of prokaryotic pprI gene in irradiated mice. We found that pprI expression alleviated acute radiation induced hematopoietic system, lung, small intestine and testis damage and increased survival rate of irradiated mice via regulating Rad51 expression in different organs. These findings suggest that prokaryotic pprI gene expression in mammalian cells could enhance radioresistance in vitro and in vivo.

  17. Properties of phosphorylated thymidylate synthase.

    Science.gov (United States)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes.

    Science.gov (United States)

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-04-21

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A Phase 1 Study of the PARP Inhibitor Veliparib in Combination with Temozolomide in Acute Myeloid Leukemia.

    Science.gov (United States)

    Gojo, Ivana; Beumer, Jan H; Pratz, Keith W; McDevitt, Michael A; Baer, Maria R; Blackford, Amanda L; Smith, B Douglas; Gore, Steven D; Carraway, Hetty E; Showel, Margaret M; Levis, Mark J; Dezern, Amy E; Gladstone, Douglas E; Ji, Jiuping Jay; Wang, Lihua; Kinders, Robert J; Pouquet, Marie; Ali-Walbi, Ismail; Rudek, Michelle A; Poh, Weijie; Herman, James G; Karnitz, Larry M; Kaufmann, Scott H; Chen, Alice; Karp, Judith E

    2017-02-01

    In preclinical studies, the PARP inhibitor veliparib enhanced the antileukemic action of temozolomide through potentiation of DNA damage. Accordingly, we conducted a phase 1 study of temozolomide with escalating doses of veliparib in patients with relapsed, refractory acute myeloid leukemia (AML) or AML arising from aggressive myeloid malignancies. Patients received veliparib [20-200 mg once a day on day 1 and twice daily on days 4-12 in cycle 1 (days 1-8 in cycle ≥2)] and temozolomide [150-200 mg/m2 daily on days 3-9 in cycle 1 (days 1-5 in cycle ≥2)] every 28 to 56 days. Veliparib pharmacokinetics and pharmacodynamics [ability to inhibit poly(ADP-ribose) polymer (PAR) formation and induce H2AX phosphorylation] were assessed. Pretreatment levels of MGMT and PARP1 protein, methylation of the MGMT promoter, and integrity of the Fanconi anemia pathway were also examined. Forty-eight patients were treated at seven dose levels. Dose-limiting toxicities were oral mucositis and esophagitis lasting >7 days. The MTD was veliparib 150 mg twice daily with temozolomide 200 mg/m2 daily. The complete response (CR) rate was 17% (8/48 patients). Veliparib exposure as well as inhibition of PAR polymer formation increased dose proportionately. A veliparib-induced increase in H2AX phosphorylation in CD34+ cells was observed in responders. Three of 4 patients with MGMT promoter methylation achieved CR. Veliparib plus temozolomide is well tolerated, with activity in advanced AML. Further evaluation of this regimen and of treatment-induced phosphorylation of H2AX and MGMT methylation as potential response predictors appears warranted. Clin Cancer Res; 23(3); 697-706. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    2011-01-01

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  1. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  2. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  3. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  4. Biocatalytic asymmetric phosphorylation of mevalonate

    NARCIS (Netherlands)

    Matsumi, R.; Hellriegel, C.; Schoenenberger, B.; Milesi, T.; Oost, van der J.; Wohlgemuth, R.

    2014-01-01

    The excellent selectivity of the mevalonate kinase-catalyzed phosphorylation of mevalonate simplifies lengthy multi-step routes to (R)-mevalonate-5-phosphate to a one-step biocatalytic reaction, because the phosphate group can be transferred directly and without any additional reaction steps

  5. DNA double-strand breaks, recombination and synapsis: the timing of meiosis differs in grasshoppers and flies.

    Science.gov (United States)

    Viera, Alberto; Santos, Juan L; Page, Jesús; Parra, M Teresa; Calvente, Adela; Cifuentes, Marta; Gómez, Rocío; Lira, Renee; Suja, José A; Rufas, Julio S

    2004-04-01

    The temporal and functional relationships between DNA events of meiotic recombination and synaptonemal complex formation are a matter of discussion within the meiotic field. To analyse this subject in grasshoppers, organisms that have been considered as models for meiotic studies for many years, we have studied the localization of phosphorylated histone H2AX (gamma-H2AX), which marks the sites of double-strand breaks (DSBs), in combination with localization of cohesin SMC3 and recombinase Rad51. We show that the loss of gamma-H2AX staining is spatially and temporally linked to synapsis, and that in grasshoppers the initiation of recombination, produced as a consequence of DSB formation, precedes synapsis. This result supports the idea that grasshoppers display a pairing pathway that is not present in other insects such as Drosophila melanogaster, but is similar to those reported in yeast, mouse and Arabidopsis. In addition, we have observed the presence of gamma-H2AX in the X chromosome from zygotene to late pachytene, indicating that the function of H2AX phosphorylation during grasshopper spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA DSBs.

  6. Functional Characterization of APOBEC-1 Complementation Factor Phosphorylation Sites

    Science.gov (United States)

    Lehmann, David M.; Galloway, Chad A.; MacElrevey, Celeste; Sowden, Mark P.; Wedekind, Joseph E.; Smith, Harold C.

    2007-01-01

    ApoB mRNA editing involves site-specific deamination of cytidine 6666 producing an in-frame translation stop codon. Editing minimally requires APOBEC-1 and APOBEC-1 complementation factor (ACF). Metabolic stimulation of apoB mRNA editing in hepatocytes is associated with serine phosphorylation of ACF localized to editing competent, nuclear 27S editosomes. We demonstrate that activation of protein kinase C (PKC) stimulated editing and enhanced ACF phosphorylation in rat primary hepatocytes. Conversely, activation of protein kinase A (PKA) had no effect on editing. Recombinant PKC efficiently phosphorylated purified ACF64 protein in vitro, whereas PKA did not. Mutagenesis of predicted PKC phosphorylation sites S154 and S368 to alanine inhibited ethanol-stimulated induction of editing suggesting that these sites function in the metabolic regulation of editing. Consistent with this interpretation, substitution of S154 and S368 with aspartic acid stimulated editing to levels comparable to ethanol treatment in control McArdle RH7777 cells. These data suggest that phosphorylation of ACF by PKC may be a key regulatory mechanism of apoB mRNA editing in rat hepatocytes. PMID:17229474

  7. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance

    National Research Council Canada - National Science Library

    Wei, Yongjie; Zou, Zhongju; Becker, Nils; Anderson, Matthew; Sumpter, Rhea; Xiao, Guanghua; Kinch, Lisa; Koduru, Prasad; Christudass, Christhunesa S; Veltri, Robert W; Grishin, Nick V; Peyton, Michael; Minna, John; Bhagat, Govind; Levine, Beth

    2013-01-01

    ...) tyrosine kinase regulates autophagy. Active EGFR binds the autophagy protein Beclin 1, leading to its multisite tyrosine phosphorylation, enhanced binding to inhibitors, and decreased Beclin 1-associated VPS34 kinase activity...

  8. Symposia on Plant (Protein) Phosphorylation.

    OpenAIRE

    Vries, de, S.C.

    2012-01-01

    From September 14-16, 2011 the twelfth symposium on Plant Protein Phosphorylation was held in Tübingen, Germany. The topic is as broad as the name suggests and covers all aspects of this important means of protein modification in plants. I have had the pleasure of attending the 2007 and the 2011 symposia. The interesting concept behind these meetings is to hear about the same biochemical mechanism operative in a multitude of experimental systems. The meetings are quite informal and prese...

  9. DNA double-strand break repair: a theoretical framework and its application.

    Science.gov (United States)

    Murray, Philip J; Cornelissen, Bart; Vallis, Katherine A; Chapman, S Jon

    2016-01-01

    DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γH2AX. Many copies of γH2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti-γH2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo. Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, (111)In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti-γH2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti-γH2AX-TAT and γH2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti-γH2AX antibody is labelled with Auger electron-emitting (111)In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti-γH2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti-γH2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage

  10. Inhibition of homologous recombination with vorinostat synergistically enhances ganciclovir cytotoxicity.

    Science.gov (United States)

    Ladd, Brendon; Ackroyd, Jeffrey J; Hicks, J Kevin; Canman, Christine E; Flanagan, Sheryl A; Shewach, Donna S

    2013-12-01

    The nucleoside analog ganciclovir (GCV) elicits cytotoxicity in tumor cells via a novel mechanism in which drug incorporation into DNA produces minimal disruption of replication, but numerous DNA double strand breaks occur during the second S-phase after drug exposure. We propose that homologous recombination (HR), a major repair pathway for DNA double strand breaks, can prevent GCV-induced DNA damage, and that inhibition of HR will enhance cytotoxicity with GCV. Survival after GCV treatment in cells expressing a herpes simplex virus thymidine kinase was strongly dependent on HR (>14-fold decrease in IC50 in HR-deficient vs. HR-proficient CHO cells). In a homologous recombination reporter assay, the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA; vorinostat), decreased HR repair events up to 85%. SAHA plus GCV produced synergistic cytotoxicity in U251tk human glioblastoma cells. Elucidation of the synergistic mechanism demonstrated that SAHA produced a concentration-dependent decrease in the HR proteins Rad51 and CtIP. GCV alone produced numerous Rad51 foci, demonstrating activation of HR. However, the addition of SAHA blocked GCV-induced Rad51 foci formation completely and increased γH2AX, a marker of DNA double strand breaks. SAHA plus GCV also produced synergistic cytotoxicity in HR-proficient CHO cells, but the combination was antagonistic or additive in HR-deficient CHO cells. Collectively, these data demonstrate that HR promotes survival with GCV and compromise of HR by SAHA results in synergistic cytotoxicity, revealing a new mechanism for enhancing anticancer activity with GCV. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kuga, Takahisa, E-mail: t-kuga@nibio.go.jp [Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085 (Japan); Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan); Nozaki, Naohito [Department of Biochemistry and Molecular Biology, Kanagawa Dental College, Yokosuka, Kanagawa 238-8580 (Japan); Matsushita, Kazuyuki; Nomura, Fumio [Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan); Tomonaga, Takeshi, E-mail: tomonaga@nibio.go.jp [Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085 (Japan); Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan)

    2010-08-15

    Lamins, major components of the nuclear lamina, undergo phosphorylation at multiple residues during cell cycle progression, but their detailed phosphorylation kinetics remain largely undetermined. Here, we examined changes in the phosphorylation of major phosphorylation residues (Thr14, Ser17, Ser385, Ser387, and Ser401) of lamin B2 and the homologous residues of lamin B1, A/C during the cell cycle using novel antibodies to the site-specific phosphorylation. The phosphorylation levels of these residues independently changed during the cell cycle. Thr14 and Ser17 were phosphorylated during G{sub 2}/M phase to anaphase/telophase. Ser385 was persistently phosphorylated during mitosis to G{sub 1} phase, whereas Ser387 was phosphorylated discontinuously in prophase and G{sub 1} phase. Ser401 phosphorylation was enhanced in the G{sub 1}/S boundary. Immunoprecipitation using the phospho-antibodies suggested that metaphase-phosphorylation at Thr14, Ser17, and Ser385 of lamins occurred simultaneously, whereas G{sub 1}-phase phosphorylation at Ser385 and Ser387 occurred in distinct pools or with different timings. Additionally, we showed that lamin B2 phosphorylated at Ser17, but not Ser385, Ser387 and Ser401, was exclusively non-ionic detergent soluble, depolymerized forms in growing cells, implicating specific involvement of Ser17 phosphorylation in lamin depolymerization and nuclear envelope breakdown. These results suggest that the phosphorylations at different residues of lamins might play specific roles throughout the cell cycle.

  12. New insights into FAK phosphorylation based on a FAT domain-defective mutation.

    Directory of Open Access Journals (Sweden)

    Xuqian Fang

    Full Text Available Mounting evidence suggests that the FAK N-terminal (FERM domain controls FAK phosphorylation and function; however, little is known regarding the role of the C terminal (FAT domain in FAK regulation. We identified a patient-derived FAK mutant, in which a 27-amino acid segment was deleted from the C-terminal FAT domain (named FAK-Del33. When FAK-Del33 was overexpressed in specific tumor cell lines, Y397 phosphorylation increased compared with that observed in cells expressing FAK-WT. Here, we attempt to unveil the mechanism of this increased phosphorylation. Using cell biology experiments, we show that FAK-Del33 is incapable of co-localizing with paxillin, and has constitutively high Y397 phosphorylation. With a kinase-dead mutation, it showed phosphorylation of FAK-Del33 has enhanced through auto-phosphorylation. It was also demonstrated that phosphorylation of FAK-Del33 is not Src dependent or enhanced intermolecular interactions, and that the hyperphosphorylation can be lowered using increasing amounts of transfected FERM domain. This result suggests that Del33 mutation disrupting of FAT's structural integrity and paxillin binding capacity leads to incapable of targeting Focal adhesions, but has gained the capacity for auto-phosphorylation in cis.

  13. Phosphorylation-mediated Regulatory Networks in Mycelia of Pyricularia oryzae Revealed by Phosphoproteomic Analyses.

    Science.gov (United States)

    Wang, Rui-Jin; Peng, Junbo; Li, Qing X; Peng, You-Liang

    2017-09-01

    Protein phosphorylation is known to regulate pathogenesis, mycelial growth, conidiation and stress response in Pyricularia oryzae However, phosphorylation mediated regulatory networks in the fungal pathogen remain largely to be uncovered. In this study, we identified 1621 phosphorylation sites of 799 proteins in mycelia of P. oryzae, including 899 new p-sites of 536 proteins and 47 new p-sites of 31 pathogenicity-related proteins. From the sequences flanking the phosphorylation sites, 19 conserved phosphorylation motifs were identified. Notably, phosphorylation was detected in 7 proteins that function upstream of Pmk1, but not in Pmk1 and its downstream Mst12 and Sfl1 that have been known to regulate appressorium formation and infection hyphal growth of P. oryzae Interestingly, phosphorylation was detected at the site Ser(240) of Pmp1, which is a putative protein phosphatase highly conserved in filamentous fungi but not characterized. We thus generated Δpmp1 deletion mutants and dominant allele PMP1(S240D) mutants. Phenotyping analyses indicated that Pmp1 is required for virulence, conidiation and mycelial growth. Further, we observed that phosphorylation level of Pmk1 in mycelia was significantly increased in the Δpmp1 mutant, but decreased in the PMP1(S240D) mutant in comparison with the wild type, demonstrating that Pmp1 phosphorylated at Ser(240) is important for regulating phosphorylation of Pmk1. To our surprise, phosphorylation of Mps1, another MAP kinase required for cell wall integrity and appressorium formation of P. oryzae, was also significantly enhanced in the Δpmp1 mutant, but decreased in the PMP1(S240D) mutant. In addition, we found that Pmp1 directly interacts with Mps1 and the region AA180-230 of Pmp1 is required for the interaction. In summary, this study sheds new lights on the protein phosphorylation mediated regulatory networks in P. oryzae. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Radiation dose determines the method for quantification of DNA double strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bulat, Tanja; Keta, Olitija; Korićanac, Lela; Žakula, Jelena; Petrović, Ivan; Ristić-Fira, Aleksandra [University of Belgrade, Vinča Institute of Nuclear Sciences, Belgrade (Serbia); Todorović, Danijela, E-mail: dtodorovic@medf.kg.ac.rs [University of Kragujevac, Faculty of Medical Sciences, Kragujevac (Serbia)

    2016-03-15

    Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AXH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci. (author)

  15. Radiation dose determines the method for quantification of DNA double strand breaks

    Directory of Open Access Journals (Sweden)

    TANJA BULAT

    2016-03-01

    Full Text Available ABSTRACT Ionizing radiation induces DNA double strand breaks (DSBs that trigger phosphorylation of the histone protein H2AXH2AX. Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany. Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci.

  16. The protein kinase DYRK1A phosphorylates the splicing factor SF3b1/SAP155 at Thr434, a novel in vivo phosphorylation site

    Directory of Open Access Journals (Sweden)

    Lilischkis Richard

    2006-03-01

    Full Text Available Abstract Background The U2 small nuclear ribonucleoprotein particle (snRNP component SF3b1/SAP155 is the only spliceosomal protein known to be phosphorylated concomitant with splicing catalysis. DYRK1A is a nuclear protein kinase that has been localized to the splicing factor compartment. Here we describe the identification of DYRK1A as a protein kinase that phosphorylates SF3b1 in vitro and in cultivated cells. Results Overexpression of DYRK1A caused a markedly increased phosphorylation of SF3b1 in COS-7 cells as assessed by Western blotting with an antibody specific for phosphorylated Thr-Pro dipeptide motifs. Phosphopeptide mapping of metabolically labelled SF3b1 showed that the majority of the in vivo-phosphopeptides corresponded to sites also phosphorylated by DYRK1A in vitro. Phosphorylation with cyclin E/CDK2, a kinase previously reported to phosphorylate SF3b1, generated a completely different pattern of phosphopeptides. By mass spectrometry and mutational analysis of SF3b1, Thr434 was identified as the major phosphorylation site for DYRK1A. Overexpression of DYRK1A or the related kinase, DYRK1B, resulted in an enhanced phosphorylation of Thr434 in endogenous SF3b1 in COS-7 cells. Downregulation of DYRK1A in HEK293 cells or in HepG2 cells by RNA interference reduced the phosphorylation of Thr434 in SF3b1. Conclusion The present data show that the splicing factor SF3b1 is a substrate of the protein kinase DYRK1A and suggest that DYRK1A may be involved in the regulation of pre mRNA-splicing.

  17. Regulation of casein kinase 2 by phosphorylation/dephosphorylation.

    OpenAIRE

    Agostinis, P; Goris, J; Pinna, L A; Merlevede, W

    1987-01-01

    The effects of various polycation-stimulated (PCS) phosphatases and of the active catalytic subunit of the ATPMg-dependent (AMDc) protein phosphatase on the activity of casein kinase 2 (CK-2) were investigated by using the synthetic peptide substrate Ser-Glu-Glu-Glu-Glu-Glu, whose phosphorylated derivative is entirely insensitive to these protein phosphatases. Previous dephosphorylation of native CK-2 enhances its specific activity 2-3-fold. Such an effect, accounted for by an increase in Vma...

  18. PES1 regulates sensitivity of colorectal cancer cells to anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Qu, Like, E-mail: qulike@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Meng, Lin; Liu, Caiyun; Wu, Jian [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Shou, Chengchao, E-mail: scc@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)

    2013-02-15

    Highlights: ► PES1 was overexpressed in diverse cancer cell lines. ► PES1-ablation enhances DNA damage response by decreasing DNA repair. ► PES1-ablation increases the sensitivity of HCT116 cells to chemotherapeutic agents. ► PES1-ablation is associated with diminished nuclear entry of RAD51. -- Abstract: PES1 (also known as Pescadillo), a nucleolar protein, was involved in biogenesis of ribosomal RNA. Up-regulation of PES1 has been documented in some human cancers, indicating that PES1 may play some crucial roles in tumorigenesis. In our previous study, it was found that silencing of PES1 resulted in decreased proliferation of colorectal cancer cells. We also noticed that depletion of PES1 altered expression profiles of diverse genes. In the present study, we validated the expression changes of a subset of genotoxic stress-related genes in PES1-silenced HCT116 cells by quantitative RT-PCR. The steady and etoposide-induced phosphorylated H2AX (γ-H2AX) were higher in PES1-silenced cells than in control cells. Besides, etoposide-induced γ-H2AX persisted longer in PES1-silenced cells after removing the etoposide. Next, results of comet assay revealed decreased DNA repair after PES1-ablation. PES1-ablated cells were more sensitive to chemotherapeutic agents, which could be reversed by reconstitution with exogenous PES1. Furthermore, deletion of PES1 diminished steady and DNA damage-induced levels of nuclear RAD51. Our results uncover a potential role of PES1 in chemoresistance by regulating DNA damage response in colorectal cancer cells.

  19. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  20. Involvement of tau phosphorylation in traumatic brain injury patients.

    Science.gov (United States)

    Yang, W-J; Chen, W; Chen, L; Guo, Y-J; Zeng, J-S; Li, G-Y; Tong, W-S

    2017-06-01

    Traumatic brain injury (TBI) results in significant morbidity and mortality throughout the world. In TBI patients suffering cognitive, emotional, and behavioral deficits, the leading cause derives from the physical injury to the central nervous system (CNS) that impairs brain function. Here, we applied a targeted approach to understand the potential mechanisms of neuron damage after TBI. Tau protein phosphorylation was compared in the brain tissues collected from patients underwent brain surgery based on the assessment of brain injury extent by Glasgow Coma Scale (GCS). The results indicated that the levels of phosphorylated tau were significantly higher in the severe and extremely severe TBI groups, compared to the moderate group of patients. Phosphorylated, but not the total tau protein was uniquely correlated with the GCS score (R2 =.7849, P<.01) in 142 TBI patients. Consistently, the activities of key players associated with tau hyperphosphorylation GSK-3β and PP2A showed parallel correlations with the severity of TBI as well. These data suggest that the enhanced tau protein phosphorylation occurs upon severe neuron injures and may contribute to the pathological structural changes of CNS leading to brain damage of TBI. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. DNA Damage and Inhibition of Akt Pathway in MCF-7 Cells and Ehrlich Tumor in Mice Treated with 1,4-Naphthoquinones in Combination with Ascorbate

    Directory of Open Access Journals (Sweden)

    Fabiana Ourique

    2015-01-01

    Full Text Available The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9 were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, γH2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells.

  2. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    Science.gov (United States)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  3. Symposia on Plant (Protein Phosphorylation

    Directory of Open Access Journals (Sweden)

    Sacco C. De Vries

    2012-08-01

    Full Text Available From September 14-16, 2011 the twelfth symposium on Plant Protein Phosphorylation was held in Tübingen, Germany. The topic is as broad as the name suggests and covers all aspects of this important means of protein modification in plants. I have had the pleasure of attending the 2007 and the 2011 symposia. The interesting concept behind these meetings is to hear about the same biochemical mechanism operative in a multitude of experimental systems. The meetings are quite informal and present an excellent mix ranging from technology to biochemical experience and novel findings and tools.The two-and-a-half-day program was divided into five double sessions: biotic interactions, hormone signaling, abiotic interactions, Mitogen Activated Protein Kinase (MAPK and Ca++ pathways and phosphoproteomics. It was hosted by the Zentrum für Molekularbiologie der Pflanzen (ZMBP and the organizing committee chaired by Klaus Harter.

  4. Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development.

    Science.gov (United States)

    Huang, Huiqian; Lin, Xiaochen; Liang, Zhuoyi; Zhao, Teng; Du, Shengwang; Loy, Michael M T; Lai, Kwok-On; Fu, Amy K Y; Ip, Nancy Y

    2017-08-15

    The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.

  5. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  6. The WSTF-ISWI chromatin remodeling complex transiently associates with the human inactive X chromosome during late S-phase prior to BRCA1 and γ-H2AX.

    Directory of Open Access Journals (Sweden)

    Ashley E Culver-Cochran

    Full Text Available Replicating the genome prior to each somatic cell division not only requires precise duplication of the genetic information, but also accurately reestablishing the epigenetic signatures that instruct how the genetic material is to be interpreted in the daughter cells. The mammalian inactive X chromosome (Xi, which is faithfully inherited in a silent state in each daughter cell, provides an excellent model of epigenetic regulation. While much is known about the early stages of X chromosome inactivation, much less is understood with regards to retaining the Xi chromatin through somatic cell division. Here we report that the WSTF-ISWI chromatin remodeling complex (WICH associates with the Xi during late S-phase as the Xi DNA is replicated. Elevated levels of WICH at the Xi is restricted to late S-phase and appears before BRCA1 and γ-H2A.X. The sequential appearance of WICH and BRCA1/γ-H2A.X implicate each as performing important but distinct roles in the maturation and maintenance of heterochromatin at the Xi.

  7. Residual γH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells.

    Science.gov (United States)

    Pustovalova, Margarita; Astrelina, Тatiana A; Grekhova, Anna; Vorobyeva, Natalia; Tsvetkova, Anastasia; Blokhina, Taisia; Nikitina, Victoria; Suchkova, Yulia; Usupzhanova, Daria; Brunchukov, Vitalyi; Kobzeva, Irina; Karaseva, Тatiana; Ozerov, Ivan V; Samoylov, Aleksandr; Bushmanov, Andrey; Leonov, Sergey; Izumchenko, Evgeny; Zhavoronkov, Alex; Klokov, Dmitry; Osipov, Andreyan N

    2017-11-21

    Mechanisms underlying the effects of low-dose ionizing radiation (IR) exposure (10-100 mGy) remain unknown. Here we present a comparative study of early (less than 24h) and delayed (up to 11 post-irradiation passages) radiation effects caused by low (80 mGy) vs intermediate (1000 mGy) dose X-ray exposure in cultured human bone marrow mesenchymal stem cells (MSCs). We show that γН2АХ foci induced by an intermediate dose returned back to the control value by 24 h post-irradiation. In contrast, low-dose irradiation resulted in residual γН2АХ foci still present at 24 h. Notably, these low dose induced residual γН2АХ foci were not co-localized with рАТМ foci and were observed predominantly in the proliferating Кi67 positive (Кi67+) cells. The number of γН2АХ foci and the fraction of nonproliferating (Кi67-) and senescent (SA-β-gal+) cells measured at passage 11 were increased in cultures exposed to an intermediate dose compared to unirradiated controls. These delayed effects were not seen in the progeny of cells that were irradiated with low-dose X-rays, although such exposure resulted in residual γН2АХ foci in directly irradiated cells. Taken together, our results support the hypothesis that the low-dose IR induced residual γH2AХ foci do not play a role in delayed irradiation consequences, associated with cellular senescence in cultured MSCs.

