WorldWideScience

Sample records for enhanced durability performance

  1. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  3. Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Siyuan, L.; Satyanarayana, N.; Kustandi, T.S.; Sinha, Sujeet K.

    2011-01-01

    At micro/nano-scale, friction force dominates at the interface between bodies moving in relative motion and severely affects their smooth operation. This effect limits the performance of microsystem devices such as micro-electro-mechanical systems (MEMS). In addition, friction force also leads to material removal or wear and thereby reduces the durability i.e. the useful operating life of the devices. In this work, we fabricated bio-inspired polymeric patterns for tribological applications. Inspired by the surface features on lotus leaves namely, the protuberances and wax, SU-8 polymeric films spin-coated on silicon wafers were topographically and chemically modified. For topographical modification, micro-scale patterns were fabricated using nanoimprint lithography and for chemical modification, the micro-patterns were coated with perfluoropolyether nanolubricant. Tribological investigation of the bio-inspired patterns revealed that the friction coefficients reduced significantly and the wear durability increased by several orders. In order to enhance the wear durability much further, the micro-patterns were exposed to argon/oxygen plasma and were subsequently coated with the perfluoropolyether nanolubricant. Bio-inspired patterns with enhanced wear durability, such as the ones investigated in the current work, have potential tribological applications in MEMS/Bio-MEMS actuator-based devices. Highlights: →Bio-inspired polymeric patterns for tribological applications in microsystems. →Novel surface modification for the patterns to enhance tribological properties. →Patterns show low friction properties and extremely high wear durability.

  4. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  5. Research on Grooved Concrete Pavement Based on the Durability of Its Anti-Skid Performance

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2018-05-01

    Full Text Available The objectives of the present study are to investigate the anti-skid performance of concrete pavement and to attempt to enhance its durability by two different methods: using a longitudinally-transversely grooved (LT form, and using a self-developed composite curing agent containing paraffin and Na2SiO3 as the main ingredients. The friction coefficient (μ was measured by self-developed equipment to evaluate the anti-skid performance of samples with three different groove forms (LT, longitudinally grooved (L, and transversely grooved (T. Abrasion tests were then carried out to evaluate the durability of the anti-skid performance. The results indicated that anti-skid performance of LT samples was approximately 46.2% greater than that of T samples, but its durability was not as significant as that of T samples. However, the resistance to abrasion could be improved by using the aforementioned curing agent. Comparisons were carried out between samples sprayed the curing agent and control samples without any curing agent under standard conditions. It was found that the application of the curing agent increased the anti-skid durability of concrete by 35.4%~47.8%, proving it to be a useful and promising technique.

  6. Enhancing durability of wood-based composites with nanotechnology

    Science.gov (United States)

    Carol Clausen

    2012-01-01

    Wood protection systems are needed for engineered composite products that are susceptible to moisture and biodeterioration. Protection systems using nano-materials are being developed to enhance the durability of wood-based composites through improved resistance to biodeterioration, reduced environmental impact from chemical leaching, and improved resistance to...

  7. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  8. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer

    International Nuclear Information System (INIS)

    Siracusano, Stefania; Baglio, Vincenzo; Van Dijk, Nicholas; Merlo, Luca; Aricò, Antonino Salvatore

    2017-01-01

    cm"−"2, showed excellent stability for the MEA with total noble metal catalyst loading of 1.6 mg·cm"−"2 (cell voltage increase ∼5 μV/h). Moderate degradation rate (cell voltage increase ∼15 μV/h) was recorded for the low loading 0.5 mg·cm"−"2, MEA. Similar stability characteristics were observed in durability tests at 3 A·cm"−"2. These high performance and stability characteristics were attributed to the enhanced proton conductivity and good stability of the novel membrane, the optimized structural properties of the Ir and Ru oxide solid solution and the enrichment of Ir species on the surface for the anodic catalyst.

  9. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  10. Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes.

    Science.gov (United States)

    Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J

    2017-08-28

    Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

    Science.gov (United States)

    Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok

    2015-08-25

    The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.

  12. Enhancing the Chemical and Mechanical Durability of Polymer Electrolyte Membranes for Fuel Cell Applications

    Science.gov (United States)

    Baker, Andrew M.

