WorldWideScience

Sample records for enhanced geomagnetic activity

  1. Resonant enhancement of relativistic electron fluxes during geomagnetically active periods

    Directory of Open Access Journals (Sweden)

    I. Roth

    Full Text Available The strong increase in the flux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced significantly due to injection of 10-100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic field generate the rising tones of VLF whistler chorus. The seed population of relativistic electrons which bounce along the inhomogeneous magnetic field, interacts resonantly with the whistler waves. Whistler wave propagating obliquely to the magnetic field can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative integer multiple of the local relativistic gyrofrequency. Because the gyroradius of a relativistic electron may be the order of or greater than the perpendicular wavelength, numerous cyclotron, harmonics can contribute to the resonant interaction which breaks down the adiabatic invariant. A similar process diffuses the pitch angle leading to electron precipitation. The irreversible changes in the adiabatic invariant depend on the relative phase between the wave and the electron, and successive resonant interactions result in electrons undergoing a random walk in energy and pitch angle. This resonant process may contribute to the 10-100 fold increase of the relativistic electron flux in the outer radiation belt, and constitute an interesting relation between substorm-generated waves and enhancements in fluxes of relativistic electrons during geomagnetic storms and other active periods.

    Key words. Magnetospheric physics (energetic particles · trapped; plasma waves and instabilities; storms and substorms

  2. Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms

    Directory of Open Access Journals (Sweden)

    Libo Liu

    2008-05-01

    Full Text Available Sometimes the ionospheric total electron content (TEC is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS observations in the Asia/Australia sector as well as global ionospheric maps (GIMs produced by Jet Propulsion Laboratory (JPL. Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA crests, which are consistent with those low-latitude events presented by Liu et al. (2008. During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event. Further investigation is warrented to identify/separate contributions from possible sources.

  3. Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009

    Directory of Open Access Journals (Sweden)

    J. L. Zerbo

    2012-02-01

    Full Text Available We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989 and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification.

  4. Geomagnetic activity and the North Atlantic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2014-01-01

    Roč. 58, č. 3 (2014), s. 461-472 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : geomagnetic activity * solar wind * polar vortex intensification * downward winds Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  5. Tsunami related to solar and geomagnetic activity

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  6. The behavior of solar wind parameters and geomagnetic activity ...

    African Journals Online (AJOL)

    The main objective of the current work is to investigate the behavior of space weather parameter as well as geomagnetic activity indices to observe the Geomagnetically Induced Current (GIC). Subsequently, solar wind parameter and geomagnetic activity indices provided an evidence that GIC formed during quiet days.

  7. Relative outflow enhancements during major geomagnetic storms – Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Schillings

    2017-12-01

    Full Text Available The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst  < −100 nT or Kp  > 7+. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere are distorted during large magnetic storms, we use both plasma beta (β and ion characteristics to define a spatial box where the upward O+ flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only O+ data were used because H+ may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004 and the highest scaled O+ outflow observed is 2  ×  1014 m−2 s−1 (29 October 2003.

  8. Disturbances in the US electric grid associated with geomagnetic activity

    Directory of Open Access Journals (Sweden)

    Mitchell Sarah D.

    2013-05-01

    Full Text Available Large solar explosions are responsible for space weather that can impact technological infrastructure on and around Earth. Here, we apply a retrospective cohort exposure analysis to quantify the impacts of geomagnetic activity on the US electric power grid for the period from 1992 through 2010. We find, with more than 3σ significance, that approximately 4% of the disturbances in the US power grid reported to the US Department of Energy are attributable to strong geomagnetic activity and its associated geomagnetically induced currents.

  9. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    Science.gov (United States)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  10. Geomagnetic activity and the global temperature

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2009-01-01

    Roč. 53, č. 4 (2009), s. 571-573 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : global warming * Southern Oscillation * geomagnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.000, year: 2009

  11. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.

    1979-01-01

    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  12. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  13. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  14. H-alpha response to geomagnetic disturbed activity at Arecibo.

    Science.gov (United States)

    Santos, Pedrina; Kerr, R.; Noto, J.; Brum, Christiano; Gonzalez, Sixto

    Configured with a spectral resolution of 0.0086 nm at 6563A, the low resolution Fabry-Perot Interferometer (FPI) installed at Arecibo Observatory sampled the geocoronal Balmer-alpha emission for sixty nights during new moon periods from September 2006 to September 2007. In this work two of these periods are analyzed according to the variability with the geomagnetic activity. With this purpose, the effect of the shadow height, local time and solar flux depen-dencies were found and isolated and only the possible variations due the geomagnetic activity were evaluated. The residuos of the relative H-alpha intensity and temperature are analyzed.

  15. Possible helio-geomagnetic activity influence on cardiological cases

    Science.gov (United States)

    Katsavrias, Christos

    Eruptive solar events as flares and coronal mass ejections (CMEs) occur during solar activ-ity periods. Energetic particles, fast solar wind plasma and electromagnetic radiation pass through interplanetary space, arrive on Earth's ionosphere-magnetosphere and produce various disturbances. It is well known the negative influence of geomagnetic substorms on the human technological applications on geospace. During the last 25 years, many studies concerning the possible influence on the human health are published. Increase of the Acute Coronary Syn-dromes and disorders of the Cardiac Rhythm, increase of accidents as well as neurological and psychological disorders (e.g. increase of suicides) during or near to the geomagnetic storms time interval are reported. In this study, we research the problem in Greece, focusing on patients with Acute Myocardial Infraction, hospitalized in the 2nd Cardiological Department of the General Hospital of Nikaea (Piraeus City), for the time interval 1997-2007 (23rd solar cycle) and also to the arrival of emergency cardiological cases to Emergency Department of two greek hospitals, the General Hospital of Lamia City and the General Hospital of Veria City during the selected months, with or without helio-geomagnetic activity, of the 23rd solar cycle. Increase of cases is recorded during the periods with increase helio-geomagnetic activity. The necessity of continuing the research for a longer period and with a bigger sample is high; so as to exact more secure conclusions.

  16. Geomagnetic Activity Indicates Large Amplitude for Sunspot Cycle 24

    Science.gov (United States)

    Hathaway, David H.

    2006-01-01

    The level of geomagnetic activity near the time of solar activity minimum has been shown to be a reliable indicator for the amplitude of the following solar activity maximum. The geomagnetic activity index aa can be split into two components: one associated with solar flares, prominence eruptions, and coronal mass ejections which follows the solar activity cycle and a second component associated with recurrent high speed solar wind streams which is out of phase with the solar activity cycle. This second component often peaks before solar activity minimum and has been one of the most reliable indicators for the amplitude of the following maximum. The size of the recent maximum in this second component indicates that solar activity cycle 24 will be much higher than average - similar in size to cycles 21 and 22 with a peak smoothed sunspot number of 160 plus or minus 25.

  17. Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

  18. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  19. Geophysical variables and behavior: XXI. Geomagnetic variation as possible enhancement stimuli for UFO reports preceding earthtremors.

    Science.gov (United States)

    Persinger, M A

    1985-02-01

    The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region.

  20. Statistics of Extreme Time-Integrated Geomagnetic Activity

    Science.gov (United States)

    Mourenas, D.; Artemyev, A. V.; Zhang, X.-J.

    2018-01-01

    A statistical analysis of the time-integrated Dst index is performed over 1958-2007. The tail of the probability distribution of extreme time-integrated Dst events, which occur during strong geomagnetic storms, can be precisely fitted by a power law function with upper cutoff, apparently not exceeded even by the 1859 Carrington event. This time-integrated Dst is expected to be a reasonable proxy for maximum densities of MeV electrons in the heart of the outer radiation belt, which are known to pose a serious threat to satellites. During such strong events, a correlation is found between the time-integrated levels of various physical quantities, such as interplanetary magnetic field Bz, particle energy fluxes measured during injections in the magnetotail, geosynchronous ULF wave index, and geomagnetic activity in the inner magnetosphere, suggesting cumulative effects from successive disturbances.

  1. The correlation between solar and geomagnetic activity – Part 1: Two-term decomposition of geomagnetic activity

    Directory of Open Access Journals (Sweden)

    Z. L. Du

    2011-08-01

    Full Text Available By analyzing the logarithmic relationship between geomagnetic activity as represented by the annual aa index and solar magnetic field activity as represented by the annual sunspot number (Rz during the period 1844–2010, aa is shown to lie in between two lines defined solely by Rz. Two ways can be used to decompose the aa index into two components. One is decomposing aa into the sum of the baseline (aab and the remainder (aau with a null correlation. Another is dividing the top-line (aat into the sum of aa and the remainder (aad with a null correlation. The first decomposition is similar to the traditional one. The second decomposition implies a nonlinear relationship of aa with Rz (aat and a decay process (aad. Therefore, aat=aa+aad=aab+aau+aad: (i aat is related to the solar energy potential of generating geomagnetic activity (associated with Rz; (ii aab is related to transient phenomena; (iii aau is related to recurrent phenomena; and (iv aad is related to the energy loss in the transmission from solar surface to the magnetosphere and ionosphere that failed to generate geomagnetic activity.

  2. Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp

    Science.gov (United States)

    Carter, B. A.; Retterer, J. M.; Yizengaw, E.; Groves, K.; Caton, R.; McNamara, L.; Bridgwood, C.; Francis, M.; Terkildsen, M.; Norman, R.; Zhang, K.

    2014-08-01

    Describing the day-to-day variability of Equatorial Plasma Bubble (EPB) occurrence remains a significant challenge. In this study we use the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIEGCM), driven by solar (F10.7) and geomagnetic (Kp) activity indices, to study daily variations of the linear Rayleigh-Taylor (R-T) instability growth rate in relation to the measured scintillation strength at five longitudinally distributed stations. For locations characterized by generally favorable conditions for EPB growth (i.e., within the scintillation season for that location), we find that the TIEGCM is capable of identifying days when EPB development, determined from the calculated R-T growth rate, is suppressed as a result of geomagnetic activity. Both observed and modeled upward plasma drifts indicate that the prereversal enhancement scales linearly with Kp from several hours prior, from which it is concluded that even small Kp changes cause significant variations in daily EPB growth.

  3. Contributions from Different Sources to Semiannual Variation of Geomagnetic Activity

    Science.gov (United States)

    Lyatskaya, S.; Lyatsky, W.; Tan, A.

    2005-05-01

    Historically, the three possible causes for semiannual variation of geomagnetic activity were proposed: 1) an inclination of the ecliptic plane to the solar equatorial plane (while moving around the Sun, the Earth attains its highest heliospheric latitudes, where solar wind speed increases, in equinoctial months); 2) the semiannual variation of the angle between the Earth's axis and the y-axis in the solar-ecliptic (SE) coordinate system (this angle attains its minimum in equinoctial months that results in increasing the contribution from IMF By in the SE coordinate system to IMF Bz in the solar-magnetospheric coordinate system, which is responsible for geomagnetic activity; this effect is known as the Russell-McPherron effect); and 3) the semiannual variation of solar luminosity of high-latitude conjugate ionospheres (in summer-winter months one of the polar caps is in sunlit conditions while in equinoxes both nightside high-latitude ionospheres are in darkness that is favor for the generation of substorm activity). The last mechanism is not dependent on solar wind conditions while two first mechanisms are dependent. This allowed us to estimate the contributions from these two possible mechanisms to the semiannual variation of geomagnetic activity. For this purpose we investigated the semiannual variation of the Dst index for ten years, 1995-2004. We found that after exclusion of the first mechanism, the amplitude decreases by less than 10%, after excluding the second mechanisms (the Russell-McPherron effect) the amplitude of the semiannual variation decreases by ~ 20%. Although both dependence of solar wind speed on heliospheric latitude and the Russell-McPherron effect are evidently seen in the data, our study showed that these effects contribute in total to the semiannual variation of Dst index not more than 30%.

  4. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  5. Geomagnetic and sunspot activity associations and ionospheric effects of lightning phenomena at Trivandrum near dip equator

    Science.gov (United States)

    Girish, T. E.; Eapen, P. E.

    2008-12-01

    From a study of thunder/lightning observations in Trivandrum (near dip equator) for selected years between 1853 and 2005, we could find an inverse relation of the same with sunspot activity and associations with enhancements in diurnal range of local geomagnetic declination. The results seem to suggest lightning-associated modulation of E-region dynamo currents in the equatorial ionosphere and the thunderstorm activity near dip equator probably acts as a moderator to regulate electric potential gradient changes in the global electric circuit due to solar activity changes.

  6. Non-radial solar wind flows and geomagnetic activity changes during 1973-2003

    Science.gov (United States)

    Pereira, B. F.; Girish, T. E.

    We have found an association between geomagnetic activity changes and non-radial solar wind flows during the period 1973-2003. The solar wind flow latitude in the GSE system is observed to be higher during intense geomagnetic storm periods. Northward-directed solar wind flows are observed to be higher and a correlation is obtained between this parameter and geomagnetic Ap index during the declining phases of the sunspot cycles. These results suggest an association of non-radial flows from coronal holes and geomagnetic activity during the declining phase of sunspot cycle.

  7. Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

    Science.gov (United States)

    Kim, Roksoon; Park, J.-Y.; Baek, J.-H.; Kim, B.-G.

    2017-08-01

    It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  8. Lessons learned from recent geomagnetic disturbance model validation activities

    Science.gov (United States)

    Pulkkinen, A. A.; Welling, D. T.

    2017-12-01

    Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.

  9. Statistical relationship of strong earthquakes with planetary geomagnetic field activity

    Science.gov (United States)

    Pogrebnikov, M. M.; Komarovski, N. I.; Kopytenko, Y. A.; Pushel, A. P.

    1984-12-01

    Earlier studies reported a significant decrease in the geomagnetic field before strong earthquakes. Possible relationships between earthquakes with magnitude greater than 7 (Soviet scale) and planetary terrestrial magnetic field activity as characterized by the K sub p index were investigated. A total of 100 cases of strong earthquakes on magnetically quiet days in 1965 to 1975 were studied. The K sub p indexes were studied for two days before and two days after the earthquakes. The dispersion curve shows a significant decrease one day before each event. The relationship of the planetary K sub p index with seismic activity indicates that the period of preparation for an earthquake and at the moment of the shock are reflected in the terrestrial magnetic field.

  10. Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2013-04-01

    From the surface of the Sun, as a result of a solar flare, are expelled a coronal mass (CME or Coronal Mass Ejection) that can be observed from the Earth through a coronagraph in white light. This ejected material can be compared to an electrically charged cloud (plasma) mainly composed of electrons, protons and other small quantities of heavier elements such as helium, oxygen and iron that run radially from the Sun along the lines of the solar magnetic field and pushing into interplanetary space. Sometimes the CME able to reach the Earth causing major disruptions of its magnetosphere: mashed in the region illuminated by the Sun and expanding in the region not illuminated. This interaction creates extensive disruption of the Earth's geomagnetic field that can be detected by a radio receiver tuned to the ELF band (Extreme Low Frequency 0-30 Hz). The Radio Emissions Project (scientific research project founded in February 2009 by Gabriele Cataldi and Daniele Cataldi), analyzing the change in the Earth's geomagnetic field through an induction magnetometer tuned between 0.001 and 5 Hz (bandwidth in which possible to observe the geomagnetic pulsations) was able to detect the existence of a close relationship between this geomagnetic perturbations and the global seismic activity M6+. During the arrival of the CME on Earth, in the Earth's geomagnetic field are generated sudden and intensive emissions that have a bandwidth including between 0 and 15 Hz, an average duration of 2-8 hours, that preceding of 0-12 hours M6+ earthquakes. Between 1 January 2012 and 31 December 2012, all M6+ earthquakes recorded on a global scale were preceded by this type of signals which, due to their characteristics, have been called "Seismic Geomagnetic Precursors" (S.G.P.). The main feature of Seismic Geomagnetic Precursors is represented by the close relationship that they have with the solar activity. In fact, because the S.G.P. are geomagnetic emissions, their temporal modulation depends

  11. Real-time Neural Network predictions of geomagnetic activity indices

    Science.gov (United States)

    Bala, R.; Reiff, P. H.

    2009-12-01

    The Boyle potential or the Boyle Index (BI), Φ (kV)=10-4 (V/(km/s))2 + 11.7 (B/nT) sin3(θ/2), is an empirically-derived formula that can characterize the Earth's polar cap potential, which is readily derivable in real time using the solar wind data from ACE (Advanced Composition Explorer). The BI has a simplistic form that utilizes a non-magnetic "viscous" and a magnetic "merging" component to characterize the magnetospheric behavior in response to the solar wind. We have investigated its correlation with two of conventional geomagnetic activity indices in Kp and the AE index. We have shown that the logarithms of both 3-hr and 1-hr averages of the BI correlate well with the subsequent Kp: Kp = 8.93 log10(BI) - 12.55 along with 1-hr BI correlating with the subsequent log10(AE): log10(AE) = 1.78 log10(BI) - 3.6. We have developed a new set of algorithms based on Artificial Neural Networks (ANNs) suitable for short term space weather forecasts with an enhanced lead-time and better accuracy in predicting Kp and AE over some leading models; the algorithms omit the time history of its targets to utilize only the solar wind data. Inputs to our ANN models benefit from the BI and its proven record as a forecasting parameter since its initiation in October, 2003. We have also performed time-sensitivity tests using cross-correlation analysis to demonstrate that our models are as efficient as those that incorporates the time history of the target indices in their inputs. Our algorithms can predict the upcoming full 3-hr Kp, purely from the solar wind data and achieve a linear correlation coefficient of 0.840, which means that it predicts the upcoming Kp value on average to within 1.3 step, which is approximately the resolution of the real-time Kp estimate. Our success in predicting Kp during a recent unexpected event (22 July ’09) is shown in the figure. Also, when predicting an equivalent "one hour Kp'', the correlation coefficient is 0.86, meaning on average a prediction

  12. Dependence of thermospheric zonal winds on solar flux, geomagnetic activity, and hemisphere as measured by CHAMP

    Science.gov (United States)

    Zhang, Xiaofang; Liu, Libo; Liu, Songtao

    2017-08-01

    The thermospheric zonal winds measured by the CHAllenging Minisatellite Payload (CHAMP) satellite are used to statistically determine the climatology under quiet and active geomagnetic conditions. By collectively analyzing the bin-averaged wind trend with F10.7 and the solar-induced difference in wind structures, the solar flux dependence of global thermosphere zonal wind is determined. The increase of solar flux enhances the eastward winds at low latitudes from dusk to midnight. The increased ion drag reduces the nighttime eastward wind in the subauroral latitudes, and the daytime westward winds from 06 to 08 MLT at all latitudes decrease with increasing solar flux. Zonal winds show coupled seasonal/extreme ultraviolet (EUV) dependency. The equatorial zonal winds from 18 to 04 magnetic local time (MLT) indicate weaker eastward winds during the June solstice at high solar flux levels. Quiet time eastward winds at subauroral latitudes from 16 to 20 MLT are further decreased in the winter hemisphere. Influenced by asymmetries in solar illumination and the magnetic field, zonal winds show hemispheric asymmetries. Quiet daytime winds are additionally influenced by solar illumination effects, and the westward winds at the middle and subauroral latitudes are always stronger in the summer. The nighttime eastward winds are higher in the winter hemisphere during the solstices, as in the Southern Hemisphere during equinoxes, with the winter-summer asymmetry lessened or receding at the solar maxima. Storm-induced subauroral westward disturbance winds are higher in the summer hemisphere and in the Northern Hemisphere during equinoxes. At a high level of solar flux, the westward disturbance winds are comparable in the two hemispheres during December solstice. Geomagnetic disturbance wind observations from CHAMP agree well with the empirical geomagnetic disturbance wind model, except for stronger subauroral westward jets. Westward winds during the afternoon may be enhanced in

  13. Quantitative modeling of the ionospheric response to geomagnetic activity

    Directory of Open Access Journals (Sweden)

    T. J. Fuller-Rowell

    2000-07-01

    Full Text Available A physical model of the coupled thermosphere and ionosphere has been used to determine the accuracy of model predictions of the ionospheric response to geomagnetic activity, and assess our understanding of the physical processes. The physical model is driven by empirical descriptions of the high-latitude electric field and auroral precipitation, as measures of the strength of the magnetospheric sources of energy and momentum to the upper atmosphere. Both sources are keyed to the time-dependent TIROS/NOAA auroral power index. The output of the model is the departure of the ionospheric F region from the normal climatological mean. A 50-day interval towards the end of 1997 has been simulated with the model for two cases. The first simulation uses only the electric fields and auroral forcing from the empirical models, and the second has an additional source of random electric field variability. In both cases, output from the physical model is compared with F-region data from ionosonde stations. Quantitative model/data comparisons have been performed to move beyond the conventional "visual" scientific assessment, in order to determine the value of the predictions for operational use. For this study, the ionosphere at two ionosonde stations has been studied in depth, one each from the northern and southern mid-latitudes. The model clearly captures the seasonal dependence in the ionospheric response to geomagnetic activity at mid-latitude, reproducing the tendency for decreased ion density in the summer hemisphere and increased densities in winter. In contrast to the "visual" success of the model, the detailed quantitative comparisons, which are necessary for space weather applications, are less impressive. The accuracy, or value, of the model has been quantified by evaluating the daily standard deviation, the root-mean-square error, and the correlation coefficient between the data and model predictions. The modeled quiet-time variability, or standard

  14. Long-term variations in the geomagnetic activity level Part II: Ascending phases of sunspot cycles

    Directory of Open Access Journals (Sweden)

    V. Mussino

    1994-08-01

    Full Text Available Monthly averages of the Helsinki Ak-values have been reduced to the equivalent aa-indices to extend the aa-data set back to 1844. A periodicity of about five cycles was found for the correlation coefficient (r between geomagnetic indices and sunspot numbers for the ascending phases of sunspot cycles 9 to 22, confirming previous findings based on a minor number of sunspot cycles. The result is useful to researchers in topics related to solar-terrestrial physics, particularly for the interpretation of long-term trends in geomagnetic activity during the past, and to forecast geomagnetic activity levels in the future.

  15. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  16. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    Science.gov (United States)

    Azcárate, T; Mendoza, B

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  17. Correlation of geomagnetic activity with implantable cardioverter defibrillator shocks and antitachycardia pacing

    Czech Academy of Sciences Publication Activity Database

    Ebrille, E.; Konecny, T.; Konecny, D.; Špaček, R.; Jones, P.; Ambrož, Pavel; DeSimone, C.V.; Powel, B.D.; Hayes, D.L.; Friedman, P.A.; Asirvatham, S.J.

    2015-01-01

    Roč. 90, č. 2 (2015), s. 202-208 ISSN 0025-6196 Institutional support: RVO:67985815 Keywords : geomagnetic activity * implantable cardioverter defibrillator Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.920, year: 2015

  18. Possible associations between long term anomalous geomagnetic variations, Vrancea (Romania) intermediate depths earthquakes and the solar activity for the last 15 years

    Science.gov (United States)

    Moldovan, I. A.; Moldovan, A. S.; Placinta, A. O.; Takla, E. M.; Constantin, A. P.; Popescu, E.

    2012-04-01

    Geomagnetic variations associated with earthquakes are widely accepted and several anomalous geomagnetic observations have been interpreted as a result of changing rock magnetic properties under varying tectonic stress (piezomagnetic effect). During the last 15 years of geomagnetic investigations conducted in Vrancea seismogenic zone, period covering more than a complete solar cycle, the solar-terrestrial perturbations have fluctuated from very low to very large values, providing the ideal medium to observe the correlation between the long and short term geomagnetic field perturbations, solar activity and earthquakes. The October 2004 intermediate depth earthquake (Mw=6.0) offered us the opportunity to investigate possible connections between the local geomagnetic field behavior and the occurrence of moderate magnitude Vrancea earthquakes. The comparison between the geomagnetic data obtained at a station inside the epicentral zone with other remote reference stations (outside the epicenter) considers an effective technique to detect the anomalous variation of a lithospheric origin. The working data are: (i) the geomagnetic field records made at Muntele Rosu Observatory (MLR), Surlari (SUA) and/or Tihany (THY) INTERMAGNET Observatories; (ii) the seismic data for Vrancea source zone; (iii) the daily geomagnetic index from NOAA/Space Weather. The one minute and daily averaged geomagnetic data were calculated at these stations for the whole period 1996-2011. The geomagnetic components: X, Y (horizontal North-South and East-West) and Z (vertical) and the normalized vertical component (Bz/Bx and Bz/By) were used in the data analysis processes and also in the comparison of the geomagnetic data between the selected stations. Our results indicate the presence of long term anomalous variations (weeks or months) in the geomagnetic components and in the magnetic impedance at MLR Observatory (close to the epicenter) and no magnetic modifications in the SUA and THY recordings

  19. The Challenge Posed by Geomagnetic Activity to Electric Power Reliability: Evidence From England and Wales

    Science.gov (United States)

    Forbes, Kevin F.; St. Cyr, O. C.

    2017-10-01

    This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.

  20. Long-term trends of foE and geomagnetic activity variations

    Directory of Open Access Journals (Sweden)

    A. V. Mikhailov

    2003-03-01

    Full Text Available A relationship between foE trends and geomagnetic activity long-term variations has been revealed for the first time. By analogy with earlier obtained results on the foF2 trends it is possible to speak about the geomagnetic control of the foE long-term trends as well. Periods of increasing geomagnetic activity correspond to negative foE trends, while these trends are positive for the decreasing phase of geomagnetic activity. This "natural" relationship breaks down around 1970 (on some stations later when pronounced positive foE trends have appeared on most of the stations considered. The dependence of foE trends on geomagnetic activity can be related with nitric oxide variations at the E-layer heights. The positive foE trends that appeared after the "break down" effect may also be explained by the [NO] decrease which is not related to geomagnetic activity variations. But negative trends or irregular foE variations on some stations for the same time period require some different mechanism. Chemical pollution of the lower thermosphere due to the anthropogenic activity may be responsible for such abnormal foE behavior after the end of the 1960s.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric disturbances

  1. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    Science.gov (United States)

    Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.

    2011-01-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.

  2. Time variations of geomagnetic activity indices Kp and Ap: an update

    Directory of Open Access Journals (Sweden)

    G. K. Rangarajan

    Full Text Available Kp and Ap indices covering the period 1932 to 1995 are analysed in a fashion similar to that attempted by Bartels for the 1932–1961 epoch to examine the time variations in their characteristics. Modern analysis techniques on the extended data base are used for further insight. The relative frequencies of occurrence of Kp with different magnitudes and the seasonal and solar cycle dependences are seen to be remarkably consistent despite the addition of 35 years of observations. Many of the earlier features seen in the indices and special intervals are shown to be replicated in the present analysis. Time variations in the occurrence of prolonged periods of geomagnetic calm or of enhanced activity are presented and their relation to solar activity highlighted. It is shown that in the declining phase the occurrence frequencies of Kp = 4–5 (consecutively over 4 intervals can be used as a precursor for the maximum sunspot number to be expected in the next cycle. The semi-annual variation in geomagnetic activity is re-examined utilising not only the Ap index but also the occurrence frequencies of Kp index with different magnitudes. Lack of dependence of the amplitude of semi-annual variation on sunspot number is emphasised. Singular spectrum analysis of the mean monthly Ap index shows some distinct periodic components. The temporal evolution of ~44 month, ~21 month and ~16 month oscillations are examined and it is postulated that while QBO and the 16 month oscillations could be attributed to solar wind and IMF oscillations with analogous periodicity, the 44 month variation is associated with a similar periodicity in recurrent high speed stream caused by sector boundary passage. It is reconfirmed that there could have been only one epoch around 1940 when solar wind speed could have exhibited a 1.3-year periodicity comparable to that seen during the post-1986 period.

  3. Solar polar magnetic field dependency of geomagnetic activity semiannual variation indicated in the Aa index

    Science.gov (United States)

    Oh, Suyeon; Yi, Yu

    2018-01-01

    Three major hypotheses have been proposed to explain the well-known semiannual variation of geomagnetic activity, maxima at equinoxes and minima at solstices. This study examined whether the seasonal variation of equinoctial geomagnetic activity is different in periods of opposite solar magnetic polarity in order to understand the contribution of the interplanetary magnetic field (IMF) in the Sun-Earth connection. Solar magnetic polarity is parallel to the Earth's polarity in solar minimum years of odd/even cycles but antiparallel in solar minimum years of even/odd cycles. The daily mean of the aa, Aa indices during each solar minimum was compared for periods when the solar magnetic polarity remained in opposite dipole conditions. The Aa index values were used for each of the three years surrounding the solar minimum years of the 14 solar cycles recorded since 1856. The Aa index reflects seasonal variation in geomagnetic activity, which is greater at the equinoxes than at the solstices. The Aa index reveals solar magnetic polarity dependency in which the geomagnetic activity is stronger in the antiparallel solar magnetic polarity condition than in the parallel one. The periodicity in semiannual variation of the Aa index is stronger in the antiparallel solar polar magnetic field period than in the parallel period. Additionally, we suggest the favorable IMF condition of the semiannual variation in geomagnetic activity. The orientation of IMF toward the Sun in spring and away from the Sun in fall mainly contributes to the semiannual variation of geomagnetic activity in both antiparallel and parallel solar minimum years.

  4. Relations between the solar inertial motion, solar activity and geomagnetic index aa since the year 1844

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka; Střeštík, Jaroslav

    2007-01-01

    Roč. 40, - (2007), s. 1026-1031 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608 Institutional research plan: CEZ:AV0Z30120515 Keywords : solar motion * solar activity * geomagnetic activity Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.774, year: 2007

  5. Drag Effect of Kompsat-1 During Strong Solar and Geomagnetic Activity

    Directory of Open Access Journals (Sweden)

    J. Park

    2007-06-01

    Full Text Available In this paper, we analyze the orbital variation of the KOrea Multi-Purpose SATellite-1(KOMPSAT-1 in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs. Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmosphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92 for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day variations is governed by geomagnetic storms.

  6. Solar and Geomagnetic Activity Variations Correlated to Italian M6+ Earthquakes Occurred in 2016

    Science.gov (United States)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2017-04-01

    Between August 2016 and October 2016 in Italy were recorded three strong earthquakes: M6.2 on August 2016 at 01:36:32 UTC; M6.1 on October 26, 2016 at 19:18:08 UTC and M6,6 on October 30, 2016 at 06:40:18 UTC. The authors of this study wanted to verify the existence of a correlation between these earthquakes and solar/geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the three earthquakes. The data relating to the three earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark; Dikson Geomagnetic Observatory (DIK), Russia and by Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already ascertained by authors from 2012, have confirmed that the three strong Italian earthquakes were preceded by a clear increase of the solar wind proton density which

  7. Changes in geomagnetic activity and global temperature during the past 40 years

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2012-01-01

    Roč. 56, č. 4 (2012), s. 1095-1107 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : geomagnetic activity * polar vortex * climate indices * global temperature Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.975, year: 2012

  8. Time scheduling of magnetic surveys in mid-latitudes with respect to forecasting geomagnetic activity

    Science.gov (United States)

    Hejda, Pavel; Bochníček, Josef; Horáček, Josef; Nejedlá, Jaroslava

    2006-06-01

    The quality of magnetic surveys is essentially influenced by the geomagnetic activity. As the in situ measurements are usually limited to very short time period, they must be compared with observatory continuous registrations. When reducing measurements one makes an assumption that diurnal variations of the magnetic field are identical at both the station and the reference observatory. During magnetically quite periods, this assumption is satisfied to an acceptable extent. However, under high geomagnetic activity, the error may easily exceed the acceptable limit. Our analysis indicates that, in mid-latitudes, magnetic surveys should not be made, if some of the Kp values are over 5. Long-term and medium-term forecasts of geomagnetic activity are based on known periodicities (11-year, half-year and 27-day). Short-term forecasts are based on the knowledge of the actual conditions on the Sun, in the solar wind and in the interplanetary magnetic field. Regional Warning Centres, associated in the International Space Environment Service (ISES) deal with forecasts of geomagnetic activity. Links to all 12 centres can be obtained through http://www.ises-spaceweather.org/about_ises/index.html.

  9. Magnetic and electric field variations during geomagnetically active days over Turkey

    Science.gov (United States)

    Kalafatoğlu Eyigüler, Emine Ceren; Kaymaz, Zerefşan

    2017-11-01

    Currents in the magnetosphere flow into the ionosphere during geomagnetic disturbances and are detected at the ground magnetic stations as Geomagnetically Induced Currents (GICs). In this paper, magnetic and electric field characteristics of the GICs at midlatitudes were studied using electric field and magnetic field observations in Turkey during the geomagnetically active intervals. A magnetotelluric station consisting of an electrometer and a magnetometer were set up in Bozcaada, Çanakkale (37.5°N, 106°E). Several cases that showed large electric and magnetic field fluctuations during geomagnetic disturbances were selected and the effects of geomagnetic activity were studied using the time derivatives of horizontal component of the magnetic field and the deviations in the magnetic and electric field components from the quiet background. In magnetic field data, quiet day Sq variations were removed using cubic spline fits. Similarly, the magnitude of the deviations in the electric field were determined by subtracting the background electric field determined by using cubic spline. Corresponding to the strong geomagnetic activity identified using Kp and Dst indices, high frequency, strong fluctuations in the magnetic field, its derivatives, and electric field were observed. These fluctuations in horizontal magnetic and electric field were compared with those seen during a magnetically quiet day. The close association between the fluctuations of the time derivatives of the horizontal magnetic field and electric field components were demonstrated. Two types of variations in the electric and magnetic fields corresponding to the different phases of the geomagnetic activity were identified: those corresponding to the initial phase including the sudden commencement and those to the main phase of the geomagnetic storm. The fluctuations in both magnetic field and electric field corresponding to the sudden commencement and the initial phase indicate the effects of

  10. Geomagnetic Workshop

    Science.gov (United States)

    DeNoyer, John; Cain, Joseph C.; Banerjee, Subir; Benton, Edward R.; Blakely, Richard J.; Coe, Rob; Harrison, C. G. A.; Johnston, Malcolm; Regan, Robert D.

    A workshop on geomagnetism, sponsored by the Geologic Division of the U.S. Geological Survey, was held in the Denver West Office Complex in Golden, Colorado, April 13-15, 1982. There were 90 registered participants from government agencies, academic institutions, and industry.This effort stemmed from the realization that geomagnetism, once a small but coherent discipline, has now expanded into numerous areas of the geosciences, yet those doing research in these specialties seldom make contact outside their area of immediate interest. The impetus for this event came from the members of a committee formed to review the geomagnetic activities within the U.S. Geological Survey. They observed that the level of communication between the various elements of this now diverse discipline was inadequate, not only within their organization but also between federal agencies, academia, and the private sector. While the desire was to cover as much of geomagnetism as possible, it was necessary for a workshop of reasonable size and length to exclude some important areas of the subject: magnetic reversal chronology, studies of the externally produced variations, and most aspects of internal induction. The plan was to give emphasis to some of the newer areas: those which have recently seen a high level of activity and those with increasing activity abroad compared to that in the United States. The purpose was to evaluate the status and problems in selected areas with an eye to those whose emphasis might produce fruitful results in the next decade.

  11. On the response of the European climate to solar/geomagnetic long-term activity

    Directory of Open Access Journals (Sweden)

    Georgeta Maris

    2010-12-01

    Full Text Available The response of the European climate to long-term solar/geomagnetic activity is investigated using surface-air temperature and solar/geomagnetic indices. A set of 21 time series of air temperatures measured at European stations between 1900 and 2006, and 4 European and 14 Romanian stations with 150-year-long records, were used. Strong and coherent solar signals were found at Schwabe and Hale solar-cycle timescales, with peak-to-trough amplitudes of several degrees, and 0.6 ˚C to 0.8 ˚C, respectively. Interdecadal and centennial trends as defined by 11-year and 22-year running averages, respectively, of the annual mean time series differ significantly from corresponding trends in solar/geomagnetic activity, which indicates the presence of temperature variations at a 40-year timescale that are possibly related to the internal dynamics of the atmospheric system. The data show similar temporal behaviors at all of the stations analyzed, with amplitude differences that can be understood in terms of large-scale atmospheric circulation patterns that are influenced by the solar/geomagnetic forcing at the corresponding timescales, although with local intensity differences.

  12. Phase-coherent Oscillatory Modes in Solar and Geomagnetic Activity and Climate Variability

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Novotná, Dagmar

    2009-01-01

    Roč. 71, 8-9 (2009), s. 923-930 ISSN 1364-6826 R&D Projects: GA AV ČR IAA300420805 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z30420517 Keywords : solar activity * geomagnetic activity * NAO * near-surface air temperature * phase coherence * climate variability Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.643, year: 2009

  13. On a forecast of geomagnetic activity according to magnetic fields on the Sun

    International Nuclear Information System (INIS)

    Ponyavin, D.I.; Pudovkin, M.I.

    1988-01-01

    Technique for tracking the current layer orientation in the solar corona and solar wind high-velocity flux sources is suggested according to the observation of large-scale magnetic fields at the Sun. Ionospheric magnetic fields in potential approximation are extrapolated to the Sun atmosphere high layers - in the region of probable formation of solar wind and interplanetary magnetic field. The chart of isocline-lines of field vector even inclination to the surface of R=1.8R sun radius sphere is plotted according to the calculated magnetic field. Daily plotting of such charts allows to continuosly track the large-scale structure and evolution of solar wind and interplanetary magnetic field. Th comparison of isoclinic charts with geomagnetic activity for October 1982 has shown the principal possibility to use this technique for the purposes of geomagnetic activity forecasting

  14. Evolution of fractality in space plasmas of interest to geomagnetic activity

    Science.gov (United States)

    Muñoz, Víctor; Domínguez, Macarena; Alejandro Valdivia, Juan; Good, Simon; Nigro, Giuseppina; Carbone, Vincenzo

    2018-03-01

    We studied the temporal evolution of fractality for geomagnetic activity, by calculating fractal dimensions from the Dst data and from a magnetohydrodynamic shell model for turbulent magnetized plasma, which may be a useful model to study geomagnetic activity under solar wind forcing. We show that the shell model is able to reproduce the relationship between the fractal dimension and the occurrence of dissipative events, but only in a certain region of viscosity and resistivity values. We also present preliminary results of the application of these ideas to the study of the magnetic field time series in the solar wind during magnetic clouds, which suggest that it is possible, by means of the fractal dimension, to characterize the complexity of the magnetic cloud structure.

  15. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  16. Relation of geomagnetic activity index variations with parameters of interplanetary scintillations

    International Nuclear Information System (INIS)

    Vlasov, V.I.; Shishov, V.I.; Shishova, T.D.

    1985-01-01

    A correlation between the Asub(p)-index of geomagnetic activity, index of interplanetary scintillations and solar wind velocity, has been considered depending on the spatial position of the interplanetary plasma (IPP) regions under study. It is shown, that the scintillation index can be used to forecast the geomagnetic activity, whereas the solar wind velocity can not be used for the purpose. Heliolongitudinal dependence of geoeffectiveness of IPP sreading perturbations agrees well with their structure in the heliolongitudinal cross section (and, on the whole, with the angular structure and direction of IPP perturbation spread). To use interplanetary scintillations in forecasting the geomagnetic activity (on the level of correlation not below 0.5), the angular distance of the investigated IPP regions relative to the Sun-Earth line on the average should not exceed 30-40 deg. The time of delay between the moments of observation of variations in the scintillation index the time of passage of the corresponding heliocentric distances at an average rate of the interplanetary perturbation spread approximately 500 km/s

  17. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011

    Directory of Open Access Journals (Sweden)

    G. Verbanac

    2015-10-01

    Full Text Available Taking advantage of the Cluster satellite mission and especially the observations made by the instrument WHISPER to deduce the electron number density along the orbit of the satellites, we studied the relationships between the plasmapause positions (LPP and the following LPP indicators: (a solar wind coupling functions Bz (Z component of the interplanetary magnetic field vector, B, in GSM system, BV (related to the interplanetary electric field; B is the magnitude of the interplanetary magnetic field vector, V is solar wind velocity, and dΦmp/dt (which combines different physical processes responsible for the magnetospheric activity and (b geomagnetic indices Dst, Ap and AE. The analysis is performed separately for three magnetic local time (MLT sectors (Sector1 – night sector (01:00–07:00 MLT; Sector2 – day sector (07:00–16:00 MLT; Sector3 – evening sector (16:00–01:00 MLT and for all MLTs taken together. All LPP indicators suggest the faster plasmapause response in the postmidnight sector. Delays in the plasmapause responses (hereafter time lags are approximately 2–27 h, always increasing from Sector1 to Sector3. The obtained fits clearly resolve the MLT structures. The variability in the plasmapause is the largest for low values of LPP indicators, especially in Sector2. At low activity levels,LPP exhibits the largest values on the dayside (in Sector2 and the smallest on the postmidnight side (Sector1. Displacements towards larger values on the evening side (Sector3 and towards lower values on the dayside (Sector2 are identified for enhanced magnetic activity. Our results contribute to constraining the physical mechanisms involved in the plasmapause formation and to further study the still not well understood related issues.

  18. Relationship between geomagnetic classes’ activity phases and their occurrence during the sunspot cycle

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2009-06-01

    Full Text Available Four well known geomagnetic classes of activity such as quiet days activity, fluctuating activity, recurrent activity
    and shock activity time occurrences have been determined not only by using time profile of sunspot number
    Rz but also by using aa index values.
    We show that recurrent wind stream activity and fluctuating activity occur in opposite phase and slow solar wind
    activity during minimum phase and shock activity at the maximum phase.
    It emerges from this study that fluctuating activity precedes the sunspot cycle by π/2 and the latter also precedes
    recurrent activity by π/2. Thus in the majority the activities do not happen at random; the sunspot cycle starts
    with quiet days activity, continues with fluctuating activity and during its maximum phase arrives shock activity.
    The descending phase is characterized by the manifestation of recurrent wind stream activity.

  19. Analysis of the ULF electromagnetic emission related to seismic activity, Teoloyucan geomagnetic station, 1998-2001

    Directory of Open Access Journals (Sweden)

    A. Kotsarenko

    2004-01-01

    Full Text Available Results of ULF geomagnetic measurements at station Teoloyucan (Central Mexico, 99.11'35.735''W, 19.44'45.100''N, 2280m height in relation to seismic activity in the period 1998-2001 and their analysis are presented. Variations of spectral densities for horizontal and vertical components, polarization densities and spectrograms of magnetic field, their derivatives are analyzed as a part of traditional analysis in this study. Values of spectral density were calculated for 6 fixed frequencies f=1, 3, 10, 30, 100 and 300mHz. Fractal characteristics of spectra were analyzed in the conception of SOC (Self-Organized Criticality. 2 nighttime intervals, 0-3 and 3-6h by local time have been used to decrease the noise interference in row data. In order to exclude the intervals with a high geomagnetic activity from analysis we referred to Ap indices, calculated for corresponding time intervals. The contribution of seismic events to geomagnetic emission was estimated by seismic index ks=100.75Ms/10D, where Ms is the amplitude of the earthquake and D is the distance from its epicenter to the station.

  20. Long-term trends of foF2 independent of geomagnetic activity

    Directory of Open Access Journals (Sweden)

    A. D. Danilov

    Full Text Available A detailed analysis of the foF2 data at a series of ionospheric stations is performed to reveal long-term trends independent of the long-term changes in geomagnetic activity during the recent decades (nongeomagnetic trends. The method developed by the author and published earlier is used. It is found that the results for 21 out of 23 stations considered agree well and give a relative nongeomagnetic trend of -0.0012 per year (or an absolute nongeomagnetic trend of about -0.012 MHz per year for the period between 1958 and the mid-nineties. The trends derived show no dependence on geomagnetic latitude or local time, a fact confirming their independence of geomagnetic activity. The consideration of the earlier period (1948–1985 for a few stations for which the corresponding data are available provides significantly lower foF2 trends, the difference between the later and earlier periods being a factor of 1.6. This is a strong argument in favor of an anthropogenic nature of the trends derived.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric disturbances; mid-latitude ionosphere

  1. Geomagnetism and Aeronomy activities in Italy during IGY, 1957/58

    Directory of Open Access Journals (Sweden)

    Lucilla Alfonsi

    2009-06-01

    Full Text Available In 2007 several events were organized to celebrate the fiftieth anniversary of the International Geophysical Year
    (IGY, 1957-1958. The celebrations will last until 2009 and are taking place within different contexts: the International
    Polar Year (IPY, the International Heliophysical Year (IHY, the electronic Geophysical Year (eGY
    and the International Year of Planet Earth (IYPE.
    IGY offered a very appropriate and timely occasion to undertake a series of coordinated observations of various
    geophysical phenomena all over the globe. Italy took part in the broad international effort stimulated by IGY. In
    fact, Italy participated in observations and studies in many of the proposed scientific areas, in particular Geomagnetism
    and Aeronomy. The Istituto Nazionale di Geofisica (ING started the installation of observatories,
    and updated and ensured continuous recording of geophysical observations. Geomagnetism, ionospheric
    physics, seismology, and other geophysical disciplines, were advanced. Although much of the work was undertaken
    in Italy, some attention was also devoted to other areas of the world, in particular Antarctica, where Italy
    participated in seismological observations. This paper gives a summary of the Geomagnetism and Ionospheric
    Physics activities within IGY. Furthermore, we highlight the importance of this historical event and its outcomes
    for the improvement of geophysical observations and the post-IGY growth of scientific investigations in Italy.

  2. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: Some results of Azerbaijani studies

    Science.gov (United States)

    Babayev, Elchin S.; Allahverdiyeva, Aysel A.

    There are collaborative and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences conducted with purposes of revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems. This paper describes some results of the experimental studies of influence of the periodical and aperiodical changes of geomagnetic activity upon human brain, human health and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe geomagnetic storms of the solar cycle 23 on the mentioned systems in middle-latitude location. It is experimentally established that weak and moderate geomagnetic storms do not cause significant changes in the brain's bioelectrical activity and exert only stimulating influence while severe disturbances of geomagnetic conditions cause negative influence, seriously disintegrate brain's functionality, activate braking processes and amplify the negative emotional background of an individual. It is concluded that geomagnetic disturbances affect mainly emotional and vegetative spheres of human beings while characteristics reflecting personality properties do not undergo significant changes.

  3. Trends of solar-geomagnetic activity, cosmic rays, atmosphere, and climate changes

    Science.gov (United States)

    Voronin, N.; Avakyan, S.

    2009-04-01

    The results are presented of the analysis of trends in the solar-geomagnetic activity and intensity of galactic cosmic rays (GCR) for the several eleven-year solar cycles. The indication has been revealed of the change of signs in the long-term changes in geomagnetic activity (aa-index) and the GCR in recent years. These changes correspond to the changes of sings in long-term trends in some of atmospheric parameters (transparency, albedo, cloudness, the content of water vapour, methane, ozone, the erythemal radiation flux). These global changes in atmosphere is most important problem of the up-to-date science. The global warming observed during the several past decades presents a real danger for the mankind. Till present the predominant point of view has been that the main cause of the increase of mean surface air temperature is the increase of concentrations of the anthropogenic gases first of all carbon dioxide CO2 and methane CH_4. Indeed, from the beginning of nineteen century the concentration of CO2 in the atmosphere has been growing and now it exceeds the initial level by the factor of 1.4 and the speed of this increase being growing too. This was the reason of international efforts to accept the Kyoto Protocol which limited the ejections of greenhouse gases. However there are premises which show that the influence of solar variability on the climate should be taken into account in the first place. The obtained results are analyzed from the point of view of well known effects of GCR influence on weather and climate with taken into account also a novel trigger mechanism in solar-terrestrial relations what allows revaluation of the role of solar flares and geomagnetic storms. The mechanism explains how agents of solar and geomagnetic activities affect atmospheric processes. This first agent under consideration is variation of fluxes of solar EUV and X-ray radiation. The second agent is fluxes of electrons and protons which precipitate from radiation belts as a

  4. Study of Fractal Features of Geomagnetic Activity Through an MHD Shell Model

    Science.gov (United States)

    Dominguez, M.; Nigro, G.; Munoz, V.; Carbone, V.