  8. Residual γH2AX foci induced by low dose x-ray radiation in bone marrow mesenchymal stem cells do not cause accelerated senescence in the progeny of irradiated cells

    OpenAIRE

    Pustovalova, Margarita; Astrelina, Тatiana A.; Grekhova, Anna; Vorobyeva, Natalia; Tsvetkova, Anastasia; Blokhina, Taisia; Nikitina, Victoria; Suchkova, Yulia; Usupzhanova, Daria; Brunchukov, Vitalyi; Kobzeva, Irina; Karaseva, Тatiana; Ozerov, Ivan V.; Samoylov, Aleksandr; Bushmanov, Andrey

    2017-01-01

    Mechanisms underlying the effects of low-dose ionizing radiation (IR) exposure (10-100 mGy) remain unknown. Here we present a comparative study of early (less than 24h) and delayed (up to 11 post-irradiation passages) radiation effects caused by low (80 mGy) vs intermediate (1000 mGy) dose X-ray exposure in cultured human bone marrow mesenchymal stem cells (MSCs). We show that γН2АХ foci induced by an intermediate dose returned back to the control value by 24 h post-irradiation. In contrast, ...

  9. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts.

    Science.gov (United States)

    Allen, Bryan G; Bhatia, Sudershan K; Buatti, John M; Brandt, Kristin E; Lindholm, Kaleigh E; Button, Anna M; Szweda, Luke I; Smith, Brian J; Spitz, Douglas R; Fath, Melissa A

    2013-07-15

    Ketogenic diets are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that ketogenic diets enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a ketogenic diet (KetoCal 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8-2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modified proteins as a marker of oxidative stress as well as proliferating cell nuclear antigen (PCNA) and γH2AX as indices of proliferation and DNA damage, respectively. The ketogenic diets combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (P ketogenic diet also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a ketogenic diet in combination with radiation showed increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA. These results show that a ketogenic diet enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress.

  10. Differential phosphorylation signals control endocytosis of GPR15.

    Science.gov (United States)

    Okamoto, Yukari; Shikano, Sojin

    2017-08-15

    GPR15 is an orphan G protein-coupled receptor (GPCR) that serves for an HIV coreceptor and was also recently found as a novel homing receptor for T-cells implicated in colitis. We show that GPR15 undergoes a constitutive endocytosis in the absence of ligand. The endocytosis was clathrin dependent and partially dependent on β-arrestin in HEK293 cells, and nearly half of the internalized GPR15 receptors were recycled to the plasma membrane. An Ala mutation of the distal C-terminal Arg-354 or Ser-357, which forms a consensus phosphorylation site for basophilic kinases, markedly reduced the endocytosis, whereas phosphomimetic mutation of Ser-357 to Asp did not. Ser-357 was phosphorylated in vitro by multiple kinases, including PKA and PKC, and pharmacological activation of these kinases enhanced both phosphorylation of Ser-357 and endocytosis of GPR15. These results suggested that Ser-357 phosphorylation critically controls the ligand-independent endocytosis of GPR15. The functional role of Ser-357 in endocytosis was distinct from that of a conserved Ser/Thr cluster in the more proximal C-terminus, which was responsible for the β-arrestin- and GPCR kinase-dependent endocytosis of GPR15. Thus phosphorylation signals may differentially control cell surface density of GPR15 through endocytosis. © 2017 Okamoto and Shikano. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation

    National Research Council Canada - National Science Library

    Mitchell, Peter

    2011-01-01

    ... in oxidative phosphorylation in mitochondria is that, for the equivalent of each pair of electrons traversing the respiratory chain, up to 3 anhydrobond equivalents may normally traverse the h/d pathway from adenosine diphosphate plus inorganic phosphate (ADP + P i ) to water. In photosynthetic phosphorylation the stoichiometry is less certain, and it is thought...

  12. Physicochemical mechanisms of protein regulation by phosphorylation

    Directory of Open Access Journals (Sweden)

    Hafumi eNishi

    2014-08-01

    Full Text Available Phosphorylation offers a dynamic way to regulate protein activity and subcellular localization, which is achieved through reversibility and fast kinetics of posttranslational modifications. Adding or removing a dianionic phosphate group somewhere on a protein often changes the protein’s structural properties, its stability and dynamics. Moreover, the majority of signaling pathways involve an extensive set of protein-protein interactions, and phosphorylation can be used to regulate and modulate protein-protein binding. Losses of phosphorylation sites, as a result of disease mutations, might disrupt protein binding and deregulate signal transduction. In this paper we focus on the effects of phosphorylation on protein stability, dynamics and binding. We describe several physico-chemical mechanisms of protein regulation through phosphorylation and pay particular attention to phosphorylation in protein complexes and phosphorylation in the context of disorder-order and order-disorder transitions. Finally we assess the role of multiple phosphorylation sites in a protein molecule, their possible cooperativity and function.

  13. ASPM influences DNA double-strand break repair and represents a potential target for radiotherapy.

    Science.gov (United States)

    Kato, Takamitsu A; Okayasu, Ryuichi; Jeggo, Penny A; Fujimori, Akira

    2011-12-01

    In a previous study using HiCEP (High coverage expression profiling), we demonstrated that ASPM (abnormal spindle-like microcephaly-associated) or the most common-type microcephaly (MCPH5) gene was selectively down-regulated by IR (ionizing radiation). The roles of ASPM on radiosensitivity, however, have never been studied. Using glioblastoma cell lines and normal human fibroblasts, we investigated how IR sensitivity (survived fraction, DNA repair and chromosome aberration) was affected by the reduction of ASPM by specific siRNA (small interfering RNA). Down-regulation of ASPM by siRNA enhanced radiosensitivity in three human cell lines examined. Constant-field gel electrophoreses and γ-H2AX (phosphorylated form of Histone H2A variant H2AX) foci analysis showed that ASPM-specific siRNA impaired DNA double-strand breaks (DSB) in irradiated cells. Elevated levels of abnormal chromosomes were also observed following ASPM siRNA. In addition IR-sensitization by ASPM knockdown was not enhanced in DNA-PK (DNA-dependent protein kinase) deficient glioblastoma cells suggesting that ASPM impacts upon a DNA-PK-dependent pathway. Our results show for the first time that ASPM is required for efficient non-homologous end-joining in mammalian cells. In clinical applications, ASPM could be a novel target for combination therapy with radiation as well as a useful biomarker for tumor prognosis as ever described.

  14. Stimulation of receptor protein-tyrosine phosphatase alpha activity and phosphorylation by phorbol ester

    DEFF Research Database (Denmark)

    den Hertog, J; Sap, J; Pals, C E

    1995-01-01

    with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate, a direct activator of protein kinase C, induced a rapid, transient increase in RPTP alpha activity due to a 2- to 3-fold increase in substrate affinity. A transient increase in RPTP alpha serine phosphorylation was concomitant with the enhanced activity....... Tryptic phosphopeptide mapping of RPTP alpha demonstrated that phosphorylation of three tryptic peptides was enhanced in response to phorbol ester. In vitro dephosphorylation of RPTP alpha from phorbol ester-treated cells reduced RPTP alpha activity to prestimulation levels, indicating that enhanced...

  15. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes...... phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine...... residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant...

  16. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  17. Phosphorylation prevents C/EBP{beta} from the calpain-dependent degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan-yuan; Li, Shu-fen; Qian, Shu-wen; Zhang, You-you; Liu, Yuan; Tang, Qi-Qun; Li, Xi, E-mail: lixi@shmu.edu.cn

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Phosphorylation protected C/EBP{beta} from {mu}-calpain-mediated proteolysis in vitro. Black-Right-Pointing-Pointer Phosphorylation mimic C/EBP{beta} was insensitive to calpain accelerator and inhibitor. Black-Right-Pointing-Pointer Phosphorylation on Thr{sub 188} contributed more to the stabilization of C/EBP{beta}. -- Abstract: CCAAT/enhancer-binding protein (C/EBP) {beta} plays an important role in proliferation and differentiation of 3T3-L1 preadipocytes. C/EBP{beta} is sequentially phosphorylated during the 3T3-L1 adipocyte differentiation program, first by MAPK/Cyclin A/cdk2 on Thr{sub 188} and subsequently by GSK3{beta} on Ser{sub 184} or Thr{sub 179}. Dual phosphorylation is critical for the gain of DNA binding activity of C/EBP{beta}. In this manuscript, we found that phosphorylation also contributed to the stability of C/EBP{beta}. Both ex vivo and in vitro experiments showed that phosphorylation by MAPK/Cyclin A/cdk2 and GSK3{beta} protected C/EBP{beta} from {mu}-calpain-mediated proteolysis, while phosphorylation on Thr{sub 188} by MAPK/Cyclin A/cdk2 contributed more to the stabilization of C/EBP{beta}, Further studies indicated that phosphorylation mimic C/EBP{beta} was insensitive to both calpain accelerator and calpain inhibitor. Thus, phosphorylation might contribute to the stability as well as the gain of DNA binding activity of C/EBP{beta}.

  18. Phosphorylation by Dyrk1A of clathrin coated vesicle-associated proteins: identification of the substrate proteins and the effects of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Noriko Murakami

    Full Text Available Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [(32P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.

  19. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    Science.gov (United States)

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C(Cdc20)) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  20. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome

    DEFF Research Database (Denmark)

    Mann, Matthias; Ong, Shao En; Grønborg, Mads

    2002-01-01

    In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling...

  1. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  2. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  3. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition.

    Science.gov (United States)

    Arnould, Stéphanie; Rodier, Geneviève; Matar, Gisèle; Vincent, Charles; Pirot, Nelly; Delorme, Yoann; Berthet, Charlène; Buscail, Yoan; Noël, Jean Yohan; Lachambre, Simon; Jarlier, Marta; Bernex, Florence; Delpech, Hélène; Vidalain, Pierre Olivier; Janin, Yves L; Theillet, Charles; Sardet, Claude

    2017-11-10

    Reduction in nucleotide pools through the inhibition of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) has been demonstrated to effectively reduce cancer cell proliferation and tumour growth. The current study sought to investigate whether this antiproliferative effect could be enhanced by combining Chk1 kinase inhibition. The pharmacological activity of DHODH inhibitor teriflunomide was more selective towards transformed mouse embryonic fibroblasts than their primary or immortalised counterparts, and this effect was amplified when cells were subsequently exposed to PF477736 Chk1 inhibitor. Flow cytometry analyses revealed substantial accumulations of cells in S and G2/M phases, followed by increased cytotoxicity which was characterised by caspase 3-dependent induction of cell death. Associating PF477736 with teriflunomide also significantly sensitised SUM159 and HCC1937 human triple negative breast cancer cell lines to dihydroorotate dehydrogenase inhibition. The main characteristic of this effect was the sustained accumulation of teriflunomide-induced DNA damage as cells displayed increased phospho serine 139 H2AXH2AX) levels and concentration-dependent phosphorylation of Chk1 on serine 345 upon exposure to the combination as compared with either inhibitor alone. Importantly a similar significant increase in cell death was observed upon dual siRNA mediated depletion of Chk1 and DHODH in both murine and human cancer cell models. Altogether these results suggest that combining DHODH and Chk1 inhibitions may be a strategy worth considering as a potential alternative to conventional chemotherapies.

  4. Regulation of the autophagy protein LC3 by phosphorylation

    Science.gov (United States)

    Cherra, Salvatore J.; Kulich, Scott M.; Uechi, Guy; Balasubramani, Manimalha; Mountzouris, John; Day, Billy W.

    2010-01-01

    Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity. PMID:20713600

  5. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    Science.gov (United States)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  6. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase.

    Science.gov (United States)

    Taurin, Sebastien; Sandbo, Nathan; Qin, Yimin; Browning, Darren; Dulin, Nickolai O

    2006-04-14

    Beta-catenin is a signaling molecule that promotes cell proliferation by the induction of gene transcription through the activation of T-cell factor (TCF)/lymphoid enhancer factor (LEF) transcription factors. The canonical mechanism of the regulation of beta-catenin involves its phosphorylation by casein kinase 1 at the Ser-45 site and by glycogen synthase kinase 3 (GSK3) at the Thr-41, Ser-37, and Ser-33 sites. This phosphorylation targets beta-catenin to ubiquitination and degradation by the proteasome system. Mitogenic factors promote beta-catenin signaling through the inhibition of GSK3, resulting in reduced beta-catenin phosphorylation, its stabilization, and subsequent accumulation in the nucleus, where it stimulates TCF/LEF-dependent gene transcription. In the present study, we have shown that (i) beta-catenin can be phosphorylated by protein kinase A (PKA) in vitro and in intact cells at two novel sites, Ser-552 and Ser-675; (ii) phosphorylation by PKA promotes the transcriptional activity (TCF/LEF transactivation) of beta-catenin; (iii) mutation of Ser-675 attenuates the promoting effect of PKA; (iv) phosphorylation by PKA does not affect the GSK3-dependent phosphorylation of beta-catenin, its stability, or intracellular localization; and (v) phosphorylation at the Ser-675 site promotes the binding of beta-catenin to its transcriptional coactivator, CREB-binding protein. In conclusion, this study identifies a novel, noncanonical mechanism of modulation of beta-catenin signaling through direct phosphorylation of beta-catenin by PKA, promoting its interaction with CREB-binding protein.

  7. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min [Core Laboratory, Fu Wai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)

    2013-02-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.

  8. In vitro phosphorylation and acetylation of the murine pocket protein Rb2/p130.

    Directory of Open Access Journals (Sweden)

    Muhammad Saeed

    Full Text Available The retinoblastoma protein (pRb and the related proteins Rb2/p130 and 107 represent the "pocket protein" family of cell cycle regulators. A key function of these proteins is the cell cycle dependent modulation of E2F-regulated genes. The biological activity of these proteins is controlled by acetylation and phosphorylation in a cell cycle dependent manner. In this study we attempted to investigate the interdependence of acetylation and phosphorylation of Rb2/p130 in vitro. After having identified the acetyltransferase p300 among several acetyltransferases to be associated with Rb2/p130 during S-phase in NIH3T3 cells in vivo, we used this enzyme and the CDK4 protein kinase for in vitro modification of a variety of full length Rb2/p130 and truncated versions with mutations in the acetylatable lysine residues 1079, 128 and 130. Mutation of these residues results in the complete loss of Rb2/p130 acetylation. Replacement of lysines by arginines strongly inhibits phosphorylation of Rb2/p130 by CDK4; the inhibitory effect of replacement by glutamines is less pronounced. Preacetylation of Rb2/p130 strongly enhances CDK4-catalyzed phosphorylation, whereas deacetylation completely abolishes in vitro phosphorylation. In contrast, phosphorylation completely inhibits acetylation of Rb2/p130 by p300. These results suggest a mutual interdependence of modifications in a way that acetylation primes Rb2/p130 for phosphorylation and only dephosphorylated Rb2/p130 can be subject to acetylation. Human papillomavirus 16-E7 protein, which increases acetylation of Rb2/p130 by p300 strongly reduces phosphorylation of this protein by CDK4. This suggests that the balance between phosphorylation and acetylation of Rb2/p130 is essential for its biological function in cell cycle control.

  9. Tyrosine Phosphorylation of Botulinum Neurotoxin Protease Domains

    Science.gov (United States)

    2012-06-01

    phosphorylated tyro - sine indicated by an asterisk (*). LcA− and LcA+ represent Src reaction mixtures that were incubated without and with (0.2mM...CONCLUSION In vitro reaction of LcA, LcB, LcC1, LcD, LcE, and LcG with Tyrosine kinase Src resulted in phosphorylation of several tyro - sine residues

  10. Physicochemical mechanisms of protein regulation by phosphorylation

    OpenAIRE

    Nishi, Hafumi; Shaytan, Alexey; Panchenko, Anna R.

    2014-01-01

    Phosphorylation offers a dynamic way to regulate protein activity and subcellular localization, which is achieved through reversibility and fast kinetics of posttranslational modifications. Adding or removing a dianionic phosphate group somewhere on a protein often changes the protein’s structural properties, its stability and dynamics. Moreover, the majority of signaling pathways involve an extensive set of protein-protein interactions, and phosphorylation can be used to regulate and modulat...

  11. Tyrosine Phosphorylation of Botulinum Neurotoxin Protease Domains

    Directory of Open Access Journals (Sweden)

    Stephen eToth

    2012-06-01

    Full Text Available Botulinum neurotoxins are most potent of all toxins. Their N-terminal light chain domain (Lc translocates into peripheral cholinergic neurons to exert its endoproteolytic action leading to muscle paralysis. Therapeutic development against these toxins is a major challenge due to their in vitro and in vivo structural differences. Although three-dimensional structures and reaction mechanisms are very similar, the seven serotypes designated A through G vastly vary in their intracellular catalytic stability. To investigate if protein phosphorylation could account for this difference, we employed Src-catalyzed tyrosine phosphorylation of the Lc of six serotypes namely LcA, LcB, LcC1, LcD, LcE, and LcG. Very little phosphorylation was observed with LcD and LcE but LcA, LcB and LcG were maximally phosphorylated by Src. Phosphorylation of LcA, LcB, and LcG did not affect their secondary and tertiary structures and thermostability significantly. Phosphorylation of Y250 and Y251 made LcA resistant to autocatalysis and drastically reduced its kcat/Km for catalysis. A tyrosine residue present near the essential cysteine at the C-terminal tail of LcA, LcB and LcG was readily phosphorylated in vitro. Inclusion of a competitive inhibitor protected this Y426 of LcA from phosphorylation, shedding light on the role of the C-terminus in the enzyme’s substrate or product binding.

  12. Chemical structure analyses of phosphorylated chitosan.

    Science.gov (United States)

    Wang, Kaipeng; Liu, Qi

    2014-03-11

    Chemical modification of chitosan to generate new bio-functional materials can bring more desirable properties depending on the nature of the groups introduced. Phosphorylated chitosan has attracted interests in recent years. The literature has reported that the phosphorylation of chitosan could be achieved through three different reaction routes, namely, in the presence of H3PO4/urea, H3PO4/Et3PO4/P2O5, or P2O5/CH3SO3H. However, the exact chemical structure of phosphorylated chitosan synthesized by different reaction routes has not been systematically studied and compared. Meanwhile, the most common opinion is that the hydroxyl group in chitosan is the main substitution site. In this work, phosphorylated chitosan was synthesized using three different reaction routes, and the chemical structures of the products were studied by infrared, X-ray photoelectron and (13)C NMR spectroscopic characterization. It was observed that in the reaction routes using H3PO4/urea and H3PO4/Et3PO4/P2O5, the amino groups were substituted instead of the hydroxyl groups. In the reaction route using P2O5/CH3SO3H, the amino groups were shielded by the ionic binding with CH3SO3H, and the C-6 hydroxyl groups were phosphorylated. Different structures of the phosphorylated chitosan were proposed based on the characterization results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Protein phosphorylation during Plasmodium berghei gametogenesis.

    Science.gov (United States)

    Alonso-Morales, Alberto; González-López, Lorena; Cázares-Raga, Febe Elena; Cortés-Martínez, Leticia; Torres-Monzón, Jorge Aurelio; Gallegos-Pérez, José Luis; Rodríguez, Mario Henry; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2015-09-01

    Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Rosamines targeting the cancer oxidative phosphorylation pathway.

    Directory of Open Access Journals (Sweden)

    Siang Hui Lim

    Full Text Available Reprogramming of energy metabolism is pivotal to cancer, so mitochondria are potential targets for anticancer therapy. A prior study has demonstrated the anti-proliferative activity of a new class of mitochondria-targeting rosamines. This present study describes in vitro cytotoxicity of second-generation rosamine analogs, their mode of action, and their in vivo efficacies in a tumor allografted mouse model. Here, we showed that these compounds exhibited potent cytotoxicity (average IC50<0.5 µM, inhibited Complex II and ATP synthase activities of the mitochondrial oxidative phosphorylation pathway and induced loss of mitochondrial transmembrane potential. A NCI-60 cell lines screen further indicated that rosamine analogs 4 and 5 exhibited potent antiproliferative effects with Log10GI50 = -7 (GI50 = 0.1 µM and were more effective against a colorectal cancer sub-panel than other cell lines. Preliminary in vivo studies on 4T1 murine breast cancer-bearing female BALB/c mice indicated that treatment with analog 5 in a single dosing of 5 mg/kg or a schedule dosing of 3 mg/kg once every 2 days for 6 times (q2d×6 exhibited only minimal induction of tumor growth delay. Our results suggest that rosamine analogs may be further developed as mitochondrial targeting agents. Without a doubt proper strategies need to be devised to enhance tumor uptake of rosamines, i.e. by integration to carrier molecules for better therapeutic outcome.

  15. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma.

    Science.gov (United States)

    Hu, Yafang; Bobb, Daniel; He, Jianping; Hill, D Ashley; Dome, Jeffrey S

    2015-01-01

    The unsatisfactory outcomes for osteosarcoma necessitate novel therapeutic strategies. This study evaluated the effect of the telomerase inhibitor imetelstat in pre-clinical models of human osteosarcoma. Because the chaperone molecule HSP90 facilitates the assembly of telomerase protein, the ability of the HSP90 inhibitor alvespimycin to potentiate the effect of the telomerase inhibitor was assessed. The effect of single or combined treatment with imetelstat and alvespimycin on long-term growth was assessed in osteosarcoma cell lines (143B, HOS and MG-63) and xenografts derived from 143B cells. Results indicated that imetelstat as a single agent inhibited telomerase activity, induced telomere shortening, and inhibited growth in all 3 osteosarcoma cell lines, though the bulk cell cultures did not undergo growth arrest. Combined treatment with imetelstat and alvespimycin resulted in diminished telomerase activity and shorter telomeres compared to either agent alone as well as higher levels of γH2AX and cleaved caspase-3, indicative of increased DNA damage and apoptosis. With dual telomerase and HSP90 inhibition, complete growth arrest of bulk cell cultures was achieved. In xenograft models, all 3 treatment groups significantly inhibited tumor growth compared with the placebo-treated control group, with the greatest effect seen in the combined treatment group (imetelstat, p = 0.045, alvespimycin, p = 0.034; combined treatment, p = 0.004). In conclusion, HSP90 inhibition enhanced the effect of telomerase inhibition in pre-clinical models of osteosarcoma. Dual targeting of telomerase and HSP90 warrants further investigation as a therapeutic strategy.

  16. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.

    Science.gov (United States)

    Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M

    2017-01-24

    A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.