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was

  13. State of the art of durability-performance evaluation of hardened cement based on phase compositions

    International Nuclear Information System (INIS)

    Kurashige, Isao; Imoto, Harutake; Yamamoto, Takeshi; Hironaga, Michihiko

    2006-01-01

    Upgrading durability-performance evaluation technique for concrete is urgently demanded in connection to its application to radio-active waste repository which needs ultra long-term durability. Common concrete structures also require an advanced method for minimizing the life-cycle cost. The purpose of this research is to investigate current problems and future tasks on durability-performance evaluation of hardened cement from the view point of phase composition. Although the phase composition of hardened cement has not fully been reflected to durability-performance evaluation, it influences concrete durability as well as its pore structure. This report reviews state of the art of the factors affecting phase composition, analytical and experimental evaluation techniques for phase composition, and durability-performance evaluation methods of hardened cement based on phase composition. (author)

  14. Performance based durability design of a bored tunnel with concrete lining

    NARCIS (Netherlands)

    Vries, H. de; Siemes, A.J.M.

    2002-01-01

    Design for durability is gradually changing from a deem-to-satisfy approach to a performance based approach. The conventional building codes give in principle only construction rules. If these rules are fulfilled, it is assumed that the structure will have an adequate durability. But specifications

  15. Towards a durability test for washing-machines.

    Science.gov (United States)

    Stamminger, Rainer; Tecchio, Paolo; Ardente, Fulvio; Mathieux, Fabrice; Niestrath, Phoebe

    2018-04-01

    Durability plays a key role in enhancing resource conservation and contributing to waste minimization. The washing-machine product group represents a relevant case study for the development of a durability test and as a potential trigger to systematically address durability in the design of products. We developed a procedure to test the durability performance of washing-machines as a main objective of this research. The research method consisted of an analysis of available durability standards and procedures to test products and components, followed by an analysis of relevant references related to frequent failures. Finally, we defined the criteria and the conditions for a repeatable, relatively fast and relevant endurance test. The durability test considered the whole product tested under conditions of stress. A series of spinning cycles with fixed imbalanced loads was run on two washing-machines to observe failures and performance changes during the test. Even though no hard failures occurred, results clearly showed that not all washing-machines can sustain such a test without abrasion or performance deterioration. However, the attempt to reproduce the stress induced on a washing-machine by carrying out a high number of pure spinning cycles with fixed loads did not allow equal testing conditions: the actions of the control procedure regarding imbalanced loads differ from machine to machine. The outcomes of this research can be used as grounds to develop standardised durability tests and to, hence, contribute to the development of future product policy measures.

  16. Open-source FCPEM-Performance & Durability Model Consideration of Membrane Properties on Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Knights, Shanna [Ballard Fuel Cell Systems, Bend, OR (United States); Harvey, David [Ballard Fuel Cell Systems, Bend, OR (United States)

    2017-01-20

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.

  17. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes

    Science.gov (United States)

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-01-01

    Current commercial polymer membranes have shown high performance and durability in water treatment, converting poor quality waters to higher quality suitable for drinking, agriculture and recycling. However, to extend the treatment into more challenging water sources containing abrasive particles, micro and ultrafiltration membranes with enhanced physical durability are highly desirable. This review summarises the current limits of the existing polymeric membranes to treat harsh water sources, followed by the development of nanocomposite poly(vinylidene fluoride) (PVDF) membranes for improved physical durability. Various types of nanofillers including nanoparticles, carbon nanotubes (CNT) and nanoclays were evaluated for their effect on flux, fouling resistance, mechanical strength and abrasion resistance on PVDF membranes. The mechanisms of abrasive wear and how the more durable materials provide resistance was also explored. PMID:24957121

  18. Durability evaluation of reversible solid oxide cells

    Science.gov (United States)

    Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.

    2013-11-01

    An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

  19. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    Science.gov (United States)

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  20. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  1. Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer.

    Science.gov (United States)

    Sin, Dong Hun; Jo, Sae Byeok; Lee, Seung Goo; Ko, Hyomin; Kim, Min; Lee, Hansol; Cho, Kilwon

    2017-05-31

    A mechanically and thermally stable and electron-selective ZnO/CH 3 NH 3 PbI 3 interface is created via hybridization of a polar insulating polymer, poly(ethylene glycol) (PEG), into ZnO nanoparticles (NPs). PEG successfully passivates the oxygen defects on ZnO and prevents direct contact between CH 3 NH 3 PbI 3 and defects on ZnO. A uniform CH 3 NH 3 PbI 3 film is formed on a soft ZnO:PEG layer after dispersion of the residual stress from the volume expansion during CH 3 NH 3 PbI 3 conversion. PEG also increases the work of adhesion of the CH 3 NH 3 PbI 3 film on the ZnO:PEG layer and holds the CH 3 NH 3 PbI 3 film with hydrogen bonding. Furthermore, PEG tailors the interfacial electronic structure of ZnO, reducing the electron affinity of ZnO. As a result, a selective electron-collection cathode is formed with a reduced electron affinity and a deep-lying valence band of ZnO, which significantly enhances the carrier lifetime (473 μs) and photovoltaic performance (15.5%). The mechanically and electrically durable ZnO:PEG/CH 3 NH 3 PbI 3 interface maintains the sustainable performance of the solar cells over 1 year. A soft and durable cathodic interface via PEG hybridization in a ZnO layer is an effective strategy toward flexible electronics and commercialization of the perovskite solar cells.