    2013-12-01

    Studies on complexity have been of great interest in plasma physics, because they provide new insights and reveal possible universalities on issues such as geomagnetic activity, turbulence in laboratory plasmas, physics of the solar wind, etc. [1, 2]. In particular, various studies have discussed the relationship between the fractal dimension, as a measure of complexity, and physical processes in magnetized plasmas such as the Sun's surface, the solar wind and the Earth's magnetosphere, including the possibility of forecasting geomagnetic activity [3, 4, 5]. Shell models are low dimensional dynamical models describing the main statistical properties of magnetohydrodynamic (MHD) turbulence [6]. These models allow us to describe extreme parameter conditions hence reaching very high Reynolds (Re) numbers. In this work a MHD shell model is used to describe the dissipative events which are taking place in the Earth's magnetosphere and causing geomagnetic storms. The box-counting fractal dimension (D) [7] is calculated for the time series of the magnetic energy dissipation rate obtained in this MHD shell model. We analyze the correlation between D and the energy dissipation rate in order to make a comparison with the same analysis made on the geomagnetic data. We show that, depending on the values of the viscosity and the diffusivity, the fractal dimension and the occurrence of bursts exhibit correlations similar as those observed in geomagnetic and solar data, [8] suggesting that the latter parameters could play a fundamental role in these processes. References [1] R. O. Dendy, S. C. Chapman, and M. Paczuski, Plasma Phys. Controlled Fusion 49, A95 (2007). [2] T. Chang and C. C. Wu, Phys. Rev. E 77, 045401 (2008). [3] R. T. J. McAteer, P. T. Gallagher, and J. Ireland, Astrophys. J. 631, 628 (2005). [4] V. M. Uritsky, A. J. Klimas, and D. Vassiliadis, Adv. Space Res. 37, 539 (2006). [5] S. C. Chapman, B. Hnat, and K. Kiyani, Nonlinear Proc. Geophys. 15, 445 (2008). [6] G

  5. Diurnal changes of earthquake activity and geomagnetic Sq-variations

    Directory of Open Access Journals (Sweden)

    G. Duma

    2003-01-01

    Full Text Available Statistic analyses demonstrate that the probability of earthquake occurrence in many earthquake regions strongly depends on the time of day, that is on Local Time (e.g. Conrad, 1909, 1932; Shimshoni, 1971; Duma, 1997; Duma and Vilardo, 1998. This also applies to strong earthquake activity. Moreover, recent observations reveal an involvement of the regular diurnal variations of the Earth’s magnetic field, commonly known as Sq-variations, in this geodynamic process of changing earthquake activity with the time of day (Duma, 1996, 1999. In the article it is attempted to quantify the forces which result from the interaction between the induced Sq-variation currents in the Earth’s lithosphere and the regional Earth’s magnetic field, in order to assess the influence on the tectonic stress field and on seismic activity. A reliable model is obtained, which indicates a high energy involved in this process. The effect of Sq-induction is compared with the results of the large scale electromagnetic experiment "Khibiny" (Velikhov, 1989, where a giant artificial current loop was activated in the Barents Sea.

  6. Geomagnetism 4

    CERN Document Server

    Jacobs, John A

    2013-01-01

    Geomagnetism, Volume 4 focuses on the processes, methodologies, technologies, and approaches involved in geomagnetism, including electric fields, solar wind plasma, pulsations, and gravity waves.The selection first offers information on solar wind, magnetosphere, and the magnetopause of the Earth. Discussions focus on magnetopause structure and transfer processes, magnetosphere electric fields, geomagnetically trapped radiation, microstructure of the solar wind plasma, and hydro magnetic fluctuations and discontinuities. The text then examines geomagnetic tail, neutral upper atmosphere, and ge

  7. Unstable Angina Treatment in Various Periods of Geomagnetic Activity

    Science.gov (United States)

    Parshina, S. S.; Tokayeva, L. K.; Afanasiyeva, T. N.; Samsonov, S. N.; Petrova, V. D.; Dolgova, E. M.; Manykina, V. I.; Vodolagina, E. S.

    In 145 patients with unstable angina (UA) there was analized an efficiency of a drug therapy at different types of heliogeophysical activity (HA) during the 23th solar cycle. 83 patients were examined at the period of a lower HA (Kp-index 16,19±0,18), and 62 patients - at the period of a higher HA (Kp-index 17,25±0,21, p<0,05). Baseline severity of patients' condition with UA at the moment of hospitalization at the studied periods did not differ, but the effectiveness of the therapy depended on the period of HA. At the period of a higher HA antianginal effect was stronger than at the lower period of HA (2,27±0,16 points and 1,75±0,12 points, p<0,05), and the need in nitroglycerin on the background of a drug therapy disappeared for 5-7 days quicker than at the period of a lower HA. Maximal hypotensive effect at a higher HA was achieved quicker - on the 3rd day of the treatment, and at a lower HA - only up to hospital discharge (p<0,05). Blood viscosity did not normalize in both of the studied periods, but in small vessels there was noted a decrease of a BV (p<0,05). So, at a higher HA the effectiveness of a drug therapy in patients with UA is higher than at the period of a lower HA.

  8. Characteristics of seasonal variation and solar activity dependence of the geomagnetic solar quiet daily variation

    Science.gov (United States)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.

    2017-12-01

    Characteristics of seasonal variation and solar activity dependence of the X- and Y-components of the geomagnetic solar quiet (Sq) daily variation at Memanbetsu in mid-latitudes and Guam near the equator have been investigated using long-term geomagnetic field data with 1-h time resolution from 1957 to 2016. In this analysis, we defined the quiet day when the maximum value of the Kp index is less than 3 for that day. In this analysis, we used the monthly average of the adjusted daily F10.7 corresponding to geomagnetically quiet days. For identification of the monthly mean Sq variation in the X and Y components (Sq-X and Sq-Y), we first determined the baseline of the X and Y components from the average value from 22 to 2 h (LT: local time) for each quiet day. Next, we calculated a deviation from the baseline of the X- and Y-components of the geomagnetic field for each quiet day, and computed the monthly mean value of the deviation for each local time. As a result, Sq-X and Sq-Y shows a clear seasonal variation and solar activity dependence. The amplitude of seasonal variation increases significantly during high solar activities, and is proportional to the solar F10.7 index. The pattern of the seasonal variation is quite different between Sq-X and Sq-Y. The result of the correlation analysis between the solar F10.7 index and Sq-X and Sq-Y shows almost the linear relationship, but the slope and intercept of the linear fitted line varies as function of local time and month. This implies that the sensitivity of Sq-X and Sq-Y to the solar activity is different for different local times and seasons. The local time dependence of the offset value of Sq-Y at Guam and its seasonal variation suggest a magnetic field produced by inter-hemispheric field-aligned currents (FACs). From the sign of the offset value of Sq-Y, it is infer that the inter-hemispheric FACs flow from the summer to winter hemispheres in the dawn and dusk sectors and from the winter to summer hemispheres in

  9. Unusual nighttime impulsive foF2 enhancement below the southern anomaly crest under geomagnetically quiet conditions

    Science.gov (United States)

    Pezzopane, M.; Fagundes, P. R.; Ciraolo, L.; Correia, E.; Cabrera, M. A.; Ezquer, R. G.

    2011-12-01

    An unusual nighttime impulsive electron density enhancement was observed on 6 March 2010 over a wide region of South America, below the southern crest of the equatorial anomaly, under low solar activity and quiet geomagnetic conditions. The phenomenon was observed almost simultaneously by the F2 layer critical frequency (foF2) recorded at three ionospheric stations which are widely distributed in space, namely Cachoeira Paulista (22.4°S, 44.6°W, magnetic latitude 13.4°S), São José dos Campos (23.2°S, 45.9°W, magnetic latitude 14.1°S), Brazil, and Tucumán (26.9°S, 65.4°W, magnetic latitude 16.8°S), Argentina. Although in a more restricted region over Tucumán, the phenomenon was also observed by the total electron content (TEC) maps computed by using measurements from 12 GPS receivers. The investigated phenomenon is very particular because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. This compression was clearly visible both by the virtual height of the base of the F region (h‧F) recorded at the aforementioned ionospheric stations, and by both the vertical electron density profiles and the slab thickness computed over Tucumán. Consequently, neither an enhanced fountain effect nor plasma diffusion from the plasmasphere can be considered as the single cause of this unusual event. A thorough analysis of isoheight and isofrequency ionosonde plots suggest that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could have likely played a significant role in causing the phenomenon.

  10. Spectrum of geomagnetic activity in the period range 5−60 days: possible lunar influences

    Directory of Open Access Journals (Sweden)

    J. Střeštík

    1998-07-01

    Full Text Available The series of daily Ap-indices has been subdivided into pentades (1932–1936 etc. and spectra with fine-frequency resolution have been calculated for the indices in each of these intervals. Daily sunspot numbers have been processed in the same way. The average spectrum from all spectra in the pentades, as well as the spectrum from the whole interval have been calculated, and significant peaks have been determined. There is a significant difference between the spectra in the pentades containing the solar activity minimum (1932–1936, 1942–1946 etc. and those containing the solar activity maximum (1937–1941, 1947–1951 etc.. Most peaks can be interpreted as a response to solar rotation and to the structure of solar wind speed (two high-speed streams per solar rotation, both modulated by the 11-year, annual and semi-annual waves. No significant peak corresponding to the period of the synodic month, or its half has been found. This result suggests that the influence of lunar cycles on some natural phenomena (if any is not mediated by geomagnetic activity.Key words. Geomagnetism and paleomagnetism · Time variations · Diurnal to secular · Magnetospheric physics · Solar wind-magnetosphere interactions

  11. Transition region of TEC enhancement phenomena during geomagnetically disturbed periods at mid-latitudes

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    2005-12-01

    Full Text Available Large-scale TEC perturbations/enhancements observed during the day sectors of major storm periods, 12-13 February 2000, 23 September 1999, 29 October 2003, and 21 November 2003, were studied using a high resolution GPS network over Japan. TEC enhancements described in the present study have large magnitudes (≥25×1016 electrons/m2 compared to the quiet-time values and long periods (≥120 min. The sequential manner of development and the propagation of these perturbations show that they are initiated at the northern region and propagate towards the southern region of Japan, with velocities >350 m/s. On 12 February 2000, remarkably high values of TEC and background content are observed at the southern region, compared to the north, because of the poleward expansion of the equatorial anomaly crest, which is characterized by strong latitudinal gradients near 35° N (26° N geomagnetically. When the TEC enhancements, initiating at the north, propagate through the region 39-34° N (30-25° N geomagnetically, they undergo transitions characterized by a severe decrease in amplitude of TEC enhancements. This may be due to their interaction with the higher background content of the expanded anomaly crest. However, at the low-latitude region, below 34° N, an increase in TEC is manifested as an enhanced ionization pattern (EIP. This could be due to the prompt penetration of the eastward electric field, which is evident from high values of the southward Interplanetary Magnetic Field component (IMF Bz and AE index. The TEC perturbations observed on the other storm days also exhibit similar transitions, characterized by a decreasing magnitude of the perturbation component, at the region around 39-34° N. In addition to this, on the other storm days, at the low-latitude region, below 34° N, an increase in TEC (EIP feature also indicates the repeatability of the above scenario. It is found that, the latitude and time at which the decrease in magnitude

  12. Transition region of TEC enhancement phenomena during geomagnetically disturbed periods at mid-latitudes

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    2005-12-01

    Full Text Available Large-scale TEC perturbations/enhancements observed during the day sectors of major storm periods, 12-13 February 2000, 23 September 1999, 29 October 2003, and 21 November 2003, were studied using a high resolution GPS network over Japan. TEC enhancements described in the present study have large magnitudes (≥25×1016 electrons/m2 compared to the quiet-time values and long periods (≥120 min. The sequential manner of development and the propagation of these perturbations show that they are initiated at the northern region and propagate towards the southern region of Japan, with velocities >350 m/s. On 12 February 2000, remarkably high values of TEC and background content are observed at the southern region, compared to the north, because of the poleward expansion of the equatorial anomaly crest, which is characterized by strong latitudinal gradients near 35° N (26° N geomagnetically. When the TEC enhancements, initiating at the north, propagate through the region 39-34° N (30-25° N geomagnetically, they undergo transitions characterized by a severe decrease in amplitude of TEC enhancements. This may be due to their interaction with the higher background content of the expanded anomaly crest. However, at the low-latitude region, below 34° N, an increase in TEC is manifested as an enhanced ionization pattern (EIP. This could be due to the prompt penetration of the eastward electric field, which is evident from high values of the southward Interplanetary Magnetic Field component (IMF Bz and AE index. The TEC perturbations observed on the other storm days also exhibit similar transitions, characterized by a decreasing magnitude of the perturbation component, at the region around 39-34° N. In addition to this, on the other storm days, at the low-latitude region, below 34° N, an increase in TEC (EIP feature also indicates the repeatability of the above scenario. It is found that, the latitude and

  13. Mesospheric Na Variability and Dependence on Geomagnetic and Solar Activity over Arecibo

    Science.gov (United States)

    Jain, K.; Raizada, S.; Brum, C. G. M.

    2017-12-01

    The Sodium (Na) resonance lidars located at the Arecibo Observatory offer an excellent opportunity to study the mesosphere/lower thermosphere(MLT) region. Different metals like Fe, Mg, Na, K, Ca and their ions are deposited in the 80 - 120 km altitude range due to the ablation of meteors caused by frictional heating during their entry into the Earth's atmosphere. We present an investigation of the neutral mesospheric Na atom layers over Arecibo. Data on the Na concentrations was collected using a resonance lidar tuned to the of Na wavelength at 589 nm. This wavelength is achieved with a dye-laser pumped by the second harmonic (532 nm) generated from a state-of-the-art commercial Nd:YAG laser. The backscattered signal is received on a 0.8 m (diameter) Cassegrain telescope. The study is based on this data acquired from 1998-2017 and its relation to variations in geomagnetic and solar conditions. We also investigate seasonal and long term trends in the data. The nightly-averaged altitude profiles were modeled as Gaussian curves. From this modeled data we obtain parameters such as the peak, abundance, centroid and width of the main Na layer. Preliminary results show that the Na abundance is more sensitive to changes in geomagnetic and solar variations as compared to the width and centroid height. The seasonal variation exhibits higher peak densities during the local summer and has a secondary maximum during the winter [as shown in the attached figure]. Our analysis demonstrates a decrease in the peak and the abundance of Na atoms with the increase of solar and geomagnetic activity.

  14. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  15. Forecast and restoration of geomagnetic activity indices by using the software-computational neural network complex

    Science.gov (United States)

    Barkhatov, Nikolay; Revunov, Sergey

    2010-05-01

    It is known that currently used indices of geomagnetic activity to some extent reflect the physical processes occurring in the interaction of the perturbed solar wind with Earth's magnetosphere. Therefore, they are connected to each other and with the parameters of near-Earth space. The establishment of such nonlinear connections is interest. For such purposes when the physical problem is complex or has many parameters the technology of artificial neural networks is applied. Such approach for development of the automated forecast and restoration method of geomagnetic activity indices with the establishment of creative software-computational neural network complex is used. Each neural network experiments were carried out at this complex aims to search for a specific nonlinear relation between the analyzed indices and parameters. At the core of the algorithm work program a complex scheme of the functioning of artificial neural networks (ANN) of different types is contained: back propagation Elman network, feed forward network, fuzzy logic network and Kohonen layer classification network. Tools of the main window of the complex (the application) the settings used by neural networks allow you to change: the number of hidden layers, the number of neurons in the layer, the input and target data, the number of cycles of training. Process and the quality of training the ANN is a dynamic plot of changing training error. Plot of comparison of network response with the test sequence is result of the network training. The last-trained neural network with established nonlinear connection for repeated numerical experiments can be run. At the same time additional training is not executed and the previously trained network as a filter input parameters get through and output parameters with the test event are compared. At statement of the large number of different experiments provided the ability to run the program in a "batch" mode is stipulated. For this purpose the user a

  16. The Solar Wind and Geomagnetic Activity as a Function of Time Relative to Corotating Interaction Regions

    Science.gov (United States)

    McPherron, Robert L.; Weygand, James

    2006-01-01

    Corotating interaction regions during the declining phase of the solar cycle are the cause of recurrent geomagnetic storms and are responsible for the generation of high fluxes of relativistic electrons. These regions are produced by the collision of a high-speed stream of solar wind with a slow-speed stream. The interface between the two streams is easily identified with plasma and field data from a solar wind monitor upstream of the Earth. The properties of the solar wind and interplanetary magnetic field are systematic functions of time relative to the stream interface. Consequently the coupling of the solar wind to the Earth's magnetosphere produces a predictable sequence of events. Because the streams persist for many solar rotations it should be possible to use terrestrial observations of past magnetic activity to predict future activity. Also the high-speed streams are produced by large unipolar magnetic regions on the Sun so that empirical models can be used to predict the velocity profile of a stream expected at the Earth. In either case knowledge of the statistical properties of the solar wind and geomagnetic activity as a function of time relative to a stream interface provides the basis for medium term forecasting of geomagnetic activity. In this report we use lists of stream interfaces identified in solar wind data during the years 1995 and 2004 to develop probability distribution functions for a variety of different variables as a function of time relative to the interface. The results are presented as temporal profiles of the quartiles of the cumulative probability distributions of these variables. We demonstrate that the storms produced by these interaction regions are generally very weak. Despite this the fluxes of relativistic electrons produced during those storms are the highest seen in the solar cycle. We attribute this to the specific sequence of events produced by the organization of the solar wind relative to the stream interfaces. We also

  17. The burst of solar and geomagnetic activity in August–September 2005

    Directory of Open Access Journals (Sweden)

    A. Papaioannou

    2009-03-01

    Full Text Available During the August–September 2005 burst of solar activity, close to the current solar cycle minimum, a significant number of powerful X-ray flares were recorded, among which was the outstanding X17.0 flare of 7 September 2005. Within a relatively short period (from 22 August to 17 September two severe magnetic storms were also recorded as well as several Forbush effects. These events are studied in this work, using hourly mean variations of cosmic ray density and anisotropy, derived from data of the neutron monitor network. During these Forbush effects the behavior of high energy cosmic ray characteristics (density and anisotropy is analyzed together with interplanetary disturbances and their solar sources, and is compared to the variations observed in geomagnetic activity. A big and long lasting (~6 h cosmic ray pre-decrease (~2% is defined before the shock arrival on 15 September 2005. The calculated cosmic ray gradients for September 2005 are also discussed.

  18. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  19. Long-term prediction of solar and geomagnetic activity daily time series using singular spectrum analysis and fuzzy descriptor models

    Science.gov (United States)

    Mirmomeni, M.; Kamaliha, E.; Shafiee, M.; Lucas, C.

    2009-09-01

    Of the various conditions that affect space weather, Sun-driven phenomena are the most dominant. Cyclic solar activity has a significant effect on the Earth, its climate, satellites, and space missions. In recent years, space weather hazards have become a major area of investigation, especially due to the advent of satellite technology. As such, the design of reliable alerting and warning systems is of utmost importance, and international collaboration is needed to develop accurate short-term and long-term prediction methodologies. Several methods have been proposed and implemented for the prediction of solar and geomagnetic activity indices, but problems in predicting the exact time and magnitude of such catastrophic events still remain. There are, however, descriptor systems that describe a wider class of systems, including physical models and non-dynamic constraints. It is well known that the descriptor system is much tighter than the state-space expression for representing real independent parametric perturbations. In addition, the fuzzy descriptor models as a generalization of the locally linear neurofuzzy models are general forms that can be trained by constructive intuitive learning algorithms. Here, we propose a combined model based on fuzzy descriptor models and singular spectrum analysis (SSA) (FD/SSA) to forecast a number of geomagnetic activity indices in a manner that optimizes a fuzzy descriptor model for each of the principal components obtained from singular spectrum analysis and recombines the predicted values so as to transform the geomagnetic activity time series into natural chaotic phenomena. The method has been applied to predict two solar and geomagnetic activity indices: geomagnetic aa and solar wind speed (SWS) of the solar wind index. The results demonstrate the higher power of the proposed method-- compared to other methods -- for predicting solar activity.

  20. Detailed characteristics of radiation belt electrons revealed by CSSWE/REPTile measurements: Geomagnetic activity response and precipitation observation

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D.; Zhao, H.; Millan, R.

    2017-08-01

    Earth's outer radiation belt electrons are highly dynamic. We study the detailed characteristics of relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit (LEO) CubeSat, which traverses the radiation belt four times in one orbit ( 1.5 h) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitation. We focus on the measured electron response to geomagnetic activity for different energies to show that there are abundant sub-MeV electrons in the inner belt and slot region. These electrons are further enhanced during active times, while there is a lack of >1.63 MeV electrons in these regions. We also show that the variation of measured electron flux at LEO is strongly dependent on the local magnetic field strength, which is far from a dipole approximation. Moreover, a specific precipitation band, which happened on 19 January 2013, is investigated based on the conjunctive measurement of CSSWE, the Balloon Array for Radiation belt Relativistic Electron Losses, and one of the Polar Operational Environmental Satellites. In this precipitation band event, the net loss of the 0.58-1.63 MeV electrons (L = 3.5-6) is estimated to account for 6.8% of the total electron content.

  1. The association between phenomena on the Sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta; Slapikas, Rimvydas; Sakalyte, Gintare

    2013-09-01

    It has been found that solar and geomagnetic activity affects the cardiovascular system. Some evidence has been reported on the increase in the rate of myocardial infarction, stroke and myocardial infarction related deaths during geomagnetic storms. We investigated the association between cardiovascular characteristics of patients, admitted for myocardial infarction with ST elevation (STEMI), and geomagnetic activity (GMA), solar proton events (SPE), solar flares, and meteorological variables during admission. The data of 1,979 patients hospitalized at the Hospital of Lithuanian University of Health Sciences (Kaunas) were analyzed. We evaluated the association between environmental variables and patient's characteristics by multivariate logistic regression, controlling patient's gender and age. Two days after geomagnetic storms the risk of STEMI was over 1.5 times increased in patients who had a medical history of myocardial infarction, stable angina, renal or pulmonary diseases. The dose-response association between GMA level and STEMI risk for patients with renal diseases in history was observed. Two days after SPE the risk of STEMI in patients with stable angina in anamnesis was increased over 1.5 times, adjusting by GMA level. The SPE were associated with an increase of risk for patients with renal diseases in history. This study confirms the strongest effect of phenomena in the Sun in high risk patients.

  2. Latitudinal variation rate of geomagnetic cutoff rigidity in the active Chilean convergent margin

    Directory of Open Access Journals (Sweden)

    E. G. Cordaro

    2018-03-01

    Full Text Available We present a different view of secular variation of the Earth's magnetic field, through the variations in the threshold rigidity known as the variation rate of geomagnetic cutoff rigidity (VRc. As the geomagnetic cutoff rigidity (Rc lets us differentiate between charged particle trajectories arriving at the Earth and the Earth's magnetic field, we used the VRc to look for internal variations in the latter, close to the 70° south meridian. Due to the fact that the empirical data of total magnetic field BF and vertical magnetic field Bz obtained at Putre (OP and Los Cerrillos (OLC stations are consistent with the displacement of the South Atlantic magnetic anomaly (SAMA, we detected that the VRc does not fully correlate to SAMA in central Chile. Besides, the lower section of VRc seems to correlate perfectly with important geological features, like the flat slab in the active Chilean convergent margin. Based on this, we next focused our attention on the empirical variations of the vertical component of the magnetic field Bz, recorded in OP prior to the Maule earthquake in 2010, which occurred in the middle of the Chilean flat slab. We found a jump in Bz values and main frequencies from 3.510 to 5.860 µHz, in the second derivative of Bz, which corresponds to similar magnetic behavior found by other research groups, but at lower frequency ranges. Then, we extended this analysis to other relevant subduction seismic events, like Sumatra in 2004 and Tohoku in 2011, using data from the Guam station. Similar records and the main frequencies before each event were found. Thus, these results seem to show that magnetic anomalies recorded on different timescales, as VRc (decades and Bz (days, may correlate with some geological events, as the lithosphere–atmosphere–ionosphere coupling (LAIC.

  3. Latitudinal variation rate of geomagnetic cutoff rigidity in the active Chilean convergent margin

    Science.gov (United States)

    Cordaro, Enrique G.; Venegas, Patricio; Laroze, David

    2018-03-01

    We present a different view of secular variation of the Earth's magnetic field, through the variations in the threshold rigidity known as the variation rate of geomagnetic cutoff rigidity (VRc). As the geomagnetic cutoff rigidity (Rc) lets us differentiate between charged particle trajectories arriving at the Earth and the Earth's magnetic field, we used the VRc to look for internal variations in the latter, close to the 70° south meridian. Due to the fact that the empirical data of total magnetic field BF and vertical magnetic field Bz obtained at Putre (OP) and Los Cerrillos (OLC) stations are consistent with the displacement of the South Atlantic magnetic anomaly (SAMA), we detected that the VRc does not fully correlate to SAMA in central Chile. Besides, the lower section of VRc seems to correlate perfectly with important geological features, like the flat slab in the active Chilean convergent margin. Based on this, we next focused our attention on the empirical variations of the vertical component of the magnetic field Bz, recorded in OP prior to the Maule earthquake in 2010, which occurred in the middle of the Chilean flat slab. We found a jump in Bz values and main frequencies from 3.510 to 5.860 µHz, in the second derivative of Bz, which corresponds to similar magnetic behavior found by other research groups, but at lower frequency ranges. Then, we extended this analysis to other relevant subduction seismic events, like Sumatra in 2004 and Tohoku in 2011, using data from the Guam station. Similar records and the main frequencies before each event were found. Thus, these results seem to show that magnetic anomalies recorded on different timescales, as VRc (decades) and Bz (days), may correlate with some geological events, as the lithosphere-atmosphere-ionosphere coupling (LAIC).

  4. Dynamical complexity in geomagnetic activity indices: revelations from nonextensive Tsallis statistics, entropies, wavelets and universality concepts

    Science.gov (United States)

    Balasis, G.

    2012-04-01

    Dynamical complexity detection for output time series of complex systems is one of the foremost problems in physics, biology, engineering, and economic sciences. Especially in geomagnetism and magnetospheric physics, accurate detection of the dissimilarity between normal and abnormal states (e.g. pre-storm activity and magnetic storms) can vastly improve geomagnetic field modelling as well as space weather forecasting, respectively. Nonextensive statistical mechanics through Tsallis entropy provides a solid theoretical basis for describing and analyzing complex systems out of equilibrium, particularly systems exhibiting long-range correlations or fractal properties. Entropy measures (e.g., Tsallis entropy, Shannon entropy, block entropy, Kolmogorov entropy, T-complexity, and approximate entropy) have been proven effectively applicable for the investigation of dynamical complexity in Dst time series. It has been demonstrated that as a magnetic storm approaches, there is clear evidence of significantly lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with results previously inferred from fractal analysis via estimates of the Hurst exponent based on wavelet transform. This convergence between entropies and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. Moreover, based on the general behavior of complex system dynamics it has been recently found that Dst time series exhibit discrete scale invariance which in turn leads to log-periodic corrections to scaling that decorate the pure power law. The latter can be used for the determination of the time of occurrence of an approaching magnetic storm.

  5. On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan

    2005-01-01

    Roč. 67, č. 1-2 (2005), s. 83-92 ISSN 1364-6826 R&D Projects: GA AV ČR KSK3012103; GA AV ČR IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * Atmosphere * Ionosphere * Solar activity * Geomagnetic activity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.309, year: 2005

  6. Reaction of physiological factors on the solar-geomagnetic activity (the physical mechanisms)

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Dubarenko, Konstantin

    This presentation proposes and provides substantiation for a hypothesis concerning the mechanism by which solar and geomagnetic activity (mainly of solar flares and magnetic storms) affects the biosphere, including man. The hypothesis, including a physical mechanism introduced by the authors, is that high-lying (Rydberg) states of all gases of the earth’s upper atmosphere are excited by ionospheric energetic electrons. Rydberg atoms, molecules and ions of all atmospheric gases emit characteristic radio emission in the spectral range from decimeters to millimeters. This radiation can easily penetrate to low atmosphere and biosphere carrying complete information about power and duration of solar flare and geomagnetic storms to biosphere. The microwave radioemission have the resonances at the spectral range 109 ÷ 1012 Hz at the cells and membranes, DNA and RNA, molecules of haemoglobin, erythrocytes, and this fact can explain the extremely small threshold for influence of ionospheric radioemission at the monochromatic (characteristic) transitions on biological objects, including the viscosity of blood. The energy estimates of the flux intensity of microwave radiation of the ionosphere from Rydberg states are used to prove for the first time that the values of this flux agree with the experimental data. A method is proposed for distinguishing the contributions of microwave radiation and magnetic perturbation in the geo-biocorrelations, taking into account the effect that the magnetic-field variations are not in phase with the flux of corpuscles from the radiation belts in the ionosphere during the period of a geomagnetic storm. Quanta of microwave radiation are emitted from the heights of 90 - 360 km, i.e. in the basic ionosphere regions. Their energy by almost 10 orders of magnitude exceeds that of the quanta of low-frequency electromagnetic background of the ionosphere (with the frequencies lower than 100 Hz, which coincide with those of biorhythms). Thereby

  7. Linear filters as a method of real-time prediction of geomagnetic activity

    International Nuclear Information System (INIS)

    McPherron, R.L.; Baker, D.N.; Bargatze, L.F.

    1985-01-01

    Important factors controlling geomagnetic activity include the solar wind velocity, the strength of the interplanetary magnetic field (IMF), and the field orientation. Because these quantities change so much in transit through the solar wind, real-time monitoring immediately upstream of the earth provides the best input for any technique of real-time prediction. One such technique is linear prediction filtering which utilizes past histories of the input and output of a linear system to create a time-invariant filter characterizing the system. Problems of nonlinearity or temporal changes of the system can be handled by appropriate choice of input parameters and piecewise approximation in various ranges of the input. We have created prediction filters for all the standard magnetic indices and tested their efficiency. The filters show that the initial response of the magnetosphere to a southward turning of the IMF peaks in 20 minutes and then again in 55 minutes. After a northward turning, auroral zone indices and the midlatitude ASYM index return to background within 2 hours, while Dst decays exponentially with a time constant of about 8 hours. This paper describes a simple, real-time system utilizing these filters which could predict a substantial fraction of the variation in magnetic activity indices 20 to 50 minutes in advance

  8. Unusual Ionospheric Echoes with Velocity and Very Low Special Width Observed by the SuperDARN Radars in the Polar Cap During High Geomagnetic Activity

    National Research Council Canada - National Science Library

    Nishitani, Nozomu

    2004-01-01

    ...) They have a close correlation with geomagnetic activity such that as the Dst index decreases, the radars tend to observe ionospheric echoes with high Doppler velocity and very low spectral width more frequently. (2...

  9. Resistance to Hydrogen Peroxide Highlights Gymnodinium catenatum (Dinophyceae) Sensitivity to Geomagnetic Activity.

    Science.gov (United States)

    Vale, Paulo

    2018-01-01

    The chain-forming dinoflagellate Gymnodinium catenatum was exposed to hydrogen peroxide. Microscopical examination revealed striking dose-response alterations in chain formation above 245 μm: singlets replaced the dominance of long chain formations. These observations were valid for cells acclimated to halogen light. Under fluorescent light, cells were more resistant to modifications in chain length after H 2 O 2 exposure. Growth along 9 h in the presence of extracellular H 2 O 2 followed an hormesis response in both light regimes. Under halogen light conditions, alterations in chain formation and net growth were related to culture time, inocula concentration and geomagnetic activity (GMA) in the proceeding hours. Below a 16 nT threshold in GMA average growth was 0%, while above 16 nT it was circa +9%, independently if the local static magnetic field was altered by a permanent magnet or not. Mycosporine-like amino acids that can have an antioxidant role and are easily oxidized decreased from 7.1 to 6.5 pg cell -1 (P < 0.05) under halogen light and exposure to 245 μm H 2 O 2 . GMA, as well as UV-A, increased stress responsiveness that can momentarily protect cells from extracellular H 2 O 2 addition. However, stress response is dependent on bio-availability of several micronutrients and macronutrients, many found at limiting concentrations in oceanic waters. © 2017 The American Society of Photobiology.

  10. Influence of solar and geomagnetic activity in Gymnodinium catenatum (Dinophyceae) cultures.

    Science.gov (United States)

    Vale, Paulo

    2017-01-01

    Laboratory cultures of the paralytic shellfish poisoning producing microalga Gymnodinium catenatum were subjected to a hypo-osmotic shock and changes in cell concentration were observed in two separate experiments of 8 and 24 hours duration, respectively. The increase in geomagnetic activity (GMA), radio and X-ray fluxes and solar X-ray flares were negatively correlated with cell numbers. Cell losses were observed in the short experiment, but not in the longest one. GMA action was related to the course of the experimental period, while electromagnetic radiation (EMR) was only significantly related when the previous hours before the experiments were considered. The differential action windows might be indicative of two differential disruptive mechanisms: EMR might act on DNA synthesis and mitosis phases of the cell cycle (taking place in the dark period) and GMA might be more disruptive at the end of mytosis or cytokinesis phases taking place in the light period. Formation of long chains (> 4 cells/chain) was reduced with salinity and with temperatures above 27ºC but increased with EMR and GMA, particularly when grown at the highest temperatures recorded during the study period (≥28ºC).

  11. The Distribution of Chorus and Plasmaspheric Hiss Waves in the Inner Magnetospahere as Functions of Geomagnetic Activity and Solar Wind Parameters as Observed by The Van Allen Probes.

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2015-12-01

    The dynamics of the radiation belts is dependent upon the acceleration and loss of radiation belt electrons that is largely determined by the interaction of georesonant wave particles with chorus and plasmaspheric hiss waves. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity as expressed by the geomagnetic indices (Ae, Kp, and Dst). However, it has been shown that not all geomagnetic storms necessarily increase the flux of energetic electrons at the radiation belts. In fact, almost 20% of all geomagnetic storms cause a decrease in the flux of energetic electrons, while 30% has relatively no effect. Also, the geomagnetic indices are indirect, nonspecific parameters compiled from imperfectly covered ground based measurements that lack time history. This emphasises the need to present wave distributions as a function of both geomagnetic activity and solar wind parameters, such as velocity (V), density (n), and interplanetary magnetic field component (Bz), that are known to be predominantly effective in the control of radiation belt energetic electron fluxes. This study presents the distribution of chorus and plasmaspheric hiss waves in the inner magnetosphere as functions of both geomagnetic activity and solar wind parameters for different L-shell, magnetic local time, and magnetic latitude. This study uses almost three years of data measured by the EMFISIS on board the Van Allen Probes. Initial results indicate that the intensity of chorus and plasmaspheric hiss emissions are not only dependent on the geomagnetic activity but also dependent on solar wind parameters. The largest average wave intensities are observed with equatorial chorus in the region 4active conditions, fast solar wind velocity, low solar wind density, and highly negative Bz respectively.

  12. The spatial relationship between active regions and coronal holes and the occurrence of intense geomagnetic storms throughout the solar activity cycle

    Directory of Open Access Journals (Sweden)

    S. Bravo

    Full Text Available We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.

  13. On a relation of geomagnetic activity, solar wind velocity and irregularity of daily rotation of the Earth

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Kiselev, V.M.

    1980-01-01

    A possibility of the presence of statistic relation between the changes of the Earth rotation regime and the mean velocity of solar wind is discussed. The ratio between the solar wind velocity observed and planetary index of geomagnetic activity am is used to determine the annual average values of solar wind velocity beyond the twentieth cycle of solar activity. The restored changes of solar wind velocity are compared with solar conditioned variations of the Earth day duration and it is shown that the correspondence takes place only at frequencies lower the frequency of 11-year cycle [ru

  14. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes.

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta; Milvidaite, Irena; Kubilius, Raimondas; Stasionyte, Jolanta

    2014-08-01

    A number of studies have established the effects of solar-geomagnetic activity on the human cardio-vascular system. It is plausible that the heliophysical conditions existing during and after hospital admission may affect survival in patients with acute coronary syndromes (ACS). We analyzed data from 1,413 ACS patients who were admitted to the Hospital of Kaunas University of Medicine, Lithuania, and who survived for more than 4 days. We evaluated the associations between active-stormy geomagnetic activity (GMA), solar proton events (SPE), and solar flares (SF) that occurred 0-3 days before and after admission, and 2-year survival, based on Cox's proportional-hazards model, controlling for clinical data. After adjustment for clinical variables, active-stormy GMA on the 2nd day after admission was associated with an increased (by 1.58 times) hazard ratio (HR) of cardiovascular death (HR=1.58, 95 % CI 1.07-2.32). For women, geomagnetic storm (GS) 2 days after SPE occurred 1 day after admission increased the HR by 3.91 times (HR=3.91, 95 % CI 1.31-11.7); active-stormy GMA during the 2nd-3rd day after admission increased the HR by over 2.5 times (HR=2.66, 95 % CI 1.40-5.03). In patients aged over 70 years, GS occurring 1 day before or 2 days after admission, increased the HR by 2.5 times, compared to quiet days; GS in conjunction with SF on the previous day, nearly tripled the HR (HR=3.08, 95 % CI 1.32-7.20). These findings suggest that the heliophysical conditions before or after the admission affect the hazard ratio of lethal outcome; adjusting for clinical variables, these effects were stronger for women and older patients.

  15. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    International Nuclear Information System (INIS)

    Proelss, G.W.

    1993-01-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects

  16. On the periodic variations of geomagnetic activity indices Ap and ap

    Directory of Open Access Journals (Sweden)

    H. Schreiber

    1998-05-01

    Full Text Available Yearly averages of geomagnetic activity indices Ap for the years 1967–1984 are compared to the respective averages of ν2·Bs, where v is the solar wind velocity and Bs is the southward interplanetary magnetic field (IMF component. The correlation of both quantities is known to be rather good. Comparing the averages of Ap with ν2 and Bs separately we find that, during the declining phase of the solar cycle, ν2 and during the ascending phase Bs have more influence on Ap. According to this observation (using Fourier spectral analysis the semiannual and 27 days, Ap variations for the years 1932–1993 were analysed separately for years before and after sunspot minima. Only those time-intervals before sunspot minima with a significant 27-day recurrent period of the IMF sector structure and those intervals after sunspot minima with a significant 28-28.5-day recurrent period of the sector structure were used. The averaged spectra of the two Ap data sets clearly show a period of 27 days before and a period of 28–29 days after sunspot minimum. Moreover, the phase of the average semiannual wave of Ap is significantly different for the two groups of data: the Ap variation maximizes near the equinoxes during the declining phase of the sunspot cycle and near the beginning of April and October during the ascending phase of the sunspot cycle, as predicted by the Russell-McPherron (R-M mechanism. Analysing the daily variation of ap in an analogue manner, the same equinoctial and R-M mechanisms are seen, suggesting that during phases of the solar cycle, when ap depends more on the IMF-Bs component, the R-M mechanism is predominant, whereas during phases when ap increases as v increases the equinoctial mechanism is more likely to be effective.Key words. Interplanetary physics · Magnetic fields · Solar wind plasma · Solar wind · magnetosphere interaction

  17. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  18. Time derivative of the horizontal geomagnetic field as an activity indicator

    Directory of Open Access Journals (Sweden)

    A. Viljanen

    2001-09-01

    Full Text Available Geomagnetically induced currents (GICs in technological conductor systems are a manifestation of the ground effects of space weather. Large GICs are always associated with large values of the time derivative of the geomagnetic field, and especially with its horizontal component (dH/dt. By using the IMAGE magnetometer data from northern Europe from 1982 to 2001, we show that large dH/dt’s (exceeding 1 nT/s primarily occur during events governed by westward ionospheric currents. However, the directional distributions of dH/dt are much more scattered than those of the simultaneous baseline subtracted horizontal variation field vector ΔH. A pronounced difference between ΔH and dH/dt takes place at about 02–06 MLT in the auroral region when dH/dt prefers an east-west orientation, whereas ΔH points to the south. The occurrence of large dH/dt has two daily maxima, one around the local magnetic midnight, and another in the morning. There is a single maximum around the midnight only at the southernmost IMAGE stations. An identical feature is observed when large GICs are considered. The yearly number of large dH/dt values in the auroral region follows quite closely the aa index, but a clear variation from year-to-year is observed in the directional distributions. The scattering of dH/dt distributions is smaller during descending phases of the sunspot cycle. Seasonal variations are also seen, especially in winter dH/dt  is more concentrated to the north-south direction than at other times. The results manifest the importance of small-scale structures of ionospheric currents when GICs are considered. The distribution patterns of dH/dt cannot be explained by any simple sheet-type model of (westward ionospheric currents, but rapidly changing north-south currents and field-aligned currents must play an important role.Key words. Geomagnetism and paleomagnetism (geomagnetic induction; rapid time variations - Ionosphere (ionospheric disturbances

  19. Geomagnetic activity at Northern Hemisphere's mid-latitude ground stations: How much can be explained using TS05 model

    Science.gov (United States)

    Castillo, Yvelice; Pais, Maria Alexandra; Fernandes, João; Ribeiro, Paulo; Morozova, Anna L.; Pinheiro, Fernando J. G.

    2017-12-01

    For the 2007 to 2014 period, we use a statistical approach to evaluate the performance of Tsyganenko and Sitnov [2005] semi-empirical model (TS05) in estimating the magnetospheric transient signal observed at four Northern Hemisphere mid-latitude ground stations: Coimbra, Portugal; Panagyurishte, Bulgary; Novosibirsk, Russia and Boulder, USA. Using hourly mean data, we find that the TS05 performance is clearly better for the X (North-South) than for the Y (East-West) field components and for more geomagnetically active days as determined by local K-indices. In ∼ 50% (X) and ∼ 30% (Y) of the total number of geomagnetically active days, correlation values yield r ≥ 0.7. During more quiet conditions, only ∼ 30% (X) and ∼ 15% (Y) of the number of analyzed days yield r ≥ 0.7. We compute separate contributions from different magnetospheric currents to data time variability and to signal magnitude. During more active days, all tail, symmetric ring and partial ring currents contribute to the time variability of X while the partial ring and field aligned currents contribute most to the time variability of Y. The tail and symmetric ring currents are main contributors to the magnitude of X. In the best case estimations when r ≥ 0.7, remaining differences between observations and TS05 predictions could be explained by global induction in the Earth's upper layers and crustal magnetization. The closing of field aligned currents through the Earth's center in the TS05 model seems to be mainly affecting the Y magnetospheric field predictions.

  20. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis

    2015-11-01

    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  1. On the Relationship Between Global Land-Ocean Temperature and Various Descriptors of Solar-Geomagnetic Activity and Climate

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    Examined are sunspot cycle- (SC-) length averages of the annual January-December values of the Global Land-Ocean Temperature Index () in relation to SC-length averages of annual values of various descriptors of solar-geomagnetic activity and climate, incorporating lags of 0-5 yr. For the overall interval SC12-SC23, the is inferred to correlate best against the parameter incorporating lag = 5 yr, where the parameter refers to the resultant aa value having removed that portion of the annual aa average value due to the yearly variation of sunspot number (SSN). The inferred correlation between the and is statistically important at confidence level cl > 99.9%, having a coefficient of linear correlation r = 0.865 and standard error of estimate se = 0.149 degC. Excluding the most recent cycles SC22 and SC23, the inferred correlation is stronger, having r = 0.969 and se = 0.048 degC. With respect to the overall trend in the , which has been upwards towards warmer temperatures since SC12 (1878-1888), solar-geomagnetic activity parameters are now trending downwards (since SC19). For SC20-SC23, in contrast, comparison of the against SC-length averages of the annual value of the Mauna Loa carbon dioxide () index is found to be highly statistically important (cl >> 99.9%), having r = 0.9994 and se = 0.012 degC for lag = 2 yr. On the basis of the inferred preferential linear correlation between the and , the current ongoing SC24 is inferred to have warmer than was seen in SC23 (i.e., >0.526 degC), probably in excess of 0.68 degC (relative to the 1951-1980 base period).

  2. Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone

    Directory of Open Access Journals (Sweden)

    N. Dashora

    2009-05-01

    Full Text Available Results pertaining to the response of the equatorial and low latitude ionosphere to a major geomagnetic storm that occurred on 15 May 2005 are presented. These results are also the first from the Indian zone in terms of (i GPS derived total electron content (TEC variations following the storm (ii Local low latitude electrodynamics response to penetration of high latitude convection electric field (iii effect of storm induced traveling atmospheric disturbances (TAD's on GPS-TEC in equatorial ionization anomaly (EIA zone.

    Data set comprising of ionospheric TEC obtained from GPS measurements, ionograms from an EIA zone station, New Delhi (Geog. Lat. 28.42° N, Geog. Long. 77.21° E, ground based magnetometers in equatorial and low latitude stations and solar wind data obtained from Advanced Composition Explorer (ACE has been used in the present study. GPS receivers located at Udaipur (Geog. Lat. 24.73° N, Geog. Long. 73.73° E and Hyderabad (Geog. Lat. 17.33° N, Geog. Long. 78.47° E have been used for wider spatial coverage in the Indian zone. Storm induced features in vertical TEC (VTEC have been obtained comparing them with the mean VTEC of quiet days. Variations in solar wind parameters, as obtained from ACE and in the SYM-H index, indicate that the storm commenced on 15 May 2005 at 02:39 UT. The main phase of the storm commenced at 06:00 UT on 15 May with a sudden southward turning of the Z-component of interplanetary magnetic field (IMF-Bz and subsequent decrease in SYM-H index. The dawn-to-dusk convection electric field of high latitude origin penetrated to low and equatorial latitudes simultaneously as corroborated by the magnetometer data from the Indian zone. Subsequent northward turning of the IMF-Bz, and the penetration of the dusk-to-dawn electric field over the dip equator is also discernible. Response of the low latitude ionosphere to this storm may be characterized in terms of (i

  3. An empirical model of the quiet daily geomagnetic field variation

    Science.gov (United States)

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  4. Anomalous enhancement in daytime 40-kHz signal amplitude accompanied by geomagnetic storms, earthquakes and meteor showers

    Directory of Open Access Journals (Sweden)

    B. K. De

    1995-10-01

    Full Text Available Anomalous propagational characteristics, daytime signal levels greater than night-time, were observed. The amplitude records of a 40-kHz signal propagated over a distance of 5100 km from Sanwa, Japan to Calcutta along a low-latitude path show higher signal strength at midday compared to the midnight level on days preceded by principal geomagnetic storms, earthquakes and major meteor showers. This is explained by the increased ionization in the D-region following geophysical events. The storm after-effects only have a duration of a single day in this low-latitude path.

  5. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  6. Geomagnetic Principal Magnetic Storms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The abbreviations used for observatory names are as follows: GEOMAGNETIC OBSERVATORIES Code Station Geomagnetic Latitude ABG Alibag AMS Martin de Vivie. These data...

  7. [The role of the solar and geomagnetic activity in the etiology of multiple sclerosis: a review of the literature and prospects of research].

    Science.gov (United States)

    Stolyarov, I D; Goncharova, Z A; Shkilnyuk, G G; Samoylova, N A

    2016-01-01

    Despite the great progress in the study of multiple sclerosis (MS), its etiology remains unknown. It is proved that MS occurs in genetically predisposed people under the influence of environmental factors. Among these factors the solar activity (SA) and geomagnetic activity (GA) attract the particular attention. This article presents the review of studies concerning the influence of SA and GA on the incidence and course of MS.

  8. Possible link of sudden onset and short-time periodic pulsation of polar mesosphere summer echoes to ULF Pc5 geomagnetic pulsations and solar wind dynamic pressure enhancement

    Science.gov (United States)

    Lee, Y.; Kirkwood, S.; Kwak, Y. S.