  17. Regulation of RCAN1 Protein Activity by Dyrk1A Protein-mediated Phosphorylation*

    Science.gov (United States)

    Jung, Min-Su; Park, Jung-Hwa; Ryu, Young Shin; Choi, Sun-Hee; Yoon, Song-Hee; Kwen, Mi-Yang; Oh, Ji Youn; Song, Woo-Joo; Chung, Sul-Hee

    2011-01-01

    Two genes on chromosome 21, namely dual specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) and regulator of calcineurin 1 (RCAN1), have been implicated in some of the phenotypic characteristics of Down syndrome, including the early onset of Alzheimer disease. Although a link between Dyrk1A and RCAN1 and the nuclear factor of activated T cells (NFAT) pathway has been reported, it remains unclear whether Dyrk1A directly interacts with RCAN1. In the present study, Dyrk1A is shown to directly interact with and phosphorylate RCAN1 at Ser112 and Thr192 residues. Dyrk1A-mediated phosphorylation of RCAN1 at Ser112 primes the protein for the GSK3β-mediated phosphorylation of Ser108. Phosphorylation of RCAN1 at Thr192 by Dyrk1A enhances the ability of RCAN1 to inhibit the phosphatase activity of calcineurin (Caln), leading to reduced NFAT transcriptional activity and enhanced Tau phosphorylation. These effects are mediated by the enhanced binding of RCAN1 to Caln and its extended half-life caused by Dyrk1A-mediated phosphorylation. Furthermore, an increased expression of phospho-Thr192-RCAN1 was observed in the brains of transgenic mice overexpressing the Dyrk1A protein. These results suggest a direct link between Dyrk1A and RCAN1 in the Caln-NFAT signaling and Tau hyperphosphorylation pathways, supporting the notion that the synergistic interaction between the chromosome 21 genes RCAN1 and Dyrk1A is associated with a variety of pathological features associated with DS. PMID:21965663

  18. Regulation of RCAN1 protein activity by Dyrk1A protein-mediated phosphorylation.

    Science.gov (United States)

    Jung, Min-Su; Park, Jung-Hwa; Ryu, Young Shin; Choi, Sun-Hee; Yoon, Song-Hee; Kwen, Mi-Yang; Oh, Ji Youn; Song, Woo-Joo; Chung, Sul-Hee

    2011-11-18

    Two genes on chromosome 21, namely dual specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) and regulator of calcineurin 1 (RCAN1), have been implicated in some of the phenotypic characteristics of Down syndrome, including the early onset of Alzheimer disease. Although a link between Dyrk1A and RCAN1 and the nuclear factor of activated T cells (NFAT) pathway has been reported, it remains unclear whether Dyrk1A directly interacts with RCAN1. In the present study, Dyrk1A is shown to directly interact with and phosphorylate RCAN1 at Ser(112) and Thr(192) residues. Dyrk1A-mediated phosphorylation of RCAN1 at Ser(112) primes the protein for the GSK3β-mediated phosphorylation of Ser(108). Phosphorylation of RCAN1 at Thr(192) by Dyrk1A enhances the ability of RCAN1 to inhibit the phosphatase activity of calcineurin (Caln), leading to reduced NFAT transcriptional activity and enhanced Tau phosphorylation. These effects are mediated by the enhanced binding of RCAN1 to Caln and its extended half-life caused by Dyrk1A-mediated phosphorylation. Furthermore, an increased expression of phospho-Thr(192)-RCAN1 was observed in the brains of transgenic mice overexpressing the Dyrk1A protein. These results suggest a direct link between Dyrk1A and RCAN1 in the Caln-NFAT signaling and Tau hyperphosphorylation pathways, supporting the notion that the synergistic interaction between the chromosome 21 genes RCAN1 and Dyrk1A is associated with a variety of pathological features associated with DS.

  19. Regulation of hepatic pyruvate dehydrogenase phosphorylation in offspring glucose intolerance induced by intrauterine hyperglycemia.

    Science.gov (United States)

    Zhang, Yong; Zhang, Ying; Ding, Guo-Lian; Liu, Xin-Mei; Ye, Jianping; Sheng, Jian-Zhong; Fan, Jianxia; Huang, He-Feng

    2017-02-28

    Gestational diabetes mellitus (GDM) has been shown to be associated with a high risk of diabetes in offspring. In mitochondria, the inhibition of pyruvate dehydrogenase (PDH) activity by PDH phosphorylation is involved in the development of diabetes. We aimed to determine the role of PDH phosphorylation in the liver in GDM-induced offspring glucose intolerance. PDH phosphorylation was increased in lymphocytes from the umbilical cord blood of the GDM patients and in high glucose-treated hepatic cells. Both the male and female offspring from GDM mice had elevated liver weights and glucose intolerance. Further, PDH phosphorylation was increased in the livers of both the male and female offspring from GDM mice, and elevated acetylation may have contributed to this increased phosphorylation. We obtained lymphocytes from umbilical cord blood collected from both normal and GDM pregnant women. In addition, we obtained the offspring of streptozotocin-induced GDM female pregnant mice. The glucose tolerance test was performed to assess glucose tolerance in the offspring. Further, Western blotting was conducted to detect changes in protein levels. Intrauterine hyperglycemia induced offspring glucose intolerance by inhibiting PDH activity, along with increased PDH phosphorylation in the liver, and this effect might be mediated by enhanced mitochondrial protein acetylation.

  20. Pim1 kinase promotes angiogenesis through phosphorylation of endothelial nitric oxide synthase at Ser-633.

    Science.gov (United States)

    Chen, Ming; Yi, Bing; Zhu, Ni; Wei, Xin; Zhang, Guan-Xin; Huang, Shengdong; Sun, Jianxin

    2016-01-01

    Posttranslational modification, such as phosphorylation, plays an essential role in regulating activation of endothelial NO synthase (eNOS). In the present study, we aim to determine whether eNOS could be phosphorylated and regulated by a novel serine/threonine-protein kinase Pim1 in vascular endothelial cells (ECs). Using immunoprecipitation and protein kinase assays, we demonstrated that Pim1 specifically interacts with eNOS, which leads to a marked phosphorylation of eNOS at Ser-633 and increased production of nitric oxide (NO). Intriguingly, in response to VEGF stimulation, eNOS phosphorylation at Ser-633 exhibits two distinct phases: transient phosphorylation occurring between 0 and 60 min and sustained phosphorylation occurring between 2 and 24 h, which are mediated by the protein kinase A (PKA) and Pim1, respectively. Inhibiting Pim1 by either pharmacological inhibitor SMI-4a or the dominant-negative form of Pim1 markedly attenuates VEGF-induced tube formation, while Pim1 overexpression significantly increases EC tube formation and migration in an NO-dependent manner. Importantly, Pim1 expression and eNOS phosphorylation at Ser-633 were substantially decreased in high glucose-treated ECs and in the aorta of db/db diabetic mice. Increased Pim1 expression ameliorates impaired vascular angiogenesis in diabetic mice, as determined by an ex vivo aortic ring assay. Our findings demonstrate Pim1 as a novel kinase that is responsible for the phosphorylation of eNOS at Ser-633 and enhances EC sprouting of aortic rings from diabetic mice, suggesting that Pim1 could potentially serve as a novel therapeutic target for revascularization strategies. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  1. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Perfettini

    Full Text Available DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM, which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env of human immunodeficiency virus-1 (HIV-1 in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein, as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.

  2. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  3. SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1.

    Science.gov (United States)

    Lin, C H; Liu, S Y; Lee, E H Y

    2016-02-04

    SUMOylation is an important post-translational modification, and Akt SUMOylation was found to regulate cell proliferation, tumorigenesis and cell cycle, but the molecular mechanism of Akt SUMOylation is less well known. Here, we show both endogenous and ectopic Akt SUMOylation and Lys276 is the major SUMO acceptor on Akt. Further, Akt SUMOylation is Akt phosphorylation dependent and Akt SUMOylation increases Akt kinase activity without affecting the phosphorylation level of Akt. Moreover, endogenous Akt SUMOylation is enhanced by insulin treatment and this is Akt activity dependent. Heat-shock stimulus also increases Akt SUMOylation and it is also Akt activity dependent. Endogenous Akt SUMOylation is also found in the rat brain and it is enhanced by insulin-like growth factor-1 stimulation. In addition, Akt directly phosphorylates Ubc9 at Thr35 and phosphorylates SUMO1 at Thr76. Ubc9 phosphorylation at Thr35 promotes Ubc9 thioester bond formation and SUMO1 phosphorylation at Thr76 stabilizes the SUMO1 protein. Through these distinct mechanisms, Akt SUMOylation regulates global SUMOylation, including Akt and Ubc9 SUMOylation, and substrate SUMOylation specificity, including STAT1 and CREB SUMOylation, in different manners. Akt SUMOylation also enhances phosphatase and tensin homolog (PTEN) SUMOylation through Akt phosphorylation of Ubc9 and SUMO1, which serves as an endogenous mechanism to stop the positive feedback loop resulted from Akt activation. Further, Akt SUMOylation increases cyclin D1 expression and cell proliferation, and these effects are also mediated through Ubc9 phosphorylation at Thr35 and SUMO1 phosphorylation at Thr76. Here, we have identified a novel mechanism for SUMOylation regulation. Because of the important role Akt plays in tumorigenesis, this mechanism may also be involved in Akt-regulated tumorigenesis.

  4. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Science.gov (United States)

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  5. Aquaporin-2 Ser-261 phosphorylation is regulated in combination with Ser-256 and Ser-269 phosphorylation.

    Science.gov (United States)

    Yui, Naofumi; Sasaki, Sei; Uchida, Shinichi

    2017-01-22

    Aquaporin-2 (AQP2) is a water channel in collecting duct principal cells in the kidney. Vasopressin catalyzes AQP2 phosphorylation at several serine sites in its C-terminus: Ser-256, Ser-261, and Ser-269. Upon stimulation by vasopressin, Ser-269 phosphorylation increases and Ser-261 phosphorylation decreases. Ser-256 phosphorylation is relatively constant. However, whether these types of phospho-regulation occur independently in distinct AQP2 populations or sequentially in the same AQP2 population is unclear. Especially, the manner of vasopressin-mediated Ser-261 phospho-regulation has been in controversy. In this study, we established phospho-specific AQP2 immunoprecipitation assays and investigated how pS256-positive AQP2 and pS269-positive AQP2 are catalyzed by forskolin or vasopressin, focusing on their Ser-261 phosphorylation status in polarized Madin-Darby canine kidney (MDCK) cells and in mice. In forskolin-treated MDCK cells, Ser-269 phosphorylation preceded Ser-261 dephosphorylation and Ser-256 phosphorylation was constant. In both MDCK cells and mouse kidney, phospho-specific immunoprecipitation revealed that the regulated Ser-269 phosphorylation occurred in the pS256-positive AQP2 population. Importantly, basal-state Ser-261 phosphorylation and its regulated dephosphorylation occurred in the pS256- and pS269-positive AQP2 population. These results provide the direct evidence that the Ser-261 dephosphorylation is involved in the pS256- and pS269-related AQP2 regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  7. Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion

    DEFF Research Database (Denmark)

    Liu, Linna; Li, Jing; Zhang, Liwang

    2015-01-01

    that actin filaments disassembled. In the epidermis of mice in which Rac1 was knocked out only in keratinocytes, cofilin phosphorylation was aberrantly elevated, corresponding to repression of the phosphatase slingshot1 (SSH1). These effects were independent of the signaling pathways for p21-activated kinase....../LIM kinase (Pak/LIMK), protein kinase C, or protein kinase D or generation of reactive oxygen species. Similarly, when actin polymerization was specifically inhibited or Rac1 was knocked down, cofilin phosphorylation was enhanced and SSH1 was repressed. Repression of SSH1 partially blocked actin...

  8. Characterization and application studies of ProxyPhos, a chemosensor for the detection of proximally phosphorylated peptides and proteins in aqueous solutions.

    Science.gov (United States)

    Kraskouskaya, D; Cabral, A D; Fong, R; Bancerz, M; Toutah, K; Rosa, D; Gardiner, J E; de Araujo, E D; Duodu, E; Armstrong, D; Fekl, U; Gunning, P T

    2017-06-26

    Proximal phosphorylation on proteins appears to have functional significance and has been associated with several diseases, including Alzheimer's and cancer. While much remains to be learned about the role of proximal phosphorylation in biological systems, no simple and/or affordable technique is available for its detection. To this end, we have previously developed a ProxyPhos chemosensor, which detects proximally phosphorylated peptides and proteins over mono- and non-phosphorylated motifs in aqueous solutions. In this follow-up work, we performed extensive characterization of peptide and protein ProxyPhos assay conditions to achieve enhanced detection, and further explored the selectivity of ProxyPhos, and its potential off-targets. As a result of characterization studies, selective sensing of proximally phosphorylated over mono-phosphorylated peptides and proteins was achieved. Moreover, studies demonstrated that ProxyPhos was compatible with the detection of all commonly phosphorylated residues (i.e. tyrosine, serine and threonine residues). Under optimized conditions, ProxyPhos efficiently discriminated between peptides derived from the activated (proximally phosphorylated, disease-relevant) and inactive (mono-phosphorylated) forms of JAK2, SYK and MAPK1 kinases. In addition, ProxyPhos can be used to probe phosphatase activity on peptides and proteins via detecting changes in proximal phosphorylation, demonstrating immediate utility of this chemosensing system.

  9. Ginsenoside Rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3β pathway after transient forebrain ischemia.

    Science.gov (United States)

    Zhang, Xiao; Shi, Ming; Ye, Ruidong; Wang, Wei; Liu, Xuedong; Zhang, Guangyun; Han, Junliang; Zhang, Yunxia; Wang, Bing; Zhao, Jun; Hui, Juan; Xiong, Lize; Zhao, Gang

    2014-07-01

    Phosphorylated tau was found to be regulated after cerebral ischemia and linked to high risk for the development of post-stroke dementia. Our previous study showed that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, decreased tau phosphorylation in Alzheimer model. As an extending study, here we investigated whether Rd could reduce tau phosphorylation and sequential cognition impairment after ischemic stroke. Sprague-Dawley rats were subjected to focal cerebral ischemia. The tau phosphorylation of rat brains were analyzed following ischemia by Western blot and animal cognitive functions were examined by Morris water maze and Novel object recognition task. Ischemic insults increased the levels of phosphorylated tau protein at Ser199/202 and PHF-1 sites and caused animal memory deficits. Rd treatment attenuated ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impairment. Furthermore, we revealed that Rd inhibited the activity of Glycogen synthase kinase-3β (GSK-3β), the most important kinase involving tau phosphorylation, but enhanced the activity of protein kinase B (PKB/AKT), a key kinase suppressing GSK-3β activity. Moreover, we found that LY294002, an antagonist for phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, abolished the inhibitory effect of Rd on GSK-3β activity and tau phosphorylation. Taken together, our findings provide the first evidence that Rd may reduce cerebral ischemia-induced tau phosphorylation via the PI3K/AKT/GSK-3β pathway.

  10. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice.

    Science.gov (United States)

    Shan, Jian; Kushnir, Alexander; Betzenhauser, Matthew J; Reiken, Steven; Li, Jingdong; Lehnart, Stephan E; Lindegger, Nicolas; Mongillo, Marco; Mohler, Peter J; Marks, Andrew R

    2010-12-01

    During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+). Here, we found that mice harboring RyR2 channels that cannot be PKA phosphorylated (referred to herein as RyR2-S2808A+/+ mice) exhibited blunted heart rate and cardiac contractile responses to catecholamines (isoproterenol). The isoproterenol-induced enhancement of ventricular myocyte Ca²+ transients and fractional shortening (contraction) and the spontaneous beating rate of sinoatrial nodal cells were all blunted in RyR2-S2808A+/+ mice. The blunted cardiac response to catecholamines in RyR2-S2808A+/+ mice resulted in impaired exercise capacity. RyR2-S2808A+/+ mice were protected against chronic catecholaminergic-induced cardiac dysfunction. These studies identify what we believe to be new roles for PKA phosphorylation of RyR2 in both the heart rate and contractile responses to acute catecholaminergic stimulation.

  11. Plk1-mediated phosphorylation of Topors regulates p53 stability.

    Science.gov (United States)

    Yang, Xiaoming; Li, Hongchang; Zhou, Zinan; Wang, Wen-Horng; Deng, Anping; Andrisani, Ourania; Liu, Xiaoqi

    2009-07-10

    Polo-like kinase 1 (Plk1) overexpression is associated with tumorigenesis by an unknown mechanism. Likewise, Plk1 was suggested to act as a negative regulator of tumor suppressor p53, but the mechanism remains to be determined. Herein, we have identified topoisomerase I-binding protein (Topors), a p53-binding protein, as a Plk1 target. We show that Plk1 phosphorylates Topors on Ser(718) in vivo. Significantly, expression of a Plk1-unphosphorylatable Topors mutant (S718A) leads to a dramatic accumulation of p53 through inhibition of p53 degradation. Topors is an ubiquitin and small ubiquitin-like modifier ubiquitin-protein isopeptide ligase (SUMO E3) ligase. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. These results demonstrate that Plk1 modulates Topors activity in suppressing p53 function and identify a likely mechanism for the tumorigenic potential of Plk1.

  12. Plk1-mediated Phosphorylation of Topors Regulates p53 Stability*

    Science.gov (United States)

    Yang, Xiaoming; Li, Hongchang; Zhou, Zinan; Wang, Wen-Horng; Deng, Anping; Andrisani, Ourania; Liu, Xiaoqi

    2009-01-01

    Polo-like kinase 1 (Plk1) overexpression is associated with tumorigenesis by an unknown mechanism. Likewise, Plk1 was suggested to act as a negative regulator of tumor suppressor p53, but the mechanism remains to be determined. Herein, we have identified topoisomerase I-binding protein (Topors), a p53-binding protein, as a Plk1 target. We show that Plk1 phosphorylates Topors on Ser718 in vivo. Significantly, expression of a Plk1-unphosphorylatable Topors mutant (S718A) leads to a dramatic accumulation of p53 through inhibition of p53 degradation. Topors is an ubiquitin and small ubiquitin-like modifier ubiquitin-protein isopeptide ligase (SUMO E3) ligase. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. These results demonstrate that Plk1 modulates Topors activity in suppressing p53 function and identify a likely mechanism for the tumorigenic potential of Plk1. PMID:19473992

  13. DNA double-strand break repair is impaired in presenescent Syrian hamster fibroblasts.

    Science.gov (United States)

    Solovjeva, Ljudmila; Firsanov, Denis; Vasilishina, Anastasia; Chagin, Vadim; Pleskach, Nadezhda; Kropotov, Andrey; Svetlova, Maria

    2015-10-12

    Studies of DNA damage response are critical for the comprehensive understanding of age-related changes in cells, tissues and organisms. Syrian hamster cells halt proliferation and become presenescent after several passages in standard conditions of cultivation due to what is known as "culture stress". Using proliferating young and non-dividing presenescent cells in primary cultures of Syrian hamster fibroblasts, we defined their response to the action of radiomimetic drug bleomycin (BL) that induces DNA double-strand breaks (DSBs). The effect of the drug was estimated by immunoblotting and immunofluorescence microscopy using the antibody to phosphorylated histone H2AX (gH2AX), which is generally accepted as a DSB marker. At all stages of the cell cycle, both presenescent and young cells demonstrated variability of the number of gH2AX foci per nucleus. gH2AX focus induction was found to be independent from BL-hydrolase expression. Some differences in DSB repair process between BL-treated young and presenescent Syrian hamster cells were observed: (1) the kinetics of gH2AX focus loss in G0 fibroblasts of young culture was faster than in cells that prematurely stopped dividing; (2) presenescent cells were characterized by a slower recruitment of DSB repair proteins 53BP1, phospho-DNA-PK and phospho-ATM to gH2AX focal sites, while the rate of phosphorylated ATM/ATR substrate accumulation was the same as that in young cells. Our results demonstrate an impairment of DSB repair in prematurely aged Syrian hamster fibroblasts in comparison with young fibroblasts, suggesting age-related differences in response to BL therapy.

  14. Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation?

    Science.gov (United States)

    Dale, Jeffrey M; Garcia, Michael L

    2012-01-01

    Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs). NFs are type IV intermediate filaments (IFs) that can be composed of four subunits, neurofilament heavy (NF-H), neurofilament medium (NF-M), neurofilament light (NF-L), and α-internexin. Within wild type axons, NFs are responsible for mediating radial growth, a process that determines axonal diameter. NFs are phosphorylated on highly conserved lysine-serine-proline (KSP) repeats located along the C-termini of both NF-M and NF-H within myelinated axonal regions. Phosphorylation is thought to regulate aspects of NF transport and function. However, a key pathological hallmark of several neurodegenerative diseases is ectopic accumulation and phosphorylation of NFs. The goal of this review is to provide an overview of the posttranslational modifications that occur in both normal and diseased axons. We review evidence that challenges the role of KSP phosphorylation as essential for radial growth and suggests an alternative role for NF phosphorylation in myelinated axons. Furthermore, we demonstrate that regulation of NF phosphorylation dynamics may be essential to avoiding NF accumulations.

  15. Allosteric interactions direct binding and phosphorylation of ASF/SF2 by SRPK1.

    Science.gov (United States)

    Huynh, Nhat; Ma, Chen-Ting; Giang, Ngoc; Hagopian, Jonathan; Ngo, Jacky; Adams, Joseph; Ghosh, Gourisankar

    2009-12-08

    ASF/SF2, a member of the serine-arginine (SR) protein family, has two RRM domains (RRM1 and RRM2) and a C-terminal domain rich in RS dipeptides. SR protein kinase 1 (SRPK1) phosphorylates approximately 12 of these serines using a semiprocessive mechanism. The X-ray structure of the ASF/SF2-SRPK1 complex revealed several features of the complex that raised intriguing questions about how the substrate is phosphorylated by the kinase. The part of the RS domain destined to be phosphorylated at later stages of the reaction docks to a kinase groove distal to the active site while the neighboring RRM2 binds near the active site [Ngo, J. C., et al. (2008) Mol. Cell 29, 563-576]. In this study, we investigate the interplay between the RS domain and RRM2 for stable association and phosphorylation of ASF/SF2. Despite several contacts in the enzyme-substrate complex, free RRM2 does not bind efficiently to SRPK1 unless the docking groove is occupied by the RS domain. This domain cross-talk enhances the processive phosphorylation of the RS domain. The RRM-SRPK1 contact residues control the folding of a critical beta-strand in RRM2. Unfolding of this structural element may force the N-terminal serines of the RS domain into the active site for sequential phosphorylation. Thus, ASF/SF2 represents a new class of substrates that use unique primary sequence to induce allosteric binding, processive phosphorylation, and product release.

  16. Phos-tag-based analysis of myosin regulatory light chain phosphorylation in human uterine myocytes.

    Directory of Open Access Journals (Sweden)

    Hector N Aguilar

    Full Text Available The 'phosphate-binding tag' (phos-tag reagent enables separation of phospho-proteins during SDS-PAGE by impeding migration proportional to their phosphorylation stoichiometry. Western blotting can then be used to detect and quantify the bands corresponding to the phospho-states of a target protein. We present a method for quantification of data regarding phospho-states derived from phos-tag SDS-PAGE. The method incorporates corrections for lane-to-lane loading variability and for the effects of drug vehicles thus enabling the comparison of multiple treatments by using the untreated cellular set-point as a reference. This method is exemplified by quantifying the phosphorylation of myosin regulatory light chain (RLC in cultured human uterine myocytes.We have evaluated and validated the concept that, when using an antibody (Ab against the total-protein, the sum of all phosphorylation states in a single lane represents a 'closed system' since all possible phospho-states and phosphoisotypes are detected. Using this approach, we demonstrate that oxytocin (OT and calpeptin (Calp induce RLC kinase (MLCK- and rho-kinase (ROK-dependent enhancements in phosphorylation of RLC at T18 and S19. Treatment of myocytes with a phorbol ester (PMA induced phosphorylation of S1-RLC, which caused a mobility shift in the phos-tag matrices distinct from phosphorylation at S19.We have presented a method for analysis of phospho-state data that facilitates quantitative comparison to a reference control without the use of a traditional 'loading' or 'reference' standard. This analysis is useful for assessing effects of putative agonists and antagonists where all phospho-states are represented in control and experimental samples. We also demonstrated that phosphorylation of RLC at S1 is inducible in intact uterine myocytes, though the signal in the resting samples was not sufficiently abundant to allow quantification by the approach used here.

  17. Requirement for phosphorylation of P53 at Ser312 in suppression of chemical carcinogenesis.

    Science.gov (United States)

    Slee, Elizabeth A; Lu, Xin

    2013-10-31

    The p53 tumour suppressor is activated in response to a wide variety of genotoxic stresses, frequently via post-translational modification. Using a knock in mouse model with a Ser312 to Ala mutation, we show here that phosphorylation of p53 on Ser312 helps to prevent tumour induction by the alkylating agent MNU, which predominantly caused T cell lymphomas. This is consistent with our previous observation that p53(312A/A) mice are more susceptible to X-ray induced tumourigenesis. Phosphorylation on Ser312 aids p53's interaction with E2F1, and enhances p53-mediated apoptosis. Loss of E2F1 alone does not affect tumour susceptibility to MNU, but its absence partially rescues tumour formation in p53(312A/A) mice, thus reflecting the oncogenic properties of E2F1. Our data confirms the participation of Ser312 phosphorylation in tumour suppression by p53.

  18. Effects of 1,2,4-Trichlorobenzene and Mercury Ion Stress on Ca2+ Fluxion and Protein Phosphorylation in Rice

    Directory of Open Access Journals (Sweden)

    Cai-lin GE

    2007-12-01

    Full Text Available The effects of 5 mg/L 1,2,4-trichlorobenzene (TCB and 0.1 mmol/L mercury ion (Hg2+ stresses on Ca2+ fluxion and protein phosphorylation in rice seedlings were investigated by isotope exchange kinetics and in vitro phosphorylation assay. The Ca2+ absorption in rice leaves and Ca2+ transportation from roots to leaves were promoted significantly in response to Hg2+ and TCB treatments for 4-48 h. The Ca2+ absorption peaks presented in the leaves when the rice seedlings were exposed to Hg2+ for 8-12 h or to TCB for 12-24 h. Several Ca2+ absorption peaks presented in the roots during rice seedlings being exposed to Hg2+ and TCB, and the first Ca2+ absorption peak was at 8 h after being exposed to Hg2+ and TCB. The result of isotope exchange kinetic analysis confirmed that short-term (8 h Hg2+ and TCB stresses caused Ca2+ channels or pumps located on plasmalemma to open transiently. The phosphorylation assay showed that short-term TCB stress enhanced protein phosphorylation in rice roots (TCB treatment for 4-8 h and leaves (TCB treatment for 4-24 h, and short-term (4-8 h Hg2+ stress also enhanced protein phosphorylation in rice leaves. The enhancement of protein phosphorylation in both roots and leaves corresponded with the first Ca2+ absorption peak, which confirmed that the enhancement of protein phosphorylation caused by TCB or Hg2+ stress might be partly triggered by the increases of cytosolic calcium. TCB treatment over 12 h inhibited protein phosphorylation in rice roots, which might be partly due to that TCB stress suppressed the protein kinase activity. Whereas, Hg2+ treatment inhibited protein phosphorylation in rice roots, and Hg2+ treatment over 12 h inhibited protein phosphorylation in rice leaves. This might be attributed to that not only the protein kinase activity, but also the expressions of phosphorylation proteins were restrained by Hg2+ stress.