  2. The Network of Excellence 'Knowledge-based Multicomponent Materials for Durable and Safe Performance'

    International Nuclear Information System (INIS)

    Moreno, Arnaldo

    2008-01-01

    The Network of Excellence 'Knowledge-based Multicomponent Materials for Durable and Safe Performance' (KMM-NoE) consists of 36 institutional partners from 10 countries representing leading European research institutes and university departments (25), small and medium enterprises, SMEs (5) and large industry (7) in the field of knowledge-based multicomponent materials (KMM), more specifically in intermetallics, metal-ceramic composites, functionally graded materials and thin layers. The main goal of the KMM-NoE (currently funded by the European Commission) is to mobilise and concentrate the fragmented scientific potential in the KMM field to create a durable and efficient organism capable of developing leading-edge research while spreading the accumulated knowledge outside the Network and enhancing the technological skills of the related industries. The long-term strategic goal of the KMM-NoE is to establish a self-supporting pan-European institution in the field of knowledge-based multicomponent materials--KMM Virtual Institute (KMM-VIN). It will combine industry oriented research with educational and training activities. The KMM Virtual Institute will be founded on three main pillars: KMM European Competence Centre, KMM Integrated Post-Graduate School, KMM Mobility Programme. The KMM-NoE is coordinated by the Institute of Fundamental Technological Research (IPPT) of the Polish Academy of Sciences, Warsaw, Poland

  3. The Network of Excellence ``Knowledge-based Multicomponent Materials for Durable and Safe Performance''

    Science.gov (United States)

    Moreno, Arnaldo

    2008-02-01

    The Network of Excellence "Knowledge-based Multicomponent Materials for Durable and Safe Performance" (KMM-NoE) consists of 36 institutional partners from 10 countries representing leading European research institutes and university departments (25), small and medium enterprises, SMEs (5) and large industry (7) in the field of knowledge-based multicomponent materials (KMM), more specifically in intermetallics, metal-ceramic composites, functionally graded materials and thin layers. The main goal of the KMM-NoE (currently funded by the European Commission) is to mobilise and concentrate the fragmented scientific potential in the KMM field to create a durable and efficient organism capable of developing leading-edge research while spreading the accumulated knowledge outside the Network and enhancing the technological skills of the related industries. The long-term strategic goal of the KMM-NoE is to establish a self-supporting pan-European institution in the field of knowledge-based multicomponent materials—KMM Virtual Institute (KMM-VIN). It will combine industry oriented research with educational and training activities. The KMM Virtual Institute will be founded on three main pillars: KMM European Competence Centre, KMM Integrated Post-Graduate School, KMM Mobility Programme. The KMM-NoE is coordinated by the Institute of Fundamental Technological Research (IPPT) of the Polish Academy of Sciences, Warsaw, Poland.

  4. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  5. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  6. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants

    Science.gov (United States)

    Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi

    2018-02-01

    Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.

  7. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    International Nuclear Information System (INIS)

    Fox, K. M.; Edwards, T. B.

    2016-01-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  8. Experimental Study on Durability Improvement of Fly Ash Concrete with Durability Improving Admixture

    OpenAIRE

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete,...

  9. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  10. Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction.

    Science.gov (United States)

    Sun, Kang Gyu; Chung, Jin Suk; Hur, Seung Hyun

    2015-12-01

    Pt/C catalyst used for polymer electrolyte membrane fuel cells (PEMFCs) displays excellent initial performance, but it does not last long because of the lack of durability. In this study, a Pt/reduced graphene oxide (RGO) catalyst was synthesized by the polyol method using ethylene glycol (EG) as the reducing agent, and then low-temperature hydrogen bubbling (LTHB) treatment was introduced to enhance the durability of the Pt/RGO catalyst. The cyclic voltammetry (CV), oxygen reduction reaction (ORR) analysis, and transmittance electron microscopy (TEM) results suggested that the loss of the oxygen functional groups, because of the hydrogen spillover and self-catalyzed dehydration reaction during LTHB, reduced the carbon corrosion and Pt agglomeration and thus enhanced the durability of the electrocatalyst.