    2016-12-01

    The EISCAT VHF incoherent scatter radar in Tromsö, Norway, makes occasional observations of electron densities and Polar Mesosphere Summer Echoes, in the summer polar D-region ionosphere. In one of those datasets, pulsating polar mesospheric summer echoes (PMSE) are observed, with periodicities in the ultra-low frequency (ULF) Pc5 band (1.6-6.7 mHz), following an abrupt increase of the radar reflectivity when a geomagnetic field excursion is started, in turn linked to dynamic pressure (Pdyn) enhancement in the solar wind. At the excursion of the magnetic field, at auroral altitudes of 90 km and above, electron density is abruptly enhanced, followed by a series of short-lived peaks, superimposed on an enhanced level. The short-lived peaks are likely a signature of transient Pc5 geomagnetic pulsations and associated energetic electron precipitation from pitch-angle scattering into the loss cone in the magnetosphere. At the same time, at altitudes around 80-90 km, a sharp increase of PMSE reflectivity occurs, 100 times greater than the increase of electron density, and is followed by pulsating PMSE reflectivity with periodicities in the Pc5 band, increasing and decreasing in magnitude during the course of the next hour. The increase of the pulsation magnitude may be attributed to an increase of high-energy electron precipitation flux ( >30 keV) penetrating to at least the height of maximum PMSE reflectivity. This study suggests that Pc5 pulsation bursts in both magnetic field and high energy electron precipitation could play a crucial role in producing PMSE fluctuations on minute-to-minute time scales.

  9. Polar mesosphere summer echo strength in relation to solar variability and geomagnetic activity during 1997–2009

    Directory of Open Access Journals (Sweden)

    M. Smirnova

    2011-03-01

    Full Text Available This paper is based on measurements of Polar Mesosphere Summer Echoes (PMSE with the 52 MHz radar ESRAD, located near Kiruna, in Northern Sweden, during the summers of 1997–2009. Here, a new independent calibration method allowing estimation of possible changes in antenna feed losses and transmitter output is described and implemented for accurate calculation of year-to-year variations of PMSE strength (expressed in absolute units – radar volume reflectivity η. The method is based on radar-radiosonde comparisons in the upper troposphere/lower stratosphere region simultaneously with PMSE observations. Inter-annual variations of PMSE volume reflectivity are found to be strongly positively correlated with the local geomagnetic K-index, both when averaged over all times of the day, and when considering 3-h UT intervals separately. Increased electron density due to energetic particle precipitation from the magnetosphere is suggested as one of the possible reasons for such a correlation. Enhanced ionospheric electric field may be another reason but this requires further study. Multi-regression analysis of inter-annual variations of PMSE η shows also an anti-correlation with solar 10.7 cm flux and the absence of any statistically significant trend in PMSE strength over the interval considered (13-years. Variations related to solar flux and K-index account for 86% of the year-to-year variations in radar volume reflectivity.

  10. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... registrations of geomagnetic activity. We find a significant annual variation during the high-activity solar cycles in mid-19th century and since 1930's. Most interestingly, the SW speed asymmetry in mid-19th century was opposite to the present asymmetry, i.e., the minimum speed region was then shifted toward...

  11. New insights on geomagnetic storms from observations and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzgeomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  12. Geomagnetic Disturbances Caused by Internal Atmospheric Dynamics

    Science.gov (United States)

    Sonneman, G.

    1984-01-01

    It is commonly believed that geomagnetic disturbances are caused by external influences connected with the solar wind. The 27-day recurrence of perturbations seems to be a strong hint for this interaction. But frequently geomagnetic disturbances occur without any relation to sunspot numbers or radiowave fluxes. This was one of the reasons for introducing hypothetical M-regions on the Sun and their relation to solar wind activities. Only one half of the variance of the geomagnetic AL-index could be related to the solar wind. Therefore it is concluded that internal processes of the magnetosphere were responsible for additional geomagnetic activity. Arguments, which might lead to the suggestion of geomagnetic disturbances as being caused by internal atmospheric dynamics are discussed and a rather preliminary scenario of those processes is proposed.

  13. Review Article: On the relation between the seismic activity and the Hurst exponent of the geomagnetic field at the time of the 2000 Izu swarm

    Directory of Open Access Journals (Sweden)

    F. Masci

    2013-09-01

    Full Text Available Many papers document the observation of earthquake-related precursory signatures in geomagnetic field data. However, the significance of these findings is ambiguous because the authors did not adequately take into account that these signals could have been generated by other sources, and the seismogenic origin of these signals have not been validated by comparison with independent datasets. Thus, they are not reliable examples of magnetic disturbances induced by the seismic activity. Hayakawa et al. (2004 claim that at the time of the 2000 Izu swarm the Hurst exponent of the Ultra-Low-Frequency (ULF: 0.001–10 Hz band of the geomagnetic field varied in accord with the energy released by the seismicity. The present paper demonstrates that the behaviour of the Hurst exponent was insufficiently investigated and also misinterpreted by the authors. We clearly show that during the Izu swarm the changes of the Hurst exponent were strongly related to the level of global geomagnetic activity and not to the increase of the local seismic activity.

  14. Relationship between volcanic activity and shallow hydrothermal system at Meakandake volcano, Japan, inferred from geomagnetic and audio-frequency magnetotelluric measurements

    Science.gov (United States)

    Takahashi, Kosuke; Takakura, Shinichi; Matsushima, Nobuo; Fujii, Ikuko

    2018-01-01

    Hydrothermal activity at Meakandake volcano, Japan, from 2004 to 2014 was investigated by using long-term geomagnetic field observations and audio-frequency magnetotelluric (AMT) surveys. The total intensity of the geomagnetic field has been measured around the summit crater Ponmachineshiri since 1992 by Kakioka Magnetic Observatory. We reanalyzed an 11-year dataset of the geomagnetic total intensity distribution and used it to estimate the thermomagnetic source models responsible for the surface geomagnetic changes during four time periods (2004-2006, 2006-2008, 2008-2009 and 2013-2014). The modeled sources suggest that the first two periods correspond to a cooling phase after a phreatic eruption in 1998, the third one to a heating phase associated with a phreatic eruption in 2008, and the last one to a heating phase accompanying minor internal activity in 2013. All of the thermomagnetic sources were beneath a location on the south side of Ponmachineshiri crater. In addition, we conducted AMT surveys in 2013 and 2014 at Meakandake and constructed a two-dimensional model of the electrical resistivity structure across the volcano. Combined, the resistivity information and thermomagnetic models revealed that the demagnetization source associated with the 2008 eruptive activity, causing a change in magnetic moment about 30 to 50 times greater than the other sources, was located about 1000 m beneath Ponmachineshiri crater, within or below a zone of high conductivity (a few ohm meters), whereas the other three sources were near each other and above this zone. We interpret the conductive zone as either a hydrothermal reservoir or an impermeable clay-rich layer acting as a seal above the hydrothermal reservoir. Along with other geophysical observations, our models suggest that the 2008 phreatic eruption was triggered by a rapid influx of heat into the hydrothermal reservoir through fluid-rich fractures developed during recent seismic swarms. The hydrothermal reservoir

  15. Geomagnetic signal induced by the M5.7 earthquake occurred on September 24-th, 2016, in the seismic active Vrancea zone, Romania

    Science.gov (United States)

    Stanica, Dumitru; Armand Stanica, Dragos

    2017-04-01

    In this paper, we used the geomagnetic time series collected in real time by the electromagnetic monitoring system, placed at the Geomagnetic Observatory Provita de Sus, to emphasize possible relationships between the pre-seismic anomalous behavior of the normalized function Bzn and M5.7 earthquake occurrence in Vrancea seismic active zone, on September 24, 2016. It has already been demonstrated (Stanica and Stanica, 2012, Stanica et al., 2015) that for a 2D geoelectric structure, in pre-seismic conditions, the normalized function Bzn has significant changes in magnitudes due to the electrical conductivity changes, possibly associated with the earthquake-induced rupture-processes and high-pressure fluid flow through the faulting systems developed inside the Vrancea seismogenic volume and along the Carpathian electrical conductivity anomaly. In this circumstances, the daily mean distributions of the Bzn = Bz/Bperp (where Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to the geoelectric strike) and its standard deviation (SD) are performed in the ULF frequency range 0.001Hz to 0.0083Hz by using both the FFT band-pass filter analysis and statistical analysis based on a standardized random variable equation. After analyzing the pre-seismic anomalous intervals, a pre-seismic geomagnetic signal greater than 5 SD was identified on September 22, 2016, what means a lead time of 2 days before the M5.7 earthquake occurred on September 24, emphasized in real time on the web site (www.geodin.ro). The final conclusion is that the proposed geomagnetic methodology might be used to provide suitable information for the extreme seismic hazard assessment and risk mitigation. References: Dumitru Stanica and Dragos Armand Stanica, Earthquakes precursors, in "Earthquake Research and Analysis-Statistical Studies, Observations and Planning" Book 5, edited by: Dr. Sebastiano D'Amico, ISBN 978-953-51-0134-5, InTech open access publisher

  16. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 2: A new reconstruction of the interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2013-11-01

    Full Text Available We present a new reconstruction of the interplanetary magnetic field (IMF, B for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a. Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear fit of the form B = χ · (IDV(1d − βα with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010.

  17. Short- and mid-term oscillations of solar, geomagnetic activity and cosmic-ray intensity during the last two solar magnetic cycles

    Science.gov (United States)

    Singh, Y. P.; Badruddin

    2017-04-01

    Short-and mid-term oscillations of the solar activity (sunspot number and 10.7 cm solar flux), geomagnetic activity (Ap index) and cosmic-ray intensity (neutron monitor count rate) are analysed during the past two solar-magnetic cycles (1968-1989 and 1989-2014). We have implemented the wavelet analysis on the daily time resolution data of sunspot number (SSN), 10.7 cm solar flux, geomagnetic Ap index and Oulu neutron monitor count rate. Results suggest that few quasi and intermittent oscillations are observed with remarkable power density in addition to fundamental periods, like 27 day (synodic period), 154 day (Rieger period), semi-annual, annual, 1.3 year, and 1.7 year. We have consistently observed first (27 day), second (13.5 day) and third (9.0 day) solar-rotation harmonics in the geomagnetic Ap-index during both the magnetic cycles. Rieger period is more pronounced in SSN and solar flux during 1980-82 and 1990-92. Semi-annual variation of Ap-index is consistently observed during both the magnetic cycles. The annual and 1.85 year variation are also observed in all the considered parameters with good signatures in CRI.

  18. On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages

    Science.gov (United States)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.

  19. Normalized superposed epoch analysis reveals two step main phase enhancement: evidence for potential and inductive convection during intense geomagnetic events

    Science.gov (United States)

    Katus, R. M.; Liemohn, M. W.; Ridley, A. J.; Gallagher, D. L.; Zou, S.

    2011-12-01

    The relative contribution of storm-time ring current development by convection driven by either potential or inductive electric fields has remained an unresolved question in geospace research. Studies have been published supporting each side of this debate, including views that ring current build-up is entirely one or the other. This study presents new insights into the relative roles of these storm main phase processes. We perform a superposed epoch study of 141 intense storms (Dst storm dynamics compared to conventional methods. Examination of the enhanced resolution Dst reveals an inflection point consistent with two-step main phase development, which is supported by results for the southward interplanetary magnetic field and various ground-based magnetic indices. It is determined that the first step of Dst development is due to potential convective drift, during which an initial ring current is formed. The negative feedback of this hot ion population begins to limit further ring current growth. The second step of the main phase, however, is found to be dominated by substorm activity. It is hypothesized that this is necessary to achieve intense storm Dst levels because the substorm dipolarizations are effective at breaking through the negative feedback barrier of the existing inner magnetospheric hot ion pressure peak. In addition, the plasmaspheric drainage plume could be influencing dayside reconnection rates, which would then change the convective flow in the tail and the development of the ring current.

  20. On claimed ULF seismogenic fractal signatures in the geomagnetic field

    Science.gov (United States)

    Masci, Fabrizio

    2010-10-01

    During the last ten years, fractal analysis of ultra low frequency (ULF) geomagnetic field components has been proposed as one of the most promising tools to highlight magnetic precursory signals possibly generated by the preparation processes of earthquakes. Several papers claim seismogenic changes in the fractal features of the geomagnetic field some months before earthquakes occur. The target of the present paper is to put forth a qualitative investigation on the fractal characteristics of ULF magnetic signatures that previous authors have claimed to be related without doubt to strong earthquakes. This analysis takes into account both the temporal evolution of the geomagnetic field fractal parameters reported in previous researches and the temporal evolution of global geomagnetic activity. Running averages of the geomagnetic indices ΣKp and Ap are plotted into the original figures from the previous publications. This simple analysis shows that the fractal features of the ULF geomagnetic field are closely related to the geomagnetic activity both before and after the earthquake occurs. The correlation between the geomagnetic field fractal parameters and geomagnetic activity is clearly shown over both long and short time scales. In light of this, the present paper shows that fractal behaviors of previously claimed seismogenic ULF magnetic signatures depend mainly on geomagnetic activity due to solar-terrestrial interaction. Therefore, previously reported association with the preparation process of the earthquake is dubious.

  1. International Geomagnetic Reference Field

    DEFF Research Database (Denmark)

    Finlay, Chris; Maus, S.; Beggan, C. D.

    2010-01-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2009 by the International Association of Geomagnetism and Aeronomy Working Group V‐MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field...

  2. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    Science.gov (United States)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; hide

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  3. Geomagnetically Induced Currents: Principles

    Science.gov (United States)

    Oliveira, Denny M.; Ngwira, Chigomezyo M.

    2017-10-01

    The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13-14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.

  4. Operations of the World Data Centre for Geomagnetism (Edinburgh)

    OpenAIRE

    Reay, Sarah; Dawson, Ewan; Macmillan, Susan; Flower, Simon; Shanahan, Tom; Humphries, Thomas

    2011-01-01

    The British Geological Survey has operated a World Data Centre for Geomagnetism since 1966. We hold geomagnetic time-series from around 280 observatories worldwide, for a number of time- resolutions from one-minute to annual, along with various magnetic survey, model and activity index data. The operation of this dynamic data centre contributes towards global geomagnetic field modelling efforts and provides a valuable service to the worldwide research community. We describe the operation ...

  5. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin

    DEFF Research Database (Denmark)

    Ou, Jiaming; Du, Aimin; Finlay, Chris

    2017-01-01

    of second-order derivatives of the geomagnetic X, Y, and Z components reveals salient QBO signals at periods of 1.3, 1.7, 2.2, 2.9, and 5.0 years, with the most prominent peak at 2.2 years. The signature of geomagnetic QBO is generally stronger in the X and Z components and with larger amplitudes...... on geomagnetically disturbed days. The amplitude of the QBO in the X component decreases from the equator to the poles, then shows a local maximum at subauroral and auroral zones. The QBO in the Z component enhances from low latitudes toward the polar regions. At high latitudes (poleward of 50°) the geomagnetic QBO...... exhibits stronger amplitudes during LT 00:00–06:00, depending strongly on the geomagnetic activity level, while at low latitudes the main effect is in the afternoon sector. These results indicate that the QBOs at low-to-middle latitudes and at high latitudes are influenced by different magnetospheric...

  6. Geomagnetic aa Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The geomagnetic aa indices are the continuation of the series beginning in the year 1868. A full description of these indices is given in the International...

  7. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  8. Geomagnetic Indices Bulletin (GIB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geomagnetic Indices Bulletin is a one page sheet containing the magnetic indices Kp, Ap, Cp, An, As, Am and the provisional aa indices. The bulletin is published...

  9. Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840–1905 and 1980–2045

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka

    2009-01-01

    Roč. 14, č. 1 (2009), s. 25-30 ISSN 1384-1076 R&D Projects: GA AV ČR(CZ) IAA300120608 Institutional research plan: CEZ:AV0Z30120515 Keywords : solar inertial motion * solar activity * geomagnetic activity * long-term predictive assessments Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.675, year: 2009

  10. The effect of geomagnetic storms on suicide | Gordon | African ...

    African Journals Online (AJOL)

    Objectives: To correlate geomagnetic storm activity with suicide rates. Design: A retrospective analysis over a 13 year period, Janaury 1980 to December 1992. Setting: Hermanus Magnetic Observatory (data on geomagnetic storm activity), South African Central Statistical Services (data on suicide rates). Subjects: Nil.

  11. The Contribution of a Geophysical Data Service: The International Service of Geomagnetic Indices

    Directory of Open Access Journals (Sweden)

    M Menvielle

    2013-01-01

    Full Text Available Geomagnetic indices are basic data in Solar-Terrestrial physics and in operational Space Weather activities. The International Service of Geomagnetic Indices (ISGI is in charge of the derivation and dissemination of the geomagnetic indices that are acknowledged by the International Association of Geomagnetism and Aeronomy (IAGA, an IUGG association. Institutes that are not part of ISGI started early in the Internet age to circulate on-line preliminary values of geomagnetic indices. In the absence of quality stamping, this resulted in a very confusing situation. The ISGI label was found to be the simplest and the safest way to insure quality stamping of circulated geomagnetic indices.

  12. Solar Wind Disturbances Related to Geomagnetic Storms

    Science.gov (United States)

    Tan, A.; Lyatsky, W. B.

    2001-12-01

    We used the superposed epoch method to reconstruct a typical behavior of solar wind parameters before and during strong isolated geomagnetic storms. For this analysis we used 130 such geomagnetic storms during the period of 1966-2000. The results obtained show that a typical disturbance in the solar wind responsible for geomagnetic storm generation is associated with the propagation of high-speed plasma flow compressing ambient solar wind plasma and interplanetary magnetic field (IMF) ahead of this high-speed flow. This gives rise to enhanced magnetic field, plasma density, plasma turbulence and temperature, which start to increase several hours before geomagnetic storm onset. However, the IMF Bz (responsible for geomagnetic storm onset) starts to increase significantly later (approximately 6-7 hours after maximal variations in plasma density and IMF By). The time delay between peaks in IMF Bz and plasma density (and IMF By) may be a result of draping of high-speed plasma streams with ambient magnetic field in the (z-y) plane as discussed by some authors. This leads to an increase first in plasma density and IMF By ahead of a high-speed flow, which is followed by an increase in IMF Bz. This simple model allows us to predict that the probability for geomagnetic storm generation should depend on which edge of a high-speed flow encounters the Earth's magnetosphere. The probability for geomagnetic storm generation is expected to be maximal when the flow encounters the magnetosphere by its north-west edge for negative IMF By and south-west edge for positive IMF By.

  13. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  14. Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams

    Science.gov (United States)

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2011-02-01

    The dependence of the maximal values of the | Dst| and AE geomagnetic indices observed during magnetic storms on the value of the interplanetary electric field ( E y ) was studied based on the catalog of the large-scale solar wind types created using the OMNI database for 1976-2000 [Yermolaev et al., 2009]. An analysis was performed for eight categories of magnetic storms caused by different types of solar wind streams: corotating interaction regions (CIR, 86 storms); magnetic clouds (MC, 43); Sheath before MCs (ShMC, 8); Ejecta (95); Sheath (ShE, 56); all ICME events (MC + Ejecta, 138); all compression regions Sheaths before MCs and Ejecta (ShMC + ShE, 64); and an indeterminate type of storm (IND, 75). It was shown that the | Dst| index value increases with increasing electric field E y for all eight types of streams. When electric fields are strong ( E y > 11 mV m-1), the | Dst| index value becomes saturated within magnetic clouds MCs and possibly within all ICMEs (MC + Ejecta). The AE index value during magnetic storms is independent of the electric field value E y for almost all streams except magnetic clouds MCs and possibly the compressed (Sheath) region before them (ShMC). The AE index linearly increases within MC at small values of the electric field ( E y 11 mV m-1). Since the dynamic pressure ( Pd) and IMF fluctuations (σ B) correlate with the E y value in all solar wind types, both geomagnetic indices (| Dst| and AE) do not show an additional dependence on Pd and IMF δ B. The nonlinear relationship between the intensities of the | Dst| and AE indices and the electric field E y component, observed within MCs and possibly all ICMEs during strong electric fields E y , agrees with modeling the magnetospheric-ionospheric current system of zone 1 under the conditions of the polar cap potential saturation.

  15. Geomagnetic response to solar and interplanetary disturbances

    Directory of Open Access Journals (Sweden)

    Maris Georgeta

    2013-07-01

    Full Text Available The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc. and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in

  16. [Can solar/geomagnetic activity restrict the occurrence of some shellfish poisoning outbreaks? The example of PSP caused by Gymnodinium catenatum at the Atlantic Portuguese coast].

    Science.gov (United States)

    Vale, P

    2013-01-01

    Cyclic outbreaks of accumulation of paralytic shellfish poisoning (PSP) toxins in mussels attributed to Gymnodinium catenatum blooms displayed several of the highest inter-annual maxima coincidental with minima of the 11-year solar sunspot number (SSN) cycle. The monthly distribution of PSP was associated with low levels of the solar radio flux, a more quantitative approach than SSN for fluctuations in solar activity. A comparison between monthly distribution of PSP and other common biotoxins (okadaic acid (OA), dinophysistoxin-2 (DTX2) and amnesic shellfish poisoning (ASP) toxins) demonstrated that only PSP was significantly associated with low levels of radio flux (p < 0.01). PSP occurrence suggests a prior decline in solar activity could be required to act as a trigger, in a similar manner to a photoperiodic signal. The seasonal frequency increased towards autumn during the study period, which might be related to the progressive atmospheric cut-off of deleterious radiation associated with the seasonal change in solar declination, and might play an additional role in seasonal signal-triggering. PSP distribution was also associated with low levels of the geomagnetic index Aa. A comparison between monthly distribution of PSP and other common biotoxins, also demonstrated that only PSP was significantly associated with low levels of the Aa index (p < 0.01). In some years of SSN minima no significant PSP-outbreaks in mussels were detected. This was attributed to a steady rise in geomagnetic activity that could disrupt the triggering signal. Global distribution patterns show that hotspots for G. catenatum blooms are regions with deficient crustal magnetic anomalies. In addition to the variable magnetic field mostly of solar origin, static fields related to magnetized rocks in the crust and upper mantle might play a role in restricting worldwide geographic distribution.

  17. Long-term north-south asymmetry in solar wind speed inferred from geomagnetic activity: A new type of century-scale solar oscillation?

    DEFF Research Database (Denmark)

    Mursula, K.; Zieger, B.

    2001-01-01

    A significant and very similar annual variation in solar wind speed and in geomagnetic activity was recently found around all the four solar cycle minima covered by direct SW observations since mid-1960's. We have shown that the phase of this annual variation reverses with the Sun's polarity...... reversal, depicting a new form of 22-year periodicity. The annual variation results from a small north-south asymmetry in SW speed distribution where the minimum speed region is shifted toward the northern magnetic hemisphere. Here we study the very long-term evolution of the annual variation using early...... the southern magnetic hemisphere. This change of asymmetry suggests for a possible new form of century-scale oscillation in the north-south asymmetry of the Sun. We explain the asymmetry in terms of a relic magnetic field dislocated slightly in the north-south direction from the heliographic equator...

  18. Geomagnetic Observations and Models

    CERN Document Server

    Mandea, Mioara

    2011-01-01

    This volume provides comprehensive and authoritative coverage of all the main areas linked to geomagnetic field observation, from instrumentation to methodology, on ground or near-Earth. Efforts are also focused on a 21st century e-Science approach to open access to all geomagnetic data, but also to the data preservation, data discovery, data rescue, and capacity building. Finally, modeling magnetic fields with different internal origins, with their variation in space and time, is an attempt to draw together into one place the traditional work in producing models as IGRF or describing the magn

  19. Helio-Geomagnetic Activity and the Time Distribution of Myocardial Infractions during the Solar Cycle 23 (1997-2007). A Preliminary Study based on a Greek Hospital Data

    Science.gov (United States)

    Moussas, X.; Preka-Papadema, P.; Apostolou, Th.; Katsavrias, Ch.; Theodoropoulou, A.; Papadima, Th.

    2010-01-01

    We present the time distribution of a large number (7798) of Myocardial Infractions (MI) recorded at the General Hospital `St. Panteleimon' of the city of Nikea (in Piraeus, Greece), during time interval 1997-2007. This data set consisted of 5160 NON-STEACS (non-ST) and 2638 STEACS (ST) infractions are examined along with the monthly numbers of solar flares and Coronal Mass Ejections (CMEs), solar wind parameters and the geomagnetic activity (Dst geomagnetic index and other). The mean monthly value of ST and non-ST events is 20 and 40 respectively. The maximum monthly value of non-ST events (72 and 73) are recorded in October 2002 and January 2003, as well as the one of ST events (32), while solar maximum, recorded in November 2002. This time interval is characterized by magnetic storms from August 2002 peaked in October 2002 and ended in February 2003. It is noticeable that August 2002 corresponds to the solar maximum of CMEs and strong solar flares monthly values. The maximum monthly value of ST events (40) is recorded in November 2005 almost simultaneously with a sudden absence of solar flares (October 2005). Increased values have been recorded during a period of extreme solar events of October-November 2003 and January-March 2005. It seems from this extensive statistical study that there is an association between the monthly values of MI and of CMEs; the non-ST MI shows a better association with CMEs. Moreover, the MI yearly distribution is in accordance with the time distribution of magnetic storms (number and duration). The non-ST distribution is also affected by intense magnetic storms.

  20. An introduction to quiet daily geomagnetic fields

    Science.gov (United States)

    Campbell, W.H.

    1989-01-01

    On days that are quiet with respect to solar-terrestrial activity phenomena, the geomagnetic field has variations, tens of gamma in size, with major spectral components at about 24, 12, 8, and 6 hr in period. These quiet daily field variations are primarily due to the dynamo currents flowing in the E region of the earth's ionosphere, are driven by the global thermotidal wind systems, and are dependent upon the local tensor conductivity and main geomagnetic field vector. The highlights of the behavior and interpretation of these quiet field changes, from their discovery in 1634 until the present, are discussed as an introduction to the special journal issue on Quiet Daily Geomagnetic Fields. ?? 1989 Birkha??user Verlag.

  1. Introduction to Geomagnetic Fields

    Science.gov (United States)

    Hinze, William J.

    Coincidentally, as I sat down in late October 2003 to read and review the second edition of Wallace H. Campbell's text, Introduction to Geomagnetic Fields, we received warnings from the news media of a massive solar flare and its possible effect on power supply systems and satellite communications. News programs briefly explained the source of Sun-Earth interactions. If you are interested in learning more about the physics of the connection between sun spots and power supply systems and their impact on orbiting satellites, I urge you to become acquainted with Campbell's book. It presents an interesting and informative explanation of the geomagnetic field and its applications to a wide variety of topics, including oil exploration, climate change, and fraudulent claims of the utility of magnetic fields for alleviating human pain. Geomagnetism, the study of the nature and processes of the Earth's magnetic fields and its application to the investigation of the Earth, its processes, and history, is a mature science with a well-developed theoretical foundation and a vast array of observations. It is discussed in varied detail in Earth physics books and most entry-level geoscience texts. The latter treatments largely are driven by the need to discuss paleomagnetism as an essential tool in studying plate tectonics. A more thorough explanation of geomagnetism is needed by many interested scientists in related fields and by laypersons. This is the objective of Campbell's book. It is particularly germane in view of a broad range of geomagnetic topics that are at the forefront of today's science, including environmental magnetism, so-called ``jerks'' observed in the Earth's magnetic field, the perplexing magnetic field of Mars, improved satellite magnetic field observations, and the increasing availability of high-quality continental magnetic anomaly maps, to name only a few.

  2. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    Science.gov (United States)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  3. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population.

    Science.gov (United States)

    Ozheredov, V A; Chibisov, S M; Blagonravov, M L; Khodorovich, N A; Demurov, E A; Goryachev, V A; Kharlitskaya, E V; Eremina, I S; Meladze, Z A

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  4. Application of the SP algorithm to the INTERMAGNET magnetograms of the disturbed geomagnetic field

    Science.gov (United States)

    Sidorov, R. V.; Soloviev, A. A.; Bogoutdinov, Sh. R.

    2012-05-01

    The algorithmic system developed in the Laboratory of Geoinformatics at the Geophysical Center, Russian Academy of Sciences, which is intended for recognizing spikes on the magnetograms from the global network INTERMAGNET provides the possibility to carry out retrospective analysis of the magnetograms from the World Data Centers. Application of this system to the analysis of the magnetograms allows automating the job of the experts-interpreters on identifying the artificial spikes in the INTERMAGNET data. The present paper is focused on the SP algorithm (abbreviated from SPIKE) which recognizes artificial spikes on the records of the geomagnetic field. Initially, this algorithm was trained on the magnetograms of 2007 and 2008, which recorded the quiet geomagnetic field. The results of training and testing showed that the algorithm is quite efficient. Applying this method to the problem of recognizing spikes on the data for periods of enhanced geomagnetic activity is a separate task. In this short communication, we present the results of applying the SP algorithm trained on the data of 2007 to the INTERMAGNET magnetograms for 2003 and 2005 sampled every minute. This analysis shows that the SP algorithm does not exhibit a worse performance if applied to the records of a disturbed geomagnetic field.

  5. Theory of geomagnetic micropulsation

    International Nuclear Information System (INIS)

    Sen, A.K.

    1979-01-01

    A theory of geomagnetic micropulsations in the PC2 to PC5 range is presented. It is shown that the magnetopause is subject to a Kelvin-Helmholtz type instability under many conditions of solar wind. The hydromagnetic waves generated by this instability propagate along the geomagnetic field and appear on the surface of the earth as micropulsations. The resonances in the transmission coefficient of the path in the outer magnetosphere is found to be important in the determination of the overall transmission characteristics. A rigorous solution of the transmission problem shows significant transmitted amplitudes in the vicinity of PC2 to PC5 micropulsations. An unique mechanism for Pearl type micropulsations is also presented. Some examples of Kelvin-Helmholtz instability (responsible for micropulsations) in laboratory plasmas are discussed. (author)

  6. Geomagnetic radioflash unfold (GRUF)

    International Nuclear Information System (INIS)

    Malik, J.S.

    1975-08-01

    A method of inverting the geomagnetic component of the radioflash signal from a nuclear explosion to obtain the gamma-ray time history was proposed by E. D. Dracott of the Atomic Weapons Research Establishment. A simplified development of an elaboration by B. R. Suydam has been programmed for small calculators in a form suitable for interim field analysis of such data. The development of the program is contained in the report

  7. On extreme geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Cid Consuelo

    2014-01-01

    Full Text Available Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  8. Total electron content responses to HILDCAAs and geomagnetic storms over South America

    Science.gov (United States)

    Mara de Siqueira Negreti, Patricia; Rodrigues de Paula, Eurico; Nicoli Candido, Claudia Maria

    2017-12-01

    Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O / N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from ˜ 25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and

  9. Geomagnetic polarity transitions

    Science.gov (United States)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    The top of Earth's liquid outer core is nearly 2900 km beneath Earth's surface, so we will never be able to observe it directly. This hot, dense, molten iron-rich body is continuously in motion and is the source of Earth's magnetic field. One of the most dynamic manifestations at Earth's surface of this fluid body is, perhaps, a reversal of the geomagnetic field. Unfortunately, the most recent polarity transition occurred at about 780 ka, so we have never observed a transition directly. It seems that a polarity transition spans many human lifetimes, so no human will ever witness the phenomenon in its entirety. Thus we are left with the tantalizing prospect that paleomagnetic records of polarity transitions may betray some of the secrets of the deep Earth. Certainly, if there are systematics in the reversal process and they can be documented, then this will reveal substantial information about the nature of the lowermost mantle and of the outer core. Despite their slowness on a human timescale, polarity transitions occur almost instantaneously on a geological timescale. This rapidity, together with limitations in the paleomagnetic recording process, prohibits a comprehensive description of any reversal transition both now and into the foreseeable future, which limits the questions that may at this stage be sensibly asked. The natural model for the geomagnetic field is a set of spherical harmonic components, and we are not able to obtain a reliable model for even the first few harmonic terms during a transition. Nevertheless, it is possible, in principle, to make statements about the harmonic character of a geomagnetic polarity transition without having a rigorous spherical harmonic description of one. For example, harmonic descriptions of recent geomagnetic polarity transitions that are purely zonal can be ruled out (a zonal harmonic does not change along a line of latitude). Gleaning information about transitions has proven to be difficult, but it does seem

  10. Statistical study of the equatorial F2 layer critical frequency at Ouagadougou during solar cycles 20, 21 and 22, using Legrand and Simon’s classification of geomagnetic activity

    Directory of Open Access Journals (Sweden)

    Amory-Mazaudier Christine

    2012-11-01

    Full Text Available This paper presents the statistical analysis of the diurnal variations of the F layer at the equatorial station of Ouagadougou (Lat: 12.4° N; Long: 358.5° E; dip: 5.9° from 1966 to 1998 (=> ~11 680 days. We consider three main factors of variability: (1 the season (spring, summer, autumn and winter, (2 the phase of the sunspot cycle (ascending, maximum, descending and minimum and (3 the geomagnetic activity classified by Legrand and Simon in four groups: slow solar wind, high solar wind streams, fluctuating solar wind and shock activity. We easily identify the influence of the solar wind speed and shock activity on the diurnal pattern of the F layer. Shock and recurrent activities tend to enhance or diminish the morning or afternoon maximum of the F2 layer critical frequency. The difference of the diurnal foF2 variation during the increasing and decreasing phases of the sunspot solar cycle is explained by different solar wind regimes. The slow solar wind dominates during the increasing phase of the sunspot cycle and the fluctuating solar wind dominates during the decreasing phase of the sunspot cycle. This paper demonstrates that it is possible using a large database, to bring up significant morphologies of the diurnal variation of the foF2 critical frequency as a function of (1 different solar events such as quiet solar wind, fluctuating wind, recurrent high stream wind and Coronal Mass Ejections (CMEs; (2 solar cycle phases and (3 seasons. It is an approach directly connecting the critical frequency of the F2 layer to the solar parameters.

  11. Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch

    Directory of Open Access Journals (Sweden)

    Mario Brkić

    2013-12-01

    Full Text Available After more than half a century, scientific book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch describes the recent geomagnetic field on Croatian territory. A review of research in the past decade as well as the original solutions makes the book a document of contribution to geodesy and geomagnetism in Croatia.The book’s introduction gives an overview of two centuries of history and the strategic, security, economic and scientific significance of knowing the geomagnetic field on the Croatian territory. All the activities related to the updating of the geomagnetic information, which took place in the last decade, signified a big step toward the countries where geomagnetic survey is a mature scientific and technical discipline, and a scientific contribution to understanding of the nature of the Earth's magnetism.The declination, inclination and total intensity maps (along with the normal annual changes for the epoch 2009.5 are given in the Appendix. The book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch (ISBN 978-953-293-521-9 is published by the State Geodetic Administration of the Republic of Croatia. Beside editor in chief, M. Brkić, the authors are: E. Vujić, D. Šugar, E. Jungwirth, D. Markovinović, M. Rezo, M. Pavasović, O. Bjelotomić, M. Šljivarić, M. Varga and V. Poslončec-Petrić. The book contains 48 pages and 3 maps, and is published in 200 copies. CIP record is available in digital catalogue of the National and University Library in Zagreb under number 861937.

  12. Predictability of geomagnetic series

    Directory of Open Access Journals (Sweden)

    E. Bellanger

    Full Text Available The aim of this paper is to lead a practical, rational and rigorous approach concerning what can be done, based on the knowledge of magnetic series, in the field of prediction of the extreme geomagnetic events. We compare the magnetic vector differential at different locations computed with different resolutions, from an entire day to minutes. We study the classical correlations and the simplest possible prediction scheme to conclude a high level of predictability of the magnetic vector variation. The results obtained are far from a random guessing: the error diagrams are either comparable with earthquake prediction studies or out-perform them when the minute sampling is used in accounting for hourly magnetic vector variation. We demonstrate how the magnetic extreme events can be predicted from the hourly value of the magnetic variation with a lead time of several hours. We compute the 2-D empirical distribution of consecutive values of the magnetic vector variation for the estimation of conditional probabilities of different types. The achieved results encourage further development of the approach to prediction of the extreme geomagnetic events.

    Key words. Ionosphere (modeling and forecasting – Magnetospheric physics (storms and substorms

  13. The driving mechanisms of particle precipitation during the moderate geomagnetic storm of 7 January 2005

    Directory of Open Access Journals (Sweden)

    N. Longden

    2007-10-01

    Full Text Available The arrival of an interplanetary coronal mass ejection (ICME triggered a sudden storm commencement (SSC at ~09:22 UT on the 7 January 2005. The ICME followed a quiet period in the solar wind and interplanetary magnetic field (IMF. We present global scale observations of energetic electron precipitation during the moderate geomagnetic storm driven by the ICME. Energetic electron precipitation is inferred from increases in cosmic noise absorption (CNA recorded by stations in the Global Riometer Array (GLORIA. No evidence of CNA was observed during the first four hours of passage of the ICME or following the sudden commencement (SC of the storm. This is consistent with the findings of Osepian and Kirkwood (2004 that SCs will only trigger precipitation during periods of geomagnetic activity or when the magnetic perturbation in the magnetosphere is substantial. CNA was only observed following enhanced coupling between the IMF and the magnetosphere, resulting from southward oriented IMF. Precipitation was observed due to substorm activity, as a result of the initial injection and particles drifting from the injection region. During the recovery phase of the storm, when substorm activity diminished, precipitation due to density driven increases in the solar wind dynamic pressure (Pdyn were identified. A number of increases in Pdyn were shown to drive sudden impulses (SIs in the geomagnetic field. While many of these SIs appear coincident with CNA, SIs without CNA were also observed. During this period, the threshold of geomagnetic activity required for SC driven precipitation was exceeded. This implies that solar wind density driven SIs occurring during storm recovery can drive a different response in particle precipitation to typical SCs.

  14. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  15. Trimpi occurrence and geomagnetic activity: Analysis of events detected at Comandante Ferraz Brazilian Antarctic Station (L=2.25)

    OpenAIRE

    Fernandez, JH; Piazza, LR; Kaufmann, P

    2003-01-01

    [1] We present an analysis of the occurrence of Trimpi events observed at Comandante Ferraz Brazilian Antarctic Station (EACF), at L = 2.25, as observed by the amplitude of very low frequency (VLF) signals transmitted from Hawaii (NPM 21.4 kHz) from April 1996 to August 1999. The event parameters ( total duration, amplitude variation, time incidence, and type ( negative or positive)) were analyzed for 4394 events detected in the first year ( solar minimum and relatively low Trimpi activity). ...

  16. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  17. Electric field in the magnetotail depending on the geomagnetic activity level and intensity Esub(y) in the solar wind

    International Nuclear Information System (INIS)

    Pudovkin, M.I.; Osipov, V.V.; Shukhtina, M.A.; Zajtseva, S.A.; AN SSSR, Vladivostok. Dal'nevostochnyh Nauchnyj Tsentr)

    1982-01-01

    The value of the large-scale electric field in the near magnetotail on AE-index variations delay in relation to interplanetary electric field variations is estimated. It is obtained that the electric field value in a tail increases with magnetic activity level. The solar wind electric field under strong magnetic disturbance penetrates into the magnetosphere practically without weakening and is essentially weakened in magneto-quit conditions. Calculated values of the electric field magnitude in the magnetotail (0.01-1mBm) are in agreement with those obtained earlier [ru

  18. Low-latitude geomagnetic signatures during major solar energetic particle events of solar cycle-23

    Directory of Open Access Journals (Sweden)

    R. Rawat

    2006-12-01

    Full Text Available The frequency of occurrence of disruptive transient processes in the Sun is enhanced during the high solar activity periods. Solar cycle-23 evidenced major geomagnetic storm events and intense solar energetic particle (SEP events. The SEP events are the energetic outbursts as a result of acceleration of heliospheric particles by solar flares and coronal mass ejections (CMEs. The present work focuses on the geomagnetic variations at equatorial and low-latitude stations during the four major SEP events of 14 July 2000, 8 November 2000, 24 September 2001 and 4 November 2001. These events have been reported to be of discernible magnitude following intense X-ray flares and halo coronal mass ejections. Low-latitude geomagnetic records evidenced an intense main phase development subsequent to the shock impact on the Earth's magnetosphere. Satellite observations show proton-flux enhancements associated with solar flares for all events. Correlation analysis is also carried out to bring out the correspondence between the polar cap magnetic field perturbations, AE index and the variations of low-latitude magnetic field. The results presented in the current study elucidate the varying storm development processes, and the geomagnetic field response to the plasma and interplanetary magnetic field conditions for the energetic events. An important inference drawn from the current study is the close correspondence between the persistence of a high level of proton flux after the shock in some events and the ensuing intense magnetic storm. Another interesting result is the role of the pre-shock southward IMF Bz duration in generating a strong main phase.

  19. Geomagnetic, ionospheric and cosmic ray variations around the passages of different magnetic clouds

    International Nuclear Information System (INIS)

    Maercz, F.

    1992-01-01

    Thirty-four interplanetary magnetic clouds have been divided into two groups on the basis of Wilson's (J.geophys. Res. 95, 215, 1990) classification: NS clouds (whose B z near cloud onset at Earth is directed northward, and soon after B z is turning southward) and SN clouds (those with an opposite behaviour with respect to B z ). Using the days of cloud onsets as key days, geomagnetic, ionospheric and cosmic ray data have been analysed by the superposed epoch analysis method for passages of both NS and SN clouds. On the basis of the daily ΣK p values, geomagnetic activity is found to suddenly increase in the vicinity of both types of cloud passages. Afterwards, the variation shown by the geomagnetic indices is found to differ for NS clouds in comparison with SN clouds. Namely, on average the recovery to a normal activity level is much slower for NS clouds. Similarly, the enhancements in the ionospheric absorption of radio waves (the so-called ''after-effects'') are found to show different signatures according to cloud type, an interpretation also valid for variations in cosmic ray intensity. The latter results are based on analyses of neutron monitor counts observed at two stations (Apatity: 67 N; and Moscow: 55 o N). (author)

  20. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    Science.gov (United States)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  1. The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview

    Directory of Open Access Journals (Sweden)

    Tsurutani Bruce T.

    2014-01-01

    Full Text Available This overview paper presents/discusses the major solar, interplanetary, magnetospheric, and ionospheric features of the CAWSES II interval of study: 7–17 March 2012. Magnetic storms occurred on 7, 9, 12, and 15 March with peak SYM-H intensities of −98 nT, −148 nT, −75 nT (pressure corrected, and −79 nT, respectively. These are called the S1, S2, S3, and S4 events. Although three of the storm main phases (S1, S3, and S4 were caused by IMF Bsouth sheath fields and the S2 event was associated with a magnetic cloud (MC, the detailed scenario for all four storms were different. Two interplanetary features with unusually high temperatures and intense and quiet magnetic fields were identified located antisunward of the MCs (S2 and S3. These features are signatures of either coronal loops or coronal sheaths. A high speed stream (HSS followed the S4 event where the presumably southward IMF Bz components of the Alfvén waves extended the storm “recovery phase” by several days. The ICME-associated shocks were particularly intense. The fast forward shock for the S2 event had a magnetosonic Mach number of ~9.4, the largest in recorded history. All of the shocks associated with the ICMEs created sudden impulses (SI+s at Earth. The shocks preceding the S2 and S3 magnetic storms caused unusually high SI+ intensities of ~60 and 68 nT, respectively. Many further studies on various facets of this active interval are suggested for CAWSES II researchers and other interested parties.

  2. Relationship between isolated sleep paralysis and geomagnetic influences: a case study.

    Science.gov (United States)

    Conesa, J

    1995-06-01

    This preliminary report, of a longitudinal study, looks at the relationship between geomagnetic activity and the incidence of isolated sleep paralysis over a 23.5-mo. period. The author, who has frequently and for the last 24 years experienced isolated sleep paralysis was the subject. In addition, incidence of lucid dreaming, vivid dreams, and total dream frequency were looked at with respect to geomagnetic activity. The data were in the form of dream-recall frequency recorded in a diary. These frequency data were correlated with geomagnetic activity k-index values obtained from two observatories. A significant correlation was obtained between periods of local geomagnetic activity and the incidence of isolated sleep paralysis. Specifically, periods of relatively quiet geomagnetic activity were significantly associated with an increased incidence of episodes.

  3. The Geomagnetic Control Concept of The Ionospheric Long- Term Trends

    Science.gov (United States)

    Mikhailov, A. V.

    The geomagnetic control concept has been developed to explain long-term trends of the electron concentration in the F2 and E ionospheric regions. Periods with negative and positive foF2, hmF2 and foE trends correspond to the periods of increasing or decreasing geomagnetic activity with the turning points around the end of 1950s, 1960s, and 1980s where trends change their signs. Strong latitudinal and diurnal variations revealed for the foF2 and hmF2 trends can be explained by neutral composition, temperature and thermospheric wind changes. Particle precipitation is important in the auroral zone. The newly proposed concept proceeds from a natural origin of the F2-layer trends rather than an artificial one related to the greenhouse effect. Using the proposed method a very long-term foF2 and foE trends related with general increase of geomagnetic activity in the 20th century has been revealed for the first time. The firstly revealed relationship of the foE trends with geomagnetic activity is due to nitric oxide variations at the E-region heights. This "natural" relationship of the foE trends with geomagnetic activity breaks down around 1970 on many stations presumably due to chemical polution of the upper atmosphere. The increasing rate of rocket and satellite launchings in the late 1960s is considered as a reason.

  4. Unexpected Southern Hemisphere ionospheric response to geomagnetic storm of 15 August 2015

    Science.gov (United States)

    Edemskiy, Ilya; Lastovicka, Jan; Buresova, Dalia; Bosco Habarulema, John; Nepomnyashchikh, Ivan

    2018-01-01

    Geomagnetic storms are the most pronounced phenomenon of space weather. When studying ionospheric response to a storm of 15 August 2015, an unexpected phenomenon was observed at higher middle latitudes of the Southern Hemisphere. This phenomenon was a localized total electron content (TEC) enhancement (LTE) in the form of two separated plumes, which peaked southward of South Africa. The plumes were first observed at 05:00 UT near the southwestern coast of Australia. The southern plume was associated with local time slightly after noontime (1-2 h after local noon). The plumes moved with the Sun. They peaked near 13:00 UT southward of South Africa. The southern plume kept constant geomagnetic latitude (63-64° S); it persisted for about 10 h, whereas the northern plume persisted for about 2 h more. Both plumes disappeared over the South Atlantic Ocean. No similar LTE event was observed during the prolonged solar activity minimum period of 2006-2009. In 2012-2016 we detected altogether 26 LTEs and all of them were associated with the southward excursion of Bz. The negative Bz excursion is a necessary but not sufficient condition for the LTE occurrence as during some geomagnetic storms associated with negative Bz excursions the LTE events did not appear.

  5. a Millennium of Geomagnetism

    Science.gov (United States)

    Stern, David P.

    2002-11-01

    The history of geomagnetism began around the year 1000 with the discovery in China of the magnetic compass. Methodical studies of the Earth's field started in 1600 with William Gilbert's De Magnete [Gilbert, 1600] and continued with the work of (among others) Edmond Halley, Charles Augustin de Coulomb, Carl Friedrich Gauss, and Edward Sabine. The discovery of electromagnetism by Hans Christian Oersted and André-Marie Ampére led Michael Faraday to the notion of fluid dynamos, and the observation of sunspot magnetism by George Ellery Hale led Sir Joseph Larmor in 1919 to the idea that such dynamos could sustain themselves naturally in convecting conducting fluids. From that came modern dynamo theory, of both the solar and terrestrial magnetic fields. Paleomagnetic studies revealed that the Earth's dipole had undergone reversals in the distant past, and these became the critical evidence in establishing plate tectonics. Finally, the recent availability of scientific spacecraft has demonstrated the intricacy of the Earth's distant magnetic field, as well as the existence of magnetic fields associated with other planets and with satellites in our solar system.

  6. A Geomagnetic Reference Error Model

    Science.gov (United States)

    Maus, S.; Woods, A. J.; Nair, M. C.