  19. LK6/Mnk2a is a new kinase of alpha synuclein phosphorylation mediating neurodegeneration.

    Science.gov (United States)

    Zhang, Shiqing; Xie, Jiang; Xia, Ying; Yu, Shu; Gu, Zhili; Feng, Ruili; Luo, Guanghong; Wang, Dong; Wang, Kai; Jiang, Meng; Cheng, Xiao; Huang, Hai; Zhang, Wu; Wen, Tieqiao

    2015-07-29

    Parkinson's disease (PD) is a movement disorder due to the loss of dopaminergic (DA) neurons in the substantia nigra. Alpha-synuclein phosphorylation and α-synuclein inclusion (Lewy body) become a main contributor, but little is known about their formation mechanism. Here we used protein expression profiling of PD to construct a model of their signalling network from drsophila to human and nominate major nodes that regulate PD development. We found in this network that LK6, a serine/threonine protein kinase, plays a key role in promoting α-synuclein Ser129 phosphorylation by identification of LK6 knockout and overexpression. In vivo test was further confirmed that LK6 indeed enhances α-synuclein phosphorylation, accelerates the death of dopaminergic neurons, reduces the climbing ability and shortens the the life span of drosophila. Further, MAP kinase-interacting kinase 2a (Mnk2a), a human homolog of LK6, also been shown to make α-synuclein phosphorylation and leads to α-synuclein inclusion formation. On the mechanism, the phosphorylation mediated by LK6 and Mnk2a is controlled through ERK signal pathway by phorbolmyristate acetate (PMA) avtivation and PD98059 inhibition. Our findings establish pivotal role of Lk6 and Mnk2a in unprecedented signalling networks, may lead to new therapies preventing α-synuclein inclusion formation and neurodegeneration.

  20. Merlin inhibits Wnt/β-catenin signaling by blocking LRP6 phosphorylation.

    Science.gov (United States)

    Kim, M; Kim, S; Lee, S-H; Kim, W; Sohn, M-J; Kim, H-S; Kim, J; Jho, E-H

    2016-10-01

    Merlin, encoded by the NF2 gene, is a tumor suppressor that acts by inhibiting mitogenic signaling and is mutated in Neurofibromatosis type II (NF2) disease, although its molecular mechanism is not fully understood. Here, we observed that Merlin inhibited Wnt/β-catenin signaling by blocking phosphorylation of LRP6, which is necessary for Wnt signal transduction, whereas mutated Merlin in NF2 patients did not. Treatment with Wnt3a enhanced phosphorylation of Ser518 in Merlin via activation of PAK1 in a PIP2-dependent manner. Phosphorylated Merlin dissociated from LRP6, allowing for phosphorylation of LRP6. Tissues from NF2 patients exhibited higher levels of β-catenin, and proliferation of RT4-D6P2T rat schwannoma cells was significantly reduced by treatment with chemical inhibitors of Wnt/β-catenin signaling. Taken together, our findings suggest that sustained activation of Wnt/β-catenin signaling due to abrogation of Merlin-mediated inhibition of LRP6 phosphorylation may be a cause of NF2 disease.

  1. Reversible phosphorylation of the 26S proteasome

    Directory of Open Access Journals (Sweden)

    Xing Guo

    2017-03-01

    Full Text Available ABSTRACT The 26S proteasome at the center of the ubiquitin-proteasome system (UPS is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.

  2. Lys169 of human glucokinase is a determinant for glucose phosphorylation: implication for the atomic mechanism of glucokinase catalysis.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Glucokinase (GK, a glucose sensor, maintains plasma glucose homeostasis via phosphorylation of glucose and is a potential therapeutic target for treating maturity-onset diabetes of the young (MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI. To characterize the catalytic mechanism of glucose phosphorylation by GK, we combined molecular modeling, molecular dynamics (MD simulations, quantum mechanics/molecular mechanics (QM/MM calculations, experimental mutagenesis and enzymatic kinetic analysis on both wild-type and mutated GK. Our three-dimensional (3D model of the GK-Mg(2+-ATP-glucose (GMAG complex, is in agreement with a large number of mutagenesis data, and elucidates atomic information of the catalytic site in GK for glucose phosphorylation. A 10-ns MD simulation of the GMAG complex revealed that Lys169 plays a dominant role in glucose phosphorylation. This prediction was verified by experimental mutagenesis of GK (K169A and enzymatic kinetic analyses of glucose phosphorylation. QM/MM calculations were further used to study the role of Lys169 in the catalytic mechanism of the glucose phosphorylation and we found that Lys169 enhances the binding of GK with both ATP and glucose by serving as a bridge between ATP and glucose. More importantly, Lys169 directly participates in the glucose phosphorylation as a general acid catalyst. Our findings provide mechanistic details of glucose phorphorylation catalyzed by GK, and are important for understanding the pathogenic mechanism of MODY.

  3. Phosphorylation sites within Ebola virus nucleoprotein

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-07-01

    Full Text Available To understand the infection process, the viral multiplication and entry to the cell is widely studied. The Ebola virus nucleoprotein is the important problem for the pathological process. Focusing on the specific biological process, the post translational modification is needed. Here, the authors used the bioinformatics study to find the phosphorylation sites within the Ebola virus nucleoprotein and could identify many new sites.

  4. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-26

    In 2003, it was demonstrated for the first time that bacteria possess protein-tyrosine kinases (BY-kinases), capable of phosphorylating other cellular proteins and regulating their activity. It soon became apparent that these kinases phosphorylate a number of protein substrates, involved in different cellular processes. More recently, we found out that BY-kinases can be activated by several distinct protein interactants, and are capable of engaging in cross-phosphorylation with other kinases. Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates. Surprisingly, BY-kinase genes accumulate mutations at an increased rate (non-synonymous substitution rate significantly higher than other bacterial genes). One direct consequence of this phenomenon is no detectable co-evolution between kinases and their substrates. Their promiscuity towards substrates thus seems to be “hard-wired”, but why would bacteria maintain such promiscuous regulatory devices? One explanation is the maintenance of BY-kinases as rapidly evolving regulators, which can readily adopt new substrates when environmental changes impose selective pressure for quick evolution of new regulatory modules. Their role is clearly not to act as master regulators, dedicated to triggering a single response, but they might rather be employed to contribute to fine-tuning and improving robustness of various cellular responses. This unique feature makes BY-kinases a potentially useful tool in synthetic biology. While other bacterial kinases are very specific and their signaling pathways insulated, BY-kinase can relatively easily be engineered to adopt new substrates and control new biosynthetic processes. Since they are absent in humans, and regulate some key functions in pathogenic bacteria, they are also very promising

  5. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  6. Solid polymer electrolyte from phosphorylated chitosan

    Science.gov (United States)

    Fauzi, Iqbal; Arcana, I. Made

    2014-03-01

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component's composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it's characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10-6 S/cm up to 6.01 × 10-4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10-3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  7. The in vivo phosphorylation sites of rat brain dynamin I

    DEFF Research Database (Denmark)

    Graham, Mark E; Anggono, Victor; Bache, Nicolai

    2007-01-01

    -824). To resolve the discrepancy and to better understand the biological roles of dynI phosphorylation, we undertook a systematic identification of all phosphorylation sites in rat brain nerve terminal dynI. Using phosphoamino acid analysis, exclusively phospho-serine residues were found. Thr(780) phosphorylation...

  8. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Brunak, Søren; Olsen, JV

    2010-01-01

    ) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells....

  9. Steroid hormone receptor phosphorylation: Is there a physiological role?

    NARCIS (Netherlands)

    G.G.J.M. Kuiper (George); A.O. Brinkmann (Albert)

    1994-01-01

    textabstractAll members of the steroid hormone receptor family are phosphoproteins. Additional phosphorylation occurs in the presence of hormone. This hormone-induced phosphorylation, which is 2- to 7-fold more than the basal phosphorylation, is a rapid process. All steroid receptors are

  10. Shear stress regulates occludin content and phosphorylation.

    Science.gov (United States)

    DeMaio, L; Chang, Y S; Gardner, T W; Tarbell, J M; Antonetti, D A

    2001-07-01

    Previous studies determined that shear stress imposed on bovine aortic endothelial cell (BAEC) monolayers increased the hydraulic conductivity (L(P)); however, the mechanism by which shear stress increases L(P) remains unknown. This study tested the hypothesis that shear stress regulates paracellular transport by altering the expression and phosphorylation state of the tight junction protein occludin. The effect of shear stress on occludin content was examined by Western blot analysis. Ten dyn/cm(2) significantly reduced occludin content in a time-dependent manner such that after a 3 h exposure to shear, occludin content decreased to 44% of control. Twenty dyn/cm(2) decreased occludin content to 50% of control and increased L(P) by 4.7-fold after 3 h. Occludin expression and L(P) depend on tyrosine kinase activity because erbstatin A (10 microM) attenuated both the shear-induced decrease in occludin content and increase in L(P). Shear stress increased occludin phosphorylation after 5 min, 15 min, and 3 h exposures. The shear-induced increase in occludin phosphorylation was attenuated with dibutyryl (DB) cAMP (1 mM), a reagent previously shown to reverse the shear-induced increase in L(P). We conclude that shear stress rapidly (shear stress increases L(P).

  11. N-methyl-N'-nitro-N-nitrosoguanidine induces and cooperates with 12-O-tetradecanoylphorbol-1,3-acetate/sodium butyrate to enhance Epstein-Barr virus reactivation and genome instability in nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Huang, Sheng-Yen; Fang, Chih-Yeu; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Hsu, Tsuey-Ying; Chen, Jen-Yang

    2010-12-05

    Seroepidemiological studies implicate a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). Moreover, N-nitroso compounds are known chemical carcinogens in preserved foodstuffs and cigarettes and have been implicated as risk factors contributing to the development of NPC. Here, NPC cell lines latently infected with EBV, NA and HA, and the corresponding EBV-negative NPC cell lines, NPC-TW01 and HONE-1, were used as the model system in this study. We demonstrate that the reactivation of EBV increases with increasing concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MNNG at a single non-toxic concentration (0.1μg/ml) did not induce discernible reactivation of EBV, but repeated treatment with this concentration of MNNG significantly induced viral reactivation. Furthermore, low dose MNNG (0.1μg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-1,3-acetate (TPA)/sodium butyrate (SB) (10ng/ml and 0.75mM, respectively) on EBV reactivation. Through promoter activity assay, MNNG was found to enhance the transcriptional activity of Rta on Rta and Zta promoters. Using siZta to block EBV reactivation, the concomitant induction of genome instability was diminished indicating that reactivation is critical for enhancing genome instability. Co-treatment with TPA/SB and MNNG markedly increased the levels of γH2AX and ROS formation in NPC cells, which may be responsible for the increase of genome instability. Our findings offer a possible mechanism by which N-nitroso compounds induce reactivation of EBV and contribute to malignant progression by enhancing genome instability in NPC cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. The effector AvrRxo1 phosphorylates NAD in planta.

    Directory of Open Access Journals (Sweden)

    Teja Shidore

    2017-06-01

    Full Text Available Gram-negative bacterial pathogens of plants and animals employ type III secreted effectors to suppress innate immunity. Most characterized effectors work through modification of host proteins or transcriptional regulators, although a few are known to modify small molecule targets. The Xanthomonas type III secreted avirulence factor AvrRxo1 is a structural homolog of the zeta toxin family of sugar-nucleotide kinases that suppresses bacterial growth. AvrRxo1 was recently reported to phosphorylate the central metabolite and signaling molecule NAD in vitro, suggesting that the effector might enhance bacterial virulence on plants through manipulation of primary metabolic pathways. In this study, we determine that AvrRxo1 phosphorylates NAD in planta, and that its kinase catalytic sites are necessary for its toxic and resistance-triggering phenotypes. A global metabolomics approach was used to independently identify 3'-NADP as the sole detectable product of AvrRxo1 expression in yeast and bacteria, and NAD kinase activity was confirmed in vitro. 3'-NADP accumulated upon transient expression of AvrRxo1 in Nicotiana benthamiana and in rice leaves infected with avrRxo1-expressing strains of X. oryzae. Mutation of the catalytic aspartic acid residue D193 abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an R gene-mediated hypersensitive response. A mutation in the Walker A ATP-binding motif abolished the toxicity of AvrRxo1, but did not abolish the 3'-NADP production, virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that a type III effector targets the central metabolite and redox carrier NAD in planta, and that this catalytic activity is required for toxicity and suppression of the ROS burst.

  13. Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6.

    Directory of Open Access Journals (Sweden)

    Geng Wu

    Full Text Available The Wnt/beta-catenin signaling pathway plays essential roles in cell proliferation and differentiation, and deregulated beta-catenin protein levels lead to many types of human cancers. On activation by Wnt, the Wnt co-receptor LDL receptor related protein 6 (LRP6 is phosphorylated at multiple conserved intracellular PPPSPXS motifs by glycogen synthase kinase 3 (GSK3 and casein kinase 1 (CK1, resulting in recruitment of the scaffolding protein Axin to LRP6. As a result, beta-catenin phosphorylation by GSK3 is inhibited and beta-catenin protein is stabilized. However, how LRP6 phosphorylation and the ensuing LRP6-Axin interaction lead to the inhibition of beta-catenin phosphorylation by GSK3 is not fully understood. In this study, we reconstituted Axin-dependent beta-catenin phosphorylation by GSK3 and CK1 in vitro using recombinant proteins, and found that the phosphorylated PPPSPXS peptides directly inhibit beta-catenin phosphorylation by GSK3 in a sequence and phosphorylation-dependent manner. This inhibitory effect of phosphorylated PPPSPXS motifs is direct and specific for GSK3 phosphorylation of beta-catenin at Ser33/Ser37/Thr41 but not for CK1 phosphorylation of beta-catenin at Ser45, and is independent of Axin function. We also show that a phosphorylated PPPSPXS peptide is able to activate Wnt/beta-catenin signaling and to induce axis duplication in Xenopus embryos, presumably by inhibition of GSK3 in vivo. Based on these observations, we propose a working model that Axin recruitment to the phosphorylated LRP6 places GSK3 in the vicinity of multiple phosphorylated PPPSPXS motifs, which directly inhibit GSK3 phosphorylation of beta-catenin. This model provides a possible mechanism to account, in part, for inhibition of beta-catenin phosphorylation by Wnt-activated LRP6.

  14. Mammalian FMRP S499 Is Phosphorylated by CK2 and Promotes Secondary Phosphorylation of FMRP.

    Science.gov (United States)

    Bartley, Christopher M; O'Keefe, Rachel A; Blice-Baum, Anna; Mihailescu, Mihaela-Rita; Gong, Xuan; Miyares, Laura; Karaca, Esra; Bordey, Angélique

    2016-01-01

    The fragile X mental retardation protein (FMRP) is an mRNA-binding regulator of protein translation that associates with 4-6% of brain transcripts and is central to neurodevelopment. Autism risk genes' transcripts are overrepresented among FMRP-binding mRNAs, and FMRP loss-of-function mutations are responsible for fragile X syndrome, the most common cause of monogenetic autism. It is thought that FMRP-dependent translational repression is governed by the phosphorylation of serine residue 499 (S499). However, recent evidence suggests that S499 phosphorylation is not modulated by metabotropic glutamate receptor class I (mGluR-I) or protein phosphatase 2A (PP2A), two molecules shown to regulate FMRP translational repression. Moreover, the mammalian FMRP S499 kinase remains unknown. We found that casein kinase II (CK2) phosphorylates murine FMRP S499. Further, we show that phosphorylation of FMRP S499 permits phosphorylation of additional, nearby residues. Evidence suggests that these nearby residues are modulated by mGluR-I and PP2A pathways. These data support an alternative phosphodynamic model of FMRP that is harmonious with prior studies and serves as a framework for further investigation.

  15. Hamster oviductin regulates tyrosine phosphorylation of sperm proteins during in vitro capacitation.

    Science.gov (United States)

    Saccary, Laurelle; She, Yi-Min; Oko, Richard; Kan, Frederick W K

    2013-08-01

    Oviductin or OVGP1, also known as oviduct-specific glycoprotein, has been shown to enhance sperm capacitation in addition to its other beneficial effects on fertilization and early embryo development. We hypothesized that estrus stage-specific hamster oviductin (eHamOVGP1) can potentiate the enhancement of tyrosine phosphorylation of sperm proteins during capacitation. Immunofluorescent staining and confocal microscopy as well as immunocytochemistry and surface replica technique localized tyrosine-phosphorylated proteins to the equatorial segment and midpiece after incubation of hamster sperm in capacitation medium in the presence or absence of eHamOVGP1. Increase of tyrosine phosphorylation level in the equatorial segment occurred as early as 5 min after incubation in the presence of eHamOVGP1. Immunostaining for eHamOVGP1 further increased upon prolonged incubation of sperm in medium containing the glycoprotein. Regardless of the presence or absence of eHamOVGP1, phosphotyrosine expression was observed along the tail, particularly at the midpiece. Western blotting of NP40-extracted sperm proteins (25, 37, and 44 kDa) and NP40-non-extractable sperm proteins (70, 83, 90 kDa) showed increased immunolabeling intensity after 5, 60, 120, and 180 min of capacitation in the presence of eHamOVGP1. Mass spectrometric analysis identified several proteins of functions known to be involved in metabolic pathways responsible for enhancement of tyrosine phosphorylation in its presence. The present investigation provides evidence that eHamOVGP1 regulates the expression of protein tyrosine phosphorylation in sperm capacitated in vitro, further supporting an important role of the presence of OVGP1 in the oviductal milieu during the process of fertilization.

  16. Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity.

    Science.gov (United States)

    Smal, Caroline; Vertommen, Didier; Amsailale, Rachid; Arts, Angélique; Degand, Hervé; Morsomme, Pierre; Rider, Mark H; Neste, Eric Van Den; Bontemps, Françoise

    2010-10-01

    Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI delta. We showed that recombinant CKI delta phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI delta correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI delta, strengthening the key role of this residue in the control of dCK activity. However, neither CKI delta inhibitors nor CKI delta siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI delta in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI delta could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong-Jun; Kang, Hana [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Kim, Min Young [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of); Pyo, Suhkneung [College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do (Korea, Republic of); Yang, Kwang Hee, E-mail: kwangheey@khnp.co.kr [KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co, Seoul (Korea, Republic of)

    2016-04-01

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a {sup 137}Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.

  18. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies...

  19. ATF3 activates Stat3 phosphorylation through inhibition of p53 expression in skin cancer cells.

    Science.gov (United States)

    Hao, Zhen-Feng; Ao, Jun-Hong; Zhang, Jie; Su, You-Ming; Yang, Rong-Ya

    2013-01-01

    ATF3, a member of the ATF/CREB family of transcription factors, has been found to be selectively induced by calcineurin/NFAT inhibition and to enhance keratinocyte tumor formation, although the precise role of ATF3 in human skin cancer and possible mechanisms remain unknown. In this study, clinical analysis of 30 skin cancer patients and 30 normal donors revealed that ATF3 was accumulated in skin cancer tissues. Functional assays demonstrated that ATF3 significantly promoted skin cancer cell proliferation. Mechanically, ATF3 activated Stat3 phosphorylation in skin cancer cell through regulation of p53 expression. Moreover, the promotion effect of ATF3 on skin cancer cell proliferation was dependent on the p53-Stat3 signaling cascade. Together, the results indicate that ATF3 might promote skin cancer cell proliferation and enhance skin keratinocyte tumor development through inhibiting p53 expression and then activating Stat3 phosphorylation.

  20. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Iimori, Makoto; Ozaki, Kanako [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Chikashige, Yuji [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Habu, Toshiyuki [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan); Hiraoka, Yasushi [Kobe Advanced ICT Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492 (Japan); Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871 (Japan); Maki, Takahisa; Hayashi, Ikuko [Graduate School of Nanobioscience, Yokohama City University, Tsurumi, Yokohama, 230-0045 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Matsumoto, Tomohiro, E-mail: tmatsumo@house.rbc.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo ku, Kyoto, 606-8502 (Japan); Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto, 606-8501 (Japan)

    2012-02-01

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.

  1. Regulation of Ste20-like kinase, SLK, activity: Dimerization and activation segment phosphorylation.

    Science.gov (United States)

    Cybulsky, Andrey V; Guillemette, Julie; Papillon, Joan; Abouelazm, Nihad T

    2017-01-01

    The Ste20-like kinase, SLK, has diverse cellular functions. SLK mediates organ development, cell cycle progression, cytoskeletal remodeling, cytokinesis, and cell survival. Expression and activity of SLK are enhanced in renal ischemia-reperfusion injury, and overexpression of SLK was shown to induce apoptosis in cultured glomerular epithelial cells (GECs) and renal tubular cells, as well as GEC/podocyte injury in vivo. The SLK protein consists of a N-terminal catalytic domain and an extensive C-terminal domain, which contains coiled-coils. The present study addresses the regulation of SLK activity. Controlled dimerization of the SLK catalytic domain enhanced autophosphorylation of SLK at T183 and S189, which are located in the activation segment. The full-length ectopically- and endogenously-expressed SLK was also autophosphorylated at T183 and S189. Using ezrin as a model SLK substrate (to address exogenous kinase activity), we demonstrate that dimerized SLK 1-373 or full-length SLK can effectively induce activation-specific phosphorylation of ezrin. Mutations in SLK, including T183A, S189A or T193A reduced T183 or S189 autophosphorylation, and showed a greater reduction in ezrin phosphorylation. Mutations in the coiled-coil region of full-length SLK that impair dimerization, in particular I848G, significantly reduced ezrin phosphorylation and tended to reduce autophosphorylation of SLK at T183. In experimental membranous nephropathy in rats, proteinuria and GEC/podocyte injury were associated with increased glomerular SLK activity and ezrin phosphorylation. In conclusion, dimerization via coiled-coils and phosphorylation of T183, S189 and T193 play key roles in the activation and signaling of SLK, and provide targets for novel therapeutic approaches.

  2. Regulation of Ste20-like kinase, SLK, activity: Dimerization and activation segment phosphorylation.

    Directory of Open Access Journals (Sweden)

    Andrey V Cybulsky

    Full Text Available The Ste20-like kinase, SLK, has diverse cellular functions. SLK mediates organ development, cell cycle progression, cytoskeletal remodeling, cytokinesis, and cell survival. Expression and activity of SLK are enhanced in renal ischemia-reperfusion injury, and overexpression of SLK was shown to induce apoptosis in cultured glomerular epithelial cells (GECs and renal tubular cells, as well as GEC/podocyte injury in vivo. The SLK protein consists of a N-terminal catalytic domain and an extensive C-terminal domain, which contains coiled-coils. The present study addresses the regulation of SLK activity. Controlled dimerization of the SLK catalytic domain enhanced autophosphorylation of SLK at T183 and S189, which are located in the activation segment. The full-length ectopically- and endogenously-expressed SLK was also autophosphorylated at T183 and S189. Using ezrin as a model SLK substrate (to address exogenous kinase activity, we demonstrate that dimerized SLK 1-373 or full-length SLK can effectively induce activation-specific phosphorylation of ezrin. Mutations in SLK, including T183A, S189A or T193A reduced T183 or S189 autophosphorylation, and showed a greater reduction in ezrin phosphorylation. Mutations in the coiled-coil region of full-length SLK that impair dimerization, in particular I848G, significantly reduced ezrin phosphorylation and tended to reduce autophosphorylation of SLK at T183. In experimental membranous nephropathy in rats, proteinuria and GEC/podocyte injury were associated with increased glomerular SLK activity and ezrin phosphorylation. In conclusion, dimerization via coiled-coils and phosphorylation of T183, S189 and T193 play key roles in the activation and signaling of SLK, and provide targets for novel therapeutic approaches.

  3. Prebiotic Phosphorylation Reactions on the Early Earth

    Directory of Open Access Journals (Sweden)

    Maheen Gull

    2014-07-01

    Full Text Available Phosphorus (P is an essential element for life. It occurs in living beings in the form of phosphate, which is ubiquitous in biochemistry, chiefly in the form of C-O-P (carbon, oxygen and phosphorus, C-P, or P-O-P linkages to form life. Within prebiotic chemistry, several key questions concerning phosphorus chemistry have developed: what were the most likely sources of P on the early Earth? How did it become incorporated into the biological world to form the P compounds that life employs today? Can meteorites be responsible for the delivery of P? What were the most likely solvents on the early Earth and out of those which are favorable for phosphorylation? Or, alternatively, were P compounds most likely produced in relatively dry environments? What were the most suitable temperature conditions for phosphorylation? A route to efficient formation of biological P compounds is still a question that challenges astrobiologists. This article discusses these important issues related to the origin of biological P compounds.

