WorldWideScience

Sample records for enhanced energy efficiency

  1. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  2. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  3. Energy Efficient Clustering Protocol to Enhance Performance of Heterogeneous Wireless Sensor Network: EECPEP-HWSN

    Directory of Open Access Journals (Sweden)

    Santosh V. Purkar

    2018-01-01

    Full Text Available Heterogeneous wireless sensor network (HWSN fulfills the requirements of researchers in the design of real life application to resolve the issues of unattended problem. But, the main constraint faced by researchers is the energy source available with sensor nodes. To prolong the life of sensor nodes and thus HWSN, it is necessary to design energy efficient operational schemes. One of the most suitable approaches to enhance energy efficiency is the clustering scheme, which enhances the performance parameters of WSN. A novel solution proposed in this article is to design an energy efficient clustering protocol for HWSN, to enhance performance parameters by EECPEP-HWSN. The proposed protocol is designed with three level nodes namely normal, advanced, and super, respectively. In the clustering process, for selection of cluster head we consider different parameters available with sensor nodes at run time that is, initial energy, hop count, and residual energy. This protocol enhances the energy efficiency of HWSN and hence improves energy remaining in the network, stability, lifetime, and hence throughput. It has been found that the proposed protocol outperforms than existing well-known LEACH, DEEC, and SEP with about 188, 150, and 141 percent respectively.

  4. Valuing uncertain cash flows from investments that enhance energy efficiency.

    Science.gov (United States)

    Abadie, Luis M; Chamorro, José M; González-Eguino, Mikel

    2013-02-15

    There is a broad consensus that investments to enhance energy efficiency quickly pay for themselves in lower energy bills and spared emission allowances. However, investments that at first glance seem worthwhile usually are not undertaken. One of the plausible, non-excluding explanations is the numerous uncertainties that these investments face. This paper deals with the optimal time to invest in an energy efficiency enhancement at a facility already in place that consumes huge amounts of a fossil fuel (coal) and operates under carbon constraints. We follow the Real Options approach. Our model comprises three sources of uncertainty following different stochastic processes which allows for application in a broad range of settings. We assess the investment option by means of a three-dimensional binomial lattice. We compute the trigger investment cost, i.e., the threshold level below which immediate investment would be optimal. We analyze the major drivers of this decision thus aiming at the most promising policies in this regard. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The blessings of energy efficiency in an enhanced EU sustainability scenario. Volume 1

    International Nuclear Information System (INIS)

    Lechtenboehmer, Stefan

    2007-01-01

    Although the anticipated 'end of cheap oil' has boosted the interest in energy efficiency as a cornerstone of energy and climate strategies, it is usually taken into account on the basis of rather narrowly defined cost-benefit considerations. As a consequence, substantial ancillary benefits are usually barely considered.In a recent study for the European Parliament (EP), the authors assessed two enhanced climate strategies compared to a more conventional strategy. One enhanced climate policy scenario relies, in particular, on raising the annual pace of energy efficiency improvement. The other aims at a radical boost of the market share of renewable energy forms, which, however, presupposes an equally radical improvement of energy efficiency.The present article presents the scenario results and places them in the context of risk characterisation of the considered climate policy scenarios. Risks of international turmoil and energy price hikes could be reduced if dependency rates for fossil fuel imports went down. A more ambitious climate policy can also strengthen the EU position in post-Kyoto global climate agreements and a moderated need for emission trading can, for example, reduce conflicting pressures on clean technology transfer. On the other hand, the implementation of the efficiency strategy will entail increased domestic risks because it will involve a re-prioritisation of resource allocation and will thus affect the current distribution of wealth in both the energy sector and some other closely related sectors.The article outlines the main drivers behind the ambitious energy efficiency scenario and it attaches tentative price tags to the ancillary effects, with special emphasis on the above sketched swapping of risks. It will, therefore, strongly argue for a more holistic view, which underscores the need for political action and the benefits of such proactive policies in favour of energy efficiency

  6. A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account

    International Nuclear Information System (INIS)

    Liu, Jizhen; Meng, Hongmin; Hu, Yang; Lin, Zhongwei; Wang, Wei

    2015-01-01

    Highlights: • We discuss the disadvantages of conventional OTC MPPT method. • We study the relationship between enhancing efficiency and power smoothing. • The conversion efficiency is enhanced and the volatility of power is suppressed. • Small signal analysis is used to verify the effectiveness of proposed method. - Abstract: With the increasing capacity of wind energy conversion system (WECS), the rotational inertia of wind turbine is becoming larger. And the efficiency of energy conversion is significantly reduced by the large inertia. This paper proposes a novel maximum power point tracking (MPPT) method to enhance the efficiency of energy conversion for large-scale wind turbine. Since improving the efficiency may increase the fluctuations of output power, power smoothing is considered as the second control objective. A T-S fuzzy inference system (FIS) is adapted to reduce the fluctuations according to the volatility of wind speed and accelerated rotor speed by regulating the compensation gain. To verify the effectiveness, stability and good dynamic performance of the new method, mechanism analyses, small signal analyses, and simulation studies are carried out based on doubly-fed induction generator (DFIG) wind turbine, respectively. Study results show that both the response speed and the efficiency of proposed method are increased. In addition, the extra fluctuations of output power caused by the high efficiency are reduced effectively by the proposed method with FIS

  7. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, M.; McKane, A.

    1999-01-01

    This paper describes a more compelling case for industry to promote the non-energy benefits of energy efficiency investments. They do this in two ways to actively appeal to chief executive officers' (CEOs') and chief financial officers' (CFOs') primary responsibility: to enhance shareholder value. First, they describe the use of a project-by-project corporate financial analysis approach to quantify a broader range of productivity benefits that stem from investments in energy-efficient technologies, including waste reduction and pollution prevention. Second, and perhaps just as important, they present such information in corporate financial terms. These standard, widely accepted analysis procedures are more credible to industry than the economic modeling done in the past because they are structured in the same way corporate financial analysts perform discounted cashflow investment analyses on individual projects. Case studies including such financial analyses, which quantify both energy and non-energy benefits from investments in energy-efficient technologies, are presented. Experience shows that energy efficiency projects' non-energy benefits often exceed the value of energy savings, so energy savings should be viewed more correctly as part of the total benefits, rather than the focus of the results. Quantifying the total benefits of energy efficiency projects helps companies understand the financial opportunities of investments in energy-efficient technologies. Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  8. The adoption of energy efficiency enhancing technologies. Market Performance and Policy Strategies in Case of Heterogeneous Firms

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, E.; Nijkamp, P. [Department of Spatial Economics, Free University Amsterdam, Amsterdam (Netherlands)

    1997-07-01

    The adoption of energy-efficiency enhancing technologies by heterogeneous firms is analyzed. The fact that energy use does not only cause external environmental costs through pollution, but also directly affects the profitability of the firm and hence its behaviour on input and output markets is taken for granted. It is demonstrated that the consideration of such market processes may have important implications for the efficiency of environmental policies concerned with energy use. The analysis focuses in particular on the efficiency of the market-led adoption and diffusion process under various policy regimes. It is shown that the promotion of energy-efficiency enhancing technologies might have unexpected effects in that it could lead to an increase in energy use, while the use of energy taxes might actually reduce the attractiveness of energy-saving technologies. 22 refs.

  9. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2011-01-01

    The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.

  10. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  11. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  12. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    Science.gov (United States)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  13. Enhancing energy efficiency in public buildings: The role of local energy audit programmes

    International Nuclear Information System (INIS)

    Annunziata, Eleonora; Rizzi, Francesco; Frey, Marco

    2014-01-01

    In the objective of reaching the “nearly zero-energy buildings” target set by the European Union, municipalities cover a crucial role in advocating and implementing energy-efficient measures on a local scale. Based on a dataset of 322 municipalities in Northern Italy, we carried out a statistical analysis to investigate which factors influence the adoption of energy efficiency in municipal buildings. In particular, the analysis focuses on four categories of factors: (i) capacity building for energy efficiency, (ii) existing structure and competences for energy efficiency, (iii) technical and economic support for energy efficiency, and (iv) spill-over effect caused by adoption of “easier” energy-efficient measures. Our results show that capacity building through training courses and technical support provided by energy audits affect positively the adoption of energy efficiency in municipal buildings. The size of the municipal authority, the setting of local energy policies for residential buildings and funding for energy audits are not correlated with energy efficiency in public buildings, where the “plucking of low hanging fruit” often prevails over more cost-effective but long-term strategies. Finally, our results call for the need to promote an efficient knowledge management and a revision of the Stability and Growth Pact. - Highlights: • Public procurement supports the deployment of the energy efficiency of buildings. • Energy audits and other factors influence energy efficiency in public buildings. • Econometric analysis applied to data from 322 municipalities in Northern Italy. • Municipalities need to overtake the “plucking of low-hanging fruit”. • Knowledge management should be associated with removal of budget constraints

  14. Towards a More Energy Efficient Future: Applying indicators to enhance energy policy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Improving energy efficiency is a shared policy goal of many governments around the world. The benefits of more efficient use of energy are well known. Not only does it reduce energy costs and investments in energy infrastructure, it also lowers fossil fuel dependency and CO2 emissions, while at the same time increasing competitiveness and improving consumer welfare. Yet many questions remain unanswered. What are the latest trends in global energy use and CO2 emissions? How do factors such as demography, economic structure, income, lifestyle and climate affect these trends? Where are the greatest potentials to further improve energy efficiency, and which data are required to support energy efficiency policy development? This publication answers these questions using the latest insights from the IEA energy indicators work. The goal is to show policy makers how in-depth indicators can be used to track the progress in efficiency and identify new opportunities for improvements.

  15. A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings

    International Nuclear Information System (INIS)

    Lee, W.L.; Yik, F.W.H.; Jones, P.

    2003-01-01

    Within a given budget, selection of the optimal set of measures for enhancing the energy efficiency of a building is often based on the relative order of the feasible measures, prioritised according to either the life cycle cost saving or the economic benefit-cost ratio of the measures. A sensitivity analysis shows that, compared to the life cycle cost analysis, the benefit-cost ratio analysis is less susceptible to the influence of uncertainties in the estimates of the present value of the life cycle energy saving and cost. Where interactive measures are involved, the effects of some are dependent on the co-existence of other measures. The prioritisation determined according to the benefit-cost ratios of individual measures, each taken in the absence of all the others, can lead to the choice of a range of measures that is below optimal. Selection of the optimal set of energy efficiency enhancement measures requires a multistep approach, which is exemplified by the case study described in the paper

  16. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  17. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  18. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  19. Role of executive agencies for energy efficiency with a view on activities of Serbian Energy Efficiency Agency

    Directory of Open Access Journals (Sweden)

    Kovačić Bojan J.

    2012-01-01

    Full Text Available Many countries, particularly in Europe, have executive energy efficiency agencies at national, regional and local levels that are organized in different ways. For all of them, it is common that there are existing strategic needs in their countries for enhancement of conditions and measures for rational use of energy and fuels. Serbian Energy Efficiency Agency was established in 2002 within the reform of the energy sector in Serbia and its current status was defined in 2004 by the Energy Law. It contributes to the improvement of social responsibility towards energy in all structures of the state and society, by proposing energy efficiency incentives, promoting importance of energy efficiency, as well as by managing energy efficiency and renewable energy programs and projects.

  20. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  1. Renewable Energies and Enhanced Energy Efficiencies: Mitigation/Adaptation Measures to Climate Change Impacts on Cyprus and in the Eastern Mediterranean

    Science.gov (United States)

    Lange, Manfred

    2010-05-01

    The Eastern Mediterranean in general and Cyprus in particular are considered "hot spots" of future climate change. This will become manifest through an increase in the number and duration of drought events and extended hot-spells. The need to cope with the impacts of climate change will lead to enhanced requirements for cooling of private and public housing and growing demands for potable water derived from seawater desalination. This in turn will cause increasing pressures on electricity production and will result in additional strain on the energy sector in the region. For Cyprus, the current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of petroleum products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to about 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. The current building stock on Cyprus lacks basic measures for energy efficiency. This is particularly noteworthy with regard to insufficient insulation of buildings, which causes significant amounts of energy to be expanded for cooling. In light of these facts, an increased use of renewable energies and measures to enhance energy efficiencies in the built environment constitute important elements of a stringent and effective mitigation/adaptation strategy to climate change. The Eastern Mediterranean is among the most suitable location for the utilization of solar energy in Europe. A global direct normal irradiance of more than 1 800 kWh/m2 on Cyprus offers a renewable electricity potential of app. 20 to 23 TWh/yr when concentrated solar power (CSP) technology is employed. With regard to enhanced energy efficiency

  2. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  3. Promotion of Efficient Use of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  4. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  5. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  6. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  7. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  8. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  9. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  10. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  11. Innovation in Multi-Level Governance for Energy Efficiency. Sharing experience with multi-level governance to enhance energy efficiency. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    Jollands, Nigel; Gasc, Emilien; Pasquier, Sara Bryan

    2009-12-15

    Despite creating a plethora of national and international regulations and voluntary programmes to improve energy efficiency, countries are far from achieving full energy efficiency potential across all sectors of the economy. One major challenge, among numerous barriers, is policy implementation. One strategy that many national governments and international organisations have used to address the implementation issue is to engage regional and local authorities. To that end, many programmes have been created that foster energy efficiency action and collaboration across levels of government. The aim of this report is to identify trends and detail recent developments in multi-level governance in energy efficiency (MLGEE). By sharing lessons learned from daily practitioners in the field, the IEA hopes energy efficiency policy makers at all levels of government will be able to identify useful multilevel governance (MLG) practices across geographical and political contexts and use these to design robust programmes; modify existing programmes, and connect and share experiences with other policy makers in this field.

  12. Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement

    International Nuclear Information System (INIS)

    Poudineh, Rahmatallah; Jamasb, Tooraj

    2014-01-01

    The need for investment in capital intensive electricity networks is on the rise in many countries. A major advantage of distributed resources is their potential for deferring investments in distribution network capacity. However, utilizing the full benefits of these resources requires addressing several technical, economic and regulatory challenges. A significant barrier pertains to the lack of an efficient market mechanism that enables this concept and also is consistent with business model of distribution companies under an unbundled power sector paradigm. This paper proposes a market-oriented approach termed as “contract for deferral scheme” (CDS). The scheme outlines how an economically efficient portfolio of distributed generation, storage, demand response and energy efficiency can be integrated as network resources to reduce the need for grid capacity and defer demand driven network investments. - Highlights: • The paper explores a practical framework for smart electricity distribution grids. • The aim is to defer large capital investments in the network by utilizing and incentivising distributed generation, demand response, energy efficiency and storage as network resources. • The paper discusses a possible new market model that enables integration of distributed resources as alternative to grid capacity enhancement

  13. Implications of energy efficiency measures in wheat production

    DEFF Research Database (Denmark)

    Meyer-Aurich, Andreas; Ziegler, T.; Scholz, L.

    The economic and environmental effect of energy saving measures were analyzed for a typical wheat production system in Germany. The introduction of precision farming, reduced nitrogen fertilization and improved crop drying technologies proved to be efficient measures for enhancing energy efficiency...

  14. Transition towards energy efficient machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Zein, Andre [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Provides unique data about industrial trends affecting the energy demand of machine tools. Presents a comprehensive methodology to assess the energy efficiency of machining processes. Contains an integrated management concept to implement energy performance measures into existing industrial systems. Includes an industrial case study with two exemplary applications. Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The target audience primarily comprises researchers and practitioners challenged to enhance energy efficiency in manufacturing. The book may also be beneficial for graduate students who want to specialize in this field.

  15. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  16. Auditing energy use -a systematic approach for enhancing energy efficiency

    International Nuclear Information System (INIS)

    Ardhapnrkar, P.M.; Mahalle, A.M.

    2005-01-01

    Energy management is a critical activity in the developing as well as developed countries owing to constraints in the availability of primary energy resources and the increasing demand for energy from the industrial and non-industrial users. Energy consumption is a vital parameter that determines the economic growth of any country. An energy management system (EMS) can save money by allowing greater control over energy consuming equipment. The foundation for the energy program is the energy audit, which is the systematic study of factory or building to determine where and how well energy is being used. It is the nucleus of any successful energy saving program -it is tool, not a solution. Conventional energy conservation methods are mostly sporadic and lack a coordinated plan of action. Consequently only apparent systems are treated without the analysis of system interaction. Energy audit on the other hand, involves total system approach and aims at optimizing energy use efficiently for the entire plant. In the present paper a new approach to pursue energy conservation techniques is being discussed. The focus is mainly on the methodology of energy audit, energy use analysis, relating energy with the production, and reducing energy losses, etc. It is observe that with this systematic approach, if adopted, which consists of three essential segments namely capacity utilization fine-tuning of the equipment and technology up-gradation can result in phenomenal savings in the energy, building competitive edge for the industry. This approach along with commitment can provide the right impetus to reap the benefits of energy conservation on a sustained basis. (author)

  17. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael R; Morrison, James A; Spomer, Eric; Thimot, Carol A

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heat and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.

  19. Energy Efficiency and Importance of Renewable Energy Sources in Latvia

    Science.gov (United States)

    Skapare, I.; Kreslins, A.

    2007-10-01

    The main goal of Latvian energy policy is to ensure safe and environmentally friendly long-term energy supply at cost-effective prices, contributing to enhance competitiveness, and to ensure safe energy transit. The Latvian Parliament approved an Energy Efficiency Strategy in 2000. Its objective is to decrease energy consumption per unit of GDP by 25% by 2010. Awareness raising, implementation of standards and economic incentives for self financing are the main instruments to increase energy efficiency, mentioned in the strategy. Latvia, as many other European Union member states, is dependent on the import of primary energy resources. The Latvian Renewable Energy strategy is still under development. The only recent study on RES was developed in the framework of a PHARE program in year 2000: "Renewable energy resource program", where three main objectives for a future RES strategy were proposed: 1. To increase the use of wood waste and low value wood and forest residues. 2. To improve efficiency of combustion technologies and to replace outdated plants. 3. To increase the use of renewables in Combined Heat and Power plants (CHP). Through the Renewable Energy and Energy Efficiency Partnership, partners will develop a set of new shared activities, and coordinate and strengthen existing efforts in this area.

  20. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  1. CO2 Tax or Fee as a Single Economic Instrument for Climate Protection Policy Promoting Renewable Energy Sources and Enhancing Energy Efficiency

    International Nuclear Information System (INIS)

    Granic, G.; Horvath, L.; Jelavic, B.; Juric, Z.; Kulisic, B.; Vuk, B.

    2013-01-01

    This paper presents the analysis of the current implementation of the policy to reduce CO 2 emissions through four practically independent processes: energy market, emission market, support for renewable energy sources through feed-in tariffs (FIT) and support scheme for enhancing energy efficiency. The conclusion is that in this system, some elements of which appear to be controversial, it is not possible to reach the goal - a radical reduction of CO 2 emissions by 80% in total and 95% in electricity production until 2050, which the EU has set as emission reduction targets for this period. Therefore, a new system is now proposed that is based on a single objective function, CO 2 emissions. The process would be managed through taxes or fees on CO 2 , while the raised revenues would be returned to projects aimed at reducing CO 2 emissions, projects for enhancing energy efficiency, renewable energy sources projects and projects reducing emissions from fossil fuels. The paper outlines the basis of the concept of CO 2 tax or fee as a key measure to stimulate the lowering of emissions and gives an analysis of the impact of different rates of tax or fee on CO 2 emissions on the energy price. A critical analysis of the new model's impact on development of renewable energy sources and on improving energy efficiency in buildings was carried out. Also, there is an analysis of the impact of the new model on transport development. The introduction of the new model should clear the energy market from administrative limitations and privileged positions of renewable sources and should bring all back in the frame of market economy, no matter what source of energy for production of electricity we are dealing with. One limitation to the new model is translation of the current situation in to the new system, especially in the field of renewable energy sources and their protected position under the already concluded long-term contracts. The paper also elaborates the basis for the

  2. Research for energy efficiency; Forschung fuer Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The Federal Ministry of Economy enhanced its funding for research in the field of non-nuclear energy in the programme ''Forschung fuer Energieeffizienz'' (Research for Energy Efficiency). The programme focuses on established areas like modern power plant technologies (''Moderne Kraftwerkstechnologien''), fuel cells and hydrogen (''Brennstoffzelle, Wasserstoff''), and energy-optimized building construction (''Energieoptimiertes Bauen''). New subjects are energy-efficient towns and cities (''Energieeffiziente Stadt''), power grids for future power supply (''Netze fuer die Stromversorgung der Zukunft''), power storage (''Stromspeicher''), and electromobility (''Elektromobilitaet''). The brochure presents research and demonstration projects that illustrate the situation in 2010 when the programme was initiated. (orig.)

  3. 25 energy efficiency policy recommendations. 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The IEA recommends that G8 leaders adopt and urgently implement this package of measures to significantly enhance energy efficiency. This package was developed under the Gleneagles G8 Plan of Action, which mandates the pursuit of a clean, clever and competitive energy future.

  4. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.

    Science.gov (United States)

    Kim, T; Dykstra, J E; Porada, S; van der Wal, A; Yoon, J; Biesheuvel, P M

    2015-05-15

    Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, Λ, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for Λ in CDI are typically around 0.5-0.8, significantly less than the theoretical maximum of unity, due to the fact that not only counterions are adsorbed into the pores of the carbon electrodes, but at the same time coions are released. To enhance Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ can be close to unity because the membranes only allow passage for the counterions. Enhancing the value of Λ is advantageous as this implies a lower electrical current and (at a fixed charging voltage) a reduced energy use. We demonstrate how, without the need to include IEMs, the charge efficiency can be increased to values close to the theoretical maximum of unity, by increasing the cell voltage during discharge, with only a small loss of salt adsorption capacity per cycle. In separate constant-current CDI experiments, where after some time the effluent salt concentration reaches a stable value, this value is reached earlier with increased discharge voltage. We compare the experimental results with predictions of porous electrode theory which includes an equilibrium Donnan electrical double layer model for salt adsorption in carbon micropores. Our results highlight the potential of modified operational schemes in CDI to increase charge efficiency and reduce energy use of water desalination. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  6. Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks

    KAUST Repository

    Alqerm, Ismail

    2018-02-15

    Heterogeneous cloud radio access networks (H-CRAN) is a new trend of 5G that aims to leverage the heterogeneous and cloud radio access networks advantages. Low power remote radio heads (RRHs) are exploited to provide high data rates for users with high quality of service requirements (QoS), while high power macro base stations (BSs) are deployed for coverage maintenance and low QoS users support. However, the inter-tier interference between the macro BS and RRHs and energy efficiency are critical challenges that accompany resource allocation in H-CRAN. Therefore, we propose a centralized resource allocation scheme using online learning, which guarantees interference mitigation and maximizes energy efficiency while maintaining QoS requirements for all users. To foster the performance of such scheme with a model-free learning, we consider users\\' priority in resource blocks (RBs) allocation and compact state representation based learning methodology to enhance the learning process. Simulation results confirm that the proposed resource allocation solution can mitigate interference, increase energy and spectral efficiencies significantly, and maintain users\\' QoS requirements.

  7. Energy efficiency practices among road freight hauliers

    International Nuclear Information System (INIS)

    Liimatainen, Heikki; Stenholm, Pekka; Tapio, Petri; McKinnon, Alan

    2012-01-01

    The reduction of greenhouse gases (GHG) is a highly prevalent public policy goal among European Union member countries. In the new White Paper on transport, the role of road freight transports in this is strongly emphasized. This far, however, the efficiency practices utilised in logistics firms are less studied. Drawing from policy goals and new survey data on 295 road transport firms our results show that hauliers are aware of the possible energy efficiency actions but lack the knowledge and resources to fully utilize them. Energy efficiency seems also to be unimportant for many shippers, so there are no incentives for hauliers to improve it. Examples from various countries show that clear energy efficiency improvements can be achieved with active cooperation between hauliers, shippers and policy makers. Such cooperation can be developed in Finland through the sectoral energy efficiency agreements. The novelty and the utility of these results allow scholars to answer important open questions in the national-level determinants of enhancing energy efficiency practices among road freight hauliers, and contribute to our understanding of how these can be fostered in public policies. - Highlights: ► Hauliers still monitor their fuel consumption with unsophisticated methods. ► Larger hauliers are more active in energy efficiency related issues than smaller ones. ► Hauliers are aware of energy efficiency actions, but lack knowledge of implementation. ► Finnish energy efficiency agreement provides a good framework for public policies. ► Companies that monitor and improve energy efficiency may gain competitive advantage.

  8. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-01-01

    , they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU

  9. Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms

    Directory of Open Access Journals (Sweden)

    Mette Talseth Solnørdal

    2018-02-01

    Full Text Available Research has identified an extensive potential for energy efficiency within the manufacturing sector, which is responsible for a substantial share of global energy consumption and greenhouse gas emissions. The purpose of this study is to enhance the knowledge of vital drivers for energy efficiency in this sector by providing a critical and systematic review of the empirical literature on drivers to energy efficiency in manufacturing firms at the firm level. The systematic literature review (SLR is based on peer-reviewed articles published between 1998 and 2016. The findings reveal that organizational and economic drivers are, from the firms’ perspective, the most prominent stimulus for energy efficiency and that they consider policy instruments and market drivers to be less important. Secondly, firm size has a positive effect on the firms’ energy efficiency, while the literature is inconclusive considering sectorial impact. Third, the studies are mainly conducted in the US and Western European countries, despite the fact that future increase in energy demand is expected outside these regions. These findings imply a potential mismatch between energy policy-makers’ and firm mangers’ understanding of which factors are most important for achieving increased energy efficiency in manufacturing firms. Energy policies should target the stimulation of management, competence, and organizational structure in addition to the provision of economic incentives. Further understanding about which and how internal resources, organizational capabilities, and management practices impact energy efficiency in manufacturing firms is needed. Future energy efficiency scholars should advance our theoretical understanding of the relationship between energy efficiency improvements in firms, the related change processes, and the drivers that affect these processes.

  10. Database of Renewable Energy and Energy Efficiency Incentives and Policies Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lips, Brian

    2018-03-28

    The Database of State Incentives for Renewables and Efficiency (DSIRE) is an online resource that provides summaries of all financial incentives and regulatory policies that support the use of renewable energy and energy efficiency across all 50 states. This project involved making enhancements to the database and website, and the ongoing research and maintenance of the policy and incentive summaries.

  11. Storying energy consumption: Collective video storytelling in energy efficiency social marketing.

    Science.gov (United States)

    Gordon, Ross; Waitt, Gordon; Cooper, Paul; Butler, Katherine

    2018-05-01

    Despite calls for more socio-technical research on energy, there is little practical advice to how narratives collected through qualitative research may be melded with technical knowledge from the physical sciences such as engineering and then applied in energy efficiency social action strategies. This is despite established knowledge in the environmental management literature about domestic energy use regarding the utility of social practice theory and narrative framings that socialise everyday consumption. Storytelling is positioned in this paper both as a focus for socio-technical energy research, and as one potential practical tool that can arguably enhance energy efficiency interventions. We draw upon the literature on everyday social practices, and storytelling, to present our framework called 'collective video storytelling' that combines scientific and lay knowledge about domestic energy use to offer a practical tool for energy efficiency management. Collective video storytelling is discussed in the context of Energy+Illawarra, a 3-year cross-disciplinary collaboration between social marketers, human geographers, and engineers to target energy behavioural change within older low-income households in regional NSW, Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Energy Efficiency Perspectives of PMR Networks

    Directory of Open Access Journals (Sweden)

    Marco Dolfi

    2016-12-01

    Full Text Available Recently, the concern about energy efficiency in wireless communications has been growing rapidly. Manufacturers and researchers have developed innovative solutions, highlighting the benefits in reducing operational expenditures (OPEX and carbon footprint. Professional Mobile Radio (PMR systems, like Terrestrial Trunked Radio (TETRA, have been designed to provide voice and data services to professional users. The energy consumption is one of the critical aspects of PMR broadband solutions and a major constraint for PMR services. The future convergence of PMR to the LTE system introduces a new topic in the research discussion about the energy efficiency of wireless systems. This paper focuses on the feasibility of energy efficient solutions for current and potentially future PMR networks, by providing a mathematical formulation of power consumption in TETRA base stations and assessing possible business models and energy saving solutions for enhanced mission-critical operations. The energy efficiency evaluation has been performed by taking into account the traffic load of a deployed TETRA regional network: in the considered network scenario with 150 base stations, significant OPEX savings up to 70 thousand Euros per year of operation are achieved. Moreover, the proposed solutions allow for saving more than 1 ton of CO 2 per year.

  13. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, Miriam; McKane, A.T.

    1999-01-01

    Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  14. Energy Efficiency Plan 2009-2012; Energie Efficiency Plan 2009-2012

    Energy Technology Data Exchange (ETDEWEB)

    Meulen, M.M.W. (ed.)

    2009-02-15

    The aim of the Energy Efficiency Plan is to give an overview of the energy conservation plans of the Eindhoven University of Technology in Eindhoven, Netherlands, which must result in efficient use of energy conform the long-range agreements between businesses, industry and organizations and the Dutch government to improve energy efficiency (MJA3) [Dutch] Het doel van het EEP (Energie Efficiency Plan) is het in beeld brengen van de energiebesparingsplannen die leiden tot een efficienter gebruik van energie conform de MJA-3 afspraak (de derde Meerjaren Afspraak)

  15. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings. IEA Information Paper

    Energy Technology Data Exchange (ETDEWEB)

    Laustsen, Jens

    2008-03-15

    The aim of this paper is to describe and analyse current approaches to encourage energy efficiency in building codes for new buildings. Based on this analysis the paper enumerates policy recommendations for enhancing how energy efficiency is addressed in building codes and other policies for new buildings. This paper forms part of the IEA work for the G8 Gleneagles Plan of Action. These recommendations reflect the study of different policy options for increasing energy efficiency in new buildings and examination of other energy efficiency requirements in standards or building codes, such as energy efficiency requirements by major renovation or refurbishment. In many countries, energy efficiency of buildings falls under the jurisdiction of the federal states. Different standards cover different regions or climatic conditions and different types of buildings, such as residential or simple buildings, commercial buildings and more complicated high-rise buildings. There are many different building codes in the world and the intention of this paper is not to cover all codes on each level in all countries. Instead, the paper details different regions of the world and different ways of standards. In this paper we also evaluate good practices based on local traditions. This project does not seek to identify one best practice amongst the building codes and standards. Instead, different types of codes and different parts of the regulation have been illustrated together with examples on how they have been successfully addressed. To complement this discussion of efficiency standards, this study illustrates how energy efficiency can be improved through such initiatives as efficiency labelling or certification, very best practice buildings with extremely low- or no-energy consumption and other policies to raise buildings' energy efficiency beyond minimum requirements. When referring to the energy saving potentials for buildings, this study uses the analysis of recent IEA

  17. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Pudleiner, David; Jones, David; Khan, Aleisha

    2017-06-15

    Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated into energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives

  18. Energy efficiency enhancement in cement factories using expert system

    International Nuclear Information System (INIS)

    Effatnejad, R.; Jadih, S.

    2001-01-01

    Full text : In this paper, expert system for energy efficiency in cement industry is presented. Due to the fact that cement manufacturing project in these factories are similar, so in main parts knowing the consumption origins and save potential and existing approaches can be similar. In this method, via expert system software of prolog AH types of energy consumption and investment costs are listed in which method of best first search and innovative search have been used and by forming knowledge base, targeting to get best approaches is presented. The obtained results, regarding the executed limits, will be displayed in the output of program and this program can be given the best decision about energy management in cement factories

  19. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Directory of Open Access Journals (Sweden)

    Qyyum Muhammad Abdul

    2017-01-01

    Full Text Available This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG. A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD model was used to simulate the vortex tube with nitrogen (N2 as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  20. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong

    2017-11-01

    This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  1. Plugging the Energy Efficiency Gap with Climate Finance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The role of International Financial Institutions (IFIs) and the Green Climate Fund to realise the potential of energy efficiency in developing countries. This report examines the current role of climate finance in funding EE projects and the potential to channel funds to relevant EE projects in developing countries under the new Green Climate Fund (GCF). The objectives of the report are to examine: 1) the share of climate finance currently being channelled to energy efficiency measures, and 2) how the design of climate finance can better facilitate energy efficiency projects. Improving energy efficiency (EE) can deliver a range of benefits such as improved air quality, enhanced economic competitiveness and, at the national scale, a higher degree of energy security. Significant improvements in energy efficiency in developing countries could provide greater opportunity for economic growth while also providing broader access to energy and related services even from limited energy resources. However, several barriers limit the scaling-up of funding of EE projects in developing countries (some are common also to developed countries). The report focuses primarily on public climate finance flows from 'north' to 'south', probing the current use of funds from multi-lateral development banks (MDBs), bi-lateral financial institutions (BFIs) and carbon markets for energy efficiency projects and the design of the future climate financial mechanisms such as the Green Climate Fund to encourage energy efficiency improvements in developing countries.

  2. Essays on equity-efficiency trade offs in energy and climate policies

    Science.gov (United States)

    Sesmero, Juan P.

    Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences

  3. Enhancement of Energy Efficiency and Food Product Quality Using Adsorption Dryer with Zeolite

    Directory of Open Access Journals (Sweden)

    Moh Djaeni

    2013-06-01

    Full Text Available Drying is a basic operation in wood, food, pharmaceutical and chemical industry. Currently, several drying methods are often not efficient in terms of energy consumption (energy efficiency of 20-60% and have an impact on product quality degradation due to the introduction of operational temperature upper 80oC. This work discusses the development of adsorption drying with zeolite to improve the energy efficiency as well as product quality. In this process, air as drying medium is dehumidified by zeolite. As a result humidity of air can be reduced up to 0.1 ppm. So, for heat sensitive products, the drying process can be performed in low or medium temperature with high driving force. The study has been conducted in three steps: designing the dryer, performing laboratory scale equipment (tray, spray, and fluidised bed dryers with zeolite, and evaluating the dryer performance based on energy efficiency and product quality. Results showed that the energy efficiency of drying process is 15-20% higher than that of conventional dryer. In additon, the dryer can speed up drying time as well as retaining product quality.

  4. Enhanced Passive RF-DC Converter Circuit Efficiency for Low RF Energy Harvesting.

    Science.gov (United States)

    Chaour, Issam; Fakhfakh, Ahmed; Kanoun, Olfa

    2017-03-09

    For radio frequency energy transmission, the conversion efficiency of the receiver is decisive not only for reducing sending power, but also for enabling energy transmission over long and variable distances. In this contribution, we present a passive RF-DC converter for energy harvesting at ultra-low input power at 868 MHz. The novel converter consists of a reactive matching circuit and a combined voltage multiplier and rectifier. The stored energy in the input inductor and capacitance, during the negative wave, is conveyed to the output capacitance during the positive one. Although Dickson and Villard topologies have principally comparable efficiency for multi-stage voltage multipliers, the Dickson topology reaches a better efficiency within the novel ultra-low input power converter concept. At the output stage, a low-pass filter is introduced to reduce ripple at high frequencies in order to realize a stable DC signal. The proposed rectifier enables harvesting energy at even a low input power from -40 dBm for a resistive load of 50 kΩ. It realizes a significant improvement in comparison with state of the art solutions.

  5. Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument

    International Nuclear Information System (INIS)

    Oikonomou, V.; Patel, M.K.; Rietbergen, M.; Van der Gaast, W.

    2009-01-01

    In this paper we examine the implementation of a combined policy scheme that consists of a traditional instrument, the voluntary agreements (VAs), and an innovative one, the white certificates (WhC). The basic structure of this scheme is that energy suppliers who undertake an energy efficiency obligation under a white certificate scheme can make use of voluntary actions to enhance investments in innovative energy savings projects. Energy suppliers and other market parties can additionally or in parallel participate in voluntary agreements and set energy efficiency targets. For fulfilling their voluntary agreement target, these market parties can receive tax exemptions or receive white certificates that they can sell in the market. Transaction costs and baseline definition for demonstrating energy efficiency improvement deserve special attention. This policy can assist a country to enhance energy efficiency improvement while it stimulates innovation. Cost effectiveness can be higher than the case of stand-alone policy instruments, since more financing options are available for more expensive projects. Nevertheless, the added value of the scheme lies more in the implementation of innovative measures for enhanced energy efficiency. Furthermore, market parties can discover more business opportunities in energy efficiency and establish a green image; hence an integrated scheme should achieve higher political acceptability. (author)

  6. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  7. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  8. Structure model of energy efficiency indicators and applications

    International Nuclear Information System (INIS)

    Wu, Li-Ming; Chen, Bai-Sheng; Bor, Yun-Chang; Wu, Yin-Chin

    2007-01-01

    For the purposes of energy conservation and environmental protection, the government of Taiwan has instigated long-term policies to continuously encourage and assist industry in improving the efficiency of energy utilization. While multiple actions have led to practical energy saving to a limited extent, no strong evidence of improvement in energy efficiency was observed from the energy efficiency indicators (EEI) system, according to the annual national energy statistics and survey. A structural analysis of EEI is needed in order to understand the role that energy efficiency plays in the EEI system. This work uses the Taylor series expansion to develop a structure model for EEI at the level of the process sector of industry. The model is developed on the premise that the design parameters of the process are used in comparison with the operational parameters for energy differences. The utilization index of production capability and the variation index of energy utilization are formulated in the model to describe the differences between EEIs. Both qualitative and quantitative methods for the analysis of energy efficiency and energy savings are derived from the model. Through structural analysis, the model showed that, while the performance of EEI is proportional to the process utilization index of production capability, it is possible that energy may develop in a direction opposite to that of EEI. This helps to explain, at least in part, the inconsistency between EEI and energy savings. An energy-intensive steel plant in Taiwan was selected to show the application of the model. The energy utilization efficiency of the plant was evaluated and the amount of energy that had been saved or over-used in the production process was estimated. Some insights gained from the model outcomes are helpful to further enhance energy efficiency in the plant

  9. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    generation. • Utility bill limits and constraints exemplify the ability to conserve energy resources. • Replicable examples teach lessons on conservation. • Via an understanding of the water-energy nexus, water conservation lessons transfer to energy saving lessons. • Passive design exemplifies how a shift in thinking can conserve energy resources through informed efficient decision-making. • Societal shifts in energy consumption are evident at home. • Efficient homes provide applicable examples of social and technological innovations. • The home is the environment in which memorable lessons on energy are passed through cultures. • Home energy consumption comparisons are a popular and effective social innovation, but people have mixed emotions about their usefulness. • A utility bill communicates that utility companies are monitoring energy use to calculate cost. • Interactivity enhances feedback from energy monitors. • Calculating and monitoring energy use is perceived as a complex mathematical process. • Energy consumption feedback at the appliance level is desired to inform decisions. • There is a separation between personal energy monitoring and public monitoring. Implications of this research are that an energy literate society will have the knowledge that is a prerequisite for the motivation to address energy and climate issues. Educators, policy makers, engineers, and designers all play a role in creating a built environment that encourages energy saving behavior.

  10. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  11. Energy efficiency from business management perspective; Prosessi-integraatin energiatehokkuuden liikejohtaminen - PI-ENERGIALIITO

    Energy Technology Data Exchange (ETDEWEB)

    Ahtila, P.; Tuomaala, M. (Helsinki Univ. of Technology, Center for Energy Technology, Espoo (Finland)); Malmi, T.; Virtanen, T. (Helsinki School of Economics, Helsinki (Finland))

    2008-07-01

    The purpose of the research is to enhance the ways to manage energy efficiency as part of business management. The work includes a study of the differences between technical energy efficiency metrics and a company's business management metrics. The work also includes a study of the differences between energy efficiency management at a unit process scale and energy efficiency management at a total site scale. In addition, the ways to evaluate energy efficiency investments are studied. The research tries to propose ways to support existing practices in order to promote energy efficiency investment activity. The research is supported by case studies where a change in process energy efficiency is carried out. The case studies are evaluated from two perspectives: from engineering perspective and from business management perspective. (orig.)

  12. Enhanced energy efficiency in waste water treatment plants; Steigerung der Energieeffizienz auf kommunalen Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haberkern, Bernd; Maier, Werner; Schneider, Ursula [iat - Ingenieurberatung fuer Abwassertechnik, Darmstadt und Stuttgart, Darmstadt (Germany)

    2008-03-15

    In order to implement the requests of EU-IPCC-directive in a new decree for waste water treatment in Germany, best available techniques have to be defined to optimize energy efficiency in waste water treatment plants (WWTP). Therefore energy efficiency was investigated for common treatment processes and new technologies like membrane filtration, co-digestion or phosphorus recycling. In addition, the occurrence of different technologies for waste water and sludge treatment was evaluated for different size ranges of treatment plants (in population equivalents, PE) nationwide in Germany. The definition of actual and aimed values for specific energy consumption (in kWh/(PE.a)) allowed to calculate the potential energy savings in WWTP and the additional consumption due to new processes on a national level. Under consideration of the reciprocations between optimized energy consumption in WWTP and operation practice, toe-holds to increase energy efficiency according to their relevancy for the national balance could be listed. Case studies prove the feasibility of the investigated techniques and allow proposals for minimum requirements in legal regulation concerning energy efficiency in WWTP. (orig.)

  13. Assessment of the energy efficiency enhancement of future mobile networks

    NARCIS (Netherlands)

    Litjens, R.; Toh, Y.; Zhang, H.; Blume, O.

    2014-01-01

    We assess the energy efficiency of mobile networks in 2020, and compare it with a 2010 baseline. A comprehensive assessment approach is taken, considering all relevant scenario aspects such as data traffic growth, hardware evolutions, mobile network deployments and operations including network

  14. Enhanced high energy efficient steam drying of algae

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2013-01-01

    Highlights: • Brown algae drying processes based on heat circulation technology (HC) were proposed. • HC was developed on exergy recovery through exergy elevation and heat pairing. • The energy efficiency of the proposed drying processes was evaluated. • Significant reduction of energy input and CO 2 emission in drying is readily achieved. - Abstract: State-of-the-art brown algae drying processes based on heat circulation technology were proposed, and their performance with respect to energy consumption was evaluated. Heat circulation technology was developed using the principle of exergy recovery performed through exergy elevation and effective heat pairing for both sensible and latent heat. Two steam drying processes based on heat circulation technology for algae drying were proposed, involving heat circulation with or without steam recirculation. The proposed processes were compared with the conventional heat recovery system employing heat cascade technology. Brown algae Laminaria japonica was selected as the test sample. From the results, it is very clear that both proposed drying processes can reduce the required drying energy significantly by up to 90% of that required in conventional heat recovery drying. Furthermore, the temperature–enthalpy diagram for each process shows that in heat circulation technology based drying, the curves of both hot and cold streams are almost parallel, resulting in the minimization of exergy losses

  15. Time-varying value of electric energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mims, Natalie A.; Eckman, Tom; Goldman, Charles

    2017-06-30

    Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range

  16. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  17. E4 - Energy efficient elevators and escalators. Barriers to and strategies for promoting energy-efficient lift and escalator technologies

    Energy Technology Data Exchange (ETDEWEB)

    Duetschke, Elisabeth; Hirzel, Simon

    2010-02-25

    According to prior findings of the E4 project, considerable savings potential exists both for lifts and escalators that could be realized if appropriate technology is implemented. However, energy-efficient technology is slowly diffusing the market - a phenomenon that could be explained by barriers present in the market. A barrier is defined as a mechanism that inhibits a decision or behavior that appears to be both energy-efficient and economically efficient and thereby prevents investment in energy-efficient technologies. This document has two aims. First, it will identify influential barriers in the European lift and escalator market. This analysis is based on the literature as well as a study including interviews as well as group discussions with relevant stakeholders. Second, strategies and measures to overcome the barriers identified in the first step are outlined. Major barriers to the penetration of energy-efficient technologies identified in this paper include a lack of monitoring energy consumption of installations and a lack of awareness of as well as knowledge about energy-efficient technology. Thus, installations and components are usually chosen without a (comprehensive) assessment of their energy consumption and without considering life-cycle approaches. On top of this, split incentives are a regularly occurring barrier. Various stakeholders are influential in the decisionmaking process about an installation or its components. However, those who will later pay for the energy consumption often are not involved in this process. Moreover, it is important to keep in mind that the number of new lifts and escalators installed each year is relatively low compared to the existing stock. Thus, it is very important to discuss enhancement of energy efficiency also for the existing stock. Based on our analyses, several recommendations are developed in this paper that could contribute to a market transformation in the lift and escalator market. First of all, a

  18. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks.

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-11-15

    An important criterion of wireless sensor network is the energy efficiency inspecified applications. In this wireless multimedia sensor network, the observations arederived from acoustic sensors. Focused on the energy problem of target tracking, this paperproposes a robust forecasting method to enhance the energy efficiency of wirelessmultimedia sensor networks. Target motion information is acquired by acoustic sensornodes while a distributed network with honeycomb configuration is constructed. Thereby,target localization is performed by multiple sensor nodes collaboratively through acousticsignal processing. A novel method, combining autoregressive moving average (ARMA)model and radial basis function networks (RBFNs), is exploited to perform robust targetposition forecasting during target tracking. Then sensor nodes around the target areawakened according to the forecasted target position. With committee decision of sensornodes, target localization is performed in a distributed manner and the uncertainty ofdetection is reduced. Moreover, a sensor-to-observer routing approach of the honeycombmesh network is investigated to solve the data reporting considering the residual energy ofsensor nodes. Target localization and forecasting are implemented in experiments.Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimentalresults verify that energy efficiency of wireless multimedia sensor network is enhanced bythe proposed target tracking method.

  19. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  20. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Science.gov (United States)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  1. Enhanced understanding of energy ratepayers: Factors influencing perceptions of government energy efficiency subsidies and utility alternative energy use

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Allen, Myria W.

    2014-01-01

    This study explores factors related to energy consumers' perceptions of government subsidies for utility provided energy efficiency (EE) programs and for utility providers' use of more clean/alternative energy sources. Demographic factors, attitudes, planned purchases, and perceptions of utility provider motives in relation to governmental and utility provider EE initiatives (i.e. providing discounts and coupons for CFL bulbs), plus the influence of gain- and loss-framed messages are investigated. Over 2000 respondents completed a 16 item phone survey. Hierarchical regression explained 38% of the variance in reactions regarding government subsidies of the cost of utility provided EE programs and 43% of the variance in perceptions involving whether utility companies should use of more clean or alternative forms of energy. Gender and party differences emerged. Loss-framed messages were more important when the issue was government subsidies. Both gain- and loss-framed messages were important when clean/alternative energy was the issue. - Highlights: • Over 2000 ratepayers were surveyed on their attitudes, planned behaviors and perceptions towards energy efficiency programs. • Almost 40% of how ratepayers feel about government subsidies and utility use of clean/alternative energy was explained. • Loss-framed messages were more effective when the dependent variable was ratepayer perception of government subsidies

  2. Measuring and evaluating the soft energy efficiency measures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Suvilehto, H.-M.; Solid, D. [AaF-Industry Ltd, Solna (Sweden); Rouhiainen, V. [Adato Energia Ltd, Helsinki (Finland); Honkasalo, N.; Sarvaranta, A. [AaF-Consult Ltd, Solna (Sweden)

    2012-07-15

    This study discusses how to quantify the energy savings related to the companies' aims to enhance their customers' energy efficiency which is one target in the Action Plan for Energy Services in the Energy Efficiency Agreement for the Industries. In Finland, a majority of the energy utilities have signed this action plan and are providing their customers services to improve their energy efficiency. Dissemination of information is the most widely used service to the customers and it is provided in a number of ways including printed material, annual energy report, and an internet tool to access and report hourly measurements. Some of the internet tools cover electricity, district heat and water. The focus of the study is in the evaluation of 'soft' measures; in other words, those measures given by energy utilities that principally rely on communication instruments. However, monitoring the impact of information and communication is far from easy. Carrying out a properly designed evaluation of programmes aiming on enhanced energy efficiency is difficult. Evaluation of the impact of a magazine article on energy efficiency is even more challenging, costly and therefore also rare. Distribution of information as measure to enhance energy efficiency is an important part of EU.s energy policy but what are the ways and even more so, are there ways to actually quantify these savings? There has been excessive work by the member states and research institutes to find a common and robust methodology within the EU to evaluate and quantify energy savings from technical measures. The ex-ante and ex-post results from these evaluations can however differ considerably, e.g. the expected energy savings from installing air to air heat pumps in Denmark did not deliver the expected energy savings. The problems with finding a common robust methodology become even more visible when the 'soft' measures are put under the evaluation loop. The &apos

  3. Performance analysis of an energy efficient building prototype by using TRNSYS

    OpenAIRE

    Lai, Kun; Wang, Wen; Giles, Harry

    2014-01-01

    Buildings section accouts for a large part of the total primary energy consumption. This paper reports a simulative study on an energy efficient building prototype named MIDMOD by using TRNSYS program. The prototype is a new genre of affordable medium density building concepts that are more adaptable, durable, and energy efficient as whole-life housing typologies than those currently available.The building envelope thermal insulation and air tightness are enhanced to reduce heat loss. Several...

  4. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  5. Energy efficiency improvement and environment in China

    International Nuclear Information System (INIS)

    Rouhier, Stephane

    2010-01-01

    Massive reliance on polluting sources of energy (coal, traditional biomass and oil) has damaged the environment in China over years. Now, China is the world's first carbon dioxide emitter and air pollution represents between 2 and 7 percent of loss of Gross Domestic Product per year, depending on the studies chosen. In order to reduce the level of pollution, one can either enhance the technology in use or reduce the share of polluting fuels in the energy mix. Indeed, current Chinese technologies are far less efficient than those of developed countries and the energy mix is massively composed of polluting sources of energy. So, they both represent huge potential savings. This article enquires the link between diversification, efficiency in the power sector and the per capita emissions and shows that emissions are negatively correlated to a diversification of the energy mix as well as an improvement of power generating technologies. Hence, it justifies the diversification of the energy mix and technology improvement as viable strategies to tackle pollution

  6. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  7. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  8. Towards a green economy in Germany? The role of energy efficiency policies

    International Nuclear Information System (INIS)

    Ringel, Marc; Schlomann, Barbara; Krail, Michael; Rohde, Clemens

    2016-01-01

    Highlights: • This paper reviews the latest energy efficiency policies of Germany. • We find tangible energy, climate and socioeconomic impacts by 2020. • Notably the building sector stands to benefit economically. • A ‘green energy economy’ needs to build on ambitious energy efficiency policies. - Abstract: Energy efficiency policies play a key role in the transformation to a ‘green energy economy’. In this paper, we take stock of the impacts of the existing energy efficiency policy instruments in Germany and review the energy, environmental and socioeconomic impacts of the country’s latest energy efficiency and climate strategies for the year 2020. We find evidence supporting the findings of other studies that enhanced green energy policies will trigger tangible economic benefits in terms of GDP growth and new jobs even in the short term. Whereas policy makers have already acknowledged and implemented this conclusion in the case of renewable energies, our paper shows that striving for more ambitious energy efficiency policies represents a similar win–win strategy, which should be exploited to a much larger extent.

  9. Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery

    International Nuclear Information System (INIS)

    Zhang, Shumei; Qiang, Jiaxi; Yang, Lin; Zhao, Xiaowei

    2016-01-01

    To improve battery uniformity as well as energy efficiency and time efficiency, a SOC (state of charge)-based equalization by AGA (adaptive genetic algorithm) is proposed on basis of two-stage DC/DC converters. The simulation results indicate that compared with FLC (fuzzy logic controller) equalization, the standard deviation of final SOC is improved by 78.7% while energy efficiency is improved by 6.01% and equalization time is decreased by 20% for AGA equalization of extreme dispersion. Additionally, AGA improves the battery uniformity by 30.77% with shortening equalization time by 16.29% and saving energy loss by 1.51% compared with FLC for equalization of regular dispersion. For further validation, the equalization optimization is verified by experiment based on the data-driven parameter identification method which is used to enhance the real-time capability of AGA. For AGA equalization of extreme dispersion, the standard deviation of final SOC is just 0.41% while equalization time prolongs only 14 min and energy efficiency is decreased by 0.81% compared with simulation results. Moreover, not only the standard deviation of final SOC is just 0.28% but also the energy efficiency is decreased by 0.69% and equalization time prolongs by 10.4 min compared with the simulation results for equalization of regular dispersion. - Highlights: • Issues of over equalization, time consumption and energy loss are addressed. • A SOC-based equalization is proposed based on adaptive genetic algorithm. • The equalization aims to improve battery uniformity, efficiency of energy and time. • Data-driven parameter identification is used to enhance the real-time capability.

  10. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  11. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    Directory of Open Access Journals (Sweden)

    Korniyenko Sergey

    2018-01-01

    Full Text Available Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects. Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  12. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  13. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  14. 1997 ACEEE summer study on energy efficiency in industry: Proceedings, refereed papers, and summary monographs

    International Nuclear Information System (INIS)

    1997-01-01

    The theme of this conference is: How industry will procure energy efficiency services in the 21st century. This theme was chose in response to the changing nature of energy service companies. These changes will bring about enhanced opportunities for alliance and partnerships in the procurement of energy efficiency services as well as energy supply services. This Summer Study provides an opportunity to explore the opportunities provided by these changes in a marketplace and examines ways in which they can be used to enhance, in a cost-effective manner, energy efficiency and productivity in industry. The refereed papers in this conference are divided into the following topics: Food Products; Chemicals and Related Products; Iron and Steel; International Energy Issues; Electric Motor Systems; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Development of Partnerships; Case Studies; Steam Systems; Industrial Decision Making; and Industrial Energy Efficiency. The summary monographs cover: Electric Motor Systems; Energy Trends and Analysis; Small Industries; Energy Efficiency and Pollution Prevention; Utility Industry Changes; Steam Systems; Industrial Decision Making; and Display-Summary Monograph. Separate abstracts were prepared for all 55 papers

  15. Efficient energy management measures in steel industry for economic utilization

    Directory of Open Access Journals (Sweden)

    Gurinderbir Singh Grewal

    2016-11-01

    Full Text Available The application of energy efficient Induction Machines (IM is explained in reference to power consumption savings. In energy efficient IM, losses for various Horse Power (HP ratings are summarized for bringing effective changes in design. Emphasis is laid on how load factor, speed & power quality affect machine’s efficiency. Replacement of conventional IM of higher power rating is done with required energy efficient Doubly Fed Induction Machine (DFIM to enhance the performance at variable speeds near rated power outputs. Results of the proposed approach will give substantial savings in energy & loss reduction. The field data of Jindal Steel Rolling Mill (JSRM at Hisar, Haryana (India is taken into consideration. This paper proposes a non-intrusive air gap torque method for efficiency estimation of in-service IMs. This approach gives results considering stray-load and friction-windage loss according to IEC standard and IEEE112-B standard. The proposed method is validated experimentally whose effectiveness is witnessed using MATLAB/SIMULINK.

  16. Progress with Implementing Energy Efficiency Policies in the G8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the 2008 G8 Summit in Hokkaido, leaders reaffirmed the critical role improved energy efficiency can play in addressing energy security, environmental and economic objectives. They went even farther than in previous Summits and committed to maximising implementation of the 25 IEA energy efficiency recommendations prepared for the G8. The imperative to enhance energy efficiency remains a priority for all countries. To support governments with their implementation of energy efficiency, the IEA recommended the adoption of a broad range of specific energy efficiency policy measures to the G8 Summits in 2006, 2007 and 2008. The consolidated set of recommendations from these Summits covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and power utilities. If governments want to significantly improve energy efficiency, the IEA considers that no single policy implemented in isolation will be effective at achieving this aim. The IEA Secretariat recommends that governments implement a full set of appropriate measures. The IEA estimates that if implemented globally without delay, the proposed actions could save around 8.2 GtCO2/yr by 2030 -- equivalent to twice the EU's yearly emissions. This report evaluates the progress of the G8 countries in implementing energy efficiency policy, including the 25 G8/IEA recommendations. Information in this report is current up to 31 March 2009.

  17. Analysis Platform for Energy Efficiency Enhancement in Hybrid and Full Electric Vehicles

    Directory of Open Access Journals (Sweden)

    NICOLAICA, M.-O.

    2016-02-01

    Full Text Available The current paper presents a new virtual analysis method that is applied both on hybrid and electric vehicle architectures with the purpose of contributing to the improvement of energy efficiency. The study is based on Matlab modeling and simulation. A set of parameters are considered in order to assess the system performance. The benefit is given by the comparative overview obtained after the completed analysis. The effectiveness of the analysis method is confirmed by a sequence of simulation results combined in several case studies. The impulse of the research is given by the fact that the automotive market is focusing on wider simulation techniques and better control strategies that lead to more efficient vehicles. Applying the proposed method during design would improve the battery management and controls strategy. The advantage of this method is that the system behavior with regards to energy efficiency can be evaluated from an early concept phase. The results contribute to the actual necessity of driving more efficient and more environmental friendly vehicles.

  18. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  19. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  20. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  1. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  2. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Prinz, Friedrich B. [Stanford Univ., CA (United States). Mechanical Engineering. Materials Science and Engineering; Bent, Stacey F. [Stanford Univ., CA (United States). Chemical Engineering

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  3. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  4. Mobile Energy Laboratory energy-efficiency testing programs. Semiannual report, April 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G. B.; Currie, J. W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  5. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  6. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  7. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  8. DESIGN OF ENERGY EFFICIENT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORK (WSN) USING PASCAL GRAPH

    OpenAIRE

    Deepali Panwar; Subhrendu Guha Neogi

    2013-01-01

    Development of energy efficient Wireless Sensor Network (WSN) routing protocol is nowadays main area of interest amongst researchers. This research is an effort in designing energy efficient Wireless Sensor Network (WSN) routing protocol under certain parameters consideration. Research report discusses various existing WSN routing protocols and propose a new WSN energy efficient routing protocol. Results show a significant improvement in life cycle of the nodes and enhancement ...

  9. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  10. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  11. Energy efficient solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Hansen, C.; Petersen, Poul Michael

    2012-11-15

    Even though vast improvements have been made on efficiency and light quality, SSL is still in its infancy. One of the barriers for a market introduction is the price, which still is around 5 times higher than traditional lighting technologies. In order to fulfil the potential of SSL, further research and development needs to increase the light extraction from semiconductor materials, provide better and cheaper production and packaging, and advanced optical systems for optimized light distribution and new thermal solutions for SSL lamps and luminaires. Nanotechnology and applied research at DTU Fotonik in close collaboration with industry are essential parts in the development of new enhanced LED optical systems and LEDs with higher light extraction efficiency. Photonic crystals can help to efficiently extract light from LEDs and to form a desired emission profile. Future directions are devoted to the next generation of LEDs, in which the spontaneous emission is photon enhanced. One realization of this idea is using LEDs with a layer of nanocrystals, which are coupled to the quantum well of the LED. Such R and D work is ongoing all over the world and DOE roadmaps foresee luminous efficiencies by 2020 that are close to 250 lm/W for both cold and warm white light from LEDs, and prices in the order of one dollar per kilolumen. Such figures will drastically reduce the energy consumption worldwide for lighting, and hence a marked reduction in carbon emissions. (Author)

  12. Energy-efficient Organization of Wireless Sensor Networks with Adaptive Forecasting

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2008-04-01

    Full Text Available Due to the wide potential applications of wireless sensor networks, this topic has attracted great attention. The strict energy constraints of sensor nodes result in great challenges for energy efficiency. This paper proposes an energy-efficient organization method. The organization of wireless sensor networks is formulated for target tracking. Target localization is achieved by collaborative sensing with multi-sensor fusion. The historical localization results are utilized for adaptive target trajectory forecasting. Combining autoregressive moving average (ARMA model and radial basis function networks (RBFNs, robust target position forecasting is performed. Moreover, an energyefficient organization method is presented to enhance the energy efficiency of wireless sensor networks. The sensor nodes implement sensing tasks are awakened in a distributed manner. When the sensor nodes transfer their observations to achieve data fusion, the routing scheme is obtained by ant colony optimization. Thus, both the operation and communication energy consumption can be minimized. Experimental results verify that the combination of ARMA model and RBFN can estimate the target position efficiently and energy saving is achieved by the proposed organization method in wireless sensor networks.

  13. International comparisons of energy and environmental efficiency in the road transport sector

    International Nuclear Information System (INIS)

    Ben Abdallah, Khaled; Belloumi, Mounir; De Wolf, Daniel

    2015-01-01

    The present work provides an international comparison of the energy intensity and the carbon dioxide intensity in road transport for a group of 90 countries over the period 1980–2012. This paper attempts to perform a comparative analysis to find the most appropriate mapping of the energy performance in road transport taking into account the three dimensions of sustainable energy development, namely road transport-related energy consumption, economic growth and carbon dioxide emissions. An important result of the study is the inverse relationship between energy efficiency and environmental efficiency. Through the calculated Theil coefficient, our empirical findings highlight the existence of spatial and temporal disparities between countries. In 2012, Tunisia occupies the 48th and the 38th rank respectively in terms of energy and environmental efficiency. Based on a general index of energy performance in the road transport sector, it is deemed to have a medium–high energy performance by occupying the 34th rank. The study shows the importance of enhancing a number of policies for the road transport system through the joint improvement of the fuel price policy, of the road infrastructure policy and of the fuel-efficient road vehicles policy, in order to maintain sustainable energy road transport. - Highlights: • The paper presents an international comparative analysis of the energy performance. • The road transport is analyzed for a group of 90 countries over the period 1980–2012. • There is no convergence between energy and environmental efficiencies. • Tunisia has a medium-high energy performance by occupying the 34th rank in 2012. • The findings show the importance of enhancing some policies for the road transport.

  14. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  15. Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O_2

    International Nuclear Information System (INIS)

    Chen, Xuejing; Jiang, Jianguo; Li, Kaimin; Tian, Sicong; Yan, Feng

    2017-01-01

    Highlights: • The effect of O_2 content from 0 to 15% on Ni/SiO_2 are studied for biogas reforming. • The presence of O_2 in biogas improves CH_4 conversion and stability of biogas reforming. • An obvious carbon-resistance effect is observed due to the carbon gasification effect of O_2 in biogas. • The presence of O_2 in biogas greatly helps inhibit the catalyst sintering. - Abstract: We report an energy-efficient biogas reforming process with high and stable methane conversions by O_2 presence. During this biogas reforming process, the effects of various O_2 concentrations in biogas on initial conversions and stability at various temperatures on a Ni/SiO_2 catalyst were detailed investigated. In addition, theoretical energy consumption and conversions were calculated based on the Gibbs energy minimization method to compare with experimental results. Carbon formation and sintering during the reforming process were characterized by thermal gravity analysis, the Brunauer-Emmett-Teller method, X-ray diffraction, and high-resolution transmission electron microscopy to investigate the feasibility of applying this process to an inexpensive nickel catalyst. The results showed that 5% O_2 in biogas improved the CH_4 conversion and stability of biogas reforming. The enhancement of stability was attributed to the inhibited sintering, our first finding, and the reduced carbon deposition at the same time, which sustained a stable conversion of CH_4, and proved the applicability of base Ni catalyst to this process. Higher O_2 concentrations (⩾10%) in biogas resulted in severe decrease in CO_2 conversion and greater H_2O productivity. Our proposed biogas reforming process, with a high and stable conversion of CH_4, reduced energy input, and the applicability to inexpensive base metal catalyst, offers a good choice for biogas reforming with low O_2 concentrations (⩽5%) to produce syngas with high energy efficiency.

  16. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    Science.gov (United States)

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping.

  17. Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement

    Directory of Open Access Journals (Sweden)

    Awais Shah

    2017-11-01

    Full Text Available In order to achieve feasible and copacetic low energy consuming building, a robust and efficient air conditioning system is necessary. Since heating ventilation and air conditioning systems are nonlinear and temperature and humidity are coupled, application of conventional control is inappropriate. A multi-input multi-output nonlinear model is presented. The temperature and humidity of thermal zone are ascendance by the manipulation of the water and air flow rates. A sliding mode controller (SMC is designed to ensure robust performance of air handling unit in the presence of uncertainties. A simple proportional-integral-derivative (PID controller is used as a comparison template to highlight the efficiency of the proposed controller. To accomplish tracking targets, a variety of desired temperature and relative humidity commands (including ramp and combination with sequence of steps are investigated. According to simulation results, SMC transcends the PID controller in terms of settling time, steady state and rise time, which makes SMC more energy efficient.

  18. EUE (energy use efficiency) of cropping systems for a sustainable agriculture

    International Nuclear Information System (INIS)

    Alluvione, Francesco; Moretti, Barbara; Sacco, Dario; Grignani, Carlo

    2011-01-01

    Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat-maize-soybean-maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg -1 grain; wheat: 2.6 MJ kg -1 grain; soybean: 4.1 MJ kg -1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment. -- Highlights: → We evaluated the energy flows of integrated as alternative to conventional Farming. → Energy flows, soil organic matter evolution included, were analyzed following process analysis. → Energy flows were compared using indicators. → Integrated farming improved energy efficiency without affecting net energy. → Inclusion of soil organic matter in energy analysis accrue environmental evaluation.

  19. Can nanophotonics control the Förster resonance energy transfer efficiency?

    DEFF Research Database (Denmark)

    Blum, C.; Zijlstra, N.; Lagendijk, A.

    2013-01-01

    from photovoltaics and lighting, to probing molecular distances and interactions.It is an intriguing open question whether the FRET rate γFRET and the energy transfer efficiency ηFRET can also be controlled by the nanoscale optical environment, characterized by the local density of optical states (LDOS...... precisely-defined, isolated, and efficient donor-acceptor pairs. The FRET pairs are dye molecules that covalently bound to the opposite ends of a 15 basepair long double-stranded with a precisely defined distance of 6.8 nm. Control over the LDOS is realized by positioning the FRET systems at well...... of the energy donor by the LDOS, the energy transfer efficiency can be enhanced or reduced. If a donor with unit quantum efficiency is placed in a 3D photonic bandgap, the energy transfer efficiency will approach 100 %, independent of the acceptor, and of the distances and orientations between the FRET partners....

  20. DTU International Energy Report 2012: Energy efficiency improvements

    DEFF Research Database (Denmark)

    Increased energy efficiency can reduce global CO2 emissions over the period to 2050 with up to 25%. On the top of that large profits can be gained for very little investment. Energy efficiency improvements can save investment in new energy infrastructure, cut fuel costs, increase competitiveness...... and increase consumer welfare. Thus, it is natural for DTU International Energy Report 2012 to take up this issue and analyze the global, regional and national challenges in exploiting energy efficiency and promote research and development in energy efficiency....