  11. Concilier des performances pour une agriculture durable - L'agriculture biologique comme prototype.

    OpenAIRE

    Sautereau, Natacha; Penvern, Servane; Petitgenet, Morgane; Fauriel, Joël; Bellon, Stéphane

    2011-01-01

    L'agriculture biologique est de plus en plus reconnue comme prototype d’agriculture durable car elle combine de multiples performances. Toutefois des tensions apparaissent entre certaines de ces performances. Une équipe de l’unité Écodéveloppement d’Avignon explore ces tensions en l'arboriculture fruitière.

  12. Novel Arrangements for High Performance and Durable Dielectric Elastomer Actuation

    Directory of Open Access Journals (Sweden)

    Runan Zhang

    2016-07-01

    Full Text Available This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain the in-plane pre-strain in the rod longitudinal direction. The aim is to study both the force output and the durability of the RP-DEA. Initial design of the RP-DEA had poor durability, however, it generated significantly larger force compared with the conventional DEA due to the effects of pre-strain and rod constraints. The durability study identifies the in-electro-active-region (in-AR lead contact and the non-uniform deformation of the structure as causes of pre-mature failure of the RP-DEA. An optimized AR configuration is proposed to avoid actuating undesired areas in the structure. The results show that with the optimized AR, the RP-DEA can be effectively stabilized and survive operation at least four times longer than with a conventional electrode arrangement. Finally, a Finite Element simulation was also performed to demonstrate that such AR design and optimization can be guided by analyzing the DEA structure in the state of pre-activation.

  13. Characterization of a well performing and durable Ni:CGO-infiltrated anode for metal-supported SOFC

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Graves, Christopher R.

    3000 hours of 0.25A/cm2 galvanostatic testing at 650 ºC was shown. Furthermore, it was shown on button cells that if the cathode side consisted of a dense CGO barrier layer in combination with a LSC cathode, a performance with an area specific resistance (ASR) of 0.27 Ω cm2 at 650 ºC could be obtained....... These performance and durability characteristics are very encouraging but despite several papers on metal supported SOFC with this type of infiltrated anode [1-3], the performance and the factors controlling the performance and durability is not yet well understood. Only some initial data on symmetrical cells...

  14. Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids

    International Nuclear Information System (INIS)

    Huang Wenqi; Xing Yanjun; Yu Yunyi; Shang Songmin; Dai Jinjin

    2011-01-01

    Nine polycarboxylic acids were used to improve washing durability of hydrophobic cellulose fabric finished by sol-gel method. By simultaneous forming ester-bridge between cellulose and silica layer by ester bond, polycarboxylic acids could anchor silica coating onto cellulose fabric to strengthen the adhesion of organic-inorganic hybrid coating. The wettability of treated fabrics was characterized by water contact angle, spray test and hydrostatic pressure test. The results showed that all investigated polycarboxylic acids could improve the durability. The polycarboxylic acid with proper distance between terminal carboxylic acid groups and number of carboxylic acid groups showed the highest durability. 1,2,3,4-butanetetracarboxylic acid (BTCA) led to the best durability of hydrophobic cellulose fabric with water contact angle of 137.6 o (recovery percentage of 94.2%) after 30 washing times. The effect of BTCA on durability was characterized by scanning electron microscopy. This study demonstrated that the surface treatment using polycarboxylic acids and mixed organosilanes is a promising alternative for achieving durable hydrophobic fabrics.

  15. Durability and Performance of High Performance Infiltration Cathodes

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hjalmarsson, Per

    2013-01-01

    The performance and durability of solid oxide fuel cell (SOFC) cathodes consisting of a porous Ce0.9Gd0.1O1.95 (CGO) infiltrated with nitrates corresponding to the nominal compositions La0.6Sr0.4Co1.05O3-δ (LSC), LaCoO3-δ (LC), and Co3O4 are discussed. At 600°C, the polarization resistance, Rp......, varied as: LSC (0.062Ωcm2)cathode was found to depend on the infiltrate firing temperature and is suggested to originate...... of the infiltrate but also from a better surface exchange property. A 450h test of an LSC-infiltrated CGO cathode showed an Rp with final degradation rate of only 11mΩcm2kh-1. An SOFC with an LSC-infiltrated CGO cathode tested for 1,500h at 700°C and 0.5Acm-2 (60% fuel, 20% air utilization) revealed no measurable...