  4. Modelling the Krebs cycle and oxidative phosphorylation.

    Science.gov (United States)

    Korla, Kalyani; Mitra, Chanchal K

    2014-01-01

    The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance.

  5. Phosphorylation regulates coilin activity and RNA association

    Directory of Open Access Journals (Sweden)

    Hanna J. Broome

    2013-02-01

    The Cajal body (CB is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.

  6. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    OpenAIRE

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1?Bub3 and BubR1?Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1?Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or ...

  7. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants.

    Science.gov (United States)

    Chin, Stephanie; Hung, Maurita; Bear, Christine E

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.

  8. A Casein Kinase II Phosphorylation Site in AtYY1 Affects Its Activity, Stability, and Function in the ABA Response.

    Science.gov (United States)

    Wu, Xiu-Yun; Li, Tian

    2017-01-01

    The phosphorylation and dephosphorylation of proteins are crucial in the regulation of protein activity and stability in various signaling pathways. In this study, we identified an ABA repressor, Arabidopsis Ying Yang 1 (AtYY1) as a potential target of casein kinase II (CKII). AtYY1 physically interacts with two regulatory subunits of CKII, CKB3, and CKB4. Moreover, AtYY1 can be phosphorylated by CKII in vitro, and the S284 site is the major CKII phosphorylation site. Further analyses indicated that S284 phosphorylation can enhance the transcriptional activity and protein stability of AtYY1 and hence strengthen the effect of AtYY1 as a negative regulator in the ABA response. Our study provides novel insights into the regulatory mechanism of AtYY1 mediated by CKII phosphorylation.

  9. Inhibition of MLC phosphorylation restricts replication of influenza virus--a mechanism of action for anti-influenza agents.

    Directory of Open Access Journals (Sweden)

    Mehran Haidari

    Full Text Available Influenza A viruses are a severe threat worldwide, causing large epidemics that kill thousands every year. Prevention of influenza infection is complicated by continuous viral antigenic changes. Newer anti-influenza agents include MEK/ERK and protein kinase C inhibitors; however, the downstream effectors of these pathways have not been determined. In this study, we identified a common mechanism for the inhibitory effects of a significant group of anti-influenza agents. Our studies showed that influenza infection activates a series of signaling pathways that converge to induce myosin light chain (MLC phosphorylation and remodeling of the actin cytoskeleton. Inhibiting MLC phosphorylation by blocking RhoA/Rho kinase, phospholipase C/protein kinase C, and HRas/Raf/MEK/ERK pathways with the use of genetic or chemical manipulation leads to the inhibition of influenza proliferation. In contrast, the induction of MLC phosphorylation enhances influenza proliferation, as does activation of the HRas/Raf/MEK/ERK signaling pathway. This effect is attenuated by inhibiting MLC phosphorylation. Additionally, in intracellular trafficking studies, we found that the nuclear export of influenza ribonucleoprotein depends on MLC phosphorylation. Our studies provide evidence that modulation of MLC phosphorylation is an underlying mechanism for the inhibitory effects of many anti-influenza compounds.

  10. Characterization of the in vivo sites of serine phosphorylation on Lck identifying serine 59 as a site of mitotic phosphorylation.

    Science.gov (United States)

    Kesavan, Kamala P; Isaacson, Christina C; Ashendel, Curtis L; Geahlen, Robert L; Harrison, Marietta L

    2002-04-26

    The lymphocyte-specific protein-tyrosine kinase Lck plays a critical role in T cell activation. In response to T cell antigen receptor binding Lck undergoes phosphorylation on serine residues that include serines 59 and 194. Serine 59 is phosphorylated by ERK mitogen-activated protein kinase. Recently, we showed that in mitotic T cells Lck becomes hyper-phosphorylated on serine residues. In this report, using one-dimensional phosphopeptide mapping analysis, we identify serine 59 as a site of in vivo mitotic phosphorylation in Lck. The mitotic phosphorylation of serine 59 did not require either the catalytic activity or functional SH2 or SH3 domains of Lck. In addition, the presence of ZAP-70 also was dispensable for the phosphorylation of serine 59. Although previous studies demonstrated that serine 59 is a substrate for the ERK MAPK pathway, inhibitors of this pathway did not block the mitotic phosphorylation of serine 59. These results identify serine 59 as a site of mitotic phosphorylation in Lck and suggest that a pathway distinct from that induced by antigen receptor signaling is responsible for its phosphorylation. Thus, the phosphorylation of serine 59 is the result of two distinct signaling pathways, differentially activated in response to the physiological state of the T cell.

  11. Insulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*

    Science.gov (United States)

    Hançer, Nancy J.; Qiu, Wei; Cherella, Christine; Li, Yedan; Copps, Kyle D.; White, Morris F.

    2014-01-01

    IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAbIrs1). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)Irs1) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302Irs1, Ser(P)-307Irs1, Ser(P)-318Irs1, Ser(P)-325Irs1, and Ser(P)-346Irs1. Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302Irs1, Ser(P)-307Irs1, and four others) correlated significantly with impaired insulin-stimulated Tyr(P)Irs1. Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)Irs1 in CHOIR/IRS1 cells. PMID:24652289

  12. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation.

    Science.gov (United States)

    Hançer, Nancy J; Qiu, Wei; Cherella, Christine; Li, Yedan; Copps, Kyle D; White, Morris F

    2014-05-02

    IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAb(Irs1)). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)(Irs1)) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302(Irs1), Ser(P)-307(Irs1), Ser(P)-318(Irs1), Ser(P)-325(Irs1), and Ser(P)-346(Irs1). Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302(Irs1), Ser(P)-307(Irs1), and four others) correlated significantly with impaired insulin-stimulated Tyr(P)(Irs1). Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)(Irs1) in CHO(IR)/IRS1 cells.

  13. Activating PER repressor through a DBT-directed phosphorylation switch.

    Directory of Open Access Journals (Sweden)

    Saul Kivimäe

    2008-07-01

    Full Text Available Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT, a Drosophila ortholog of human casein kinase I (CKIepsilon/delta. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER. DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The per(S mutation, which is associated with short-period (19-h circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function.

  14. Global analysis of phosphorylation and ubiquitylation crosstalk in protein degradation

    Science.gov (United States)

    Swaney, Danielle L.; Beltrao, Pedro; Starita, Lea; Guo, Ailan; Rush, John; Fields, Stanley; Krogan, Nevan J.; Villén, Judit

    2013-01-01

    Crosstalk between different types of post-translational modifications (PTMs) on the same protein molecule adds specificity and combinatorial logic to signal processing, but has not been characterized on a large-scale basis. Here, we developed two methods to identify protein isoforms that are both phosphorylated and ubiquitylated in the yeast Saccharomyces cerevisiae, identifying 466 proteins with 2,100 phosphorylation sites co-occurring with 2,189 ubiquitylation sites. We applied these methods quantitatively to identify phosphorylation sites that regulate protein degradation via the ubiquitin-proteasome system. Our results demonstrate that distinct phosphorylation sites are often used in conjunction with ubiquitylation, and these sites are more highly conserved than the entire set of phosphorylation sites. Finally, we investigated how the phosphorylation machinery can be regulated by ubiquitylation. We found evidence for novel regulatory mechanisms of kinases and 14-3-3 scaffold proteins via proteasome-independent ubiquitylation. PMID:23749301

  15. Chemical Approaches to Studying Labile Amino Acid Phosphorylation.

    Science.gov (United States)

    Marmelstein, Alan M; Moreno, Javier; Fiedler, Dorothea

    2017-04-01

    Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

  16. Protein kinase A phosphorylates Down syndrome critical region 1 (RCAN1).

    Science.gov (United States)

    Kim, Seon Sook; Oh, Yohan; Chung, Kwang Chul; Seo, Su Ryeon

    2012-02-24

    The Down syndrome critical region 1 (DSCR1) gene encodes a regulator of the calcineurin 1 (RCAN1) protein, and the elevated levels of RCAN1 are associated with Alzheimer's disease (AD) and Down syndrome (DS). In this report, we found that protein kinase A (PKA) was able to phosphorylate RCAN1 in vitro and in vivo. In addition, we found that the phosphorylation of RCAN1 by PKA caused an increase of RCAN1 expression by increasing of the half-life of the protein. Consistently, the pharmacological inhibition of intracellular PKA using H-89 and the knockdown of the endogenous PKA catalytic subunit with siRNA decreased the expression of RCAN1. Furthermore, the phosphorylation of RCAN1 by PKA enhanced the inhibitory function of RCAN1 on calcineurin-mediated gene transcription. Our data provide the first evidence that PKA acts as an important regulatory component in the control of RCAN1 function through phosphorylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. GluA1 Phosphorylation Alters Evoked Firing Pattern In Vivo

    Directory of Open Access Journals (Sweden)

    Balázs Barkóczi

    2012-01-01

    Full Text Available AMPA and NMDA receptors convey fast synaptic transmission in the CNS. Their relative contribution to synaptic output and phosphorylation state regulate synaptic plasticity. The AMPA receptor subunit GluA1 is central in synaptic plasticity. Phosphorylation of GluA1 regulates channel properties and trafficking. The firing rate averaged over several hundred ms is used to monitor cellular input. However, plasticity requires the timing of spiking within a few ms; therefore, it is important to understand how phosphorylation governs these events. Here, we investigate whether the GluA1 phosphorylation (p-GluA1 alters the spiking patterns of CA1 cells in vivo. The antidepressant Tianeptine was used for inducing p-GluA1, which resulted in enhanced AMPA-evoked spiking. By comparing the spiking patterns of AMPA-evoked activity with matched firing rates, we show that the spike-trains after Tianeptine application show characteristic features, distinguishing from spike-trains triggered by strong AMPA stimulation. The interspike-interval distributions are different between the two groups, suggesting that neuronal output may differ when new inputs are activated compared to increasing the gain of previously activated receptors. Furthermore, we also show that NMDA evokes spiking with different patterns to AMPA spike-trains. These results support the role of the modulation of NMDAR/AMPAR ratio and p-GluA1 in plasticity and temporal coding.

  18. Auto-inhibition and phosphorylation-induced activation of PLC-γ isozymes

    Science.gov (United States)

    Hajicek, Nicole; Charpentier, Thomas H.; Rush, Jeremy R.; Harden, T. Kendall; Sondek, John

    2013-01-01

    Multiple extracellular stimuli, such as growth factors and antigens, initiate signaling cascades through tyrosine phosphorylation and activation of phospholipase C (PLC)-γ isozymes. Like most other PLCs, PLC-γ1 is basally auto-inhibited by its X-Y linker, which separates the X-and Y-boxes of the catalytic core. The C-terminal SH2 (cSH2) domain within the X-Y linker is the critical determinant for auto-inhibition of phospholipase activity. Release of auto-inhibition requires an intramolecular interaction between the cSH2 domain and a phosphorylated tyrosine, Tyr783, also located within the X-Y linker. The molecular mechanisms that mediate auto-inhibition and phosphorylation-induced activation have not been defined. Here, we describe structures of the cSH2 domain both alone and bound to a PLC-γ1 peptide encompassing phosphorylated Tyr783. The cSH2 domain remains largely unaltered by peptide engagement. Point mutations in the cSH2 domain located at the interface with the peptide were sufficient to constitutively activate PLC-γ1 suggesting that peptide engagement directly interferes with the capacity of the cSH2 domain to block the lipase active site. This idea is supported by mutations in a complimentary surface of the catalytic core that also enhanced phospholipase activity. PMID:23777354

  19. Old age potentiates cold-induced tau phosphorylation: linking thermoregulatory deficit with Alzheimer's disease.

    Science.gov (United States)

    Tournissac, Marine; Vandal, Milène; François, Arnaud; Planel, Emmanuel; Calon, Frédéric

    2017-02-01

    Thermoregulatory deficits coincide with a rise in the incidence of Alzheimer's disease (AD) in old age. Lower body temperature increases tau phosphorylation, a neuropathological hallmark of AD. To determine whether old age potentiates cold-induced tau phosphorylation, we compared the effects of cold exposure (4 °C, 24 hours) in 6- and 18-month-old mice. Cold-induced changes in body temperature, brown adipose tissue activity, and phosphorylation of tau at Ser202 were not different between 6- and 18-month-old mice. However, following cold exposure, only old mice displayed a significant rise in soluble tau pThr181 and pThr231, which was correlated with body temperature. Inactivation of glycogen synthase kinase 3β was more prominent in young mice, suggesting a protective mechanism against cold-induced tau phosphorylation. These results suggest that old age confers higher susceptibility to tau hyperphosphorylation following a change in body temperature, thereby contributing to an enhanced risk of developing AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. p38 phosphorylation in medullary microglia mediates ectopic orofacial inflammatory pain in rats.

    Science.gov (United States)

    Kiyomoto, Masaaki; Shinoda, Masamichi; Honda, Kuniya; Nakaya, Yuka; Dezawa, Ko; Katagiri, Ayano; Kamakura, Satoshi; Inoue, Tomio; Iwata, Koichi

    2015-08-12

    Orofacial inflammatory pain is likely to accompany referred pain in uninflamed orofacial structures. The ectopic pain precludes precise diagnosis and makes treatment problematic, because the underlying mechanism is not well understood. Using the established ectopic orofacial pain model induced by complete Freund's adjuvant (CFA) injection into trapezius muscle, we analyzed the possible role of p38 phosphorylation in activated microglia in ectopic orofacial pain. Mechanical allodynia in the lateral facial skin was induced following trapezius muscle inflammation, which accompanied microglial activation with p38 phosphorylation and hyperexcitability of wide dynamic range (WDR) neurons in the trigeminal spinal subnucleus caudalis (Vc). Intra-cisterna successive administration of a p38 mitogen-activated protein kinase selective inhibitor, SB203580, suppressed microglial activation and its phosphorylation of p38. Moreover, SB203580 administration completely suppressed mechanical allodynia in the lateral facial skin and enhanced WDR neuronal excitability in Vc. Microglial interleukin-1β over-expression in Vc was induced by trapezius muscle inflammation, which was significantly suppressed by SB203580 administration. These findings indicate that microglia, activated via p38 phosphorylation, play a pivotal role in WDR neuronal hyperexcitability, which accounts for the mechanical hypersensitivity in the lateral facial skin associated with trapezius muscle inflammation.

  1. Constitutive phosphorylation of Shc proteins in human tumors

    DEFF Research Database (Denmark)

    Pelicci, G; Lanfrancone, L; Salcini, A E

    1995-01-01

    cells. In tumor cells with known TK gene alterations Shc proteins were constitutively phosphorylated and complexed with the activated TK. No constitutive Shc phosphorylation was found in primary cell cultures and normal tissues. In 14 of 27 tumor cell lines with no reported TK alterations, Shc proteins...... activated TKs and that the analysis of Shc phosphorylation allow the identification of tumors with constitutive TK activation....

  2. PhosphoBase: a database of phosphorylation sites

    DEFF Research Database (Denmark)

    Blom, Nikolaj; Kreegipuu, Andres; Brunak, Søren

    1998-01-01

    PhosphoBase is a database of experimentally verified phosphorylation sites. Version 1.0 contains 156 entries and 398 experimentally determined phosphorylation sites. Entries are compiled and revised from the literature and from major protein sequence databases such as SwissProt and PIR. The entries...... displaying the overall conservation of positions around serines phosphorylated by protein kinase A (PKA). PhosphoBase is available on the WWW at http://www.cbs.dtu.dk/databases/PhosphoBase/....

  3. Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation.

    Science.gov (United States)

    Nixon, Benjamin R; Liu, Bin; Scellini, Beatrice; Tesi, Chiara; Piroddi, Nicoletta; Ogut, Ozgur; Solaro, R John; Ziolo, Mark T; Janssen, Paul M L; Davis, Jonathan P; Poggesi, Corrado; Biesiadecki, Brandon J

    2013-07-01

    Tropomyosin (Tm) is a central protein in the Ca(2+) regulation of striated muscle. The αTm isoform undergoes phosphorylation at serine residue 283. While the biochemical and steady-state muscle function of muscle purified Tm phosphorylation have been explored, the effects of Tm phosphorylation on the dynamic properties of muscle contraction and relaxation are unknown. To investigate the kinetic regulatory role of αTm phosphorylation we expressed and purified native N-terminal acetylated Ser-283 wild-type, S283A phosphorylation null and S283D pseudo-phosphorylation Tm mutants in insect cells. Purified Tm's regulate thin filaments similar to that reported for muscle purified Tm. Steady-state Ca(2+) binding to troponin C (TnC) in reconstituted thin filaments did not differ between the 3 Tm's, however disassociation of Ca(2+) from filaments containing pseudo-phosphorylated Tm was slowed compared to wild-type Tm. Replacement of pseudo-phosphorylated Tm into myofibrils similarly prolonged the slow phase of relaxation and decreased the rate of the fast phase without altering activation kinetics. These data demonstrate that Tm pseudo-phosphorylation slows deactivation of the thin filament and muscle force relaxation dynamics in the absence of dynamic and steady-state effects on muscle activation. This supports a role for Tm as a key protein in the regulation of muscle relaxation dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles

    National Research Council Canada - National Science Library

    Charles B. Cairns; James Walther; Alden H. Harken; Anirban Banerjee

    1998-01-01

    .... The theoretical and observed determinations of coupling of oxidative phosphorylation in mitochondria from rat liver, heart, and brain were compared using classical and nonequilibrium thermodynamic measures...

  5. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...

  6. Cisplatinum and Taxol Induce Different Patterns of p53 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Giovanna Damia

    2001-01-01

    Full Text Available Posttranslational modifications of p53 induced by two widely used anticancer agents, cisplatinum (DDP and taxol were investigated in two human cancer cell lines. Although both drugs were able to induce phosphorylation at serine 20 (Ser20, only DDP treatment induced p53 phosphorylation at serine 15 (Ser15. Moreover, both drug treatments were able to increase p53 levels and consequently the transcription of waf1 and mdm-2 genes, although DDP treatment resulted in a stronger inducer of both genes. Using two ataxia telangiectasia mutated (ATM cell lines, the role of ATM in druginduced p53 phosphorylations was investigated. No differences in drug-induced p53 phosphorylation could be observed, indicating that ATM is not the kinase involved in these phosphorylation events. In addition, inhibition of DNA-dependent protein kinase activity by wortmannin did not abolish p53 phosphorylation at Ser15 and Ser20, again indicating that DNA-PK is unlikely to be the kinase involved. After both taxol and DDP treatments, an activation of hCHK2 was found and this is likely to be responsible for phosphorylation at Ser20. In contrast, only DDP was able to activate ATR, which is the candidate kinase for phosphorylation of Ser15 by this drug. This data clearly suggests that differential mechanisms are involved in phosphorylation and activation of p53 depending on the drug type.

  7. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roffe, Suzy [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Hagai, Yosey [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Pines, Mark [Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Halevy, Orna, E-mail: halevyo@agri.huji.ac.il [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel)

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  8. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takahisa [Department of Radiation Oncology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo (Japan); Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Saito, Soichiro; Fujimori, Hiroaki [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Matsushita, Keiichiro; Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, Chiba-shi, Chiba (Japan); Masutani, Mitsuko, E-mail: mmasutan@nagasaki-u.ac.jp [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  9. Decreased nucleotide excision repair in steatotic livers associates with myeloperoxidase-immunoreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Schults, Marten A.; Nagle, Peter W. [Department of Toxicology, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Rensen, Sander S. [Department of Surgery, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Godschalk, Roger W. [Department of Toxicology, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Munnia, Armelle; Peluso, Marco [Cancer Risk Factor Branch, ISPO Cancer Prevention and Research Institute, Via Cosimo il Vecchio 2, 50139 Florence (Italy); Claessen, Sandra M. [Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Greve, Jan W. [Department of Surgery, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Driessen, Ann [Department of Pathology, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Verdam, Froukje J.; Buurman, Wim A. [Department of Surgery, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Schooten, Frederik J. van [Department of Toxicology, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands); Chiu, Roland K., E-mail: r.k.chiu@med.umcg.nl [Department of Toxicology, NUTRIM-School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht (Netherlands)

    2012-08-01

    Chronic inflammation is characterized by the influx of neutrophils and is associated with an increased production of reactive oxygen species that can damage DNA. Oxidative DNA damage is generally thought to be involved in the increased risk of cancer in inflamed tissues. We previously demonstrated that activated neutrophil mediated oxidative stress results in a reduction in nucleotide excision repair (NER) capacity, which could further enhance mutagenesis. Inflammation and oxidative stress are critical factors in the progression of nonalcoholic fatty liver disease that is linked with enhanced liver cancer risk. In this report, we therefore evaluated the role of neutrophils and the associated oxidative stress in damage recognition and DNA repair in steatotic livers of 35 severely obese subjects with either nonalcoholic steatohepatitis (NASH) (n = 17) or steatosis alone (n = 18). The neutrophilic influx in liver was assessed by myeloperoxidase (MPO) staining and the amount of oxidative DNA damage by measuring M{sub 1}dG adducts. No differences in M{sub 1}dG adduct levels were observed between patients with or without NASH and also not between individuals with high or low MPO immunoreactivity. However, we found that high expression of MPO in the liver, irrespective of disease status, reduced the damage recognition capacity as determined by staining for histone 2AX phosphorylation ({gamma}H2AX). This reduction in {gamma}H2AX formation in individuals with high MPO immunoreactivity was paralleled by a significant decrease in NER capacity as assessed by a functional repair assay, and was not related to cell proliferation. Thus, the observed reduction in NER capacity upon hepatic inflammation is associated with and may be a consequence of reduced damage recognition. These findings suggest a novel mechanism of liver cancer development in patients with nonalcoholic fatty liver disease.

  10. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Directory of Open Access Journals (Sweden)

    Øystein Stakkestad

    2017-07-01

    Full Text Available Ameloblastin (AMBN, an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2 and protein kinase A (PKA and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.

  11. PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2

    Directory of Open Access Journals (Sweden)

    Laura Civiero

    2017-12-01

    Full Text Available Mutations in Leucine-rich repeat kinase 2 (LRRK2 are associated with Parkinson's disease (PD and, as such, LRRK2 is considered a promising therapeutic target for age-related neurodegeneration. Although the cellular functions of LRRK2 in health and disease are incompletely understood, robust evidence indicates that PD-associated mutations alter LRRK2 kinase and GTPase activities with consequent deregulation of the downstream signaling pathways. We have previously demonstrated that one LRRK2 binding partner is P21 (RAC1 Activated Kinase 6 (PAK6. Here, we interrogate the PAK6 interactome and find that PAK6 binds a subset of 14-3-3 proteins in a kinase dependent manner. Furthermore, PAK6 efficiently phosphorylates 14-3-3γ at Ser59 and this phosphorylation serves as a switch to dissociate the chaperone from client proteins including LRRK2, a well-established 14-3-3 binding partner. We found that 14-3-3γ phosphorylated by PAK6 is no longer competent to bind LRRK2 at phospho-Ser935, causing LRRK2 dephosphorylation. To address whether these interactions are relevant in a neuronal context, we demonstrate that a constitutively active form of PAK6 rescues the G2019S LRRK2-associated neurite shortening through phosphorylation of 14-3-3γ. Our results identify PAK6 as the kinase for 14-3-3γ and reveal a novel regulatory mechanism of 14-3-3/LRRK2 complex in the brain.

  12. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics.

    Science.gov (United States)

    Haque, Mohammad Mahfuzul; Ray, Sougata Sinha; Stuehr, Dennis J

    2016-10-28

    The activity of endothelial NO synthase (eNOS) is triggered by calmodulin (CaM) binding and is often further regulated by phosphorylation at several positions in the enzyme. Phosphorylation at Ser1179 occurs in response to diverse physiologic stimuli and increases the NO synthesis and cytochrome c reductase activities of eNOS, thereby enhancing its participation in biological signal cascades. Despite its importance, the mechanism by which Ser1179 phosphorylation increases eNOS activity is not understood. To address this, we used stopped-flow spectroscopy and computer modeling approaches to determine how the phosphomimetic mutation (S1179D) may impact electron flux through eNOS and the conformational behaviors of its reductase domain, both in the absence and presence of bound CaM. We found that S1179D substitution in CaM-free eNOS had multiple effects; it increased the rate of flavin reduction, altered the conformational equilibrium of the reductase domain, and increased the rate of its conformational transitions. We found these changes were equivalent in degree to those caused by CaM binding to wild-type eNOS, and the S1179D substitution together with CaM binding caused even greater changes in these parameters. The modeling indicated that the changes caused by the S1179D substitution, despite being restricted to the reductase domain, are sufficient to explain the stimulation of both the cytochrome c reductase and NO synthase activities of eNOS. This helps clarify how Ser1179 phosphorylation regulates eNOS and provides a foundation to compare its regulation by other phosphorylation events. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

    Science.gov (United States)

    Kim, Don-Kyu; Kim, Yong-Hoon; Hynx, Debby; Wang, Yanning; Yang, Keum-Jin; Ryu, Dongryeol; Kim, Kyung Seok; Yoo, Eun-Kyung; Kim, Jeong-Sun; Koo, Seung-Hoi; Lee, In-Kyu; Chae, Ho-Zoon; Park, Jongsun; Lee, Chul-Ho; Biddinger, Sudha B; Hemmings, Brian A; Choi, Hueng-Sik

    2014-12-01

    Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.