  1. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  2. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  3. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads

    International Nuclear Information System (INIS)

    Zhang, Xingtian; Zhang, Zutao; Pan, Hongye; Salman, Waleed; Yuan, Yanping; Liu, Yujie

    2016-01-01

    Graphical abstract: In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power supplies for rail-side equipment. The proposed system consists of a mechanical transmission and a rectifier. Acting as the energy input and transmission, Gears and a rack amplify the small vibrations of the track, and one-way bearings enhance efficiency by transforming bidirectional motion to unidirectional rotation. Supercapacitors are used in the energy harvesting system for the first time. The supercapacitors permit the storage of energy from rapidly changing transient currents and a steady power supply for external loads. The proposed system is demonstrated through dynamic simulations, which show the rapid response of the system. An efficiency of 55.5% is demonstrated in bench tests, verifying that the proposed electromagnetic energy harvesting system is effective and practical in renewable energy applications for railroads. - Highlights: • A frequently ignored source of energy, railroad track vibrations, is harvested. • A novel conversion mechanism is designed to maximize efficiency. • Supercapacitors are included in the electromagnetic energy harvesting system. • A portable design is proposed for wider application. - Abstract: As the demand for alternative sources of energy has increased, harvesting abundant environmental energy such as vibration energy including track vibrations in railway systems has attracted greater attention. In this study, we develop a portable high-efficiency electromagnetic energy harvesting system with supercapacitors that converts the energy of track vibrations into electricity. The generated electricity is stored in the supercapacitors and used in remote areas for safety facilities or in standby power

  4. Proceedings of the Eighth Forum: Croatian Energy Day Energy markets and energy efficiency in transition economy countries'

    International Nuclear Information System (INIS)

    1999-01-01

    Energy efficiency is the sum total of various influential factors resulting from the technical, technological, economic, financial, legislative and organisational conditions that exist in each of the transition countries. It is not possible to achieve an efficient usage of energy as in the Western European countries unless the total efficiency of managing all other resources equals the same level. Therefore, in the preceding period only the most successful companies managed to take considerable steps as regards the enhancement of energy efficiency, i.e. companies present at the European market and equalling the criteria of the their competitors. The problem of energy efficiency can be explained with the help pf a number of factors influencing decision making of a company's management or a citizen. Those factors create a framework of events, i.w. an appropriate or an inappropriate atmosphere for the implementation of the measures to increase energy efficiency. Attitudes for and against certain activities develop in an atmosphere according to which individuals have to make decisions. Non-economic prices, non-existence of tariff systems or systems with socially influenced prices or tariffs, have a demotivating effect on all the activities in the field of energy efficiency. The existing legislation of the transition countries often enough neglects the problem of energy management, relating to either building planning and construction, or network systems, renewable sources or consumption standards at the market. The financial situation is also an important element when dealing with energy efficiency projects; high interest rates and major problems with the insurance of necessary financial funds impede their realisation. The support of expert and consulting institutions is a precondition for a successful choice of measures, and the educational system should take over its extremely important role at each of the education levels. Energy efficiency programmes cannot be

  5. Direct and indirect co-benefits from energy-efficient residential buildings

    International Nuclear Information System (INIS)

    Ott, W.; Baur, M.; Jakob, M.

    2006-01-01

    Co-benefits of energy efficiency investments such as increased comfort of living, reduced noise exposure, and improved indoor air quality are of considerable evidence. However in investment decisions these co-benefits are rarely taken into account. Using various economic estimation methods (discrete choice, hedonic regression, contingent valuation), this study identifies and quantifies in monetary terms the most important co-benefits of energy efficiency measures. The results show that regarding energy efficiency measures, comfort of living plays a major role and that inhabitants express a non-negligible willingness to pay for it. The willingness to pay is larger than the costs of the energy efficiency measures in most cases and for a large part of the population. To utilise this willingness to pay in the market place it is necessary to establish transparency regarding comfort-of-living aspects and to raise awareness about these aspects among all involved actors (inhabitants, investors, architects, planners, promoters, vendors) by adequate information and communication measures. In view of the high relevance and the noticed economic valuation of the qualitative co-benefits, energy efficiency measures have to be promoted with their related enhancements in terms of comfort of living. (author)

  6. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  7. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  8. Federal roles to realize national energy-efficiency opportunities in the 1990s

    Science.gov (United States)

    Hirst, Eric

    1989-10-01

    Improving energy efficiency throughout the U.S. economy is a vital component of our nation's energy future, with many benefits. Improving efficiency can: save money consumers, increase economic productivity and international competitiveness, reduce oil and gas prices by reducing the demand for foreign oil, enhance national security by lowering oil imports, reduce the adverse environmental consequences of fuel cycles, especially acid rain and global warming, add diversity and flexibility to the nation's portfolio of energy resources, respond to public interest in, and support of, energy efficiency. The primary purpose of this report is to suggest expanded roles for the U.S. Department of Energy (DOE) in improving energy efficiency during the 1990s. In an ideal world, the normal workings of the market place would yield optimal energy-efficiency purchase and operating decisions. Unfortunately, distortions in fuel prices, limited access to capital, misplaced incentives, lack of information, and difficulty in processing information complicate energy-related decision making. Thus, consumers in all sectors of the economy underinvest in energy-efficient systems. These market barriers, coupled with growing concern about environmental quality, justify a larger Federal role.

  9. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  10. Review of policies and measures for energy efficiency in industry sector

    International Nuclear Information System (INIS)

    Tanaka, Kanako

    2011-01-01

    Energy efficiency in industry plays key roles in improving energy security, environmental sustainability and economic performance. It is particularly important in strategies to mitigate climate change. The evidence of great potential for cost-effective efficiency-derived reductions in industrial energy use and greenhouse gas (GHG) emissions have prompted governments to implement numerous policies and measures aimed at improving their manufacturing industries' energy efficiency. What can be learned from these many and varied initiatives? This paper provides foundation for policy analysis for enhancing energy efficiency and conservation in industry, by surveying more than 300 policies, encompassing about 570 measures, implemented by governments in IEA countries, Brazil, China, India, Mexico, Russia and South Africa. It outlines the measures' main features, their incidence of use, and their connections with specific technical actions and key stakeholders (i.e., how and where measures affect the energy efficiency of industry). It also examines the key features underlying the measures' success: (1) potential to reduce energy use and CO 2 emissions cost-efficiently; (2) ease of policy development, execution and assessment and (3) ancillary societal effects. - Highlights: → Provides foundation for policy analysis for energy efficiency in industry. → Surveys more than 300 policies and their trends, of mainly IEA countries. → Outlines measures' features, incidence of use, technical actions and stakeholders. → Examines the key features underlying the measures' success.

  11. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  12. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  13. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  14. Contributing to a green energy economy? A macroeconomic analysis of an energy efficiency program operated by a Swiss utility

    International Nuclear Information System (INIS)

    Yushchenko, Alisa; Patel, Martin Kumar

    2016-01-01

    Highlights: • Our input–output model allows estimating impacts of energy efficiency programs on GDP and employment in Switzerland. • We provide with a deeper insight into modeling of income impacts of energy savings with regard to input–output method. • Geneva case study demonstrates that energy efficiency programs can have positive macroeconomic impacts in Switzerland. • Our results help to understand how to enhance positive macroeconomic impacts of energy efficiency programs. • We provide policy recommendations for further development of energy efficiency programs. - Abstract: In order to enhance energy efficiency as a pillar of transition to a green energy economy it is important to understand whether and under which conditions energy efficiency programs could have positive economic and social impacts. There are a growing number of studies on macroeconomic impacts of energy efficiency programs for various countries and regions. However, in Switzerland only few evaluations have been performed. The present study evaluates the impacts on GDP and employment of Geneva’s energy efficiency program portfolio éco21 which is operated by the local utility. Two programs aiming for electricity savings in the residential sector are analyzed: Eco-sociales targets social housing and Communs d’immeubles focuses on common spaces in buildings. An input–output model is developed, based on the Swiss input–output table, program administrator data, Swiss, and European statistics. Both impacts of initial expenditure and energy cost savings are evaluated. We estimate and compare the impacts of the two programs and discuss factors that cause differences. Our results show that energy efficiency programs can have positive impacts on GDP and employment. According to our estimates, each Swiss Franc (CHF) spent within the energy efficiency program creates approximately 0.2 CHF of additional GDP compared to the reference case scenario. Net impacts on employment are

  15. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  16. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  17. Energy efficiency in Norway (1997). Cross Country Comparison on Energy Efficiency Indicators - Phase 5

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    2000-02-01

    This is the national report for Norway in phase 5 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of maximum 7-8 TWH from 1990 to 1997. This corresponds to a saving of 0.5% per year. In the same period, final energy use per Gross Domestic Product (GDP) was reduced by approx 2.4% per year. Thereby most of the reduction in final energy intensity can not be attributed to increased energy efficiency. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  18. Financing energy efficiency in developing countries-lessons learned and remaining challenges

    International Nuclear Information System (INIS)

    Sarkar, Ashok; Singh, Jas

    2010-01-01

    Although energy efficiency implementation is increasingly being recognized by policymakers worldwide as one of the most effective means to mitigating rising energy prices, tackling potential environmental risks, and enhancing energy security, mainstreaming its financing in developing country markets continues to be a challenge. Experience shows that converting cost-effective energy savings potential, particularly the demand-side improvement opportunities across sectors, into investments face many barriers and unforeseen transaction costs. This paper draws upon selected experiences with financing energy efficiency in developing countries to explore the key factors of various programmatic approaches and financing instruments that have been applied successfully for delivering energy efficiency solutions. Through case studies, a diverse range of institutional issues are examined related to the identification, packaging, designing, and monitoring approaches that have been used to catalyze traditional and innovative financing of energy efficiency projects. With adequate liquidity in major developing country markets and availability of modern energy savings technologies, it is often the institutional issues that become a key challenge to address in order to finance and implement robust programs. As further operational experience is gained, increased knowledge sharing can lead to scaling-up of such energy efficiency investments. The paper concludes with some ideas for accelerating implementation.

  19. Financing energy efficiency in developing countries. Lessons learned and remaining challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Ashok [Energy Unit, Energy, Transport and Water Department, World Bank (United States); Singh, Jas [Energy Sector Management Assistance Program (ESMAP), Energy, Transport and Water Department, World Bank (United States)

    2010-10-15

    Although energy efficiency implementation is increasingly being recognized by policymakers worldwide as one of the most effective means to mitigating rising energy prices, tackling potential environmental risks, and enhancing energy security, mainstreaming its financing in developing country markets continues to be a challenge. Experience shows that converting cost-effective energy savings potential, particularly the demand-side improvement opportunities across sectors, into investments face many barriers and unforeseen transaction costs. This paper draws upon selected experiences with financing energy efficiency in developing countries to explore the key factors of various programmatic approaches and financing instruments that have been applied successfully for delivering energy efficiency solutions. Through case studies, a diverse range of institutional issues are examined related to the identification, packaging, designing, and monitoring approaches that have been used to catalyze traditional and innovative financing of energy efficiency projects. With adequate liquidity in major developing country markets and availability of modern energy savings technologies, it is often the institutional issues that become a key challenge to address in order to finance and implement robust programs. As further operational experience is gained, increased knowledge sharing can lead to scaling-up of such energy efficiency investments. The paper concludes with some ideas for accelerating implementation. (author)

  20. Financing energy efficiency in developing countries-lessons learned and remaining challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Ashok, E-mail: asarkar@worldbank.or [Energy Unit, Energy, Transport and Water Department, World Bank (United States); Singh, Jas, E-mail: jsingh3@worldbank.or [Energy Sector Management Assistance Program (ESMAP), Energy, Transport and Water Department, World Bank (United States)

    2010-10-15

    Although energy efficiency implementation is increasingly being recognized by policymakers worldwide as one of the most effective means to mitigating rising energy prices, tackling potential environmental risks, and enhancing energy security, mainstreaming its financing in developing country markets continues to be a challenge. Experience shows that converting cost-effective energy savings potential, particularly the demand-side improvement opportunities across sectors, into investments face many barriers and unforeseen transaction costs. This paper draws upon selected experiences with financing energy efficiency in developing countries to explore the key factors of various programmatic approaches and financing instruments that have been applied successfully for delivering energy efficiency solutions. Through case studies, a diverse range of institutional issues are examined related to the identification, packaging, designing, and monitoring approaches that have been used to catalyze traditional and innovative financing of energy efficiency projects. With adequate liquidity in major developing country markets and availability of modern energy savings technologies, it is often the institutional issues that become a key challenge to address in order to finance and implement robust programs. As further operational experience is gained, increased knowledge sharing can lead to scaling-up of such energy efficiency investments. The paper concludes with some ideas for accelerating implementation.

  1. Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems

    International Nuclear Information System (INIS)

    Yin, Xiaohong; Wang, Xinli; Li, Shaoyuan; Cai, Wenjian

    2016-01-01

    The vapor compression refrigeration cycle (VCC) system plays an important role and accounts for a large proportion of energy consumption from the heating, ventilating, and air-conditioning (HVAC) system. The traditional control approaches, for example PID control method, however, cannot meet the cooling demands with the satisfactory energy efficiency as well. This paper presents a novel energy-efficiency-oriented cascade control strategy for the VCC systems to improve the energy efficiency and fulfill the cooling requirements of indoor occupants simultaneously. In outer loop, a mathematic model is developed to determine the set point of superheat by a PI controller based on the nonlinear correlation between cooling demands and superheat degree. In inner loop, the pressure difference and superheat degree of evaporator are controlled by a model predictive control (MPC) strategy to track the values which are determined in the outer loop, simultaneously to enhance system efficiency of the VCC systems. Simulation and experiments studies are carried out to show the effectiveness of this proposed cascade control strategy and the results indicate significant tracking performance and energy efficiency improvements on VCC system. Compared to other schemes, the proposed cascade control strategy can improve energy efficiency by up to 5.8%. - Highlights: • Energy-efficiency-oriented cascade control strategy for VCC system is presented. • The correlation between cooling requirements and superheat is analyzed. • A MPC-based controller is developed to maximize system energy efficiency. • Experimental results confirm the effectiveness of the proposed control strategy.

  2. Energy efficiency as a greenhouse gas mitigation strategy

    International Nuclear Information System (INIS)

    Salmon, G.

    1995-01-01

    This paper focuses on the best strategy for New Zealand to follow in order to meet obligations under the Framework Convention on Climate Change (FCCC). The New Zealand government's current policy is to rely on the increased carbon storage in commercial tree plantings to meet 80% of FCCC obligations with the balance being met by policy measures including voluntary energy efficiency agreements with industry and enhanced state support for energy efficiency activities. If targets are not on track for achievement by 2000, the government will introduce a carbon charge in 1997. An alternative strategy involving microeconomic reforms in the electricity and transport sectors and tradable abatement obligations including credits for emission reductions and carbon storage is proposed. 1 fig., 11 refs

  3. Monitoring changes in economy-wide energy efficiency: From energy-GDP ratio to composite efficiency index

    International Nuclear Information System (INIS)

    Ang, B.W.

    2006-01-01

    Since the 1973 world oil crisis, monitoring trends in energy efficiency at the economy-wide level has been an important component of energy strategy in many countries. To support this effort, various energy efficiency-related indicators have been developed. We examine some classical indicators which are often found in national and international energy studies in the 1970s and 1980s. We then describe the recent developments in using the index decomposition analysis to give an economy-wide composite energy efficiency index based on a bottom-up approach. This composite index is superior to the classical indicators as an economy-wide energy efficiency measure and has lately been adopted by a growing number of countries for national energy efficiency trend monitoring

  4. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  5. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  6. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  7. Policy analysis for energy efficiency in the built environment in Spain

    International Nuclear Information System (INIS)

    Yearwood Travezan, Jessica; Harmsen, Robert; Toledo, Gideon van

    2013-01-01

    Energy efficiency is considered one of the most cost effective ways to enhance security of energy supply and reduce greenhouse gas emissions. According to Europe's Energy Efficiency Plan, the biggest energy savings potential in the EU lies in the built environment. However, the many barriers to energy efficiency have prevented the implementation of the existing potential so far. This paper evaluates the existing policy instruments aimed at energy efficiency in buildings in Spain as laid down in the 2nd National Energy Efficiency Action Plan (NEEAP). The results show that the current policy package is insufficient to yield the existing energy savings potential in this sector. As much of the savings potential can be found in existing buildings and realization of this potential very much relies on voluntary action, the renovation sector is in need of an appropriate financial framework that mobilizes sufficient public and private financial resources, and transparent and efficient mechanisms to ensure the return on investment and payments from those who benefit from the renovation. Such financial framework needs to be supported by a regulatory framework that is tuned to existing buildings and an organizational framework that effectively connects the different policy layers in Spain. - Highlights: • We evaluate Spain's policies for efficiency improvement in the built environment. • We show that the policy measures in the 2nd NEEAP are insufficient to realize the savings potential. • Especially, the policy package for existing buildings needs to be strengthened

  8. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  9. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  10. Measurement and evaluation of energy efficiency programs: California and South Korea

    International Nuclear Information System (INIS)

    Vine, E.; Rhee, C.H.; Lee, K.D.

    2006-01-01

    One of the key challenges for countries facing electric utility restructuring is to ensure that key public goods, such as energy efficiency programs, do not lose support but are maintained and enhanced via regulatory policy and government action. Moreover, an infrastructure and process also needs to be designed and implemented for conducting the measurement and evaluation of energy efficiency programs. This paper describes the experiences of California and the Republic of Korea (Korea) in addressing these issues. These case studies confirm that the active involvement of regulatory bodies is needed to ensure that energy efficiency investments continue. The case studies also show that the development of an infrastructure and process for conducting rigorous measurement and evaluation takes time and needs the active participation of many stakeholders

  11. Energy efficiency of mobile soft robots.

    Science.gov (United States)

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  12. The changing trend and influencing factors of energy efficiency: The case of nine countries

    International Nuclear Information System (INIS)

    Cui, Qiang; Kuang, Hai-bo; Wu, Chun-you; Li, Ye

    2014-01-01

    Energy shortage is exacerbated by energy wastage and low efficiency, so energy efficiency has become a popular research topic. However, in most studies, the inputs and outputs of energy efficiency are selected through qualitative analysis and literature review, the rationality is not convincing. In this paper, the inputs and outputs of energy efficiency are calculated by EVA (Economic Value Added method). Number of employees in energy industry, energy consumption amount and energy services amount are chosen as the inputs while CO 2 emissions per capita and industrial profit amount are chosen as the outputs. DEA (Data Envelopment Analysis) and Malmquist index are applied to calculate the energy efficiencies of nine countries during 2008–2012. Each country has different reasons to explain the change of energy efficiency index and more flexible energy development plans should be implemented according to the changing reasons. Then the important influencing factors of energy efficiency are analyzed by Panel Regression Model. The results indicate that technology indices and management indices are the main factors of energy efficiency. Management indices' effect on energy efficiency index is occurred mainly through pure technical efficiency change index. Technology indices' effect on energy efficiency index is occurred mainly through technical progress change index. - Highlights: • The inputs and outputs of energy efficiency are calculated by Economic Value Added method. • Data Envelopment Analysis (DEA) and Malmquist index are used to calculate energy efficiency. • Panel Regression Model is used to identify the important influencing factors of energy efficiency. • Most important task is to upgrade energy technology and enhance management

  13. Fiscal 2000 survey report. On-site survey of local state of affairs such as energy efficiency enhancement (Mongolia); 2000 nendo energy shohi koritsuka nado chiiki josei genchi chosa hokokusho. Mongoru

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Information was collected and surveys were conducted in Mongolia in an effort to acquire information necessary for energy related technical cooperation. The results were arranged in four fields which are (1) the current state of economy and the future trend, (2) current state of energy production/consumption and the future trend, (3) current state of power supply/demand and power facilities and the future trend, and (4) the current state of energy efficiency enhancement and the future trend. Mongolia has a population of 2.45 million at a density of 1.57/km{sup 2}, with Ulan Bator the capital inhabited by 0.69-million people. The mean air temperature is -10 degrees C in the period November through March, which makes heating indispensable. Power stations are of the heat and power cogeneration type. Power is supplied by the Eastern, Central, and Western systems, with the Central system producing 80% or more and independent power sources 10%. Its economy has already recovered from the confusion that followed the change of its national constitution. Mongolia's demand for power lingers low, however, and its facilities can produce more electricity than what is now wanted. Energy efficiency enhancing activities should start with the upgrading, reinforcement, and maintenance of the existing facilities and with independent power sources. (NEDO)

  14. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  15. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  16. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... Energy Efficiency and Renewable Energy Advisory [[Page 69656

  17. Thermodynamic comparison and efficiency enhancement mechanism of coal to alternative fuel systems

    International Nuclear Information System (INIS)

    Ji, Xiaozhou; Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Energy and exergy analysis are presented to three coal-to-alternative-fuels systems. • Internal reasons for performance differences for different systems are disclosed. • The temperature and heat release of synthesis reactions are key to plant efficiency. • The distillation unit and purge gas recovery are important to efficiency enhancement. - Abstract: Coal to alternative fuels is an important path to enforce energy security and to provide clean energy. In this paper, we use exergy analysis and energy utilization diagram (EUD) methods to disclose the internal reasons for performance differences in typical coal to alternative fuel processes. ASPEN plus software is used to simulate the coal-based energy systems, and the simulation results are verified with engineering data. Results show that coal to substitute natural gas (SNG) process has a higher exergy efficiency of 56.56%, while the exergy efficiency of traditional coal to methanol process is 48.65%. It is indicated that three key factors impact the performance enhancement of coal to alternative fuel process: (1) whether the fuel is distillated, (2) the synthesis temperature and the amount of heat release from reactions, and (3) whether the chemical purge gases from synthesis and distillation units are recovered. Distillation unit is not recommended and synthesis at high temperature and with large heat release is preferable for coal to alternative fuel systems. Gasification is identified as the main source of exergy destruction, and thereby how to decrease its destruction is the key direction of plant efficiency improvement in the future. Also, decreasing the power consumption in air separation unit by seeking for advanced technologies, i.e. membrane, or using another kind of oxidant is another direction to improve plant performance.

  18. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... industry-specific teams--renewable energy, energy efficiency, energy storage and transmission, and biofuels...

  19. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  20. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  1. Basic project on the cooperation in enhancement of the international energy consumption efficiency. Survey of energy conservation potential by industry; 2000 nendo kokusai energy shohi koritsuka chosa nado kyoryoku kiso jigyo hokokusho. Gyoshubetsu sho energy potential chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of looking for measures to promote the effective energy conservation in China, the potential energy conservation amount in general plants was surveyed and analyzed by industry. Activities were made in the following fields: 1) survey of the actual state of energy in main industries; 2) energy conservation potential in the cement industry in China; 3) energy conservation potential in thermal power plants in China. In 1), survey was made on 8 industries including the iron/steel industry and oil refining industry. In 2), survey was made of the actual state of the Liulihe cement plant and Shitou cement plant. The subjects extracted were the arrangement of instrumentation equipment such as the exhaust gas analyzer needed for combustion management, improvement of the air/fuel ratio of kiln, enhancement of cooling efficiency of clinker cooler, etc. In 3), the actual state of the Qinling power plant was surveyed, and it was made clear that high efficiency of 38% or more can be maintained if the appropriate use/maintenance management is made (coal unit consumption: 383g/kWh in Qinling and 309g/kWh). (NEDO)

  2. 77 FR 50489 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-08-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public... FURTHER INFORMATION CONTACT: Mr. Hoyt Battey, Office of Energy Efficiency and Renewable Energy, U.S...

  3. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... submitted to the Renewable Energy and Energy Efficiency Advisory Committee, Office of Energy and...

  4. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  5. Management of efficient use of energy and energy efficiency markets in Europe

    International Nuclear Information System (INIS)

    Lutz, Wolfang F.

    1999-01-01

    The present paper is based on the study S ystematization of European Legal, regulatory, and Institutional Frameworks for the Efficient Use of Energy , conducted in the framework of the project entitled Building up the Institutional and Regulatory Design to Consolidate Modernization of Energy Policies in the Countries of Latin America: Efficient Use of energy, implemented by the United Nations Economic Commission for Latin America and the Caribbean, in cooperation with the Synergy Programme of the European Commission of the Directorate General of Energy. (The author)

  6. Direct and indirect co-benefits from energy-efficient residential buildings - Appendix

    International Nuclear Information System (INIS)

    Ott, W.; Baur, M.; Jakob, M.

    2006-01-01

    Co-benefits of energy efficiency investments such as increased comfort of living, reduced noise exposure, and improved indoor air quality are of considerable evidence. However in investment decisions these co-benefits are rarely taken into account. Using various economic estimation methods (discrete choice, hedonic regression, contingent valuation), this study identifies and quantifies in monetary terms the most important co-benefits of energy efficiency measures. The results show that regarding energy efficiency measures, comfort of living plays a major role and that inhabitants express a non-negligible willingness to pay for it. The willingness to pay is larger than the costs of the energy efficiency measures in most cases and for a large part of the population. To utilise this willingness to pay in the market place it is necessary to establish transparency regarding comfort of living aspects and to raise awareness about these aspect among all involved actors (inhabitants, investors, architects, planners, promoters, vendors) by adequate information and communication measures. In view of the high relevance and the noticed economic valuation of the qualitative co-benefits energy efficiency measures have to be promoted with their related enhancements in terms of comfort of living. (author)

  7. A Biologically Inspired Energy-Efficient Duty Cycle Design Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2017-01-01

    Full Text Available The recent success of emerging wireless sensor networks technology has encouraged researchers to develop new energy-efficient duty cycle design algorithm in this field. The energy-efficient duty cycle design problem is a typical NP-hard combinatorial optimization problem. In this paper, we investigate an improved elite immune evolutionary algorithm (IEIEA strategy to optimize energy-efficient duty cycle design scheme and monitored area jointly to enhance the network lifetimes. Simulation results show that the network lifetime of the proposed IEIEA method increased compared to the other two methods, which means that the proposed method improves the full coverage constraints.

  8. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    Full Text Available Between 1995 and 2011, the population of Alberta increased by roughly 40 per cent, but energy use in the province grew much faster, with a 62 per cent increase over the same period. In the industrial sector, the province’s largest energy consumer, demands grew 110 per cent. In mining and oil-and-gas extraction specifically, energy use over that period soared, growing by 355 per cent. That remarkable growth in energy consumption creates a particular challenge for Alberta Premier Alison Redford, who in 2011 ordered her ministers to develop a plan that “would make Alberta the national leader in energy efficiency and sustainability.” The province is still waiting. The incentives to become more energy efficient are not particularly strong in Alberta. The province’s terrain and size favour larger and less-efficient vehicles. Energy in the province is abundant, so there is little cause for concern over energy security. And energy is relatively affordable, particularly for a population that is more affluent than the Canadian average. There is little pressure on Albertans to radically alter their energy consumption behaviour. Yet, improved energy efficiency could position businesses in Alberta to become even more globally competitive, in addition to leading to improved air quality and public health. And for a province racing to keep up with growing energy demand, effective measures that promote conservation will prove much cheaper than adding yet more expensive infrastructure to the energy network. Many other jurisdictions have already provided examples of methods Alberta could employ to effectively promote energy conservation. First, Alberta must set hard targets for its goals to save energy, and then monitor that progress through transparent accounting, measuring and reporting. The provincial government can also nurture a culture of energy conservation, by formally and publicly recognizing leadership in efficiency improvements in industry and

  9. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  10. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and... within the field of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public...

  11. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally...... in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines...

  12. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... programs support the competitiveness of U.S. renewable energy and energy efficiency companies, to review...

  13. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-09-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  14. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-12-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... affecting U.S. competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and...

  15. Study on Enhanceing Mechanisim and Policy on Energy Efficiency of Electrical Motor System in China

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Liu, Meng; Chen, Lili; Yang, Ming

    2017-12-01

    Motor is a kind of terminal energy-consumption equipment with the maximum power consumption in China every year; compared with international advanced level, the technical innovation of motor equipment, speed regulating system, drive system and automatic intelligent control technique in China still lag behind relatively; the standard technical service support system of motor system is not complete, the energy conserving transformation mode needs to be innovated, and the market development mechanism of motor industry is not perfect, etc. This paper analyzes the promotion mechanism and policy on energy efficiency of the motor system in China in recent years, studies the demonstration cases of successful promotion of high-efficiency motor, standard labeling, financial finance and tax policy, and puts forward suggestions on promotion of high-efficiency motor in China.

  16. Energy efficiency by intelligent streetlighting systems. Interview with two representatives of ZVEI; Energie dank intelligenter Strassenbeleuchtungstechnik effizient nutzen. Interview mit zwei ZVEI-Repraesentanten

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-02-15

    Current energy-political decisions aim at energy conservation and higher efficiency. In 2005, lighting accounted for nearly ten percent of the total energy consumption. Streetlighting is one of the biggest consumers in this sector. netzpraxis interviewed Christoph Hess and Dr. Juergen Waldorf about the industry's views on how efficiency in streetlighting may be enhanced. (orig.)

  17. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  18. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  19. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  20. Energetic retrofitting of industrial heat supply systems. Possibilities of enhancing the efficiency and energy conservation at large combustion engineering plants; Energetische Modernisierung industrieller Waermeversorgungssysteme. Moeglichkeiten der Effizienzsteigerung und der Energieeinsparung an grossen feuerungstechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In the contribution under consideration, the Deutsche Energie-Agentur GmbH (Berlin, Federal Republic of Germany) reports on an energetic modernization of industrial heat supply systems. Possibilities of an enhancement of the energetic efficiency and energy conservation at large combustion engineering plants are described. After an introduction to this theme, the author of this contribution provides an overview of the optimization of heat supply systems, and reports on the following aspects: Optimisation of the heat demand; energy efficient heat generation; heat recovery; energy efficient conversion technology and generation technology; associate partners for more energy efficiency in industry and commerce; best practice examples.

  1. Enhanced energy efficiency and water efficiency by gray water recycling with prearranged heat recycling; Hohe Energie- und Wassereffizienz durch Grauwasserrecycling mit vorgeschalteter Waermerueckgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Nolde, Erwin

    2012-12-15

    Up to now, the purely centrally oriented supply and disposal of water is only low resource efficient. It is highlighted with pleasure, that thermal energy also is removed from waste water in order to heat and cool buildings and business. Till to now, neither a water supply nor a central waste water treatment system is known which produces more energy than primary energy is used. This becomes evenly possible by means of gray water recycling. Due to the relatively low costs of investment, the users and the environment benefit together from the gray water recycling.

  2. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-04-18

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... competitiveness in exporting renewable energy and energy efficiency (RE&EE) products and services, such as access...

  3. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC....S. renewable energy and energy efficiency industries. The December 3, 2013 meeting of the RE&EEAC...

  4. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... new capital for investment in the U.S. renewable energy and energy efficiency sectors, increasing the...

  5. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC.... renewable energy and energy efficiency industries. The RE&EEAC held its first meeting on December 7, 2010...

  6. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-01-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable energy and energy efficiency exports. The meeting is open to the public and the...

  7. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  8. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Science.gov (United States)

    2012-10-18

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable... Efficiency and Renewable Energy, U.S. Department of Energy. [FR Doc. 2012-25636 Filed 10-17-12; 8:45 am...

  9. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  10. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Science.gov (United States)

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  11. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    Full Text Available Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK and serine/threonine kinase 11(LKB1-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  12. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  13. Results of the long-term agreements on energy efficiency. Results 2011; Resultatenbrochure convenanten Meerjarenafspraken energie-efficientie 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The Dutch long-term agreement on Energy Efficiency with various sectors of the industry, the food and beverages industry and the services sector is a covenant aimed at enhancing energy efficiency among medium-sized enterprises. Participants in the covenant include businesses, the Dutch government and the Competent Authority Environmental Protection Act. Participation of businesses means that they must make energy efficiency plans, take measures and deliver annual results for monitoring. In this report the results of 2011 are presented [Dutch] De Meerjarenafspraken Energie-Efficientie met verschillende sectoren uit de industrie, de voedings- en genotmiddelenindustrie en de dienstensector, is een convenant gericht op het bevorderen van de energie-efficientie bij middelgrote bedrijven. Deelnemers aan het convenant zijn de bedrijven, de Rijksoverheid en het Bevoegd Gezag Wet Milieubeheer. Voor bedrijven betekent deelname dat zij energiebesparingplannen maken, maatregelen nemen en dat zij jaarlijks de resultaten hiervan aanleveren voor de monitoring. In dit rapport worden de resultaten van 2011 gepresenteerd.

  14. FY 2000 report on the survey of effects of enhancement of energy consumption efficiency on the global environment; 2000 nendo energy shohi koritsuka chikyu kankyo eikyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Looking for effective measures for enhancement of energy consumption efficiency in the Asia Pacific region, survey was made of the state of study of measures against global warming in the 3rd IPCC report and the state of study of the incidental convenience. The survey was made in the following two fields: 1) research analysis in study of the 3rd IPCC report; 2) research analysis of the convenience incidental to measures against global warming. 1) is composed of IPCC activities and the 3rd assessment report, and the developmental state of global warming prevention technology and potential of greenhouse effect gas reduction. Subjects on the prevention technology are the technology for enhancement of energy consumption and development of non-fossil fuels. Physical/chemical CO2 fixation is also studied. 2) is composed of the introduction, economic/social/environmental effects, international flow, reasons for different conclusion in every study, and fields of further study. Considered were global warming prevention measures, for example, economic/social/environmental effects of creation of the carbon tax, reduction in subsidy in energy sector, etc. (NEDO)

  15. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  16. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  17. Promotion of energy efficiency in enterprises

    International Nuclear Information System (INIS)

    Beltrani, G.; Schelske, O.; Peter, D.; Oettli, B.