    2011-12-01

    The accuracy of geomagnetic field models, such as the International Geomagnetic Reference Field (IGRF) and the World Magnetic Model (WMM), has benefitted tremendously from the ongoing series of satellite magnetic missions. However, what do we mean by accuracy? When comparing a geomagnetic reference model with a magnetic field measurement (for example of an electronic compass), three contributions play a role: (1) The instrument error, which is not subject of this discussion, (2) the error of commission, namely the error of the model coefficients themselves in representing the geomagnetic main field, and (3) the error of omission, comprising contributions to the geomagnetic field which are not represented in the reference model. The latter can further be subdivided into the omission of the crustal field and the omission of the disturbance field. Several factors have a strong influence on these errors: The error of commission primarily depends on the time elapsed since the last update of the reference model. The omission error for the crustal field depends on altitude of the measurement, while the omission error for the disturbance field has a strong latitudinal dependence, peaking under the auroral electrojets. A further complication arises for the uncertainty in magnetic declination, which is directly dependent on the strength of the horizontal field. Here, we present an error model which takes all of these factors into account. This error model will be implemented as an online-calculator, providing the uncertainty of the magnetic elements at the entered location and time.

  7. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23: a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2011-05-01

    Full Text Available Minima in geomagnetic activity (MGA at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz variances (σBz2 and normalized variances (σBz2/B02 at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  8. Geomagnetic Observations for Main Field Studies

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Chulliat, A.; Mandea, M.

    2010-01-01

    and the beginning of geomagnetic repeat stations surveys in the 19th century. In the second half of the 20th century, true global coverage with geomagnetic field measurements was accomplished by magnetometer payloads on low-Earth-orbiting satellites. This article describes the procedures and instruments...... for magnetic field measurements on ground and in space and covers geomagnetic observatories, repeat stations, automatic observatories, satellites and historic observations. Special emphasis is laid on the global network of geomagnetic observatories....

  9. The Ranges Of Subauroral Geomagnetic Field Elements | Rabiu ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... An anomaly in seasonal response of range at high solar activity is observed on disturbed condition. ... apart from the anomaly - maintain the order e>j>d of seasonal variation which is in agreement with the popular equinoctial maximum observed in geomagnetic activity.

  10. Memory enhancing activity of Spondias mombin Anarcadiaceae ...

    African Journals Online (AJOL)

    Memory enhancing activities of both extracts were evaluated in scopolamine induced amnesic mice in Morris water maze test at various doses by determining the escape latency. The histopathology of the brain was also carried out to assess any change to the hippocampus that might have effects on memory. Results:The ...

  11. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 4: Near-Earth solar wind speed, IMF, and open solar flux

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2014-04-01

    Full Text Available In the concluding paper of this tetralogy, we here use the different geomagnetic activity indices to reconstruct the near-Earth interplanetary magnetic field (IMF and solar wind flow speed, as well as the open solar flux (OSF from 1845 to the present day. The differences in how the various indices vary with near-Earth interplanetary parameters, which are here exploited to separate the effects of the IMF and solar wind speed, are shown to be statistically significant at the 93% level or above. Reconstructions are made using four combinations of different indices, compiled using different data and different algorithms, and the results are almost identical for all parameters. The correction to the aa index required is discussed by comparison with the Ap index from a more extensive network of mid-latitude stations. Data from the Helsinki magnetometer station is used to extend the aa index back to 1845 and the results confirmed by comparison with the nearby St Petersburg observatory. The optimum variations, using all available long-term geomagnetic indices, of the near-Earth IMF and solar wind speed, and of the open solar flux, are presented; all with ±2σ uncertainties computed using the Monte Carlo technique outlined in the earlier papers. The open solar flux variation derived is shown to be very similar indeed to that obtained using the method of Lockwood et al. (1999.

  12. Reduction Of Geomagnetic Effects (Periods T < 1000 s) From Geomagnetic And Geoelectrical Potential Difference Data

    Science.gov (United States)

    Harada, M.; Hattori, K.; Takahashi, I.; Hayakawa, M.; Nagao, T.; Uyeda, S.

    2004-12-01

    Electromagnetic phenomena preceding large earthquakes have been reported in various frequency ranges and they are considered as candidates for the short-term prediction. ULF electromagnetic phenomena are most promising among them because of the deep skin depth. In order to verify earthquake-related electromagnetic phenomena and clarify the possible physical mechanisms, a network observation has been established in Japan. The observed ULF magnetic and electric potential data are superposition of signals: (1)global signals originated from the external source field associated with the solar-terrestrial interaction like geomagnetic pulsations and their inductive field, which appears simultaneously in scale of hundreds of km, (2) regional (a few tens of km) signals such as artificial noises associated with the leakage current from DC-driven trains, and earthquake-related signals, (3) local (less than few kms) signals around the sensors. The signals associated with the crustal activity are very weak in general, and therefore the sophisticated signal separation is important. As for the ULF geomagnetic data, we have already developed effective methods such as polarization analysis, principal component analysis, and direction fractal analysis. These methods detect signal characteristics. In order to clarify physical mechanisms of earthquake-related ULF signals, time series analysis to identify waveform is required. In this aim, we developed the method for elimination of the most intense external source fields originated from solar-terrestrial interaction. It is interstation transfer function (ISTF) method. The ISTF method is based on the correlation between a site and a quiet remote reference station. Once interstation transfer function is estimated with high accuracy, which is considered to be invariant in time, it is possible to estimate the ideal external source field and their inductive variations at the site. Therefore, the resudials between the observed and estimated

  13. Geomagnetically induced currents in a power grid of northeastern Spain

    Science.gov (United States)

    Torta, J. Miquel; Serrano, LluíS.; Regué, J. Ramon; SáNchez, Albert M.; RoldáN, Elionor

    2012-06-01

    Using the geomagnetic records of Ebro geomagnetic observatory and taking the plane wave assumption for the external current source and a homogeneous Earth conductivity, a prediction of the effects of the geomagnetic activity on the Catalonian (northeastern Spain) power transmission system has been developed. Although the area is located at midlatitudes, determination of the geoelectric field on the occasion of the largest geomagnetic storms during the last solar cycles indicates amplitudes that are higher than those recorded in southern Africa, where some transformer failures on large transmission systems have been reported. A DC network model of the grid has been constructed, and the geomagnetically induced current (GIC) flows in the power network have been calculated for such extreme events using the electric field at Ebro as a regional proxy. In addition, GICs have been measured at one transformer neutral earthing of the power grid, so that there the accuracy of the model has been assessed. Although the agreement is quite satisfactory, results indicate that better knowledge of the ground conductivity structure is needed. This represents the first attempt to study and measure GICs in southern European power grids, a region considered to have low GIC-risk up to the present.

  14. Intermittency and multifractional Brownian character of geomagnetic time series

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2013-07-01

    Full Text Available The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008, which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  15. Intermittency and multifractional Brownian character of geomagnetic time series

    Science.gov (United States)

    Consolini, G.; De Marco, R.; De Michelis, P.

    2013-07-01

    The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008), which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  16. Editorial: Topical Volume on Earth's Magnetic Field - Understanding Geomagnetic Sources from the Earth's Interior and its Environment

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Richmond, Arthur D.

    2017-01-01

    (seconds to days) magnetic field variations that are caused by currents in the ionosphere and magnetosphere when solar activity, and correspondingly the electric currents in Earth’s environment, are enhanced. However, for studying the internal sources of the geomagnetic field, originating in the core...... and crust, scientists use observations from so called “geomagnetic quiet” times, when external field variations are expected to be weak. However, even these weak variations impact internal field modelling, and incomplete knowledge of them hinders their separation. Difficulties arise in particular...... in characterizing the long term behaviour of external sources, e.g., seasonal and solar cycle variations of the magnetospheric ring current, polar convection currents or ionospheric dynamo currents driven by atmospheric tides, since they have amplitudes and spatial scales similar to those of the core field...

  17. Chromatin remodeling effects on enhancer activity.

    Science.gov (United States)

    García-González, Estela; Escamilla-Del-Arenal, Martín; Arzate-Mejía, Rodrigo; Recillas-Targa, Félix

    2016-08-01

    During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function.

  18. Operations of the World Data Centre for Geomagnetism, Edinburgh

    Directory of Open Access Journals (Sweden)

    S J Reay

    2013-01-01

    Full Text Available The British Geological Survey has operated a World Data Centre for Geomagnetism since 1966. Geomagnetic time-series data from around 280 observatories worldwide at a number of time resolutions are held along with various magnetic survey, model, and activity index data. The operation of this data centre provides a valuable resource for the geomagnetic research community. The operation of the WDC and details of the range of data held are presented. The quality control procedures that are applied to incoming data are described as is the work to collaborate with other data centres to distribute and improve the overall consistency of data held worldwide. The development of standards for metadata associated with datasets is demonstrated, and current efforts to digitally preserve the BGS analogue holdings of magnetograms and observatory yearbooks are described.

  19. Geomagnetically induced currents in Europe

    Directory of Open Access Journals (Sweden)

    Viljanen Ari

    2014-03-01

    Full Text Available Statistics of geomagnetically induced currents (GIC in the European high-voltage power grids based on 1-min geomagnetic recordings in 1996–2008 and on 1-D models of the ground conductivity have been derived in the EURISGIC project (European Risk from Geomagnetically Induced Currents. The simplified yet realistic power grid model indicates that large GIC can occur anywhere in Europe. However, geomagnetic variations are clearly larger in North Europe, so it is the likely region of significant GIC events. Additionally, there are areas in the North with especially low ground conductivities, which further tend to increase GIC. The largest modelled GIC values at single substations in 1996–2008 are about 400 A in the Nordic Countries, about 100 A in the British Isles, about 80 A in the Baltic Countries, and less than 50 A in Central and South Europe. The largest GIC event in the period studied is the Halloween storm on 29–30 October 2003, and the next largest ones occurred on 15 July 2000 and 9 November 2004.

  20. Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Revallo, M.; Bochníček, Josef; Hejda, Pavel

    2009-01-01

    Roč. 7, April (2009), S04004/1-S04004/7 ISSN 1542-7390 R&D Projects: GA AV ČR(CZ) IAA300120608; GA AV ČR 1QS300120506 Institutional research plan: CEZ:AV0Z30120515 Keywords : neural networks * coronal mass ejections * energetic particles * flares * radio emissions * magnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.845, year: 2009

  1. Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?

    Directory of Open Access Journals (Sweden)

    Weronika Erdmann

    Full Text Available Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada, which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.

  2. Mechanism of the relations between the changes of the geomagnetic field, solar corpuscular radiation, atmospheric circulation, and climate

    International Nuclear Information System (INIS)

    Bucha, Vaclav

    1980-01-01

    The correlations between geomagnetic, climatic, and meteorological phenomena were investigated with the object of demonstrating the function of the geomagnetic pole and changes of its position in controlling the climate and weather. A tentative model has been proposed to enable one to understand the causes of the generation of glacial and interglacial periods, as well as the causes which effect changes of climate (Bucha, 1976a). The analyses of various types of geomagnetic and atmospheric manifestations have disclosed certain associations. The coincidence in the occurrence of increased spectral densities with regard to geomagnetic activity and the variations of atmospheric pressure over the geomagnetic pole shows the relation between their periodicities. The results imply that the changes in the intensity of corpuscular radiation, indicated by geomagnetic activity, affect the temperature and pressure patterns over the geomagnetic pole and polar region significantly, so that a pronounced modification of the general circulation may take place, as shown schematically (Bucha, 1976b). As a result of investigating the relations between the variations of geomagnetic activity and meteorological factors a mechanism of solar-terrestrial relationships and a model of the changes of atmospheric circulation in the Northern Hemisphere are proposed; this provides a probable explanation of the causes of the fluctuation of the climate, of dry and cold periods and of differing vegetation conditions in various years in dependence on the intensity of geomagnetic activity (Bucha, 1976b, 1977a). (author)

  3. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  4. Recent investigation at INPE in magnetospheric physics and geomagnetism

    International Nuclear Information System (INIS)

    Gonzales, W.D.; Trivedi, N.B.

    1984-01-01

    During recent years the following research activities related to the earth's magnetosphere have been intensified: a) studies on electric field and energy transfer from the solar wind to the magnetosphere; b) studies on high latitude magnetospheric electric fields and on their penetration into the plasmasphere; c) measurements of atmospheric-large scale-electric fields, related to the low latitude magnetospheric-ionospheric coupling and to the local atmospheric electrodynamics, using detectors on board stratospheric balloons; and d) measurements of atmospheric X-rays, related to the process of energetic particle precipitation at the South Atlantic Magnetic Anomaly, using detectors also on board stratospheric balloons. Similarly, the following research activities related to geomagnetism are being pursued: a) studies on the variability of the geomagnetic field and on the dynamics of the equatorial electrojet from local geomagnetic field measurements; b) studies on terrestrial electromagnetic induction through local measurements of the geo-electromagnetic field; and c) studies on the influence of geomagnetic activity on particle precipitation at the South Atlantic Magnetic Anomaly. (Author) [pt

  5. Geomagnetically induced currents around the world during the 17 March 2015 storm

    Science.gov (United States)

    Carter, B. A.; Yizengaw, E.; Pradipta, R.; Weygand, J. M.; Piersanti, M.; Pulkkinen, A.; Moldwin, M. B.; Norman, R.; Zhang, K.

    2016-10-01

    Geomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patrick's Day storm. While significant GIC activity in the high-latitude regions due to storm time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast Asia and during the main phase of the storm ˜10 h later in South America. The SSC caused magnetic field variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined, and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ ˜10 h into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solar wind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs.

  6. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  7. Global Telecommunications Security: Effects of Geomagnetic Disturbances

    Directory of Open Access Journals (Sweden)

    D.J. McManus

    2011-07-01

    Full Text Available Global information and communication technologies permeate organizational structures, while questions of security pervade strategic plans of corporations worldwide. From the spectacular to the sublime, the effects of geomagnetic disturbances (i.e., electrical current produced by solar storms can be as devastating to an organization’s telecommunications systems as a hacker breaching a firewall. Using a dataset spanning 31 years (1978-2009 with 580,000 solar activity records, we investigate the effects and relationships of natural anomalies, specifically solar storms, on the security of corporate telecommunications. The ionosphere is a natural barrier around the earth to protect it from the sun and serve as a shield, but some electrical currents break this barrier causing significant telecommunications outages and security breaches within corporations. In this exploratory empirical study, we present the initial evidence that tracking geomagnetic disturbances can provide vital cautions for business continuity planning. The results of the study should help organizations with strategic planning efforts with respect to their overall security, especially as it relates to telecommunications.

  8. Teaching Geomagnetism in High School

    Science.gov (United States)

    Stern, D. P.

    2001-05-01

    Many high school curricula include a one-year course in Earth Sciences, often in the 9th grade (essentially pre-algebra). That is a good time to teach about geomagnetism. Not only are dipole reversals and sea-floor magnetization central to this subject, but this is a good opportunity to introduce students to magnetism and its connection to electric currents. The story of Oersted and Faraday give a fascinating insight into the uneven path of scientific discovery, the magnetic compass and William Gilbert provide a view of the beginnings of the scientific revolution, and even basic concepts of dynamo theory and its connection to solar physics can be included. A resource including all the suitable material now exists on the world-wide web at http://www-spof.gsfc.nasa.gov/earthmag/demagint.htm (home page). A 1-month unit on geomagnetism will be outlined.

  9. Geomagnetic Induced Current Effects on Power Transformers

    OpenAIRE

    Røen, Benjamin

    2016-01-01

    Solar storms are inevitable and have a number of negative effects on technological systems, the power grid being no exception. High geoelectric field values due to severe geomagnetic storms cause geomagnetic induced currents to flow in conducting structures of the power system. The geomagnetic induced currents will enter and leave the power grid through the neutral grounding of power transformers. This may cause half-cycle saturation of the transformer core, which in turn leads to high levels...

  10. Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns

    Science.gov (United States)

    Pan, Y.; Zhu, R.

    2017-12-01

    The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in

  11. Polar Ice Sounding and Geomagnetics, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — Data addresses ice thickness and related geomagnetics generated during remote sensing flights over Antarctica and Greenland. Analog records are oscilloscope traces...

  12. Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates over wide time and space scales.

    Science.gov (United States)

    Rizzello, Daniele; Armadillo, Egidio; Manzella, Adele

    2013-04-01

    Statistical analysis of the polar electrojet influence on geomagnetic transfer functions estimates over wide time and space scales. D.Rizzello(1),E.Armadillo(1),A.Manzella(2) 1)DISTAV - University of Genoa,Italy. 2)Institute of Geosciences and Earth Resources - CNR, Pisa, Italy. Magnetotelluric (MT) and magnetovariational (MV) investigations can provide original information and constraints on the electrical conductivity, thermal state and structure of the crust and mantle at the base of the polar ice sheets. These methods provide depth resolution, lacking in potential field methods, and can reach high investigation depth, an invaluable advantage where very difficult logistic conditions prevent or limit the use of active methods such as seismic surveys. However, MT/MV surveys have not been applied extensively in polar areas mainly because electromagnetic data could be biased by the polar electrojet current systems (PEJ) occurring at high geomagnetic latitude. In fact, close to the auroral oval, the electromagnetic fields at ground may violate the uniform plane wave assumption at the base of standard MT/MV data processing, resulting in possible erroneous interpretations of the Earth's deep conductivity structure. It has been shown that a careful selection of events to be analyzed may decrease bias, and different robust techniques have been developed and applied. Even if the source currents flow in complex 3D systems that change from event to event in an unpredictable way, some general rules have been observed. Violations of uniform plane wave source assumption are enhanced during higher geomagnetic activity induced by high solar activity, because PEJ equivalent geometry becomes more complicated, affecting also EM field at lower latitudes. Differences in the degree of source distortions have also been reported between day/night and seasonal observations. The ISEE (Ice Sheet Electromagnetic Experiment) project, founded by the Italian National Antarctic Research

  13. Oxygen and hydrogen ion abundance in the near-Earth magnetosphere: Statistical results on the response to the geomagnetic and solar wind activity conditions

    Science.gov (United States)

    Kronberg, E. A.; Haaland, S. E.; Daly, P. W.; Grigorenko, E. E.; Kistler, L. M.; FräNz, M.; Dandouras, I.

    2012-12-01

    The composition of ions plays a crucial role for the fundamental plasma properties in the terrestrial magnetosphere. We investigate the oxygen-to-hydrogen ratio in the near-Earth magnetosphere from -10 RE magnetic field changes. They are best correlated with the solar wind dynamic pressure and density, which is an expected effect of the magnetospheric compression; (2) ˜10 keV O+ ion intensities are more strongly affected during disturbed phase of a geomagnetic storm or substorm than >274 keV O+ ion intensities, relative to the corresponding hydrogen intensities; (3) In contrast to ˜10 keV ions, the >274 keV O+ions show the strongest acceleration during growth phase and not during the expansion phase itself. This suggests a connection between the energy input to the magnetosphere and the effective energization of energetic ions during growth phase; (4) The ratio between quiet and disturbed times for the intensities of ion ionospheric outflow is similar to those observed in the near-Earth magnetosphere at >274 keV. Therefore, the increase of the energetic ion intensity during disturbed time is likely due to the intensification and the effective acceleration of the ionospheric source. In conclusion, the energization process in the near-Earth magnetosphere is mass dependent and it is more effective for the heavier ions.

  14. Serine deprivation enhances antineoplastic activity of biguanides.

    Science.gov (United States)

    Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael

    2014-12-15

    Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism. ©2014 American Association for Cancer Research.

  15. Cosmic rays flux and geomagnetic field variations at midlatitudes

    Science.gov (United States)

    Morozova, Anna; Ribeiro, Paulo; Tragaldabas Collaboration Team

    2014-05-01

    It is well known that the cosmic rays flux is modulated by the solar wind and the Earth's magnetic field. The Earth's magnetic field deflects charged particles in accordance with their momentum and the local field strength and direction. The geomagnetic cutoffs depend both on the internal and the external components of the geomagnetic field, therefore reflecting the geodynamo and the solar activity variations. A new generation, high performance, cosmic ray detector Tragaldabas was recently installed at the University of Santiago de Compostela (Spain). The detector has been acquiring test data since September 2013 with a rate of about 80 events/s over a solid angle of ~5 srad. around the vertical direction. To take full advantage of this new facility for the study of cosmic rays arriving to the Earth, an international collaboration has been organized, of about 20 researchers from 10 laboratories of 5 European countries. The Magnetic Observatory of Coimbra (Portugal) has been measuring the geomagnetic field components for almost 150 years since the first measurements in 1866. It is presently equipped with up-to-date instruments. Here we present a preliminary analysis of the global cosmic ray fluxes acquired by the new Tragaldabas detector in relation to the geomagnetic field variations measured by the Coimbra observatory. We also compare the data from the new cosmic rays detector with results obtained by the Castilla-La Mancha Neutron Monitor (CaLMa, Gadalajara, Spain) that is in operation since October 2011.

  16. Observations of geomagnetically induced currents in the Australian power network

    Science.gov (United States)

    Marshall, R. A.; Gorniak, H.; van der Walt, T.; Waters, C. L.; Sciffer, M. D.; Miller, M.; Dalzell, M.; Daly, T.; Pouferis, G.; Hesse, G.; Wilkinson, P.

    2013-01-01

    such as pipelines and power networks at low-middle latitude regions have historically been considered relatively immune to geomagnetically induced currents (GICs). Over the past decade there have been an increasing number of investigations into the impact of GICs in long grounded conductors at these latitudes. The Australian region power network spans thousands of kilometers from low to middle latitudes. The approaching maximum of solar cycle 24 and recent findings of studies into power networks located at similar latitudes have stimulated the Australian power industry to better understand this phenomenon in their region. As a result, a pilot study to compare space weather activity with in situ GIC monitors at strategic locations within the power network was initiated. This paper provides some results from the first of these operational GIC monitors during a modest geomagnetic storm, showing the first observational evidence of space weather well correlated with GICs measured in the Australian power network. Transformer neutral currents show a high degree of similarity with the geoelectric field derived from the closest available geomagnetic observatory. Current maxima of 4-5 amperes were observed in association with geoelectric field values of ~0.06-0.07 volts per kilometer. This paper also discusses the GIC measurements obtained during this storm in terms of the space weather drivers and the considerably larger geoelectric field values anticipated during larger geomagnetic storms.

  17. Geomagnetic Storms and Acute Myocardial Infarctions Morbidity in Middle Latitudes

    Science.gov (United States)

    Dimitrova, S.; Babayev, E. S.; Mustafa, F. R.; Stoilova, I.; Taseva, T.; Georgieva, K.

    2009-12-01

    Results of collaborative studies on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and pre-hospital acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data from Bulgaria and Azerbaijan. Bulgarian data, covering the period from 01.12.1995 to 31.12.2004, concerned daily distribution of number of patients with AMI diagnose (in total 1192 cases) from Sofia Region on the day of admission at the hospital. Azerbaijani data contained 4479 pre-hospital AMI incidence cases for the period 01.01.2003-31.12.2005 and were collected from 21 emergency and first medical aid stations in Grand Baku Area (including Absheron Economical Region with several millions of inhabitants). Data were "cleaned" as much as possible from social and other factors and were subjected to medical and mathematical/statistical analysis. Medical analysis showed reliability of the used data. Method of ANalysis Of VAriance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms - those caused by magnetic clouds (MC) and by high speed solar wind streams (HSSWS) - on AMI incidences. Relevant correlation coefficients were calculated. Results were outlined for both considered data. Results obtained for the Sofia data showed statistically significant positive correlation between considered GMA indices and AMI occurrence. ANOVA revealed that AMI incidence number was significantly increased from the day before till the day after geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day for the period 1995-2004. Results obtained for the Baku data revealed trends similar to those obtained for Sofia data. AMI morbidity increment was observed on the days with higher GMA intensity and after these days

  18. Impact of Solar wind plasma parameters on geomagnetic condition

    Science.gov (United States)

    Rathore, Balveer Singh; Gupta, Dinesh Chandra

    Today’s challenge for space weather research is to quantitatively predict the dynamics of the magnetosphere from measured solar wind and interplanetary magnetic field conditions. A correlative studies between the Geomagnetic Storms (GMSs) and the various interplanetary field/plasma parameters have been performed to search the causes of geomagnetic activity and developing models for prediction of the occurrence of GMSs which are important for space weather predictions. In the present paper we found possible co-relation of geomagnetic storms with solar wind and IMF parameters in three different situations and also drive the linear relation equation for all parameters in three situations. On basis of present statistical study we developed an empirical model. With the help of this model we can predict all categories of geomagnetic storms. This model based on following fact. The total interplanetary magnetic field Btotal can use as alarm of geomagnetic storms, when sudden changes in total magnetic field B total, it is a first alarm on condition for storms arrival. It is observed in the present study that southward Bz-component of IMF is an important factor for geomagnetic storms. And it is the result of the paper that the magnitude of Bz is maximum neither during initial phase (at the instant of IP shock) nor during main phase (at the instant of Dst minimum). So it is seen in this study that there is a time delay between maximum value of southward Bz and Dst minimum and this time delay can be used in the prediction of the intensity of magnetic storm two -three hours before of main phase of geomagnetic storm. A linear relation have been derived between maximum value of southward component of Bz and Dst for prediction is Dst = (-0.06) + (7.65)Bz + t. Some auxiliary condition should be fulfils with this, speed of solar wind should be on average 350 km/s to 750 km/s, plasma beta should be low and most important plasma temperature should be low for intense storms if plasma

  19. High resolution geomagnetic field observations at Terra Nova bay, Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1996-06-01

    Full Text Available he preliminary results obtained from the analysis in the micropulsation frequency range of high time resolution magnetic field data recorded at the Antarctic Italian geomagnetic observatory at Terra Nova Bay for 11 consecutive days in February 1994 are reported. The spectral index over the whole Pcl-Pc5 frequency range is of the order of 3.5 and its value significantly increases beyond about 50 mHz. Spectral peaks in the Pc3 frequency range are common, especially during the daytime hours, and are probably due to the direct penetration of upstream waves in the cusp region. From the local time distribution of the micro pulsation power, a signifi - cant activity enhancement around the local magnetic noon emerges, in agreement with previous observations. The analysis of the signal polarisation characteristics in the horizontal plane shows a predominant CW polarisation in the Pcl-Pc3 frequency ranges with the major axis of the polarisation ellipse in the first quadrant.

  20. Active implant for optoacoustic natural sound enhancement

    Science.gov (United States)

    Mohrdiek, S.; Fretz, M.; Jose James, R.; Spinola Durante, G.; Burch, T.; Kral, A.; Rettenmaier, A.; Milani, R.; Putkonen, M.; Noell, W.; Ortsiefer, M.; Daly, A.; Vinciguerra, V.; Garnham, C.; Shah, D.

    2017-02-01

    This paper summarizes the results of an EU project called ACTION: ACTive Implant for Optoacoustic Natural sound enhancement. The project is based on a recent discovery that relatively low levels of pulsed infrared laser light are capable of triggering activity in hair cells of the partially hearing (hearing impaired) cochlea and vestibule. The aim here is the development of a self-contained, smart, highly miniaturized system to provide optoacoustic stimuli directly from an array of miniature light sources in the cochlea. Optoacoustic compound action potentials (oaCAP) are generated by the light source fully inserted into the unmodified cochlea. Previously, the same could only be achieved with external light sources connected to a fiber optic light guide. This feat is achieved by integrating custom made VCSEL arrays at a wavelength of about 1550 nm onto small flexible substrates. The laser light is collimated by a specially designed silicon-based ultra-thin lens (165 um thick) to get the energy density required for the generation of oaCAP signals. A dramatic miniaturization of the packaging technology is also required. A long term biocompatible and hermetic sapphire housing with a size of less than a 1 cubic millimeter and miniature Pt/PtIr feedthroughs is developed, using a low temperature laser assisted process for sealing. A biofouling thin film protection layer is developed to avoid fibrinogen and cell growth on the system.

  1. Phanerochaete mutants with enhanced ligninolytic activity

    International Nuclear Information System (INIS)

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1994-01-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  2. History of the geomagnetic field

    Science.gov (United States)

    Doell, Richard R.

    1969-01-01

    Direct measurements of the direction and strength of the earth's magnetic field have provided a knowledge of the field's form and behavior during the last few hundreds of years. For older times, however, it has been necessary to measure the magnetism of certain rocks to learn what the geomagnetic field was like. For example, when a lava flow solidifies (at temperatures near 1000??C) and cools through the Curie point of the magnetic minerals contained in it (around 500??C) it acquires a remanent magnetism that is (1) very weak, (2) very stablel, (3) paralle to the direction of the ambient geomagnetic field, and (4) proportional in intensity to the ambient field. Separating, by various analytical means, this magnetization from other 'unwanted' magnetizations has allowed paleomagnetists to study the historical and prehistorical behavior of the earth's field. It has been learned, for example, that the strength of the field was almost twice its present value 2000 years ago and that it has often completely reversed its polarity. Paleo-magnetists have also confirmed that most oceans are, geologically speaking, relatively new features, and that the continents have markedly changed their positions over the surface of the earth. ?? 1969 The American Institute of Physics.

  3. Non-coding Transcripts from Enhancers: New Insights into Enhancer Activity and Gene Expression Regulation

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2017-06-01

    Full Text Available Long non-coding RNAs (lncRNAs have gained widespread interest in the past decade owing to their enormous amount and surprising functions implicated in a variety of biological processes. Some lncRNAs exert function as enhancers, i.e., activating gene transcription by serving as the cis-regulatory molecules. Furthermore, recent studies have demonstrated that many enhancer elements can be transcribed and produce RNA molecules, which are termed as enhancer RNAs (eRNAs. The eRNAs are not merely the by-product of the enhancer transcription. In fact, many of them directly exert or regulate enhancer activity in gene activation through diverse mechanisms. Here, we provide an overview of enhancer activity, transcription of enhancer itself, characteristics of eRNAs, as well as their roles in regulating enhancer activity and gene expression.

  4. Long-term biases in geomagnetic K and aa indices

    Science.gov (United States)

    Love, J.J.

    2011-01-01

    Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. The K data show persistent biases, especially for high (low) K-activity levels at British (Australian) observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4. ?? 2011 Author(s).

  5. Real-time geomagnetic monitoring for space weather-related applications: Opportunities and challenges

    Science.gov (United States)

    Love, Jeffrey J.; Finn, Carol

    2017-01-01

    An examination is made of opportunities and challenges for enhancing global, real-time geomagnetic monitoring that would be beneficial for a variety of operational projects. This enhancement in geomagnetic monitoring can be attained by expanding the geographic distribution of magnetometer stations, improving the quality of magnetometer data, increasing acquisition sampling rates, increasing the promptness of data transmission, and facilitating access to and use of the data. Progress will benefit from new partnerships to leverage existing capacities and harness multisector, cross-disciplinary, and international interests.

  6. Solar flares and variation of local geomagnetic field: Measurements by the Huancayo Observatory over 2001-2010

    Directory of Open Access Journals (Sweden)

    Carlos Reyes Rafael E.

    2017-01-01

    Full Text Available We study the local variation of the geomagnetic field measured by the Huancayo Geomagnetic Observatory, Peru, during 2001-2010. Initially, we sought to relate the SFI values, stored daily in the NOAA's National Geophysical Data Center, with the corresponding geomagnetic index; however, no relation was observed. Nonetheless, subsequently, a comparison between the monthly geomagnetic-activity index and the monthly SFI average allowed observing a temporal correlation between these average indices. This correlation shows that the effect of the solar flares does not simultaneously appear on the corresponding magnetic indices. To investigate this, we selected the most intense X-class flares; then, we checked the magnetic field disturbances observed in the Huancayo Geomagnetic Observatory magnetograms. We found some disturbances of the local geomagnetic field in the second and third day after the corresponding solar flare; however, the disturbance strength of the local geomagnetic field is not correlated with the X-class of the solar flare. Finally, there are some disturbances of the local geomagnetic field that are simultaneous with the X-class solar flares and they show a correlation with the total flux of the solar flare.

  7. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  8. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  9. The future of technology enhanced active learning – a roadmap

    OpenAIRE

    Pahl, Claus; Kenny, Claire

    2008-01-01

    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning syste...

  10. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  11. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  12. Digitized Historical Geomagnetic Publications in PDF format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A catalog of 732 historical geomagnetic publications that were at risk of loss have been digitized and converted in pdf documents.

  13. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  14. A new regard about Surlari National Geomagnetic Observatory

    Science.gov (United States)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Pestina, Agata-Monica

    2010-05-01

    Geomagnetic field study in Romanian stations has started with irregular measurements in late XIXth century. In 1943, the foundation of Surlari National Geomagnetic Observatory (SNGO) marks the beginning of a new era in the systematic study of geomagnetic field by a continuous registration of its variations and by carrying out standard absolute measurements in a fundamental station. The location of the observatory meets the highest exigencies, being situated in physical-geological conditions of a uniform local field, at a reasonably long distance from human activities. Its laboratories observe strict conditions of non-magnetism, ensuring the possibility of absolute standard measurements (national magnetic standards) for all the units in the country, civil or military, which are endowed with equipment based on geomagnetic metrology. These basic conditions have allowed the observatory to become by developing its initial preoccupations a centre of complex geomagnetic research, constantly involved in national and international issues, promoting new themes in our country and bringing significant contributions. During the last two decades, infrastructure and equipment used in monitoring geomagnetic field at European and planetary level have experienced a remarkable development. New registering techniques have allowed a complete to automate of data acquisition, and sampling step and their precision increased by two classes of size. Systems of transmitting these data in real time to world collecting centres have resulted in the possibility of approaching globalize studies, suitable for following some phenomena at planetary scale. At the same time, a significant development in the procedures of processing primary data has been registered, based on standardized programmes. The new stage of this fundamental research, largely applicable in various fields, is also marked by the simultaneous observation of space-time distribution of terrestrial electromagnetic field by means of

  15. The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries

    Science.gov (United States)

    Constable, C.

    2017-12-01

    Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow

  16. The Complexity of Solar and Geomagnetic Indices

    Science.gov (United States)

    Pesnell, W. Dean

    2017-08-01

    How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.

  17. Solar causes of the excitation of earth electric currents and of geomagnetic field disturbances

    International Nuclear Information System (INIS)

    Krivsky, L.

    1977-01-01

    A survey is given of the effects of solar activity on geomagnetic and geoelectric disturbances. Indexes are given showing changes in the magnetic field, the occurrence of calm geomagnetic days related to solar activity, proton solar flares and electrical currents in the high layers of the atmosphere in the polar region, powerfull solar activity and electric currents in the polar region, the time rise of shock waves in the development of proton flares and the boundaries of sector structures of the interplanetary magnetic field and its effect on the Earth. It is stated that the geoelectric and geomagnetic fields are affected by the discrete phenomena of solar activity and by the transition of the quasimagnetic sectors of interplanetary fields. (J.P.)

  18. Correlation of geomagnetic anomalies recorded at Muntele Rosu Seismic Observatory (Romania with earthquake occurrence and solar magnetic storms

    Directory of Open Access Journals (Sweden)

    Adrian Septimiu Moldovan

    2012-04-01

    Full Text Available

    The study presents a statistical cross-correlation between geomagnetic anomalies, earthquake occurrence and solar magnetic storms. The working data are from: (i geomagnetic field records from Muntele Rosu (MLR Observatory, and from Surlari (SUA and/or Tihany (THY INTERMAGNET Observatories; (ii seismic data for the Vrancea source zone; and (iii daily geomagnetic indices from the NOAA/Space Weather Prediction Center. All of the geomagnetic datasets were recorded from 1996 to the present, at MLR, SUA or THY, and they were automatically corrected using a LabVIEW program developed especially for this purpose, highlighting the missing or bad data. Missing data blocks were completed with the last good measured value. After correction of the data, there were a number of issues seen regarding previous interpretations of the geomagnetic anomalies. Some geomagnetic anomalies identified as precursory signals were found to be induced either by increased solar activity or by malfunction of the data acquisition system, which produced inconsistent data, with numerous gaps. The MLR geomagnetic data are compared with the data recorded at SUA/THY and correlated with seismicity and solar activity. These 15 years of investigations cover more than a complete solar cycle, during which time the solar-terrestrial perturbations have fluctuated from very low to very high values, providing the ideal medium to investigate the correlations between the geomagnetic field perturbations, the earthquakes and the solar activity. The largest intermediate depth earthquake produced in this interval had a moment magnitude Mw 6.0 (2004 and provided the opportunity to investigate possible connections between local geomagnetic field behavior and local intermediate seismicity.

     

  19. Enhanced active swimming in viscoelastic fluids

    OpenAIRE

    Riley, Emily E; Lauga, Eric Jean-Marie

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the...

  20. Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms

    Science.gov (United States)

    Chapagain, N. P.; Rana, B.; Adhikari, B.

    2017-12-01

    Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.

  1. Geomagnetic variations in field tubes crossed by cargo vehicle with operating engine

    Science.gov (United States)

    Rakhmatulin, Ravil; Khakhinov, Vitaly; Pashinin, Alexander; Lipko, Yury

    Since 2011, in the framework of the "Radar-Progress" active space experiment, we have studied effects of operating engines of the “Progress” cargo vehicle on the geomagnetic field. We supposed that engine burn can generate geomagnetic disturbances in field tubes crossed by "Progress". These disturbances may be measured at sub-ionospheric magnetoconjugate points where the tubes cross the Earth's surface. Geomagnetic variations measurements are performed as follows. Prior to each experimental session, the cargo vehicle's orbital parameters were used to calculate coordinates of sub-ionospheric magnetoconjugate points. Then we selected a place most suitable for installing the Lemi-30 mobile induction magnetometer. Continuous record of geomagnetic variations starts not less than 2 hours before the cargo vehicle flyby. We used GPS for synchronization with regular measurements performed at all magnetic observatories of Institute of Solar-Terrestrial Physics. After the cargo vehicle flybys with operating engines, an excitation of geomagnetic oscillations with 25 - 160 s periods was recorded. In some cases, we observed a recurrence of the oscillations 6-15 min later. The analysis of the data was carried out taking account of the planetary and local magnetic activity. The April and June 2013 experiments were conducted under quiet and very quiet geomagnetic conditions for both middle and high latitudes. This allowed us to exclude natural sources of the geomagnetic variations. Results of this study were obtained at unique facilities of the common use centre «Angara». The study was supported by the grant 13-05-00456-a and 13-02-00957-a of the Russian Foundation for Basic Research.

  2. HIV Coinfection Enhances Complement Activation During Sepsis

    NARCIS (Netherlands)

    Huson, Michaëla A. M.; Wouters, Diana; van Mierlo, Gerard; Grobusch, Martin P.; Zeerleder, Sacha S.; van der Poll, Tom

    2015-01-01

    Human immunodeficiency virus (HIV)-induced complement activation may play a role in chronic immune activation in patients with HIV infection and influence the complement system during acute illness. We determined the impact of HIV infection on the complement system in patients with asymptomatic HIV

  3. Enhancement of glutamine synthetase activity in Paenibacillus ...

    African Journals Online (AJOL)

    Accession No AB727983). High GS activity was recorded in the two strains, in presence of the divalent cations Mg+2 and Mn+2. Western blot analysis confirmed the presence of the GS at approximately ~60 kDa. GS activity was found to be affected by ...

  4. Modeling cancer registration processes with an enhanced activity diagram.

    Science.gov (United States)

    Lyalin, D; Williams, W

    2005-01-01

    Adequate instruments are needed to reflect the complexity of routine cancer registry operations properly in a business model. The activity diagram is a key instrument of the Unified Modeling Language (UML) for the modeling of business processes. The authors aim to improve descriptions of processes in cancer registration, as well as in other public health domains, through the enhancements of an activity diagram notation within the standard semantics of UML. The authors introduced the practical approach to enhance a conventional UML activity diagram, complementing it with the following business process concepts: timeline, duration for individual activities, responsibilities for individual activities within swimlanes, and descriptive text. The authors used an enhanced activity diagram for modeling surveillance processes in the cancer registration domain. Specific example illustrates the use of an enhanced activity diagram to visualize a process of linking cancer registry records with external mortality files. Enhanced activity diagram allows for the addition of more business concepts to a single diagram and can improve descriptions of processes in cancer registration, as well as in other domains. Additional features of an enhanced activity diagram allow to advance the visualization of cancer registration processes. That, in turn, promotes the clarification of issues related to the process timeline, responsibilities for particular operations, and collaborations among process participants. Our first experiences in a cancer registry best practices development workshop setting support the usefulness of such an approach.

  5. Geomagnetism during solar cycle 23: Characteristics

    Directory of Open Access Journals (Sweden)

    Jean-Louis Zerbo

    2013-05-01

    Full Text Available On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT and yearly averaged solar wind speed (364 km/s are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s, associated to the highest value of the yearly averaged aa index (37 nT. We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  6. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  7. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  8. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation.

    Science.gov (United States)

    Hsieh, Chen-Lin; Fei, Teng; Chen, Yiwen; Li, Tiantian; Gao, Yanfei; Wang, Xiaodong; Sun, Tong; Sweeney, Christopher J; Lee, Gwo-Shu Mary; Chen, Shaoyong; Balk, Steven P; Liu, Xiaole Shirley; Brown, Myles; Kantoff, Philip W

    2014-05-20

    The androgen receptor (AR) is a key factor that regulates the behavior and fate of prostate cancer cells. The AR-regulated network is activated when AR binds enhancer elements and modulates specific enhancer-promoter looping. Kallikrein-related peptidase 3 (KLK3), which codes for prostate-specific antigen (PSA), is a well-known AR-regulated gene and its upstream enhancers produce bidirectional enhancer RNAs (eRNAs), termed KLK3e. Here, we demonstrate that KLK3e facilitates the spatial interaction of the KLK3 enhancer and the KLK2 promoter and enhances long-distance KLK2 transcriptional activation. KLK3e carries the core enhancer element derived from the androgen response element III (ARE III), which is required for the interaction of AR and Mediator 1 (Med1). Furthermore, we show that KLK3e processes RNA-dependent enhancer activity depending on the integrity of core enhancer elements. The transcription of KLK3e was detectable and its expression is significantly correlated with KLK3 (R(2) = 0.6213, P enhances AR-dependent gene expression.

  9. Geometric effects of ICMEs on geomagnetic storms

    Science.gov (United States)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  10. Non-coding Transcripts from Enhancers: New Insights into Enhancer Activity and Gene Expression Regulation.

    Science.gov (United States)

    Chen, Hongjun; Du, Guangshi; Song, Xu; Li, Ling

    2017-06-01

    Long non-coding RNAs (lncRNAs) have gained widespread interest in the past decade owing to their enormous amount and surprising functions implicated in a variety of biological processes. Some lncRNAs exert function as enhancers, i.e., activating gene transcription by serving as the cis-regulatory molecules. Furthermore, recent studies have demonstrated that many enhancer elements can be transcribed and produce RNA molecules, which are termed as enhancer RNAs (eRNAs). The eRNAs are not merely the by-product of the enhancer transcription. In fact, many of them directly exert or regulate enhancer activity in gene activation through diverse mechanisms. Here, we provide an overview of enhancer activity, transcription of enhancer itself, characteristics of eRNAs, as well as their roles in regulating enhancer activity and gene expression. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  11. The 22-year cycle in the geomagnetic 27-day recurrences reflecting on the F2-layer ionization

    Directory of Open Access Journals (Sweden)

    E. M. Apostolov

    2004-04-01

    Full Text Available Solar cycle variations of the amplitudes of the 27-day solar rotation period reflected in the geomagnetic activity index Ap, solar radio flux F10.7cm and critical frequency foF2 for mid-latitude ionosonde station Moscow from the maximum of sunspot cycle 18 to the maximum of cycle 23 are examined. The analysis shows that there are distinct enhancements of the 27-day amplitudes for foF2 and Ap in the late declining phase of each solar cycle while the amplitudes for F10.7cm decrease gradually, and the foF2 and Ap amplitude peaks are much larger for even-numbered solar cycles than for the odd ones. Additionally, we found the same even-high and odd-low pattern of foF2 for other mid-latitude ionosonde stations in Northern and Southern Hemispheres. This property suggests that there exists a 22-year cycle in the F2-layer variability coupled with the 22-year cycle in the 27-day recurrence of geomagnetic activity.

    Key words. Ionosphere (mid-latitude ionosphere; ionosphere- magnetosphere interactions – Magnetospheric physics (solar wind-magnetosphere interactions

  12. The 22-year cycle in the geomagnetic 27-day recurrences reflecting on the F2-layer ionization

    Directory of Open Access Journals (Sweden)

    E. M. Apostolov

    2004-04-01

    Full Text Available Solar cycle variations of the amplitudes of the 27-day solar rotation period reflected in the geomagnetic activity index Ap, solar radio flux F10.7cm and critical frequency foF2 for mid-latitude ionosonde station Moscow from the maximum of sunspot cycle 18 to the maximum of cycle 23 are examined. The analysis shows that there are distinct enhancements of the 27-day amplitudes for foF2 and Ap in the late declining phase of each solar cycle while the amplitudes for F10.7cm decrease gradually, and the foF2 and Ap amplitude peaks are much larger for even-numbered solar cycles than for the odd ones. Additionally, we found the same even-high and odd-low pattern of foF2 for other mid-latitude ionosonde stations in Northern and Southern Hemispheres. This property suggests that there exists a 22-year cycle in the F2-layer variability coupled with the 22-year cycle in the 27-day recurrence of geomagnetic activity. Key words. Ionosphere (mid-latitude ionosphere; ionosphere- magnetosphere interactions – Magnetospheric physics (solar wind-magnetosphere interactions

  13. Geomagnetism mission concepts after Swarm

    International Nuclear Information System (INIS)

    Michael Purucker; Sabaka, T.J.; Richard Holme

    2009-01-01

    Complete text of publication follows. While planning for the ESA Swarm mission has been a primary focus of geomagnetism over the past decade, the long time lags necessary for satellite missions dictate that planning for the next mission begin even before the launch of Swarm. Swarm will measure, for the first time, the E-W gradient of the magnetic field. In 2006, NASA launched a minisatellite magnetometer constellation mission (ST-5) to test technologies and software. The ST-5 constellation made the first along-track gradient measurements. One of the concepts under consideration for missions after Swarm is to systematically measure spatial gradients. The radial gradient could be measured using either an 'uncontrolled' fleet of satellites at different altitudes and local times, or by two or more satellites in a cartwheel configuration. Small-scale static features (degrees > 13) of the core field remain unknown because of their overlap with the crustal field, but they are of critical importance in core flow modeling. To what extent can small-scale features of the core field be separated from longer-wavelength crustal fields using radial gradients? We discuss this question in the context of a model study in which we attempt to recover separate core and crustal fields. The long wavelength crustal field model input is based on the seismic 3SMAC model, updated using MF-6. The core field model input is based on CHAOS-2. We will discuss the extent to which such a separation is ill-posed, and dependent on details of the parameterization. We will also discuss the extent to which such a separation is affected by the presence of annihilators.

  14. Modeling of Thermospheric Neutral Density Variations in Response to Geomagnetic Forcing using GRACE Accelerometer Data

    Science.gov (United States)

    Calabia, A.; Matsuo, T.; Jin, S.

    2017-12-01

    The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.

  15. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    Science.gov (United States)

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  16. Enhancement of immunological activity after mild hyperthermia

    International Nuclear Information System (INIS)

    Noguchi, Kenichi; Hasegawa, Takeo; Takahashi, Tohru

    2002-01-01

    At present, hyperthermia is clinically very important as interdisciplinary therapeutic method, and studies are being performed on combined effects with surgical treatment, radiotherapy, chemotherapy and gene therapy for the treatment of malignant tumors. We evaluated the effects of hyperthermia under temperature of 42.5C and demonstrated that the activation of immunological response is increased and anti-tumor effect cabn be obtained in this studies. We used animals were C3H mice (male,7W) bearing SCC-VII tumor on femur skin. Then, the mice were divided to 10 mice in each group, and only femur region was immersed in warm water for thermal treatment. Also we measured the tumor growth, changes of blood cell fraction and NK cell activity. The results of the present study confirmed: (1) Anti-tumor effect can be given by thermal treatment at relatively mild temperature (mild temperature at 39C-42C); (2) The increase of neutrophils is dependent on the quantity of heat added; (3) Immunological response of monocytes and lymphocytes is associated with it; (4) Activity of the immunological potency as a whole such as activation of NK cells was also confirmed

  17. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  18. Is Enhanced Physical Activity Possible Using Active Videogames?