  14. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  15. Imprinted Polymers with Affinity for Phosphorylated Peptides and Proteins

    OpenAIRE

    Sellergren, Boerje; Emgenbroich, Marco; Hall, Andrew J.

    2016-01-01

    The present invention relates to a method of separating or extracting phosphorylated amino acids, peptides or proteins with a molecularly imprinted polymer and to the preparation of said molecularly imprinted polymer as well as the use of molecularly imprinted polymer for separating or extracting phosphorylated amino acids, peptides or proteins.

  16. Systematic inference of functional phosphorylation events in yeast metabolism

    DEFF Research Database (Denmark)

    Chen, Yu; Wang, Yonghong; Nielsen, Jens

    2017-01-01

    to phosphorylation events of 17 metabolic enzymes in the yeast Saccharomyces cerevisiae, among which 10 are novel. Phosphorylation regulation analysis cannot only be extended for inference of other functional post-translational modifications but also be a promising scaffold formulti-omics data integration in systems...

  17. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.

    Directory of Open Access Journals (Sweden)

    Raúl Esteban Ithuralde

    Full Text Available Disordered regions and Intrinsically Disordered Proteins (IDPs are involved in critical cellular processes and may acquire a stable three-dimensional structure only upon binding to their partners. IDPs may follow a folding-after-binding process, known as induced folding, or a folding-before-binding process, known as conformational selection. The transcription factor p53 is involved in the regulation of cellular events that arise upon stress or DNA damage. The p53 domain structure is composed of an N-terminal transactivation domain (p53TAD, a DNA Binding Domain and a tetramerization domain. The activity of TAD is tightly regulated by interactions with cofactors, inhibitors and phosphorylation. To initiate transcription, p53TAD binds to the TAZ2 domain of CBP, a co-transcription factor, and undergoes a folding and binding process, as revealed by the recent NMR structure of the complex. The activity of p53 is regulated by phosphorylation at multiple sites on the TAD domain and recent studies have shown that modifications at three residues affect the binding towards TAZ2. However, we still do not know how these phosphorylations affect the structure of the bound state and, therefore, how they regulate the p53 function. In this work, we have used computational simulations to understand how phosphorylation affects the structure of the p53TAD:TAZ2 complex and regulates the recognition mechanism. Phosphorylation has been proposed to enhance binding by direct interaction with the folded protein or by changing the unbound conformation of IDPs, for example by pre-folding the protein favoring the recognition mechanism. Here, we show an interesting turn in the p53 case: phosphorylation mainly affects the bound structure of p53TAD, highlighting the complexity of IDP protein-protein interactions. Our results are in agreement with previous experimental studies, allowing a clear picture of how p53 is regulated by phosphorylation and giving new insights into how

  18. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools.

    Science.gov (United States)

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T

    2016-08-24

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in

  19. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK......-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic...

  20. Histone phosphorylation: a chromatin modification involved in diverse nuclear events.

    Science.gov (United States)

    Rossetto, Dorine; Avvakumov, Nikita; Côté, Jacques

    2012-10-01

    Histone posttranslational modifications are key components of diverse processes that modulate chromatin structure. These marks function as signals during various chromatin-based events, and act as platforms for recruitment, assembly or retention of chromatin-associated factors. The best-known function of histone phosphorylation takes place during cellular response to DNA damage, when phosphorylated histone H2A(X) demarcates large chromatin domains around the site of DNA breakage. However, multiple studies have also shown that histone phosphorylation plays crucial roles in chromatin remodeling linked to other nuclear processes. In this review, we summarize the current knowledge of histone phosphorylation and describe the many kinases and phosphatases that regulate it. We discuss the key roles played by this histone mark in DNA repair, transcription and chromatin compaction during cell division and apoptosis. Additionally, we describe the intricate crosstalk that occurs between phosphorylation and other histone modifications and allows for sophisticated control over the chromatin remodeling processes.

  1. Atractylodin Induces Myosin Light Chain Phosphorylation and Promotes Gastric Emptying through Ghrelin Receptor

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2017-01-01

    Full Text Available Atractylodin is one of the main constituents in the rhizomes of Atractylodes lancea Thunb., being capable of treating cancer cachexia-anorexia and age-related diseases as an agonist of growth hormone secretagogue receptor (GHSR. GHSR was herein expressed in human gastric smooth muscle cells (HGSMCs and activated by ghrelin receptor agonist L-692,585. Like L-692,585, atractylodin also increased Ca2+ and enhanced the phosphorylation of myosin light chain (MLC through GHSR in HGSMCs. In addition, atractylodin promoted gastric emptying and MLC phosphorylation in the gastric antrum of mice also through GHSR. Collectively, atractylodin can activate GHSR in gastric smooth muscle, as a potential target in clinical practice.

  2. Phosphorylation of titan and nebulin in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, L.L.

    1986-01-01

    The in vitro and in vivo phosphorylation of skeletal muscle titin and nebulin are examined. It has been proposed that these proteins are the fundamental components of an elastic cytoskeletal lattice within the sarcomere. Determinations of endogenous phosphate in titin and nebulin purified from rabbit back muscle revealed phosphate contents of 3.10 +/- 0.26 mol phosphate/mol titin and 4.63 +/- 0.43 mol phosphate/mol nebulin. Incubation of rabbit back muscle homogenate in the presence of gamma-/sup 32/P ATP resulted in the labeling of both titin and nebulin; labeling was enhanced by the addition of cAMP-dependent protein kinase. Similar results were obtained from the incubation of chemically skinned rabbit psoas fibers in the presence of labeled ATP. A time dependent increase in phosphate incorporation was observed. Purification of titin and nebulin from Xenopus laevis frog gastrocnemius revealed endogenous phosphate contents of 6.15 +/- 0.12 mol phosphate/mol titin and 9.67 +/- 1.5 mol phosphate/mol nebulin. Titin and nebulin labeling after in vivo injection of Xenopus laevis frogs with /sup 32/P-orthophosphate was demonstrated.

  3. Signal Integration at Elongation Factor 2 Kinase: THE ROLES OF CALCIUM, CALMODULIN, AND SER-500 PHOSPHORYLATION.

    Science.gov (United States)

    Tavares, Clint D J; Giles, David H; Stancu, Gabriel; Chitjian, Catrina A; Ferguson, Scarlett B; Wellmann, Rebecca M; Kaoud, Tamer S; Ghose, Ranajeet; Dalby, Kevin N

    2017-02-03

    Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca2+ ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca2+ and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca2+ is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca2+ and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca2+/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca2+ and CaM to influence eEF-2K activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. HEY1 functions are regulated by its phosphorylation at Ser-68.

    Science.gov (United States)

    López-Mateo, Irene; Arruabarrena-Aristorena, Amaia; Artaza-Irigaray, Cristina; López, Juan A; Calvo, Enrique; Belandia, Borja

    2016-07-01

    HEY1 (hairy/enhancer-of-split related with YRPW motif 1) is a member of the basic helix-loop-helix-orange (bHLH-O) family of transcription repressors that mediate Notch signalling. HEY1 acts as a positive regulator of the tumour suppressor p53 via still unknown mechanisms. A MALDI-TOF/TOF MS analysis has uncovered a novel HEY1 regulatory phosphorylation event at Ser-68. Strikingly, this single phosphorylation event controls HEY1 stability and function: simulation of HEY1 Ser-68 phosphorylation increases HEY1 protein stability but inhibits its ability to enhance p53 transcriptional activity. Unlike wild-type HEY1, expression of the phosphomimetic mutant HEY1-S68D failed to induce p53-dependent cell cycle arrest and it did not sensitize U2OS cells to p53-activating chemotherapeutic drugs. We have identified two related kinases, STK38 (serine/threonine kinase 38) and STK38L (serine/threonine kinase 38 like), which interact with and phosphorylate HEY1 at Ser-68. HEY1 is phosphorylated at Ser-68 during mitosis and it accumulates in the centrosomes of mitotic cells, suggesting a possible integration of HEY1-dependent signalling in centrosome function. Moreover, HEY1 interacts with a subset of p53-activating ribosomal proteins. Ribosomal stress causes HEY1 relocalization from the nucleoplasm to perinucleolar structures termed nucleolar caps. HEY1 interacts physically with at least one of the ribosomal proteins, RPL11, and both proteins cooperate in the inhibition of MDM2-mediated p53 degradation resulting in a synergistic positive effect on p53 transcriptional activity. HEY1 itself also interacts directly with MDM2 and it is subjected to MDM2-mediated degradation. Simulation of HEY1 Ser-68 phosphorylation prevents its interaction with p53, RPL11 and MDM2 and abolishes HEY1 migration to nucleolar caps upon ribosomal stress. Our findings uncover a novel mechanism for cross-talk between Notch signalling and nucleolar stress. © 2016 The Author(s).

  5. Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia.

    Science.gov (United States)

    Kayyali, U S; Donaldson, C; Huang, H; Abdelnour, R; Hassoun, P M

    2001-04-27

    The enzyme xanthine oxidase (XO) has been implicated in the pathogenesis of several disease processes, such as ischemia-reperfusion injury, because of its ability to generate reactive oxygen species. The expression of XO and its precursor xanthine dehydrogenase (XDH) is regulated at pre- and posttranslational levels by agents such as lipopolysaccharide and hypoxia. Posttranslational modification of the protein, for example through thiol oxidation or proteolysis, has been shown to be important in converting XDH to XO. The possibility of posttranslational modification of XDH/XO through phosphorylation has not been adequately investigated in mammalian cells, and studies have reported conflicting results. The present report demonstrates that XDH/XO is phosphorylated in rat pulmonary microvascular endothelial cells (RPMEC) and that phosphorylation is greatly increased ( approximately 50-fold) in response to acute hypoxia (4 h). XDH/XO phosphorylation appears to be mediated, at least in part, by casein kinase II and p38 kinase as inhibitors of these kinases partially prevent XDH/XO phosphorylation. In addition, the results indicate that p38 kinase, a stress-activated kinase, becomes activated in response to hypoxia (an approximately 4-fold increase after 1 h of exposure of RPMEC to hypoxia) further supporting a role for this kinase in hypoxia-stimulated XDH/XO phosphorylation. Finally, hypoxia-induced XDH/XO phosphorylation is accompanied by a 2-fold increase in XDH/XO activity, which is prevented by inhibitors of phosphorylation. In summary, this study shows that XDH/XO is phosphorylated in hypoxic RPMEC through a mechanism involving p38 kinase and casein kinase II and that phosphorylation is necessary for hypoxia-induced enzymatic activation.

  6. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Science.gov (United States)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  7. The transmembrane domain of the p75 neurotrophin receptor stimulates phosphorylation of the TrkB tyrosine kinase receptor.

    Science.gov (United States)

    Saadipour, Khalil; MacLean, Michael; Pirkle, Sean; Ali, Solav; Lopez-Redondo, Maria-Luisa; Stokes, David L; Chao, Moses V

    2017-10-06

    The function of protein products generated from intramembraneous cleavage by the γ-secretase complex is not well defined. The γ-secretase complex is responsible for the cleavage of several transmembrane proteins, most notably the amyloid precursor protein that results in Aβ, a transmembrane (TM) peptide. Another protein that undergoes very similar γ-secretase cleavage is the p75 neurotrophin receptor. However, the fate of the cleaved p75 TM domain is unknown. p75 neurotrophin receptor is highly expressed during early neuronal development and regulates survival and process formation of neurons. Here, we report that the p75 TM can stimulate the phosphorylation of TrkB (tyrosine kinase receptor B). In vitro phosphorylation experiments indicated that a peptide representing p75 TM increases TrkB phosphorylation in a dose- and time-dependent manner. Moreover, mutagenesis analyses revealed that a valine residue at position 264 in the rat p75 neurotrophin receptor is necessary for the ability of p75 TM to induce TrkB phosphorylation. Because this residue is just before the γ-secretase cleavage site, we then investigated whether the p75(αγ) peptide, which is a product of both α- and γ-cleavage events, could also induce TrkB phosphorylation. Experiments using TM domains from other receptors, EGFR and FGFR1, failed to stimulate TrkB phosphorylation. Co-immunoprecipitation and biochemical fractionation data suggested that p75 TM stimulates TrkB phosphorylation at the cell membrane. Altogether, our results suggest that TrkB activation by p75(αγ) peptide may be enhanced in situations where the levels of the p75 receptor are increased, such as during brain injury, Alzheimer's disease, and epilepsy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis.

    Science.gov (United States)

    Labbe, Benjamin D; Kristich, Christopher J

    2017-11-01

    Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivoEnterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivoIMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical processes. The

  9. Phosphorylation of syntaxin-3 at Thr 14 negatively regulates exocytosis in RBL-2H3 mast cells.

    Science.gov (United States)

    Tadokoro, Satoshi; Shibata, Tetsuhiro; Inoh, Yoshikazu; Amano, Toshiro; Nakanishi, Mamoru; Hirashima, Naohide; Utsunomiya-Tate, Naoko

    2016-05-01

    Recent studies have revealed that soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins interact with each other, forming a SNARE complex that induces exocytosis in mast cells. Previously, we reported that syntaxin-3, a SNARE protein, regulates mast cell exocytosis and is constantly phosphorylated. In this study, we tried to identify the amino acid residue that is phosphorylated in mast cells, and to elucidate the regulatory mechanism of exocytosis by phosphorylation in syntaxin-3. We found that Thr 14 of syntaxin-3 was a phosphorylation site in mast cells. In addition, the overexpression of a constitutively dephosphorylated syntaxin-3 (T14A) mutant enhanced mast cell exocytosis. We also showed that the phosphomimetic mutation of syntaxin-3 at Thr 14 (T14E) induced structural changes in syntaxin-3, and this mutation inhibited binding of syntaxin-3 to Munc18-2. These results suggest that phosphorylated syntaxin-3 at Thr 14 negatively regulates mast cell exocytosis by impairing the interaction between syntaxin-3 and Munc18-2. © 2016 International Federation for Cell Biology.

  10. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake.

    Science.gov (United States)

    Beg, Muheeb; Abdullah, Nazish; Thowfeik, Fathima Shazna; Altorki, Nasser K; McGraw, Timothy E

    2017-06-07

    Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake.

  11. Cadmium sorption characteristics of phosphorylated sago starch-extraction residue

    Energy Technology Data Exchange (ETDEWEB)

    Igura, Masato, E-mail: mst_igr@yahoo.co.jp [Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Okazaki, Masanori [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2010-06-15

    The residue produced by the extraction of sago starch is usually discarded as a waste material. In this study, we phosphorylated the sago starch-extraction residue with phosphoryl chloride and used the phosphorylated residue to remove cadmium from wastewater. The phosphoric ester functionality in the phosphorylated residue was evaluated by means of infrared microspectrometry and solid-state NMR. The dependence of the cadmium sorption behavior on pH, contact time, and electrolyte concentration and the maximum sorption capacity of the phosphorylated residue were also studied. The cadmium sorption varied with pH and electrolyte concentration, and the maximum sorption capacity was 25.2 mg g{sup -1}, which is almost half the capacity of commercially available weakly acidic cation exchange resins. The phosphorylated residue could be reused several times, although cadmium sorption gradually decreased as the number of sorption-desorption cycles increased. The phosphorylated residue sorbed cadmium rapidly, which is expected to be favorable for the continuous operation in a column.

  12. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy

    Science.gov (United States)

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2014-01-01

    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth. PMID:25229342

  13. Phosphorylation of the pyruvate dehydrogenase complex isolated from Ascaris suum

    Energy Technology Data Exchange (ETDEWEB)

    Thissen, J.; Komuniecki, R.

    1987-05-01

    The pyruvate dehydrogenase complex (PDC) from body wall muscle of the porcine nematode, Ascaris suum, plays a pivotal role in anaerobic mitochondrial metabolism. As in mammalian mitochondria, PDC activity is inhibited by the phosphorylation of the ..cap alpha..PDH subunit, catalyzed by an associated PDH/sub a/ kinase. However, in contrast to PDC's isolated from all other eukaryotic sources, phosphorylation decreases the mobility of the ..cap alpha..PDH subunit on SDS-PAGE and permits the separation of the phosphorylated and nonphosphorylated ..cap alpha..PDH's. Phosphorylation and the inactivation of the Ascaris PDC correspond directly, and the additional phosphorylation that occurs after complete inactivation in mammalian PDC's is not observed. The purified ascarid PDC incorporates 10 nmoles /sup 32/P/mg P. Autoradiography of the radiolabeled PDC separated by SDS-PAGE yields a band which corresponds to the phosphorylated ..cap alpha..PDH and a second, faint band which is present only during the first three minutes of PDC inactivation, intermediate between the phosphorylated and nonphosphorylated ..cap alpha..PDH subunit. Tryptic digests of the /sup 32/P-PDC yields one major phosphopeptide, when separated by HPLC, and its amino acid sequence currently is being determined.

  14. Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment.

    Directory of Open Access Journals (Sweden)

    Thomas H Sanderson

    Full Text Available Recent advancements in isolation techniques for cytochrome c (Cytc have allowed us to discover post-translational modifications of this protein. We previously identified two distinct tyrosine phosphorylated residues on Cytc in mammalian liver and heart that alter its electron transfer kinetics and the ability to induce apoptosis. Here we investigated the phosphorylation status of Cytc in ischemic brain and sought to determine if insulin-induced neuroprotection and inhibition of Cytc release was associated with phosphorylation of Cytc. Using an animal model of global brain ischemia, we found a ∼50% decrease in neuronal death in the CA1 hippocampal region with post-ischemic insulin administration. This insulin-mediated increase in neuronal survival was associated with inhibition of Cytc release at 24 hours of reperfusion. To investigate possible changes in the phosphorylation state of Cytc we first isolated the protein from ischemic pig brain and brain that was treated with insulin. Ischemic brains demonstrated no detectable tyrosine phosphorylation. In contrast Cytc isolated from brains treated with insulin showed robust phosphorylation of Cytc, and the phosphorylation site was unambiguously identified as Tyr97 by immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry. We next confirmed these results in rats by in vivo application of insulin in the absence or presence of global brain ischemia and determined that Cytc Tyr97-phosphorylation is strongly induced under both conditions but cannot be detected in untreated controls. These data suggest a mechanism whereby Cytc is targeted for phosphorylation by insulin signaling, which may prevent its release from the mitochondria and the induction of apoptosis.

  15. Acute exercise modifies titin phosphorylation and increases cardiac myofilament stiffness

    Directory of Open Access Journals (Sweden)

    Anna Eliane Müller

    2014-11-01

    Full Text Available Titin-based myofilament stiffness is largely modulated by phosphorylation of its elastic I-band regions N2-Bus (decreases passive stiffness, PT and PEVK (increases PT. Here, we tested the hypothesis that acute exercise changes titin phosphorylation and modifies myofilament stiffness. Adult rats were exercised on a treadmill for 15min, untrained animals served as controls. Titin phosphorylation was determined by Western blot analysis using phosphospecific antibodies to Ser4099 and Ser4010 in the N2-Bus region (PKG and PKA-dependent. respectively, and to Ser11878 and Ser 12022 in the PEVK region (PKCα and CaMKIIδ-dependent, respectively. Passive tension was determined by step-wise stretching of isolated skinned cardiomyocytes to sarcomere length ranging from 1.9-2.4µm and showed a significantly increased PT from exercised samples, compared to controls. In cardiac samples titin N2-Bus phosphorylation was significantly decreased by 40% at Ser4099, however, no significant changes were observed at Ser4010. PEVK phosphorylation at Ser11878 was significantly increased, which is probably mediated by the observed exercise-induced increase in PKCα activity. Interestingly, relative phosphorylation of Ser12022 was substantially decreased in the exercised samples. Surprisingly, in skeletal samples from acutely exercised animals we detected a significant decrease in PEVK phosphorylation at Ser11878 and an increase in Ser12022 phosphorylation; however, PKCα activity remained unchanged. In summary, our data show that a single exercise bout of 15 min affects titin domain phosphorylation and titin-based myocyte stiffness with obviously divergent effects in cardiac and skeletal muscle tissues. The observed changes in titin stiffness could play an important role in adapting the passive and active properties of the myocardium and the skeletal muscle to increased physical activity.

  16. Ser9-phosphorylated GSK3β induced by 14-3-3ζ actively antagonizes cell apoptosis in a NF-κB dependent manner.

    Science.gov (United States)

    Gao, Xuejuan; He, Yujiao; Gao, Ling-Mei; Feng, Junxia; Xie, Yingying; Liu, Xiaohui; Liu, Langxia

    2014-10-01

    The activity of glycogen synthase kinase beta (GSK3β) is mainly regulated by its Ser9 phosphorylation. It has been believed for a long time that Ser9 phosphorylation regulates the functions of GSK3β through inhibition of its kinase activity. In this study, we have confirmed the interaction of Ser9-phosphorylated GSK3β with 14-3-3ζ by using GST pull-down assays. We show that 14-3-3ζ enhances Ser9 phosphorylation of GSK3β by PKC. Surprisingly, using a NF-κB luciferase reporter system, we find that Ser9-phosphorylation of GSK3β promoted by 14-3-3ζ is critical for the activation of NF-κB pathway, which may thwart the pro-apoptotic activity of GSK3β. Inhibition of either NF-κB or GSK3β significantly abolishes the anti-apoptotic effect of 14-3-3ζ and Ser9-phosphorylated GSK3β, suggesting that Ser9-phosphorylated GSK3β actively antagonizes cell apoptosis in a NF-κB dependent manner.

  17. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    Science.gov (United States)

    Montero, Juan A.; Sanchez-Fernandez, Cristina; Lorda-Diez, Carlos I.; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2016-01-01

    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γH2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells γH2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of γH2AX-only cells increases after caspase inhibition while the relative number of TUNEL-only cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration. PMID:27752097

  18. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    Reversible phosphorylation of proteins regulates the majority of all cellular processes, e.g. proliferation, differentiation, and apoptosis. A fundamental understanding of these biological processes at the molecular level requires characterization of the phosphorylated proteins. Phosphorylation i...

  19. Ginsenoside Rd attenuates beta-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3beta and protein phosphatase 2A.

    Science.gov (United States)

    Li, Ling; Liu, Zhirong; Liu, Juanfang; Tai, Xuhui; Hu, Xinghua; Liu, Xuedong; Wu, Zhongliang; Zhang, Guangyun; Shi, Ming; Zhao, Gang

    2013-06-01

    Neurofibrillary tangles are aggregates of hyperphosphorylated tau that are one of the pathological hallmarks of Alzheimer's disease (AD). Tau phosphorylation is regulated by a balance of kinase and phosphatase activities. Our previous study has demonstrated that ginsenoside Rd, one of the principal active ingredients of Pana notoginseng, inhibits okadaic acid-induced tau phosphorylation in vivo and in vitro, but the underlying mechanism(s) is unknown. In this study, we showed that ginsenoside Rd pretreatment inhibited tau phosphorylation at multiple sites in beta-amyloid (Aβ)-treated cultured cortical neurons, and in vivo in both a rat and transgenic mouse model. Ginsenoside Rd not only reduced Aβ-induced increased expression of glycogen synthase kinase 3beta (GSK-3β), the most important kinase involved in tau phosphorylation, but also inhibited its activity by enhancing and attenuating its phosphorylation at Ser9 and Tyr216, respectively. Moreover, ginsenoside Rd enhanced the activity of protein phosphatase 2A (PP-2A), a key phosphatase involved in tau dephosphorylation. Finally, an in vitro biochemical assay revealed that ginsenoside Rd directly affected GSK-3β and PP-2A activities. Thus, our findings provide the first evidence that ginsenoside Rd attenuates Aβ-induced pathological tau phosphorylation by altering the functional balance of GSK-3β and PP-2A. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Identification and functional characterization of novel phosphorylation sites in TAK1-binding protein (TAB 1.