    2003-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made within the framework of the research programme on energy-economics fundamentals on how the energy efficiency of enterprises can be improved. The report first examines the present state of affairs in Swiss enterprises and looks into the interaction of energy efficiency and environmental management systems. ISO 14001 certification is discussed and examples are given of the responses of various enterprises to a survey concerning the role of energy efficiency in environmental management. Both hindrances and success factors for the embedding of energy-efficiency measures in environmental management activities are discussed and examples are given. Instruments available in Switzerland and from abroad that can be used to promote energy efficiency in enterprises are discussed. Four particular instruments are presented; guidelines and computer-based tools that help in the making of energy-relevant investment decisions, incentives to take part in an energy-benchmark system for small and medium-sized enterprises (SME), low-interest loans for investments in energy-efficiency for SMEs and the closer definition of 'continuous improvement' of energy efficiency within the framework of ISO 14001. The results of a survey amongst those involved are discussed. The report is concluded with recommendations for the implementation of the guidelines and for improvements in the integration of energy efficiency in environmental management systems

  18. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    The energy efficiency of different biogas systems, including single and co-digestion of multiple feedstock, different biogas utilization pathways, and waste-stream management strategies was evaluated. The input data were derived from assessment of existing biogas systems, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Germany. The energy balance was evaluated as Primary Energy Input to Output (PEIO) ratio, to assess the process energy efficiency, hence, the potential sustainability. Results indicate that the PEIO correspond to 10.5-64.0% and 34.1-55.0% for single feedstock digestion and feedstock co-digestion, respectively. Energy balance was assessed to be negative for feedstock transportation distances in excess of 22 km and 425 km for cattle manure and for Municipal Solid Waste, respectively, which defines the operational limits for respective feedstock transportation. Energy input was highly influenced by the characteristics of feedstock used. For example, agricultural waste, in most part, did not require pre-treatment. Energy crop feedstock required the respect cultivation energy inputs, and processing of industrial waste streams included energy-demanding pre-treatment processes to meet stipulated hygiene standards. Energy balance depended on biogas yield, the utilization efficiency, and energy value of intended fossil fuel substitution. For example, obtained results suggests that, whereas the upgrading of biogas to biomethane for injection into natural gas network potentially increased the primary energy input for biogas utilization by up to 100%; the energy efficiency of the biogas system improved by up to 65% when natural gas was substituted instead of electricity. It was also found that, system energy efficiency could be further enhanced by 5.1-6.1% through recovery of residual biogas from enclosed digestate storage units. Overall, this study provides bases for more detailed assessment

  19. ECOWAS renewable energy and energy efficiency status report - 2014

    International Nuclear Information System (INIS)

    Auth, Katie; Musolino, Evan; Thomas, Tristram; Adebiyi, Adeola; Reiss, Karin; Semedo, Eder; Williamson, Laura E.; Chawla, Kanika; Diarra, Charles

    2014-01-01

    In recent years, the Economic Community of West African States (ECOWAS), comprising 15 Member States, it has emerged as one of the most active and dynamic regional economic communities on the African continent. Expanding access to modern, reliable, and affordable energy services is a key priority, prompting inter-state cooperation in crucial areas including capacity building, policy development and implementation, and investment. Recognising the critical role that sustainable energy plays in catalysing social, economic, and industrial development across the region, ECOWAS Member States formally inaugurated the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) in 2010 to 'contribute to the sustainable economic, social and environmental development of West Africa by improving access to modern, reliable and affordable energy services, energy security and reduction of energy related externalities'. Drawing on data from the ECOWAS Observatory for Renewable Energy and Energy Efficiency (ECOWREX) and a network of contributors and researchers across the region, the ECOWAS Renewable Energy and Energy Efficiency Status Report supports ECREEE's efforts to increase the deployment of renewable energy and energy efficiency in West Africa by providing a comprehensive regional review of renewable energy and energy efficiency developments, evolving policy landscapes, market trends and related activities, investments in renewable energy and off-grid energy solutions, and the crucial nexus between energy access and gender

  20. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  1. Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers

    Science.gov (United States)

    Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.

    Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.

  2. Energy efficiency public service advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gibson-Grant, Amanda [Advertising Council, New York, NY (United States)

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  3. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid

    Science.gov (United States)

    Bubenheim, David L.

    2017-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.

  4. State Energy Efficiency Benefits and Opportunities

    Science.gov (United States)

    Describes the benefits of energy efficiency and how to assess its potential for your state. Also, find details on energy efficiency policies, programs, and resources available for furthering energy efficiency goals.

  5. Implementing energy efficiency policy in Croatia: Stakeholder interactions for closing the gap

    International Nuclear Information System (INIS)

    Bukarica, Vesna; Robić, Slavica

    2013-01-01

    Despite the substantial efforts made to develop sound energy efficiency policies, the desired effects in terms of achieved energy savings are lacking. This phenomenon is known as the energy efficiency gap and has been extensively investigated in the literature. Barrier models to explain the gap are primarily oriented towards the technical aspects of energy efficiency and often disregard its social aspects. The aim of our research was to identify the social structures that play a prominent role in moving society towards greater energy efficiency, to investigate their perceptions of the levers for and brakes to greater participation in the implementation of energy efficiency measures and to provide recommendations for policy enhancement. Four groups of stakeholders were identified: public institutions, businesses, civil society organisations and the media. A survey was administered to 93 representatives of these groups in Croatia. The results indicate that to encourage the society to adopt energy efficiency improvements, it is crucial for public institutions to play a leading role with the support of strong and visible political commitment. The level of benefit recognition among all groups is weak, which together with the slow progression of dialogue between and within the analysed groups is preventing full policy uptake. - Highlights: • We analyse attitudes of Croatian stakeholders towards energy efficiency. • Responses are gathered from public institutions, businesses, CSOs and media. • Lacking political will and public dialogue dominantly cause and maintain the gap. • Participative policy making and clear leadership in implementing are needed

  6. Enhancement of CNT-based filters efficiency by ion beam irradiation

    Science.gov (United States)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  7. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  8. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  9. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  10. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA

  11. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  12. Analysis of energy efficiency and energy consumption costs: a case study for regional wastewater treatment plant in Malaysia

    Directory of Open Access Journals (Sweden)

    Nor Azuana Ramli

    2017-03-01

    Full Text Available The objective of this study is to analyze the possibilities of increasing energy efficiency in the central region wastewater treatment plant by focusing on two aspects: biogas production and prediction of energy production. The analysis is based on one of the biggest central region wastewater treatment plants in Malaysia. After studying the energy efficiency, which consists of optimization of energy consumption and enhancing gas generation, the prediction of power consumption is performed using an autoregressive integrated moving average (ARIMA model. The prediction results are compared with the linear regression method. Comparison shows that even though the total cost of savings is greater by using linear regression, the prediction through ARIMA is more accurate and has smaller root mean square error. The implementation of these two aspects managed to increase energy efficiency by 10% of energy recovery that could further reduce electricity cost and reduction of sludge cake disposal off site. The study recommends other aspects, such as modification in setting up the frequency of variable speed drive for aerators and blowers and optimizing number of feeds into train unit processes within aeration tanks in increasing energy efficiency.

  13. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  14. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  15. Energy and Water Efficiency on Campus | NREL

    Science.gov (United States)

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  16. Total-factor energy efficiency in developing countries

    International Nuclear Information System (INIS)

    Zhang Xingping; Cheng Xiaomei; Yuan Jiahai; Gao Xiaojun

    2011-01-01

    This paper uses a total-factor framework to investigate energy efficiency in 23 developing countries during the period of 1980-2005. We explore the total-factor energy efficiency and change trends by applying data envelopment analysis (DEA) window, which is capable of measuring efficiency in cross-sectional and time-varying data. The empirical results indicate that Botswana, Mexico and Panama perform the best in terms of energy efficiency, whereas Kenya, Sri Lanka, Syria and the Philippines perform the worst during the entire research period. Seven countries show little change in energy efficiency over time. Eleven countries experienced continuous decreases in energy efficiency. Among five countries witnessing continuous increase in total-factor energy efficiency, China experienced the most rapid rise. Practice in China indicates that effective energy policies play a crucial role in improving energy efficiency. Tobit regression analysis indicates that a U-shaped relationship exists between total-factor energy efficiency and income per capita. - Research Highlights: → To measure the total-factor energy efficiency using DEA window analysis. → Focus on an application area of developing countries in the period of 1980-2005. → A U-shaped relationship was found between total-factor energy efficiency and income.

  17. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  18. Modeling international trends in energy efficiency

    International Nuclear Information System (INIS)

    Stern, David I.

    2012-01-01

    I use a stochastic production frontier to model energy efficiency trends in 85 countries over a 37-year period. Differences in energy efficiency across countries are modeled as a stochastic function of explanatory variables and I estimate the model using the cross-section of time-averaged data, so that no structure is imposed on technological change over time. Energy efficiency is measured using a new energy distance function approach. The country using the least energy per unit output, given its mix of outputs and inputs, defines the global production frontier. A country's relative energy efficiency is given by its distance from the frontier—the ratio of its actual energy use to the minimum required energy use, ceteris paribus. Energy efficiency is higher in countries with, inter alia, higher total factor productivity, undervalued currencies, and smaller fossil fuel reserves and it converges over time across countries. Globally, technological change was the most important factor counteracting the energy-use and carbon-emissions increasing effects of economic growth.

  19. Energy efficiency action plan. Policy action plan for promotion of energy efficiency in the Czech Republic to 2010

    International Nuclear Information System (INIS)

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply and environmental protection. Therefore, the Czech government aims to promote these two sustainable options. The Energy Policy White Paper, which is being developed at the time of writing (June 1999), will provide the general framework for the future role of energy efficiency and renewable energy in the Czech Republic. In addition, it is necessary to develop specific policies. The National Energy Efficiency Study aimed to support the Czech government in the formulation of energy efficiency and renewable energy policy. The National Energy Efficiency Study has resulted in the following documents: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (this report); The Renewable Energy Action Plan (separate report; ECN-C--99-064) deals with policy on promotion of renewable energy production. These two Action Plans provide policy makers in the Czech government with essential information on potentials, targets, budgets and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation; and (2) The National Energy Efficiency Study NEES (separate report; ECN-C--99-063). This report is the background document to the two Action Plans. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is included to support project identification

  20. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.

    Science.gov (United States)

    Islim, Mohamed Sufyan; Haas, Harald

    2016-05-30

    The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).

  1. Energy Efficiency in Norway 1990-2000

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2003-06-01

    This is the national report for Norway in the EU/SAVE project ''Indicators for Energy Efficiency Monitoring and Target setting (ODYSSEE)''. The report deals with energy use and energy efficiency in Norway 1990-2000 (2001 for overall energy use). Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.9% pr year in the period 1990 to 2001. The energy efficiency improvement has been calculated to 0.6% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 11 TWh from 1990 to 2000. (author)

  2. 76 FR 80355 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open teleconference... efficiency and renewable energy. The Federal Advisory Committee Act, Public Law 92- 463, 86 Stat. 770...

  3. 76 FR 54224 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Science.gov (United States)

    2011-08-31

    ... DEPARTMENT OF ENERGY Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting... efficiency and renewable energy. The Federal Advisory Committee Act, Public Law 92-463, 86 Stat. 770...

  4. A self-powered piezoelectric energy harvesting interface circuit with efficiency-enhanced P-SSHI rectifier

    Science.gov (United States)

    Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang

    2018-04-01

    The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).

  5. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  6. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  7. Consumer preferences for automobile energy-efficiency grades

    International Nuclear Information System (INIS)

    Koo, Yoonmo; Kim, Chang Seob; Hong, Junhee; Choi, Ie-Jung; Lee, Jongsu

    2012-01-01

    Recently, increases in energy prices have made energy conservation and efficiency improvements even more essential than in the past. However, consumers experience difficulty in obtaining reliable information regarding energy efficiency, so that many countries have implemented regulations to enforce energy-efficiency grade labeling. In this study, consumer preferences regarding energy efficiency grades are analyzed by the mixed logit and MDCEV model based on the revealed preference data of past automobile purchases. Findings show that consumers rationally apply information on energy efficiency grades when purchasing automobiles. However, they tend to show inefficiency in automobile usage patterns. This study discusses political implications of energy efficiency policies as they might impact consumer behaviors of automobile purchase and usage. - Highlights: ► We model discrete choice model to evaluate energy-efficiency grade regulation. ► Consumers apply information on energy efficiency grades when purchasing automobiles. ► However, they tend to show inefficiency in automobile usage patterns. ► The policies for efficient automobile usage are discussed.

  8. 76 FR 71312 - Renewable Energy and Energy Efficiency Advisory Committee Meeting

    Science.gov (United States)

    2011-11-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency...: Notice of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE... competitiveness of the U.S. renewable energy and energy efficiency industries, including specific challenges...

  9. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    Science.gov (United States)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  10. ENERGY EFFICIENCY AS A CRITERION IN THE VEHICLE FLEET MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Davor Vujanović

    2010-01-01

    Full Text Available Transport represents an industry sector with intense energy consumption, the road transport sector within is the dominant subsector. The objective of the research presented in this paper is in defining the activities which applied within road freight transport companies contribute to enhancing vehicles' energy efficiency. Vehicle fleet operation management process effects on fuel consumption decrease have been looked into. Operation parameters that influence vehicle fuel consumption were analysed. In this sense, a survey has been realised in order to evaluate the vehicle load factor impact on the specific fuel consumption. Measures for enhancing vehicle's logistics efficiency have been defined. As a tool for those measures' implementation an algorithm for vehicle fleet operation management was developed which represented a basis for a dedicated software package development for vehicle dispatching process decision support. A set of measures has been recommended and their effects in fuel savings were evaluated.

  11. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  12. Traffic-Adaptive and Energy-Efficient Small Cell Networks-Energy, Delay and Throughput

    OpenAIRE

    Nazrul Alam, Mirza

    2016-01-01

    The low power small cell network has emerged as a promising and feasible solution to address the massive wireless traffic resulting from the aggressive growth of wireless applications. It is also estimated that Internet of things (IoT) will consist of around 50 billion physical objects by 2020. As a result, besides capacity enhancement, other challenges, e.g., energy efficiency, dynamic addressing of UL/DL traffic asymmetry, low latency, multi-hop communications, reliability and coverage have...

  13. Energy efficiency: utopia or reality?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In its 2006 allocution the world council on the energy WEC, analyzes the role of the energy efficiency in the energy life cycle. In spite of different objectives followed by the developing and developed countries, implement a world energy efficiency economy is a challenge possible by the cooperation.The WEC is an ideal forum for the information and experience exchange. (A.L.B.)

  14. Frontiers in the economics of energy efficiency

    International Nuclear Information System (INIS)

    Miguel, Carlos de; Labandeira, Xavier; Löschel, Andreas

    2015-01-01

    Energy efficiency has become an essential instrument to obtain effective greenhouse gas mitigation and reduced energy dependence. This introductory article contextualizes the contributions of the supplemental issue by showing the new setting for energy efficiency economics and policy; discussing the role of price instruments to promote energy savings; presenting new approaches for energy efficiency policies; and placing energy efficiency within a wider energy and environmental framework.

  15. IT support of energy-sensitive product development. Energy-efficient product and process innovations in production engineering. Virtual product development for energy-efficient products and processes; IT-Unterstuetzung zur energiesensitiven Produktentwicklung. Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik. Handlungsfeld virtuelle Produktentwicklung fuer energieeffiziente Produkte und Prozesse (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Thomas; Ruenger, Gudula; Steger, Daniel; Xu, Haibin

    2010-07-07

    The development of low-cost, energy-saving and resources-saving products is increasingly important. Thecalculation of the life cycle cost is an important basis for this. For this, it is necessary to extract empirical, decision-relevant data from IT systems of product development (e.g. product data management systems) and operation (e.g. enterprise resource planning systems), and to give the planner appropriate methods for data aggregation. Life cycle data are particularly important for optimising energy efficiency, which may be achieved either by enhanced productivity at constant energy consumption or by reduced energy consumption at constant productivity. The report presents an IT view of the product development process. First, modern methods of product development are analysed including IT support and IT systems. Requirements on IT systems are formulated which enable energy efficiency assessment and optimisation in all phases of product development on the basis of the IT systems used. IT systems for energy-sensitive product development will support the construction engineer in the development of energy-efficient products. For this, the functionalities of existing PDM systems must be enhanced by methods of analysis, synthesis and energy efficiency assessment. Finally, it is shown how the methods for analyzing energy-relevant data can be integrated in the work flow.

  16. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.

    Science.gov (United States)

    Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue

    2017-08-18

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.

  17. Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer

    Science.gov (United States)

    Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue

    2017-01-01

    Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496

  18. Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable-Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Paget, Maria L.; Secrest, Thomas J.; Balducci, Patrick J.; Orrell, Alice C.; Bloyd, Cary N.

    2011-05-10

    This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.

  19. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  20. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  1. Energy efficient buildings : a plan for BC : creating a legacy of energy efficient buildings in British Columbia

    International Nuclear Information System (INIS)

    2005-10-01

    A plan to conserve energy and improve energy efficiency in homes and buildings in British Columbia was presented. Benefits of the plan included savings for consumers throughout BC; an increase in the value of homes and buildings; a return on investment after an average of 5 years; improved comfort and indoor air quality in buildings; creation of equipment manufacturing, building design, development and trades jobs across the province; and reduced environmental impacts, including greenhouse gas (GHG) and smog-creating air emissions. An outline of cost-effective energy efficiency targets was presented to complement ongoing local, provincial and federal programs. A number of market challenges were reviewed, such as the lack of information available to consumers on energy efficiency, the increased initial cost of energy efficient buildings, and the fact that opportunities to reduce energy consumption after construction are limited and expensive. It was suggested that energy consumers are not often aware of the environmental and social costs of over-consumption of energy. Details of existing programs that support energy efficiency were presented, as well as information concerning sales tax exemptions for high efficiency heating equipment and other materials used to conserve energy. Various provincial policies and incentives supporting energy conservation were outlined. Cost-effective targets for energy efficiency for new and existing buildings were presented, as well as details of rebates for homeowners. Capital costs for new construction standards were presented, as well as details of incentives and provincial sales tax exemptions

  2. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

    Directory of Open Access Journals (Sweden)

    Alexander N. Obraztsov

    2013-08-01

    Full Text Available The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

  3. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  4. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  5. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  6. Oil Depletion and the Energy Efficiency of Oil Production: The Case of California

    Directory of Open Access Journals (Sweden)

    Adam R. Brandt

    2011-10-01

    Full Text Available This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI. I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from 6.5 to 3.5 (measured as megajoules (MJ delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining. Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut.

  7. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  8. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  9. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  10. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  11. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    Science.gov (United States)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  12. Nano-based PCMs for building energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  13. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  14. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  15. Transition Towards Energy Efficient Machine Tools

    CERN Document Server

    Zein, André

    2012-01-01

    Energy efficiency represents a cost-effective and immediate strategy of a sustainable development. Due to substantial environmental and economic implications, a strong emphasis is put on the electrical energy requirements of machine tools for metalworking processes. The improvement of energy efficiency is however confronted with diverse barriers, which sustain an energy efficiency gap of unexploited potential. The deficiencies lie in the lack of information about the actual energy requirements of machine tools, a minimum energy reference to quantify improvement potential and the possible actions to improve the energy demand. Therefore, a comprehensive concept for energy performance management of machine tools is developed which guides the transition towards energy efficient machine tools. It is structured in four innovative concept modules, which are embedded into step-by-step workflow models. The capability of the performance management concept is demonstrated in an automotive manufacturing environment. The ...

  16. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  17. Energy efficiency of high-rise buildings

    Science.gov (United States)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  18. Regional cooperation in energy efficiency standard-setting and labeling in North America

    Energy Technology Data Exchange (ETDEWEB)

    Wiel, Stephen; Van Wie McGrory, Laura

    2003-08-04

    The North American Energy Working Group (NAEWG) was established in 2001 by the governments of Canada, Mexico, and the United States. The goals of NAEWG are to foster communication and cooperation on energy-related matters of common interest, and to enhance North American energy trade and interconnections consistent with the goal of sustainable development, for the benefit of all three countries. At its outset, NAEWG established teams to address different aspects of the energy sector. One, the Energy Efficiency Expert Group, undertook activity in three areas: (1) analyzing commonalities and differences in the test procedures of Canada, Mexico, and the United States, and identifying specific products for which the three countries might consider harmonization; (2) exploring possibilities for increased mutual recognition of laboratory test results; and (3) looking at possibilities for enhanced cooperation in the Energy Star voluntary endorsement labeling program. To support NAEWG's Expert Group on Energy Efficiency (NAEWG-EE), USDOE commissioned Lawrence Berkeley National Laboratory, representing the Collaborative Labeling and Appliance Standards Program (CLASP), to prepare a resource document comparing current standards, labels, and test procedure regulations in Canada, Mexico, and the United States. The resulting document identified 46 energy-using products for which at least one of the three countries has energy efficiency regulations. Three products--refrigerators/freezers, room air conditioners, and integral horsepower three-phase electric motors--have identical minimum energy performance standards (MEPS) and test procedures in the three countries. Ten other products have different MEPS and test procedures, but have the near-term potential for harmonization. NAEWG-EE is currently working to identify mechanisms for mutual recognition of test results. With consultative support from the United States and Canada through NAEWG-EE, Mexico is exploring possibilities

  19. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.

  20. Mechanism of plasmon-mediated enhancement of photovoltaic efficiency

    International Nuclear Information System (INIS)

    Jacak, W; Jacak, J; Donderowicz, W; Jacak, L; Krasnyj, J

    2011-01-01

    Metallic nanospheres (Au, Ag, Cu) deposited on a photovoltaic (PV)-active semiconductor surface can act as light converters, collecting energy of incident photons in plasmon oscillations. This energy can be next transferred to a semiconductor substrate via a near-field channel, in a more efficient manner in comparison with the direct photo-effect. We explain this enhancement by inclusion of indirect interband transitions in a semiconductor layer due to the near-field coupling with plasmon radiation in nanoscale of the metallic components, where the momentum is not conserved as the system is not translationally invariant. The model of the nanosphere plasmons is developed (random phase approximation, analytical version, adjusted to description of large metallic clusters, with a radius of 10-60 nm) including surface and volume modes. Damping of plasmons is analysed via Lorentz friction, and irradiation losses in the far- and near-field regimes. Resulting resonance shifts are verified experimentally for Au and Ag colloidal water solutions with respect to particle size. Probability of the electron interband transition (within the Fermi golden rule) in the substrate semiconductor induced by coupling to plasmons in the near-field regime turns out to be significantly larger than for coupling of electrons to planar-wave photons. This is of practical importance for enhancement of thin-film solar cell efficiency, both for semiconductor type (such as III-V semiconductor based cells) and for conjugate-polymer-based or dye organic plastic cells, intensively developed at present. We have described also a non-dissipative collective mode of surface plasmons in a chain of near-field-coupled metallic nanospheres, for particular size, separation parameters and wavelengths. This would find an application in sub-diffraction electro-photonic circuit arrangement and for possible energy transport in solar cells, in particular in organic materials with low mobility of carriers.

  1. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  2. Energy conservation, efficiency and energy audit

    International Nuclear Information System (INIS)

    Sharma, R.A.

    2006-01-01

    In this paper the author discusses the conservation, efficiency, audit, fundamentals, differences and methods, the objectives of energy conservation, definitions of energy audit, scope, short term, medium term and long term measures to be taken for conservation are discussed

  3. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an open meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... competitiveness of U.S. renewable [[Page 6784

  4. Enhancing China’s energy security: Determining influential factors and effective strategic measures

    International Nuclear Information System (INIS)

    Ren, Jingzheng; Sovacool, Benjamin K.

    2014-01-01

    Highlights: • The most influential factors affecting China’s energy security are identified. • Fuzzy AHP is used to quantify the importance of influential factors. • Strategic measures for enhancing China’s energy security are prioritized. • Fuzzy AHP is used to determine the priorities of the strategic measures. - Abstract: This study investigates the most influential factors affecting China’s energy security. It also identifies the most effective strategic measures for enhancing it. Fuzzy AHP has been used to determine weights for ranking the importance of Chinese energy security factors, and it has also been used to determine the priorities of the strategic measures with respect to enhancing those same factors. The study argues that a low proportion of renewable energy penetration is the most severe factor threatening China’s energy security, and that conducting research and development on energy technologies and improving energy efficiency is the most salient, positive, and necessary strategic measure

  5. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  6. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  7. Using energy efficiently

    International Nuclear Information System (INIS)

    Nipkow, J.; Brunner, C. U.

    2005-01-01

    This comprehensive article discusses the perspectives for reducing electricity consumption in Switzerland. The increase in consumption is discussed that has occurred in spite of the efforts of the Swiss national energy programmes 'Energy 2000' and 'SwissEnergy'. The fact that energy consumption is still on the increase although efficient and economically-viable technology is available is commented on. The authors are of the opinion that the market alone cannot provide a complete solution and that national and international efforts are needed to remedy things. In particular, the external costs that are often not included when estimating costs are stressed. Several technical options available, such as the use of fluorescent lighting, LCD monitors and efficient electric motors, are looked at as are other technologies quoted as being a means of reducing power consumption. Ways of reducing stand-by losses and system optimisation are looked at as are various scenarios for further development and measures that can be implemented in order to reduce power consumption

  8. Encouraging energy efficiency: Policies and programs

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Successfully overcoming the barriers to higher energy efficiency requires development of policies designed for specific users and locations. Reform of energy pricing, which entails removing subsidies and beginning internalization of externalities, is critical to give technology producers and users proper signals for investment and management decisions. But while a rise in energy prices increases the amount of energy-efficiency improvement that is cost-effective, it does not remove other barriers that deter investment. Minimum efficiency standards or agreements can raise the market floor, and are important because they affect the entire market in the near-term. But they may not raise the celining very much, and do little to push the efficiency frontier. To accomplish these goals, incentives and other market-development strategies are needed. Utility programs in particular can play a key role in pushing energy efficiency beyond the level where users are likely to invest on their own. Policies, programs, and pricing should complement one another. Pricing reform alone will not overcome the many entrenched barriers to higher energy efficiency, but trying to accelerate energy efficiency improvement without addressing energy pricing problems will lead to limited success. Whether tagerting new equipment or management of existing systems, policies must reflect a thorough understanding of the particular system and an awareness of the motivations of the actors. 25 refs

  9. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition. As...

  10. Energy efficiency: a recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Produced in cooperation with ADEME and Enerdata, this report presents and evaluates energy efficiency policies and trends in about 90 countries around the world. It reviews the impact of energy efficiency measures and highlights the trends and results of their implementation. Energy efficiency is ''a low hanging fruit'' on the ''energy tree'' which can help address a number of objectives at the same time and at a low or negative cost: security of supply, environmental impacts, competitiveness, balance of trade, investment requirements, social aspects and others. Despite its significant potential for energy savings, energy efficiency is still far from realising this potential. Why? There is no single answer to this question. A meaningful response requires major research and an analytical effort.

  11. Energy saving and energy efficiency concepts for policy making

    International Nuclear Information System (INIS)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies.

  12. Energy saving and energy efficiency concepts for policy making

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, V. [SOM, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Becchis, F. [POLIS Department, University of East Piedmont, via Duomo, 6-13100 Vercelli (Italy); Steg, L. [Faculty of Behavioural and Social Sciences, University of Groningen, P.O. Box 72 9700 AB (Netherlands); Russolillo, D. [Fondazione per l' Ambiente ' T. Fenoglio' , Via Gaudenzio Ferrari 1, I-10124 Torino (Italy)

    2009-11-15

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies. (author)

  13. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  14. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Mendenhall Glacier Visitor Center, Juneau, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); LoVullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    This report summarizes results from the energy efficiency, water efficiency, and renewable energy site assessment of the Mendenhall Glacier Visitor Center and site in Juneau, Alaska. The assessment is an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory conducted the assessment with U.S. Forest Service personnel August 19-20, 2015, as part of ongoing efforts by USFS to reduce energy and water use.

  15. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-05-15

    Modern smartphones are being designed with increasing processing power, memory capacity, network communication, and graphics performance. Although all of these features are enriching and expanding the experience of a smartphone user, they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU). Smartphone operating systems are becoming fully hardware-accelerated, which implies relying on the GPU power for rendering all application graphics. In addition, the GPUs installed in smartphones are becoming more and more powerful by the day. This raises an energy consumption concern. We present a novel implementation of GPU Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) scheme implemented in the Android kernel to dynamically scale the GPU. The scheme includes four main governors: Performance, Powersave, Ondmand, and Conservative. Unlike previous studies which looked into the power efficiency of mobile GPUs only through simulation and power estimations, we have implemented our approach on a real modern smartphone GPU, and acquired actual energy measurements using an external power monitor. Our results show that the energy consumption of smartphones can be reduced up to 15% using the Conservative governor in 2D rendering mode, and up to 9% in 3D rendering mode, with minimal effect on the performance.

  16. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  17. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  18. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  19. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  20. Evaluation of the energy efficiency evolution in the European road freight transport sector

    International Nuclear Information System (INIS)

    Ruzzenenti, F.; Basosi, R.

    2009-01-01

    In this paper, we evaluate energy efficiency in the European freight transport sector over three decades, according to a variety of indicators, methodologies and databases. The aim is, on the one hand, of determining major drawbacks in energy efficiency metrics, on the other hand, identifying a possible trend in the sector. The present analysis shows that energy efficiency evaluation is generally subject to misinterpretation and distortion with regard to the methods and data source adopted. Two different indicators (energy intensity and fuel economy) were initially taken into account to select the most suitable for evaluating vehicles' efficiency. Fuel economy was then adopted and measured according to two different methodologies (top-down and bottom-up). We then considered all the possible sources of distortion (data sources employed, methods of data detection, speed of detection, power enhancement, size factor) with the aim of accomplishing a sound estimation. Fuel economy was eventually divided with the maximum power available (adjusted fuel economy), to account for the power shift of vehicles, that represents a further efficiency improvement.

  1. Designing energy efficiency services successfully. Market development for EEDL; Energieeffizienzdienstleistungen erfolgreich gestalten. Marktentwicklung fuer EEDL

    Energy Technology Data Exchange (ETDEWEB)

    Irrek, Wolfgang [Hochschule Ruhr West, Bottrop (Germany). Energiemanagement und Energiedienstleistungen; Suerkemper, Felix; Thema, Johannes [Wuppertal Institut fuer Klima, Umwelt, Energie GmbH, Wuppertal (Germany); Renner, Gisela

    2013-02-18

    It certainly often is not easy to earn money with services to enhance the energy efficiency and to conserve energy. The development of the product portfolio as well as the development of the business area is exciting, but also extremely challenging. Between the years 2009 and 2012, the project Change Best being sponsored in the course of the program 'Intelligent Energy Europe' from the European Commission had supported 38 companies from 16 EU Member States in the accomplishment of possible difficulties in the development and market launching of new energy efficiency services.

  2. Energy researchers - 1. Energy efficiency: Energy efficiency is driving innovation; No economic crisis for energy efficiency; How can we change our energy habits?

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisan, Francois; Salha, Bernard; Tardieu, Bernard; Ghidaglia, Jean-Michel; Viterbo, Jerome

    2011-01-01

    A first article comments how the race to achieve energy efficiency is driving the emergence of new technologies in transportation and construction (hybrid cars, phase change material, digital mock-ups, and so on). The example of the AGV is evoked, a new version of the TGV developed by Alstom which will run faster and consume less energy. A second article outlines that, due to the support from public authorities and to an increased awareness of energy costs and environmental challenges, the energy savings market is booming. Then, in an interview, a sociologist of the ADEME comments the difficulty of changing habits in terms of energy savings

  3. Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex.

    Science.gov (United States)

    Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Bin, Zhengyang; Zhang, Deqiang; Duan, Lian

    2016-02-17

    Exciplex forming cohosts have been widely adopted in phosphorescent organic light-emitting diodes (PHOLEDs), achieving high efficiency with low roll-off and low driving voltage. However, the influence of the exciplex-forming hosts on the lifetimes of the devices, which is one of the essential characteristics, remains unclear. Here, we compare the influence of the bulk exciplex and interface exciplex on the performances of the devices, demonstrating highly efficient orange PHOLEDs with long lifetime at low dopant concentration by efficient Förster energy transfer from the interface exciplex. A bipolar host, (3'-(4,6-diphenyl-1,3,5-triazin-2-yl)-(1,1'-biphenyl)-3-yl)-9-carbazole (CzTrz), was adopted to combine with a donor molecule, tris(4-(9H-carbazol-9-yl)phenyl)amine (TCTA), to form exciplex. Devices with energy transfer from the interface exciplex achieve lifetime almost 2 orders of magnitude higher than the ones based on bulk exciplex as the host by avoiding the formation of the donor excited states. Moreover, a highest EQE of 27% was obtained at the dopant concentration as low as 3 wt % for a device with interface exciplex, which is favorable for reducing the cost of fabrication. We believe that our work may shed light on future development of ideal OLEDs with high efficiency, long-lifetime, low roll-off and low cost simultaneously.