    OpenAIRE

    Baranowski, Tom; Baranowski, Janice; O'Connor, Teresia; Lu, Amy Shirong; Thompson, Debbe

    2012-01-01

    Our research indicated that 10–12-year-old children receiving two active Wii™ (Nintendo®; Nintendo of America, Inc., Redmond, WA) console videogames were no more physically active than children receiving two inactive videogames. Research is needed on how active videogames may increase physical activity.

  19. Is Enhanced Physical Activity Possible Using Active Videogames?

    Science.gov (United States)

    Baranowski, Tom; Baranowski, Janice; O'Connor, Teresia; Lu, Amy Shirong; Thompson, Debbe

    2012-06-01

    Our research indicated that 10-12-year-old children receiving two active Wii ™ (Nintendo ® ; Nintendo of America, Inc., Redmond, WA) console videogames were no more physically active than children receiving two inactive videogames. Research is needed on how active videogames may increase physical activity.

  20. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study.

    Science.gov (United States)

    Flôres, Danilo E F L; Bettilyon, Crystal N; Jia, Lori; Yamazaki, Shin

    2016-01-01

    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Characteristics of energetic electron precipitation into the earth's polar atmosphere and geomagnetic conditions

    Science.gov (United States)

    Makhmutov, V. S.; Bazilevskaya, G. A.; Krainev, M. B.

    A number of energetic electron precipitation events (EPEs) were observed in the Earth's polar atmosphere (Murmansk region, geographical coordinates 68.57 N, 33.03 E and Mirny, Antarctica, 66.34 S, 92.55 E) during the long-term cosmic ray balloon experiment from 1957 up to now. During geomagnetic storms significant X-ray fluxes caused by precipitating electrons at the top of the atmosphere sometimes penetrated to the atmospheric depth of 60 gcm-2. We show that (1) there is a quasi-11-year cycle in EPE occurrence shifted with respect to solar activity cycle, and (2) the yearly rate of EPE occurrence has an ascending trend during the period 1965-1999. The EPE characteristics evaluated from the balloon experiment are compared with the available data on geomagnetic activity and the possible relations between the features of EPE events and geomagnetic conditions are discussed.

  3. Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010

    DEFF Research Database (Denmark)

    Lefèvre, Laure; Vennerstrøm, Susanne; Dumbović, Mateja

    2016-01-01

    -known aa index and on geomagnetic parameters described in the accompanying paper (Vennerstrøm et al., Solar Phys. in this issue, 2016, hereafter Paper I). This part of the analysis focuses on associating and characterizing the active regions (sunspot groups) that are most likely linked to these major...... geomagnetic storms. For this purpose, we used detailed sunspot catalogs as well as solar images and drawings from 1868 to 2010. We have systematically collected the most pertinent sunspot parameters back to 1868, gathering and digitizing solar drawings from different sources such as the Greenwich archives......, and extracting the missing sunspot parameters. We present a detailed statistical analysis of the active region parameters (sunspots, flares) relative to the geomagnetic parameters developed in Paper I. In accordance with previous studies, but focusing on a much larger statistical sample, we find that the level...

  4. Late Pleistocene geomagnetic excursion in Icelandic lavas

    International Nuclear Information System (INIS)

    Levi, S.; Audunsson, H.; Duncan, R.A.; Kristjansson, L.; Jakobsson, S.P.

    1990-01-01

    In 1980 Kristjansson and Gudmundsson reported a late glacial geomagnetic excursion in three hills in the Reykjanes peninsula, Iceland, with shallow negative inclinations and westerly declinations. They named it the Skalamaelifell excursion. More extensive field work has identified the same excursional paleomagnetic direction (declination = 258deg, inclination = -15deg) at four additional outcrops in a 10x10 km area in the Reykjanes peninsula. The excursion lavas are olivine tholeiites with similar petrography and chemical compositions. Paleointensity determinations by the Thellier method average 4.2±0.2 μT for 8 samples, more than an order of magnitude weaker than the present geomagnetic field in Iceland. Together, these results suggest extrusion of the excursion lavas in a very brief span of time, probably less than a few hundred years. K-Ar dating of the excursion lavas gives a mean age for 19 determinations of 42.9±7.8 ka (2σ). Compilation of thirty K-Ar ages of the Laschamp and Olby flows by three laboratories yield a new age for the Laschamp excursion in France of 46.6±2.4 ka (2σ). The age of the excursion in southwestern Iceland is statistically indistinguishable from the Laschamp excursion at the 95% confidence level, and both have very low paleointensities. Therefore, we suggest that the Laschamp and Olby flows in France and the Skalamaelifell units of Iceland recorded essentially the same geomagnetic excursion. Differences in the virtual paleomagnetic poles (VGPs) of these excursions may be due to (1) the probable non-dipole character of the geomagnetic field during the excursion, (2) rapid geomagnetic secular variation and possible small age differences of the extrusive rocks in France and Iceland, and/or (3) crustal magnetic anomalies which might dominate the local geomagnetic field during the excursion at either or both locations. (orig.)

  5. Latitudinal variation of stochastic properties of the geomagnetic field

    Science.gov (United States)

    Wanliss, J. A.; Shiokawa, K.; Yumoto, K.

    2014-03-01

    We explore the stochastic fractal qualities of the geomagnetic field from 210 mm ground-based magnetometers during quiet and active magnetospheric conditions. We search through 10 yr of these data to find events that qualify as quiet intervals, defined by Kp ≤ 1 for 1440 consecutive minutes. Similarly, active intervals require Kp ≥ 4 for 1440 consecutive minutes. The total for quiet intervals is ~ 4.3 x 106 and 2 x 108 min for active data points. With this large number of data we characterize changes in the nonlinear statistics of the geomagnetic field via measurements of a fractal scaling. A clear difference in statistical behavior during quiet and active intervals is implied through analysis of the scaling exponents; active intervals generally have larger values of scaling exponents. This suggests that although 210 mm data appear monofractal on shorter timescales, the scaling changes, with overall variability are more likely described as a multifractional Brownian motion. We also find that low latitudes have scaling exponents that are consistently larger than for high latitudes.

  6. Electrical conductivity at mid-mantle depths estimated from the data of Sq and long period geomagnetic variations

    Czech Academy of Sciences Publication Activity Database

    Praus, Oldřich; Pěčová, Jana; Červ, Václav; Kováčiková, Světlana; Pek, Josef; Velímský, J.

    2011-01-01

    Roč. 55, č. 2 (2011), s. 241-264 ISSN 0039-3169 R&D Projects: GA ČR(CZ) GA205/06/0557; GA ČR GAP210/10/2227; GA AV ČR IAA300120703 Institutional research plan: CEZ:AV0Z30120515 Keywords : geomagnetic depth sounding * Monte Carlo analysis * adaptive Metropolis sampling * solar/geomagnetic activity Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.700, year: 2011

  7. Geochemistry and Geochronology of Ngorongoro Crater, Tanzania: Implication for Magma Evolution, Duration of Volcanic Activity and Age of the Ngorongoro N-R Geomagnetic Polarity Transition

    Science.gov (United States)

    Mollel, G. F.; Swisher, C. C.; Feigenson, M. D.; Carr, M. J.

    2005-05-01

    40Ar/39Ar dates on volcanic rocks from the Ngorongoro Crater (NC) in northern Tanzania indicate that NC activity was very short in duration lasting approximately 120 ka. Laser incremental heating experiments on lava from the bottom and top of the NC crater-wall section gave ages of 2.08 +/- 0.04 and 1.96 +/- 0.02 Ma respectively. Lavas from the same section show a change in magnetic polarity from normal (N) at the lower part to reverse (R) polarity at the upper part (Grommé et al. 1970). The new ages are about 400 ka younger than previously estimated by K-Ar technique. These new ages suggest correlation of the NC N-R polarity transition to the 2.1 Ma (N-R) Reunion-Matuyama boundary (Cande and Kent, 1995), instead of the Gauss-Matuyama boundary as proposed by Grommé et al. (1970). 87Sr/86Sr measurements on lavas from the NC section vary widely from 0.70801 in the trachydacite at the base to 0.70405 in the basaltic lava near the top. The lower part of the section is more radiogenic varying from 0.70592 to 0.70801 whereas the upper part is constrained to 0.70405 to 0.70450. The more radiogenic lower part is likely to have interacted with crustal rocks. Two possible contaminants are the Tanzanian Archean Craton to the west and the late Proterozoic Mozambican belt in the east. The crater-wall section is composed of trachydacite at the bottom that becomes trachyandesite in mid-section. The top section is mainly basaltic. Major and trace elements show an inverted geochemical signature that is typical of stratified magma chambers characterized by a silicic top and basaltic bottom. Olivine basalt at the upper part of the section has the highest Mg# (56.60) and in general the upper section is more mafic than the lower section as inferred from Mg#. The upper part of the section is high in TiO2, MgO, FeOT, and CaO wt% whereas SiO2 and K2O wt% are higher in lower part of the section. No significant variations are observed in N2O, Al2O3, P2O5 and MnO wt% up-section. Highly

  8. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    2000-04-01

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help to create the positive ionospheric

  9. Paleoclimate variability during the Blake geomagnetic excursion (MIS 5d) deduced from a speleothem record

    Science.gov (United States)

    Rossi, Carlos; Mertz-Kraus, Regina; Osete, María-Luisa

    2014-10-01

    To evaluate possible connections between climate and the Earth's magnetic field, we examine paleoclimate proxies in a stalagmite (PA-8) recording the Blake excursion (˜112-˜116.4 ka) from Cobre cave (N Spain). Trace element, δ13C, δ18O, δ234U, fluorescent lamination, growth rate, and paleomagnetic records were synchronized using a floating lamina-counted chronology constrained by U-Th dates, providing a high-resolution multi-proxy paleoclimate record for MIS 5d. The alpine cave setting and the combination of proxies contributed to improve the confidence of the paleoclimatic interpretation. Periods of relatively warm and humid climate likely favored forest development and resulted in high speleothem growth rates, arguably annual fluorescent laminae, low δ13C and [Mg], and increased [Sr] and [Ba]. Colder periods limited soil activity and drip water availability, leading to reduced speleothem growth, poor development of fluorescent lamination, enhanced water-rock interaction leading to increased [Mg], δ13C, and δ234U, and episodic flooding. In the coldest and driest period recorded, evaporation caused simultaneous 18O and 13C enrichments and perturbed the trace element patterns. The Blake took place in a relatively warm interestadial at the inception of the Last Glacial period, but during a global cooling trend recorded in PA-8 by an overall decrease of δ18O and growth rate and increasing [Mg]. That trend culminated in the cessation of growth between ˜112 and ˜101 ka likely due to the onset of local glaciation correlated with Greenland stadial 25. That trend is consistent with a link between low geomagnetic intensity and climate cooling, but it does not prove it. Shorter term changes in relative paleointensity (RPI) relate to climate changes recorded in PA-8, particularly a prominent RPI low from ˜114.5 to ˜113 ka coincident with a significant cooling indicated by all proxy records, suggesting a link between geomagnetic intensity and climate at millennial

  10. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help

  11. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    Science.gov (United States)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  12. Local time and cutoff rigidity dependences of storm time increase associated with geomagnetic storms

    International Nuclear Information System (INIS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1987-01-01

    The cosmic ray increases due to considerable depressions of cosmic ray cutoff rigidity during large geomagnetic storms are investigated. Data from a worldwide network of cosmic ray neutron monitors are analyzed for 17 geomagnetic storms which occurred in the quiet phase of the solar activity cycle during 1966-1978. As expected from the longitudinal asymmetry of the low-altitude geomagnetic field during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray intensity is obtained. It is shown that the maximum phases of the local time dependence occur at around 1800 LT and that the amplitudes of the local time dependence are consistent with presently available theoretical estimates. The dependence of the increment on the cutoff rigidity is obtained for both the local time dependent part and the local time independent part of the storm time increase. The local time independent part, excluding the randomizing local time dependent part, shows a clear-cut dependence on cutoff rigidity which is consistent with theoretical estimates

  13. Voice Activity Detection for Speech Enhancement Applications

    Directory of Open Access Journals (Sweden)

    E. Verteletskaya

    2010-01-01

    Full Text Available This paper describes a study of noise-robust voice activity detection (VAD utilizing the periodicity of the signal, full band signal energy and high band to low band signal energy ratio. Conventional VADs are sensitive to a variably noisy environment especially with low SNR, and also result in cutting off unvoiced regions of speech as well as random oscillating of output VAD decisions. To overcome these problems, the proposed algorithm first identifies voiced regions of speech and then differentiates unvoiced regions from silence or background noise using the energy ratio and total signal energy. The performance of the proposed VAD algorithm is tested on real speech signals. Comparisons confirm that the proposed VAD algorithm outperforms the conventional VAD algorithms, especially in the presence of background noise.

  14. High-latitude geomagnetic disturbances during ascending solar cycle 24

    Science.gov (United States)

    Peitso, Pyry; Tanskanen, Eija; Stolle, Claudia; Berthou Lauritsen, Nynne; Matzka, Jürgen

    2015-04-01

    High-latitude regions are very convenient for study of several space weather phenomena such as substorms. Large geographic coverage as well as long time series of data are essential due to the global nature of space weather and the long duration of solar cycles. We will examine geomagnetic activity in Greenland from magnetic field measurements taken by DTU (Technical University of Denmark) magnetometers during the years 2010 to 2014. The study uses data from 13 magnetometer stations located on the east coast of Greenland and one located on the west coast. The original measurements are in one second resolution, thus the amount of data is quite large. Magnetic field H component (positive direction towards the magnetic north) was used throughout the study. Data processing will be described from calibration of original measurements to plotting of long time series. Calibration consists of determining the quiet hour of a given day and reducing the average of that hour from all the time steps of the day. This normalizes the measurements and allows for better comparison between different time steps. In addition to the full time line of measurements, daily, monthly and yearly averages will be provided for all stations. Differential calculations on the change of the H component will also be made available for the duration of the full data set. Envelope curve plots will be presented for duration of the time line. Geomagnetic conditions during winter and summer will be compared to examine seasonal variation. Finally the measured activity will be compared to NOAA (National Oceanic and Atmospheric Administration) issued geomagnetic space weather alerts from 2010 to 2014. Calculations and plotting of measurement data were done with MATLAB. M_map toolbox was used for plotting of maps featured in the study (http://www2.ocgy.ubc.ca/~rich/map.html). The study was conducted as a part of the ReSoLVE (Research on Solar Long-term Variability and Effects) Center of Excellence.

  15. On the Characterisitics of Geomagnetic Storms Observed in Low and Equatorial Latitudes during the Years 1841-1869

    Science.gov (United States)

    Eapen, E. P.; Girish, T. E.

    2012-07-01

    The true intensity of geomagnetic storms are better determined using horizontal intensity observations from low and equatorial latitudes. We have studied the characteristics of geomagnetic storms during the years 1841-1869 in the 19th century using H and D observations from British colonial period observatories in Trivandrum,Madras,Bombay and Singapore.These results are compared with those obtained from mid latitude stations like Greenwich and Helsinki. Geomagnetic activity in the sunspot cycle 10 ( 1856-1866) is found to be exceptional during which several super intense magnetic storms are observed. We have also studied heliospheric north-south asymmetries in the properties of geomagnetic storms during the above period along with their sunspot cycle evolution

  16. Response of the H-geocorona to geomagnetic disturbances studied by TWINS Lyman-alpha data

    Science.gov (United States)

    Zoennchen, Jochen; Nass, Uwe; Fahr, Hans

    2016-04-01

    We have studied the variation of the exospheric H-density distribution during two geomagnetic storms of different strength in terms of their Dst-index values. This analysis is based on continuously monitored Lyman-alpha data observed by the TWINS1/2-LAD instruments. Since solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H), the resulting resonance glow intensity in the optically thin regime is proportional to H-column density along the line of sight (LOS). We quantify the amplitude of the H-density's response to geomagnetic activity for different (observed) angular regions and radial Earth-distances. Interestingly the H-exosphere responded with a comparable density increase to both storms of different strength. Careful analysis of the geomagnetic H-density effect indicates that the temporal density response is well correlated with the Kp-index daily sum, but not with the Dst-index in case of the two analysed storms.

  17. Geomagnetic effects on cosmic ray propagation under different conditions for Buenos Aires and Marambio, Argentina

    Science.gov (United States)

    Masias-Meza, J.; Dasso, S.

    2014-01-01

    The geomagnetic field (Bgeo) sets a lower cutoff rigidity (RC) to the entry of cosmic particles to Earth which depends on the geomagnetic activity. From numerical simulations of the trajectory of a proton using different models for Bgeo (performed with the MAGCOS code), we use backtrack ing to analyze particles arriving at the location of two nodes of the net LAGO (Large Aperture Gamma ray burst Observ atory) that will be built in the near future: Buenos Aires and Marambio (Antarctica), Argentina. We determine the asymptotic trajectories and the values of RC for different incidence directions, for each node. Simulations were done us ing several models for Bgeo that emulate different geomagnetic conditions. The presented results will help to make analysis of future observations of the flux of cosmic rays done at these two LAGO nodes.

  18. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca

    2011-01-01

    Geomagnetic observatory practice and instrumentation has evolved significantly over the past 150 years. Evolution continues to be driven by advances in technology and by the need of the data user community for higher-resolution, lower noise data in near-real time. Additionally, collaboration betw...

  19. Geomagnetic and Geoelectric determination of Topography and ...

    African Journals Online (AJOL)

    Geomagnetic and geoelectric surveys were executed in a complex zone with the aim of determining the topography and estimated depth of constituent bedrock in the study area. The ground magnetic and geoelectric – Schlumberger's vertical electrical sounding – methods were applied for this study. The presence of a ...

  20. Geomagnetic referencing in the arctic environment

    Science.gov (United States)

    Podjono, Benny; Beck, Nathan; Buchanan, Andrew; Brink, Jason; Longo, Joseph; Finn, Carol A.; Worthington, E. William

    2011-01-01

    Geomagnetic referencing is becoming an increasingly attractive alternative to north-seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in today's complex drilling programs. However, the greater magnitude of variations in the geomagnetic environment at higher latitudes makes the application of geomagnetic referencing in those areas more challenging. Precise, real-time data on those variations from relatively nearby magnetic observatories can be crucial to achieving the required accuracy, but constructing and operating an observatory in these often harsh environments poses a number of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory (DED), located in Deadhorse, Alaska, was created through collaboration between the United States Geological Survey (USGS) and a leading oilfield services supply company. DED was designed to produce real-time geomagnetic data at the required level of accuracy, and to do so reliably under the extreme temperatures and harsh weather conditions often experienced in the area. The observatory will serve a number of key scientific communities as well as the oilfield drilling industry, and has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate data while offering significant cost and time savings, compared with traditional surveying techniques.

  1. Analysis Of Interplanetary Phenomenon, Geomagnetic And ...

    African Journals Online (AJOL)

    1975-07-08

    A study is made of the moderate geomagnetic storm of July 8, 1975 (Dstmin =-60 nT) and its associated ionospheric storm using solar wind parameters and foF2 data obtained from ionosonde stations in East Asian longitudinal sector. The storm was found to be a double step storm with the first Dstmin resulting mainly from ...

  2. Catalog of standard geomagnetic variation data

    International Nuclear Information System (INIS)

    1975-08-01

    This catalog consolidates all of the geomagnetic variation data from standard and rapid-run measurements known to exist at World Data Center A for Solar-Terrestrial Physics. It includes data for time periods prior to the IGY, the earliest data set being for Batavia, Indonesia, 1867. The geomagnetic variation data in this catalog are held in the form of microfilm, magnetic tape, yearbooks and bulletins. They are in a variety of formats including magnetograms (normal, storm, and rapid-run), hourly values, 2.5 minute values, and various derived indices for individual observatories as well as for selected groupings of observatories. The data from about 300 observatories are referenced in this catalog, and a list of observatories along with their geographic and geomagnetic coordinates are presented. The main body of the catalog displays the years and months for which the World Data Center holds digital data, magnetograms, and K-indices for each observatory. Also presented is a catalog of derived geomagnetic indices, information on principal magnetic storms, and a catalog of available sets of magnetograms

  3. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers to as a geomag...

  4. Geomagnetic secular variation at the African observatories

    International Nuclear Information System (INIS)

    Haile, T.

    2002-10-01

    Geomagnetic data from ten observatories in the African continent with time series data length of more than three decades have been analysed. All-day annual mean values of the D, H and Z components were used to study secular variations in the African region. The residuals in D, H and Z components obtained after removing polynomial fits have been examined in relation to the sunspot cycle. The occurrence of the 1969-1970 worldwide geomagnetic impulse in each observatory is studied. It is found that the secular variation in the field can be represented for most of the observatories with polynomials of second or third degree. Departures from these trends are observed over the Southern African region where strong local magnetic anomalies have been observed. The residuals in the geomagnetic field components have been shown to exhibit parallelism with the periods corresponding to double solar cycle for some of the stations. A clear latitudinal distribution in the geomagnetic component that exhibits the 1969-70 jerk is shown. The jerk appears in the plots of the first differences in H for the southern most observatories of Hermanus, Hartebeesthoek, and Tsuemb, while the Z plots show the jerk for near equatorial and equatorial stations of Antananarivo, Luanda Belas, Bangui and Addis Ababa. There is some indication for this jerk in the first difference plots of D for the northern stations of M'Bour and Tamanrasset. The plots of D rather strongly suggest the presence of a jerk around 1980 at most of the stations. (author)

  5. Qualitative and quantitative estimations of the effect of geomagnetic field variations on human brain functional state

    International Nuclear Information System (INIS)

    Belisheva, N.K.; Popov, A.N.; Petukhova, N.V.; Pavlova, L.P.; Osipov, K.S.; Tkachenko, S.Eh.; Baranova, T.I.

    1995-01-01

    The comparison of functional dynamics of human brain with reference to qualitative and quantitative characteristics of local geomagnetic field (GMF) variations was conducted. Steady and unsteady states of human brain can be determined: by geomagnetic disturbances before the observation period; by structure and doses of GMF variations; by different combinations of qualitative and quantitative characteristics of GMF variations. Decrease of optimal GMF activity level and the appearance of aperiodic disturbances of GMF can be a reason of unsteady brain's state. 18 refs.; 3 figs

  6. Local geomagnetic events associated with displacements on the san andreas fault.

    Science.gov (United States)

    Breiner, S; Kovach, R L

    1967-10-06

    The piezomagnetic properties of rock suggest that a change in subsurface stress will manifest itself as a change in the magnetic susceptibility and remanent magnetization and hence the local geomagnetic field. A differential array of magnetometers has been operating since late 1965 on the San Andreas fault in the search for piezomagnetic signals under conditions involving active fault stress. Local changes in the geomagnetic field have been observed near Hollister, California, some tens of hours preceding the onset of abrupt creep displacement on the San Andreas fault.

  7. Sub-ionospheric VLF signal anomaly due to geomagnetic storms: a statistical study

    Directory of Open Access Journals (Sweden)

    K. Tatsuta

    2015-11-01

    Full Text Available We investigate quantitatively the effect of geomagnetic storms on the sub-ionospheric VLF/LF (Very Low Frequency/Low Frequency propagations for different latitudes based on 2-year nighttime data from Japanese VLF/LF observation network. Three statistical parameters such as average signal amplitude, variability of the signal amplitude, and nighttime fluctuation were calculated daily for 2 years for 16–21 independent VLF/LF transmitter–receiver propagation paths consisting of three transmitters and seven receiving stations. These propagation paths are suitable to simultaneously study high-latitude, low-mid-latitude and mid-latitude D/E-region ionospheric properties. We found that these three statistical parameters indicate significant anomalies exceeding at least 2 times of their standard deviation from the mean value during the geomagnetic storm time period in the high-latitude paths with an occurrence rate of anomaly between 40 and 50 % presumably due to the auroral energetic electron precipitation. The mid-latitude and low-mid-latitude paths have a smaller influence from the geomagnetic activity because of a lower occurrence rate of anomalies even during the geomagnetically active time period (from 20 to 30 %. The anomalies except geomagnetic storm periods may be caused by atmospheric and/or lithospheric origins. The statistical occurrence rates of ionospheric anomalies for different latitudinal paths during geomagnetic storm and non-storm time periods are basic and important information not only to identify the space weather effects toward the lower ionosphere depending on the latitudes but also to separate various external physical causes of lower ionospheric disturbances.

  8. Enhancer transcripts mark active estrogen receptor binding sites.

    Science.gov (United States)

    Hah, Nasun; Murakami, Shino; Nagari, Anusha; Danko, Charles G; Kraus, W Lee

    2013-08-01

    We have integrated and analyzed a large number of data sets from a variety of genomic assays using a novel computational pipeline to provide a global view of estrogen receptor 1 (ESR1; a.k.a. ERα) enhancers in MCF-7 human breast cancer cells. Using this approach, we have defined a class of primary transcripts (eRNAs) that are transcribed uni- or bidirectionally from estrogen receptor binding sites (ERBSs) with an average transcription unit length of ∼3-5 kb. The majority are up-regulated by short treatments with estradiol (i.e., 10, 25, or 40 min) with kinetics that precede or match the induction of the target genes. The production of eRNAs at ERBSs is strongly correlated with the enrichment of a number of genomic features that are associated with enhancers (e.g., H3K4me1, H3K27ac, EP300/CREBBP, RNA polymerase II, open chromatin architecture), as well as enhancer looping to target gene promoters. In the absence of eRNA production, strong enrichment of these features is not observed, even though ESR1 binding is evident. We find that flavopiridol, a CDK9 inhibitor that blocks transcription elongation, inhibits eRNA production but does not affect other molecular indicators of enhancer activity, suggesting that eRNA production occurs after the assembly of active enhancers. Finally, we show that an enhancer transcription "signature" based on GRO-seq data can be used for de novo enhancer prediction across cell types. Together, our studies shed new light on the activity of ESR1 at its enhancer sites and provide new insights about enhancer function.

  9. The use of various interplanetary scintillation indices within geomagnetic forecasts

    Directory of Open Access Journals (Sweden)

    E. A. Lucek

    Full Text Available Interplanetary scintillation (IPS, the twinkling of small angular diameter radio sources, is caused by the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and observations of a sufficiently large number of sources may be used to track large-scale disturbances as they propagate from close to the Sun to the Earth. Therefore, such observations have potential for use within geomagnetic forecasts. We use daily data from the Mullard Radio Astronomy Observatory, made available through the World Data Centre, to test the success of geomagnetic forecasts based on IPS observations. The approach discussed here was based on the reduction of the information in a map to a single number or series of numbers. The advantages of an index of this nature are that it may be produced routinely and that it could ideally forecast both the occurrence and intensity of geomagnetic activity. We start from an index that has already been described in the literature, INDEX35. On the basis of visual examination of the data in a full skymap format modifications were made to the way in which the index was calculated. It was hoped that these would lead to an improvement in its forecasting ability. Here we assess the forecasting potential of the index using the value of the correlation coefficient between daily Ap and the IPS index, with IPS leading by 1 day. We also compare the forecast based on the IPS index with forecasts of Ap currently released by the Space Environment Services Center (SESC. Although we find that the maximum improvement achieved is small, and does not represent a significant advance in forecasting ability, the IPS forecasts at this phase of the solar cycle are of a similar quality to those made by SESC.

  10. K-type geomagnetic index nowcast with data quality control

    Directory of Open Access Journals (Sweden)

    René Warnant

    2011-07-01

    Full Text Available

    A nowcast system for operational estimation of a proxy K-type geomagnetic index is presented. The system is based on a fully automated computer procedure for real-time digital magnetogram data acquisition that includes screening of the dataset and removal of the outliers, estimation of the solar regular variation (SR of the geomagnetic field, calculation of the index, and issuing of an alert if storm-level activity is indicated. This is a time-controlled (rather than event-driven system that delivers the regular output of: the index value, the estimated quality flag, and eventually, an alert. The novel features provided are first, the strict control of the data input and processing, and second, the increased frequency of production of the index (every 1 h. Such quality control and increased time resolution have been found to be of crucial importance for various applications, e.g. ionospheric monitoring, that are of particular interest to us and to users of our service. The nowcast system operability, accuracy and precision have been tested with instantaneous measurements from recent years. A statistical comparison between the nowcast and the definitive index values shows that the average root-mean-square error is smaller than 1 KU. The system is now operational at the site of the Geophysical Centre of the Royal Meteorological Institute in Dourbes (50.1ºN, 4.6ºE, and it is being used for alerting users when geomagnetic storms take place.

  11. Magnesium Enhanced Fibrinolytic Activity of Protease from Schizophyllum commune

    Directory of Open Access Journals (Sweden)

    Chung-Lun Lu

    2010-06-01

    Full Text Available Prevention and therapy of thrombotic diseases have attracted much attention in developed countries during recent years. Investigators have been looking for cheaper and safer thrombolytic agents for therapy of thrombotic diseases. Recently, we have discovered a fibrinolytic protease from Schizophyllum commune. In this study, the protease was proven to degrade blood clot effectively. Seven divalent metal ions were used to test the selectiveness on enhancing protease activity. The treated rat blood was traced by thromboelastography to assess the viscoelastic properties of whole blood. As the result, fibrinolytic activity of the protease was enhanced remarkably by Mg2+ in reducing the strength of blood clot and showed the innovative anti-thrombotic effects. This is the first study of anti-thrombotic effects from fungal-derived fibrinolytic protease using thromboelastography and delineates the efficacy of magnesium supplementation in enhancement of thrombolytic activity from S. commune fibrinolytic protease.

  12. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  13. Kristian Birkeland's pioneering investigations of geomagnetic disturbances

    Directory of Open Access Journals (Sweden)

    W. J. Burke

    2010-04-01

    Full Text Available More than 100 years ago Kristian Birkeland (1967–1917 addressed questions that had vexed scientists for centuries. Why do auroras appear overhead while the Earth's magnetic field is disturbed? Are magnetic storms on Earth related to disturbances on the Sun? To answer these questions Birkeland devised terrella simulations, led coordinated campaigns in the Arctic wilderness, and then interpreted his results in the light of Maxwell's synthesis of laws governing electricity and magnetism. After analyzing thousands of magnetograms, he divided disturbances into 3 categories:

    1. Polar elementary storms are auroral-latitude disturbances now called substorms.
    2. Equatorial perturbations correspond to initial and main phases of magnetic storms.
    3. Cyclo-median perturbations reflect enhanced solar-quiet currents on the dayside.

    He published the first two-cell pattern of electric currents in Earth's upper atmosphere, nearly 30 years before the ionosphere was identified as a separate entity. Birkeland's most enduring contribution toward understanding geomagnetic disturbances flowed from his recognition that field-aligned currents must connect the upper atmosphere with generators in distant space. The existence of field-aligned currents was vigorously debated among scientists for more than 50 years. Birkeland's conjecture profoundly affects present-day understanding of auroral phenomena and global electrodynamics. In 1896, four years after Lord Kelvin rejected suggestions that matter passes between the Sun and Earth, and two years before the electron was discovered, Birkeland proposed current carriers are "electric corpuscles from the Sun" and "the auroras are formed by corpuscular rays drawn in from space, and coming from the Sun". It can be reasonably argued that the year 1896 marks the founding of space plasma physics. Many of Birkeland's insights were rooted in observations made during his terrella

  14. Space weather and dangerous phenomena on the Earth: principles of great geomagnetic storms forcasting by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available According to NOAA space weather scales, geomagnetic storms of scales G5 (3-h index of geomagnetic activity Kp=9, G4 (Kp=8 and G3 (Kp=7 are dangerous for satellites, aircrafts, and even for technology on the ground (influence on power systems, on spacecraft operations, on HF radio-communications and others. We show on the basis of statistical data, that these geomagnetic storms, mostly accompanied by cosmic ray (CR Forbush-decreases, are also dangerous for people's health on spacecraft and on the ground (increasing the rate of myocardial infarctions, brain strokes and car accident road traumas. To prevent these serious damages it is very important to forecast dangerous geomagnetic storms. Here we consider the principles of using CR measurements for this aim: to forecast at least 10-15h before the sudden commencement of great geomagnetic storms accompanied by Forbush-decreases, by using neutron monitor muon telescope worldwide network online hourly data. We show that for this forecast one may use the following features of CR intensity variations connected with geomagnetic storms accompanied by Forbush-decreases: 1 CR pre-increase, 2 CR pre-decrease, 3 CR fluctuations, 4 change in the 3-D CR anisotropy.

  15. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia

    Science.gov (United States)

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95 % CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.

  16. Equatorial Ionospheric Irregularities Observed in the South American Sector During the December 2006 Geomagnetic Storm

    Science.gov (United States)

    Sahai, Y.; de Jesus, R.; Guarnieri, F. L.; Fagundes, P. R.; de Abreu, A. J.; Becker-Guedes, F.; Abalde, J. R.; Brunini, C.; Gende, M.; Cintra, T.; de Souza, V.; Pillat, V.; Lima, W.

    2009-05-01

    This investigation presents studies related to the observations of equatorial ionospheric irregularities in the ionospheric F-region in the South American sector during the intense geomagnetic storm in December 2006, during the period of low solar activity. The geomagnetic storm reached a minimum Dst of -147 nT at 0700 UT on 15 December. In this work ionospheric sounding data obtained between 13 and 16 December 2006 at Palmas (PAL; 10.2o S, 48.2o W; dip latitude 6.6o S) and São José dos Campos (SJC, 23.2o S, 45.9o W; dip latitude 17.6o S), Brazil, and Jicamarca (JIC, 12.0o S, 76.8o W; dip latitude 0.05o S), Peru, have been used. Also, vertical total electron content (VTEC) and phase fluctuations (TECU/min) from GPS observations obtained at Brasilia (BRAZ, 15.9o S, 47.9o W; dip latitude 11.7o S), Presidente Prudente (PPTE, 22.12° S, 51.4° W; dip latitude 14,9° S), Curitiba (PARA, 25.43o S, 49.21o W; dip latitude 18.4o S), Santa Maria (SMAR, 29.71o S, 53.07o W; dip latitude 19.6o S), Brazil, Bahia Blanca (VBCA, 38.7o S, 62.3o W; dip latitude 22.4o S) and Puerto Deseado (PDES, 47.7o S, 65.9o W, dip latitude 27.1o S), Argentina, during the period 13 to 16 December are presented. An unusual uplifting of the F-region during pre-reversal enhancement (PRE) on 14 December was possibly associated with a prompt penetration of electric field of magnetospheric origin after the storm sudden commencement (1414 UT on 14 December). On this geomagnetically disturbed night of 14-15 December, intense equatorial ionospheric irregularities were observed up to southern most GPS station PDES in Argentina. It should be mentioned that on the other nights viz., 12-13 and 13-14 December (both nights before the storm), and 15-16 December (recovery phase), the ionospheric irregularities are limited to only the Brazilian GPS stations. On the geomagnetically disturbed night of 14-15 December, strong oscillations were observed in the F-region base height possibly associated with Joule heating

  17. Analysis of precursors of tropical cyclogenesis during different phases of the solar cycle and their correlation with the Dst geomagnetic index

    Science.gov (United States)

    Pazos, Marni; Mendoza, Blanca; Gimeno, Luis

    2015-10-01

    Three tropical cyclogenesis precursors, (absolute vorticity, relative humidity, vertical shear)and, the combined Genesis Potential Index are investigated in order to analyse their behaviour during three different phases(descending, minimum and ascending) of the solar cycle. The correlation between these tropical cyclogenesis precursors and the Dst geomagnetic index is also assessed, with the main finding being that the correlations between both the Genesis Potential Index and the vertical shear with the Dst index are statistically significant. This result suggests that the relationship between geomagnetic activity and tropical cyclones might be modulated by the influence of geomagnetic activity on the vertical wind shear.

  18. Health-enhancing physical activity among university students in nine ...

    African Journals Online (AJOL)

    The aim of the study was to investigate health-enhancing physical activity (PA) among university students in ASEAN countries. Using anonymous questionnaires, data were collected from 8,709 (37.7% male and 62.3% female) university students (Mean age 20.6, SD=2.0) from nine ASEAN countries. They were assessed ...

  19. Enhancement of visible light irradiation photocatalytic activity of ...

    Indian Academy of Sciences (India)

    Mohamed Abdel Salam

    2017-09-25

    Sep 25, 2017 ... Enhancement of visible light irradiation photocatalytic activity of ... The stability of the. Pt/SrTiO3 nanoparticles for the photocatalytic oxidation of cyclohexane was examined and the results revealed that the Pt/SrTiO3 nanoparticles could be used .... ticles was determined using powder X-ray diffraction (XRD),.

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    Science.gov (United States)

    Duan, Junxin; Schnorr, Kirk Matthew; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2017-09-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  11. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2017-09-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  12. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Activity enhancement of ligninolytic enzymes of Trametes versicolor ...

    African Journals Online (AJOL)

    Suspended cultures of white-rot fungus, Trametes versicolor, supplemented with bagasse powder showed a concentration dependent enhancement in the ligninolytic enzymes activity in liquid shake cultures. 2% (w/v) bagasse powder improved greater stability to the enzymes. The optimum pH is 3.5 and the optimum ...

  14. Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity

    Science.gov (United States)

    Brown, Kimberly [Elk Grove, CA; Harris, Paul [Carnation, WA; Zaretsky, Elizabeth [Reno, NV; Re, Edward [Davis, CA; Vlasenko, Elena [Davis, CA; McFarland, Keith [Davis, CA; Lopez de Leon, Alfredo [Davis, CA

    2008-04-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Can aquatic worms enhance methane production from waste activated sludge?

    NARCIS (Netherlands)

    Serrano, Antonio; Hendrickx, Tim L.G.; Elissen, Hellen; Laarhoven, Bob; Buisman, Cees J.N.; Temmink, Hardy

    2016-01-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30 °C with sludge from a high-loaded membrane bioreactor, the aquatic worm

  16. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    , and associated identifications ofForbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms arevery strongly correlated with the occurrence of interplanetary shocks (91 – 100......We present the first large statistical study of extreme geomagnetic storms basedon historical data from the time period 1868 – 2010. This article is the first of two companionpapers. Here we describe how the storms were selected and focus on their near-Earth characteristics.The second article......-known geomagnetic indices, such as theKp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensivegeomagnetic measure of the extreme storms. We rank the storms by including long seriesof single magnetic observatory data. The top storms on the rank list are the New York Railroadstorm...

  17. Geomagnetic Indices Variations And Human Physiology

    Science.gov (United States)

    Dimitrova, S.

    2007-12-01

    A group of 86 volunteers was examined on each working day in autumn 2001 and in spring 2002. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were registered. Pulse pressure (PP) was calculated. Data about subjective psycho-physiological complaints (SPPC) were also gathered. Altogether 2799 recordings were obtained. ANOVA was employed to check the significance of influence of daily amplitude of H-component of local geomagnetic field, daily planetary Ap-index and hourly planetary Dst-index on the physiological parameters examined. Post hoc analysis was performed to elicit the significance of differences in the factors levels. Average values of SBP, DBP, PP and SPPC of the group were found to increase statistically significantly and biologically considerably with the increase of geomagnetic indices.

  18. Geographical localisation of the geomagnetic secular variation

    DEFF Research Database (Denmark)

    Aubert, Julien; Finlay, Chris; Olsen, Nils

    2013-01-01

    Directly observed changes in Earth’s magnetic field occur most prominently at low latitudes beneath the Atlantic hemisphere, while the Pacific is comparatively quiet. This striking hemispheric asymmetry in geomagnetic secular variation is a consequence of the geographical localisation of intense...... control from either, or both, the inner-core boundary and the core-mantle boundary. In addition to presenting an Earth-like magnetic field morphology, these new numerical models also reproduce the morphology and localization of geomagnetic secular variation. In our models, the conservation of the angular...... momentum in the coupled inner-core / outer core / mantle system (the inner core and the mantle being held together by gravitational coupling) creates a westward columnar gyre circling around the inner core, which localises the secular variation in a narrow latitudinal band. An additional heterogeneous...

  19. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...... be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered...

  20. Electric Utility Industry Experience with Geomagnetic Disturbances

    Science.gov (United States)

    1991-09-01

    calculate the GICs for a large network consisting of 385 nodes on the Minnesota Power System." T’,e Electromagnetic Transients Program ( EMTP ) has also...accelerate the transformer saturation process in the EMTP program without modifying the steady-state results, making digital simulation of GIC effects...possible with EMTP . T’., computer program was used to simulate the power system disturbance that occurred on the James Bay Network during the geomagnetic

  1. Modeling the ocean effect of geomagnetic storms

    DEFF Research Database (Denmark)

    Olsen, Nils; Kuvshinov, A.

    2004-01-01

    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  2. Uncertainty Quantification in Geomagnetic Field Modeling

    Science.gov (United States)

    Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.

    2017-12-01

    Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.

  3. Elliptical magnetic clouds and geomagnetic storms

    Czech Academy of Sciences Publication Activity Database

    Antoniadou, I.; Geranios, A.; Vandas, Marek; Panagopoulou, M.; Zacharopoulou, O.; Malandraki, O.

    2008-01-01

    Roč. 56, 3-4 (2008), s. 492-500 ISSN 0032-0633 R&D Projects: GA AV ČR 1QS300120506; GA ČR GA205/06/0875 Institutional research plan: CEZ:AV0Z10030501 Keywords : magnetic clouds * geomagnetic storms * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.506, year: 2008

  4. Influence of geomagnetic disturbance on atmospheric circulation

    Science.gov (United States)

    Kodera, K.

    1985-01-01

    The influence of geomagnetic disturbance or passage of the solar sector boundary on the atmospheric circulation was reported. Unfortunately little is known about the general morphology of Sun weather relationships. In order to know the general characteristics, pressure height variations on an isobaric surface over the Northern Hemisphere were analyzed. Although it may be suitable to use some index, or some integrated value for statistical purposes, weather prediction data were used to verify whether the obtained tropospheric response is caused externally or not.

  5. Enhanced food anticipatory activity associated with enhanced activation of extrahypothalamic neural pathways in serotonin2C receptor null mutant mice.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hsu

    Full Text Available The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity. However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin(2C receptor (5-HT2CR null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanced food anticipatory activity compared to wild-type littermates, without phenotypic differences in the impact of restricted feeding on food consumption, body weight loss, or blood glucose levels. Moreover, we show that the enhanced food anticipatory activity in 5-HT2CR null mutant mice develops independent of external light cues and persists during two days of total food deprivation, indicating that food anticipatory activity in 5-HT2CR null mutant mice reflects the locomotor output of a food-entrainable oscillator. Whereas restricted feeding induces c-fos expression to a similar extent in hypothalamic nuclei of wild-type and null mutant animals, it produces enhanced expression in the nucleus accumbens and other extrahypothalamic regions of null mutant mice relative to wild-type subjects. These data suggest that 5-HT2CRs gate food anticipatory activity through mechanisms involving extrahypothalamic neural pathways.

  6. Geomagnetic storm under laboratory conditions: randomized experiment

    Science.gov (United States)

    Gurfinkel, Yu I.; Vasin, A. L.; Pishchalnikov, R. Yu; Sarimov, R. M.; Sasonko, M. L.; Matveeva, T. A.

    2017-10-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  7. Impacts of ionospheric electric fields on the GPS tropospheric delays during geomagnetic storms in Antarctica

    Science.gov (United States)

    Suparta, W.

    2017-05-01

    This paper aimed to overview the interaction of the thunderstorm with the ionospheric electric fields during major geomagnetic storms in Antarctica through the GPS tropospheric delays. For the purpose of study, geomagnetic activity and electric fields data for the period from 13 to 21 March 2015 representing the St. Patrick’s Day storm is analyzed. To strengthen the analysis, data for the period of 27 October to 1st November 2003 representing for the Halloween storm is also compared. Our analysis showed that both geomagnetic storms were severe (Ap ≥ 100 nT), where the intensity of Halloween storm is double compared to St. Patrick’s Day storm. For the ionospheric electric field, the peaks were dropped to -1.63 mV/m and -2.564 mV/m for St. Patrick and Halloween storms, respectively. At this time, the interplanetary magnetic field Bz component was significantly dropped to -17.31 nT with Ap > 150 nT (17 March 2015 at 19:20 UT) and -26.51 nT with Ap = 300 nT (29 October 2003 at 19:40 UT). For both geomagnetic storms, the electric field was correlated well with the ionospheric activity where tropospheric delays show a different characteristic.

  8. Impacts of ionospheric electric fields on the GPS tropospheric delays during geomagnetic storms in Antarctica

    International Nuclear Information System (INIS)

    Suparta, W

    2017-01-01

    This paper aimed to overview the interaction of the thunderstorm with the ionospheric electric fields during major geomagnetic storms in Antarctica through the GPS tropospheric delays. For the purpose of study, geomagnetic activity and electric fields data for the period from 13 to 21 March 2015 representing the St. Patrick’s Day storm is analyzed. To strengthen the analysis, data for the period of 27 October to 1 st November 2003 representing for the Halloween storm is also compared. Our analysis showed that both geomagnetic storms were severe ( Ap ≥ 100 nT), where the intensity of Halloween storm is double compared to St. Patrick’s Day storm. For the ionospheric electric field, the peaks were dropped to -1.63 mV/m and -2.564 mV/m for St. Patrick and Halloween storms, respectively. At this time, the interplanetary magnetic field Bz component was significantly dropped to -17.31 nT with Ap > 150 nT (17 March 2015 at 19:20 UT) and -26.51 nT with Ap = 300 nT (29 October 2003 at 19:40 UT). For both geomagnetic storms, the electric field was correlated well with the ionospheric activity where tropospheric delays show a different characteristic. (paper)

  9. Statistical study of waves distribution in the inner magnetosphere using geomagnetic indices and solar wind parameters

    Science.gov (United States)

    Aryan, H.; Yearby, K.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.

    2013-12-01

    The interaction of gyroresonant wave particles with chorus waves largely determine the dynamics of the Earth's radiation belts that effects the acceleration and loss of radiation belt electrons. The common approach is to present model waves distribution in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However it is known that solar wind parameters such as bulk velocity (V) and density (n) are more effective in the control of high energy fluxes at the geostationary orbit. Therefore in the present study the set of parameters of the wave distribution is expanded to include the solar wind parameters in addition to the geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of Cluster STAFF-SA, Double Star TC1 and OMNI data in order to present a combined model of wave magnetic field intensities for the chorus waves as a function of magnetic local time (MLT), L-shell (L*), geomagnetic activity, and solar wind velocity and density. Generally, the largest wave intensities are observed during average solar wind velocities (3006cm-3. On the other hand the wave intensity is lower and limited between 06:00 to 18:00 MLT for V700kms-1.

  10. Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity.

    Directory of Open Access Journals (Sweden)

    Yee-Fun Su

    Full Text Available Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9.

  11. Geomagnetic Observatory Annual Means Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) / World Data Center, Boulder maintains an active database of...

  12. Interrelation of geomagnetic storms and earthquakes: Insight from lab experiments and field observations

    Science.gov (United States)

    Ruzhin, Yuri; Kamogawa, Masashi; Novikov, Victor

    statistical approach for the problem of ionosphere-lithosphere coupling, and in each case the possible behavior of fluids should be considered under electromagnetic impact on lithosphere. Experimental results supporting this idea are obtained at the spring-block model simulating the seismic cycle (slow accumulation and sharp drop of stresses in the fault gauge), as well as from field observations of water level variations in the well during ionospheric disturbances are presented and discussed. In the lab experiments it was shown that the earthquake may be triggered by very small fluid content injected into the simulated fault (field observations it was found that water level in the well rises during sunrise, when ionosphere is excited by solar radiation, and drops during sunset (relaxation process in ionosphere). Moreover, it was shown that the water level in well correlates with geomagnetic field perturbations during geomagnetic storms. A simplified model describing interaction of geomagnetic field variations with fluid behavior near the seismogenic fault is presented. References: 1. Duma G., Ruzhin Yu. Diurnal changes of earthquake activity and geomagnetic Sq-variations // Natural Hazards and Earth System Sciences, 3, 2003, p.p.171-177. 2. Novikov V.A. Water imbalance in the geological fault as a possible earthquake trigger // AGU 2012 Fall Meeting, Dec. 3-8, San Francisco, USA, Abstract GC42B-08.