  16. High performance and durability of order-structured cathode catalyst layer based on TiO_2@PANI core-shell nanowire arrays

    International Nuclear Information System (INIS)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong

    2017-01-01

    Highlights: • TiO_2@PANI core-shell nanowire arrays were prepared and applied as catalyst support. • As-prepared Pt-TiO_2@PANI core-shell nanowire arrays were applied as order-structured cathode catalyst layer. • The novel cathode catalyst structure without Nafion"® ionomer enhance the performance and durability of PEMFC. - Abstract: In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO_2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO_2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO_2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm"−"2) than conventional PEMFC (699.30 mW cm"−"2). Electrochemically active surface area (ECSA) and charge transfer impedance (R_c_t) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO_2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order

  17. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-02-15

    Biodiesel, derived from the transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. In spite of having some application problems, recently it is being considered as one of the most promising alternative fuels in internal combustion engine. From scientific literatures, this paper has collected and analyzed the data on both advantages and disadvantages of biodiesel over conventional diesel. Since the aim of this study is to evaluate the biodiesel feasibility in automobiles, the first section is dedicated to materials compatibility in biodiesel as compared to that in diesel. The highest consensus is related to enhanced corrosion of automotive parts due to its compositional differences. In the subsequent sections, data on performance, emission and engine durability have been analyzed and compared. In this case, the highest consensus is found in reducing emissions as well as in increasing moving parts sticking, injector coking and filter plugging. This paper has also summarized the factors of biodiesel in contributing these technical performances. (author)

  18. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  19. High performance and durability of order-structured cathode catalyst layer based on TiO{sub 2}@PANI core-shell nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); Wang, Xindong, E-mail: echem@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China)

    2017-06-01

    Highlights: • TiO{sub 2}@PANI core-shell nanowire arrays were prepared and applied as catalyst support. • As-prepared Pt-TiO{sub 2}@PANI core-shell nanowire arrays were applied as order-structured cathode catalyst layer. • The novel cathode catalyst structure without Nafion{sup ®} ionomer enhance the performance and durability of PEMFC. - Abstract: In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO{sub 2}@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO{sub 2}@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO{sub 2} nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm{sup −2}) than conventional PEMFC (699.30 mW cm{sup −2}). Electrochemically active surface area (ECSA) and charge transfer impedance (R{sub ct}) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO{sub 2}@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and

  20. Advanced Face Gear Surface Durability Evaluations

    Science.gov (United States)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  1. Investigation of freeze/thaw durability in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Soo-Jin; Park, Gu-Gon; Sohn, Young-Jun; Yim, Sung-Dae; Yang, Tae-Hyun; Kim, Chang-Soo [Fuel Cell Research Center, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Park, Jin-Soo [Department of Environmental Engineering, College of Engineering, Sanmyung University, 300 Anseo-dong, Dongnam-gu, Cheonam, Chungnam Province 330-720 (Korea, Republic of); Hong, Bo Ki [Fuel Cell Vehicle Team 1, Ecotechnology Center, Hyundai-Kia Motors Company, 104, Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea, Republic of)

    2010-12-15

    This study aims to investigate the effect of different gas diffusion layers (GDLs) on freeze/thaw condition durability in polymer electrolyte fuel cells (PEFCs). Three kinds of GDLs-cloth, felt and paper type - with similar basic properties except thickness and bending stiffness were used. The changes in the properties and cell performance were investigated from the -30 to 70 C range of freeze/thaw cycles. The I-V performance degradation was observed to be negligible for the felt GDL whereas the cloth and paper GDLs showed a marked I-V performance loss. No distinctive correlation between the changes in electrochemical properties, such as active metal surface area, hydrogen crossover rates and decreased I-V performance, was observed except an increase in ohmic resistance revealed by ac-impedance spectroscopy. The physical destruction of electrodes was also shown by scanning electron microscope (SEM) analysis. The present study found that sufficient mechanical supporting force between the interfaces of materials enhances PEFC durability in sub-zero temperature conditions. (author)

  2. Performance and durability testing of parabolic trough receivers

    Science.gov (United States)

    Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan

    2017-06-01

    The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.

  3. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  4. Effect of glass composition on waste form durability: A critical review

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Mazer, J.J.; Ebert, W.L.