  4. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  5. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene

    International Nuclear Information System (INIS)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-01-01

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time (∼0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO(reg s ign), with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  6. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  7. Development of Energy Efficiency Indicators in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Russia is sometimes referred to as 'the Saudi Arabia of energy efficiency'; its vast potential to reduce energy consumption can be considered a significant 'energy reserve'. Russia, recognising the benefits of more efficient use of energy, is taking measures to exploit this potential. The president has set the goal to reduce energy intensity by 40% between 2007 and 2020. In the past few years, the IEA has worked closely with Russian authorities to support the development of energy efficiency indicators in Russia, critical to an effective implementation and monitoring of Russia's ambitious energy intensity and efficiency goals. The key findings of the IEA work with Russia on developing energy efficiency indicators form the core of this report.

  8. Energy efficiency: a recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Produced in cooperation with ADEME and Enerdata, this report presents and evaluates energy efficiency policies and trends in about 90 countries around the world. It reviews the impact of energy efficiency measures and highlights the trends and results of their implementation. Energy efficiency is ''a low hanging fruit'' on the ''energy tree'' which can help address a number of objectives at the same time and at a low or negative cost: security of supply, environmental impacts, competitiveness, balance of trade, investment requirements, social aspects and others. Despite its significant potential for energy savings, energy efficiency is still far from realising this potential. Why? There is no single answer to this question. A meaningful response requires major research and an analytical effort.

  9. Hydro-Quebec and energy efficiency

    International Nuclear Information System (INIS)

    1990-01-01

    There is growing awareness that energy efficiency is both profitable and environmentally beneficial. In this year's Development Plan, Hydro-Quebec is proposing an Energy Efficiency Project made up of marketing programs designed for all markets throughout the final decade of the 20th century. This Project will have two aspects: energy efficiency and consumption management. Hydro-Quebec aims to reach an energy-efficiency level of 12.9 terawatt hours per year by 1999, fully 55% of its 23-terawatt hour potential. Over the next 10 years the utility intends to spend $1.8 billion for this purpose. Cumulative anticipated energy savings should be in the vicinity of 70 terawatt hours for the coming decade, and more than 130 terawatt hours for the first decade of the next century. Of the overall goal of 12.9 terawatt hours for Horizon 1999, energy savings of 9.0 terawatt hours should be the direct result of this year's proposed marketing programs, and will account for the bulk of anticipated investments. The remaining 3.9 terawatt hours will be gained as customers acquire better electrical appliance and accessory (household appliances, home insulation) buying habits

  10. The transition between energy efficient and energy inefficient states in Cameroon

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2016-01-01

    I use a two-state (energy efficient/inefficient) Markov-switching dynamic model to study energy efficiency in Cameroon in a novel manner, employing yearly data covering 1971 to 2012. I find that the duration of an energy inefficient state is about twice as long as an energy efficient state, mainly due to fuel subsidies, low income, high corruption, regulatory inefficiencies, poorly developed infrastructure and undeveloped markets. To escape from an energy inefficient state a broad policy overhaul is needed. Trade liberalization and related growth policies together with the removal of fuel subsidies are useful, but insufficient policy measures; the results suggest that they should be combined with structural policies, aiming at institutional structure and investment in infrastructure. - Highlights: • I investigate the transition between energy efficient/inefficient states. • On the average, energy inefficient state persists more than energy efficient state. • The duration of energy inefficient state is about twice as long as energy efficient state. • Price, income and trade openness have distinct energy saving effect irrespective of state. • A broad policy overhaul is needed to escape the energy inefficient state.

  11. Energy Efficiency in Norway 1996-1999. Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2002-05-01

    This is the national report for Norway in the EU/SAVE project ''Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects''. The report deals with energy use and energy efficiency in Norway 1990-1999. Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.6% per year from 1990 to 1999. The energy efficiency improvement has been calculated to 0.4% pr year, while the role of structural changes has been 1.2% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 8 TWh from 1990 to 1999. (author)

  12. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  13. Measuring energy efficiency in economics: Shadow value approach

    Science.gov (United States)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also

  14. Tariff regulation with energy efficiency goals

    International Nuclear Information System (INIS)

    Abrardi, Laura; Cambini, Carlo

    2015-01-01

    We study the optimal tariff structure that could induce a regulated utility to promote energy efficiency by its customers given that it is privately informed about the effectiveness of its effort on demand reduction. The regulator should optimally offer a menu of incentive compatible two-part tariffs. If the firm's energy efficiency activities have a high impact on demand reduction, the consumer should pay a high fixed fee but a low per unit price, approximating the tariff structure to a decoupling policy, which strengthens the firm's incentives to pursue energy conservation. Instead, if the firm's effort to adopt energy efficiency actions is scarcely effective, the tariff is characterized by a low fixed fee but a high price per unit of energy consumed, thus shifting the incentives for energy conservation on consumers. The optimal tariff structure also depends on the cost of the consumer's effort (in case the consumer can also adopt energy efficiency measures) and on the degree of substitutability between the consumer's and the firm's efforts. - Highlights: • We study the optimal tariff structure that induces an utility to adopt energy efficiency activities. • The regulator optimally offer a menu of incentive compatible two-part tariffs. • If energy efficiency activities have a high effectiveness, decoupling emerges as a solution. • If the energy efficiency actions are less effective, the tariff has a higher per unit price and lower fixed fee. • The optimal tariff structure also depends on the degree of substitutability between the consumer's and the firm's efforts

  15. Center for Efficiency in Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Martin [Youngstown State Univ., OH (United States)

    2016-01-31

    /actuator/controller modules to enhance energy capture and reduce aerodynamic loading and noise by way of virtual aerodynamic shaping. Accomplishments: Task I. Improved Energy Efficiency for Industrial Processes: We organized an energy management training session held on February 22, 2011, which was advertised through a regional manufacturing association to provide wide-ranging notification. Over two dozen companies were represented a the seminar, ranging from heavy manufacturing businesses with $5,000,000 per year energy expenses, to small, light manufacturing facilities. Task 2. Landfill Fuel Cell Power Generation Solid Oxide Fuel Cells (SOFCs) were constructed and evaluated as a means of obtaining electrical energy from landfill gas. Analysis of landfill gas. Attempts at collecting gas samples at the landfill and evaluating them on campus were still unsuccessful. Even a Teflon® sample bag would lose its H2S content. Evaluation of Gas Clean-up We consider this a confirmation of the CO2 effect on the solubility of H2S in water making much less sulfide available for the photocatalyst. It also means that another method should be employed to clean up landfill gas. Nonetheless, composition of impurities in landfill gas was reduced sufficiently to allow successful operation of the test fuel cell. Comparison to a PEM fuel cell system. If a PEMFC were to be operated with landfill gas as the fuel, the gas would have to be treated for sulfur removal, and then processed in a reformer large enough to drive the equilibrium far toward the products, so that negligible CO would flow into the fuel cell. Analysis of a fuel cell running on landfill gas. Using a Gow-Mac gas chromatograph with a thermal conductivity detector, unambiguous determination of CO can be made, at least as a primary constituent Task 3: Task 3 Plasma Controlled Turbine Blades Wind Turbine Selection. After carefully reviewing the various model available in the market the team selected the ARE 110 (2.5kW). The ARE 110 provides a very

  16. Determinants of energy efficiency across countries

    Science.gov (United States)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  17. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  18. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  19. Global status report on energy efficiency 2008

    NARCIS (Netherlands)

    Blok, K.; van Breevoort, P.; Roes, A.L.; Coenraads, R.; Müller, N.

    2008-01-01

    There is wide agreement that energy efficiency improvement is one of the key strategies to achieve greater sustainability of the energy system. In the past, the contribution of energy efficiency has already been considerable.Without the energy efficiency improvements achieved since the 1970s,

  20. An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2011-12-01

    Full Text Available In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO clustering scheme and traditional multihop Single-Input-Single-Output (SISO routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes.

  1. Energy efficiency in Norway 1990-2002. Monitoring tools for energy efficiency in Europe: The Odyssee and MURE projects

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt

    2004-08-01

    This report presents an analysis of energy efficiency trends in Norway on the basis of energy efficiency indicators extracted from the Odyssee data base, maintained and updated in the framework of the SAVE programme. This analysis focuses on the period 1990-2001/2002. It also examines the policies and measures implemented in the field of energy efficiency with a focus on the years 2000-2003. Final energy use per Gross Domestic Product (GDP) was reduced by approximately 2% pr year in the period 1990 to 2002. The energy efficiency improvement has been calculated to 0.7% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). We have found in total efficiency improvement of approximately 15 TWh from 1990 to 2001. (Author)

  2. White Paper: Unleashing Energy Efficiency Retrofits Through Energy Performance Contracts in China and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Lynn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liu, Manzhi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meng, Lu [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miao, Pei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Fan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roshchanka, Volha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-15

    Energy performance contracting (EPC) is a mechanism that uses private sector investment and expertise to deploy energy efficiency retrofits in buildings, industries, and other types of facilities. China and the United States both have large, growing EPC markets. This White Paper shares key insights on each market, including strengths and barriers inherent to these markets, compares the two markets, and sets forth options for enhancing EPC markets in each country. The White Paper concludes with recommendations structured around common goals of both countries.

  3. Autonomy-oriented mechanisms for efficient energy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiming; Shi, Benyun

    2010-09-15

    Due to the uneven geographical availability of energy resources, it is essential for the energy suppliers and consumers in different countries/regions to most efficiently, economically, as well as reliably distribute energy resources. In this paper, starting from a specific energy distribution problem, we present a decentralized behavior-based paradigm that draws on the methodology of autonomy-oriented computing. The goal is twofold: (i) to characterize the underlying mechanism of the energy distribution systems, (ii) to provide scalable solutions for efficient energy distribution. We conjecture that efficient energy trading markets can emerge from appropriate behavior-based mechanisms, which can autonomously improve energy distribution efficiency.

  4. Incentives to improve energy efficiency in EU Grids

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G.; Beestermoeller, C.; Gardiner, A.

    2013-04-15

    The Energy Efficiency Directive (2012/27/EU) includes provisions related to network tariffs and regulation. It is timely therefore to revisit the potential options for energy efficiency in grids, the treatment of energy efficiency in network tariffs and alternative policies for improving energy efficiency. This project builds on work done previously for the European Copper Institute in this area. In this paper, we concentrate on energy efficiency in electricity network design and operation. Other articles in the Directive relate to the role of the network tariffs and regulations in enabling or incentivising the provision of energy efficiency to end users. In section 2, we describe technical efficiency measures to reduce losses (improve energy efficiency) in the grid. Section 3 reviews grid tariffs in three countries to identify whether they provide incentives or disincentives for energy efficiency in the grid. Section 4 discusses and evaluates alternative regulations for energy efficiency in grids. Section 5 concludes and discusses the main components of the optimal policy framework.

  5. Energy efficiency rating of districts, case Finland

    International Nuclear Information System (INIS)

    Hedman, Åsa; Sepponen, Mari; Virtanen, Mikko

    2014-01-01

    There is an increasing political pressure on the city planning to create more energy efficient city plans. Not only do the city plans have to enable and promote energy efficient solutions, but it also needs to be clearly assessed how energy efficient the plans are. City planners often have no or poor know how about energy efficiency and building technologies which makes it difficult for them to answer to this need without new guidelines and tools. An easy to use tool for the assessment of the energy efficiency of detailed city plans was developed. The aim of the tool is for city planners to easily be able to assess the energy efficiency of the proposed detailed city plan and to be able to compare the impacts of changes in the plan. The tool is designed to be used with no in-depth knowledge about energy or building technology. With a wide use of the tool many missed opportunities for improving energy efficiency can be avoided. It will provide better opportunities for sustainable solutions leading to less harmful environmental impact and reduced emissions. - Highlights: • We have created a tool for assessing energy efficiency of detailed city plans. • The energy source is the most important factor for efficiency of districts in Finland. • Five case districts in Finland were analyzed. • In this paper one residential district has in-depth sensitivity analyses done

  6. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    the study. The market potential is enhanced through construction activity levels in target markets. Southern markets, from Florida to Texas account for 50 percent of the total new construction angled-roof volume. California contributes an additional 13 percent share of market volume. These states account for 28 to 30 million squares (2.8 to 3 billion square feet) of new construction angled roof opportunity. The major risk to implementation is the uncertainty of incorporating new design and construction elements into the construction process. By coordinating efforts to enhance the drivers for adoption and minimize the barriers, the panelized roof system stands to capitalize on a growing market demand for energy efficient building alternatives and create a compelling case for market adoption.

  7. Partial-factor Energy Efficiency Model of Indonesia

    OpenAIRE

    Nugroho Fathul; Syaifudin Noor

    2018-01-01

    This study employs the partial-factor energy efficiency to reveal the relationships between energy efficiency and the consumption of both, the renewable energy and non-renewable energy in Indonesia. The findings confirm that consumption of non-renewable energy will increase the inefficiency in energy consumption. On the other side, the use of renewable energy will increase the energy efficiency in Indonesia. As the result, the Government of Indonesia may address this issue by providing more s...

  8. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  9. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  10. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  11. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério

    2018-01-01

    to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process...... was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction...... of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also...

  12. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Huffman, E.; Koch, J. A. [National Security Technologies, LLC, Livermore, California 94551 (United States); Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Chen, N.; Gopal, A.; Udin, S. [Nanoshift LLC, Emeryville, California 94608 (United States); Feng, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hilsabeck, T. J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1–12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  13. Benefits for whom? Energy efficiency within the efficient market

    International Nuclear Information System (INIS)

    Chello, Dario

    2015-01-01

    How should the lack of an efficient energy market affect the design of energy efficiency policies and their implementation? What the consequences of an inefficient energy market on end users’ behaviour? This article tries to give an answer to such questions, by considering the decision making of domestic users following a few fundamental concepts of behavioural economics. The mechanism of price formation in the market, with particular reference to the internal energy market in Europe, will be examined and we will show that price remains the inflexible attribute in making an energy choice. Then, some conclusions will be addressed to policy makers on how to overcome the barriers illustrated.

  14. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  15. Energy efficiency in South Africa: A decomposition exercise

    International Nuclear Information System (INIS)

    Inglesi-Lotz, R.; Pouris, A.

    2012-01-01

    Improvement of energy efficiency has been accepted as one of the most cost-effective approaches towards sustainable economic development and reduction of the continuously increasing energy consumption internationally. South Africa, being among the developing countries, is not an exception even though historically low energy prices and the lack of appropriate policies have created an energy intensive economy. This paper examines the factors affecting the trends in energy efficiency in South Africa from 1993 to 2006 and particularly the impact of structural changes and utilisation efficiency of the country's energy intensity. Identifying and understanding the driving forces are necessary ingredients in the development of appropriate policy-making. This paper also provides disaggregation of the energy efficiency trends in the main sectors of the economy. We determine that structural changes of the economy have played an important and negative role in the increasing economy-wide energy efficiency. On the other hand, the energy usage's intensity was a contributing factor to the decreasing trend of energy efficiency. We suggest that differentiated price policies may be required if South Africa is to create an effective energy efficiency policy. -- Highlights: ► Improving energy efficiency can lead to lower energy consumption and emissions. ► A decomposition analysis examines the factors affecting efficiency in South Africa. ► With unchanged economic structure, the energy efficiency would be 0.75 units lower. ► Intensity was a contributing factor to the decreasing trend of energy efficiency.

  16. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  17. Contracting for Efficiency. A Best Practices Guide for Energy-Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Saralyn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Payne, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  18. Contracting for Efficiency: A Best Practices Guide for Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Saralyn [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Payne, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-11-01

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  19. On the economics of technology diffusion and energy efficiency

    International Nuclear Information System (INIS)

    Mulder, P.

    2003-01-01

    Energy is an essential factor that fuels economic growth and serves human well-being. World energy use has grown enormously since the middle of the 19th century. This increase in the scale of energy demand comes at a certain price, including environmental externalities, such as the enhanced greenhouse effect. Notwithstanding the need for renewable energy sources, these environmental problems also necessitate further improvements in energy efficiency. Technological change plays a crucial role in realizing energy efficiency improvements and, hence, in ameliorating the conflict between economic growth and environmental quality. At the same time, it is known that not only innovation, but also diffusion of new technologies is a costly and lengthy process, and that many firms do not invest in best-practice technologies. This study aims to contribute to a better understanding of the inter. play between economic growth, energy use and technological change, with much emphasis on the adoption and diffusion of energy-saving technologies. The thesis presents a mix of theoretical and empirical analyses inspired by recent developments in economic theorizing on technological change that stress the role of accumulation and distribution of knowledge (learning), uncertainty, path dependency and irreversibility. The theoretical part of the study examines how several characteristics of technological change as well as environmental policy affect the dynamics of technology choice. The empirical part of the study explores long-run trends in energy- and labour productivity performance across a range of OECD countries at a detailed sectoral level

  20. US residential energy demand and energy efficiency: A stochastic demand frontier approach

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2012-01-01

    This paper estimates a US frontier residential aggregate energy demand function using panel data for 48 ‘states’ over the period 1995 to 2007 using stochastic frontier analysis (SFA). Utilizing an econometric energy demand model, the (in)efficiency of each state is modeled and it is argued that this represents a measure of the inefficient use of residential energy in each state (i.e. ‘waste energy’). This underlying efficiency for the US is therefore observed for each state as well as the relative efficiency across the states. Moreover, the analysis suggests that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controlling for a range of economic and other factors, the measure of energy efficiency obtained via this approach is. This is a novel approach to model residential energy demand and efficiency and it is arguably particularly relevant given current US energy policy discussions related to energy efficiency.

  1. Investing in Energy Efficiency. Removing the Barriers

    International Nuclear Information System (INIS)

    2004-01-01

    Investing in improving energy efficiency has the clear advantages of reducing energy costs, improving security of supply and mitigating the environmental impacts of energy use. And still, many viable opportunities for higher energy efficiency are not tapped because of the existence of numerous barriers to such investments. These lost opportunities imply costs to the individual energy consumers and to the society as a whole and they are particularly important in economies in transition. This report identifies various types of barriers for making energy efficiency investments (be they of legal, administrative, institutional or financial nature), mainly in buildings, district heating and efficient lighting. The role of various bodies and organisations for the facilitation of energy efficiency investments is analysed, from public authorities and regulators to banks and international financing institutions

  2. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  3. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  4. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    International Nuclear Information System (INIS)

    Wu, Qingyang; Zhang, Shiming; Yue, Shouzhen; Zhang, Zhensong; Xie, Guohua; Zhao, Yi; Liu, Shiyong

    2013-01-01

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C 2′ )acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C 2− ] (FIrpic) and PO-01 into the same wide band-gap host of N,N ′ -dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices

  5. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingyang, E-mail: wqy1527@163.com [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Shiming [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Département of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada H3C3J7 (Canada); Yue, Shouzhen; Zhang, Zhensong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Guohua [Institut für Angewandte Photophysik, Technische Universtität Dresden, Dresden 01062 (Germany); Zhao, Yi; Liu, Shiyong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2013-11-15

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C{sup 2′})acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C{sup 2−}] (FIrpic) and PO-01 into the same wide band-gap host of N,N{sup ′}-dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices.

  6. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  7. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  8. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  9. Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect.

    Science.gov (United States)

    Jiang, Chunyan; Jing, Liang; Huang, Xin; Liu, Mengmeng; Du, Chunhua; Liu, Ting; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2017-09-26

    The piezo-phototronic effect is the tuning of piezoelectric polarization charges at the interface to largely enhance the efficiency of optoelectronic processes related to carrier separation or recombination. Here, we demonstrated the enhanced short-circuit current density and the conversion efficiency of InGaN/GaN multiple quantum well solar cells with an external stress applied on the device. The external-stress-induced piezoelectric charges generated at the interfaces of InGaN and GaN compensate the piezoelectric charges induced by lattice mismatch stress in the InGaN wells. The energy band realignment is calculated with a self-consistent numerical model to clarify the enhancement mechanism of optical-generated carriers. This research not only theoretically and experimentally proves the piezo-phototronic effect modulated the quantum photovoltaic device but also provides a great promise to maximize the use of solar energy in the current energy revolution.

  10. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    International Nuclear Information System (INIS)

    Neil Na, Y.C.; Siemann, R.H.; SLAC; Byer, R.L.; Stanford U., Phys. Dept.

    2005-01-01

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired

  11. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...

  12. Enhancemenent of the energy efficiency by means of the energy efficiency commitment system. Brief: Energy efficiency commitment system (EnEffVSYS); Steigerung der Energieeffizienz mit Hilfe von Energieeffizienz-Verpflichtungssystemen. Kurz: Energieeffizienz-Verpflichtungssysteme (EnEffVSys)

    Energy Technology Data Exchange (ETDEWEB)

    Agricola, Annegret C.; Joest, Steffen; Czernie, Marc; Heuke, Reemt; Kalinowska, Dominika; Peters, Sebastian [Deutsche Energie-Agentur GmbH, Berlin (Germany); Perner, Jens; Bothe, David [Frontier Economics Ltd., Koeln (Germany)

    2012-12-15

    The origin of the contribution under consideration is the new EU energy efficiency regulation (EU-EnEff-RL) which is valid since 4th December 2012. This regulation emphasizes the increase of the energy efficiency in Europe. Under this aspect, the contribution under consideration reports on (a) the framework conditions for energy efficiency and energy consumption in Europe; (b) the development of the energy consumption and energy efficiency in the past; (c) the economic potentials of energy efficiency in Germany up to the year 2020; (d) whether the advancement of the German, market based approach or the implementation of the energy efficiency commitment system in Germany would be the better way in order to reach the energy efficiency targets derived from the EU energy efficiency regulation.

  13. Energy Efficient Power Allocation in Multi-tier 5G Networks Using Enhanced Online Learning

    KAUST Repository

    Alqerm, Ismail

    2017-07-25

    The multi-tier heterogeneous structure of 5G with dense small cells deployment, relays, and device-to-device (D2D) communications operating in an underlay fashion is envisioned as a potential solution to satisfy the future demand for cellular services. However, efficient power allocation among dense secondary transmitters that maintains quality of service (QoS) for macro (primary) cell users and secondary cell users is a critical challenge for operating such radio. In this paper, we focus on the power allocation problem in the multi-tier 5G network structure using a non-cooperative methodology with energy efficiency consideration. Therefore, we propose a distributive intuition-based online learning scheme for power allocation in the downlink of the 5G systems, where each transmitter surmises other transmitters power allocation strategies without information exchange. The proposed learning model exploits a brief state representation to account for the problem of dimensionality in online learning and expedite the convergence. The convergence of the proposed scheme is proved and numerical results demonstrate its capability to achieve fast convergence with QoS guarantee and significant improvement in system energy efficiency.

  14. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  15. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  16. Energy Efficient and Reliable Target Monitoring in the Tactical Battlefield

    Science.gov (United States)

    Li, Yan-Xiao; Guan, Hua; Zhang, Yue-Ling

    In the tactical battlefield target monitoring it is crucial to take into account the energy efficiency and data reliability issues for the purpose of military decision making, especially in large scale sensor networks. However, due to the inherent nature of power constraint and wireless communication medium it is a challenging problem in the process of actual application. An efficient and reliable data aggregation scheme is proposed to enhance the performance of wireless sensor network used in the target monitoring. Firstly, the energy consumption model is presented and analyzed in the multihop WSNs. Then idea of mobile sinks, adaptive energy saving mechanism is introduced and the concept of multiple sinks cooperation is used to assure the reliability of the data aggregation. The simulation and the associated analysis show the improved results of the presented schema. At last the future discussion about the large scale tactical battlefield application is made to broaden the coming research scope.

  17. International Congress on Energy Efficiency and Energy Related Materials

    CERN Document Server

    Bahsi, Zehra; Ozer, Mehmet; ENEFM2013

    2014-01-01

    The International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) was held on 9-12 October, 2013. This three-day congress focused on the latest developments of sustainable energy technologies, materials for sustainable energy applications and environmental & economic perspectives of energy. These proceedings include 63 peer reviewed technical papers, submitted from leading academic and research institutions from over 23 countries, representing some of the most cutting edge research available. The papers included were presented at the congress in the following sessions: General Issues Wind Energy Solar Energy Nuclear Energy Biofuels and Bioenergy Energy Storage Energy Conservation and Efficiency Energy in Buildings   Economical and Environmental Issues Environment Energy Requirements Economic Development   Materials for Sustainable Energy Hydrogen Production and Storage Photovoltaic Cells Thermionic Converters Batteries and Superconductors Phase Change Materials Fuel Cells Supercon...

  18. 10 CFR 435.4 - Energy efficiency performance standard.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential...

  19. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    Science.gov (United States)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  20. Household transitions to energy efficient lighting

    International Nuclear Information System (INIS)

    Mills, Bradford; Schleich, Joachim

    2014-01-01

    New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on ILs accelerated the pace of transition to CFLs and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with CFLs or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions. - Highlights: • EU ban on ILs has fostered transitions to energy efficient lighting • Energy efficient, environmentally friendly, and durable lighting preferences make CFL and LED transitions more likely • Indicators of greater lighting needs are associated with higher propensities to replace ILs with CFLs and LEDs • For residential lighting, the rebound effect manifests itself through increases in luminosity • In IL to CLF transitions luminosity increases are lower with higher levels of education

  1. Energy efficiency and barriers towards meeting energy demand in industries in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Unachukwu, Godwin O.; Zarma, I.H.; Sambo, A.S.

    2010-09-15

    Energy is an important production factor and therefore should be managed in parallel with land, labor and capital. Energy efficient production should be seen as a quick and cheaper source of new energy supply as the cost of providing energy can be several times the cost of saving it. Increasingly energy efficiency is deemed to include not only the physical efficiency of the technical equipment and facilities but also the overall economic efficiency of the energy system.

  2. Energy Efficiency Indicators for Assessing Construction Systems Storing Renewable Energy: Application to Phase Change Material-Bearing Façades

    Directory of Open Access Journals (Sweden)

    José A. Tenorio

    2015-08-01

    Full Text Available Assessing the performance or energy efficiency of a single construction element by itself is often a futile exercise. That is not the case, however, when an element is designed, among others, to improve building energy performance by harnessing renewable energy in a process that requires a source of external energy. Harnessing renewable energy is acquiring growing interest in Mediterranean climates as a strategy for reducing the energy consumed by buildings. When such reduction is oriented to lowering demand, the strategy consists in reducing the building’s energy needs with the use of construction elements able to passively absorb, dissipate, or accumulate energy. When reduction is pursued through M&E services, renewable energy enhances building performance. The efficiency of construction systems that use renewable energy but require a supplementary power supply to operate can be assessed by likening these systems to regenerative heat exchangers built into the building. The indicators needed for this purpose are particularly useful for designers, for they can be used to compare the efficiency or performance to deliver an optimal design for each building. This article proposes a series of indicators developed to that end and describes their application to façades bearing phase change materials (PCMs.

  3. Moving around efficiently: Energy and transportation

    Directory of Open Access Journals (Sweden)

    Hermans L. J. F.

    2013-06-01

    Full Text Available Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  4. Trends of energy efficiency in Finnish road freight transport 1995-2009 and forecast to 2016

    International Nuclear Information System (INIS)

    Liimatainen, Heikki; Poellaenen, Markus

    2010-01-01

    A framework for modeling and analyzing the energy efficiency of road freight transport is presented in this paper. This framework is tested by using the data from the Finnish Goods Transport by Road statistics. The data was enhanced by calculating the fuel consumption for each trip in the data. To calculate this, weight-fuel consumption functions were estimated for each Euro-class vehicles and road type. This is a new method for analyzing the energy efficiency of road freight transport and it could be applied also in other countries gathering freight transport data with continuous company surveys. The analysis show that the energy efficiency of road freight transport in Finland improved during 1995-2002, but has declined since. The major drivers in the development have been the changes in the level of empty running and vehicle fuel efficiency. Extrapolating current statistical trends of factors that influence the energy efficiency show that the target set by the Finnish government for improving energy efficiency by 9% until 2016 will not be achieved. However, the target is possible to be achieved by a combination of small changes to some determinants. - Research highlights: →A new method for analyzing energy efficiency by adding fuel data to national freight statistics. →Energy efficiency improved in Finland from 1995 to 2002 but has declined since. →Energy efficiency in Finland is still on a good level internationally. →Target of the Finnish energy efficiency agreement was quantified for the first time in this study. →The target will not be achieved if the past trends continue.

  5. National energy efficiency study. The Czech Republic

    International Nuclear Information System (INIS)

    Maly, M.; Jakubes, J.; Spitz, J.; Van Wees, M.T.; Uyterlinde, M.A.; Martens, J.W.; Van Oostvoorn, F.; Henelova, V.; Vazac, V.; Zalesak, M.; Marousek, J.; Szomolanyiova, J.; Havlickova, M.; Zeman, J.; Ten Donkelaar, M.; Travnicek, S.; Stejskal, F.; Pribyl, E.; Blokker, L.; Bizek, V.; Velthuijsen, J.W.

    1999-08-01

    Energy efficiency and renewable energy production contribute to the three major goals of the national energy policy of the Czech Republic: overall competitiveness, security of supply; and environmental protection. Therefore, the Czech Government aims to promote these two sustainable options. The National Energy Efficiency Study has developed specific policies for the promotion of end use energy efficiency and renewables. These are described in two Action Plans, and in this report which serves as a background document. It contains detailed information on options and measures, potentials, barriers and policy instruments for energy efficiency and renewables. The main part is a detailed outline for a new energy efficiency and renewable policy, including a listing of actions for implementation. Also, it includes recommendations for financing schemes to overcome the investment constraints in the Czech Republic. Finally, a list of concrete projects is presented to support project identification. In addition, two separate Action Plans have been published: (1) The Energy Efficiency Action Plan focuses on promotion of energy efficiency in end-use (separate document, ECN-C-99-065); and (2) The Renewable Energy Action Plan (separate document, ECN-C-99-064) deals with policy on promotion of renewable energy production. These two policy documents should provide policy makers in the Czech Government with essential information on potentials, targets, the required budget, and recommended policy instruments. The core of the Action Plans is the list of concrete policy actions, ready for implementation

  6. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  7. Improving thermoelectric energy harvesting efficiency by using graphene

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2016-05-01

    Full Text Available This study is aimed at enhancing the efficiency of a thermoelectric (TE energy harvesting system by using a thick graphene layer. This method is a simple yet effective way to increase the temperature gradient across a conventional TE module by accelerating heat dissipation on the cold side of the system. Aqueous dispersions of graphene were used to prepare a 112-μm thick graphene layer on the cold side of the TE system with aluminum as the substrate material. The maximum efficiency of the proposed system was improved by 25.45 %, as compared to the conventional TE system, which does not have a graphene layer. Additionally, the proposed system shows very little performance deterioration (2.87 % in the absence of enough air flow on the cold side of the system, compared to the case of the conventional system (10.59 %. Hence, the proposed system, when coupled with the latest research on high performance TE materials, presents a groundbreaking improvement in the practical application of the TE energy harvesting systems.

  8. 10 CFR 433.4 - Energy efficiency performance standard.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle cost-effective...

  9. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  10. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  11. Energy efficiency in Norway (1996). Cross Country Comparison on Energy Efficiency Indicators, Phase 4

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    1998-12-01

    This is the national report for Norway in phase 4 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. Final energy use per Gross Domestic Product (GDP) was reduced by approx 2.3% per year from 1990 to 1996. Doing detailed sector analysis we are applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity. Calculating an aggregate intensity index from the sector intensities gives an average intensity reduction of 0.4% per year. Thereby most of the reduction in final energy per unit GDP are due to structural changes, and not technical improvements. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  12. Energy efficiency and economic value in affordable housing

    International Nuclear Information System (INIS)

    Chegut, Andrea; Eichholtz, Piet; Holtermans, Rogier

    2016-01-01

    Strong rental protection in the affordable housing market often prohibits landlords from charging rental premiums for energy-efficient dwellings. This may impede (re)development of energy efficient affordable housing. In the Netherlands, affordable housing institutions regularly sell dwellings from their housing stock to individual households. If they can sell energy efficient dwellings at a premium, this may stimulate investments in the environmental performance of homes. We analyze the value effects of energy efficiency in the affordable housing market, by using a sample of 17,835 homes sold by Dutch affordable housing institutions in the period between 2008 and 2013. We use Energy Performance Certificates to determine the value of energy efficiency in these transactions. We document that dwellings with high energy efficiency sell for 2.0–6.3% more compared to otherwise similar dwellings with low energy efficiency. This implies a premium of some EUR 3,000 to EUR 9,700 for highly energy efficient affordable housing. - Highlights: • Dutch affordable housing suppliers recoup sustainability investment by selling dwellings. • Energy-efficient affordable dwellings sell at a premium. • A-labeled dwellings are 6.3% – 9,300 euros – more valuable than C-labeled ones. • The combined value effect of refurbishing an affordable housing dwelling, including improving the energy efficiency, of 20% would more than pay for the retrofit.