  13. Plant viral intergenic DNA sequence repeats with transcription enhancing activity

    Directory of Open Access Journals (Sweden)

    Cazzonelli Christopher I

    2005-02-01

    Full Text Available Abstract Background The geminivirus and nanovirus families of DNA plant viruses have proved to be a fertile source of viral genomic sequences, clearly demonstrated by the large number of sequence entries within public DNA sequence databases. Due to considerable conservation in genome organization, these viruses contain easily identifiable intergenic regions that have been found to contain multiple DNA sequence elements important to viral replication and gene regulation. As a first step in a broad screen of geminivirus and nanovirus intergenic sequences for DNA segments important in controlling viral gene expression, we have 'mined' a large set of viral intergenic regions for transcriptional enhancers. Viral sequences that are found to act as enhancers of transcription in plants are likely to contribute to viral gene activity during infection. Results DNA sequences from the intergenic regions of 29 geminiviruses or nanoviruses were scanned for repeated sequence elements to be tested for transcription enhancing activity. 105 elements were identified and placed immediately upstream from a minimal plant-functional promoter fused to an intron-containing luciferase reporter gene. Transient luciferase activity was measured within Agrobacteria-infused Nicotiana tobacum leaf tissue. Of the 105 elements tested, 14 were found to reproducibly elevate reporter gene activity (>25% increase over that from the minimal promoter-reporter construct, p Conclusion Biological significance for the active DNA elements identified is supported by repeated isolation of a previously defined viral element (CLE, and the finding that two of three viral enhancer elements examined were markedly enriched within both geminivirus sequences and within Arabidopsis promoter regions. These data provide a useful starting point for virologists interested in undertaking more detailed analysis of geminiviral promoter function.

  14. "A Separation Theorem of Active Management and Synthetic Enhanced Active Strategies"(in Japanese)

    OpenAIRE

    Takao Kobayashi; Seiji Minami

    2008-01-01

    We propose a Separation Theorem of Active Management. It asserts that in the so-called Enhanced Active Portfolio framework the efficient frontier is linear in the active return/active risk space, and one can separate the determination of optimal active portfolio weights from the determination of optimal leverage ratio. The risk preference of investors does not play any role in the former decision. The theorem holds under a fairly general set of conditions on portfolio restrictions. As such it...

  15. LARC database for Ground-Level Enhancements

    Science.gov (United States)

    Storini, Marisa

    Ground-Level Enhancements (GLEs) are enhancements observed in the counting rate of groundbased detectors related to the terrestrial incoming of solar relativistic particles, emitted during energetic activity phenomena on the Sun. LARC (acronym for Laboratorio Antartico per i Raggi Cosmici or Laboratorio Antartico para Rayos Cosmicos) neutron monitor is operating on King George Island since January 1991. The effective vertical rigidity cutoff for LARC location is about 3 GV, but it varies with time (actually, it decreases because of the secular variation of the geomagnetic field). We describe the solar particle event imprints on LARC records obtained from 1991 to 2007 by the Chile/Italy international collaboration.

  16. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  17. The Egyptian geomagnetic reference field to the Epoch, 2010.0

    Directory of Open Access Journals (Sweden)

    H.A. Deebes

    2017-06-01

    The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF 2010 is indicated.

  18. Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte

    Science.gov (United States)

    Ghosh, Subrata; Sahoo, Gopinath; Polaki, S. R.; Krishna, Nanda Gopala; Kamruddin, M.; Mathews, Tom

    2017-12-01

    Supercapacitors are becoming the workhorse for emerging energy storage applications due to their higher power density and superior cycle life compared to conventional batteries. The performance of supercapacitors depends on the electrode material, type of electrolyte, and interaction between them. Owing to the beneficial interconnected porous structure with multiple conducting channels, vertical graphene nanosheets (VGN) have proved to be leading supercapacitor electrode materials. Herein, we demonstrate a novel approach based on the combination of surface activation and a new organo-aqueous hybrid electrolyte, tetraethylammonium tetrafluoroborate in H2SO4, to achieve significant enhancement in supercapacitor performance of VGN. As-synthesized VGN exhibits an excellent supercapacitance of 0.64 mF/cm2 in H2SO4. However, identification of a novel electrolyte for performance enhancement is the subject of current research. The present manuscript demonstrates the potential of the hybrid electrolyte in enhancing the areal capacitance (1.99 mF/cm2) with excellent retention (only 5.4% loss after 5000 cycles) and Coulombic efficiency (93.1%). In addition, a five-fold enhancement in the capacitance of VGNs (0.64 to 3.31 mF/cm2) with a reduced internal resistance is achieved by the combination of KOH activation and the hybrid electrolyte.

  19. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world

    Directory of Open Access Journals (Sweden)

    Myllys Minna

    2014-03-01

    Full Text Available We have derived comprehensive statistics of geomagnetic activity for assessing the occurrence of geomagnetically induced currents (GIC in the Norwegian high-voltage power grid. The statistical study is based on geomagnetic recordings in 1994–2011 from which the geoelectric field can be modelled and applied to a DC description of the power grid to estimate GIC. The largest GIC up to a few 100 A in the Norwegian grid occur most likely in its southern parts. This follows primarily from the structure of the grid favouring large GIC in the south. The magnetic field has its most rapid variations on the average in the north, but during extreme geomagnetic storms they reach comparable values in the south too. The ground conductivity has also smaller values in the south, which further increases the electric field there. Additionally to results in 1994–2011, we performed a preliminary estimation of a once per 100 year event for geoelectric field by extrapolating the statistics. We found that the largest geoelectric field value would be twice the maximum in 1994–2011. Such value was actually reached on 13–14 July 1982.

  20. Impacts of Geomagnetic Storms on the Terrestrial H-Exosphere Using Twins-Lyman Stereo Data

    Science.gov (United States)

    Nass, U.; Zoennchen, J.; Fahr, H. J.; Goldstein, J.

    2015-12-01

    Based on continuously monitored Lyman-alpha data registered by the TWINS1/2-LAD instruments we have studied the impact of a weaker and a stronger geomagnetic storm on the exospheric H-density distribution between heights of 3--8 Earth-radii. As is well known, solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H). The resulting resonance glow intensity in the optically thin regime is proportional to H column density along the line of sight (LOS). Here we present the terrestrial exospheric response to geomagnetic storms. We quantify the reaction to geomagnetic activity in form of amplitude and temporal response of the H-density, sampled at different geocentric distances. We find that even in case of a weak storm, the exospheric H-density in regions above the exobase reacts with a suprisingly large increase in a remarkably short time period of less than half a day. Careful analysis of this geomagnetic density effect indicates that it is an expansion in the radial scale height of the exospheric H-density, developing from exobasic heights.

  1. Compassion meditation enhances empathic accuracy and related neural activity

    OpenAIRE

    Mascaro, Jennifer S.; Rilling, James K.; Tenzin Negi, Lobsang; Raison, Charles L.

    2012-01-01

    The ability to accurately infer others’ mental states from facial expressions is important for optimal social functioning and is fundamentally impaired in social cognitive disorders such as autism. While pharmacologic interventions have shown promise for enhancing empathic accuracy, little is known about the effects of behavioral interventions on empathic accuracy and related brain activity. This study employed a randomized, controlled and longitudinal design to investigate the effect of a se...

  2. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  3. Enhanced natural radiation exposure enhanced by human activity: the largest contributor to the Chinese population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang; Liu Yanyang

    2011-01-01

    For the radiation exposure caused by human activities, the enhanced natural radiation exposure is the largest contributor to Chinese population dose. This problem has attracted social attention in recent years. Efforts have been made in several fields, such as radon indoors and in workplace, environmental problems associated with NORMs, occupational radiation hazards of non-uranium mine, and radiation dose evaluation for energy chain, but there are still many problems to be solved. In order to protect the health of workers and the public, while ensuring industrial production and economic development, it is also necessary to continue to strengthen research in all aspects above mentioned, and gradually promote the control of natural radiation exposure enhanced by human activities. (authors)

  4. Intelligent Architecture for Enhanced Observability for Active Distribution System

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2017-01-01

    for active distribution network which satisfies the need for higher observability reach with less field observation. Improved state estimation with composite load forecasting model is aimed for enhanced observability. This paper also summarizes the application of intelligent architecture in the operation...... accuracy. Therefore, in this paper observability scope and evaluation methodology for the future active distribution network with high penetration of renewable resources and flexible loads are analyzed and reviewed. Based on the state of the art a high level architecture has been formulated and presented...

  5. Modafinil enhances alerting-related brain activity in attention networks.

    Science.gov (United States)

    Ikeda, Yumiko; Funayama, Takuya; Tateno, Amane; Fukayama, Haruhisa; Okubo, Yoshiro; Suzuki, Hidenori

    2017-07-01

    Modafinil is a wake-promoting agent and has been reported to be effective in improving attention in patients with attentional disturbance. However, neural substrates underlying the modafinil effects on attention are not fully understood. We employed a functional magnetic resonance imaging (fMRI) study with the attention network test (ANT) task in healthy adults and examined which networks of attention are mainly affected by modafinil and which neural substrates are responsible for the drug effects. We used a randomized placebo-controlled within-subjects cross-over design. Twenty-three healthy adults participated in two series of an fMRI study, taking either a placebo or modafinil. The participants performed the ANT task, which is designed to measure three distinct attentional networks, alerting, orienting, and executive control, during the fMRI scanning. The effects of modafinil on behavioral performance and regional brain activity were analyzed. We found that modafinil enhanced alerting performance and showed greater alerting network activity in the left middle and inferior occipital gyri as compared with the placebo. The brain activations in the occipital regions were positively correlated with alerting performance. Modafinil enhanced alerting performance and increased activation in the occipital lobe in the alerting network possibly relevant to noradrenergic activity during the ANT task. The present study may provide a rationale for the treatment of patients with distinct symptoms of impaired attention.

  6. Psychosocial Practices that Enhance Cognitive Activity in Dementia

    Directory of Open Access Journals (Sweden)

    Neslihan Lok

    2014-09-01

    Full Text Available The daily lives of individuals with dementia, cognitive aspects need to be strengthened in order to maintain the quality. For this reason, dementia, cognitive, psycho-social applications there is a need to increase activity. Dementia drug treatment interventions used as an aid to increase cognitive activity. These interventions, behavior, emotion, perception and stimulation-oriented approaches can be classified into four groups. Dementia cognitive enhancer activity and an older group, this intervention and dissemination practices for selecting the most appropriate method to be applied. All psychosocial practices to increase cognitive activity psychiatrist, psychiatric nurse specialists, psychologists, social workers, occupational therapists can with the condition to study the relevant therapy. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(3.000: 210-216

  7. Artificial reproduction of magnetic fields produced by a natural geomagnetic storm increases systolic blood pressure in rats

    Science.gov (United States)

    Martínez-Bretón, J. L.; Mendoza, B.; Miranda-Anaya, M.; Durán, P.; Flores-Chávez, P. L.

    2016-11-01

    The incidence of geomagnetic storms may be associated with changes in circulatory physiology. The way in which the natural variations of the geomagnetic field due to solar activity affects the blood pressure are poorly understood and require further study in controlled experimental designs in animal models. In the present study, we tested whether the systolic arterial pressure (AP) in adult rats is affected by simulated magnetic fields resembling the natural changes of a geomagnetic storm. We exposed adult rats to a linear magnetic profile that simulates the average changes associated to some well-known geomagnetic storm phases: the sudden commencement and principal phase. Magnetic stimulus was provided by a coil inductor and regulated by a microcontroller. The experiments were conducted in the electromagnetically isolated environment of a semi-anechoic chamber. After exposure, AP was determined with a non-invasive method through the pulse on the rat's tail. Animals were used as their own control. Our results indicate that there was no statistically significant effect in AP when the artificial profile was applied, neither in the sudden commencement nor in the principal phases. However, during the experimental period, a natural geomagnetic storm occurred, and we did observe statistically significant AP increase during the sudden commencement phase. Furthermore, when this storm phase was artificially replicated with a non-linear profile, we noticed a 7 to 9 % increase of the rats' AP in relation to a reference value. We suggested that the changes in the geomagnetic field associated with a geomagnetic storm in its first day could produce a measurable and reproducible physiological response in AP.

  8. Enhanced catalytic activity of lipase encapsulated in PCL nanofibers.

    Science.gov (United States)

    Song, Jie; Kahveci, Derya; Chen, Menglin; Guo, Zheng; Xie, Erqing; Xu, Xuebing; Besenbacher, Flemming; Dong, Mingdong

    2012-04-10

    Use of biocatalysis for industrial synthetic chemistry is on the verge of significant growth. Enzyme immobilization as an effective strategy for improving the enzyme activity has emerged from developments especially in nanoscience and nanotechnology. Here, lipase from Burkholderia cepacia (LBC), as an example of the luxuriant enzymes, was successfully encapsulated in polycaprolactone (PCL) nanofibers, proven by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Evaluated in both organic and aqueous medium, the activation factor of the encapsulated enzymes in the hydrolysis reaction was generally higher than that in the transesterification reaction. Enhanced catalytic activities were found when 5-20 w/w % of LBC was loaded. The effect of different solvents pretreatment on the activity of immobilized LBC was also investigated. The highest activation factor was found up to 14 for the sample containing acetone-treated LBC/PCL (10 w/w %). The encapsulated lipase reserved 50% of its original activity after the 10th run in the transesterification reaction in hexane medium. The mechanism of activation of lipase catalytic ability based on active PCL nanofiberous matrix is proposed. © 2012 American Chemical Society

  9. Geomagnetic excursion captured by multiple volcanoes in a monogenetic field

    Science.gov (United States)

    Cassidy, John

    2006-11-01

    Five monogenetic volcanoes within the Quaternary Auckland volcanic field are shown to have recorded a virtually identical but anomalous paleomagnetic direction (mean inclination and declination of 61.7° and 351.0°, respectively), consistent with the capture of a geomagnetic excursion. Based on documented rates of change of paleomagnetic field direction during excursions this implies that the volcanoes may have all formed within a period of only 50-100 years or less. These temporally linked volcanoes are widespread throughout the field and appear not to be structurally related. However, the general paradigm for the reawakening of monogenetic fields is that only a single new volcano or group of closely spaced vents is created, typically at intervals of several hundred years or more. Therefore, the results presented show that for any monogenetic field the impact of renewed eruptive activity may be significantly under-estimated, especially for potentially affected population centres and the siting of sensitive facilities.

  10. Geomagnetic Field Disturbances Caused by Heliospheric Current Sheet Crossings

    Science.gov (United States)

    Asenovski, S.

    2017-12-01

    The heliospheric current sheet (HCS) is modified by the solar activity. HCS is highly inclined during solar maximum and almost confined with the solar equatorial plane during solar minimum. Close to the HCS solar wind parameters as proton temperature, flow speed, proton density, etc. differ compared to the region far from the HCS. The Earth's magnetic dipole field crosses HCS several times each month. Considering interplanetary coronal mass ejections (ICME) and high speed solar wind streams (HSS) free periods an investigation of the HCS influence on the geomagnetic field disturbances is presented. The results show a drop of the Dst index and a rise of the AE index at the time of the HCS crossings and also that the behavior of these indices does not depend on the magnetic polarity.

  11. Interplanetary magnetic field and geomagnetic Dst variations.

    Science.gov (United States)

    Patel, V. L.; Desai, U. D.

    1973-01-01

    The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.

  12. Geomagnetic observations on Tristan da Cunha, South Atlantic Ocean

    DEFF Research Database (Denmark)

    Matzka, J.; Olsen, Nils; Maule, C. F.

    2009-01-01

    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37 degrees 05' S, 12 degrees 18' W, is therefore of cr...

  13. International Geomagnetic Reference Field: the 12th generation

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Beggan, Ciarán D.

    2015-01-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch ...

  14. Geomagnetic Field Variation during Winter Storm at Localized ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... 67.52° N; 23.38° E. We have studied all the geomagnetic storms that occurred during winter season of the year 2004–2005. We observed that at Southern Hemisphere the variation is large as compared to the Northern Hemisphere. Geomagnetic field components vary when the interplanetary magnetic field ...

  15. Computation of geomagnetic elements for Nigeria for the year 2000 ...

    African Journals Online (AJOL)

    ... be considered to be the sum of two parts, the main geomagnetic field which originates from the earth's fluid core, and the anomaly field that has its sources in the earth crust. The analysis of the geomagnetic field residual or anomaly, obtained from the difference between these two sources are used for many applications.

  16. Equatorial electrojet in the Indian region during the geomagnetic ...

    Indian Academy of Sciences (India)

    1998-11-14

    Nov 14, 1998 ... November 1998 reaching a minimum of about –120 nT around midnight of 13–14 November 1998. Features of the equatorial electrojet in the Indian region are studied during the geomagnetic storm event of 13–14 November 1998, based on the geomagnetic data from the chain of observatories in India.

  17. Effects of geomagnetic storm on low latitude ionospheric total ...

    Indian Academy of Sciences (India)

    netospheric polar cap region causes a disturbance in geomagnetic field. As a result of this distur- bance, the energy inputs from the magnetosphere to the upper atmosphere can cause a dramatic change in electron density of the F region of the ionosphere. Geomagnetic storms produce large and. Keywords. Ionospheric ...

  18. Intense Geomagnetic Storms Associated with Coronal Holes Under the Weak Solar-Wind Conditions of Cycle 24

    Science.gov (United States)

    Watari, S.

    2018-02-01

    The activity of Solar Cycle 24 has been extraordinarily low. The yearly averaged solar-wind speed is also lower in Cycle 24 than in Cycles 22 and 23. The yearly averaged speed in the rising phase of Cycle 21 is as low as that of Cycle 24, although the solar activity of Cycle 21 is higher than that of Cycle 24. The relationship between the solar-wind temperature and its speed is preserved under the solar-wind conditions of Cycle 24. Previous studies have shown that only a few percent of intense geomagnetic storms (minimum Dst < -100 nT) were caused by high-speed solar-wind flows from coronal holes. We identify two geomagnetic storms associated with coronal holes within the 19 intense geomagnetic storms that took place in Cycle 24.

  19. Stochastic properties of the geomagnetic field across the 210 mm chain

    Science.gov (United States)

    Wanliss, J. A.; Shiokawa, K.; Yumoto, K.

    2013-12-01

    We explore the stochastic fractal qualities of the geomagnetic field from 210 mm ground-based magnetometers during quiet and active magnetospheric conditions. We search through 10 years of these data to find events that qualify. Quiet intervals are defined by Kp ≤ 1 for 1,440 consecutive minutes. Similarly, active intervals require Kp ≥ 4 for 1,440 consecutive minutes. The total for quiet intervals is ~4.3×106 minutes and 2×108 minutes for active data points. With this large number of events compiled we then characterize changes in the nonlinear statistics of the geomagnetic field via measurements of a fractal scaling exponent. A clear difference in statistical behavior during quiet and active intervals is implied through analysis of the scaling exponents; active intervals generally have larger values of scaling exponents. This means that although 210 mm data appears monofractal on shorter timescales, it is more properly described as a multifractional Brownian motion. Long-range statistical behavior of the geomagnetic field at a local observation site can be described as a multifractional Brownian motion, thus suggesting the statistical structure required of mathematical models of magnetospheric activity. We also find that low-latitudes have scaling exponents that are consistently larger than for high-latitudes.

  20. Regional estimation of geomagnetically induced currents based on the local magnetic or electric field

    Directory of Open Access Journals (Sweden)

    Viljanen Ari

    2015-01-01

    Full Text Available Previous studies have demonstrated a close relationship between the time derivative of the horizontal geomagnetic field vector (dH/dt and geomagnetically induced currents (GIC at a nearby location in a power grid. Similarly, a high correlation exists between GIC and the local horizontal geoelectric field (E, typically modelled from a measured magnetic field. Considering GIC forecasting, it is not feasible to assume that detailed prediction of time series will be possible. Instead, other measures summarising the activity level over a given period are preferable. In this paper, we consider the 30-min maximum of dH/dt or E as a local activity indicator (|dH/dt|30 or |E|30. Concerning GIC, we use the sum of currents through the neutral leads at substations and apply its 30-min maximum as a regional activity measure (GIC30. We show that |dH/dt|30 at a single point yields a proxy for GIC activity in a larger region. A practical consequence is that if |dH/dt|30 can be predicted at some point then it is also possible to assess the expected GIC level in the surrounding area. As is also demonstrated, |E|30 and GIC30 depend linearly on |dH/dt|30, so there is no saturation with increasing geomagnetic activity contrary to often used activity indices.

  1. Compassion meditation enhances empathic accuracy and related neural activity.

    Science.gov (United States)

    Mascaro, Jennifer S; Rilling, James K; Tenzin Negi, Lobsang; Raison, Charles L

    2013-01-01

    The ability to accurately infer others' mental states from facial expressions is important for optimal social functioning and is fundamentally impaired in social cognitive disorders such as autism. While pharmacologic interventions have shown promise for enhancing empathic accuracy, little is known about the effects of behavioral interventions on empathic accuracy and related brain activity. This study employed a randomized, controlled and longitudinal design to investigate the effect of a secularized analytical compassion meditation program, cognitive-based compassion training (CBCT), on empathic accuracy. Twenty-one healthy participants received functional MRI scans while completing an empathic accuracy task, the Reading the Mind in the Eyes Test (RMET), both prior to and after completion of either CBCT or a health discussion control group. Upon completion of the study interventions, participants randomized to CBCT and were significantly more likely than control subjects to have increased scores on the RMET and increased neural activity in the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex (dmPFC). Moreover, changes in dmPFC and IFG activity from baseline to the post-intervention assessment were associated with changes in empathic accuracy. These findings suggest that CBCT may hold promise as a behavioral intervention for enhancing empathic accuracy and the neurobiology supporting it.

  2. A small-RNA enhancer of viral polymerase activity.

    Science.gov (United States)

    Perez, Jasmine T; Zlatev, Ivan; Aggarwal, Shilpa; Subramanian, Sailakshmi; Sachidanandam, Ravi; Kim, Baek; Manoharan, Muthiah; tenOever, Benjamin R

    2012-12-01

    Influenza A virus (IAV) is an unremitting virus that results in significant morbidity and mortality worldwide. Key to the viral life cycle is the RNA-dependent RNA polymerase (RdRp), a heterotrimeric complex responsible for both transcription and replication of the segmented genome. Here, we demonstrate that the viral polymerase utilizes a small RNA enhancer to regulate enzymatic activity and maintain stoichiometric balance of the viral genome. We demonstrate that IAV synthesizes small viral RNAs (svRNAs) that interact with the viral RdRp in order to promote genome replication in a segment-specific manner. svRNAs localize to the nucleus, the site of IAV replication, are synthesized from the positive-sense genomic intermediate, and interact within a novel RNA binding channel of the polymerase PA subunit. Synthetic svRNAs promote polymerase activity in vitro, while loss of svRNA inhibits viral RNA synthesis in a segment-specific manner. Taking these observations together, we mechanistically define svRNA as a small regulatory enhancer RNA, which functions to promote genome replication and maintain segment balance through allosteric modulation of polymerase activity.

  3. Enhancement of DNA polymerase activity in potato tuber slices

    International Nuclear Information System (INIS)

    Watanabe, Akira; Imaseki, Hidemasa

    1977-01-01

    DNA polymerase was extracted from potato (Soleum tuberosum L.) tuber discs and the temporal correlation of its activity change to DNA synthesis in vivo was examined during aging of the discs. Most of the DNA polymerase was recovered as a bound form in the 18,000 x g precipitate. Reaction with the bound-form enzyme was dependent on the presence of four deoxynucleoside triphosphates, Mg 2+ , and a template. ''Activated'' DNA and heat-denatured DNA, but not native DNA, were utilized as templates. The polymerase activity was sensitive to SH reagents. Fresh discs, which do not synthesize DNA in vivo, contained a significant amount of DNA polymerase and its activity increased linearly with time until 48 hr after slicing and became four times that of fresh discs after 72 hr, whereas the activity of DNA synthesis in vivo increased with time and decreased after reaching a maximum at 30 hr. Cycloheximide inhibited the enhancement of polymerase activity. DNA polymerase from aged and fresh discs had identical requirements for deoxynucleotides and a template in their reactions, sensitivity to SH reagent, and affinity to thymidine triphosphate. (auth.)

  4. A global scale picture of ionospheric peak electron density changes during geomagnetic storms

    Science.gov (United States)

    Kumar, Vickal V.; Parkinson, Murray L.

    2017-04-01

    Changes in ionospheric plasma densities can affect society more than ever because of our increasing reliance on communication, surveillance, navigation, and timing technology. Models struggle to predict changes in ionospheric densities at nearly all temporal and spatial scales, especially during geomagnetic storms. Here we combine a 50 year (1965-2015) geomagnetic disturbance storm time (Dst) index with plasma density measurements from a worldwide network of 132 vertical incidence ionosondes to develop a picture of global scale changes in peak plasma density due to geomagnetic storms. Vertical incidence ionosondes provide measurements of the critical frequency of the ionospheric F2 layer (foF2), a direct measure of the peak electron density (NmF2) of the ionosphere. By dissecting the NmF2 perturbations with respect to the local time at storm onset, season, and storm intensity, it is found that (i) the storm-associated depletions (negative storm effects) and enhancements (positive storm effects) are driven by different but related physical mechanisms, and (ii) the depletion mechanism tends to dominate over the enhancement mechanism. The negative storm effects, which are detrimental to HF radio links, are found to start immediately after geomagnetic storm onset in the nightside high-latitude ionosphere. The depletions in the dayside high-latitude ionosphere are delayed by a few hours. The equatorward expansion of negative storm effects is found to be regulated by storm intensity (farthest equatorward and deepest during intense storms), season (largest in summer), and time of day (generally deeper on the nightside). In contrast, positive storm effects typically occur on the dayside midlatitude and low-latitude ionospheric regions when the storms are in the main phase, regardless of the season. Closer to the magnetic equator, moderate density enhancements last up to 40 h during the recovery phase of equinox storms, regardless of the local time. Strikingly, high

  5. Resolving issues concerning Eskdalemuir geomagnetic hourly values

    Directory of Open Access Journals (Sweden)

    S. Macmillan

    2011-02-01

    Full Text Available The hourly values of the geomagnetic field from 1911 to 1931 derived from measurements made at Eskdalemuir observatory in the UK, and available online from the World Data Centre for Geomagnetism at http://www.wdc.bgs.ac.uk/, have now been corrected. Previously they were 2-point averaged and transformed from the original north, east and vertical down values in the tables in the observatory yearbooks. This paper documents the course of events from discovering the post-processing done to the data to the final resolution of the problem. As it was through the development of a new index, the Inter-Hour Variability index, that this post-processing came to light, we provide a revised series of this index for Eskdalemuir and compare it with that from another European observatory. Conclusions of studies concerning long-term magnetic field variability and inferred solar variability, whilst not necessarily consistent with one another, are not obviously invalidated by the incorrect hourly values from Eskdalemuir. This series of events illustrates the challenges that lie ahead in removing any remaining errors and inconsistencies in the data holdings of different World Data Centres.

  6. Geomagnetic storm and equatorial spread-F

    Directory of Open Access Journals (Sweden)

    F. Becker-Guedes

    2004-09-01

    Full Text Available In August 2000, a new ionospheric sounding station was established at Sao Jose dos Campos (23.2° S, 45.9° W; dip latitude 17.6° S, Brazil, by the University of Vale do Paraiba (UNIVAP. Another ionospheric sounding station was established at Palmas (10.2° S, 48.2° W; dip latitude 5.5° S, Brazil, in April 2002, by UNIVAP in collaboration with the Lutheran University Center of Palmas (CEULP, Lutheran University of Brazil (ULBRA. Both the stations are equipped with digital ionosonde of the type known as Canadian Advanced Digital Ionosonde (CADI. In order to study the effects of geomagnetic storms on equatorial spread-F, we present and discuss three case studies, two from the ionospheric sounding observations at Sao Jose dos Campos (September and November 2000 and one from the simultaneous ionospheric sounding observations at Sao Jose dos Campos and Palmas (July 2003. Salient features from these ionospheric observations are presented and discussed in this paper. It has been observed that sometimes (e.g. 4-5 November 2000 the geomagnetic storm acts as an inhibitor (high strong spread-F season, whereas at other times (e.g. 11-12 July 2003 they act as an initiator (low strong spread-F season, possibly due to corresponding changes in the quiet and disturbed drift patterns during different seasons.

  7. APLIKASI METODE GEOMAGNET DALAM EKSPLORASI PANASBUMI

    Directory of Open Access Journals (Sweden)

    Sudaryo Broto

    2012-02-01

    Full Text Available Geophysics is a part of earth science that studies the Earth using the rules or principles of physics. Geophysicalmethods are divided into several methods, namely: gravity method, geomagnet, seismic, geoelectric andgeoradar.Geothermal energy is stored in the form of hot water or steam at a certain geological conditions at depth.Geothermal system is an area of geothermal or geothermal field is an area on the surface of the earth within acertain limit where there is geothermal energy in a certain rock hydrology. Geothermal manifestations consistof: ground hot, steaming ground, hot tubs, hot mud pools, hot springs, fumaroles, geysers, silica sinter.Fault is a fracture rock mass shift relative one part against another. Fault structure is associated withgeothermal manifestations, because the manifestations that came out to the surface because of the fault beneaththe surface.From the results of investigations in the area geomagnet Jaboi, magnetic anomalies were divided into three,namely anomaly is very low with values between -600s/d200 nT anomaly as strongly altered rock and weatheredrock; low anomaly with values> -200s/d300 nT as alluvial and pyroclastic rocks ; high anomaly with valuesbetween> 300s/d700 nT as a rock rhiolit / dacite volcanic and fresh. Geothermal potential area is the area oflow magnetic anomaly values in the presence of manifestations of hot water and is controlled by the fault.

  8. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer

    2000-02-01

    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  9. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer

    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.

    Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  10. Geomagnetic excursions reflect an aborted polarity state

    Science.gov (United States)

    Valet, Jean-Pierre; Plenier, Guillaume; Herrero-Bervera, E.

    2008-10-01

    Geomagnetic excursions represent short episodes of a few thousand years at most during which the field considerably exceeds its normal range of variability during a polarity state. Paleomagnetic records have now been obtained with extremely high temporal resolution which have improved our knowledge of these short events. We have compiled the most detailed records of excursions that had occurred during the Brunhes and Matuyama chrons. We show that virtual geomagnetic poles (VGPs) of at least one record of each event are able to reach the opposite polarity. In the next step, we have computed different simulations of excursions during which the dipole progressively vanishes before growing back without reversing. This scenario produces very few reversed directions which are only visible at some latitudes. We infer that it is impossible to reach the ratio of reversed to intermediate VGPs present in the paleomagnetic records if the excursions were not associated with a short period of reversed dipole field. Therefore, excursions should be regarded as two successive reversals bracketing an aborted polarity interval. We propose that the same underlying mechanisms prevail in both situations (excursions or reversals) and that below a certain strength the field reaches an unstable position which preludes either the achievement of a reversal or its return to the former polarity.

  11. Continental scale modelling of geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Sakharov Yaroslav

    2012-09-01

    Full Text Available The EURISGIC project (European Risk from Geomagnetically Induced Currents aims at deriving statistics of geomagnetically induced currents (GIC in the European high-voltage power grids. Such a continent-wide system of more than 1500 substations and transmission lines requires updates of the previous modelling, which has dealt with national grids in fairly small geographic areas. We present here how GIC modelling can be conveniently performed on a spherical surface with minor changes in the previous technique. We derive the exact formulation to calculate geovoltages on the surface of a sphere and show its practical approximation in a fast vectorised form. Using the model of the old Finnish power grid and a much larger prototype model of European high-voltage power grids, we validate the new technique by comparing it to the old one. We also compare model results to measured data in the following cases: geoelectric field at the Nagycenk observatory, Hungary; GIC at a Russian transformer; GIC along the Finnish natural gas pipeline. In all cases, the new method works reasonably well.

  12. Schistosomes Enhance Plasminogen Activation: The Role of Tegumental Enolase.

    Directory of Open Access Journals (Sweden)

    Barbara C Figueiredo

    2015-12-01

    Full Text Available Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease of global public health importance. These relatively large parasites are able to survive prolonged periods in the human vasculature without inducing stable blood clots around them. We show here that the intravascular life stages (schistosomula and adult males and females can all promote significant plasminogen (PLMG activation in the presence of tissue plasminogen activator (tPA. This results in the generation of the potent fibrinolytic agent plasmin which could degrade blood clots forming around the worms in vivo. We demonstrate that S. mansoni enolase (SmEno is a host-interactive tegumental enzyme that, in recombinant form, can bind PLMG and promote its activation. Like classical members of the enolase protein family, SmEno can catalyze the interconversion of 2-phospho-D-glycerate (2-PGA and phosphoenolpyruvate (PEP. The enzyme has maximal activity at pH 7.5, requires Mg2+ for optimal activity and can be inhibited by NaF but not mefloquin. Suppressing expression of the SmEno gene significantly diminishes enolase mRNA levels, protein levels and surface enzyme activity but, surprisingly, does not affect the ability of the worms to promote PLMG activation. Thus, while SmEno can enhance PLMG activation, our analysis suggests that it is not the only contributor to the parasite's ability to perform this function. We show that the worms possess several other PLMG-binding proteins in addition to SmEno and these may have a greater importance in schistosome-driven PLMG activation.

  13. A novel virus-inducible enhancer of the interferon-β gene with tightly linked promoter and enhancer activities.

    Science.gov (United States)

    Banerjee, A Raja; Kim, Yoon Jung; Kim, Tae Hoon

    2014-11-10

    Long-range enhancers of transcription are a key component of the genomic regulatory architecture. Recent studies have identified bi-directionally transcribed RNAs emanating from these enhancers known as eRNAs. However, it remains unclear how tightly coupled eRNA production is with enhancer activity. Through our systematic search for long-range elements that interact with the interferon-β gene, a model system for studying inducible transcription, we have identified a novel enhancer, which we have named L2 that regulates the expression of interferon-β. We have demonstrated its virus-inducible enhancer activity by analyzing epigenomic profiles, transcription factor association, nascent RNA production and activity in reporter assays. This enhancer exhibits intimately linked virus-inducible enhancer and bidirectional promoter activity that is largely dependent on a conserved Interferon Stimulated Response Element and robustly generates virus inducible eRNAs. Notably, its enhancer and promoter activities are fully retained in reporter assays even upon a complete elimination of its associated eRNA sequences. Finally, we show that L2 regulates IFNB1 expression by siRNA knockdown of eRNAs, and the deletion of L2 in a BAC transfection assay. Thus, L2 is a novel enhancer that regulates IFNB1 and whose eRNAs exert significant activity in vivo that is distinct from those activities recapitulated in the luciferase reporter assays. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    Science.gov (United States)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  15. Psychopaths show enhanced amygdala activation during fear conditioning

    Directory of Open Access Journals (Sweden)

    Douglas eSchultz

    2016-03-01

    Full Text Available Psychopathy is a personality disorder characterized by emotional deficits and a failure to inhibit impulsive behavior and is often subdivided into primary and secondary psychopathic subtypes. The maladaptive behavior related to primary psychopathy is thought to reflect constitutional fearlessness, while the problematic behavior related to secondary psychopathy is motivated by other factors. The fearlessness observed in psychopathy has often been interpreted as reflecting a fundamental deficit in amygdala function, and previous studies have provided support for a low-fear model of psychopathy. However, many of these studies fail to use appropriate screening procedures, use liberal inclusion criteria, or have used unconventional approaches to assay amygdala function. We measured brain activity with BOLD imaging in primary and secondary psychopaths and non-psychopathic control subjects during Pavlovian fear conditioning. In contrast to the low-fear model, we observed normal fear expression in primary psychopaths. Psychopaths also displayed greater differential BOLD activity in the amygdala relative to matched controls. Inverse patterns of activity were observed in the anterior cingulate cortex (ACC for primary versus secondary psychopaths. Primary psychopaths exhibited a pattern of activity in the dorsal and ventral ACC consistent with enhanced fear expression, while secondary psychopaths exhibited a pattern of activity in these regions consistent with fear inhibition. These results contradict the low-fear model of psychopathy and suggest that the low fear observed for psychopaths in previous studies may be specific to secondary psychopaths.

  16. Can aquatic worms enhance methane production from waste activated sludge?

    Science.gov (United States)

    Serrano, Antonio; Hendrickx, Tim L G; Elissen, Hellen H J; Laarhoven, Bob; Buisman, Cees J N; Temmink, Hardy

    2016-07-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30°C with sludge from a high-loaded membrane bioreactor, the aquatic worm Lumbriculus variegatus, feces from these worms and with mixtures of these substrates. A significant synergistic effect of the worms or their feces on methane production from the high-loaded sludge or on its digestion rate was not observed. However, a positive effect on low-loaded activated sludge, which generally has a lower anaerobic biodegradability, cannot be excluded. The results furthermore showed that the high-loaded sludge provides an excellent feed for L. variegatus, which is promising for concepts where worm biomass is considered a resource for technical grade products such as coatings and glues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    Science.gov (United States)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  18. Enhanced biological activity of carotenoids stabilized by phenyl groups.

    Science.gov (United States)

    You, Ji Suk; Jeon, Sunhwa; Byun, Youn Jung; Koo, Sangho; Choi, Shin Sik

    2015-06-15

    Carotenoids are lipid soluble food ingredients with multifunction including antioxidant and anticancer activities. However, carotenoids are destructively oxidized upon reaction with radicals resulting in toxic effects on biological systems. Two synthetic carotenoids (BAS and BTS) containing the aromatic phenyl groups with a para-substituent (OMe and Me, respectively) at C-13 and C-13' position were prepared in order to overcome a structural instability of carotenoid. Both BAS and BTS exerted stronger radical scavenging activity than β-carotene in DPPH and ABTS assays. In particular, BTS significantly reduced in vivo ROS (reactive oxygen species) levels and improved body growth and reproduction of Caenorhabditiselegans. BTS has a great potential for the advanced and modified carotenoid material with stability leading to enhanced bioavailability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Characteristics of nighttime E-region over Arecibo: Dependence on solar flux and geomagnetic variations

    Science.gov (United States)

    Raizada, Shikha; Brum, Christiano G. M.; Mathews, John D.; Gonzalez, Cristina; Franco, Efmi

    2018-04-01

    Electron concentration (Ne) inferred from Incoherent Scatter Radar (ISR) measurements has been used to determine the influence of solar flux and geomagnetic activity in the ionospheric E-region over Arecibo Observatory (AO). The approach is based on the determination of column integrated Ne, referred to as E-region total electron content (ErTEC) between 80 and 150 km altitude regions. The results discussed in this work are for the AO nighttime period. The study reveals higher ErTEC values during the low solar flux periods for all the seasons except for summer period. It is found that the E-region column abundance is higher in equinox periods than in the winter for low solar activity conditions. The column integrated Ne during the post-sunset/pre-sunrise periods always exceeds the midnight minima, independent of season or solar activity. This behavior has been attributed to the variations in the coupling processes from the F-region. The response of ErTEC to the geomagnetic variability is also examined for different solar flux conditions and seasons. During high solar flux periods, changes in Kp cause an ErTEC increase in summer and equinox, while producing a negative storm-like effect during the winter. Variations in ErTEC due to geomagnetic activity during low solar flux periods produce maximum variability in the E-region during equinox periods, while resulting in an increase/decrease in ErTEC before local midnight during the winter/summer periods, respectively.

  20. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  1. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  2. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  3. Enhanced neural activation with blueberry supplementation in mild cognitive impairment.

    Science.gov (United States)

    Boespflug, Erin L; Eliassen, James C; Dudley, Jonathan A; Shidler, Marcelle D; Kalt, Wilhelmina; Summer, Suzanne S; Stein, Amanda L; Stover, Amanda N; Krikorian, Robert

    2018-05-01

    Preclinical studies have shown that blueberry supplementation can improve cognitive performance and neural function in aged animals and have identified associations between anthocyanins and such benefits. Preliminary human trials also suggest cognitive improvement in older adults, although direct evidence of enhancement of brain function has not been demonstrated. In this study, we investigated the effect of blueberry supplementation on regional brain activation in older adults at risk for dementia. In a randomized, double-blind, placebo-controlled trial we performed pre- and post-intervention functional magnetic resonance imaging during a working memory (WM) task to assess the effect of blueberry supplementation on blood oxygen level-dependent (BOLD) signal in older adults with mild cognitive impairment, a risk condition for dementia. Following daily supplementation for 16 weeks, blueberry-treated participants exhibited increased BOLD activation in the left pre-central gyrus, left middle frontal gyrus, and left inferior parietal lobe during WM load conditions (corrected P blueberry supplementation. Diet records indicated no between-group difference in anthocyanin consumption external to the intervention. These data demonstrate, for the first time, enhanced neural response during WM challenge in blueberry-treated older adults with cognitive decline and are consistent with prior trials showing neurocognitive benefit with blueberry supplementation in this at-risk population.

  4. Understanding IMF Bz and Space Weather Relations Near Geomagnetic Equator Related to Non-Radial Solar Wind Flows (P35)

    Science.gov (United States)

    Pereira, F.; Girish, T. E.

    2006-11-01

    We have reported earlier some new results related to the seasonal and solar cycle changes in the north-south component of IMF (Bz) observed near 1 A.U. A relationship between geomagnetic activity and non-radial solar wind flows were reported recently. In this connection, we are planning some studies for IHY 2007. We propose to identify non-radial flow structures in the interplanetary medium using IPS observations and predict the associated IMF Bz structures. The effect of geomagnetic storms near magnetic equator associated with non-radial solar wind flows will be studied using magnetometer observations in Trivandrum.

  5. The geomagnetic anomalies before Dengta M5.1 earthquake

    Science.gov (United States)

    Jia, L.; Qiao, Z.; Zhang, G.

    2017-12-01

    Using the geomagnetic data from January 2008 to December 2015 that observed by four geomagnetic stations in china such as Tieling, Yingkou, Tonghua and Zhaoyang, we researched Dengta M5.1 earthquake through medium-term earthquake forecast methods such as geomagnetic harmonic wave amplitude ratio(HWAR) and spatial correlation of geomagnetic field F value (SC-F). And by scanning a large area of geomagnetic low-point displacement (LPD) based on geomagnetic Z component data provided by 16 stations around the epicenter, we analyzed short-term earthquake geomagnetic anomalies that may occur before the earthquake. Then we summarized the different magnetic medium to short-term anomaly characteristics that appeared before the earthquake. The study showed that the HWAR method appeared some decline anomalies in 2-4years before Dengta M5.1 earthquake and the earthquake occurred in the rising stage; some obvious decline anomalies appeared before earthquake in the SC-F result, and a clear dividing line appeared when13 days before earthquake occurred in the LPD method.

  6. Modeling geomagnetic shielding of solar energetic particles and cosmic rays

    Science.gov (United States)

    Kress, B. T.

    2009-12-01

    Solar energetic particles (SEPs) are a space weather hazard posing risks to manned and robotic space flight missions. At low- to mid-latitudes the Earth's magnetic field usually shields the upper atmosphere and spacecraft in low Earth orbit from SEPs. During severe geomagnetic storms distortion of the Earth's field suppresses geomagnetic shielding giving SEPs access to Earth at the mid-latitudes. Significant variations in geomagnetic shielding can occur on timescales of an hour or less in response to changes in the solar wind dynamic pressure and IMF. Geomagnetic shielding of energetic ions is quantified in terms of cutoff rigidity, and a dynamic geomagnetic cutoff model can be used for predicting SEP and cosmic ray fluxes in geospace. Two advancements in recent years that have made a real-time geomagnetic cutoff rigidity model a possibility are (1) increased computer power, and (2) the development of accurate dynamic geomagnetic field models that respond to changes in Dst, solar wind dynamic pressure and IMF. A numerical model capable of a real time cutoff prediction will be presented. Issues and techniques related to modeling SEP and cosmic ray fluxes in the magnetosphere will be discussed.

  7. Sports activities enhance the prevalence of rhinitis symptoms in schoolchildren.

    Science.gov (United States)

    Kusunoki, Takashi; Takeuchi, Jiro; Morimoto, Takeshi; Sakuma, Mio; Mukaida, Kumiko; Yasumi, Takahiro; Nishikomori, Ryuta; Heike, Toshio

    2016-03-01

    To evaluate the association between sports activities and allergic symptoms, especially rhinitis, among schoolchildren. This longitudinal survey of schoolchildren collected data from questionnaires regarding allergic symptoms based on the International Study of Asthma and Allergies in Childhood (ISAAC) program and sports participation that were distributed to the parents of children at all 12 public primary schools in Ohmi-Hachiman City, Shiga Prefecture, Japan. Data were collected annually from 2011 until 2014, when the children reached 10 years of age. Blood samples were obtained in 2014, and the levels of immunoglobulin (Ig)E specific to four inhalant allergens were measured. Data from 558 children were analyzed. At 10 years of age, prevalence of asthma and eczema did not differ significantly, while rhinitis was significantly higher (p = 0.009) among children who participated in sports. Prevalence of rhinitis increased as the frequency or duration of sports participation increased (p sports (p = 0.03). Among those who participated in continuous sports activities, the prevalence of rhinitis was significantly higher with prolonged eczema (p = 0.006). Sports activities did not increase sensitization to inhalant allergens. Sports activities enhance the prevalence of rhinitis in schoolchildren. Prolonged eczema, together with sports participation, further promotes the symptoms. The mechanisms of these novel findings warrant further investigation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Response of the middle atmosphere to the geomagnetic storm of November 2004

    Science.gov (United States)

    Hocke, Klemens

    2017-02-01

    Ozone and temperature profiles of the satellite microwave limb sounder Aura/MLS are used for the derivation of the middle atmospheric response to the geomagnetic superstorm of 9 November 2004. We find a destruction of the tertiary ozone layer at 0.022 hPa (77 km) in the northern winter hemisphere lasting for about one week. This effect is surely due to the solar proton event (SPE) of November 2004. At the same time, the zonal mean temperature is enhanced by 5-10 K in the northern polar mesosphere. On the other hand, the zonal mean temperature is decreased by 5-10 K in the northern polar stratosphere. We do not think that the strong temperature perturbations are directly related to the SPE. It seems that the polar vortex was moved by the geomagnetic storm, and this vortex movement caused the strong temperature variations in the zonal mean. However, internal variability of temperature in the polar middle atmosphere in winter without any significant link to the geomagnetic storm cannot be excluded.

  9. Anomalous geoelectrical and geomagnetic signals observed at Southern Boso Peninsula, Japan

    Directory of Open Access Journals (Sweden)

    C. Yoshino

    2007-06-01

    Full Text Available Geoelectrical and geomagnetic fluctuations are considered the end product of several geophysical phenomena. In particular these signals measured in seismically active areas can be attributed to stress and strain changes associated with earthquakes. The complexity of this problem has suggested the development of advanced sophysticated methods to investigate the heterogeneous nature of these fluctuations. In this paper, we analyzed the time dynamics of short-term variability of geoelectrical potential differences and geomagnetic fields obsereved at Kiyosumi (KYS, Uchiura (UCU, and Fudago (FDG stations, located in the southern part of Boso Peninsula, one of the most seismically active areas in Japan. Anomalous changes in electric and magnetic fields are obeserved in mid-night on October 6, 2002. the anomalous signals observed on October 6, 2002 are different from those originated from the train and other cultural noises according to the investigation on preferred directions of geoelectric field. The investigation of simaltaneous geomagnetic field changes suggest that the source of the electromagnetic change might be generated by underground current because of the polarity pattern oberved at KYS, UCU and FDG. Therefore, electrokinetic assumption under the ground seems one of the possible solutions for the generation of anomalous signals. It is important to understand the ULF electromagnetic environment for the study on the preparation process of crustal activity and systematic understanding both electromagnetic and seismic phenomena.

  10. The British Geological Survey's New Geomagnetic Data Web Service

    Directory of Open Access Journals (Sweden)

    E Dawson

    2013-02-01

    Full Text Available Increasing demand within the geomagnetism community for high quality real-time or near-real-time observatory data means there is a requirement for data producers to have a robust and scalable data processing infrastructure capable of delivering geomagnetic data products over the Internet in a variety of formats. We describe a new software system, developed at BGS, which will allow access to our geomagnetic data products both within our organisation's intranet and over the Internet. We demonstrate how the system is designed to afford easy access to the data by a wide range of software clients and allow rapid development of software utilizing our observatory data.