    Directory of Open Access Journals (Sweden)

    Alexander Wolf

    Full Text Available TAB1 was defined as a regulatory subunit of the protein kinase TAK1, which functions upstream in the pathways activated by interleukin (IL-1, tumor necrosis factor (TNF, toll-like receptors (TLRs and stressors. However, TAB1 also functions in the p38 MAPK pathway downstream of TAK1. We identified amino acids (aa 452/453 and 456/457 of TAB1 as novel sites phosphorylated by TAK1 as well as by p38 MAPK in intact cells as well as in vitro. Serines 452/453 and 456/457 were phosphorylated upon phosphatase blockade by calyculin A, or in response to IL-1 or translational stressors such as anisomycin and sorbitol. Deletion or phospho-mimetic mutations of aa 452-457 of TAB1 retain TAB1 and p38 MAPK in the cytoplasm. The TAB1 mutant lacking aa 452-457 decreases TAB1-dependent phosphorylation of p38 MAPK. It also enhances TAB1-dependent CCL5 secretion in response to IL-1 and increases activity of a post-transcriptional reporter gene, which contains the CCL5 3' untranslated region. These data suggest a complex role of aa 452-457 of TAB1 in controlling p38 MAPK activity and subcellular localization and implicate these residues in TAK1- or p38 MAPK-dependent post-transcriptional control of gene expression.

  1. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus

    Science.gov (United States)

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees (Apis mellifera) we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees’ CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus. PMID:27084927

  2. Total and phosphorylated tau protein as biological markers of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Advances in our understanding of tau-mediated neurodegeneration in Alzheimer\\'s disease (AD) are moving this disease pathway to center stage for the development of biomarkers and disease modifying drug discovery efforts. Immunoassays were developed detecting total (t-tau) and tau phosphorylated at specific epitopes (p-tauX) in cerebrospinal fluid (CSF), methods to analyse tau in blood are at the experimental beginning. Clinical research consistently demonstrated CSF t- and p-tau increased in AD compared to controls. Measuring these tau species proved informative for classifying AD from relevant differential diagnoses. Tau phosphorylated at threonine 231 (p-tau231) differentiated between AD and frontotemporal dementia, tau phosphorylated at serine 181 (p-tau181) enhanced classification between AD and dementia with Lewy bodies. T- and p-tau are considered "core" AD biomarkers that have been successfully validated by controlled large-scale multi-center studies. Tau biomarkers are implemented in clinical trials to reflect biological activity, mechanisms of action of compounds, support enrichment of target populations, provide endpoints for proof-of-concept and confirmatory trials on disease modification. World-wide quality control initiatives are underway to set required methodological and protocol standards. Discussions with regulatory authorities gain momentum defining the role of tau biomarkers for trial designs and how they may be further qualified for surrogate marker status.

  3. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  4. Myosin phosphorylation potentiated steady state work output without altering contractile economy of mouse fast skeletal muscles.

    Science.gov (United States)

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2017-11-09

    Skeletal myosin light chain kinase (skMLCK) catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wildtype, WT) and without (skMLCK ablated, skMLCK-/-) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during before and after isovelocity contractions in WT but not skMLCK-/- muscles (i.e. 0.65 and 0.05 mol phos mol RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes the increase was significantly greater in WT than in skMLCK-/- muscles (1.51±0.03 vs. 1.10±0.05, respectively) (all data Peconomy calculated for WT muscles was similar to that calculated for skMLCK-/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J•kg-1μmol∼P-1; respectively (Peconomy. © 2017. Published by The Company of Biologists Ltd.

  5. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    KAUST Repository

    Muleya, V.

    2016-08-04

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling.

  6. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?

    National Research Council Canada - National Science Library

    du Plessis, Stefan S; Agarwal, Ashok; Mohanty, Gayatri; van der Linde, Michelle

    2015-01-01

    ... by 2 metabolic pathways, namely glycolysis and oxidative phosphorylation (OXPHOS). It is produced in the mitochondria through OXPHOS as well as in the head and principal piece of the flagellum through glycolysis...

  7. The phosphorylation status of merlin in sporadic vestibular Schwannomas.

    Science.gov (United States)

    Wang, Zhaoyan; Lu, Yanjun; Tang, Juanjuan; Wang, Haojie; Wu, Hao

    2009-04-01

    The events leading to Schwannomas development are still largely unknown. Some studies have demonstrated that merlin acts as a tumor suppressor by blocking Ras-mediated signaling. In this study, we analyze the clinical and biological behaviors of seven randomly selected sporadic vestibular Schwannomas removed from the patients. We find that merlin was commonly lost in these Schwannomas, due to loss of merlin expression or phosphorylation status of merlin expression. Heightened CDKs/cyclins signal transduction concomitant with loss of p27 was well correlated with loss of functional merlin in Schwannomas. More, we show that phosphorylated merlin Schwannomas exhibited increased Ras/Rac/PAK signal transduction. That was in agreement with the severe clinical behaviors, i.e., phosphorylation status of merlin increased tumor size in sporadic vestibular Schwannomas. These results led us to suggest that phosphorylated merlin, a kind of type of mutation merlin, is involved in tumorigenesis of sporadic vestibular Schwannomas.

  8. In vivo phosphorylation of WRKY transcription factor by MAPK.

    Science.gov (United States)

    Ishihama, Nobuaki; Adachi, Hiroaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2014-01-01

    Plants activate signaling networks in response to diverse pathogen-derived signals, facilitating transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. Identification of phosphorylation targets of MAPK and in vivo detection of the phosphorylated substrates are important processes to elucidate the signaling pathway in plant immune responses. We have identified a WRKY transcription factor, which is phosphorylated by defense-related MAPKs, SIPK and WIPK. Recent evidence demonstrated that some group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are activated by MAPK-dependent phosphorylation. In this chapter, we describe protocols for preparation of anti-phosphopeptide antibodies, detection of activated MAPKs using anti-phospho-MAPK antibody, and activated WRKY using anti-phospho-WRKY antibody, respectively.

  9. Modifications of myofilament protein phosphorylation and function in response to cardiac arrest induced in a swine model

    Directory of Open Access Journals (Sweden)

    Mike eWoodward

    2015-07-01

    Full Text Available Cardiac arrest is a prevalent condition with a poor prognosis, attributable in part to persistent myocardial dysfunction following resuscitation. The molecular basis of this dysfunction remains unclear. We induced cardiac arrest in a porcine model of acute sudden death and assessed the impact of ischemia and reperfusion on the molecular function of isolated cardiac contractile proteins. Cardiac arrest was electrically induced, left untreated for 12 minutes, and followed by a resuscitation protocol. With successful resuscitations, the heart was reperfused for 2hrs (IR2 and the muscle harvested. In failed resuscitations, tissue samples were taken following the failed efforts (IDNR. Actin filament velocity, using myosin isolated from IR2 or IDNR cardiac tissue, was nearly identical to myosin from the control tissue in a motility assay. However both maximal velocity (25% faster than control and calcium sensitivity (pCa50 6.57± 0.04 IDNR vs. 6.34±0.07 control were significantly (p<0.05 enhanced using native thin filaments (actin+troponin+tropomyosin from IDNR samples, suggesting that the enhanced velocity is mediated through an alteration in muscle regulatory proteins (troponin+tropomyosin. Mass spectrometry analysis showed that only samples from the IR2 had an increase in total phosphorylation levels of troponin (Tn and tropomyosin (Tm, but both IR2 and IDNR samples demonstrated a significant shift from mono-phosphorylated to bis-phosphorylated forms of the inhibitory subunit of Tn (TnI compared to control. This suggests that the shift to bis-phosphorylation of TnI is associated with the enhanced function in IDNR, but this effect may be attenuated when phosphorylation of Tm is increased in tandem, as observed for IR2. There are likely many other molecular changes induced following cardiac arrest, but to our knowledge, these data provide the first evidence that this form cardiac arrest can alter the in vitro function of the cardiac contractile

  10. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  11. Endocytosis of somatodendritic NCKX2 is regulated by Src family kinase-dependent tyrosine phosphorylation

    Directory of Open Access Journals (Sweden)

    Kyu-Hee eLee

    2013-02-01

    Full Text Available We have previously reported that the surface expression of K+-dependent Na+/Ca2+ exchanger 2 (NCKX2 in the somatodendritic compartment is kept low by constitutive endocytosis, which results in the polarization of surface NCKX2 to the axon. Clathrin-mediated endocytosis is initiated by interaction of the μ subunit of adaptor protein complex 2 (AP-2 with the canonical tyrosine motif (YxxΦ of a target molecule. We examined whether endocytosis of NCKX2 involves two putative tyrosine motifs (365YGKL and 371YDTM in the cytoplasmic loop of NCKX2. Coimmunoprecipitation assay revealed that the 365YGKL motif is essential for the interaction with the μ subunit of AP-2 (AP2M1. Consistently, either overexpression of NCKX2-Y365A mutant or knockdown of AP2M1 in cultured hippocampal neurons significantly reduced the internalization of NCKX2 from the somatodendritic surface and thus abolished the axonal polarization of surface NCKX2. Next, we tested whether the interaction between the tyrosine motif and AP2M1 is regulated by phosphorylation of the 365th tyrosine residue (Tyr-365. Tyrosine phosphorylation of heterologously expressed NCKX2-WT, but not NCKX2-Y365A, was increased by carbachol in PC-12 cells. The effect of carbachol was inhibited by PP2, a Src family kinase (SFK inhibitor. Moreover, PP2 facilitated the endocytosis of NCKX2 in both the somatodendritic and axonal compartments, suggesting that tyrosine phosphorylation of NCKX2 by SFK negatively regulates its endocytosis. Supporting this idea, activation of SFK enhanced the NCKX activity in the proximal dendrites of dentate granule cells. These results suggest that endocytosis of somatodendritic NCKX2 is regulated by SFK-dependent phosphorylation of Tyr-365.

  12. Prediction of cyclin-dependent kinase phosphorylation substrates.

    Directory of Open Access Journals (Sweden)

    Emmanuel J Chang

    2007-08-01

    Full Text Available Protein phosphorylation, mediated by a family of enzymes called cyclin-dependent kinases (Cdks, plays a central role in the cell-division cycle of eukaryotes. Phosphorylation by Cdks directs the cell cycle by modifying the function of regulators of key processes such as DNA replication and mitotic progression. Here, we present a novel computational procedure to predict substrates of the cyclin-dependent kinase Cdc28 (Cdk1 in the Saccharomyces cerevisiae. Currently, most computational phosphorylation site prediction procedures focus solely on local sequence characteristics. In the present procedure, we model Cdk substrates based on both local and global characteristics of the substrates. Thus, we define the local sequence motifs that represent the Cdc28 phosphorylation sites and subsequently model clustering of these motifs within the protein sequences. This restraint reflects the observation that many known Cdk substrates contain multiple clustered phosphorylation sites. The present strategy defines a subset of the proteome that is highly enriched for Cdk substrates, as validated by comparing it to a set of bona fide, published, experimentally characterized Cdk substrates which was to our knowledge, comprehensive at the time of writing. To corroborate our model, we compared its predictions with three experimentally independent Cdk proteomic datasets and found significant overlap. Finally, we directly detected in vivo phosphorylation at Cdk motifs for selected putative substrates using mass spectrometry.

  13. Protein phosphorylation and its role in archaeal signal transduction.

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. © FEMS 2016.

  14. Phosphorylated Radix Cyathulae officinalis Polysaccharides Act as Adjuvant via Promoting Dendritic Cell Maturation

    Directory of Open Access Journals (Sweden)

    Haibo Feng

    2017-01-01

    Full Text Available The aim of this study was to investigate whether phosphorylated Radix Cyathulae officinalis Kuan polysaccharides (pRCPS used as adjuvant with foot-and-mouth disease vaccine (FMDV can stimulate specific humoral and cellular immune responses in ICR mice. The results demonstrated that pRCPS significantly up-regulated FMDV-specific IgG, IgG1, IgG2b and IgG2a antibody levels and splenocyte proliferation. pRCPS also promoted the killing activities of cytotoxic T lymphocytes (CTL and natural killer cells (NK. In addition, pRCPS enhanced the expression levels of IL-2, IL-4, and IFN-γ in CD4+ T cells and the level of IFN-γ in CD8+ T cells. Importantly, pRCPS enhanced the expression of MHCII, CD40+, CD86+, and CD80+ in dendritic cells (DCs. This study indicated that phosphorylation modification could increase immune-enhancing activities of RCPS, and pRCPS could promote humoral and cellular immune responses through facilitating DC maturation.

  15. A functional screen provides evidence for a conserved, regulatory, juxtamembrane phosphorylation site in guanylyl cyclase a and B.

    Directory of Open Access Journals (Sweden)

    Andrea R Yoder

    Full Text Available Kinase homology domain (KHD phosphorylation is required for activation of guanylyl cyclase (GC-A and -B. Phosphopeptide mapping identified multiple phosphorylation sites in GC-A and GC-B, but these approaches have difficulty identifying sites in poorly detected peptides. Here, a functional screen was conducted to identify novel sites. Conserved serines or threonines in the KHDs of phosphorylated receptor GCs were mutated to alanine and tested for reduced hormone to detergent activity ratios. Mutation of Ser-489 in GC-B to alanine but not glutamate reduced the activity ratio to 60% of wild type (WT levels. Similar results were observed with Ser-473, the homologous site in GC-A. Receptors containing glutamates for previously identified phosphorylation sites (GC-A-6E and GC-B-6E were activated to ~20% of WT levels but the additional glutamate substitution for S473 or S489 increased activity to near WT levels. Substrate-velocity assays indicated that GC-B-WT-S489E and GC-B-6E-S489E had lower Km values and that WT-GC-B-S489A, GC-B-6E and GC-B-6E-S489A had higher Km values than WT-GC-B. Homologous desensitization was enhanced when GC-A contained the S473E substitution, and GC-B-6E-S489E was resistant to inhibition by a calcium elevating treatment or protein kinase C activation--processes that dephosphorylate GC-B. Mass spectrometric detection of a synthetic phospho-Ser-473 containing peptide was 200-1300-fold less sensitive than other phosphorylated peptides and neither mass spectrometric nor (32PO(4 co-migration studies detected phospho-Ser-473 or phospho-Ser-489 in cells. We conclude that Ser-473 and Ser-489 are Km-regulating phosphorylation sites that are difficult to detect using current methods.

  16. Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in the rat nucleus accumbens.

    Science.gov (United States)

    Marin, Marcelo T; Berkow, Alexander; Golden, Sam A; Koya, Eisuke; Planeta, Cleopatra S; Hope, Bruce T

    2009-11-01

    Learned associations are hypothesized to develop between drug effects and contextual stimuli during repeated drug administration to produce context-specific sensitization that is expressed only in the drug-associated environment and not in a non-drug-paired environment. The neuroadaptations that mediate such context-specific behavior are largely unknown. We investigated context-specific modulation of cAMP-response element-binding protein (CREB) phosphorylation and that of four upstream kinases in the nucleus accumbens that phosphorylate CREB, including extracellular signal-regulated kinase (ERK), cAMP-dependent protein kinase, calcium/calmodulin-dependent kinase (CaMK) II and CaMKIV. Rats received seven once-daily injections of cocaine or saline in one of two distinct environments outside their home cages. Seven days later, test injections of cocaine or saline were administered in either the paired or the non-paired environment. CREB and ERK phosphorylation were assessed with immunohistochemistry, and phosphorylation of the remaining kinases, as well as of CREB and ERK, was assessed by western blotting. Repeated cocaine administration produced context-specific sensitized locomotor responses accompanied by context-specific enhancement of the number of cocaine-induced phosphoCREB-immunoreactive and phosphoERK-immunoreactive nuclei in a minority of neurons. In contrast, CREB and CaMKIV phosphorylation in nucleus accumbens homogenates were decreased by cocaine test injections. We have recently shown that a small number of cocaine-activated accumbens neurons mediate the learned association between cocaine effects and the drug administration environment to produce context-specific sensitization. Context-specific phosphorylation of ERK and CREB in the present study suggests that this signal transduction pathway is selectively activated in the same set of cocaine-activated accumbens neurons that mediate this learned association.

  17. Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in rat nucleus accumbens

    Science.gov (United States)

    Marin, Marcelo T.; Berkow, Alexander; Golden, Sam A.; Koya, Eisuke; Planeta, Cleopatra S.; Hope, Bruce T.

    2009-01-01

    Learned associations are hypothesized to develop between drug effects and contextual stimuli during repeated drug administration to produce context-specific sensitization that is expressed only in the drug-associated environment and not in a non-drug paired environment. Neuroadaptations that mediate such context-specific behavior are largely unknown. We investigated context-specific modulation of CREB phosphorylation and four upstream kinases in nucleus accumbens that phosphorylate CREB, including ERK, PKA, CaMKII and IV. Rats received seven once daily injections of cocaine or saline in one of two distinct environments outside their home cages. Seven days later, test injections of cocaine or saline were administered in either the Paired or the Non-paired environment. CREB and ERK phosphorylation were assessed with immunohistochemistry while phosphorylation of the remaining kinases, as well as CREB and ERK, were assessed by Western blotting. Repeated cocaine administration produced context-specific sensitized locomotor responses accompanied by context-specific enhancement of the number of cocaine-induced phosphoCREB and phosphoERK immunoreactive nuclei in a minority of neurons. In contrast, CREB and CaMKIV phosphorylation in nucleus accumbens homogenates were decreased by cocaine test injections. We have recently shown that a small number of cocaine-activated accumbens neurons mediate the learned association between cocaine effects and the drug administration environment to produce context-specific sensitization. The corresponding cocaine and context-specific phosphorylation of ERK and CREB in cocaine-activated accumbens neurons in the present study suggests that this signal transduction pathway is also selectively activated in the same set of accumbens neurons. PMID:19912338

  18. Determination of optimum experimental conditions for preparation and functional properties of hydroxypropylated, phosphorylated and hydroxypropyl-phosphorylated glutinous rice starch.

    Science.gov (United States)

    Yang, Liping; Zhou, Yibin; Zheng, Xiangyu; Wang, Haisong; Wang, Naifu

    2017-12-01

    Optimization of the preparation of hydroxypropylated, phosphorylated and hydroxypropyl-phosphorylated glutinous rice starch was performed using a response surface methodology comprising three variables at three levels. Multi-linear regression was used to fit the degree of substitution and molar substitution against. Optimal reaction conditions were 9h, 42°C, 10% (hydroxypropylated), 148min, 150°C, 7% (phosphorylated) and 95min, 140°C, 7.8% (hydroxypropyl-phosphorylated). For hydroxypropylated, predicted optimal and experimental molar substitution values were found to be identical: 0.20. Both the phosphorylated and hydroxypropyl-phosphorylated, the predicted optimal and experimental degree of substitution values was 0.02. Static rheological analysis revealed a pseudoplastic nature for native and modified starches and an increase in apparent viscosity following modification. Dynamic rheological analysis indicated an entanglement network system for native glutinous rice starch suspension, but weak elastic gel-like structure for modified starches as the storage modulus (G') exceeded the loss modulus (G"). Additionally, chemical modification improved the freeze-thaw stability, swelling power, solubility and paste clarity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of Phosphorylation Sites Altering Pollen Soluble Inorganic Pyrophosphatase Activity.

    Science.gov (United States)

    Eaves, Deborah J; Haque, Tamanna; Tudor, Richard L; Barron, Yoshimi; Zampronio, Cleidiane G; Cotton, Nicholas P J; de Graaf, Barend H J; White, Scott A; Cooper, Helen J; Franklin, F Christopher H; Harper, Jeffery F; Franklin-Tong, Vernonica E

    2017-03-01

    Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism. © 2017 The author(s). All Rights Reserved.

  20. Smoking cessation reverses DNA double-strand breaks in human mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Mari Ishida

    Full Text Available OBJECTIVE: Cigarette smoking is a major risk factor for atherosclerotic cardiovascular disease, which is responsible for a significant proportion of smoking-related deaths. However, the precise mechanism whereby smoking induces this pathology has not been fully delineated. Based on observation of DNA double-strand breaks (DSBs, the most harmful type of DNA damage, in atherosclerotic lesions, we hypothesized that there is a direct association between smoking and DSBs. The goal of this study was to investigate whether smoking induces DSBs and smoking cessation reverses DSBs in vivo through examination of peripheral mononuclear cells (MNCs. APPROACH AND RESULTS: Immunoreactivity of oxidative modification of DNA and DSBs were increased in human atherosclerotic lesions but not in the adjacent normal area. DSBs in human MNCs isolated from the blood of volunteers can be detected as cytologically visible "foci" using an antibody against the phosphorylated form of the histone H2AX (γ-H2AX. Young healthy active smokers (n = 15 showed increased γ-H2AX foci number when compared with non-smokers (n = 12 (foci number/cell: median, 0.37/cell; interquartile range [IQR], 0.31-0.58 vs. 4.36/cell; IQR, 3.09-7.39, p<0.0001. Smoking cessation for 1 month reduced the γ-H2AX foci number (median, 4.44/cell; IQR, 4.36-5.24 to 0.28/cell; IQR, 0.12-0.53, p<0.05. A positive correlation was noted between γ-H2AX foci number and exhaled carbon monoxide levels (r = 0.75, p<0.01. CONCLUSIONS: Smoking induces DSBs in human MNCs in vivo, and importantly, smoking cessation for 1 month resulted in a decrease in DSBs to a level comparable to that seen in non-smokers. These data reinforce the notion that the cigarette smoking induces DSBs and highlight the importance of smoking cessation.

  1. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  2. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Science.gov (United States)

    Karaca, Mehmet; Liu, Yuanbo; Zhang, Zhentao; De Silva, Dinuka; Parker, Joel S; Earp, H Shelton; Whang, Young E

    2015-01-01

    Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  3. L-Citrulline increases hepatic sensitivity to insulin by reducing the phosphorylation of serine 1101 in insulin receptor substrate-1.

    Science.gov (United States)

    Yoshitomi, Hisae; Momoo, Maki; Ma, Xiao; Huang, Yewei; Suguro, Shiori; Yamagishi, Yoshie; Gao, Ming

    2015-06-18

    Insulin resistance is characterized by deficient responses to insulin in its target tissues. In the present study, we examined the effects of L-Citrulline (L-Cit) on insulin sensitivity and signaling cascades in rat hepatoma H4IIE cells and SHRSP.Z-Leprfa/IzmDmcr rats. H4IIE cells were pretreated in the presence or absence of 250 μM L-Cit in serum-free medium and then incubated in the presence or absence of 0.1 nM insulin. Rats were allocated into 2 groups; a control group (not treated) and L-Cit group (2 g/kg/day, L-Cit) and treated for 8 weeks. L-Cit enhanced the insulin-induced phosphorylation of Akt in H4IIE cells. Moreover, the inhibited expression of Dex/cAMP-induced PEPCK mRNA by insulin was enhanced by the L-Cit treatment. The phosphorylation of tyrosine, which is upstream of Akt, in insulin receptor substrate-1 (IRS-1) was increased by the L-Cit treatment. The L-Cit-induced enhancement in insulin signaling was not related to the binding affinity of insulin to the insulin receptor or to the expression of the insulin receptor, but to a decrease in the phosphorylation of serine 1101 in IRS-1. These results were also confirmed in animal experiments. In the livers of L-Cit-treated rats, PI3K/Akt signaling was improved by decreases in the phosphorylation of serine 1101. We herein demonstrated for the first time the beneficial effects of L-Cit on improved insulin resistance associated with enhanced insulin sensitivity. These results may have clinical applications for insulin resistance and the treatment of type-2 diabetes.

  4. PARP1 inhibitors attenuate AKT phosphorylation via the upregulation of PHLPP1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Wang, Huibo; Davis, Ben C. [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States); Liang, Jiyong [Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 (United States); Cui, Rutao [Department of Dermatology, Boston University School of Medicine, Boston, MA 02118 (United States); Chen, Sai-Juan, E-mail: sjchen@stn.sh.cn [State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Xu, Zhi-Xiang, E-mail: zhi-xiang.xu@ccc.uab.edu [Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205 (United States)

    2011-08-26

    Highlights: {yields} PARP1 inhibitors cause a cytotoxic effect independent of DNA repair impairment. {yields} PARP1 inhibitors attenuated AKT-FOXO3A signaling by activating PHLPP1. {yields} PHLPP1 regulates the sensitivity of cancer cells to PARP1 inhibitors. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP1) inhibitors are emerging as an important class of drugs for treating BRCA-deficient cancers. Recent discoveries have shown that PARP1 inhibitors may treat other cancer patients in addition to the relatively small proportion of patients carrying BRCA mutations. However, the additional targets by which PARP1 inhibitor-mediated tumor suppression remain poorly understood. In this study, we show that two PARP1 inhibitors, PJ-34 and 3-AB, attenuate AKT phosphorylation at serine 473 (S473) independent of DNA repair impairment. These inhibitors decrease the AKT-associated phosphorylation of FOXO3A, enhance the nuclear retention of FOXO3A, and activate its transcriptional activity. We further demonstrate that treatment with PJ-34 or 3-AB dramatically increases the level of PHLPP1. Overexpression of PHLPP1 enhances the PARP1 inhibitor-induced downregulation of AKT phosphorylation and increases tumor cell death. In contrast, knockdown of PHLPP1 abrogates the PARP1 inhibitor-mediated AKT inhibition and desensitizes cells to its treatment. Therefore, our findings not only show the robust role of PARP1 inhibitors in AKT inhibition but also develop a novel strategy to increase the effectiveness of cancer treatment via PARP1 inhibitor-induced PHLPP1 upregulation.