  13. Regional and global exergy and energy efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Nakicenovic, N; Kurz, R [International Inst. for Applied Systems Analysis, Laxenburg (Austria). Environmentally Compatible Energy Strategies (Ecuador) Project; Gilli, P V [Graz Univ. of Technology (Austria)

    1996-03-01

    We present estimates of global energy efficiency by applying second-law (exergy) analysis to regional and global energy balances. We use a uniform analysis of national and regional energy balances and aggregate these balances first for three main economic regions and subsequently into world totals. The procedure involves assessment of energy and exergy efficiencies at each step of energy conversion, from primary exergy to final and useful exergy. Ideally, the analysis should be extended to include actual delivered energy services; unfortunately, data are scarce and only rough estimates can be given for this last stage of energy conversion. The overall result is that the current global primary to useful exergy efficiency is about one-tenth of the theoretical maximum and the service efficiency is even lower. (Author)

  14. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  15. Energy efficiency of substance and energy recovery of selected waste fractions

    International Nuclear Information System (INIS)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-01-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  16. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  17. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  18. Environment-adjusted regional energy efficiency in Taiwan

    International Nuclear Information System (INIS)

    Hu, Jin-Li; Lio, Mon-Chi; Yeh, Fang-Yu; Lin, Cheng-Hsun

    2011-01-01

    This study applies the four-stage DEA procedure to calculate the energy efficiency of 23 regions in Taiwan from 1998 to 2007. After controlling for the effects of external environments, only Taipei City, Chiayi City, and Kaohsiung City are energy efficient. Note that Kaohsiung City reaches the efficiency frontier due to the adjustment via partial environmental factors such as higher education attainment and transport vehicles. We also find a worsening trend for Taiwan's energy efficiency. Not only is there a gap of energy efficiency between Taiwan's metropolitan areas and the other regions, but the gap has also widened in recent years. Those inefficient counties should be given priority and the savings potential. Except for road density, the evidence indicates that each environmental factor has partial incremental effects on input slacks. As more cars and motorcycles are unfavorable externalities affecting partial energy efficiency, the central government should help local governments retire inefficient old motor vehicles, encourage energy-saving vehicle models, and provide convenient mass transportation systems. Besides, people with higher education cause industrial energy inefficient in Taiwan. The conscious of effective energy saving is necessary to schools, communities, and employee accordingly.

  19. Energy-Efficient Capacitance-to-Digital Converters for Low-Energy Sensor Nodes

    KAUST Repository

    Omran, Hesham

    2015-11-01

    Energy efficiency is a key requirement for wireless sensor nodes, biomedical implants, and wearable devices. The energy consumption of the sensor node needs to be minimized to avoid battery replacement, or even better, to enable the device to survive on energy harvested from the ambient. Capacitive sensors do not consume static power; thus, they are attractive from an energy efficiency perspective. In addition, they can be employed in a wide range of sensing applications. However, the sensor readout circuit–i.e., the capacitance-to-digital converter (CDC)–can be the dominant source of energy consumption in the system. Thus, the development of energy-efficient CDCs is crucial to minimizing the energy consumption of capacitive sensor nodes. In the first part of this dissertation, we propose several energy-efficient CDC architectures for low-energy sensor nodes. First, we propose a digitally-controlled coarsefine multislope CDC that employs both current and frequency scaling to achieve significant improvement in energy efficiency. Second, we analyze the limitations of successive approximation (SAR) CDC, and we address these limitations by proposing a robust parasitic-insensitive opamp-based SAR CDC. Third, we propose an inverter-based SAR CDC that achieves an energy efficiency figure-of-merit (FoM) of 31fJ/Step, which is the best energy efficiency FoM reported to date. Fourth, we propose a differential SAR CDC with quasi-dynamic operation to maintain excellent energy efficiency for a scalable sample rate. In the second part of this dissertation, we study the matching properties of small integrated capacitors, which are an integral component of energy-efficient CDCs. Despite conventional wisdom, we experimentally illustrate that the mismatch of small capacitors can be directly measured, and we report mismatch measurements for subfemtofarad integrated capacitors. We also correct the common misconception that lateral capacitors match better than vertical capacitors

  20. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  1. The Inefficiencies of Energy Efficiency : Reviewing the Strategic Role of Energy Efficiency and its Effectiveness in Alleviating Climate Change

    NARCIS (Netherlands)

    Read, S.A.; Lindhult, Erik; Mashayekhi, A.

    2016-01-01

    Our present economy is high-energy and demand-intensive, demand met through the use of high energy yield fossil fuels. Energy efficiency and renewable energy sources are proposed as the solution and named the ‘twin pillars’ of sustainable energy policy. Increasing energy efficiencies are expected to

  2. Energy efficiency fallacies revisited

    International Nuclear Information System (INIS)

    Brookes, Leonard

    2000-01-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  3. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  4. Toward a Low-Carbon Economy : Renewable Energy and Energy Efficiency Portfolio Review

    OpenAIRE

    World Bank

    2013-01-01

    Renewable energy and energy efficiency projects continue to perform strongly in the World Bank Group (WBG) energy portfolio and are increasingly being mainstreamed in the WBG's energy lending. In fiscal 2007 a total of US$1,433 million supported 63 renewable energy and energy efficiency projects in 32 countries. In addition to operational activities, the WBG engages in a variety of economic sector work and technical assistance focused on renewable energy and energy efficiency. This work is an...

  5. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  6. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  7. An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector

    International Nuclear Information System (INIS)

    Marinakis, Vangelis; Doukas, Haris; Karakosta, Charikleia; Psarras, John

    2013-01-01

    Highlights: ► We developed an interactive software for building automation systems. ► Monitoring of energy consumption in real time. ► Optimization of energy consumption implementing appropriate control scenarios. ► Pilot appraisal on remote control of active systems in the tertiary sector building. ► Significant decrease in energy and operating cost of A/C system. -- Abstract: Although integrated building automation systems have become increasingly popular, an integrated system which includes remote control technology to enable real-time monitoring of the energy consumption by energy end-users, as well as optimization functions is required. To respond to this common interest, the main aim of the paper is to present an integrated system for buildings’ energy-efficient automation. The proposed system is based on a prototype software tool for the simulation and optimization of energy consumption in the building sector, enhancing the interactivity of building automation systems. The system can incorporate energy-efficient automation functions for heating, cooling and/or lighting based on recent guidance and decisions of the National Law, energy efficiency requirements of EN 15232 and ISO 50001 Energy Management Standard among others. The presented system was applied to a supermarket building in Greece and focused on the remote control of active systems.

  8. Benchmarking urban energy efficiency in the UK

    International Nuclear Information System (INIS)

    Keirstead, James

    2013-01-01

    This study asks what is the ‘best’ way to measure urban energy efficiency. There has been recent interest in identifying efficient cities so that best practices can be shared, a process known as benchmarking. Previous studies have used relatively simple metrics that provide limited insight on the complexity of urban energy efficiency and arguably fail to provide a ‘fair’ measure of urban performance. Using a data set of 198 urban UK local administrative units, three methods are compared: ratio measures, regression residuals, and data envelopment analysis. The results show that each method has its own strengths and weaknesses regarding the ease of interpretation, ability to identify outliers and provide consistent rankings. Efficient areas are diverse but are notably found in low income areas of large conurbations such as London, whereas industrial areas are consistently ranked as inefficient. The results highlight the shortcomings of the underlying production-based energy accounts. Ideally urban energy efficiency benchmarks would be built on consumption-based accounts, but interim recommendations are made regarding the use of efficiency measures that improve upon current practice and facilitate wider conversations about what it means for a specific city to be energy-efficient within an interconnected economy. - Highlights: • Benchmarking is a potentially valuable method for improving urban energy performance. • Three different measures of urban energy efficiency are presented for UK cities. • Most efficient areas are diverse but include low-income areas of large conurbations. • Least efficient areas perform industrial activities of national importance. • Improve current practice with grouped per capita metrics or regression residuals

  9. Efficiency enhancement of GT-MHRs applied on ship propulsion plants

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro Garcia, Ramon, E-mail: ferreiro@udc.es [Dept. Industrial Engineering, University of A Coruna, ETSNM, C/Paseo de Ronda, 51, 15011 A Coruna (Spain); Carril, Jose Carbia; Catoira, Alberto DeMiguel; Romero Gomez, Javier [Dept. Energy and Propulsion, University of A Coruna ETSNM, C/Paseo de Ronda, 51, 15011 A Coruna (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Efficient ship propulsion system powered by HTRs. Black-Right-Pointing-Pointer A conventional Rankine cycle renders high efficiency. Black-Right-Pointing-Pointer The intermediate heat exchanger isolates the nuclear reactor from the process heat application. Black-Right-Pointing-Pointer An intermediate heat exchanger allows the system to be built to non-nuclear standards. - Abstract: High temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR) may operate as electric power suppliers to be applied on ship propulsion plants. In such propulsion systems performance enhancement can be achieved at effective cost under safety conditions using alternative cycles to the conventional Brayton cycle. Mentioned improvements concern the implementation of an ultra supercritical Rankine cycle, in which water is used as working fluid. The proposed study is carried out in order to achieve performance enhancement on the basis of turbine temperature increasing. The helium cooled high temperature reactor supplies thermal energy to the Rankine cycle via an intermediate heat exchanger (IHE) under safety conditions. The results of the study show that the efficiency of the propulsion plant using a multi-reheat Rankine cycle is significantly improved (from actual 48% to more than 55%) while keeping safety standards.

  10. Designing an energy-efficient quick service restaurant

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.; Spata, A.J.; Turnbull, P.; Allen, T.E.

    1999-07-01

    Food service operators typically focus on controlling labor and food costs in order to increase profits. Energy, which typically represents 2% to 6% of the total cost to operate, is often a lower priority due to the complexity of food service operations and the lack of practical information. However, in an increasing competitive market, operators are actively seeking opportunities to further reduce overhead, and energy represents a good candidate. This paper presents an overview of the design and application of energy-efficient technologies to a quick service restaurant (QSR) and the resulting energy savings. Included in the discussion are the relevance of energy efficiency in a QSR, the criteria for choosing appropriate energy-efficient technologies, the replication of results to other restaurants, and the performance of the individual energy-saving technologies. Three different techniques were used to estimate energy savings of the energy-efficient technologies, with results in the range of 12% to 18% savings in overall annual restaurant energy costs.

  11. Power sector reforms in Brazil and its impacts on energy efficiency and research and development activities

    International Nuclear Information System (INIS)

    Jannuzzi, G.M. de

    2005-01-01

    Since the mid-nineties Brazil has implemented significant changes in the country's power sector, including privatization, introduction of competition and the creation of regulatory agency. As reform started in Brazil traditional support to energy efficiency and energy research and development suffered a discontinuation, budget cuts and re-definition of roles of the public agents in charge. At the same time, new regulatory measures and the creation of a national public interest fund have helped to maintain and potentially enhance the country's effort to promote energy efficiency and investments in energy R and D. This paper analyses the impacts of these changes in the areas of energy efficiency and energy research and development and argues for an increased role of developing countries to provide solutions for a meeting energy demand requirements more suitable to their internal markets

  12. Evaluating energy efficiency policies with energy-economy models

    NARCIS (Netherlands)

    Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.

    2010-01-01

    The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically

  13. Enhanced Photocurrent Efficiency of a Carbon Nanotube Embedded in a Photonic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bryan M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Science

    2008-08-01

    One of the most rapidly-growing areas in nanoscience is the ability to artificially manipulate optical and electrical properties at the nanoscale. In particular, nanomaterials such as single-wall carbon nanotubes offer enhanced methods for converting infrared light to electrical energy due to their unique one-dimensional electronic properties. However, in order for this energy conversion to occur, a realistic nanotube device would require high-intensity light to be confined on a nanometer scale. This arises from the fact that the diameter of a single nanotube is on the order of a nanometer, and infrared light from an external source must be tightly focused on the narrow nanotube for efficient energy conversion. To address this problem, I calculate the theoretical photocurrent of a nanotube p-n junction illuminated by a highly-efficient photonic structure. These results demonstrate the utility of using a photonic structure to couple large-scale infrared sources with carbon nanotubes while still retaining all the unique optoelectronic properties found at the nanoscale.

  14. High Energy Conversion Efficiency with 3-D Micro-Patterned Photoanode for Enhancement Diffusivity and Modification of Photon Distribution in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Yun, Min Ju; Sim, Yeon Hyang; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2017-11-08

    Dye sensitize solar cells (DSSCs) have been considered as the promising alternatives silicon based solar cell with their characteristics including high efficiency under weak illumination and insensitive power output to incident angle. Therefore, many researches have been studied to improve the energy conversion efficiency of DSSCs. However the efficiency of DSSCs are still trapped at the around 10%. In this study, micro-scale hexagonal shape patterned photoanode have proposed to modify light distribution of photon. In the patterned electrode, the appearance efficiency have been obtained from 7.1% to 7.8% considered active area and the efficiency of 12.7% have been obtained based on the photoanode area. Enhancing diffusion of electrons and modification of photon distribution utilizing the morphology of the electrode are major factors to improving the performance of patterned electrode. Also, finite element method analyses of photon distributions were conducted to estimate morphological effect that influence on the photon distribution and current density. From our proposed study, it is expecting that patterned electrode is one of the solution to overcome the stagnant efficiency and one of the optimized geometry of electrode to modify photon distribution. Process of inter-patterning in photoanode has been minimized.

  15. Enhancing biomass energy use in Kenya

    International Nuclear Information System (INIS)

    Banwell, P.S.; Harriss, R.C.

    1992-01-01

    This paper argues that in Kenya, environmental and economic factors will favour the continued use of biomass as a primary fuel for household an institutional cooking for the next decade or longer. The paper describes several successful projects which have improved the efficiency of urban charcoal use and of rural woodfuel use. The Kenya Ceramic Jiko, a more efficient version of the traditional charcoal stove, is a model programme sustained by free market competition, artisans participation, and widespread public acceptance. The Maendeleo stove is the best example of a successful rural woodstove project. The performance attributes of the stove, and its promotion through Kenya's largest women's organization, have resulted int he distribution of an estimated 26,000 Maendeleo stoves. Rural stove efficiency will become important as the cash-based economy expands in those areas. Agroforestry will also be critical to an enhanced use of biomass energy in Kenya. Experience to date shows that successful agroforestry programmes will have to be appropriate to local conditions and crops. (author). 25 refs, 2 figs, 3 tabs

  16. Energy Choices. Efficient Energy Use - possibilities and barriers; Vaegval Energi. Energieffektivisering - moejligheter och hinder

    Energy Technology Data Exchange (ETDEWEB)

    Jagemar, Lennart (CIT Energy Management AB, Goeteborg (Sweden)); Pettersson, Bertil (Chalmers EnergiCentrum, CEC, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    Sweden's total energy supply in 2006 amounted to a total of 624 TWh and was dominated by crude oil, nuclear fuels, biofuels and hydropower. Different types of losses in the system accounts for one third of the energy. The final energy consumption, i.e. delivery minus losses, was divided in the following way: industry 157 TWh, the habitat of 145 TWh (of which 19 TWh relates to Agriculture, Forestry, Fishery and other service and secondary homes) and transport of 101 TWh. For the transport sector, studies show that combinations of various efficiency measures ideally can achieve an reduction in energy use by between 60 and 75 percent. The Governmental Energy Efficiency Inquiry (EnEff - 2008) estimated that the domestic transport techno-economic efficiency potential up to 2016 is 13 TWh (mainly fuel) of the total delivered energy is 87 TWh under EnEff. The potential about 5 TWh is expected to be completed by current instruments. The study assesses that despite the increased need for transport in 2016 the sector's energy use can remain at the same level or even be reduced. Buildings have a large technical and economic energy efficiency potential. According to EnEff's assessment, the streamlining potential is 33 TWh of which 8 TWh can implemented in 2016 with today's instruments. This compares with the total delivered energy is 151 TWh under EnEff. The total energy efficiency potential for buildings by 2020 is considered to be substantially higher, about 41 TWh, and affect the use of district heating, fuel and electricity. New powerful tools must be implemented for the building sector in order to realize the potential energy efficiency measures. Industry's total energy potential is assessed to be around 13 TWh by 2016. Industry's total energy use is 155 TWh according to EnEff. Only 2 TWh can realistically be saved up to 2016 taking into account a reasonable acceptance factor. The beneficiaries of the carbon emissions trade account for about

  17. Energy efficiency of substance and energy recovery of selected waste fractions.

    Science.gov (United States)

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Effective education for energy efficiency

    International Nuclear Information System (INIS)

    Zografakis, Nikolaos; Menegaki, Angeliki N.; Tsagarakis, Konstantinos P.

    2008-01-01

    A lot of today's world vices can be eliminated if certain targeted modules and adapted curricula are introduced in the schooling system. One of these vices is energy squandering with all its negative consequences for the planet (e.g. depletion of finite energy sources and the subsequent climate change). This paper describes the results of an energy-thrift information and education project taking place in different levels of education in Crete-Greece, which records 321 students' and their parents' routine energy-related behavior and proves that this behavior changes to a more energy efficient one, after the dissemination of relevant information and the participation into the energy education projects. Namely, response percentages indicating the energy-efficient behavior increased after project participation while the ones indicating an energy-squandering behavior decreased. The Wilcoxon signed rank test was statistically significant in all energy behavior questions related to students and to most questions related to parents

  19. Trends of energy efficiency in Finnish road freight transport 1995-2009 and forecast to 2016

    Energy Technology Data Exchange (ETDEWEB)

    Liimatainen, Heikki; Poellaenen, Markus [Department of Business Information Management and Logistics, Tampere University of Technology, P.O. Box 541, 33101 Tampere (Finland)

    2010-12-15

    A framework for modeling and analyzing the energy efficiency of road freight transport is presented in this paper. This framework is tested by using the data from the Finnish Goods Transport by Road statistics. The data was enhanced by calculating the fuel consumption for each trip in the data. To calculate this, weight-fuel consumption functions were estimated for each Euro-class vehicles and road type. This is a new method for analyzing the energy efficiency of road freight transport and it could be applied also in other countries gathering freight transport data with continuous company surveys. The analysis show that the energy efficiency of road freight transport in Finland improved during 1995-2002, but has declined since. The major drivers in the development have been the changes in the level of empty running and vehicle fuel efficiency. Extrapolating current statistical trends of factors that influence the energy efficiency show that the target set by the Finnish government for improving energy efficiency by 9% until 2016 will not be achieved. However, the target is possible to be achieved by a combination of small changes to some determinants. (author)

  20. An Energy-Efficient Scheme for Multirelay Cooperative Networks with Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Dingcheng Yang

    2016-01-01

    Full Text Available This study investigates an energy-efficient scheme in multirelay cooperative networks with energy harvesting where multiple sessions need to communicate with each other via the relay node. A two-step optimal method is proposed which maximizes the system energy efficiency, while taking into account the receiver circuit energy consumption. Firstly, the optimal power allocation for relay nodes is determined to maximize the system throughput; this is based on directional water-filling algorithm. Secondly, using quantum particle swarm optimization (QPSO, a joint relay node selection and session grouping optimization is proposed. With this algorithm, sessions can be classified into multiple groups that are assisted by the specific relay node with the maximum energy efficiency. This approach leads to a better global optimization in searching ability and efficiency. Simulation results show that the proposed scheme can improve the energy efficiency effectively compared with direct transmission and opportunistic relay-selected cooperative transmission.

  1. Energy efficiency of milkmaid systems in Uruguay

    International Nuclear Information System (INIS)

    LLanos, E.; Astigarraga, L.; Jacques, R.; Picasso, V.

    2013-01-01

    Reducing fossil fuel consumption and increasing energy efficiency of agricultural systems may result in environmental and economic benefits. The aim of this study was to analyze dairy production systems from an energy perspective, to identify the main variables affecting energy efficiency and fossil energy consumption, through a model of inputs and outputs. The model included as inputs energy costs of food, labor, electricity, agrochemicals, fuels and machinery, and as outputs dairy and meat production. We analyzed a database of 30 dairy farms from southern Uruguay, from the Cooperative Nacional de Product ores de Leche (Conaprole), organized in three strata based on their dairy productivity per hectare. The fossil energy use was 2.40, 3.63 y 3.80 MJ.l-1 for productivity strata low, medium and high respectively (P<0.01). Energy efficiency averages were 1.40, 0.90 y 0.86 for the same strata (P<0.01). Fossil energy of agrochemicals and fuel accounted for more than 80% of the energy consumed in the three strata. The greater the percentage of concentrate in the diet, the lower energy efficiency (P<0.01). These results suggest the existence of a negative relationship between the intensification of dairy production and energy efficiency

  2. Enhancement of the Open National Combustion Code (OpenNCC) and Initial Simulation of Energy Efficient Engine Combustor

    Science.gov (United States)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, we present the recent enhancement of the Open National Combustion Code (OpenNCC) and apply the OpenNCC to model a realistic combustor configuration (Energy Efficient Engine (E3)). First, we perform a series of validation tests for the newly-implemented advection upstream splitting method (AUSM) and the extended version of the AUSM-family schemes (AUSM+-up). Compared with the analytical/experimental data of the validation tests, we achieved good agreement. In the steady-state E3 cold flow results using the Reynolds-averaged Navier-Stokes(RANS), we find a noticeable difference in the flow fields calculated by the two different numerical schemes, the standard Jameson- Schmidt-Turkel (JST) scheme and the AUSM scheme. The main differences are that the AUSM scheme is less numerical dissipative and it predicts much stronger reverse flow in the recirculation zone. This study indicates that two schemes could show different flame-holding predictions and overall flame structures.

  3. Innovations in Multi-Level Governance for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Recent IEA analysis highlights member countries' significant progress with developing energy efficiency policy (International Energy Agency 2009). The 28 member countries of the IEA are engaged in promoting innovative financial instruments, energy efficiency strategies and action plans. They are designing policies to promote energy efficiency in buildings, the adoption of standby power, the phase out of inefficient lighting, proper tyre-inflation and related policies, and energy efficiency in utilities.

  4. Innovations in Multi-Level Governance for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Recent IEA analysis highlights member countries' significant progress with developing energy efficiency policy (International Energy Agency 2009). The 28 member countries of the IEA are engaged in promoting innovative financial instruments, energy efficiency strategies and action plans. They are designing policies to promote energy efficiency in buildings, the adoption of standby power, the phase out of inefficient lighting, proper tyre-inflation and related policies, and energy efficiency in utilities.

  5. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since the author......Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... with practitioners in the building sector at the local level. The aim of this report is to look into municipal efforts to promote energy efficient buildings to learn from their experiences: What types of challenges are municipalities facing, when attempting to disseminate energy efficient technologies in local...... building projects through municipal planning practices, and how do they cope with these challenges? The report is based on an in-depth study of proactive planning practices performed by municipal partners in the Class 1 project and a series of experiences, strategies and instru-ments are identified...

  6. Energy efficiency labelling

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This research assesses the likely effects on UK consumers of the proposed EEC energy-efficiency labeling scheme. Unless (or until) an energy-labeling scheme is introduced, it is impossible to do more than postulate its likely effects on consumer behavior. This report shows that there are indeed significant differences in energy consumption between different brands and models of the same appliance of which consumers are unaware. Further, the report suggests that, if a readily intelligible energy-labeling scheme were introduced, it would provide useful information that consumers currently lack; and that, if this information were successfully presented, it would be used and could have substantial effects in reducing domestic fuel consumption. Therefore, it is recommended that an energy labeling scheme be introduced.

  7. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    Science.gov (United States)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  8. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  9. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment.

    Science.gov (United States)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos

    2018-06-01

    Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.

  10. Energy efficiency solutions for driers used in the glass manufacturing and processing industry

    Directory of Open Access Journals (Sweden)

    Pătrașcu Roxana

    2017-07-01

    Full Text Available Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.

  11. Measuring Energy Efficiency in China’s Transport Sector

    Directory of Open Access Journals (Sweden)

    Han Hao

    2017-05-01

    Full Text Available Energy efficiency is one of the key factors affecting energy consumption and greenhouse gas (GHG emissions. By focusing on China’s transport sector, this study comprehensively reviews and compares the energy efficiency performance of passenger vehicles, light-duty commercial vehicles, commercial road transport, commercial water transport, aviation transport and railway transport, and identifies the opportunities for further energy efficiency improvements. It is found that railway transport exhibited the greatest improvement in energy efficiency during the past decade, which was mainly driven by progress in its electrification. Passenger vehicles have also experienced considerable energy efficiency improvements, which can be mainly attributed to the establishment of mandatory fuel consumption standards. In contrast, commercial road transport has shown the least improvement, due to insufficient policy implementations. Based on the analysis, it is recommended that, as China’s present policy framework to improve energy efficiency in the transport sector is generally effective, it should be consistently maintained and successively improved. Electrification represents a major opportunity for improvement of energy efficiency in the transport sector. Such potential should be fully tapped for all transport modes. Greater effort should be put into improving the energy efficiency of commercial road transport. The policy instruments utilized to improve the energy efficiency of heavy-duty vehicles should be as intensive and effective as the policy instruments for passenger vehicles.

  12. Measurement of energy efficiency based on economic foundations

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2015-01-01

    Energy efficiency policy is seen as a very important activity by almost all policy makers. In practical energy policy analysis, the typical indicator used as a proxy for energy efficiency is energy intensity. However, this simple indicator is not necessarily an accurate measure given changes in energy intensity are a function of changes in several factors as well as ‘true’ energy efficiency; hence, it is difficult to make conclusions for energy policy based upon simple energy intensity measures. Related to this, some published academic papers over the last few years have attempted to use empirical methods to measure the efficient use of energy based on the economic theory of production. However, these studies do not generally provide a systematic discussion of the theoretical basis nor the possible parametric empirical approaches that are available for estimating the level of energy efficiency. The objective of this paper, therefore, is to sketch out and explain from an economic perspective the theoretical framework as well as the empirical methods for measuring the level of energy efficiency. Additionally, in the second part of the paper, some of the empirical studies that have attempted to measure energy efficiency using such an economics approach are summarized and discussed.

  13. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied.It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte.The energy conversion effi- ciency of DSSC increased from 4.429% to 6.535%,with 47.55% enhancement.Therefore,it is a highly efficient electric addi- tive for DSSC.The intrinsic reason is owing to the special molecular structure of N-CPI,which contains two different polarity groups.As a surfactant,N-CPI could form ordered arrangement in liquid electrolyte,which affects the diffusing ability and the redox reaction of I-/I3-,and further affects the photovoltaic performance of DSSC.

  14. Energy Efficiency Program Administrators and Building Energy Codes

    Science.gov (United States)

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  15. Impact of undamped and damped intramolecular vibrations on the efficiency of photosynthetic exciton energy transfer

    Science.gov (United States)

    Juhász, Imre Benedek; Csurgay, Árpád I.

    2018-04-01

    In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.

  16. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  17. How to subsidize energy efficiency under duopoly efficiently?

    International Nuclear Information System (INIS)

    Nie, Pu-yan; Yang, Yong-cong; Chen, You-hua; Wang, Zhao-hui

    2016-01-01

    Highlights: • This article captures the effects of output subsidy. • Firms without subsidy are not willing to improve energy efficiency. • Subsidy stimulates the subsidized firms’ outputs and deters the others’ outputs. • The subsidy intensity depends on firms’ position. • Overdue subsidy cannot reach the environmental object. - Abstract: Establishing a game theory model, this paper captures the effects of output subsidy on energy efficiency under Cournot competition and Stackelberg competition. Three types of subsidies are considered in the model, namely without subsidy, unilateral subsidy and bilateral subsidy. The findings indicate that firms without subsidy are not willing to improve energy efficiency. Also, subsidy stimulates the subsidized firms’ outputs while deters the outputs of other firms. Meanwhile, the equilibrium subsidy intensity depends on firms’ position. Furthermore, the minimal subsidy budgets under different situations are presented. Especially, given the fixed subsidy budget, the output of the subsidized firm is the highest if this firm plays the leading position. In addition, certain subsidy can reduce the total emission, while overdue subsidy cannot reach the environmental object.

  18. The characteristics of energy-efficiency measures – a neglected dimension

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Hirzel, Simon; Worrell, Ernst

    2012-01-01

    The diffusion of cost-effective energy-efficiency measures (EEMs) in firms is often surprisingly slow. This phenomenon is usually attributed to a variety of barriers which have been the focus of numerous studies over the last two decades. However, many studies treat EEMs homogenously and assume they have few inherent differences apart from their profitability. We argue that complementing such analyses by considering the characteristics of EEMs in a structured manner can enhance the understanding of EEM adoption. For this purpose, we suggest a classification scheme for EEMs in industry which aims to provide a better understanding of their adoption by industrial firms and to assist in selecting and designing energy-efficiency policies. The suggested classification scheme is derived from the literature on the adoption of EEMs and the related fields including the diffusion of innovations, eco-innovations and advanced manufacturing technology. Our proposed scheme includes 12 characteristics based on the relative advantage, the technical and the information context of the EEM. Applying this classification scheme to six example EEMs demonstrates that it can help to systematically explain why certain EEMs diffuse faster than others. Furthermore, it provides a basis for identifying policies able to increase the rate of adoption. - Highlights: ► The characteristics of energy-efficiency measures critically affect their adoption. ► We propose a classification for energy-efficiency measures in industry. ► It allows to draw conclusions on the adoption likelihood and intensity of barriers. ► As such it provides a basis for policy design and technology analysis.

  19. Energy transition and security: which voluntary codes? Energy efficiency: IEA, IEC and ISO dialogue. The European Commission's safety, solidarity and efficiency measures. Securing natural gas supplies and favoring cogeneration. Less energy consuming buildings: rework of the energy efficiency directive. Energy efficiency inside buildings: GDF Suez report

    International Nuclear Information System (INIS)

    Tourneur, J.C.

    2009-01-01

    This dossier gathers a series of short articles about energy security and efficiency in a context of policy transition. The first paper deals with the use of international standards to promote energy efficiency thanks to efficient public policies and private sector actions. This was the main topic of the mixed workshop organized by the International electrotechnics Commission (IEC) in spring 2009. The second paper presents the new strategic analysis of the European commission in the domain of energy which stresses on the '20-20-20' climate change proposals approved in December 2008. A new European action plan for energy security and solidarity defines 5 domains requiring an extra action to warrant a sustainable energy supply. The commission is also examining the challenges that Europe will have to face between 2020 and 2050. The third article treats of the security of natural gas supplies which represents a quarter of the European Union (EU) energy mix. The supply crises susceptible to occur may have serious economic and social consequences. Therefore, the EU must be prepared to warrant its security of supplies. Cogeneration allows the EU to stay close to its energy goals. Buildings play a key role in the realisation of the EU's energy saving objectives and fight against climate change. The new directive on buildings energy efficiency (2002/91/CE) will allow to exploit this potential of saving and to stimulate sustainable investment and employment as well. Finally, the publication of the second WBCSD (World business council for sustainable development) international report on buildings energy efficiency has led GDF Suez utility to reaffirm its commitment in favour of energy saving and efficiency. (J.S.)

  20. Energy production, distribution, and pollution controls: Combining engineering and economic analysis to enhance efficiency and policy design

    Science.gov (United States)

    Perkis, David F.

    Three published articles are presented which focus on enhancing various aspects of the energy supply chain. While each paper adopts a different methodology, all three combine engineering data and/or techniques with economic analysis to improve efficiency or policy design within energy markets. The first paper combines a chemical engineering plant design model with an economic assessment of product enhancements within an ethanol production facility. While a new chemical process is shown to achieve greater ethanol yields, the animal feed by-products are denatured and decrease in value due to the degradation of a key nutritional amino acid. Overall, yield increases outweigh any costs, providing additional value to firms adopting this process. The second paper uses a mixed integer linear model to assess the optimal location of cellulosic ethanol production facilities within the state of Indiana. Desired locations with low costs are linked to regions with high yield corn growth, as these areas provide an abundance of corn stover, a by-product of corn and a cellulosic source of ethanol. The third paper implements experimental economic methods to assess the effectiveness of policies intended to control prices in emissions permit markets. When utilizing reserve permit auctions as an alternative to setting explicit maximum prices, prices are elevated beyond the theoretical predictions of the model within the conditions of the experiment. The most likely cause of higher prices is the negotiating power provided to sellers by grandfathering permits as evidenced by higher than expected welfare gains to sellers. Before presenting the articles, a discussion is introduced regarding the role of assumptions used by economists. For each article, a key assumption is highlighted and the consequences of making a different assumption are provided. Whether the consequences are large or small, the benefits of elucidating our models with assumptions based on real world behaviors are clearly

  1. The promotion of energy efficiency in Italy

    International Nuclear Information System (INIS)

    De Paoli, L.; Bongiolatti, L.

    2006-01-01

    In 2004 Italy introduced an obligation for electricity and gas distribution companies to reach specific objectives regarding the improvement of energy efficiency in final energy consumption. The scope of the provision is to promote investments in energy efficiency in order to meet the greenhouse gases reduction target set by the Kyoto protocol. The adoption of binding targets of energy efficiency will also lead to the development of an energy services market, modifying the traditional relation between energy dealers and final consumers, thus leading to a more efficient use of the available resources. Similar mechanisms have already been applied in other European countries (as France and United Kingdom) and will be likely introduced in other countries with the implementation of European Directive on energy end-use efficiency and energy services. This paper describes and analyzes both the measures adopted in Italy and the results obtained after the first year of operation of the mechanism. The paper is divided in six different sections. In the first part we highlight the main problems related to the development of system based on tradable white certificates. In the second part we provide a brief description of the Italian regulatory context. In the third part there is an economic analysis of investments in energy efficiency. The fourth part considers the different options that distribution companies face in order to reach the energy efficiency targets. The fifth part shows the results obtained after the first year of operation of the mechanism. Finally, we propose some possible modifications to the scheme adopted in Italy considering the results obtained and the alternative solutions already applied in France and United Kingdom [it

  2. Closing the Gap GEF Experiences in Global Energy Efficiency

    CERN Document Server

    Yang, Ming

    2013-01-01

    Energy efficiency plays and will continue to play an important role in the world to save energy and mitigate greenhouse gas (GHG) emissions. However, little is known on how much additional capital should be invested to ensure using energy efficiently as it should be, and very little is known which sub-areas, technologies, and countries shall achieve maximum greenhouse gas emissions mitigation per dollar of investment in energy efficiency worldwide. Analyzing completed and slowly moving energy efficiency projects by the Global Environment Facility during 1991-2010, Closing the Gap: GEF Experiences in Global Energy Efficiency evaluates impacts of multi-billion-dollar investments in the world energy efficiency. It covers the following areas: 1.       Reviewing the world energy efficiency investment and disclosing the global energy efficiency gap and market barriers that cause the gap; 2.       Leveraging private funds with public funds and other resources in energy efficiency investments; using...