  11. Statistical Study of False Alarms of Geomagnetic Storms

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Vennerstrøm, Susanne; Veronig, A.

    . A subset of these halo CMEs did not cause a geomagnetic storm the following four days and have therefore been considered as false alarms. The properties of these events are investigated and discussed here. Their statistics are compared to the geo-effective CMEs. The ability to identify potential false......Coronal Mass Ejections (CMEs) are known to cause geomagnetic storms on Earth. However, not all CMEs will trigger geomagnetic storms, even if they are heading towards the Earth. In this study, front side halo CMEs with speed larger than 500 km/s have been identified from the SOHO LASCO catalogue...

  12. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction

    Science.gov (United States)

    Wei, Yong; Pu, Zuyin; Zong, Qiugang; Wan, Weixing; Ren, Zhipeng; Fraenz, Markus; Dubinin, Eduard; Tian, Feng; Shi, Quanqi; Fu, Suiyan; Hong, Minghua

    2014-05-01

    The evolution of life is affected by variations of atmospheric oxygen level and geomagnetic field intensity. Oxygen can escape into interplanetary space as ions after gaining momentum from solar wind, but Earth's strong dipole field reduces the momentum transfer efficiency and the ion outflow rate, except for the time of geomagnetic polarity reversals when the field is significantly weakened in strength and becomes Mars-like in morphology. The newest databases available for the Phanerozoic era illustrate that the reversal rate increased and the atmospheric oxygen level decreased when the marine diversity showed a gradual pattern of mass extinctions lasting millions of years. We propose that accumulated oxygen escape during an interval of increased reversal rate could have led to the catastrophic drop of oxygen level, which is known to be a cause of mass extinction. We simulated the oxygen ion escape rate for the Triassic-Jurassic event, using a modified Martian ion escape model with an input of quiet solar wind inferred from Sun-like stars. The results show that geomagnetic reversal could enhance the oxygen escape rate by 3-4 orders only if the magnetic field was extremely weak, even without consideration of space weather effects. This suggests that our hypothesis could be a possible explanation of a correlation between geomagnetic reversals and mass extinction. Therefore, if this causal relation indeed exists, it should be a "many-to-one" scenario rather the previously considered "one-to-one", and planetary magnetic field should be much more important than previously thought for planetary habitability.

  13. Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models

    Science.gov (United States)

    Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.

    2017-12-01

    While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API

  14. An interpretation of the ƒoF2 and hmF2 long-term trends in the framework of the geomagnetic control concept

    Directory of Open Access Journals (Sweden)

    A. V. Mikhailov

    2001-07-01

    Full Text Available Earlier revealed morphological features of the foF2 and hmF2 long-term trends are interpreted in the scope of the geomagnetic control concept based on the contemporary F2-layer storm mechanisms. The F2-layer parameter trends strongly depend on the long-term varying geomagnetic activity whose effects cannot be removed from the trends using conventional indices of geomagnetic activity. Therefore, any interpretation of the foF2 and hmF2 trends should consider the geomagnetic effects as an inalienable part of the trend analysis. Periods with negative and positive foF2 and hmF2 trends correspond to the periods of increasing or decreasing geomagnetic activity with the turning points around 1955, and the end of 1960s and 1980s, where foF2 and hmF2 trends change their signs. Such variations can be explained by neutral composition, as well as temperature and thermospheric wind changes related to geomagnetic activity variations. In particular, for the period of increasing geomagnetic activity (1965–1991 positive at lower latitudes, but negative at middle and high latitudes, foF2 trends may be explained by neutral composition and temperature changes, while soft electron precipitation determines nighttime trends at sub-auroral and auroral latitudes. A pronounced dependence of the foF2 trends on geomagnetic (invariant latitude and the absence of any latitudinal dependence for the hmF2 trends are due to different dependencies of NmF2 and hmF2 on main aeronomic parameters. All of the revealed latitudinal and diurnal foF2 and hmF2 trend variations may be explained in the frame-work of contemporary F2-region storm mechanisms. The newly proposed geomagnetic storm concept used to explain F2-layer parameter long-term trends proceeds from a natural origin of the trends rather than an artificial one, related to the thermosphere cooling due to the greenhouse effect. Within this concept, instead of cooling, one should expect the thermosphere heating for the period of

  15. The Identification of Seismo and Volcanomagnetic Events Using Non-stationary Analysis of Geomagnetic Field Variations.

    Science.gov (United States)

    Fedi, M.; Gonçalves, P.; Johnston, M.; La Manna, M.

    Many studies have shown a clear correlation between volcanic and/or seismic activ- ity and time variations of local geomagnetic fields, called seismomagnetic (SM) and /or volcanomagnetic (VM) effects. SM and VM can be generated from various phys- ical process, such as piezomagnetism, tectonomagnetism and electrokinetism. Rele- vant parameters are the event duration, the event magnitude and the magnetometer sample rate. Here, we present some results obtained from a non-stationary analysis of geomagnetic time series that focuses on automatic detection of possible SM and VM events. Several approaches are considered. The first one, based on the continuous wavelet transform, provides us with a multiresolution lecture of the signal, expanded in time-scale space. The second uses a time-variant adaptive algorithm (RLS) that al- lows the detection of some time intervals where important statistical variations of the signal occur. Finally, we investigate a third technique relying on multifractal analy- sis. This latter allows estimation of local regularity of a time series path, in order to detect unusual singularities. Different multifractal models were used for testing the methodology, such as multifractional Brownian Motions (mbmSs), before applying it to synthetic simulations of geomagnetic signals. In our simulations, we took into account theoretical SM and/or VM effects deriving from fault rupture and overpres- sured magma chambers. We applied these methodologies to two different real world data sets, recorded on Mt Etna (volcanic area) during the volcanic activity occurred in 1981, and in North Palm Springs (seismic area) during the seism of July 8th 1986, respectively. In both cases, all techniques were effective in automatically identifying the geomagnetic time-variations likely inferred by volcanic and/or seismic activity and the results are in good agreement with the indices provided by real volcanic and seismic measurements.

  16. Geomagnetic Core Field Secular Variation Models

    DEFF Research Database (Denmark)

    Gillet, N.; Lesur, V.; Olsen, Nils

    2010-01-01

    We analyse models describing time changes of the Earth’s core magnetic field (secular variation) covering the historical period (several centuries) and the more recent satellite era (previous decade), and we illustrate how both the information contained in the data and the a priori information...... (regularisation) affect the result of the ill-posed geomagnetic inverse problem. We show how data quality, frequency and selection procedures govern part of the temporal changes in the secular variation norms and spectra, which are sometimes difficult to dissociate from true changes of the core state. We...... highlight the difficulty of resolving the time variability of the high degree secular variation coefficients (i.e. the secular acceleration), arising for instance from the challenge to properly separate sources of internal and of external origin. In addition, the regularisation process may also result...

  17. Aged refuse enhances anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  19. Statistics of the largest geomagnetic storms per solar cycle (1844-1993

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    1997-06-01

    Full Text Available A previous application of extreme-value statistics to the first, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844–1993. The intensity of a geomagnetic storm is measured by the magnitude of the daily aa index, rather than the half-daily aa index used previously. Values of the conventional aa index (1868–1993, supplemented by the Helsinki Ak index (1844–1880, provide an almost continuous, and largely homogeneous, daily measure of geomagnetic activity over an interval of 150 years. As in the earlier investigation, analytic expressions giving the probabilities of the three greatest storms (extreme values per solar cycle, as continuous functions of storm magnitude (aa, are obtained by least-squares fitting of the observations to the appropriate theoretical extreme-value probability functions. These expressions are used to obtain the statistical characteristics of the extreme values; namely, the mode, median, mean, standard deviation and relative dispersion. Since the Ak index may not provide an entirely homogeneous extension of the aa index, the statistical analysis is performed separately for twelve solar cycles (1868–1993, as well as nine solar cycles (1868–1967. The results are utilized to determine the expected ranges of the extreme values as a function of the number of solar cycles. For fourteen solar cycles, the expected ranges of the daily aa index for the first, second and third largest geomagnetic storms per solar cycle decrease monotonically in magnitude, contrary to the situation for the half-daily aa index over nine solar cycles. The observed range of the first extreme daily aa index for fourteen solar cycles is 159–352 nT and for twelve solar cycles is 215–352 nT. In a group of 100 solar cycles the expected ranges are expanded to 137–539 and 177–511 nT, which represent increases of 108% and 144% in the respective ranges. Thus there is at least a

  20. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    Science.gov (United States)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  1. Autophagic machinery activated by dengue virus enhances virus replication

    International Nuclear Information System (INIS)

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-01-01

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication

  2. Analysis of geomagnetic data and cosmic ray variations in periods of magnetic perturbations

    Science.gov (United States)

    Mandrikova, Oksana; Zalyaev, Timur; Solovev, Igor; Shevtsov, Boris

    indent=0.63cm In the present paper we have suggested a model of the geomagnetic field variation, which allows us to present the characteristic variation of the field and local perturbations formed in periods of increased geomagnetic activity. The model is based on wavelets and has the following form: [ f(t)= sum_n c_{j,n} phi_{j,n} + sum_{(j_{dist},n)in I_1} d_{j_{dist},n}Psi_{j_{dist},n}(t) + sum_{(j_{dist},n)in I_2} d_{j_{dist},n}Psi_{j_{dist},n}(t) + e(t) ] where component sum_n c_{j,n} phi_{j,n} presents the characteristic variation; component \\sum_{(j_{dist},n)in I_1} d_{j_{dist},n}Psi_{j_{dist},n}(t) presents weak geomagnetic perturbations; component \\sum_{(j_{dist},n)in I_2} d_{j_{dist},n}Psi_{j_{dist},n}(t) presents strong geomagnetic perturbations; j is the scale; I_1, I_2 are the sets of indices; e(t) is the noise; Psi_j = \\{Psi_{j,n}\\}_{n in Z} is the wavelet basis; phi_j = \\{phi_{j,n}\\}_{n in Z} is the scaling function; c_{j,n}= ,d_{j,n}=. Using the proposed model we have developed a technique of identifying the characteristic variation of the geomagnetic field (in periods of quiet magnetosphere) and components presenting different conditions of the field in periods of perturbations. The technique can be used for various data registration stations and is useful for studying the dynamics of electric current systems in the magnetosphere, the interaction between such systems, and their spatial and temporal distribution. We have also created special rules for estimating the storminess degree of the geomagnetic field. The suggested theoretical tools allow us to determine time points when geomagnetic perturbations arise and to obtain quantitative estimates of the storminess degree. Furthermore, it is also possible to implement these rules in the automatic mode. The theoretical tools mentioned above are also aimed at developing and improving mathematical tools for estimating and monitoring the condition of the geomagnetic field and predicting strong

  3. Research on Stealthy Headphone Detector Based on Geomagnetic Sensor

    Directory of Open Access Journals (Sweden)

    Liu Ya

    2016-01-01

    Full Text Available A kind of stealth headphone detector based on geomagnetic sensor has been developed to deal with the stealth headphones which are small, extremely stealthy and hard to detect. The U.S. PNI geomagnetic sensor is chosen to obtain magnetic field considering the strong magnetic performance of stealth headphones. The earth’s magnetic field at the geomagnetic sensor is eliminated by difference between two geomagnetic sensors, and then weak variations of magnetic field is detected. STM8S103K2 is chosen as the central controlling chip, which is connected to LED, buzzer and LCD 1602. As shown by the experimental results, the probe is not liable to damage by the magnetic field and the developed device has high sensitivity, low False Positive Rate (FAR and satisfactory reliability.

  4. Geomagnetic Variation Data - 1-Minute Remote Geophysical Observatory Network (RGON)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data file was generated as part of the International Magnetospheric Study (IMS). The file consists of values of the geomagnetic components D, H, X, Y, Z, and R...

  5. Enhancing anaerobic digestion of poultry blood using activated carbon

    Directory of Open Access Journals (Sweden)

    Maria José Cuetos

    2017-05-01

    Full Text Available The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6–8 g/L. The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  6. Anomalous short period geomagnetic variations at two stations in Sri Lanka

    International Nuclear Information System (INIS)

    Kunaratnam, K.

    1986-08-01

    An analysis of the rates of change in the geomagnetic field components in the period range 20-600 sec recorded at Kondavil and Hikkaduwa, two stations in the equatorial electrojet belt near the northern and south western coasts respectively of Sri Lanka, shows anomalous variations. The results confirm induced current concentration in the Palk Strait and deflection of induced currents around the southerncoast of Sri Lanka postulated by earlier workers from observations of SSC and Bay events at Indian stations and from analogue and numerical model studies. At Kondavil, which is situated close to the geomagnetic equator, no appreciable difference in the night-time and day-time values of ΔZ/ΔH and ΔD/ΔH ratios was noticed while at Hikkaduwa, a station situated under the edge of the equatorial electrojet belt, a day-time enhancement of ΔZ/ΔH ratios was found at all periods in the observed range. An enhancement of the H component at Colombo over that at Hikkaduwa was also found at short periods, the enhancement being greater at day-time. The day-time enhancement in the ΔZ/ΔH ratios at Hikkaduwa and in the ratio of the H components at Colombo and Hikkaduwa could be due to the effect of the equatorial electrojet on the short period variations. (author)

  7. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  8. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  9. Multifractal analysis of low-latitude geomagnetic fluctuations

    Directory of Open Access Journals (Sweden)

    M. J. A. Bolzan

    2009-02-01

    Full Text Available The technique of large deviation multifractal spectrum has shown that the high-latitude (77.5° N, 69.2° W geomagnetic fluctuations can be described from direct dissipation process or loading-unloading regimes of the solar wind-magnetosphere coupling. In this paper, we analyze the H-component of low-latitude (22.4° S, 43.6° W geomagnetic field variability observed during the month of July 2000 at the Geomagnetic Observatory, Vassouras, RJ, Brazil. The variability pattern during this period is a mixture of quiet and disturbed days including the Bastille Day intense geomagnetic storm on 15 July. Due to the complexity of this data, we pursue a detailed analysis of the geomagnetic fluctuations in different time scales including a multifractal approach using the singular power spectrum deviations obtained from the wavelet transform modulus maxima (WTMM. The results suggest, as observed from high-latitude data, the occurrence of low-latitude multifractal processes driving the intermittent coupling between the solar wind-magnetosphere and geomagnetic field variations. On finer scales possible physical mechanisms in the context of nonlinear magnetosphere response are discussed.

  10. Precursors of Forbush decreases connected to western solar sources and geomagnetic storms

    International Nuclear Information System (INIS)

    Papailiou, M; Mavromichalaki, H; Abunina, M; Belov, A; Eroshenko, E; Yanke, V

    2013-01-01

    It is suggested in many studies that the pre-increases or pre-decreases of the cosmic ray intensity (known as precursors) which usually precede a Forbush decrease could serve as a useful tool for studying space weather effects. The events under consideration in this particular investigation were chosen based on two criteria. Firstly, the heliolongitude of the solar flare associated with each cosmic ray intensity decrease was in the 50°–70°W sector and secondly, the values of geomagnetic activity index (Kp max ) were ≥ 5. As a result only Forbush decreases connected to western solar flares and accompanied by a geomagnetic storm were selected. In total 25 events were gathered for the time period from 1967 to 2006. For the detailed analysis of the aforementioned cosmic ray intensity decreases data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst) and interplanetary magnetic field were used. The asymptotic longitudinal cosmic ray distribution diagrams for all events were plotted using the 'Ring of Stations' method. The results revealed clear signs of precursors in 60% of selected events.

  11. A Carrington-like geomagnetic storm observed in the 21st century

    Directory of Open Access Journals (Sweden)

    Cid Consuelo

    2015-01-01

    Full Text Available In September 1859 the Colaba observatory measured the most extreme geomagnetic disturbance ever recorded at low latitudes related to solar activity: the Carrington storm. This paper describes a geomagnetic disturbance case with a profile extraordinarily similar to the disturbance of the Carrington event at Colaba: the event on 29 October 2003 at Tihany magnetic observatory in Hungary. The analysis of the H-field at different locations during the “Carrington-like” event leads to a re-interpretation of the 1859 event. The major conclusions of the paper are the following: (a the global Dst or SYM-H, as indices based on averaging, missed the largest geomagnetic disturbance in the 29 October 2003 event and might have missed the 1859 disturbance, since the large spike in the horizontal component (H of terrestrial magnetic field depends strongly on magnetic local time (MLT; (b the main cause of the large drop in H recorded at Colaba during the Carrington storm was not the ring current but field-aligned currents (FACs; and (c the very local signatures of the H-spike imply that a Carrington-like event can occur more often than expected.

  12. Ionospheric Behaviors Over Korea Peninsula During the Super Geomagnetic Storm Using GPS Measurements

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2009-12-01

    Full Text Available The super-geomagnetic storms called 2003 Halloween event globally occurred during the period of 29 through 31 which are the following days when the solar flares of X18 class exploded on 28 October 2003. The S4 index from GPS signal strength and the peak electron density (NmF2 from GPS tomography method are analyzed according to the date. The occurrences of the cycle slip and scintillation in the GPS signals are 1,094 and 1,387 on 28 and 29 October, respectively and these values are higher than 604 and 897 on 30 and 31 October. These mean the ionospheric disturbances are not always generated by the period of geomagnetic storm. Therefore, GPS S4 index is useful to monitor the ionospheric disturbances. Behaviors of ionospheric electron density estimated from GPS tomography method are analyzed with the date. At UT = 18 hr, the maximum NmF2 is shown on 28 October. It agrees with NmF2 variation measured from Anyang ionosonde, and the GPS signal are better condition on 30 and 31 October than 28 October. In conclusion, GPS signal condition is relation with geomagnetic activities, and depend upon the variation of the electron density. We will study the long-term data to examine the relationship between the GPS signal quality and the electron density as the further works.

  13. Geomagnetic detection of the sectorial solar magnetic field and the historical peculiarity of minimum 23-24

    Science.gov (United States)

    Love, Jeffrey J.; Rigler, J.

    2012-01-01

    [1] Analysis is made of the geomagnetic-activityaaindex covering solar cycle 11 to the beginning of 24, 1868–2011. Autocorrelation shows 27.0-d recurrent geomagnetic activity that is well-known to be prominent during solar-cycle minima; some minima also exhibit a smaller amount of 13.5-d recurrence. Previous work has shown that the recent solar minimum 23–24 exhibited 9.0 and 6.7-d recurrence in geomagnetic and heliospheric data, but those recurrence intervals were not prominently present during the preceding minima 21–22 and 22–23. Using annual-averages and solar-cycle averages of autocorrelations of the historicalaadata, we put these observations into a long-term perspective: none of the 12 minima preceding 23–24 exhibited prominent 9.0 and 6.7-d geomagnetic activity recurrence. We show that the detection of these recurrence intervals can be traced to an unusual combination of sectorial spherical-harmonic structure in the solar magnetic field and anomalously low sunspot number. We speculate that 9.0 and 6.7-d recurrence is related to transient large-scale, low-latitude organization of the solar dynamo, such as seen in some numerical simulations.

  14. Enhanced biological activities of gamma-irradiated persimmon leaf extract.

    Science.gov (United States)

    Cho, Byoung-Ok; Nchang Che, Denis; Yin, Hong-Hua; Jang, Seon-Il

    2017-09-01

    The aim of this study was to compare the anti-oxidative and anti-inflammatory activities of gamma-irradiated persimmon leaf extract (GPLE) with those of non-irradiated persimmon leaf extract (PLE). Ethanolic extract of persimmon leaf was exposed to gamma irradiation at a dose of 10 kGy. After gamma irradiation, the color of the extract changed from dark brown to light brown. The anti-oxidative and anti-inflammatory activities of GPLE and PLE were assessed from: total polyphenol and total flavonoid contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay, and levels of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The total polyphenol contents of GPLE and PLE were determined to be 224.44 ± 1.54 and 197.33 ± 5.81 mg gallic acid equivalents (GAE)/g, respectively, and the total flavonoid contents of GPLE and PLE were 206.27 ± 1.15 and 167.60 ± 2.00 mg quercetin equivalents (QUE)/g, respectively. The anti-oxidant activities of GPLE and PLE as measured by DPPH assays were 338.33 ± 30.19 μg/ml (IC50) and 388.68 ± 8.45 μg/ml (IC50), respectively, and those measured by ABTS assays were 510.49 ± 15.12 μg/ml (IC50) and 731.30 ± 10.63 μg/ml (IC50), respectively. IC50 is the inhibitor concentration that reduces the response by 50%. GPLE strongly inhibited the production of NO, PGE2 and IL-6 compared with PLE in lipopolysaccharide-stimulated RAW264.7 macrophages. Furthermore, GPLE significantly inhibited the production of TNF-α and IL-6 cytokines compared with PLE in phorbol 12-myristate 13-acetate (PMA) plus A23187-stimulated HMC-1 human mast cells. These results indicate that gamma irradiation of PLE can enhance its anti-oxidative and anti-inflammatory activities through elevation of the phenolic contents. Therefore, gamma-irradiated PLE has potential for use in the food and cosmetic

  15. Enhanced activity of the Southern Taurids in 2005 and 2015

    Science.gov (United States)

    Olech, A.; Żołądek, P.; Wiśniewski, M.; Tymiński, Z.; Stolarz, M.; Bęben, M.; Dorosz, D.; Fajfer, T.; Fietkiewicz, K.; Gawroński, M.; Gozdalski, M.; Kałużny, M.; Krasnowski, M.; Krygiel, H.; Krzyżanowski, T.; Kwinta, M.; Łojek, T.; Maciejewski, M.; Miernicki, S.; Myszkiewicz, M.; Nowak, P.; Polak, K.; Polakowski, K.; Laskowski, J.; Szlagor, M.; Tissler, G.; Suchodolski, T.; Węgrzyk, W.; Woźniak, P.; Zaręba, P.

    2017-08-01

    In this paper, we present an analysis of Polish Fireball Network (PFN) observations of enhanced activity of the Southern Taurid meteor shower in 2005 and 2015. In 2005, between October 20 and November 10, seven stations of the PFN determined 107 accurate orbits, with 37 of them belonging to the Southern Taurid shower. In the same period of 2015, 25 stations of the PFN recorded 719 accurate orbits with 215 orbits of the Southern Taurids. Both maxima were rich in fireballs, which accounted for 17 per cent of all observed Taurids. The whole sample of Taurid fireballs is uniform in the sense of starting and terminal heights of the trajectory. However, a clear decreasing trend in geocentric velocity with increasing solar longitude was observed. The orbital parameters of observed Southern Taurids were compared to orbital elements of near-Earth objects (NEOs) from the NEODyS-2 data base. Using the Drummond criterion D΄ with a threshold as low as 0.06, we found over 100 fireballs strikingly similar to the orbit of asteroid 2015 TX24. Several dozens of Southern Taurids have orbits similar to three other asteroids: 2005 TF50, 2005 UR and 2010 TU149. All mentioned NEOs have orbital periods very close to the 7 : 2 resonance with Jupiter's orbit. This confirms the theory of a resonant meteoroid swarm within the Taurid complex, which predicts that, in specific years, the Earth is hit by a greater number of meteoroids capable of producing fireballs.

  16. Eugenol nanocapsule for enhanced therapeutic activity against periodontal infections.

    Science.gov (United States)

    Pramod, Kannissery; Aji Alex, M R; Singh, Manisha; Dang, Shweta; Ansari, Shahid H; Ali, Javed

    2016-01-01

    Eugenol is a godsend to dental care due to its analgesic, local anesthetic, and anti-inflammatory and antibacterial effects. The aim of the present research work was to prepare, characterize and evaluate eugenol-loaded nanocapsules (NCs) against periodontal infections. Eugenol-loaded polycaprolactone (PCL) NCs were prepared by solvent displacement method. The nanometric size of the prepared NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The in vitro drug release was found to follow a biphasic pattern and followed Michaelis-Menten like model. The percentage cell viability values near to 100 in the cell viability assay indicated that the NCs are not cytotoxic. In the in vivo studies, the eugenol NC group displayed significant difference in the continuity of epithelium of the interdental papilla in comparison to the untreated, pure eugenol and placebo groups. The in vivo performance of the eugenol-loaded NCs using ligature-induced periodontitis model in rats indicated that eugenol-loaded NCs could prevent septal bone resorption in periodontitis. On the basis of our research findings it could be concluded that eugenol-loaded PCL NCs could serve as a novel colloidal drug delivery system for enhanced therapeutic activity of eugenol in the treatment of periodontal infections.

  17. Nanostructured porous ZnO film with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang Lina; Zheng Yingying; Li Xiaoyun; Dong Wenjun; Tang Weihua; Chen Benyong; Li Chaorong; Li Xiao; Zhang Tierui

    2011-01-01

    Well-defined ZnO nanostructured films have been fabricated directly on Zn foil via hydrothermal synthesis. During the fabrication of the ZnO nanostructured films, the Zn foil serves as the Zn source and also the substrate. Porous nanosheet-based, nanotube-based and nanoflower-based ZnO films can all be easily prepared by adjusting the alkali type, reaction time and reaction temperature. The composition, morphology and structure of ZnO films are characterized by X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscope. The porous ZnO nanosheet-based film exhibits enhanced photocatalytic activity in the degradation of Rhodamine B under UV light irradiation. This can be attributed to the high surface area of the ZnO nanosheet and the large percentage of the exposed [001] facet. Moreover, the self-supporting, recyclable and stable ZnO photocatalytic film can be readily recovered and potentially applied for pollution disposal.

  18. Signature of St. Patrick Geomagnetic Storm on Schumann Resonances

    Science.gov (United States)

    Bozoki, Tamas; Sátori, Gabriella; Steinbach, Péter; Neszka, Mariusz; Mlynarczyk, Janusz; Price, Colin; Sinha, Ashwini Kumar; Rawat, Rahul; Bór, József; Barta, Veronika; Guha, Anirban; Williams, Earle

    2017-04-01

    percentage variations of SR intensity ( 140%) can be observed at the north polar station, Hornsund, in several days of the recovery phase of the St. Patrick event and at the south polar station, Maitri, already during the main phase of the storm (March 17, 2015) up to the end of the month, mainly in the day-time hours. The percentage intensity variation decreases with decreasing latitude but it still has higher values in the mid-high latitude SR stations Belsk and Hylaty than the percentage variation of lightning source intensity. The latitude of Mitzpe Ramon seems already "free of the precipitating particle effect" and the SR intensity variation there indicates only the seasonal increase of lightning activity in the second part of March, 2015. Based on our initial findings we presume that several characteristic properties of geomagnetic storms could be identified in SR measurements which is the task of our ongoing research.

  19. Glutamate transporter activity promotes enhanced Na+/K+-ATPase-mediated extracellular K+ management during neuronal activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Holm, Rikke; Vilsen, Bente

    2016-01-01

    , in addition, Na+/K+-ATPase-mediated K+ clearance could be governed by astrocytic [Na+]i. During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+-coupled glutamate transporters, thereby elevating [Na+]i. It thus remains unresolved whether the different Na......+/K+-ATPase isoforms are controlled by [K+]o or [Na+]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+]o transients with ion-sensitive microelectrodes revealed reduced Na+/K+-ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter. The apparent intracellular...... isoforms than the β2 isoform. In summary, enhanced astrocytic Na+/K+-ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+/K+-ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+]i transients associated with activity...

  20. Computational Approaches for Mining GRO-seq Data to Identify and Characterize Active Enhancers

    OpenAIRE

    Nagari, Anusha; Murakami, Shino; Malladi, Venkat; Kraus, W. Lee

    2017-01-01

    Transcriptional enhancers are DNA regulatory elements that are bound by transcription factors and act to positively regulate the expression of nearby or distally-located target genes. Enhancers have many features that have been discovered using genomic analyses. Recent studies have shown that active enhancers recruit RNA polymerase II (Pol II) and are transcribed, producing enhancer RNAs (eRNAs). GRO-seq, a method for identifying the location and orientation of all actively transcribing RNA p...

  1. Photon activation therapy: a Monte Carlo study on dose enhancement by various sources and activation media

    International Nuclear Information System (INIS)

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2013-01-01

    In the present study, a number of brachytherapy sources and activation media were simulated using MCNPX code and the results were analyzed based on the dose enhancement factor values. Furthermore, two new brachytherapy sources ( 131 Cs and a hypothetical 170 Tm) were evaluated for their application in photon activation therapy (PAT). 125 I, 103 Pd, 131 Cs and hypothetical 170 Tm brachytherapy sources were simulated in water and their dose rate constant and the radial dose functions were compared with previously published data. The sources were then simulated in a soft tissue phantom which was composed of Ag, I, Pt or Au as activation media uniformly distributed in the tumour volume. These simulations were performed using the MCNPX code, and dose enhancement factor (DEF) was obtained for 7, 18 and 30 mg/ml concentrations of the activation media. Each source, activation medium and concentration was evaluated separately in a separate simulation. The calculated dose rate constant and radial dose functions were in agreement with the published data for the aforementioned sources. The maximum DEF was found to be 5.58 for a combination of the 170 Tm source with 30 mg/ml concentration of I. The DEFs for 131 Cs and 170 Tm sources for all the four activation media were higher than those for other sources and activation media. From this point of view, these two sources can be more useful in photon activation therapy with photon emitter sources. Furthermore, 131 Cs and 170 Tm brachytherapy sources can be proposed as new options for use in the field of PAT.

  2. Enhanced persistency of resting and active periods of locomotor activity in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Wataru Sano

    Full Text Available Patients with schizophrenia frequently exhibit behavioral abnormalities associated with its pathological symptoms. Therefore, a quantitative evaluation of behavioral dynamics could contribute to objective diagnoses of schizophrenia. However, such an approach has not been fully established because of the absence of quantitative biobehavioral measures. Recently, we studied the dynamical properties of locomotor activity, specifically how resting and active periods are interwoven in daily life. We discovered universal statistical laws ("behavioral organization" and their alterations in patients with major depressive disorder. In this study, we evaluated behavioral organization of schizophrenic patients (n = 19 and healthy subjects (n = 11 using locomotor activity data, acquired by actigraphy, to investigate whether the laws could provide objective and quantitative measures for a possible diagnosis and assessment of symptoms. Specifically, we evaluated the cumulative distributions of resting and active periods, defined as the periods with physical activity counts successively below and above a predefined threshold, respectively. Here we report alterations in the laws governing resting and active periods; resting periods obeyed a power-law cumulative distribution with significantly lower parameter values (power-law scaling exponents, whereas active periods followed a stretched exponential distribution with significantly lower parameter values (stretching exponents, in patients. Our findings indicate enhanced persistency of both lower and higher locomotor activity periods in patients with schizophrenia, probably reflecting schizophrenic pathophysiology.

  3. Effects of electrojet turbulence on a magnetosphere-ionosphere simulation of a geomagnetic storm

    Science.gov (United States)

    Wiltberger, M.; Merkin, V.; Zhang, B.; Toffoletto, F.; Oppenheim, M.; Wang, W.; Lyon, J. G.; Liu, J.; Dimant, Y.; Sitnov, M. I.; Stephens, G. K.

    2017-05-01

    Ionospheric conductance plays an important role in regulating the response of the magnetosphere-ionosphere system to solar wind driving. Typically, models of magnetosphere-ionosphere coupling include changes to ionospheric conductance driven by extreme ultraviolet ionization and electron precipitation. This paper shows that effects driven by the Farley-Buneman instability can also create significant enhancements in the ionospheric conductance, with substantial impacts on geospace. We have implemented a method of including electrojet turbulence (ET) effects into the ionospheric conductance model utilized within geospace simulations. Our particular implementation is tested with simulations of the Lyon-Fedder-Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere. We examine the impact of including ET-modified conductances in a case study of the geomagnetic storm of 17 March 2013. Simulations with ET show a 13% reduction in the cross polar cap potential at the beginning of the storm and up to 20% increases in the Pedersen and Hall conductance. These simulation results show better agreement with Defense Meteorological Satellite Program observations, including capturing features of subauroral polarization streams. The field-aligned current (FAC) patterns show little differences during the peak of storm and agree well with Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) reconstructions. Typically, the simulated FAC densities are stronger and at slightly higher latitudes than shown by AMPERE. The inner magnetospheric pressures derived from Tsyganenko-Sitnov empirical magnetic field model show that the inclusion of the ET effects increases the peak pressure and brings the results into better agreement with the empirical model.

  4. Design of New Antibacterial Enhancers Based on AcrB’s Structure and the Evaluation of Their Antibacterial Enhancement Activity

    Directory of Open Access Journals (Sweden)

    Yi Song

    2016-11-01

    Full Text Available Previously, artesunate (AS and dihydroartemisinine 7 (DHA7 were found to have antibacterial enhancement activity against Escherichia coli via inhibition of the efflux pump AcrB. However, they were only effective against E. coli standard strains. This study aimed to develop effective antibacterial enhancers based on the previous work. Our results demonstrate that 86 new antibacterial enhancers were designed via 3D-SAR and molecular docking. Among them, DHA27 had the best antibacterial enhancement activity. It could potentiate the antibacterial effects of ampicillin against not only E. coli standard strain but also clinical strains, and of β-lactam antibiotics, not non-β-lactamantibiotics. DHA27 could increase the accumulation of daunomycin and nile red within E. coli ATCC 35218, but did not increase the bacterial membrane permeability. DHA27 reduced acrB’s mRNA expression of E. coli ATCC 35218 in a dose-dependent manner, and its antibacterial enhancement activity is related to the degree of acrB mRNA expression in E. coli clinical strains. The polypeptides from AcrB were obtained via molecular docking assay; the pre-incubated polypeptides could inhibit the activity of DHA27. Importantly, DHA27 had no cytotoxicity on cell proliferation. In conclusion, among newly designed antibacterial enhancers, DHA27 had favorable physical and pharmacological properties with no significant cytotoxicity at effective concentrations, and might serve as a potential efflux pump inhibitor in the future.

  5. Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico

    Directory of Open Access Journals (Sweden)

    Omar Chavez

    2016-05-01

    Full Text Available Recently, the analysis of ultra-low-frequency (ULF geomagnetic signals in order to detect seismic anomalies has been reported in several works. Yet, they, although having promising results, present problems for their detection since these anomalies are generally too much weak and embedded in high noise levels. In this work, a short-time multiple signal classification (ST-MUSIC, which is a technique with high-frequency resolution and noise immunity, is proposed for the detection of seismic anomalies in the ULF geomagnetic signals. Besides, the energy (E of geomagnetic signals processed by ST-MUSIC is also presented as a complementary parameter to measure the fluctuations between seismic activity and seismic calm period. The usefulness and effectiveness of the proposal are demonstrated through the analysis of a synthetic signal and five real signals with earthquakes. The analysed ULF geomagnetic signals have been obtained using a tri-axial fluxgate magnetometer at the Juriquilla station, which is localized in Queretaro, Mexico (geographic coordinates: longitude 100.45° E and latitude 20.70° N. The results obtained show the detection of seismic perturbations before, during, and after the main shock, making the proposal a suitable tool for detecting seismic precursors.

  6. A facile method of activating graphitic carbon nitride for enhanced photocatalytic activity.

    Science.gov (United States)

    Liao, Yongliang; Zhu, Shenmin; Chen, Zhixin; Lou, Xianghong; Zhang, Di

    2015-11-07

    Activated graphitic carbon nitride (g-C3N4) with enhanced photocatalytic capability under visible light irradiation was fabricated by using a facile chemical activation treatment method. In the chemical activation, a mixed solution of hydrogen peroxide and ammonia was employed. The yield can reach as high as 90% after the activation process. The activation process did not change the crystal structure, functional group, morphology and specific surface area of pristine g-C3N4, but it introduced H and O elements into the CN framework of g-C3N4, resulting in a broader optical absorption range, higher light absorption capability and more efficient separation of photogenerated electrons and holes. The photoactivity was investigated by the degradation of rhodamine B (RhB) under visible light irradiation. As compared to the pristine g-C3N4, the activated g-C3N4 exhibited a distinct and efficient two-step degradation process. It was found that the RhB dye in the activated g-C3N4 was mainly oxidized by the photogenerated holes. It is believed that sufficient holes account for the two-step degradation process because they would significantly improve the efficiency of the N-de-ethylation reaction of RhB.

  7. Empirical model of TEC response to geomagnetic and solar forcing over Balkan Peninsula

    Science.gov (United States)

    Mukhtarov, P.; Andonov, B.; Pancheva, D.

    2018-01-01

    An empirical total electron content (TEC) model response to external forcing over Balkan Peninsula (35°N-50°N; 15°E-30°E) is built by using the Center for Orbit Determination of Europe (CODE) TEC data for full 17 years, January 1999 - December 2015. The external forcing includes geomagnetic activity described by the Kp-index and solar activity described by the solar radio flux F10.7. The model describes the most probable spatial distribution and temporal variability of the externally forced TEC anomalies assuming that they depend mainly on latitude, Kp-index, F10.7 and LT. The anomalies are expressed by the relative deviation of the TEC from its 15-day mean, rTEC, as the mean value is calculated from the 15 preceding days. The approach for building this regional model is similar to that of the global TEC model reported by Mukhtarov et al. (2013a) however it includes two important improvements related to short-term variability of the solar activity and amended geomagnetic forcing by using a "modified" Kp index. The quality assessment of the new constructing model procedure in terms of modeling error calculated for the period of 1999-2015 indicates significant improvement in accordance with the global TEC model (Mukhtarov et al., 2013a). The short-term prediction capabilities of the model based on the error calculations for 2016 are improved as well. In order to demonstrate how the model is able to reproduce the rTEC response to external forcing three geomagnetic storms, accompanied also with short-term solar activity variations, which occur at different seasons and solar activity conditions are presented.

  8. A Study of Ionospheric Storm Association with Intense Geomagnetic Storms

    Science.gov (United States)

    Okpala, K. C.

    2017-12-01

    The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  9. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  10. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Science.gov (United States)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  11. Possible influence of solar extreme events and related geomagnetic disturbances on human cardio-vascular state: Results of collaborative Bulgarian-Azerbaijani studies

    Science.gov (United States)

    Dimitrova, S.; Mustafa, F. R.; Stoilova, I.; Babayev, E. S.; Kazimov, E. A.

    2009-02-01

    This collaborative study is based on the analysis and comparison of results of coordinated experimental investigations conducted in Bulgaria and Azerbaijan for revealing a possible influence of solar activity changes and related geomagnetic activity variations on the human cardio-vascular state. Arterial blood pressure and heart rate of 86 healthy volunteers were measured on working days during a period of comparatively high solar and geomagnetic activity (2799 measurements in autumn 2001 and spring 2002) in Sofia. Daily experimental investigations of parameters of cardio-vascular health state were performed in Azerbaijan with a permanent group of examined persons. Heart rate and electrocardiograms were digitally registered (in total 1532 records) for seven functionally healthy persons on working days and Saturdays, in the Laboratory of Heliobiology at the Medical Center INAM in Baku, from 15.07.2006 to 13.11.2007. Obtained digital recordings were subjected to medical, statistical and spectral analyses. Special attention was paid to effects of solar extreme events, particularly those of November 2001 and December 2006. The statistical method of the analysis of variance (ANOVA) and post hoc analysis were applied to check the significance of the influence of geomagnetic activity on the cardio-vascular parameters under consideration. Results revealed statistically significant increments for the mean systolic and diastolic blood pressure values of the group with geomagnetic activity increase. Arterial blood pressure values started increasing two days prior to geomagnetic storms and kept their high values up to two days after the storms. Heart rate reaction was ambiguous and not significant for healthy persons examined (for both groups) under conditions with geomagnetic activity changes. It is concluded that heart rate for healthy persons at middle latitudes can be considered as a more stable physiological parameter which is not so sensitive to environmental changes

  12. Enhancing Physical Education with a Supplemental Physical Activity Program

    Science.gov (United States)

    Adkins, Megan; Bice, Matthew R.; Heelan, Kate; Ball, James

    2017-01-01

    For decades, schools have played a pivotal role in providing physical activity opportunities to children. For many students, school-time physical activity serves as the primary source of activity, via activity clubs, classroom physical activity breaks, and family health awareness nights. The purpose of this article is to describe how three schools…

  13. Enhancing Leadership Abilities through Small-Group Activities.

    Science.gov (United States)

    Parise, James; Culp, William

    1988-01-01

    The article describes a 14-week program (one hour per week) of the Punxsutawney (Pennsylvania) schools in which 29 gifted high school students learned and practiced fundamentals of small group dynamics to enhance their leadership abilities. (DB)

  14. Subauroral electron temperature enhancement in the nighttime ionosphere

    Directory of Open Access Journals (Sweden)

    G. W. Prölss

    2006-08-01

    Full Text Available In the nightside subauroral region, heat transfer from the ring current causes a significant increase in the electron temperature of the upper ionosphere. Using DE-2 satellite data, we investigate the properties of this remarkable feature. We find that the location of the temperature enhancement is primarily dependent on the level of geomagnetic activity. For geomagnetically quiet conditions (the temperature peak is located slightly poleward of 60° invariant latitude. For each decrease in the Dst index by 10 nT, it moves equatorward by about one degree. To a lesser degree, the location of the heating effect also depends on magnetic local time, with a significant positional asymmetry about midnight. The magnitude of the temperature enhancement varies with altitude. Within the height range 280 to 940 km, the peak temperature increases by 73%, on average. Thereby a conspicuous increase in the temperature gradient is observed above about 700km altitude. The magnitude of the heating effect also depends on the level of geomagnetic activity. For a decrease in the Dst index by 100 nT, the peak temperature increases by 46%, on average. This rate of increase, however, depends on season and is significantly smaller during winter conditions. A superposed epoch type of averaging procedure is used to obtain mean latitudinal profiles of the temperature enhancement. For an altitude of 500 km, the following mean properties are derived: amplitude K; width at half this peak value deg; distance between equatorward boundary and maximum deg. On average, a decrease in the electron density is observed at the location of the temperature enhancement, at least at 500 km altitude. At the same time, a moderate increase in the zonal ion drift speed is recorded at this location. During larger geomagnetic storms, the latitudinal profile of the temperature enhancement assumes a more step-function-like shape, with a broad increase in electron temperature poleward from the

  15. The Impact of Ionospheric and Geomagnetic Changes on Mortality from Diseases of the Circulatory System.

    Science.gov (United States)

    Podolská, Kateřina

    2018-02-01

    We investigate the impact of solar activity changes on mortality from cardiovascular causes of death in the period 1994-2011 in the Czech Republic. This period coincides with the time of solar cycle no. 23 and the surrounding minima when there was an unusually low level of solar activity. We use long-period daily time series of numbers of deaths by cause, solar activity indices (the relative sunspot number, and the intensity of solar radio flux), geomagnetic indices (Kp-the planetary index that indicates the fluctuation rate of horizontal components of the geomagnetic field, the Auroral Electrojet, and the disturbance storm time), and physical parameters describing the ionospheric effects (the critical frequency of the ionospheric F2 layer and the content of free electrons in the ionosphere). The results of the analysis confirm the hypothesis that there is no direct correlation between the geomagnetic solar index, Kp, and the number of deaths from acute myocardial infarction (code I21) or brain stroke (code I64) during the maxima of the solar cycle. On the other hand, the ionospheric parameters explain a greater part of the variability in the number of deaths for acute myocardial infarction or brain stroke than the model with solar parameters. The analysis shows that, because the values are geographically specific, the ionospheric parameters may describe the variability in the number of deaths from cardiovascular causes better than the solar indices. The cardiovascular diseases thus respond to the changes in the solar activity and to abnormal solar events indirectly through a concentration of electrical charges in the earth's environment. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  17. Response of polar mesosphere summer echoes to geomagnetic disturbances in the Southern and Northern Hemispheres: the importance of nitric oxide

    Science.gov (United States)

    Kirkwood, S.; Belova, E.; Dalin, P.; Mihalikova, M.; Mikhaylova, D.; Murtagh, D.; Nilsson, H.; Satheesan, K.; Urban, J.; Wolf, I.

    2013-02-01

    The relationship between polar mesosphere summer echoes (PMSE) and geomagnetic disturbances (represented by magnetic K indices) is examined. Calibrated PMSE reflectivities for the period May 2006-February 2012 are used from two 52.0/54.5 MHz radars located in Arctic Sweden (68° N, geomagnetic latitude 65°) and at two different sites in Queen Maud Land, Antarctica (73°/72° S, geomagnetic latitudes 62°/63°). In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH) there is a strong increase in mean PMSE reflectivity between quiet and disturbed geomagnetic conditions. Mean volume reflectivities are slightly lower at the SH locations compared to the NH, but the position of the peak in the lognormal distribution of PMSE reflectivities is close to the same at both NH and SH locations, and varies only slightly with magnetic disturbance level. Differences between the sites, and between geomagnetic disturbance levels, are primarily due to differences in the high-reflectivity tail of the distribution. PMSE occurrence rates are essentially the same at both NH and SH locations during most of the PMSE season when a sufficiently low detection threshold is used so that the peak in the lognormal distribution is included. When the local-time dependence of the PMSE response to geomagnetic disturbance level is considered, the response in the NH is found to be immediate at most local times, but delayed by several hours in the afternoon sector and absent in the early evening. At the SH sites, at lower magnetic latitude, there is a delayed response (by several hours) at almost all local times. At the NH (auroral zone) site, the dependence on magnetic disturbance is highest during evening-to-morning hours. At the SH (sub-auroral) sites the response to magnetic disturbance is weaker but persists throughout the day. While the immediate response to magnetic activity can be qualitatively explained by changes in electron density resulting from energetic particle

  18. Response of polar mesosphere summer echoes to geomagnetic disturbances in the Southern and Northern Hemispheres: the importance of nitric oxide

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2013-02-01

    Full Text Available The relationship between polar mesosphere summer echoes (PMSE and geomagnetic disturbances (represented by magnetic K indices is examined. Calibrated PMSE reflectivities for the period May 2006–February 2012 are used from two 52.0/54.5 MHz radars located in Arctic Sweden (68° N, geomagnetic latitude 65° and at two different sites in Queen Maud Land, Antarctica (73°/72° S, geomagnetic latitudes 62°/63°. In both the Northern Hemisphere (NH and the Southern Hemisphere (SH there is a strong increase in mean PMSE reflectivity between quiet and disturbed geomagnetic conditions. Mean volume reflectivities are slightly lower at the SH locations compared to the NH, but the position of the peak in the lognormal distribution of PMSE reflectivities is close to the same at both NH and SH locations, and varies only slightly with magnetic disturbance level. Differences between the sites, and between geomagnetic disturbance levels, are primarily due to differences in the high-reflectivity tail of the distribution. PMSE occurrence rates are essentially the same at both NH and SH locations during most of the PMSE season when a sufficiently low detection threshold is used so that the peak in the lognormal distribution is included. When the local-time dependence of the PMSE response to geomagnetic disturbance level is considered, the response in the NH is found to be immediate at most local times, but delayed by several hours in the afternoon sector and absent in the early evening. At the SH sites, at lower magnetic latitude, there is a delayed response (by several hours at almost all local times. At the NH (auroral zone site, the dependence on magnetic disturbance is highest during evening-to-morning hours. At the SH (sub-auroral sites the response to magnetic disturbance is weaker but persists throughout the day. While the immediate response to magnetic activity can be qualitatively explained by changes in electron density resulting from energetic

  19. Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers.