    1994-11-01

    This report reviews literature concerning the relationship between the composition and durability of silicate glasses, particularly glasses proposed for immobilization of radioactive waste. Standard procedures used to perform durability tests are reviewed. It is shown that tests in which a low-surface area sample is brought into contact with a very large volume of solution provide the most accurate measure of the intrinsic durability of a glass composition, whereas high-surface area/low-solution volume tests are a better measure of the response of a glass to changes in solution chemistry induced by a buildup of glass corrosion products. The structural chemistry of silicate and borosilicate glasses is reviewed to identify those components with the strongest cation-anion bonds. A number of examples are discussed in which two or more cations engage in mutual bonding interactions that result in minima or maxima in the rheologic and thermodynamic properties of the glasses at or near particular optimal compositions. It is shown that in simple glass-forming systems such interactions generally enhance the durability of glasses. Moreover, it is shown that experimental results obtained for simple systems can be used to account for durability rankings of much more complex waste glass compositions. Models that purport to predict the rate of corrosion of glasses in short-term durability tests are evaluated using a database of short-term durability test results for a large set of glass compositions. The predictions of these models correlate with the measured durabilities of the glasses when considered in large groupings, but no model evaluated in this review provides accurate estimates of durability for individual glass compositions. Use of these models in long-term durability models is discussed. 230 refs

  5. Glycogen with short average chain length enhances bacterial durability

    Science.gov (United States)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  6. Performance-based specifications and control of concrete durability state-of-the-art report RILEM TC 230-PSC

    CERN Document Server

    Luco, Luis

    2016-01-01

    This work gives an overview of significant research from recent years concerning performance-based design and quality control for concrete durability and its implementation. In engineering practice, performance approaches are often still used in combination with prescriptive requirements. This is largely because, for most durability test methods, sufficient practical experience still has to be gained before engineers and owners are prepared to fully rely on them.   This book, compiled by RILEM TC 230-PSC, is intended to assist efforts to successfully build the foundation for the full implementation of performance-based approaches through the exchange of relevant knowledge and experience between researchers and practitioners worldwide.  .

  7. Experimental study on durability improvement of fly ash concrete with durability improving admixture.

    Science.gov (United States)

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.

  8. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    International Nuclear Information System (INIS)

    Ulm, Franz-Josef

    2000-01-01

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  9. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    Science.gov (United States)

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  10. Transparent superwetting nanofilms with enhanced durability at model physiological condition

    Science.gov (United States)

    Hwangbo, Sunghee; Heo, Jiwoong; Lin, Xiangde; Choi, Moonhyun; Hong, Jinkee

    2016-01-01

    There have been many studies on superwetting surfaces owing to the variety of their potential applications. There are some drawbacks to developing these films for biomedical applications, such as the fragility of the microscopic roughness feature that is vital to ensure superwettability. But, there are still only a few studies that have shown an enhanced durability of nanoscale superwetting films at certain extreme environment. In this study, we fabricated intrinsically stable superwetting films using the organosilicate based layer-by-layer (LbL) self-assembly method in order to control nano-sized roughness of the multilayer structures. In order to develop mechanically and chemically robust surfaces, we successfully introduced polymeric silsesquioxane as a building block for LbL assembly with desired fashion. Even in the case that the superhydrophobic outer layers were damaged, the films maintained their superhydrophobicity because of the hydrophobic nature of their inner layers. As a result, we successfully fabricated superwetting nano-films and evaluated their robustness and stability. PMID:26764164

  11. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    Science.gov (United States)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  12. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  13. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  14. Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix

    Science.gov (United States)

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed

    2017-09-01

    The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.

  15. Techniques for enhancing durability and equivalence ratio control in a rich-lean, three-stage ground power gas turbine combustor

    Science.gov (United States)

    Schultz, D. F.

    1982-01-01

    Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.

  16. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  17. Durable superhydrophobic paper enabled by surface sizing of starch-based composite films

    Science.gov (United States)

    Chen, Gang; Zhu, Penghui; Kuang, Yudi; Liu, Yu; Lin, Donghan; Peng, Congxing; Wen, Zhicheng; Fang, Zhiqiang

    2017-07-01

    Superhydrophobic paper with remarkable durability is of considerable interest for its practical applications. In this study, a scalable, inexpensive, and universal surface sizing technique was implemented to prepare superhydrophobic paper with enhanced durability. A thin layer of starch-based composite, acting as a bio-binder, was first coated onto the paper surface by a sophisticated manufacturing technique called surface sizing, immediately followed by a spray coating of hexamethyl disilazane treated silica nanoparticles (HMDS-SiNPs) dispersed in ethanol on the surface of the wet starch-coated sheet, and the dual layers dried at the same time. Consequently, durable superhydrophobic paper with bi-layer structure was obtained after air drying. The as-prepared superhydrophobic paper not only exhibited a self-cleaning behavior, but also presented an enhanced durability against scratching, bending/deformation, as well as moisture. The universal surface sizing of starch-based composites may pave the way for the up-scaled and cost-effective production of durable superhydrophobic paper.