  3. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  4. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  5. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  6. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  7. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  8. Fourth Annual Report on Energy Efficiency

    International Nuclear Information System (INIS)

    Di Franco, Nino; Bertini, Ilaria; Federici, Alessandro; Moneta Roberto

    2015-01-01

    Here we present the main elements of the annual report on energy efficiency 2015. The results indicate that, thanks to national policies for energy efficiency, Italy saved over 7.5 million tons of oil equivalent per year in the period 2005-2013. Compared to the National Plan for Energy Efficiency 2014, the report shows that the 2020 objectives have already been achieved for more than 20%, with residential (35.7% of the target) and industry (26.6%) among the sectors that contributed most to this result. Substantial savings could result from the agribusiness sector through the dissemination of efficient technologies in the logistics and large retail chains. A key role lies with the banks: 86% of banks has developed products dedicated to efficiency, necessitating guidelines for replicability of projects, and audit and rating to assess their quality [it

  9. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  10. Energy Tax and Competition in Energy Efficiency. The Case of Consumer Durables

    International Nuclear Information System (INIS)

    Conrad, K.

    2000-01-01

    The purpose of this paper is to analyze the role of an energy tax on technical improvements and on prices of consumer durables induced by strategic competition in energy efficiency. If the gasoline tax is raised this does in principle not affect the producers of cars because the motorist pays for it in terms of a higher cost of using the car. This, however, affects the unit sales of car producers because of substitution towards other modes of transportation. A second element of reaction to energy price variation is an indirect one and relates to the effect of energy prices on technology. Competition forces car producers to develop more energy efficient cars in order to reduce the cost of using a car. This indirect effect can partly offset the direct effect of higher energy prices on demand if it is profitable for the automobile industry to engineer more energy efficient equipment. We will analyze the impact of an energy tax on energy efficiency and on the price of a durable good. This will be done within the framework of a duopoly competing in prices and in the energy efficiency of its products. The government chooses a welfare maximizing energy tax as an incentive to innovate. Then we will analyze a strategic two-stage decision process in which the duopolists first decide about energy efficiency and then compete in prices. 18 refs

  11. Energy efficiency and renewables policies: Promoting efficiency or facilitating monopsony?

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2011-01-01

    The cliche in the electricity sector, the 'cheapest power plant is the one we don't build,' neglects the benefits of the energy that plant would generate. That economy-wide perspective need not apply in considering benefits to only consumers if not building that plant was the exercise of monopsony power. A regulator maximizing consumer welfare may need to avoid rationing demand at monopsony prices. Subsidizing energy efficiency to reduce electricity demand at the margin can solve that problem, if energy efficiency and electricity use are substitutes. Renewable energy subsidies, percentage use standards, or feed in tariffs may also serve monopsony as well with sufficient inelasticity in fossil fuel electricity supply. We may not observe these effects if the regulator can set price as well as quantity, lacks buyer-side market power, or is legally precluded from denying generators a reasonable return on capital. Nevertheless, the possibility of monopsony remains significant in light of the debate as to whether antitrust enforcement should maximize consumer welfare or total welfare. - Research Highlights: → Subsidizing energy efficiency can promote monopsony, if efficiency and use are substitutes. → Renewable energy subsidies, portfolio standards, or feed-in tariffs may also promote monopsony. → Effects require buyer-side market power and ability to deny generators a reasonable return. → Monopsony is significant in light of whether antitrust should maximize consumer or total welfare.

  12. Marketing energy-efficient solar houses: A method to locate and identify people who will buy energy-efficient solar houses, or related services

    International Nuclear Information System (INIS)

    D'Alessio, G.

    1999-01-01

    Houses built in New England within the last six years, equal to or exceeding energy-efficiency standards from Energy Crafted Homes (ECH) or from DOE's Energy Star Homes are termed energy-efficient for this study. An assumption is that people who purchase houses being newly constructed may request special features including more energy-efficient features. The average house being constructed today is not as energy-efficient as it could easily be; therefore, owners of recently constructed energy-efficient houses may be termed early-adopters of an innovation. It has been demonstrated that early adopters have different personal attitudes and perceptions of an innovation compared to later-adopters. Both types of adopters--owners of recently constructed energy-efficient or energy-inefficient houses, have been surveyed in New England to determine whether their differences are significant enough to be used in identifying future potential early-adopters. Solar houses also are usually energy-efficient, and should be termed an innovation

  13. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  14. An Analysis of BIM Web Service Requirements and Design to Support Energy Efficient Building Lifecycle

    Directory of Open Access Journals (Sweden)

    Yufei Jiang

    2016-04-01

    Full Text Available Energy Efficient Building (EEB design, construction, and operations require the development and sharing of building information among different individuals, organizations, and computer applications. The Representational State Transfer (RESTful Building Information Modeling (BIM web service is a solution to enable an effective exchange of data. This paper presents an investigation into the core RESTful web service requirements needed to effectively support the EEB project lifecycle. The requirements include information exchange requirements, distributed collaboration requirements, internal data storage requirements, and partial model query requirements. We also propose a RESTful web service design model on different abstraction layers to enhance the BIM lifecycle in energy efficient building design. We have implemented a RESTful Application Program Interface (API prototype on a mock BIMserver to demonstrate our idea. We evaluate our design by conducting a user study based on the Technology Acceptance Model (TAM. The results show that our design can enhance the efficiency of data exchange in EEB design scenarios.

  15. Efficient Use of Energy: as a Life Style

    Directory of Open Access Journals (Sweden)

    Omneya Sabry

    2017-06-01

    Full Text Available Since the Early Eighties of the last Century, the Egyptian Government considered Energy Conservation as one of the main pillars of Energy Planning in Egypt, based on the fact that investing in Energy Efficiency is more cost effective than in constructing new Power Plants.Energy Efficiency (EE Programs financed by International Financing Institutions focused at that time, on Energy Audits in Industrial Buildings, Power Plants, Electricity Transmission and in some other Governmental Buildings. Recommendations for Efficient Use of Energy and reducing energy consumption at those entities were implemented by the Use of Efficient Lamps, Improving Power Factor, Waste Heat Recovery, Thermal Insulation, Efficient Firing in Boilers…. Consequently, High Quality Energy Efficient Products were competing in the market with others not having the same advantage.Although the above mentioned EE Programs included Awareness Campaigns for all sectors but the consumption in Residential Sector remained high and increased more and more ,exceeding even the consumption in Industrial Sector specially that the prices of electricity were highly subsidized.For that reason, more awareness campaigns (Lectures, Brochures, Audio and visual advertisement and more incentives were offered by Ministry of Electricity and Renewable Energy (MoERE to consumers in the Residential Sector. Meanwhile, a Program to reduce gradually subsidies on electricity prices started aiming to push consumers to follow energy efficiency instructions and buy efficient appliances especially while they were suffering from electricity cut for about two years.To prepare for Market Transformation to efficient appliances the Government, issued the Standard Specifications and Labeling for Energy Efficient Appliances (lamps, refrigerators, freezers, washing machines, air conditioners, dish washers and others. Meanwhile, these Standards are supported with Accredited Testing Labs in National Entities (NREA

  16. Prototype of an energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general mask based laser material processing (MBLMP) is a process which suffers from a low energy efficiency, because the majority of the laser light is absorbed in or reflected by the mask. We have developed a device called an energy enhancer which is capable of improving the energy efficienc...... component reflectivity and alignment sensitivity are investigated in order to evaluate the possibility of making commercial use of the device. The obtainable image quality and how this is influenced by the focusing and imaging system is discussed in some detail....... by a factor of 2 - 4 for a typical TEA-CO2 system for mask based laser marking. A simple ray-tracing model has been built in order to design and optimise the energy enhancer. Thus we present experimental results as well as simulations and show fine accordance between the two. Important system parameters like...

  17. Total-factor energy efficiency of regions in China

    International Nuclear Information System (INIS)

    Hu, J.-L.; Wang, S.-C.

    2006-01-01

    This paper analyzes energy efficiencies of 29 administrative regions in China for the period 1995-2002 with a newly introduced index. Most existing studies of regional productivity and efficiency neglect energy inputs. We use the data envelopment analysis (DEA) to find the target energy input of each region in China at each particular year. The index of total-factor energy efficiency (TFEE) then divides the target energy input by the actual energy input. In our DEA model, labor, capital stock, energy consumption, and total sown area of farm crops used as a proxy of biomass energy are the four inputs and real GDP is the single output. The conventional energy productivity ratio regarded as a partial-factor energy efficiency index is computed for comparison in contrast to TFEE; our index is found fitting better to the real case. According to the TFEE index rankings, the central area of China has the worst energy efficiency and its total adjustmentof energy consumption amount is over half of China's total. Regional TFEE in China generally improved during the research period except for the western area. A U-shape relation between the area's TFEE and per capita income in the areas of China is found, confirming the scenario that energy efficiency eventually improves with economic growth

  18. Energy efficiency and capital-energy substitutability: Evidence from four OPEC countries

    International Nuclear Information System (INIS)

    Adetutu, Morakinyo O.

    2014-01-01

    Highlights: • The analysis examines energy efficiency gains in selected OPEC countries during 1972–2010. • Capital-energy substitutability is also explored to analyze the impact of policy measures to reduce energy use. • The magnitudes of energy efficiency gains are somewhat small or modest. • Energy and capital are substitutes in some countries, but complements in others. • Climate change policies need to internalize the environmental cost of energy consumption in end-use prices. - Abstract: Rapid economic growth and development in several oil-exporting developing countries have led to increasing energy consumption and the accompanying greenhouse gas (GHG) emissions. Consequently, a good understanding of the nature and structure of energy use in developing economies is required for future energy and climate change policies. To this end, a modified translog cost function is employed in this paper to estimate energy efficiency for selected members of the Organization of the Petroleum Exporting Countries (OPEC) over the period 1972–2010. This also allows for the estimation of energy-capital substitutability, which arguably reflects the likely ease/disruption to long-term growth arising from policy measures aimed at reducing energy consumption and GHG emissions. The estimated results show that energy efficiency gains range from −14% to 13% for sampled countries. Furthermore, factor substitution elasticities suggest that energy and capital are substitutes in Algeria and Saudi Arabia, but are found to be complements in Iran and Venezuela. The insight generated by this study is that, over the last four decades, energy efficiency improvements in selected OPEC countries are modest, possibly reflecting a “subsidy effect” arising from artificially low energy prices. Thus, policy makers should take note that measures aimed at conserving energy need to internalize the environmental cost arising from energy consumption using pricing and fiscal instruments

  19. Uncertainty, loss aversion, and markets for energy efficiency

    International Nuclear Information System (INIS)

    Greene, David L.

    2011-01-01

    Increasing energy efficiency is critical to mitigating greenhouse gas emissions from fossil-fuel combustion, reducing oil dependence, and achieving a sustainable global energy system. The tendency of markets to neglect apparently cost-effective energy efficiency options has been called the 'efficiency gap' or 'energy paradox.' The market for energy efficiency in new, energy-using durable goods, however, appears to have a bias that leads to undervaluation of future energy savings relative to their expected value. This paper argues that the bias is chiefly produced by the combination of substantial uncertainty about the net value of future fuel savings and the loss aversion of typical consumers. This framework relies on the theory of context-dependent preferences. The uncertainty-loss aversion bias against energy efficiency is quantifiable, making it potentially correctible by policy measures. The welfare economics of such policies remains unresolved. Data on the costs of increased fuel economy of new passenger cars, taken from a National Research Council study, illustrate how an apparently cost-effective increase in energy efficiency would be uninteresting to loss-averse consumers.

  20. Effects of substituting energy with capital on China's aggregated energy and environmental efficiency

    International Nuclear Information System (INIS)

    Yang Mian; Yang Fuxia; Chen Xingpeng

    2011-01-01

    Substituting energy with capital (SEC) in economic productions has become a common practice both for business owners and policy-makers to improve their energy and environmental efficiency. However, seldom previous studies on energy efficiency and/or environmental performance evaluation took this role into account. This paper aims to shed some light on the effects of SEC on China's aggregated energy and environmental efficiency (AEEE) within a parametric stochastic frontier analysis framework. Moreover, influencing factors of regional efficiency score are also discussed using a pooled regression model. The results indicate that SEC poses significant effects on improving China's AEEE, and this impact appears obvious regional variation that regions with lower efficiency scores hold more extensive potential to improve their AEEE by means of SEC. Furthermore, upgrading industrial structure and decreasing the proportion of coal in energy consumption make great sense to improve China's AEEE. - Highlights: → We examine the effects of substituting energy with capital on China's energy and environmental efficiency. → The efficiency value considering this substitution is higher than that without considering it. → Hebei and Shanxi hold the largest potential of energy saving and SO 2 emissions reduction. → China's energy and environmental efficiency is affected by its energy mix and industrial structure.

  1. Building energy efficiency in rural China

    International Nuclear Information System (INIS)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-01-01

    Rural buildings in China now account for more than half of China's total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to provide for basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China's success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation. - Highlights: • Building energy use is larger in rural China than in cities. • Rural buildings are very energy intensive, and energy use is growing with incomes. • A new design standard aims to help rural communities build more efficiently. • Important challenges remain with implementation

  2. Luminescent GdVO_4:Sm"3"+ quantum dots enhance power conversion efficiency of bulk heterojunction polymer solar cells by Förster resonance energy transfer

    International Nuclear Information System (INIS)

    Bishnoi, Swati; Gupta, Vinay; Sharma, Gauri D.; Chand, Suresh; Sharma, Chhavi; Kumar, Mahesh; Haranath, D.; Naqvi, Sheerin

    2016-01-01

    In this work, we report enhanced power conversion efficiency (PCE) of bulk heterojunction polymer solar cells by Förster resonance energy transfer (FRET) from samarium-doped luminescent gadolinium orthovanadate (GdVO_4:Sm"3"+) quantum dots (QDs) to polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) polymer. The photoluminescence emission spectrum of GdVO_4:Sm"3"+ QDs overlaps with the absorption spectrum of PTB7, leading to FRET from GdVO_4:Sm"3"+ to PTB7, and significant enhancements in the charge-carrier density of excited and polaronic states of PTB7 are observed. This was confirmed by means of femtosecond transient absorption spectroscopy. The FRET from GdVO_4:Sm"3"+ QDs to PTB7 led to a remarkable increase in the power conversion efficiency (PCE) of PTB7:GdVO_4:Sm"3"+:PC_7_1BM ([6,6]-phenyl-C_7_1-butyric acid methyl ester) polymer solar cells. The PCE in optimized ternary blend PTB7:GdVO_4:Sm"3"+:PC_7_1BM (1:0.1:1.5) is increased to 8.8% from 7.2% in PTB7:PC_7_1BM. This work demonstrates the potential of rare-earth based luminescent QDs in enhancing the PCE of polymer solar cells.

  3. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: San Juan National Forest - Dolores Ranger District, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kiatreungwattana, Kosol [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-26

    This report summarizes the results from an energy efficiency, water efficiency, and renewable energy site assessment of the Dolores Ranger District in the San Juan National Forest in Colorado. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the assessment with United States Forest Service (USFS) personnel on August 16-17, 2016, as part of ongoing efforts by USFS to reduce energy and water use and implement renewable energy technologies. The assessment is approximately an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements.

  4. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J...

  5. Enhanced Energy-Storage Density and High Efficiency of Lead-Free CaTiO3-BiScO3 Linear Dielectric Ceramics.

    Science.gov (United States)

    Luo, Bingcheng; Wang, Xiaohui; Tian, Enke; Song, Hongzhou; Wang, Hongxian; Li, Longtu

    2017-06-14

    A novel lead-free (1 - x)CaTiO 3 -xBiScO 3 linear dielectric ceramic with enhanced energy-storage density was fabricated. With the composition of BiScO 3 increasing, the dielectric constant of (1 - x)CaTiO 3 -xBiScO 3 ceramics first increased and then decreased after the composition x > 0.1, while the dielectric loss decreased first and increased. For the composition x = 0.1, the polarization was increased into 12.36 μC/cm 2 , 4.6 times higher than that of the pure CaTiO 3 . The energy density of 0.9CaTiO 3 -0.1BiScO 3 ceramic was 1.55 J/cm 3 with the energy-storage efficiency of 90.4% at the breakdown strength of 270 kV/cm, and the power density was 1.79 MW/cm 3 . Comparison with other lead-free dielectric ceramics confirmed the superior potential of CaTiO 3 -BiScO 3 ceramics for the design of ceramics capacitors for energy-storage applications. First-principles calculations revealed that Sc subsitution of Ti-site induced the atomic displacement of Ti ions in the whole crystal lattice, and lattice expansion was caused by variation of the bond angles and lenghths. Strong hybridization between O 2p and Ti 3d was observed in both valence band and conduction band; the hybridization between O 2p and Sc 3d at high conduction band was found to enlarge the band gap, and the static dielectric tensors were increased, which was the essential for the enhancement of polarization and dielectric properties.

  6. Progress Implementing the IEA 25 Energy Efficiency Policy Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Significantly improving energy efficiency remains a priority for all countries. Meetings of G8 leaders and IEA ministers reaffirmed the critical role that improved energy efficiency can play in addressing energy security, environmental and economic challenges. Many IEA publications have also documented the essential role of energy efficiency. For example, the World Energy Outlook and the Energy Technology Perspectives reports identify energy efficiency as the most significant contributor to achieving energy security, economic and environmental goals. Energy efficiency is clearly the “first fuel” in the delivery of energy services in the coming low-carbon energy future. To support governments in their implementation of energy efficiency, the IEA recommended the adoption of specific energy efficiency policy measures to the G8 summits in 2006, 2007 and 2008. The consolidated set of recommendations to these summits is known as the ‘IEA 25 energy efficiency policy recommendations’ because it covers 25 fields of action across seven priority areas: cross-sectoral activity, buildings, appliances, lighting, transport, industry and energy utilities. The IEA estimates that if implemented globally without delay, the proposed actions could save as much as 7.6 giga tonnes (Gt) CO2/year by 2030 – almost 1.5 times the current annual carbon dioxide (CO2) emissions of the United States. The IEA 25 energy efficiency policy recommendations were developed to address policy gaps and priorities. This has two implications. First, the recommendations do not cover the full range of energy efficiency policy activity possible. Rather, they focus on priority energy efficiency policies identified by IEA analysis. Second, while IEA analysis, the energy efficiency professional literature and engagement with experts clearly demonstrate the broad benefits of these IEA priority measures, the recommendations are not weighted to reflect the different energy end-use make up of different

  7. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  8. Energy productivity and efficiency of the ‘gher’ (prawn-fish-rice) farming system in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Barmon, Basanta K.

    2012-01-01

    ‘Gher’ farming is a unique system that incorporates the joint operation of three enterprises: freshwater prawn, fish and HYV rice, and is expanding rapidly in the coastal regions of Bangladesh because of its proven high income earning potential. In this paper, the sustainability of this system is evaluated by analysing its performance in terms of energy use by applying a stochastic distance function approach which revealed interesting and unexpected results. The prawn enterprise which is the key income earning component is found to be technically inefficient while the rice enterprise is found to be efficient. The net energy balance and the energy use efficiency of the ‘gher’ farming system is estimated at 18,510 MJ ha −1 and 1.72 respectively. The ‘gher’ farmers are operating at a very high level of technical (energy) efficiency (92%). Diversification amongst enterprises is associated with technical (energy) inefficiency. However, larger operation size enhances efficiency. The key policy implication is that the ‘gher’ farming system can be sustained in the long run provided that productivity from the rice enterprise remains high. Also, policies to support the expansion of ‘gher’ farm sizes will improve efficiency. -- Highlights: ► Sustainability of gher farming system is evaluated in terms of energy use. ► The prawn enterprise is technically inefficient while rice enterprise is efficient. ► The net energy balance is 18,510 MJ ha -1 and energy use efficiency is 1.72. ► The overall technical (energy) efficiency is very high (92%). ► The gher farming system can be sustained if rice productivity remains high.

  9. Governance and communication for energy efficiency

    International Nuclear Information System (INIS)

    Thomas, Stefan

    2015-01-01

    Energy efficiency has multiple benefits. It usually is a win-win option for all aspects of sustainability – environment, social objectives, and economy. We need to evaluate and communicate these multiple benefits – to citizens, companies, and policy-makers. Due to strong market barriers, effective governance and policy packages for energy efficiency are needed. Evaluation shows effective policy can achieve around 2% per year of additional energy savings.

  10. 78 FR 37995 - Energy Efficiency Standards for Manufactured Housing

    Science.gov (United States)

    2013-06-25

    ... Efficiency Standards for Manufactured Housing AGENCY: Office of Energy Efficiency and Renewable Energy... in receiving information that relates to the relationship between energy efficiency and indoor air... higher energy efficiencies, and possible enforcement models for the DOE standards. This notice identifies...

  11. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Science.gov (United States)

    2013-05-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE..., DC 20503 And to Mr. Dana O'Hara, Office of Energy Efficiency and Renewable Energy (EE- 2G), U.S...

  12. Energy efficiency, market failures, and government policy

    International Nuclear Information System (INIS)

    Levine, M.D.; Koomey, J.G.; McMahon, J.E.; Sanstad, A.H.; Hirst, E.

    1994-03-01

    This paper presents a framework for evaluating engineering-economic evidence on the diffusion of energy efficiency improvements. Four examples are evaluated within this framework. The analysis provides evidence of market failures related to energy efficiency. Specific market failures that may impede the adoption of cost-effective energy efficiency are discussed. Two programs that have had a major impact in overcoming these market failures, utility DSM programs and appliance standards, are described

  13. 76 FR 57956 - Renewable Energy and Energy Efficiency Executive Business Development Mission; Clarification and...

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... the Notice of the Renewable Energy and Energy Efficiency Executive Business Development Mission, 76 FR... for Recruitment and Applications section of the Notice of the Renewable Energy and Energy Efficiency...

  14. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  15. Energy Efficiency and Renewable Energy: the key factors for a sustainable future

    Directory of Open Access Journals (Sweden)

    Wolfgang Streicher

    2018-06-01

    Full Text Available within 1.5 to 2°C until 2050 have been taken. The resolution of COP21 in Paris to keep the temperature increase well below 2°C is signed already by 172 of 197 parties (http://unfccc.int/paris_agreement/items/9485.php.One very important step to reach these goals is to develop new ideas and implement existing technologies for energy efficiency and renewable energies in a broad range. This will also bring down the costs for the energy system transformation. The limitation of renewable energies in regions with high population density will lead, on the on the one hand, to large energy distribution networks causing new economic and political dependencies between countries, and, on the other hand, to more efficient technologies and systems like energy efficient buildings (for hot and cold climates, energy efficient transportation systems like more public transportation, smaller and electric (or hydrogen driven cars, and more efficient industrial processes.Knowledge generation and distribution as done in the International Journal on Renewable Energy and Sustainable Development plays an important role for this further development.

  16. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  17. Contribution to the enhancement of the energy efficiency in electrical / electronic architectures of automobiles; Beitrag zur Steigerung der Energieeffizienz in Kfz-Elektrik-/Elektronik-Architekturen

    Energy Technology Data Exchange (ETDEWEB)

    Goerber, Matthias

    2013-06-01

    Increasing customer demands for enhanced comfort, safety or assistance functions provide automotive manufacturers with high demands in their product development process. At the same time the criterion of environmental friendliness of the automobile gained more and more importance. These requirements mean that the electrical / electronic architecture of a vehicle is becoming important increasingly. Under this aspect, the author of the contribution under consideration reports on the criterion of energy efficiency of electrical / electronic architecture and its influence on fuel consumption and range of vehicles.

  18. From energy efficiency towards resource efficiency within the Ecodesign Directive

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie; Mosgaard, Mette; Remmen, Arne

    2017-01-01

    on the most significant environmental impact has often resulted in a focus on energy efficiency in the use phase. Therefore, the Ecodesign Directive should continue to target resource efficiency aspects but also consider environ- mental aspects with a large improvement potential in addition to the most...... significant environmental impact. For the introduction of resource efficiency requirements into the Ecodesign Directive, these requirements have to be included in the preparatory study. It is therefore recommended to broaden the scope of the Methodology for the Ecodesign of Energy-related products and the Eco......The article examines the integration of resource efficiency into the European Ecodesign Directive. The purpose is to analyse the processes and stakeholder interactions, which formed the basis for integrating resource efficiency requirements into the implementing measure for vacuum cleaners...

  19. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  20. How the world should invest in energy efficiency

    International Nuclear Information System (INIS)

    Farrell, D.; Remes, J.K.

    2008-01-01

    A program that targets cost-effective opportunities in energy productivity could halve the growth in energy demand, cut emissions of greenhouse gases, and generate attractive returns. Boosting energy efficiency will help stretch energy resources and slow down the increase in carbon emissions. It will also create opportunities for businesses and consumers to invest 170 billion USD a year from now until 2020, at a 17 percent average internal rate of return. However, a wide range of information gaps, market failures, and policy imperfections could slow the pace of investment. Public- and private-sector leaders can encourage higher energy productivity by setting efficiency standards for appliances and equipment, financing energy efficiency upgrades, raising corporate standards for energy efficiency, and collaborating with energy intermediaries

  1. How do policies for efficient energy use in the household sector induce energy-efficiency innovation? An evaluation of European countries

    International Nuclear Information System (INIS)

    Girod, Bastien; Stucki, Tobias; Woerter, Martin

    2017-01-01

    Research on innovation induced by climate-mitigation policy has been focused predominantly on the supply side of the energy system. Despite considerable climate-mitigation potential on the demand side, less attention is given to the innovation effect of policies addressing the household sector. Based on a comprehensive data set, including 550 policy measures over 30 years (1980–2009) and covering 21 European countries, we find—based on econometric estimations—that policies targeting efficient energy use in the household sector significantly increase the number of patented energy-efficiency inventions. A comparison of the different policy types reveals a particularly strong influence from financial subsidies and energy labels. The results indicate that policies supporting early market adoption of energy-efficient technologies are effective in fostering innovation. - Highlights: • We evaluate the impact of energy-efficiency policy on energy-efficiency innovation. • The dataset covers patents and policies for 1980–2009 in 21 European countries. • Household policies show a positive influence on innovation activity (patented inventions). • The influence is most pronounced for financial subsidies and energy labels.

  2. Energy Saving: Scaling Network Energy Efficiency Faster than Traffic Growth

    NARCIS (Netherlands)

    Chen, Y.; Blume, O.; Gati, A.; Capone, A.; Wu, C.-E.; Barth, U.; Marzetta, T.; Zhang, H.; Xu, S.

    2013-01-01

    As the mobile traffic is expected to continue its exponential growth in the near future, energy efficiency has gradually become a must criterion for wireless network design. Three fundamental questions need to be answered before the detailed design could be carried out, namely what energy efficiency

  3. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Battery Chargers and External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW...

  4. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  5. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    Science.gov (United States)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  6. Power shifts: the dynamics of energy efficiency

    International Nuclear Information System (INIS)

    Edenhofer, O.; Jaeger, C.C.

    1998-01-01

    Induced technical change is crucial for tackling the problem of timing in environmental policy. However, it is by no means obvious that the state has the ability to impose its will concerning technical change on the other relevant actors. Therefore, we conceptualize power in a non-linear model with social conflict and induced technical change. The model shows how economic growth, business cycles and innovation waves interact in the dynamics of energy efficiency. We assess three different ways of government control: energy taxes, energy and labor subsidies, and energy caps. Energy taxes help to select more energy efficient technologies. However, a successful selection of such technologies presupposes that they are available in the pool of technologies. As for energy subsidies, their existence helps to explain why in contemporary economies labor productivity grows faster than energy efficiency. With an energy cap, the social network of the relevant agents may be stabilized via social norms. It seems plausible that innovation waves comprise several business cycles and that such a wave is currently in the making. Proposals to postpone policies for improving energy efficiency increase the risk of energy inefficient lock-in effects. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Southwest Energy Efficiency Project (SWEEP) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Howard [Southwest Energy Efficiency Project (SWEEP), Boulder, CO (United States); Meyers, Jim [Southwest Energy Efficiency Project (SWEEP), Boulder, CO (United States)

    2018-01-29

    SWEEP worked with Energy Efficiency and Renewable Energy (EERE) programs to foster greater energy efficiency throughout the Southwest. SWEEP accomplished this through a combination of analysis and support; preparation and distribution of materials on best practice technologies, policies and programs; and technical assistance and information dissemination to states and municipalities in the southwest supporting BTO, AMO, OWIP for advancement of efficiency in products and practices. These efforts were accomplished during the period 2012 through 2017.

  8. Energy efficiency in U.K. shopping centres

    Science.gov (United States)

    Mangiarotti, Michela

    Energy efficiency in shopping centres means providing comfortable internal environment and services to the occupants with minimum energy use in a cost-effective and environmentally sensitive manner. This research considers the interaction of three factors affecting the energy efficiency of shopping centres: i) performance of the building fabric and services ii) management of the building in terms of operation, control, maintenance and replacement of the building fabric and services, and company's energy policy iii) occupants' expectation for comfort and awareness of energy efficiency. The aim of the investigation is to determine the role of the above factors in the energy consumption and carbon emissions of shopping centres and the scope for reducing this energy usage by changing one or all the three factors. The study also attempts to prioritize the changes in the above factors that are more cost-effective at reducing that energy consumption and identify the benefits and main economic and legal drivers for energy efficiency in shopping centres. To achieve these targets, three case studies have been analysed. Using energy data from bills, the performance of the selected case studies has been assessed to establish trends and current energy consumption and carbon emissions of shopping centres and their related causes. A regression analysis has attempted to break down the energy consumption of the landlords' area by end-use to identify the main sources of energy usage and consequently introduce cost-effective measures for saving energy. A monitoring and occupants' survey in both landlords' and tenants' areas have been carried out at the same time to compare the objective data of the environmental conditions with the subjective impressions of shoppers and shopkeepers. In particular, the monitoring aimed at assessing the internal environment to identify possible causes of discomfort and opportunities for introducing energy saving measures. The survey looked at

  9. The Challenge of Energy Efficiency

    International Nuclear Information System (INIS)

    Alonso Gonzalez, J. A.

    2009-01-01

    Recent Directive 2009/28/EC on the promotion of the use of renewable energies sets some binding targets for the contribution of renewable energies in 2020 to total consumption, setting the share at 20% of final energy demand, with a particularisation of 10% for the transport sector, and also a 20% reduction of greenhouse gases Together with these targets, it also sets another target relative to energy efficiency, aiming for a 20% improvement, under the terms set down by the Commission in its announcement dated 19 October 2006. This energy saving target is going to have a decisive influence on the achievement of the other two. In order to quantify the degree of difficulty of achieving the saving target and determine the policies and measures to be taken, we are going to analyze the evolution of energy efficiency (energy consumption energy units per unit of GDP - economic unit) in Spain from 1980 to date and the value of energy intensity that we should have in 2020 to achieve the targets. This will give us an idea of the magnitude of the challenge and, therefore, of the efforts we will have to make to achieve the target. (Author)

  10. To understand the new world of energy - Energy saving and energy efficiency: the world of energy 2.0

    International Nuclear Information System (INIS)

    Maestroni, Myriam; Chevalier, J.M.; Derdevet, Michel

    2013-01-01

    This bibliographical note contains the table of contents and a brief presentation of a book which proposes a general overview of the world of modern energy, focuses on the main associated political and climatic stakes and challenges. It also addresses the crucial issue of energy efficiency and energy savings which are the pillars of the current energy transition. The chapters address the world energy stakes and challenges, the emergence of a new energetic paradigm, the issues of energy efficiency and energy savings, the main sources of energy savings to be exploited and valorised, the situation in Europe and in the World regarding energy efficiency, the relationship between energy transition and local territories, the necessary continuous innovation

  11. 75 FR 31323 - Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and...

    Science.gov (United States)

    2010-06-03

    .... EERE-2010-BT-STD-0011] RIN 1904-AC22 Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and Availability of the Framework Document AGENCY: Office of Energy Efficiency and... Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence...

  12. Speech for the defense of energy efficiency

    International Nuclear Information System (INIS)

    Escande, Ph.; Laforce, M.

    2006-01-01

    This article reprints an interview of C. Mandil, executive director of IEA who comments some of the recent energy policy events: the recent mergers between European energy companies and the competition on energy markets, the role and share of nuclear energy and renewable energies in the energy mix, the Russian gas affair and the energy efficiency in Russia, the oil prices and the Iranian threat of exports disruption, the peak oil and the decay of petroleum production, the energy efficiency in China, the global warming and the Kyoto protocol. (J.S.)