    Science.gov (United States)

    Nagari, Anusha; Murakami, Shino; Malladi, Venkat S; Kraus, W Lee

    2017-01-01

    Transcriptional enhancers are DNA regulatory elements that are bound by transcription factors and act to positively regulate the expression of nearby or distally located target genes. Enhancers have many features that have been discovered using genomic analyses. Recent studies have shown that active enhancers recruit RNA polymerase II (Pol II) and are transcribed, producing enhancer RNAs (eRNAs). GRO-seq, a method for identifying the location and orientation of all actively transcribing RNA polymerases across the genome, is a powerful approach for monitoring nascent enhancer transcription. Furthermore, the unique pattern of enhancer transcription can be used to identify enhancers in the absence of any information about the underlying transcription factors. Here, we describe the computational approaches required to identify and analyze active enhancers using GRO-seq data, including data pre-processing, alignment, and transcript calling. In addition, we describe protocols and computational pipelines for mining GRO-seq data to identify active enhancers, as well as known transcription factor binding sites that are transcribed. Furthermore, we discuss approaches for integrating GRO-seq-based enhancer data with other genomic data, including target gene expression and function. Finally, we describe molecular biology assays that can be used to confirm and explore further the function of enhancers that have been identified using genomic assays. Together, these approaches should allow the user to identify and explore the features and biological functions of new cell type-specific enhancers.

  20. Report of geomagnetic pulsation indices for space weather applications

    Science.gov (United States)

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  1. Structure of the poleward wall of the trough and the inclination of the geomagnetic field above the EISCAT radar

    Directory of Open Access Journals (Sweden)

    D. G. Jones

    Full Text Available A special high-resolution routine of the EISCAT radar has been used to investigate the structure and development of the poleward wall of a deep trough in electron density. The feature was tracked by the radar during a 7-hour period under very quiet geomagnetic conditions. The field-aligned nature of the structure enabled an estimate to be made of the inclination of the geomagnetic field above EISCAT that was in good agreement with the current model. Observations of narrow field-aligned enhancements in electron temperature demonstrated that the wall of this trough is a dynamic feature, reforming regularly as the electron density responds on a time scale of tens of minutes to energy input from soft-particle precipitation.

  2. Structure of the poleward wall of the trough and the inclination of the geomagnetic field above the EISCAT radar

    Directory of Open Access Journals (Sweden)

    D. G. Jones

    1997-06-01

    Full Text Available A special high-resolution routine of the EISCAT radar has been used to investigate the structure and development of the poleward wall of a deep trough in electron density. The feature was tracked by the radar during a 7-hour period under very quiet geomagnetic conditions. The field-aligned nature of the structure enabled an estimate to be made of the inclination of the geomagnetic field above EISCAT that was in good agreement with the current model. Observations of narrow field-aligned enhancements in electron temperature demonstrated that the wall of this trough is a dynamic feature, reforming regularly as the electron density responds on a time scale of tens of minutes to energy input from soft-particle precipitation.

  3. A 2015 International Geomagnetic Reference Field (IGRF) candidate model based on Swarm’s experimental absolute magnetometer vector mode data

    DEFF Research Database (Denmark)

    Vigneron, Pierre; Hulot, Gauthier; Olsen, Nils

    2015-01-01

    to epoch 2015.0 and truncated at degree and order 13. The resulting ASM-only 2015.0 IGRF candidate model is compared to analogous models derived from the mission’s nominal data and to the now-published final 2015.0 IGRF model. Differences among models mainly highlight uncertainties enhanced by the limited...... data. Here, we report on how ASM-only scalar and vector data from the Alpha and Bravo satellites between November 29, 2013 (a week after launch) and September 25, 2014 (for on-time delivery of the model on October 1, 2014) could be used to build a very valuable candidate model for the 2015.......0 International Geomagnetic Reference Field (IGRF). A parent model was first computed, describing the geomagnetic field of internal origin up to degree and order 40 in a spherical harmonic representation and including a constant secular variation up to degree and order 8. This model was next simply forwarded...

  4. Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices

    DEFF Research Database (Denmark)

    Tomita, S; Nose´, M; Iyemori, T

    2010-01-01

    The Auroral Electrojet (AE) indices, which are composed of four indices (AU, AL, AE, and AO), are calculated from the geomagnetic field data obtained at 12 geomagnetic observatories that are located in geomagnetic latitude (GMLAT) of 61.7°-70°. The indices have been widely used to study magnetic ...

  5. Evidence for a new geomagnetic jerk in 2014

    DEFF Research Database (Denmark)

    Torta, J. Miquel; Pavón-Carrasco, Francisco Javier; Marsal, Santiago

    2015-01-01

    The production of quasi-definitive data at Ebre observatory has enabled us to detect a new geomagnetic jerk in early 2014. This has been confirmed by analyzing data at several observatories in the European-African and Western Pacific-Australian sectors in the classical fashion of looking...... for the characteristic V shape of the geomagnetic secular variation trend. A global model produced with the latest available satellite and observatory data supports these findings, giving a global perspective on both the jerk and a related secular acceleration pulse at the core-mantle boundary. We conclude that the jerk...

  6. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  7. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    of the proteosome inhibitor and by genistein. Alveolar macrophages showed adherence to immobilized sICAM-1 in a CD18-dependent manner. Finally, airway instillation of sICAM-1 intensified lung injury produced by intrapulmonary deposition of IgG immune complexes in a manner associated with enhanced lung production...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes....

  8. Influence of active nano particle size and material composition on multiple quantum emitter enhancements: Their Enhancement and Jamming Effects

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.

    2014-01-01

    of a gain-impregnated silica nano-core covered with a nano-shell of a specific plasmonic material. Attention is devoted to the influence of the over-all size of these particles and their material composition on the obtained levels of active enhancement or jamming. Silver, gold and copper are employed...

  9. Focus on Freshman: Basic Instruction Programs Enhancing Physical Activity

    Science.gov (United States)

    Curry, Jarred; Jenkins, Jayne M.; Weatherford, Jennifer

    2015-01-01

    Physical activity sharply decreases after different life stages, particularly high school graduation to beginning university education. The purpose of this study was to investigate the effect of a specifically designed university physical activity class, Exercise Planning for Freshman (EPF), on students' physical activity and group cohesion…

  10. An investication into geomagnetic and atmospheric response ...

    African Journals Online (AJOL)

    ... Magadan, Khabarovsk, Wakkanai, Akita, Kokubunji, Okinawa and Manila. The study shows that the present storm is double step, and the leading single magnetospheric process that was responsible for both the first and second Dst decrease is the enhancement of the plasma sheet. An enhanced solar wind density drove, ...

  11. Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor.

    Science.gov (United States)

    Sawada, Atsushi; Nishizaki, Yuriko; Sato, Hiroko; Yada, Yukari; Nakayama, Rika; Yamamoto, Shinji; Nishioka, Noriyuki; Kondoh, Hisato; Sasaki, Hiroshi

    2005-11-01

    The cell population and the activity of the organizer change during the course of development. We addressed the mechanism of mouse node development via an analysis of the node/notochord enhancer (NE) of Foxa2. We first identified the core element (CE) of the enhancer, which in multimeric form drives gene expression in the node. The CE was activated in Wnt/beta-catenin-treated P19 cells with a time lag, and this activation was dependent on two separate sequence motifs within the CE. These same motifs were also required for enhancer activity in transgenic embryos. We identified the Tead family of transcription factors as binding proteins for the 3' motif. Teads and their co-factor YAP65 activated the CE in P19 cells, and binding of Tead to CE was essential for enhancer activity. Inhibition of Tead activity by repressor-modified Tead compromised NE enhancer activation and notochord development in transgenic mouse embryos. Furthermore, manipulation of Tead activity in zebrafish embryos led to altered expression of foxa2 in the embryonic shield. These results suggest that Tead activates the Foxa2 enhancer core element in the mouse node in cooperation with a second factor that binds to the 5' element, and that a similar mechanism also operates in the zebrafish shield.

  12. Orexin A activates hypoglossal motoneurons and enhances genioglossus muscle activity in rats

    Science.gov (United States)

    Zhang, G H; Liu, Z L; Zhang, B J; Geng, W Y; Song, N N; Zhou, W; Cao, Y X; Li, S Q; Huang, Z L; Shen, L L

    2014-01-01

    Background and Purpose Orexins have been demonstrated to play important roles in many physiological processes. However, it is not known how orexin A affects the activity of the hypoglossal motoneuron (HMN) and genioglossus (GG) muscle. Experimental Approach GG muscle electromyograms (GG-EMG) were recorded in anaesthetized adult rats after orexin A or orexin receptor antagonists were applied to the hypoglossal nucleus, and in adult rats in which orexin neurons were lesioned with the neurotoxin orexin-saporin (orexin-SAP). HMN membrane potential and firing were recorded from neonatal rat brain slices using whole-cell patch clamp after an infusion of orexin A or orexin receptor antagonists. Key Results Unilateral micro-injection of orexin A (50, 100 or 200 μM) into the hypoglossal nucleus significantly enhanced ipsilateral GG activity in adult rats. Orexin A (4, 20, 100 or 500 nM) depolarized the resting membrane potential and increased the firing rate of HMNs in a dose-dependent manner in the medullary slices of neonatal rats. Both SB 334867, a specific OX1 receptor antagonist and TCS OX2 29, a specific OX2 receptor antagonist not only blocked the depolarized membrane potential and the increased firing rate of HMNs by orexin A in the neonatal model but also attenuated GG-EMG in the adult model. A significant decrease in GG-EMG was observed in adult orexin neuron-lesioned rats compared with sham animals. Conclusion and Implications Orexin A activates OX1 and OX2 receptors within the hypoglossal motor pool and promotes GG activity, indicating that orexin A is involved in controlling respiratory motor activity. PMID:24846570

  13. Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation.

    Science.gov (United States)

    Li, Xiaowan; Liu, Xitao; Lin, Chunye; Qi, Chengdu; Zhang, Huijuan; Ma, Jun

    2017-08-01

    In this study, iodine-doped granular activated carbon (I-GAC) was prepared and subsequently applied to activate periodate (IO 4 - ) to degrade organic contaminants at ambient temperature. The physicochemical properties of GAC and I-GAC were examined using scanning electron microscopy, N 2 adsorption/desorption, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. No significant difference was observed between the two except for the existence of triiodide (I 3 - ) and pentaiodide (I 5 - ) on I-GAC. The catalytic activity of I-GAC towards IO 4 - was evaluated by the degradation of acid orange 7 (AO7), and superior catalytic performance was achieved compared with GAC. The effects of some influential parameters (preparation conditions, initial solution pH, and coexisting anions) on the catalytic ability were also investigated. Based on radical scavenging experiments, it appeared that IO 3 was the predominant reactive species in the I-GAC/IO 4 - system. The mechanism underlying the enhanced catalytic performance of I-GAC could be explained by the introduction of negatively charged I 3 - and I 5 - into I-GAC, which induced positive charge density on the surface of I-GAC. This accelerated the interaction between I-GAC and IO 4 - , and subsequently mediated the increasing generation of iodyl radicals (IO 3 ). Furthermore, a possible degradation pathway of AO7 was proposed according to the intermediate products identified by gas chromatography-mass spectrometry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Determination of the geomagnetic external contribution by nonlinear optimization methods

    International Nuclear Information System (INIS)

    Comisel, H.; Popa, L.

    1993-07-01

    The fluctuations of the Geomagnetic Field have been determined from magnetometric data in the framework of AKTIVE experiment. Using an approximate model which describes the oscillating motional of the satellite, the parameters of motion have also been calculated. (author). 7 refs, 7 figs, 1 tab

  15. First results from the first Croatian geomagnetic observatory

    Science.gov (United States)

    Mandic, Igor; Herak, Davorka; Heilig, Balazs

    2013-04-01

    The first Croatian geomagnetic observatory was established in the area of the Nature Park Lonjsko Polje, after a century of sporadic efforts originating from the proposals of Andrija Mohorovicic. The location was chosen after exhaustive surveys of possible sites. It is located far enough from sources of civilization noise, and was found to be an area without magnetic anomalies and with a low field gradient. The construction of the observatory buildings was completed in the autumn of 2011. The furnishing and installation of instruments and test measurements were completed by the beginning of summer 2012, ever since we have continuous recordings of the geomagnetic elements. In the beginning of December 2012 the fluxgate magnetometer LEMI-035 (H,D,Z orientation) has been installed under the framework of the PLASMON project in cooperation with the Tihany Observatory (Hungary). Permanent data of high quality from our observatory will contribute to the monitoring of the Earth's magnetic field on the regional and global levels, thus enabling further development of geomagnetism in Croatia through collaboration with scientists from the other countries, participation in the international projects, eventual membership in the International Real-time Magnetic Observatory Network (INTERMAGNET), etc. The field elements for the epoch 2012,75 and the baselines are presented together with highlights of some recorded geomagnetic events so far. Furthermore, the comparison between the variation data recorded by the dIdD and the fluxgate LEMI-035 magnetometer is presented.

  16. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  17. Long-term trends in geomagnetic and climatic variability

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2002-01-01

    Roč. 27, 6/7 (2002), s. 427-731 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3012806 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic forcing * climatic variability * global warming Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  18. Effects of geomagnetic storm on low latitude ionospheric total ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5. Effects of geomagnetic storm on low latitude ionospheric total electron content: A case study from Indian sector. Monti Chakraborty Sanjay Kumar Barin Kumar De Anirban Guha. Volume 124 Issue 5 July 2015 pp 1115-1126 ...

  19. Control of Movement of Artificial Satellities by Geomagnetic Field

    Czech Academy of Sciences Publication Activity Database

    Büllow, J.; Doležel, Ivo; Kabeláč, J.; Karban, P.; Ulrych, B.

    2007-01-01

    Roč. 5, č. 2 (2007), s. 11-15 ISSN 1731-6103 R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : geomagnetic field * artificial satellite * tether Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. A study on precursors leading to geomagnetic storms using artificial ...

    Indian Academy of Sciences (India)

    Space weather prediction involves advance forecasting of the magnitude and onset time of major geomagneticstorms on Earth. In this paper, we discuss the development of an artificial neural network-basedmodel to study the precursor leading to intense and moderate geomagnetic storms, following halo coronalmass ...

  1. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  2. Geomagnetic matching navigation algorithm based on robust estimation

    Science.gov (United States)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan

    2017-08-01

    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  3. A study on precursors leading to geomagnetic storms using artificial ...

    Indian Academy of Sciences (India)

    and predicts the Dst index in almost real-time. (Srivastava 2005). In order to improve GMS fore- casts, Dryer et al. (2004) suggested that models. Keywords. Space weather; coronal mass ejections; geomagnetic storm; artificial neural network. J. Earth Syst. Sci., DOI 10.1007/s12040-016-0702-1, 125, No. 5, July 2016, pp.

  4. A study on precursors leading to geomagnetic storms using artificial ...

    Indian Academy of Sciences (India)

    netic storms using SW data as inputs have been developed (Lundstedt and Wintoft 1994), with the ability to estimate the level of geomagnetic distur- bances as measured by the Dst index. The model developed by Lundstedt et al. (2002) consists of a recurrent neural network that requires hourly aver- ages of the solar wind ...

  5. Statistical Relationship between Sawtooth Oscillations and Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2008-06-01

    Full Text Available We have investigated a statistical relationship between sawtooth oscillations and geomagnetic storms during 2000-2004. First of all we selected a total of 154 geomagnetic storms based on the Dst index, and distinguished between different drivers such as Coronal Mass Ejection (CME and Co-rotating Interaction Region (CIR. Also, we identified a total of 48 sawtooth oscillation events based on geosynchronous energetic particle data for the same 2000-2004 period. We found that out of the 154 storms identified, 47 storms indicated the presence of sawtooth oscillations. Also, all but one sawtooth event identified occurred during a geomagnetic storm interval. It was also found that sawtooth oscillation events occur more frequently for storms driven by CME (˜62% than for storms driven by CIR (˜30%. In addition, sawtooth oscillations occurred mainly (˜82% in the main phase of storms for CME-driven storms while they occurred mostly (˜78% during the storm recovery phase for CIR-driven storms. Next we have examined the average characteristics of the Bz component of IMF, and solar wind speed, which were the main components for driving geomagnetic storm. We found that for most of the sawtooth events, the IMF Bz corresponds to --15 to 0 nT and the solar wind speed was in the range of 400˜700 km/s. We found that there was a weak tendency that the number of teeth for a given sawtooth event interval was proportional to the southward IMF Bz magnitude.

  6. Elements of Technology Enabled/Enhanced Active Learning (TEAL to Enhance Quality and Employability of Bachelor’s Students

    Directory of Open Access Journals (Sweden)

    Hassan Nur Farha Bte

    2018-01-01

    Full Text Available The application of technology innovation is rapidly increasing in industries and educational institutions. This phenomenon has led to the emergence of Technology Enabled/Enhanced Active Learning (TEAL which emphasizes the use of various techniques and technologies. TEAL is a new learning format that combines educational content from a lecturer, simulation, and student’s experiences using technological tools to provide a rich collaborative learning experience for students. This approach is used to provide academic professional development that brings innovation to the learning content, practically by using pedagogy, technology and classroom design. TEAL ensures the enhanced development of student's knowledge and skills in order to produce quality skilful workers with adequate employability skills. Technology is an effective tool used to facilitate the teaching and learning process, which can, in turn, create an active environment for students to build their knowledge, skill and experience. This paper determines the elements of TEAL based on interview sessions with expert academicians and from a systematic literature review. The selection of TEAL elements for this study was carried out using thematic analysis approach. Findings show that these TEAL elements would help institutions to promote students in involving themselves in active learning in order to enhance the quality of graduates in improving their technical knowledge, thereby enhancing their employability skills.

  7. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions

    DEFF Research Database (Denmark)

    Abdali, Salim; Johannessen, Christian; Nygaard, Jesper

    2007-01-01

    Using Surface enhanced ROA (SEROA), novel results are achieved by combining Raman Optical Activity (ROA) and resonance Surface Enhanced Raman Scattering (SERRS), applied on myoglobin. The novelty of this work is ascribed the first time reporting on chiral results of a study performed on a protein...... has shown that the SERS effect behaves consequently, depending on the concentration ratio of each component, i.e., myoglobin, Ag colloids and NaCl. Accordingly, it is shown here that SERS intensity has its maximum at certain concentration of these components, whereas below or above this value...

  8. Enhancement of Candida albicans killing activity of separated human epidermal cells by ultraviolet radiation

    International Nuclear Information System (INIS)

    Csato, M.; Kenderessy, A.S.; Dobozy, A.

    1987-01-01

    Ultraviolet irradiation enhanced the Candida albicans killing activity of freshly separated human epidermal cells in vitro. The simulation was dose-dependent and was not due to soluble extracellular factors acting on non-irradiated epidermal cells. The enhancement of the killing activity remained unchanged when epidermal cells were depleted of Langerhans cells. Protein synthesis inhibitors and prostaglandin antagonists inhibited the ultraviolet-induced augmentation of killing activity. (author)

  9. Chronic enhancement of CREB activity in the hippocampus interferes with the retrieval of spatial information

    OpenAIRE

    Viosca, Jose; Malleret, Gaël; Bourtchouladze, Rusiko; Benito, Eva; Vronskava, Svetlana; Kandel, Eric R.; Barco, Angel

    2009-01-01

    The activation of cAMP-responsive element-binding protein (CREB)-dependent gene expression is thought to be critical for the formation of different types of long-term memory. To explore the consequences of chronic enhancement of CREB function on spatial memory in mammals, we examined spatial navigation in bitransgenic mice that express in a regulated and restricted manner a constitutively active form of CREB, VP16-CREB, in forebrain neurons. We found that chronic enhancement of CREB activity ...

  10. Enhancing Learning Outcomes through Application Driven Activities in Marketing

    Science.gov (United States)

    Stegemann, Nicole; Sutton-Brady, Catherine

    2013-01-01

    This paper introduces an activity used in class to allow students to apply previously acquired information to a hands-on task. As the authors have previously shown active learning is a way to effectively facilitate and improve students' learning outcomes. As a result to improve learning outcomes we have overtime developed a series of learning…

  11. Enhancement of visible light irradiation photocatalytic activity of ...

    Indian Academy of Sciences (India)

    Mohamed Abdel Salam

    2017-09-25

    Sep 25, 2017 ... bility after being used for five successive times. The results revealed that 1.5 wt% Pt/SrTiO3 photocatalyst was acknowledged as the most active photocatalyst, and finally, the Pt/SrTiO3 nanoparticles have high photocat- alytic activity under visible light for the oxidation of cyclohexane. Acknowledgements.

  12. Short Communication : Enhancing the Quality and Activity of ...

    African Journals Online (AJOL)

    Effects of application of benzoic acid, sodium benzoate and sodium metabisulfite, prior to sun drying of papaya latex, on enzymic activity, colour appearance and smell of the crude papain produced were investigated. The preservatives improved appearance/colour, smell and enzymic activity with respect to control sample ...

  13. The Learning Activities Questionnaire: A Tool to Enhance Teaching

    Science.gov (United States)

    Ager, Richard

    2012-01-01

    This article describes the Learning Activities Questionnaire (LAQ) and how it can be employed to evaluate learning tasks not typically examined in course evaluation instruments such as readings and assignments. Drawing from behavioral theory in its focus on specific activities, this instrument is simple to interpret and provides clear direction…

  14. AE Geomagnetic Index Predictability for High Speed Solar Wind Streams: A Wavelet Decomposition Technique

    Science.gov (United States)

    Guarnieri, Fernando L.; Tsurutani, Bruce T.; Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Mannucci, Anthony J.

    2014-01-01

    High speed solar wind streams cause geomagnetic activity at Earth. In this study we have applied a wavelet interactive filtering and reconstruction technique on the solar wind magnetic field components and AE index series to allowed us to investigate the relationship between the two. The IMF Bz component was found as the most significant solar wind parameter responsible by the control of the AE activity. Assuming magnetic reconnection associated to southward directed Bz is the main mechanism transferring energy into the magnetosphere, we adjust parameters to forecast the AE index. The adjusted routine is able to forecast AE, based only on the Bz measured at the L1 Lagrangian point. This gives a prediction approximately 30-70 minutes in advance of the actual geomagnetic activity. The correlation coefficient between the observed AE data and the forecasted series reached values higher than 0.90. In some cases the forecast reproduced particularities observed in the signal very well.The high correlation values observed and the high efficacy of the forecasting can be taken as a confirmation that reconnection is the main physical mechanism responsible for the energy transfer during HILDCAAs. The study also shows that the IMF Bz component low frequencies are most important for AE prediction.

  15. Seismic zoning (first approximation) using data of the main geomagnetic field

    Science.gov (United States)

    Khachikyan, Galina; Zhumabayev, Beibit; Toyshiev, Nursultan; Kairatkyzy, Dina; Seraliyev, Alibek; Khassanov, Eldar

    2017-04-01

    Seismic zoning is among the most complicated and extremely important problems of modern seismology. In solving this problem, a very important parameter is maximal possible earthquake magnitude (Mmax) which is believed at present depends on horizontal size of geoblocks. At the same time, it was found by Khachikyan et al. [2012, IJG, doi: 10.4236/ijg.2012.35109] that Mmax value in any seismic region may be determined using Z_GSM value that is geomagnetic Z-component in this region estimated in geocentric solar-magnetosphere coordinate system (GSM). On the base of the global seismological catalog NEIC with M≥4.5 for 1973-2010 years, and the International Geomagnetic Reference Field (IGRF) model, an empirical relation was obtained as follows: Mmax= a + b {log[abs(Z_GSM)]}. For the case of the whole planet, obtained empirical coefficients are as follows: a = (5,22 ± 0,17), and b = (0,78 ± 0,06) with correlation coefficient R=0.91, standard deviation SD=0.56, and probability 95%. Further investigations showed that the coefficients of the regression equation are different for different seismically active regions of the planet. For example, to the territory of the San Andreas Fault, defined by the coordinates 30-45N, 105-135W obtained values are as follows: a = (4,04 ± 0.38) and b = (0.7 ± 0.13) with correlation coefficient R = 0.91, standard deviation SD = 0.34, and probability of 95%. For territory of inland seismicity in Eurasia defined by the coordinates 30-45N, 0-110E, a = (12.44 ± 0.48) and b = (1,15 ± 0.2) with correlation coefficient R = 0.87, standard deviation SD = 0.98, and probability of 95%, and for the territory of the strongest seismicity in the world defined by the coordinates 20S-20N, 90-150E, obtained values of a = (- 17.5 ± 1,5) and b = (5,7 ± 0.4) with correlation coefficient R = 0.97, standard deviation SD = 0.4, and probability of 95%. The relationship between the intensity of the main geomagnetic field and released seismic energy is

  16. Decadal-scale variations in geomagnetic field intensity from ancient Cypriot slag mounds

    Science.gov (United States)

    Shaar, Ron; Tauxe, Lisa; Ben-Yosef, Erez; Kassianidou, Vasiliki; Lorentzen, Brita; Feinberg, Joshua M.; Levy, Thomas E.

    2015-01-01

    Geomagnetic models based on direct observations since the 1830s show that the averaged relative change in field intensity on Earth's surface over the past 170 years is less than 4.8% per decade. It is unknown if these rates represent the typical behavior of secular variations due to insufficient temporal resolution of archaeomagnetic records from earlier periods. To address this question, we investigate two ancient slag mounds in Cyprus—Skouriotissa Vouppes (SU1, fourth to fifth centuries CE, 21 m in height), and Mitsero Kokkinoyia (MK1, seventh to fifth centuries BCE, 8 m in height). The mounds are multilayered sequences of slag and charcoals that accumulated near ancient copper production sites. We modeled the age-height relation of the mounds using radiocarbon dates, and estimated paleointensities using Thellier-type IZZI experiments with additional anisotropy, cooling rate, and nonlinear TRM assessments. To screen out ambiguous paleointensity interpretations, we applied strict selection criteria at the specimen/sample levels. To ensure objectivity, consistency, and robust error estimation, we employed an automatic interpretation technique and put the data available in the MagIC database. The analyses yielded two independent subcentury-scale paleointensity time series. The MK1 data indicate relatively stable field at the time the mound accumulated. In contrast, the SU1 data demonstrate changes that are comparable in magnitude to the fastest changes inferred from geomagnetic models. We suggest that fast changes observed in the published archaeomagnetic data from the Levant are driven by two longitudinally paired regions, the Middle East and South Africa, that show unusual activity in geomagnetic models.

  17. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  18. North-south asymmetric thermosphere response to geomagnetic storms caused by coronal mass ejections

    Science.gov (United States)

    Oliveira, D. M.; Zesta, E.; Schuck, P. W.; Sutton, E. K.

    2017-12-01

    We use CHAMP and GRACE density data in a statistical and superposed epoch analysis study to investigate the thermosphere global space and time response to CME-caused geomagnetic storms in the time period of September 2001 to September 2011. In order to account for solar cycle effects, we inter-calibrate both CHAMP and GRACE data against the Jacchia-Bowman 2008 (JB2008) empirical model under a regime of very low geomagnetic activity by fitting a polynomial fit with orthogonal expansion into the modeled density. We choose two different approaches related to physical effects of CME interactions with the magnetosphere. The zero epoch times are chosen as follows: in the first case, the instance of CME impact time associated with compression effects and, in the second case, the instance of time in which the IMF Bz turns suddenly southward, associated with the storm main phase onset. In general, in the second case, the thermosphere effects are more superposed in time in comparison to the effects of the first case. We find that, on average, large scale wave structures, presumably traveling atmospheric disturbances (TADs), propagate from auroral to equatorial regions in lag times as short as 3 hours. We also find that all local time regions, i.e., the global response, takes 2 more hours to occur. In addition, our findings show that there exists a strong north-south asymmetric heating, being most pronounced in the Southern Hemisphere in the moments preceding and following the zero epoch time. We attribute this effect to a combination of several factors that affect high latitude energy input into the upper atmosphere, such as seasons, IMF By component, and universal times, that is, the dipole longitude position during the developing of the storm main phase, the crucial time for energy input and subsequent thermosphere heating during geomagnetic storms.

  19. Enhancing sensorimotor activity by controlling virtual objects with gaze.

    Directory of Open Access Journals (Sweden)

    Cristián Modroño

    Full Text Available This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activity was similar regardless of what the effector was: the arm or the eye. These results have a potential application in the field of the neurorehabilitation as a new approach to generate activation of the sensorimotor system to support the recovery of the motor functions.

  20. ENHANCED BIODEGRADATION OF IOPROMIDE AND TRIMETHOPRIM IN NITRIFYING ACTIVATED SLUDGE

    Science.gov (United States)

    Iopromide and trimethoprim are frequently detected pharmaceuticals in effluents of wastewater treatment plants and in surface waters due to their persistence and high usage. Laboratory scale experiments showed that a significantly higher removal rate in nutrifying activated sludg...

  1. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    Science.gov (United States)

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  2. Schistosomes Enhance Plasminogen Activation: The Role of Tegumental Enolase.

    OpenAIRE

    Barbara C Figueiredo; Akram A Da'dara; Sergio C Oliveira; Patrick J Skelly

    2015-01-01

    Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease of global public health importance. These relatively large parasites are able to survive prolonged periods in the human vasculature without inducing stable blood clots around them. We show here that the intravascular life stages (schistosomula and adult males and females) can all promote significant plasminogen (PLMG) activation in the presence of tissue plasminogen activator (tPA). This results ...

  3. Northern Hemisphere patterns of phase coherence between solar/geomagnetic activity and NCEP/NCAR and ERA40 near-surface air temperature in period 7-8 years oscillatory modes

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Novotná, Dagmar

    2011-01-01

    Roč. 18, č. 2 (2011), s. 251-260 ISSN 1023-5809 R&D Projects: GA AV ČR IAA300420805 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z30420517 Keywords : climate variability * phase coherence * synchronization * North Atlantic Oscillation * solar activity Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.597, year: 2011

  4. The histone variant H2A.Z is an important regulator of enhancer activity.

    Science.gov (United States)

    Brunelle, Mylène; Nordell Markovits, Alexei; Rodrigue, Sébastien; Lupien, Mathieu; Jacques, Pierre-Étienne; Gévry, Nicolas

    2015-11-16

    Gene regulatory programs in different cell types are largely defined through cell-specific enhancers activity. The histone variant H2A.Z has been shown to play important roles in transcription mainly by controlling proximal promoters, but its effect on enhancer functions remains unclear. Here, we demonstrate by genome-wide approaches that H2A.Z is present at a subset of active enhancers bound by the estrogen receptor alpha (ERα). We also determine that H2A.Z does not influence the local nucleosome positioning around ERα enhancers using ChIP sequencing at nucleosomal resolution and unsupervised pattern discovery. We further highlight that H2A.Z-enriched enhancers are associated with chromatin accessibility, H3K122ac enrichment and hypomethylated DNA. Moreover, upon estrogen stimulation, the enhancers occupied by H2A.Z produce enhancer RNAs (eRNAs), and recruit RNA polymerase II as well as RAD21, a member of the cohesin complex involved in chromatin interactions between enhancers and promoters. Importantly, their recruitment and eRNAs production are abolished by H2A.Z depletion, thereby revealing a novel functional link between H2A.Z occupancy and enhancer activity. Taken together, our findings suggest that H2A.Z acts as an important player for enhancer functions by establishing and maintaining a chromatin environment required for RNA polymerase II recruitment, eRNAs transcription and enhancer-promoters interactions, all essential attributes of enhancer activity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The postsunset vertical plasma drift during geomagnetic storms and its effects on the generation of equatorial spread F

    Science.gov (United States)

    Huang, C.

    2017-12-01

    We will present two distinct phenomena related to the postsunset vertical plasma drift and equatorial spread F (ESF) observed by the Communication/Navigation Outage Forecasting System satellite over six years. The first phenomenon is the behavior of the prereversal enhancement (PRE) of the vertical plasma drift during geomagnetic storms. Statistically, storm-time disturbance dynamo electric fields cause the PRE to decrease from 30 to 0 m/s when Dst changes from -60 to -100 nT, but the PRE does not show obvious variations when Dst varies from 0 to -60 nT. The observations show that the storm activities affect the evening equatorial ionosphere only for Dst < -60 nT and that the dynamo electric field becomes dominant during the storm recovery phase. The second phenomenon is the relationship between the PRE and the generation of ESF. It is found that the occurrence of large-amplitude ESF irregularities is well correlated with the PRE and that the occurrence of small-amplitude ESF irregularities does not show a clear pattern at low solar activity but is anti-correlated with large-amplitude irregularities and the PRE at moderate solar activity. That is, the months and longitudes with high occurrence probability of large-amplitude irregularities are exactly those with low occurrence probability of small-amplitude irregularities, and vice versa. The generation of large-amplitude ESF irregularities is controlled by the PRE, and the generation of small-amplitude ESF irregularities may be caused by gravity waves and other disturbances, rather than by the PRE.

  6. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Science.gov (United States)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza

    2018-02-01

    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  7. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Daud Yunus

    2018-01-01

    Full Text Available Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  8. MANGO Imager Network Observations of Geomagnetic Storm Impact on Midlatitude 630 nm Airglow Emissions

    Science.gov (United States)

    Kendall, E. A.; Bhatt, A.

    2017-12-01

    The Midlatitude Allsky-imaging Network for GeoSpace Observations (MANGO) is a network of imagers filtered at 630 nm spread across the continental United States. MANGO is used to image large-scale airglow and aurora features and observes the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network consists of seven all-sky imagers providing continuous coverage over the United States and extending south into Mexico. This network sees high levels of medium and large scale wave activity due to both neutral and geomagnetic storm forcing. The geomagnetic storm observations largely fall into two categories: Stable Auroral Red (SAR) arcs and Large-scale traveling ionospheric disturbances (LSTIDs). In addition, less-often observed effects include anomalous airglow brightening, bright swirls, and frozen-in traveling structures. We will present an analysis of multiple events observed over four years of MANGO network operation. We will provide both statistics on the cumulative observations and a case study of the "Memorial Day Storm" on May 27, 2017.

  9. Enhanced activities of organically bound tritium in biota samples.

    Science.gov (United States)

    Svetlik, I; Fejgl, M; Malátová, I; Tomaskova, L

    2014-11-01

    A pilot study aimed on possible occurrence of elevated activity of non-exchangable organically bound tritium (NE-OBT) in biota was performed. The first results showed a significant surplus of NE-OBT activity in biota of the valley of Mohelno reservoir and Jihlava river. The liquid releases of HTO from the nuclear power plant Dukovany is the source of tritium in this area. This area can be a source of various types of natural samples for future studies of tritium pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Onuma, Hirohisa; Inukai, Kouichi, E-mail: kinukai@ks.kyorin-u.ac.jp; Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  11. Glycerol enhances fungal germination at the water-activity limit for life

    NARCIS (Netherlands)

    Stevenson, Andrew; Hamill, Philip G; Medina, Ángel; Kminek, Gerhard; Rummel, John D; Dijksterhuis, Jan; Timson, David J; Magan, Naresh; Leong, Su-Lin L; Hallsworth, John E

    2017-01-01

    For the most-extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0-64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water-activity regimes, using an

  12. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...

  13. An atlas of active enhancers across human cell types and tissues

    Science.gov (United States)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  14. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  15. Enhanced antioxidant activity of polyolefin films integrated with grape tannins.

    Science.gov (United States)

    Olejar, Kenneth J; Ray, Sudip; Kilmartin, Paul A

    2016-06-01

    A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Prior-to-Exam: What Activities Enhance Performance?

    Science.gov (United States)

    Rhoads, C. J.; Healy, Therese

    2013-01-01

    Can instructors impact their student performance by recommending an activity just prior to taking an exam? In this study, college students were randomly assigned to one of three treatment groups (study, exercise, or meditation) or a control group. Each group was given two different types of tests; a traditional concept exam, and a non-traditional…

  17. Intense synaptic activity enhances temporal resolution in spinal motoneurons.

    Directory of Open Access Journals (Sweden)

    Rune W Berg

    Full Text Available In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a 10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time, this intense synaptic input may serve to facilitate the generation of rapid changes in movements.

  18. Jungle Honey Enhances Immune Function and Antitumor Activity

    Science.gov (United States)

    Fukuda, Miki; Kobayashi, Kengo; Hirono, Yuriko; Miyagawa, Mayuko; Ishida, Takahiro; Ejiogu, Emenike C.; Sawai, Masaharu; Pinkerton, Kent E.; Takeuchi, Minoru

    2011-01-01

    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261. PMID:19141489

  19. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  20. Enhanced excision repair activity in mammalian cells after ionizing radiation

    International Nuclear Information System (INIS)

    Bases, R.; Franklin, W.A.; Moy, T.; Mendez, F.

    1992-01-01

    Monkey CV-1 cells which had received 5 Gy 12 h before harvesting lysates from their cultures contained approximately three times as much DNA excision repair enzyme activity as unirradiated cells, determined in crude cell lysates by the release of intermediate mobility DNA fragments and fragments with 3'-phosphoryl ends from 5'- 32 P-end labelled irradiated 95 bp αDNA. Different 3'-termini endow fragments with differing mobilities, signifying steps in the processing of radiation damaged DNA. Similar results were obtained when Krebs II mouse tumour cells growing in mice as ascites received 5Gy 12 h before harvest. Enzyme activities from CV-1 cells and from Krebs II cells were partially purified as 60-70 kDa proteins on Superose 12 or Ultrogel AcA-54 columns. Divalent cations were not required for enzyme activity. A 23 nucleotide long defined duplex oligodeoxynucleotide substrate containing a single 8-oxodG residue was also very actively cleaved by partially purified cell enzymes. 8-oxoguanine is a major product of ionizing radiation's action on DNA and recognized by the enzymes described here. (author)

  1. Enhanced Memory as a Common Effect of Active Learning

    Science.gov (United States)

    Markant, Douglas B.; Ruggeri, Azzurra; Gureckis, Todd M.; Xu, Fei

    2016-01-01

    Despite widespread consensus among educators that "active learning" leads to better outcomes than comparatively passive forms of instruction, it is often unclear why these benefits arise. In this article, we review research showing that the opportunity to control the information experienced while learning leads to improved memory…

  2. Learner-Interface Interaction for Technology-Enhanced Active Learning

    Science.gov (United States)

    Sinha, Neelu; Khreisat, Laila; Sharma, Kiron

    2009-01-01

    Neelu Sinha, Laila Khreisat, and Kiron Sharma describe how learner-interface interaction promotes active learning in computer science education. In a pilot study using technology that combines DyKnow software with a hardware platform of pen-enabled HP Tablet notebook computers, Sinha, Khreisat, and Sharma created dynamic learning environments by…

  3. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    Because of the important role of rat ICAM-1 in the development of lung inflammatory injury, soluble recombinant rat ICAM-1 (sICAM-1) was expressed in bacteria, and its biologic activities were evaluated. Purified sICAM-1 did bind to rat alveolar macrophages in a dose-dependent manner and induced ...

  4. Presynaptic Spontaneous Activity Enhances the Accuracy of Latency Coding

    Czech Academy of Sciences Publication Activity Database

    Leváková, Marie; Tamborrino, M.; Košťál, Lubomír; Lánský, Petr

    2016-01-01

    Roč. 28, č. 10 (2016), s. 2162-2180 ISSN 0899-7667 R&D Projects: GA MŠk 7AMB15AT010; GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : neural coding * first-spike latency * spontaneous activity Subject RIV: FH - Neurology Impact factor: 1.938, year: 2016

  5. Microbial enrichment to enhance the disease suppressive activity of compost

    NARCIS (Netherlands)

    Postma, J.; Montenari, M.; Boogert, van den P.H.J.F.

    2003-01-01

    Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of

  6. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    Science.gov (United States)

    2015-09-30

    Multistatic Active Sonar Signal Processing," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, May 26-31...2015, Genoa, Italy, May 18-21. HONORS/AWARDS/PRIZES Dr. Jian Li gave a plenary talk at the IEEE Sensor Array and Multichannel Signal Processing

  7. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  8. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Matt; Wogulis, Mark

    2017-11-14

    The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  9. Business oriented educational experiments enhance active learning by engineering students

    DEFF Research Database (Denmark)

    Christiansen, Nynne Mia; Schjær-Jacobsen, Hans; Simon, Jens

    2012-01-01

    exploration symposium on bridging the gap between engineering education and business is proposed on the basis of the Copenhagen University College of Engineering (IHK) being involved in a DKK 50m ongoing project “Business Oriented Educational Experiments” financed by the Capital Region of Denmark...... and the European Social Fund. The project is carried out with other major educational institutions in the Copenhagen area and organized in five themes: 1) world class competences, 2) new interactions between education and business, 3) the experimenting organization, 4) education on demand, and 5) new career paths...... benefits from the CIE activities: Businesses execute innovative solutions, students practice active learning and build a platform for their future professional career, and professors leave the classrooms and get an opportunity to reality check their theories. CIE is operating on a network platform made up...

  10. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... of different factors, such as the nature of the enzyme, the properties of the support, the type of immobilization and the interaction between enzyme and support, has to be taken into consideration. In this thesis, these factors are pursued and addressed by exploiting various types of polymers with focus...

  11. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima

    2014-11-12

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  12. Enhancement of Antibacterial activity of Chitosan by gamma irradiation

    International Nuclear Information System (INIS)

    Bashandy, A.S.; Ibrahim, H.M.M.

    2006-01-01

    The antibacterial activity of irradiated and non-irradiated chitosan against E.coli, S.aureus, Salmonella, Strep. fecalis,Closteridium and P. aerugenosa was studied. Up to 1.25 mg/l, chitosan hardly suppressed the growth of all the strains while 3 mg/l of chitosan clearly inhibited the growth of all the studied strains. Therefore, the concentration of 3 mg/l of chitosan in the medium was adopted in this study. Irradiation at 100 KGy under dry conditions was effective in increasing the activity of chitosan and the growth of bacterial strains which was completely inhibited. It was also found that the addition of chitosan to dressing membranes present good barrier properties against microbes especially that irradiated at 100 KGy

  13. Observational evidence for enhanced magnetic activity of superflare stars.

    Science.gov (United States)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  14. LY2109761 enhances cisplatin antitumor activity in ovarian cancer cells.

    Science.gov (United States)

    Gao, Yuxiu; Shan, Ning; Zhao, Cheng; Wang, Yunhai; Xu, Fuliang; Li, Jiacun; Yu, Xiaoqian; Gao, Lifeng; Yi, Zhengjun

    2015-01-01

    Ovarian cancer is among the most lethal of all malignancies in women. While chemotherapy is the preferred treatment modality, chemoresistance severely limits treatment success. Because transforming growth factor-beta (TGF-β) could increase survival of ovarian cancer cells in the presence of cisplatin, we conducted a preclinical study of the antitumor effects of the TGF-β type I (TβRI) and type II (TβRII) kinase inhibitor LY2109761 in combination with cisplatin. SKOV3, OV-90 and SKOV3(DDP) cells were treated with LY2109761, and/or cisplatin, and cell viability, apoptosis mRNA and protein expression levels were then evaluated. Furthermore, the efficacy of LY2109761 combined with cisplatin was further examined in established xenograft models. LY2109761 was sufficient to induce spontaneous apoptosis of ovarian cancer cells. Combination with LY2109761 significantly augmented the cytotoxicity of cisplatin in both parental and cisplatin resistant ovarian cancer cells. LY2109761 significantly increased apoptotic cell death in cisplatin-resistant cells. Combination treatment of LY2109761 and cisplatin showed antiproliferative effects and induced a greater rate of apoptosis than the sum of the single-treatment rates and promoted tumor regression in established parental and cisplatin resistant ovarian cancer xenograft models. Chemotherapeutic approaches using LY2109761 might enhance the treatment benefit of the cisplatin in the treatment of ovarian cancer patients.

  15. Lipase Activity Enhancement by SC-CO2 Treatment

    Czech Academy of Sciences Publication Activity Database

    Hlavsová, K.; Wimmer, Zdeněk; Xanthakis, E.; Bernášek, Prokop; Sovová, Helena; Zarevúcka, Marie

    63b, č. 6 (2008), s. 779-784 ISSN 0932-0776 R&D Projects: GA MŠk OC D30.001 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40720504; CEZ:AV0Z40550506 Keywords : lipase activity * supercritical carbon dioxide * enantioselectivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.852, year: 2008 www.znaturforsch.com/ab/v63b/63b0779.pdf

  16. Enhancing laboratory activity with computer-based tutorials

    OpenAIRE

    Gordon Ritchie; Paul Garner

    1995-01-01

    In a degree course in electronic engineering, great importance is attached to laboratory work, in which students have the opportunity to develop their creative skills in a practical environment. For example, in the first year of the course they are expected to design and test some basic circuits using data available on the characteristics of the semiconductor devices to be used. Many of the students cannot be prepared sufficiently for this activity by attendance at lectures, in which basic pr...

  17. Enhanced Efflux Pump Activity in Old Candida glabrata Cells.

    Science.gov (United States)

    Bhattacharya, Somanon; Fries, Bettina C

    2018-03-01

    We investigated the effect of replicative aging on antifungal resistance in Candida glabrata Our studies demonstrate significantly increased transcription of ABC transporters and efflux pump activity in old versus young C. glabrata cells of a fluconazole-sensitive and -resistant strain. In addition, higher tolerance to killing by micafungin and amphotericin B was noted and is associated with higher transcription of glucan synthase gene FKS1 and lower ergosterol content in older cells. Copyright © 2018 American Society for Microbiology.

  18. Enhanced copper removal from activated sludge using bioferric/selectors

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, M.W.; Cannon, F.S. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

    1999-05-01

    Effluent copper concentrations from a pilot-scale conventional activated-sludge system (control) were compared with those from a conventional pilot treatment process that also integrated bioferric/selector units. The bioferric/selector units employed iron coagulation within the activated-sludge basin and also provided storage of activated sludge in a nonaerated selector for a period of 18--24 h. During pseudo-steady-state operation over a 30-day period, the systems employing the bioferric/selector treatment consistently yielded lower effluent copper concentrations than did the controls. Although influent copper concentration ranged from 126 to 723 ppb (228 ppb average), the two bioferric/selector units achieved an average effluent copper concentration of 22 ppb, whereas the two conventional controls achieved an average of 40 ppb. The difference in copper concentrations between the bioferric/selector units and the controls was statistically significant to the 99.5% confidence level when comparing effluent copper concentrations as a function of mixed-liquor volatile suspended solids (MLVSS). For both conditions, lower effluent copper corresponded to higher MLVSS, and for equal levels of MLVSS, the bioferric/selector units statistically achieved lower effluent copper concentrations than did the controls. Likewise, Freundlich isotherm plots indicated that the MLVSS (or MLSS) that had undergone the bioferric/selector treatment achieved statistically greater capture of copper than did their control counterparts.

  19. Genetic disruption of CD8+ Treg activity enhances the immune response to viral infection

    OpenAIRE

    Holderried, Tobias A. W.; Lang, Philipp A.; Kim, Hye-Jung; Cantor, Harvey

    2013-01-01

    Cellular interactions that regulate the immune response of T cells to viral infection are poorly understood. Here we report that in the absence of activity of CD8 regulatory T-cells (CD8 Treg cells), antiviral immunity is enhanced and the deleterious effects of viral infection are constrained. Using a genetically modified mouse model that displays defective regulatory activity of CD8 Treg cells, the immune response against viruses was substantially enhanced during the acute and chronic phase ...

  20. Music training enhances rapid plasticity of N1 and P2 source activation for unattended sounds

    Directory of Open Access Journals (Sweden)

    Miia eSeppänen

    2012-03-01

    Full Text Available Neurocognitive studies demonstrate that long-term musical training enhances the processing of unattended sounds. It is not clear, however, whether musical training modulates also rapid (within tens of minutes neural plasticity for sound encoding. To study this, we examined whether adult musicians display enhanced rapid neural plasticity when compared to nonmusicians. More specifically, we examined the modulation of P1, N1, and P2 responses to regular standard sounds in an oddball paradigm between unattended passive blocks which were separated by an active task. Source analysis for event-related potentials showed that N1 and P2 source activation decreased selectively in musicians already after fifteen minutes of passive exposure to sounds and that P2 source activation re-enhanced after the active task in musicians. Additionally, event-related potential (ERP analysis revealed that in both musicians and nonmusicians, P2 ERP amplitude enhanced after fifteen minutes of passive exposure but only at frontal electrodes. Furthermore, in musicians, N1 ERP enhanced after the active discrimination task but only at parietal electrodes. Musical training modulates the rapid plasticity reflected in N1 and P2 source activation for unattended regular standard sounds. Enhanced rapid plasticity of N1 and P2 might reflect the faster auditory perceptual learning in musicians when compared to nonmusicians.