  18. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  19. New MEA Materials for Improved DMFC Performance, Durability and Cost

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, James H. [University of North Florida; Campbell, Joseph L. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J. [University of North Florida

    2013-09-16

    Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for

  20. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity

    Directory of Open Access Journals (Sweden)

    Karen A.O. Martins

    2016-01-01

    Full Text Available Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol, MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  1. A generalized definition for waste form durability

    International Nuclear Information System (INIS)

    Fanning, T. H.; Bauer, T. H.; Morris, E. E.; Wigeland, R. A.

    2002-01-01

    When evaluating waste form performance, the term ''durability'' often appears in casual discourse, but in the technical literature, the focus is often on waste form ''degradation'' in terms of mass lost per unit area per unit time. Waste form degradation plays a key role in developing models of the long-term performance in a repository environment, but other factors also influence waste form performance. These include waste form geometry; density, porosity, and cracking; the presence of cladding; in-package chemistry feedback; etc. The paper proposes a formal definition of waste form ''durability'' which accounts for these effects. Examples from simple systems as well as from complex models used in the Total System Performance Assessment of Yucca Mountain are provided. The application of ''durability'' in the selection of bounding models is also discussed

  2. Enhanced durability of carbon nanotube grafted hierarchical ceramic microfiber-reinforced epoxy composites.

    Science.gov (United States)

    Krishnamurthy, Ajay; Hunston, Donald L; Forster, Amanda L; Natarajan, Bharath; Liotta, Andrew H; Wicks, Sunny S; Stutzman, Paul E; Wardle, Brian L; Liddle, J Alexander; Forster, Aaron M

    2017-12-01

    As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.

  3. ACCELERATED METHODS FOR ESTIMATING THE DURABILITY OF PLAIN BEARINGS

    Directory of Open Access Journals (Sweden)

    Myron Czerniec

    2014-09-01

    Full Text Available The paper presents methods for determining the durability of slide bearings. The developed methods enhance the calculation process by even 100000 times, compared to the accurate solution obtained with the generalized cumulative model of wear. The paper determines the accuracy of results for estimating the durability of bearings depending on the size of blocks of constant conditions of contact interaction between the shaft with small out-of-roundedness and the bush with a circular contour. The paper gives an approximate dependence for determining accurate durability using either a more accurate or an additional method.

  4. Enhancing the Durability of Calcareous Stone Monuments of Ancient Egypt Using CaCO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldoasri

    2017-08-01

    Full Text Available The unwanted changes in valuable historic calcareous stone monuments due to exposure to many physical and chemical effects may lead to its deterioration. The growing interest in the field of conservation of stone monuments encourages the development of consolidation and water-repellent materials. The aim of this study is to evaluate the effectiveness of CaCO3 nanoparticles as a consolidation and protection material for calcareous stone monuments, when those nanoparticles used are dispersed in acrylic copolymer; polyethylmethacrylate (EMA/methylacrylate (MA (70/30, respectively. Samples were subjected to artificial aging by relative humidity/temperature to show the optimum conditions of durability and the effectiveness of the nano-mixture in improving the physical and mechanical properties of the stone material. The synthesis process of CaCO3 nanoparticles/polymer nanocomposite has been prepared by in situ emulsion polymerization system. The prepared nanocomposites with 0.15 g CaCO3 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and good protection properties. Some tests were performed in order to estimate the superficial consolidating and protective effect of the treatment. The obtained nanocomposites have been characterized by TEM, while the surface morphology before and after treatment and homogeneous distribution of used consolidation materials on stone surface were examined by SEM. Improvement of stone mechanical properties was evaluated by compressive strength tests. Change in water-interaction properties was evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Taken together, the results indicate that CaCO3/polymer nanocomposite is a completely compatible, efficient material for the consolidation of artistic and architectural limestone monuments capable of enhancing the

  5. Effects of Irradiation on Albite's Chemical Durability.

    Science.gov (United States)

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  6. Free radical induced grafting of acrylonitrile on pre-treated rice straw for enhancing its durability and flame retardancy

    Directory of Open Access Journals (Sweden)