  13. SAGD CO2 mitigation through energy efficiency improvements

    International Nuclear Information System (INIS)

    Plessis du, D.

    2010-01-01

    An evaluation of the carbon dioxide (CO 2 ) emissions reductions achieved using energy efficiency measures in steam assisted gravity drainage (SAGD) operations was presented. The efficiency of a typical SAGD operation was analyzed using an indexing tool based on the Carnot cycle efficiency to develop an ideal SAGD heat cycle. The benefits of using an organic Rankine cycle (ORC) technology to convert waste heat to electrical power were also investigated. A CO 2 abatement curve was used to identify the economic benefits and costs of various greenhouse gas (GHG) reductions. The level of recovered energy was determined in relation to energy prices, capital costs, and carbon penalties in order to determine the most efficient means of decreasing energy usage. The study demonstrated that energy efficiency can be improved by up to 20 percent, and water loss reductions of up to 50 percent can be achieved using cost-effective energy efficiency measures. Results of the study can be used to guide government policy and provide industry with practical tools to benchmark performance and improve efficiencies. 4 refs., 1 tab., 10 figs.

  14. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    Science.gov (United States)

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Energy-efficient relay selection and optimal power allocation for performance-constrained dual-hop variable-gain AF relaying

    KAUST Repository

    Zafar, Ammar

    2013-12-01

    This paper investigates the energy-efficiency enhancement of a variable-gain dual-hop amplify-and-forward (AF) relay network utilizing selective relaying. The objective is to minimize the total consumed power while keeping the end-to-end signal-to-noise-ratio (SNR) above a certain peak value and satisfying the peak power constraints at the source and relay nodes. To achieve this objective, an optimal relay selection and power allocation strategy is derived by solving the power minimization problem. Numerical results show that the derived optimal strategy enhances the energy-efficiency as compared to a benchmark scheme in which both the source and the selected relay transmit at peak power. © 2013 IEEE.

  16. Energy Efficient Payload Aggregation in WSNs

    Directory of Open Access Journals (Sweden)

    Ákos MILÁNKOVICH

    2015-06-01

    Full Text Available Creating wireless sensor networks requires a different approach than traditional communication networks because energy efficiency plays a key role in sensor networks, which consist of devices without external power. The amount of energy used determines the lifetime of these devices. In most cases data packets are less sensitive to delay, thus can be aggregated, making it possible to gather more useful information reducing the energy required to transmit information. This article discusses the energy efficiency of different Forward Error Correction algorithms and presents a method to calculate the optimal amount of aggregation of the data packets in terms of power consumption, while taking into account the Bit Error Rate characteristics of the wireless channel. The contribution of this paper is a general method to improve the energy efficiency of wireless sensor networks by using the optimal amount of aggregation in case of different Forward Error Correction codes and channel characteristics. The presented results can be applied to any packet-based wireless protocol.

  17. US energy conservation and efficiency policies: Challenges and opportunities

    International Nuclear Information System (INIS)

    Dixon, Robert K.; McGowan, Elizabeth; Onysko, Ganna; Scheer, Richard M.

    2010-01-01

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  18. US energy conservation and efficiency policies. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K.; Onysko, Ganna [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth; Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future. (author)

  19. US energy conservation and efficiency policies: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert K. [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); McGowan, Elizabeth [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States); Onysko, Ganna, E-mail: gonysko@thegef.or [Global Environment Facility, Climate Change and Chemicals, 1818 H Street, NW, MSN G6-602, Washington, DC 20433 (United States); Scheer, Richard M. [Energetics Incorporated, 7067 Columbia Gateway Drive, Suite 200, Columbia, MD 21046 (United States)

    2010-11-15

    Expanding energy conservation and efficiency in every sector nationwide is one of the most cost-effective instruments for reducing US energy imports, the trade deficit and energy's environmental impacts. For these reasons, energy conservation and efficiency have been essential elements of US energy policy since the oil embargos and price spikes of the 1970s. The Energy Independence and Security Act of 2007 (EISA) is the latest federal legislation to expand and strengthen US energy conservation and efficiency policies, programs, and practices. Specifically, EISA and its recent predecessor, the Energy Policy Act of 2005 (EPAct05), contain almost 200 titles with new provisions for energy conservation and efficiency aimed at improvements in vehicle fuel economy. These provisions include efficiency of appliances and lighting; energy savings in residential, commercial, and government buildings; the efficiency of industrial manufacturing plants; and the efficiency of electric power delivery and end-use. These actions have begun to contribute to new federal, state, and local policies, programs, and practices across the US, and expectations are high for increases in the level of energy savings. This paper summarizes the history of US energy conservation and efficiency policies, outlines EISA's and EPAct05's key provisions, and considers prospects for the future.

  20. Enabling renewable energy and energy efficiency technologies. Opportunities in Eastern Europe, Caucasus, Central Asia, Southern and Eastern Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Barnsley, Ingrid; Blank, Amanda; Brown, Adam

    2015-06-01

    The increased deployment of renewable energy and energy efficiency technologies (RE&EET) in the South Eastern Mediterranean (SEMED) region and in the Early Transition Countries (ETC) could bring a host of benefits, including enhanced energy security, increased national revenues and environmental gains. A new IEA Insights paper considers policy options for supporting the deployment of RE&EET, as well as the surrounding factors that can enable – or indeed impede – the successful implementation of such support policies in both regions. Drawing on a wealth of IEA analyses and policy experiences globally, the paper: provides a summary of the energy profiles of the ETC and SEMED regions; highlights overarching, ''enabling'' factors that can help to set the necessary foundations for the successful implementation of policy to support RE&EET deployment; analyses policy options for both RE and EE, drawing on practical examples and highlighting indicative policies that correspond with varying levels of market maturity; and provides a checklist for assessing the level of supportiveness of national policy frameworks for RE&EET. The paper concludes by pointing to the significant potential for energy efficiency and renewable energy gains in both regions.

  1. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    Science.gov (United States)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  2. High-efficiency intracavity second-harmonic enhancement for a few-cycle laser pulse train

    International Nuclear Information System (INIS)

    Cai, Yi; Xu, Shixiang; Zeng, Xuanke; Zou, Da; Li, Jingzhen

    2012-01-01

    This paper presents an intracavity second-harmonic (SH) enhancement technology without the need of input impedance-matching for optimal coupling between the cavity and its input frequency comb. More than 10% SH energy conversion efficiency is available, thus the power of the SH frequency comb can be enhanced beyond 100 relative to single-pass SH generation. Compared with a conventional passive enhancing cavity, for the purpose of high power enhancement, our scheme can operate at much lower finesse and thus broader bandwidth so that it can support several-optical-cycle pulses more easily. If they have the same finesse, both methods perform with similar operating stability. The results show that our novel design is suitable for some applications which need a short wavelength, high intensity, and ultra-broad bandwidth pulse train. (paper)

  3. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  4. gTBS: A green Task-Based Sensing for energy efficient Wireless Sensor Networks

    KAUST Repository

    Al-Halafi, Abdullah

    2016-09-08

    Wireless sensor networks (WSN) are widely used to sense and measure physical conditions for different purposes and within different regions. However due to the limited lifetime of the sensor\\'s energy source, many efforts are made to design energy efficient WSN. As a result, many techniques were presented in the literature such as power adaptation, sleep and wake-up, and scheduling in order to enhance WSN lifetime. These techniques where presented separately and shown to achieve some gain in terms of energy efficiency. In this paper, we present an energy efficient cross layer design for WSN that we named \\'green Task-Based Sensing\\' (gTBS) scheme. The gTBS design is a task based sensing scheme that not only prevents wasting power in unnecessary signaling, but also utilizes several techniques for achieving reliable and energy efficient WSN. The proposed gTBS combines the power adaptation with a sleep and wake-up technique that allows inactive nodes to sleep. Also, it adopts a gradient-oriented unicast approach to overcome the synchronization problem, minimize network traffic hurdles, and significantly reduce the overall power consumption of the network. We implement the gTBS on a testbed and we show that it reduces the power consumption by a factor of 20%-55% compared to traditional TBS. It also reduces the delay by 54%-145% and improves the delivery ratio by 24%-73%. © 2016 IEEE.

  5. CEE Energy Efficiency Report - Slovakia

    International Nuclear Information System (INIS)

    Hecl, V.

    2005-01-01

    A review of future trends of energy consumption shows that, in the absence of an active energy policy which promotes energy efficiency, energy consumption will increase as a whole by approximately 6.8% by 2012 continuing to raise after this period.. This result hides large differences between the different sources of energy (mainly heat, fuels and electricity) and between the different sectors - transport, industry, buildings etc. It is therefore clear that a strong energy policy is needed to counterbalance the expected increase in energy consumption in all sectors, with emphasis on measures in the building sector (both residential and tertiary) and in the transport sector. Furthermore improvements in the district heating sector are also essential to prevent further disconnection from district heating and a shift to other means of heating. A review of the main barriers to energy efficiency leads to the conclusion that while significant changes are needed in the regulatory framework, the lack of access to finance and the general lack of awareness about existing technologies and best practice represent the greatest barriers. In order to evaluate the success of energy. In a few studies available from past 2-3 years the calculation of low and high targets for energy policy was elaborated. The low targets would represent about 11% - 12% reduction in overall energy consumption. The high targets would represent a 13% - 15% reduction in overall energy consumption. Policy instruments have been identified which can turn energy efficiency into one of the driving forces of the overall economic and development strategy of the country. Some of these instruments deal with general issues such as general policy issues, regulatory and legal aspects, the institutional framework and fiscal, taxation and pricing policy. They are designed to improve the present conditions and would use only a limited part of the available public budget. The state budget dedicated to energy issues will

  6. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Science.gov (United States)

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency and..., Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence...

  7. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  8. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  9. Training the next generation of energy efficiency evaluators

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E. [Lawrence Berkeley National Laboratory LBNL and California Institute for Energy and Environment, Berkeley, CA (United States); Saxonis, W. [New York Department of Public Service, Albany, NY (United States); Peters, J. [Research Into Action, Portland, OR (United States); Tannenbaum, B. [Research Into Action, Madison, WI (United States); Wirtshafter, B. [Wirstshafter Associates, Rydal, PA (United States)

    2013-05-15

    The energy efficiency services sector is an increasingly important part of the global economy, with an increased need for trained evaluators to foster energy efficiency program accountability and improvement. Organizations are experiencing difficulty in finding people who are knowledgeable about and experienced in the evaluation of energy efficiency programs. Accordingly, there is a need to assess the training needs of the energy efficiency evaluation community (for both new and 'experienced' evaluators). This paper presents the results of a recent survey conducted by the International Energy Program Evaluation Conference (IEPEC) on energy efficiency evaluation training needs and contrasts those findings with the findings from a survey conducted by the American Evaluation Association on young evaluators (those people in the field <5 years) and another by the Association of Energy Services Professionals. This analysis is also complemented by a brief survey of members of the 2012 Rome Conference IEPEC Planning Committee on international needs.

  10. Energie Efficiency Directive. Article 7. Dutch implementation; Energie Efficiency Directive. Artikel 7. Nederlandse invulling

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, B.; Gerdes, J.; Boonekamp, P.; Kroon, P.; Stutvoet-Mulder, K.; Tigchelaar, C.; Wetzels, W. [ECN Beleidsstudies, Petten (Netherlands)

    2013-12-15

    Article 7 of the recently adopted Energy Efficiency Directive (EED) obliges the EU member states to achieve 1.5% yearly efficiency improvements during the period 2014-2020, culminating in a cumulative savings target. This report describes the way the Netherlands intends to meet the article 7 obligations, as requested by the European Commission. The EED offers the member states various degrees of freedom with regard to the definition of the target and the way it is met. Hence, this report addresses the choices of the Netherlands and their consequences for the Dutch target and the realised energy savings. A broad-lined description of the choices and overall results is complemented by extensive annexes that offer technical descriptions and detailed numbers [Dutch] Dit rapport beschrijft de manier waarop Nederland aan haar doelstelling voor artikel 7 van de Energy Efficiency Directive (EED) denkt te voldoen. Het is gebaseerd op de interpretaties en keuzes die de Nederlandse overheid heeft gemaakt. Artikel 7 van de Energy Efficiency Directive verplicht Nederland tot het realiseren van een efficiencyverbetering van 1,5% per jaar in de periode 2014-2020, als cumulatieve doelstelling. Voor Nederland betekent dit - rekening houdend met de vrijheidsgraden van de EED - een doelstelling van minimaal 482 PJ besparing op het finaal energiegebruik. Nederland verwacht een cumulatieve besparing te bereiken tussen de 387 en 562 PJ in finale termen, waarvan 87 tot 186 PJ door nieuw beleid. Dit nieuwe beleid bestaat uit de overeengekomen beleidsmaatregelen uit het recente Energieakkoord dat onder regie van de Sociaal Economische Raad (SER) is gesloten. Het kabinet heeft dit akkoord mede ondertekend.

  11. High-efficiency AlxGa1-xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters

    Science.gov (United States)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng

    2018-04-01

    A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.

  12. Enhancement of efficiency and stability of phosphorescent OLEDs based on heterostructured light-emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Byung Doo, E-mail: bdchin@dankook.ac.kr [Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2011-03-23

    The light-emitting efficiency and stability of a phosphorescent organic light-emitting device (OLED), whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping influenced by heterostructured emissive layers, are studied. The variation of the material combination of the heterostructured emitter, both for mixed and double layer configuration, affects the charge injection behaviour, luminous efficiency and stability. Both double and mixed emitter configurations yield low-voltage and high-efficiency behaviour (51 lm W{sup -1} at 1000 cd m{sup -2}; 30 lm W{sup -1} at 10 000 cd m{sup -2}). Such an improvement in power efficiency at elevated brightness is sufficiently universal, while the enhancement of device half-lifetime is rather sensitive to the circumstantial layout of heterostructural emitters. With an optimal mixture of hole-transport type and electron-transport type, a half-lifetime of more than 2500 h at 4000 cd m{sup -2} is obtained, which is 8 times the half-lifetime of control devices with a single emitter structure. The origin and criterion for enhancement of efficiency and lifetime are discussed in terms of the carrier transport behaviour with a specific device architecture.

  13. The state of energy efficiency in Canada 2006 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This report reviewed energy efficiency strategies in Canada's economic sector, and provided information on the contributions made by various energy efficiency initiatives administered by Natural Resources Canada through its Office of Energy Efficiency. Energy use in Canada increased by 22 per cent between 1990 and 2003, in contrast to the 32 per cent anticipated without energy efficiency increases. Energy-related greenhouse gas (GHG) emissions were 52 megatonnes lower than they would have been without energy efficiency programs, indicating that strong and measurable progress has been made. In the residential sector, the combined effects of a 26 per cent increase in activity, an increase in energy demand due to weather, and an increase in the average number of appliances per household were partly offset by a 19 per cent improvement in energy efficiency. A 45 per cent increase in industrial activity along with a 13 per cent improvement in energy efficiency between 1990-2003 was noted. A 15 per cent increase in passenger transportation and a 40 per cent increase in freight transportation were offset by a 16 per cent improvement in energy efficiency. Basic policy instruments were reviewed, as well as information and voluntary programs, direct financial incentives, and various regulations to eliminate less efficient products from the market. It was noted that the Green Municipal Fund has recently provided over $248 million to support 419 feasibility studies and energy efficiency projects. The federal budget has provided an additional $300 million towards the fund. 22 figs.

  14. Energy efficiency in existing detached housing

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten; Christensen, Toke Haunstrup

    This memo is written as an input to the German project Enef-haus on energy- efficient restoration of single-family houses in Germany. The memo contains a summary of the Danish experiences divided into three main sections: first is a short historic overview of the Danish energy policy indicating...... when different relevant instruments have been introduced to increase the energy efficiency of privately owned single-family houses. Second is a short introduction to the Danish housing sector and its energy supplies. The third and main part of the report is an examination of the most recent...

  15. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  16. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  17. Enhanced Solar Photoelectrochemical Conversion Efficiency of ZnO:Cu Electrodes for Water-Splitting Application

    Directory of Open Access Journals (Sweden)

    Rekha Dom

    2013-01-01

    Full Text Available n-type ZnO:Cu photoanodes were fabricated by simple spray pyrolysis deposition technique. Influence of low concentration (range ~10−4–10−1% of Cu doping in hexagonal ZnO lattice on its photoelectrochemical performance has been investigated. The doped photoanodes displayed 7-time enhanced conversion efficiencies with respect to their undoped counterpart, as estimated from the photocurrents generated under simulated solar radiation. This is the highest enhancement in the solar conversion efficiency reported so far for the Cu-doped ZnO. This performance is attributed to the red shift in the band gap of the Cu-doped films and is in accordance with the incident-photon-current-conversion efficiency (IPCE measurements. Electrochemical studies reveal an n-type nature of these photoanodes. Thus, the study indicates a high potential of doped ZnO films for solar energy applications, in purview of the development of simple nanostructuring methodologies.

  18. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    Science.gov (United States)

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  19. CO2 - The Canary in the Energy Efficiency Coal Mine

    Science.gov (United States)

    Somssich, Peter

    2011-04-01

    While much of the discussion surrounding CO2 is focused on its role as a GHG (green house gas) and its affect on Climate Change, CO2 can also be viewed as an indicator for reductions in fossil fuel use and increased energy efficiency. Much as the canary in a mine was used to warn miners of unsafe health conditions in a mine, CO2 can be seen as allowing us to effectively track progress towards energy efficiency and sustainability. Such an effort can best be achieved by either a Carbon Tax or a Cap and Trade system which was highly effective as part of the 1992 Clean Air Act, contributing to a significant reduction of SO2 and acid rain. A similar attempt has been made using the 1997 Kyoto Protocol to reduce carbon emissions. The mechanisms of how this treaty was intended to work will be explained, and examples will be given, both in the USA and Europe, of how the protocol was used to reduce energy consumption and energy dependence, while also reducing CO2 emissions. Regardless of how strong an impact CO2 reduction may have for Climate Change issues, a reduction of CO2 is guaranteed to produce energy benefits, monetary benefits and can even enhance national security. For all of these reasons, we need the CO2 canary.

  20. Implementing energy efficient pavements: A socio-economic analysis of the development and implementation of energy efficient pavements with low rolling resistance

    DEFF Research Database (Denmark)

    Axelsen, Christian; Pettinari, Matteo; Schmidt, Bjarne

    2017-01-01

    for the transportation sector is to make road networks more energy efficient by implementing pavements with low rolling resistance, leading to lower fuel consumption. Through a series of projects focusing on reducing rolling resistance conducted since 2010, the Danish Road Directorate (DRD) has developed a durable......, energy-efficient asphalt pavement. Socio-economic analyses conducted to quantify the benefit to society associated with implementing these asphalt pavements have demonstrated very high benefits. The demonstrated results in terms of durability, energy efficiency and socio-economics have resulted...... in substantial government funding being provided for demonstration trials on 50 kilometers of energy-efficient pavement in 2018. The implementation of energy-efficient pavements will enable Denmark to contribute to the out-of-quota 2030-emission cuts in line with EU regulations....

  1. Energy efficiency indicators of Italy (1970-1992)

    Energy Technology Data Exchange (ETDEWEB)

    D` Angelo, E; Perrella, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia; Bianco, R

    1996-02-01

    This report is aimed at presenting the results of the energy efficiency evolution in Italy for the 1970-1992 period Results come from the data-base developed under the SAVE/EnR project on `Cross countries comparison on energy efficiency indicators`. In order to be comparable among countries, efforts have been made to harmonize the data collection as well as the definition and the calculation of energy efficiency indicators. Selected indicators are considered in order to illustrate the potentiality of the project (around 200 different energy efficiency indicators can be calculated and presented). Emphasis is put on the interpretation of the so-called `techno-economic indicators` as well as explanatory indicators both for the economic and techno-economic approaches. Industry, transport, tertiary, residential and transformation sectors have been analyzed.

  2. Energy efficiency. A constant challenge to science and practice. Proceedings. 2. ed.; Energieeffizienz. Eine stete Herausforderung an Wissenschaft und Praxis. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ulrich (ed.)

    2011-07-01

    Within the meeting ''Energy efficiency'' of the Research Center for Energy Economics (Munich, Federal Republic of Germany) from 12th to 13th May, 2011, at the Munich Residenz (Munich, Federal Republic of Germany) the following lectures were presented: (1) Innovation and research for an enhanced energy efficiency - New accents in the energy research politics of the Federal Government (Knut Kuebler); (2) Revolution of efficiency in the monastery St. Ottilien (Wolfgang Mauch); (3) From the maser plan to the local plan of energy utilization (Tobias Schmid); (4) The life cycle approach as a driver for innovative energy contracting (Alfred Gayer); (5) Energy efficiency networks (Anna Gruber); (6) Grid expansion for an enhanced utilization of renewable energies (Martin Fuchs); (7) Storage requirement in the electrical grid; (8) Scenarios for the development of the electromobility in Munich (Stephan Brunnert); (9) Li ion batteries for electrified automobiles - Demands and status (Peter Lamp); (10) Marketing of wind power (Serafin von Roon); (11) Demand side management in non-residential buildings (Johannes Jungwirth); (12) Energy future 2050 (Ulrich Wagner); (13) Decentral and renewable power generation (Ulli Arndt); (14) Electromobility - is that the future? (Markus Lienkamp); (14) Electric power - Reason or solution of the climate problem? (Harald Lesch).

  3. Energy efficiency. A constant challenge to science and practice. Proceedings. 2. ed.; Energieeffizienz. Eine stete Herausforderung an Wissenschaft und Praxis. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ulrich [ed.

    2011-07-01

    Within the meeting ''Energy efficiency'' of the Research Center for Energy Economics (Munich, Federal Republic of Germany) from 12th to 13th May, 2011, at the Munich Residenz (Munich, Federal Republic of Germany) the following lectures were presented: (1) Innovation and research for an enhanced energy efficiency - New accents in the energy research politics of the Federal Government (Knut Kuebler); (2) Revolution of efficiency in the monastery St. Ottilien (Wolfgang Mauch); (3) From the maser plan to the local plan of energy utilization (Tobias Schmid); (4) The life cycle approach as a driver for innovative energy contracting (Alfred Gayer); (5) Energy efficiency networks (Anna Gruber); (6) Grid expansion for an enhanced utilization of renewable energies (Martin Fuchs); (7) Storage requirement in the electrical grid; (8) Scenarios for the development of the electromobility in Munich (Stephan Brunnert); (9) Li ion batteries for electrified automobiles - Demands and status (Peter Lamp); (10) Marketing of wind power (Serafin von Roon); (11) Demand side management in non-residential buildings (Johannes Jungwirth); (12) Energy future 2050 (Ulrich Wagner); (13) Decentral and renewable power generation (Ulli Arndt); (14) Electromobility - is that the future? (Markus Lienkamp); (14) Electric power - Reason or solution of the climate problem? (Harald Lesch).

  4. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Energy efficiency programs add to the costs incurred by electricity users in the short term and generate significant economic benefits in the medium and long term. Using the example of programs in development at Hydro-Quebec, it is shown that the net economic benefits surpass, in present value terms, the sums invested by the electric utility and the customer, corresponding to yields of over 100%. This benefit is the principal impact of energy conservation programs which also provide employment, for every dollar invested, of the same order as that provided by hydroelectric production (i.e. costs associated with construction of generating plants, transmission lines, and distribution facilities). This evaluation takes account of the structure of purchases of goods and services brought about by energy efficiency programs and their large import component. This result may be surprising since the hydroelectric industry is strongly integrated into the Quebec economy, but it is understandable when one takes into account the importance of distribution costs to small-scale users, which causes significant local activity even when imported products are involved, and the very intensive labor requirement for certain energy efficiency measures. In addition, the employment generated by energy efficiency investments is very diversified in terms of the range of skills used and its geographic dispersion. 2 figs., 4 tabs

  5. Energy efficient maintenance. Project report; Energioptimerende vedligehold. Projektrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bjerg, J. (Center for Drift og Vedligehold, Frederici (Denmark)); Dam Wied, M.; Skjershede Nielsen, P.; Holt, J. (NRGi Raadgivning A/S, Aarhus (Denmark)); Dam, M. (Energi Horsens, Horsens (Denmark)); Holk Lauridsen, V. (Teknologisk Institut, Energieffektivisering og Ventilation, Taastrup (Denmark))

    2010-03-15

    Together with four case companies, the project developed and tested a model for energy-efficient maintenance. In each of the companies, the model was adjusted through a cooperation process aiming at combining energy optimisation and maintenance as part of specific production optimisation. When correctly planned, energy-efficient maintenance is interesting for all companies. An overall solution was made, which can facilitate major energy savings and production efficiency improvement. (LN)

  6. Energy Efficiency Policy Developments: September 2011-September 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The purpose of this report is to highlight energy efficiency policy action and planning in IEA member and key non-member countries over the period from September 2011 to September 2012. The report provides an overview of energy efficiency policy developments across the seven sectors covered by the IEA 25 Energy Efficiency Policy Recommendations (25 EEPR) – Cross-sectoral activities, Buildings, Appliances and Equipment, Lighting, Transport, Industry and Energy Providers.

  7. Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety

    International Nuclear Information System (INIS)

    Sharifzadeh, Mahdi; Meghdari, Mojtaba; Rashtchian, Davood

    2017-01-01

    Highlights: • Integrating Solid Oxide Fuel Cells with thermal power plants enhance overall energy efficiency. • However, the high degree of process integration in hybrid power plants limits the operating window. • Multi-objective optimization was applied for integrated design and operation. • The Pareto optimal solutions demonstrated strong trade-off between energy efficiency and operational safety. - Abstract: Energy efficiency is one of the main pathways for energy security and environmental protection. In fact, the International Energy Agency asserts that without energy efficiency, 70% of targeted emission reductions are not achievable. Despite this clarity, enhancing the energy efficiency introduce significant challenge toward process operation. The reason is that the methods applied for energy-saving pose the process operation at the intersection of safety constraints. The present research aims at uncovering the trade-off between safe operation and energy efficiency; an optimization framework is developed that ensures process safety and simultaneously optimizes energy-efficiency, quantified in economic terms. The developed optimization framework is demonstrated for a solid oxide fuel cell (SOFC) power generation system. The significance of this industrial application is that SOFC power plants apply a highly degree of process integration resulting in very narrow operating windows. However, they are subject to significant uncertainties in power demand. The results demonstrate a strong trade-off between the competing objectives. It was observed that highly energy-efficient designs feature a very narrow operating window and limited flexibility. For instance, expanding the safe operating window by 100% will incur almost 47% more annualized costs. Establishing such a trade-off is essential for realizing energy-saving.

  8. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  9. Role and potential of renewable energy and energy efficiency for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  10. COFFEE - Coherent Optical System Field Trial for Spectral Efficiency Enhancement

    DEFF Research Database (Denmark)

    Imran, Muhammad; Fresi, Francesco; Rommel, Simon

    2016-01-01

    The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented.......The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented....

  11. Enhanced counting efficiency of Cerenkov radiation from bismuth-210

    International Nuclear Information System (INIS)

    Peck, G.A.; Smith, J.D.

    1998-01-01

    This paper describes the measurement of 210 Bi by Cerenkov counting in a commercial liquid scintillation counter. The counting efficiency in water is 0.17 counts per second per Becquerel (17%). When the enhancers Triton X-100 (15% v/v) and sodium salicylate (1% m/v) are added to the solution the counting efficiency for 210 Bi increases from 17% to 75%. The 210 Po daughter of 210 Bi causes interference of 0.85 counts per second per Becquerel in the presence of the enhancers but not in water. When 210 Bi and 210 Po are present in secular equilibrium the total counting efficiency is 160%. When 210 Bi and 210 Po are not in secular equilibrium the 210 Po can be removed immediately before counting by plating onto silver foil. The use of the enhancers gives a substantial increase in counting efficiency compared to counting in water. Compared with solutions used in liquid scintillation counting the enhancer solution is inexpensive and can be disposed of without environmental hazard. (author)

  12. Factors which influence Nova Scotia farmers in implementing energy efficiency and renewable energy measures

    International Nuclear Information System (INIS)

    Bailey, J.A.; Gordon, R.; Burton, D.; Yiridoe, E.K.

    2008-01-01

    Improvements in energy efficiency and renewable energy use can reduce farm operating costs and reduce greenhouse gas (GHG) emissions. Responses (n=224, representing a 32% response rate) from a mail survey were used to assess use and interest in energy efficient and renewable energy options on farms in Nova Scotia, Canada. Energy efficiency options used the most were behavior, insulation, and lighting. Few farms used renewable energy options. Approximately 78% of farmers indicated an interest in implementing energy efficiency and renewable energy options. Interest varied by farm type and size. Interest increased with farm size. The two main efficiency options of interest were lighting (60.8%) and insulation (43.7%), while wind power development (55.5%) and solar water heating (24.5%) were the main renewable options of interest. Farmers concerned about power and equipment reliability were less likely to be interested in implementing options. Farmers concerned about the environment were more likely to be interested in implementing options. Current use of certain energy efficiency technologies, such as efficient lighting, influenced implementation interest

  13. Energy efficiency in transport and mobility from an eco-efficiency viewpoint

    International Nuclear Information System (INIS)

    Uson, Alfonso Aranda; Capilla, Antonio Valero; Bribian, Ignacio Zabalza; Scarpellini, Sabina; Sastresa, Eva Llera

    2011-01-01

    European Union countries' current energy policies for the transport sector promote, amongst other initiatives; urban mobility plans, the renewal of fleets of cars and industrial vehicles and the introduction of biofuel. From the point of view of eco-efficiency and Life Cycle Assessment (LCA), energy policies must go further. The objective of this paper is to analyse the current transport model and the policies on energy efficiency being promoted in the EU from a LCA point of view. Special attention has been paid to private vehicles, in assessing the environmental impact of the various stages of manufacture, their use and disposal, and the consequences of plans to renew fleets. How old should a vehicle ideally be so that when it is changed, the embodied energy in the materials of the vehicle is less than the gain in energy efficiency due to changing the model for example? In addition the paper analyses the different means of transport in the energy consumption-time ratio from a LCA viewpoint. The fact that reducing transport times leads to greater energy consumption gives rise to the question: how long does nature take to repair the environmental damage caused?

  14. Understanding Cost-Effectiveness of Energy Efficiency Programs

    Science.gov (United States)

    Discusses the five standard tests used to assess the cost-effectiveness of energy efficiency, how states are using these tests, and how the tests can be used to determine the cost-effectiveness of energy efficiency measures.

  15. Energy efficiency the definitive guide to the cheapest, cleanest, fastest source of energy

    CERN Document Server

    Fawkes, Steven

    2013-01-01

    Energy risk has reappeared on the corporate and social agenda with a bang and the complexity of the issues has increased many-fold since the days of the last great wave of concern following the oil crises of the 1970s. Steven Fawkes' Energy Efficiency is a comprehensive guide for managers and policy-makers to the fundamental questions underpinning energy-efficiency and our responses to it: ¢ what do we really mean by energy efficiency? ¢ what is the potential (in different dimensions)? ¢ why it is important? ¢ what management processes lead to optimisation of energy efficiency? ¢ what technolo

  16. Energy efficiency policies and measures in Norway: monitoring of energy efficiency in EU27, Norway and Croatia (ODYSSEE-MURE)

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2009-09-15

    This report represents the national case study of Norway for the EIE-project 'Monitoring of Energy Demand Trends and Energy Efficiency in the EU - ODYSSEE-MURE'. It presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. Total energy consumption (not including energy as feedstock) has increased from 16.6 M toe (195 TWh) in 1990 to 19.2 M toe (226 TWh) in 2007 and has been relatively constant the last ten years. Energy consumption in manufacturing industry has increased by 10 % from 1990 to 2007, but is lower in 2007 than in 1998. Final energy use in households has increased from 3515 k toe (41 TWh) in 1990 to 3826 (45 TWh) in 2007. The climate corrected energy use has been at approximately 4000 k toe since the mid 1990s. It seems to be an interrupt in the increase of energy use in households, despite the growth of all common used drivers in this sector. Energy efficiency policies and measures implemented since 1990 have contributed to improve the efficiency by 13 %, or 0.7 % per year; this means that if these policies and measures would not have been implemented, the final energy consumption would have been 13 % higher in 2007 (or approximately 1.9 M toe or 22 TWh). (Author)

  17. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  18. Financial Crisis and Energy Efficiency. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    de T' Serclaes, Philippine; Gasc, Emilien; Saussay, Aurelien

    2009-10-15

    Governments have understood the importance of financing energy efficiency now. This realisation is exemplified through the central role occupied by energy efficiency in most stimulus packages. The purpose of this memo is to identify the impact of the financial and economic crisis on the evolution of public sector investments, energy efficiency policy development, and private sector investments. The paper will first identify trends which have emerged from the implementation of IEA government stimulus packages. Most relevant case studies are then provided along with lessons and challenges.

  19. Energy efficient lighting in the retail sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Good Practice Guide gives details on how energy efficient lighting can be incorporated in the brief for a lighting consultant or contractor. The advantages of energy efficiency are highlighted, and the lighting of retail stores, the introduction of energy efficiency measures, and the application of good practice are discussed. Case studies of W H Smith, Cambridge, Tesco Stores, Boots plc, the Harvey Centre, Harlow, and the National Westminster Bank plc are presented. A guide for senior executives and specialists in lighting design is also included. (UK)

  20. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2014-09-16

    Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the