  5. Phosphorylated amyloid-beta: the toxic intermediate in alzheimer's disease neurodegeneration.

    Science.gov (United States)

    Milton, Nathaniel G N

    2005-01-01

    Phosphorylated Amyloid-beta (Abeta) was identified in Alzheimer's disease (AD) brain. Using an anti-sense peptide approach the human cyclin-dependent kinase-1 (CDK-1) was identified as being responsible for Abeta phosphorylation. The phosphorylated Abeta peptide showed increased neurotoxicity and reduced ability to form Congo red-positive fibrils. Mutation of the serine 26 residue and inhibition of Abeta phosphorylation by the CDK-1 inhibitor olomoucine prevented Abeta toxicity, suggesting that the phosphorylated Abeta peptide represents a toxic intermediate. Cannabinoids prevented phosphorylated Abeta toxicity. The results from this study suggest that Abeta phosphorylation could play a role in AD pathology and represent a novel therapeutic target.

  6. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhenhai, E-mail: tomsyu@163.com [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Huang, Liangqian [Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine -SJTUSM, Shanghai, 200025 (China); Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Tang, Shengjian; Zhang, Wei [Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041 (China); Ren, Chune, E-mail: ren@wfmc.edu.cn [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China)

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  7. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jason; Wang, Xin; Tsang, Sabrina H. [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States); Jiao, Jing [Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 (United States); You, Jianxin, E-mail: jianyou@mail.med.upenn.edu [Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 (United States)

    2014-07-08

    Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  8. Phosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication

    Directory of Open Access Journals (Sweden)

    Jason Diaz

    2014-07-01

    Full Text Available Merkel Cell Polyomavirus (MCPyV was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no investigation of MCPyV LT phosphorylation has been performed to date. In this report mass spectrometry analysis reveals three unique phosphorylation sites: T271, T297 and T299. In vivo replication assays confirm that phosphorylation of T271 does not play a role in viral replication, while modification at T297 and T299 have dramatic and opposing effects on LT’s ability to initiate replication from the viral origin. We test these mutants for their ability to bind, unwind, and act as a functional helicase at the viral origin. These studies provide a framework for understanding how phosphorylation of LT may dynamically regulate viral replication. Although the natural host cell of MCPyV has not yet been established, this work provides a foundation for understanding how LT activity is regulated and provides tools for better exploring this regulation in both natural host cells and Merkel cells.

  9. Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2013-05-01

    Full Text Available The Src gene product (Src and the epidermal growth factor receptor (EGFR are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845 in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase. A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.

  10. Phosphorylation of HOX11/TLX1 on Threonine-247 during mitosis modulates expression of cyclin B1

    Directory of Open Access Journals (Sweden)

    Chesney Alden

    2010-09-01

    Full Text Available Abstract Background The HOX11/TLX1 (hereafter referred to as HOX11 homeobox gene was originally identified at a t(10;14(q24;q11 translocation breakpoint, a chromosomal abnormality observed in 5-7% of T cell acute lymphoblastic leukemias (T-ALLs. We previously reported a predisposition to aberrant spindle assembly checkpoint arrest and heightened incidences of chromosome missegregation in HOX11-overexpressing B lymphocytes following exposure to spindle poisons. The purpose of the current study was to evaluate cell cycle specific expression of HOX11. Results Cell cycle specific expression studies revealed a phosphorylated form of HOX11 detectable only in the mitotic fraction of cells after treatment with inhibitors to arrest cells at different stages of the cell cycle. Mutational analyses revealed phosphorylation on threonine-247 (Thr247, a conserved amino acid that defines the HOX11 gene family and is integral for the association with DNA binding elements. The effect of HOX11 phosphorylation on its ability to modulate expression of the downstream target, cyclin B1, was tested. A HOX11 mutant in which Thr247 was substituted with glutamic acid (HOX11 T247E, thereby mimicking a constitutively phosphorylated HOX11 isoform, was unable to bind the cyclin B1 promoter or enhance levels of the cyclin B1 protein. Expression of the wildtype HOX11 was associated with accelerated progression through the G2/M phase of the cell cycle, impaired synchronization in prometaphase and reduced apoptosis whereas expression of the HOX11 T247E mutant restored cell cycle kinetics, the spindle checkpoint and apoptosis. Conclusions Our results demonstrate that the transcriptional activity of HOX11 is regulated by phosphorylation of Thr247 in a cell cycle-specific manner and that this phosphorylation modulates the expression of the target gene, cyclin B1. Since it is likely that Thr247 phosphorylation regulates DNA binding activity to multiple HOX11 target sequences, it is

  11. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  12. Propofol selectively alters GluA1 AMPA receptor phosphorylation in the hippocampus but not prefrontal cortex in young and aged mice

    Science.gov (United States)

    Mao, Li-Min; Hastings, James M.; Fibuch, Eugene E; Wang, John Q.

    2014-01-01

    Propofol is a commonly used general anesthetic agent which has been previously shown to enhance the inhibitory GABAergic transmission in the central nervous system. In addition to the GABAergic element, the excitatory transmission may be another central molecular site impacted by propofol. Increasing evidence implies that the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor represents an excitatory amino acid receptor subtype subjected to the regulation by propofol. Indeed, in this study, we found that a single injection of propofol at an anesthetic dose increased AMPA receptor GluA1 subunit phosphorylation in young (2–3 months old) and aged (20–21 months old) mice in vivo. Propofol caused an increase in GluA1 phosphorylation in the hippocampus but not in the prefrontal cortex. The propofol effect was also site-selective as the drug elevated GluA1 phosphorylation at serine 831 (S831) but not serine 845. Interestingly, while propofol induced a moderate and transient increase in S831 phosphorylation in young mice, the drug caused a substantial and sustained S831 phosphorylation in aged animals. Total GluA1 abundance remained stable in the hippocampus and prefrontal cortex in both young and aged mice in response to propofol. These results provide evidence supporting the sensitivity of GluA1 AMPA receptors to propofol. A single dose of propofol was able to upregulate GluA1 phosphorylation in the confined hippocampus in an age-dependent manner. PMID:24907515

  13. Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide

    Directory of Open Access Journals (Sweden)

    Hajime Yamazaki

    2017-06-01

    ACP, primarily showing an increase in β-sheet structure, compared to that observed with added HA. These collective findings indicate that phosphorylation induces unique secondary structural changes that may enhance the functional capacity of native phosphorylated amelogenins like LRAP to stabilize an ACP precursor phase during early stages of enamel mineral formation.

  14. Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line

    Directory of Open Access Journals (Sweden)

    Casalini Patrizia

    2010-10-01

    Full Text Available Abstract Background TPC-1 is a papillary thyroid carcinoma (PTC-derived cell line that spontaneously expresses the oncogene RET/PTC1. TPC-1 treated with the RET/PTC1 inhibitor RPI-1 displayed a cytostatic and reversible inhibition of cell proliferation and a strong activation of focal adhesion kinase (FAK. As dasatinib inhibition of Src results in reduction of FAK activation, we evaluated the effects of TPC-1 treatment with dasatinib in combination with RPI-1. Results Dasatinib (100 nM strongly reduced TPC-1 proliferation and induced marked changes in TPC-1 morphology. Cells appeared smaller and more contracted, with decreased cell spreading, due to the inhibition of phosphorylation of important cytoskeletal proteins (p130CAS, Crk, and paxillin by dasatinib. The combination of RPI-1 with dasatinib demonstrated enhanced effects on cell proliferation (more than 80% reduction and on the phosphotyrosine protein profile. In particular, RPI-1 reduced the phosphorylation of RET, MET, DCDB2, CTND1, and PLCγ, while dasatinib acted on the phosphorylation of EGFR, EPHA2, and DOK1. Moreover, dasatinib completely abrogated the phosphorylation of FAK at all tyrosine sites (Y576, Y577, Y861, Y925 with the exception of the autoactivation site (Y397. Notably, the pharmacological treatments induced an overexpression of integrin β1 (ITB1 that was correlated with a mild enhancement in phosphorylation of ERK1/2 and STAT3, known for their roles in prevention of apoptosis and in increase of proliferation and survival. A reduction in Akt, p38 and JNK1/2 activation was observed. Conclusions All data demonstrate that the combination of the two drugs effectively reduced cell proliferation (by more than 80%, significantly decreased Tyr phosphorylation of almost all phosphorylable proteins, and altered the morphology of the cells, supporting high cytostatic effects. Following the combined treatment, cell survival pathways appeared to be mediated by STAT3 and ERK

  15. Erythropoietin and carbamylated erythropoietin promote histone deacetylase 5 phosphorylation and nuclear export in rat hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hye-Ryeong [Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering (Korea, Republic of); Kim, Yong-Seok [Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering (Korea, Republic of); Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of); Son, Hyeon, E-mail: hyeonson@hanyang.ac.kr [Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering (Korea, Republic of); Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of)

    2016-01-29

    Erythropoietin (EPO) produces neurotrophic effects in animal model of neurodegeneration. However, clinical use of EPO is limited due to thrombotic risk. Carbamylated EPO (cEPO), devoid of thrombotic risk, has been proposed as a novel neuroprotective and neurotrophic agent although the molecular mechanisms of cEPO remain incomplete. Here, we show a previously unidentified role of histone deacetylase 5 (HDAC5) in the actions of EPO and cEPO. EPO and cEPO regulate the HDAC5 phosphorylation at two critical sites, Ser259 and Ser498 through a protein kinase D (PKD) dependent pathway. In addition, EPO and cEPO rapidly stimulates nuclear export of HDAC5 in rat hippocampal neurons which expressing HDAC5-GFP. Consequently, EPO and cEPO enhanced the myocyte enhancer factor-2 (MEF2) target gene expression. Taken together, our results reveal that EPO and cEPO mediate MEF2 target gene expression via the regulation of HDAC5 phosphorylation at Ser259/498, and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of EPO and cEPO.

  16. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.

    2004-01-01

    Background: Post-translational phosphorylation is one of the most common protein modifications. Phosphoserine, threonine and tyrosine residues play critical roles in the regulation of many cellular processes. The fast growing number of research reports on protein phosphorylation points to a general...... instances for 556 phosphorylated proteins. Conclusion: Phospho. ELM will be a valuable tool both for molecular biologists working on protein phosphorylation sites and for bioinformaticians developing computational predictions on the specificity of phosphorylation reactions....

  17. Acute Hyperglycemia Abolishes Ischemic Preconditioning by Inhibiting Akt Phosphorylation: Normalizing Blood Glucose before Ischemia Restores Ischemic Preconditioning

    Science.gov (United States)

    Yang, Zequan; Liu, Yuan; Hennessy, Sara; Kron, Irving L.; French, Brent A.

    2013-01-01

    This study examined the hypothesis that acute hyperglycemia (HG) blocks ischemic preconditioning (IPC) by inhibiting Akt phosphorylation. Brief HG of approximately 400 mg/dL was induced in C57BL/6 mice via intraperitoneal injection of 20% dextrose (2 g/kg). All mice underwent 40 min LAD occlusion and 60 min reperfusion. The IPC protocol was 2 cycles of 5 min ischemia and 5 min reperfusion prior to index ischemia. Results. In control mice, infarct size (IF) was 51.7 ± 2.0 (% risk region). Preconditioning reduced IF by 50% to 25.8 ± 3.2 (P insulin 5 min before IPC recovered the cardioprotective effect. Administration of CCPA before index ischemia mimicked IPC effect. The cardioprotective effect of CCPA, not its chronotropic effect, completely disappeared in HG mice. Phosphorylation of cardiac tissue Akt before index ischemia was enhanced by IPC or CCPA but was significantly inhibited by HG in both groups. Normalization of glucose with insulin reversed the inhibition of Akt phosphorylation by HG. Conclusion. HG abolishes the cardioprotective effect of preconditioning by inhibiting Akt phosphorylation. Normalization of blood glucose with insulin suffices to recover the cardioprotective effect of preconditioning. PMID:24371503

  18. Galectin-3 Negatively Regulates Hippocampus-Dependent Memory Formation through Inhibition of Integrin Signaling and Galectin-3 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yan-Chu Chen

    2017-07-01

    Full Text Available Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms.

  19. Phosphorylation of adipose triglyceride lipase Ser(404) is not related to 5'-AMPK activation during moderate-intensity exercise in humans.

    Science.gov (United States)

    Mason, Rachael R; Meex, Ruth C R; Lee-Young, Robert; Canny, Benedict J; Watt, Matthew J

    2012-08-15

    Intramyocellular triacylglycerol provides fatty acid substrate for ATP generation in contracting muscle. The protein adipose triglyceride lipase (ATGL) is a key regulator of triacylglycerol lipolysis and whole body energy metabolism at rest and during exercise, and ATGL activity is reported to be enhanced by 5'-AMP-activated protein kinase (AMPK)-mediated phosphorylation at Ser(406) in mice. This is a curious observation, because AMPK activation reduces lipolysis in several cell types. We investigated whether the phosphorylation of ATGL Ser(404) (corresponding to murine Ser(406)) was increased during exercise in human skeletal muscle and with pharmacological AMPK activation in myotubes in vitro. In human experiments, skeletal muscle and venous blood samples were obtained from recreationally active male subjects before and at 5 and 60 min during exercise. ATGL Ser(404) phosphorylation was not increased from rest during exercise, but ATGL Ser(404) phosphorylation correlated with myosin heavy chain 1 expression, suggesting a possible fiber type dependency. ATGL Ser(404) phosphorylation was not related to increases in AMPK activity, and immunoprecipitation experiments indicated no interaction between AMPK and ATGL. Rather, ATGL Ser(404) phosphorylation was associated with protein kinase A (PKA) signaling. ATGL Ser(406) phosphorylation in C(2)C(12) myotubes was unaffected by 5-aminoimidazole-4-carboxaminde-1-β-d-ribofuranoside, an AMPK activator, and the PKA activator forskolin. Our results demonstrate that ATGL Ser(404) phosphorylation is not increased in mixed skeletal muscle during moderate-intensity exercise and that AMPK does not appear to be an activating kinase for ATGL Ser(404/406) in skeletal muscle.

  20. Phosphorylation of connexin43 on serine 306 regulates electrical coupling

    DEFF Research Database (Denmark)

    Procida, Kristina; Jørgensen, Lone; Schmitt, Nicole

    2009-01-01

    BACKGROUND: Phosphorylation is a key regulatory event in controlling the function of the cardiac gap junction protein connexin43 (Cx43). Three new phosphorylation sites (S296, S297, S306) have been identified on Cx43; two of these sites (S297 and S306) are dephosphorylated during ischemia....... The functional significance of these new sites is currently unknown. OBJECTIVE: The purpose of this study was to examine the role of S296, S297, and S306 in the regulation of electrical intercellular communication. METHODS: To mimic constitutive dephosphorylation, serine was mutated to alanine at the three sites...... and expressed in HeLa cells. Electrical coupling and single channel measurements were performed by double patch clamp. Protein expression levels were assayed by western blotting, localization of Cx43, and phosphorylation of S306 by immunolabeling. Free hemichannels were assessed by biotinylation. RESULTS...

  1. Multisite phosphorylation networks as signal processors for Cdk1.

    Science.gov (United States)

    Kõivomägi, Mardo; Ord, Mihkel; Iofik, Anna; Valk, Ervin; Venta, Rainis; Faustova, Ilona; Kivi, Rait; Balog, Eva Rose M; Rubin, Seth M; Loog, Mart

    2013-12-01

    The order and timing of cell-cycle events is controlled by changing substrate specificity and different activity thresholds of cyclin-dependent kinases (CDKs). However, it is not understood how a single protein kinase can trigger hundreds of switches in a sufficiently time-resolved fashion. We show that cyclin-Cdk1-Cks1-dependent phosphorylation of multisite targets in Saccharomyces cerevisiae is controlled by key substrate parameters including distances between phosphorylation sites, distribution of serines and threonines as phosphoacceptors and positioning of cyclin-docking motifs. The component mediating the key interactions in this process is Cks1, the phosphoadaptor subunit of the cyclin-Cdk1-Cks1 complex. We propose that variation of these parameters within networks of phosphorylation sites in different targets provides a wide range of possibilities for differential amplification of Cdk1 signals, thus providing a mechanism to generate a wide range of thresholds in the cell cycle.

  2. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Y Cao; X Jin; E Levin; H Huang; Y Zong; W Hendrickson; J Javitch; K Rajashankar; M Zhou; et al.

    2011-12-31

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.

  3. Exploring the diversity of protein modifications: special bacterial phosphorylation systems

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Grangeasse, Christophe; Turgay, Kürşad

    2016-01-01

    Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one...... that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial...... physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein...

  4. Exploring the intramolecular phosphorylation sites in human Chk2

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Larsen, Martin R; Boldyreff, Brigitte

    2008-01-01

    A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time....... Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except...... for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria....

  5. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  6. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    Science.gov (United States)

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  7. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites......In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...

  8. Phosphorylation of terminal deoxynucleotidyl transferase in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Elias, L. (Univ. of New Mexico School of Medicine, Albuquerque); Longmire, J.; Wood, A.; Ratliff, R.

    1982-05-31

    Phosphorylation of terminal deoxynucleotidyl transferase within leukemic cells has been demonstrated, using /sup 32/P labelling of intact cells in culture, followed by immunoprecipitation of the cellular extracts using an anti-terminal transferase antiserum. The phosphate linkage was found to involve serine and threonine residues. Purified calf thymus terminal transferase served as a substrate for cyclic AMP independent protein kinase obtained from leukemic cells. Phosphorylation in vitro of terminal transferase was accompanied by increased activity and decreased inhibition by excess ribo-ATP. These results indicate that terminal transferase is a physiologic cyclic AMP independent protein kinase substrate, and that this reaction may be important in its control.

  9. Tau Phosphorylation by GSK3 in Different Conditions

    Directory of Open Access Journals (Sweden)

    Jesús Avila

    2012-01-01

    Full Text Available Almost a 20% of the residues of tau protein are phosphorylatable amino acids: serine, threonine, and tyrosine. In this paper we comment on the consequences for tau of being a phosphoprotein. We will focus on serine/threonine phosphorylation. It will be discussed that, depending on the modified residue in tau molecule, phosphorylation could be protective, in processes like hibernation, or toxic like in development of those diseases known as tauopathies, which are characterized by an hyperphosphorylation and aggregation of tau.

  10. Annealing properties of potato starches with different degrees of phosphorylation

    DEFF Research Database (Denmark)

    Muhrbeck, Per; Svensson, E

    1996-01-01

    Changes in the gelatinization temperature interval and gelatinization enthalpy with annealing time at 50 degrees C were followed for a number of potato starch samples, with different degrees of phosphorylation, using differential scanning calorimetry. The gelatinization temperature increased...... with the length of the annealing time up to the maximum time of 1280 min and a clear relation to the degree of phosphorylation was observed. The gelatinization enthalpy changed very slowly during the initial period of annealing, but faster in the later stages of the process. The increase in enthalpy was largest...

  11. Spinal Tolerance and Dependence: Some Observations on the Role of Spinal N-Methyl-D-Aspartate Receptors and Phosphorylation in the Loss of Opioid Analgesic Responses

    Directory of Open Access Journals (Sweden)

    Tony L Yaksh

    2000-01-01

    Full Text Available The continuous delivery of opiates can lead to a reduction in analgesic effects. In humans, as in other animals, some component of this change in sensitivity seems likely to have a strong pharmacodynamic component. Such loss of effect, deemed to be tolerance in the present article, can be readily demonstrated in animals with repeated bolus and continuous intrathecal infusion of mu and delta opioids and alpha-2 adrenergic agonists. Research has shown that this loss of effect can be diminished by concurrent treatment with N-methyl-D-aspartate (NMDA receptor antagonists and by the suppression of the activity of spinal protein kinase C (PKC. This suggests in part the probable role of PKC-mediated phosphorylation in the right shift in the dose-effect curves observed with continuous opiate or adrenergic exposure. Importantly, this right shift is seen to occur in parallel with an increase in the phosphorylating activity in the dorsal horn and in the expression of several PKC isozymes. The target of this phosphorylation is not certain. Phosphorylation of the NMDA receptor enhances its functionality, while phosphorylation of the opioid receptor or associated channels seems to diminish their activity or to enhance internalization. While the focus is on several specific components, the accumulating data emphasize the biological complexity of these changes in spinal drug reactivity.

  12. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J. [Developmental Biology Group, Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, WY 82071 (United States); Sreejayan, Nair [School of Pharmacy, College of Health Science, University of Wyoming, Laramie, WY 82071 (United States); Du, Min, E-mail: mindu@uwyo.edu [Developmental Biology Group, Department of Animal Science, College of Agriculture, University of Wyoming, Laramie, WY 82071 (United States)

    2010-04-23

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation of {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.

  13. Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Kemp Bruce E

    2008-05-01

    Full Text Available Abstract Background We have previously described an approach to predicting the substrate specificity of serine-threonine protein kinases. The method, named Predikin, identifies key conserved substrate-determining residues in the kinase catalytic domain that contact the substrate in the region of the phosphorylation site and so determine the sequence surrounding the phosphorylation site. Predikin was implemented originally as a web application written in Javascript. Results Here, we describe a new version of Predikin, completely revised and rewritten as a modular framework that provides multiple enhancements compared with the original. Predikin now consists of two components: (i PredikinDB, a database of phosphorylation sites that links substrates to kinase sequences and (ii a Perl module, which provides methods to classify protein kinases, reliably identify substrate-determining residues, generate scoring matrices and score putative phosphorylation sites in query sequences. The performance of Predikin as measured using receiver operator characteristic (ROC graph analysis equals or surpasses that of existing comparable methods. The Predikin website has been redesigned to incorporate the new features. Conclusion New features in Predikin include the use of SQL queries to PredikinDB to generate predictions, scoring of predictions, more reliable identification of substrate-determining residues and putative phosphorylation sites, extended options to handle protein kinase and substrate data and an improved web interface. The new features significantly enhance the ability of Predikin to analyse protein kinases and their substrates. Predikin is available at http://predikin.biosci.uq.edu.au.

  14. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus.

    Science.gov (United States)

    Berrout, Liza; Isokawa, Masako

    2018-01-01

    Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Kit- and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Spicka, Jiri; Tkaczyk, Christine

    2008-01-01

    The transmembrane adaptor protein (TRAP), NTAL, is phosphorylated in mast cells following FcvarepsilonRI aggregation whereby it cooperates with LAT to induce degranulation. The Kit ligand, stem cell factor (SCF), enhances antigen-induced degranulation and this also appears to be NTAL-dependent. H...

  16. Discrimination between acid and alkali-labile phosphorylated residues on Immobilon: phosphorylation studies of nucleoside diphosphate kinase

    DEFF Research Database (Denmark)

    Biondi, R M; Walz, K; Issinger, O G

    1996-01-01

    in buffers containing 5% methanol allows unambiguous distinction between serine/threonine and histidine phosphorylation (O-phosphomonoesters and phosphoramide, respectively) since under these conditions only one type of residue is dephosphorylated. The addition of 5% methanol to all buffers was indispensable...... to deplete phosphate from membranes incubated successively under acid and basic conditions. The technique was applied to the study of nucleoside diphosphate kinase (NDP kinase) phosphorylation. In this enzyme, autophosphorylation of active site histidine is an accepted intermediate step in the catalytic...... of phosphoserine after strong acid hydrolysis of the histidine autophosphorylated enzyme is in fact a nonenzymatic transphosphorylation from phosphohistidine due to the harsh acid treatment. This methodology was also applied to in vivo phosphorylation studies of C. albicans NDP kinase. We believe...

  17. beta2-adaptin is constitutively de-phosphorylated by serine/threonine protein phosphatase PP2A and phosphorylated by a staurosporine-sensitive kinase

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Menné, C; Kastrup, J

    2000-01-01

    -adaptin undergoes cycles of phosphorylation/de-phosphorylation in intact cells. Thus, beta2-adaptin was constitutively de-phosphorylated by serine/threonine protein phosphatase 2A and phosphorylated by a staurosporine-sensitive kinase in vivo. Confocal laser scanning microscopy demonstrated...... the hypothesis that phosphorylation/de-phosphorylation of coat proteins plays a regulatory role in the assembly/disassembly cycle of clathrin-coated vesicles.......Clathrin-mediated endocytosis includes cycles of assembly and disassembly of the clathrin-coated vesicle constituents. How these cycles are regulated is still not fully known but previous studies have indicated that phosphorylation of coat subunits may play a role. Here we describe that beta2...

  18. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jamie K. Moy

    2018-02-01

    Full Text Available Plasticity in dorsal root ganglion (DRG neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.

  19. Distribution pattern of histone H3 phosphorylation at serine 10 ...

    Indian Academy of Sciences (India)

    2013-08-06

    Aug 6, 2013 ... in chromosome distribution of H3S10ph when mitosis and meiosis were compared. ... [Paula C. M. P., Techio V. H., Sobrinho F. S. and Freitas A. S. 2013 Distribution pattern of histone H3 phosphorylation at serine 10 during mitosis and meiosis in ... RDWebster], since current knowledge about specific roles ...