    Aparna Mukherjee

    2017-01-01

    Full Text Available The present investigation highlights the feasibility of a polymer grafting process to enhance the durability and flame retardancy of rice straw towards application as a low cost roofing material. The success of this grafting methodology was perceived to depend upon a bi-step pre-treatment process encompassing delignification and inorganic salts dispersion. Subsequently free radical polymer grafting of acrylonitrile onto rice straw was implemented by immersion mechanism initiated by oxalic acid-potassium permanganate initiator. The percentage of grafting, limiting oxygen index (LOI, biodegradability of the grafted rice straw and grafting yield percentage was estimated to be 57%, 27%, 0.02% and 136.67%, respectively. The weight loss of polymer grafted rice straw implied its less biodegradability over raw straw. Thus, the process of grafting contrived in the present analysis can be a promising and reliable technique for the efficient utilization of rice straw as an inexpensive roofing element through the augmentation of its durability and flame retardancy.

  7. Durability, Performance, and Emission of Diesel Engines Using Carbon Fiber Piston and Liner

    Science.gov (United States)

    Afify, E. M.; Roberts, W. L.

    1999-01-01

    This report summarizes the research conducted by NC State University in investigating the durability, performance and emission of a carbon fiber piston and liner in our single cylinder research Diesel engine. Both the piston and liner were supplied to NC State University by NASA LaRC and manufactured by C-CAT under a separate contract to NASA LaRC. The carbon-carbon material used to manufacture the piston and liner has significantly lower thermal conductivity, coefficient of thermal expansion, and superior strength characteristics at elevated temperatures when compared to conventional piston materials such as aluminum. The results of the carbon-carbon fiber piston testing were compared to a baseline configuration, which used a conventional aluminum piston in a steel liner. The parameters measured were the brake specific fuel consumption, ignition delay, frictional horsepower, volumetric efficiency, and durability characteristics of the two pistons. Testing was performed using a naturally aspirated Labeco Direct Injection single cylinder diesel engine. Two test cases were performed over a range of loads and speeds. The fixed test condition between the aluminum and carbon-carbon piston configurations was the brake mean effective pressure. The measured data was the fuel consumption rate, volumetric efficiency, load, speed, cylinder pressure, needle lift, and exhaust gas temperature. The cylinder pressure, and fuel consumption, exhaust gas temperature, and needle lift were recorded using a National Instruments DAQ board and a PC. All test cases used Diesel no. 2 for fuel.

  8. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Sayenko, S.Yu.; Dovbnya, A.N.; Shkuropatenko, V.A.; Tarasov, R.V.; Rybka, A.V.; Zakharchenko, A.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2015-07-15

    Highlights: • It incorporates all suggestions by the reviewers. • Explanation to each new term is provided and suitable references are given. • Sample identities have been streamlined by revising the text and the tables. • Some figures have been redrawn. - Abstract: Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete’s tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  9. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  10. The Durability and Performance of Short Fibers for a Newly Developed Alkali-Activated Binder

    Directory of Open Access Journals (Sweden)

    Henrik Funke

    2016-03-01

    Full Text Available This study reports the development of a fiber-reinforced alkali-activated binder (FRAAB with an emphasis on the performance and the durability of the fibers in the alkaline alkali-activated binder (AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali-activated with a mixture of sodium hydroxide (2–10 mol/L and an aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1 at ambient temperature. For the reinforcement of the matrix integral fibers of alkali-resistant glass (AR-glass, E-glass, basalt, and carbon with a fiber volume content of 0.5% were used. By the integration of these short fibers, the three-point bending tensile strength of the AAB increased strikingly from 4.6 MPa (no fibers up to 5.7 MPa (carbon after one day. As a result of the investigations of the alkali resistance, the AR-glass and the carbon fibers showed the highest durability of all fibers in the FRAAB-matrix. In contrast to that, the weight loss of E-glass and basalt fibers was significant under the alkaline condition. According to these results, only the AR-glass and the carbon fibers reveal sufficient durability in the alkaline AAB-matrix.

  11. d-Cycloserine enhances durability of social skills training in autism spectrum disorder.

    Science.gov (United States)

    Wink, Logan K; Minshawi, Noha F; Shaffer, Rebecca C; Plawecki, Martin H; Posey, David J; Horn, Paul S; Adams, Ryan; Pedapati, Ernest V; Schaefer, Tori L; McDougle, Christopher J; Swiezy, Naomi B; Erickson, Craig A

    2017-01-01

    d-Cycloserine (DCS) enhances extinction learning across species, but it has proven challenging to identify consistent benefit of DCS when added to therapeutic interventions. We conducted a placebo-controlled trial of DCS to potentiate social skills training in autism spectrum disorder (ASD) but found substantial improvement in both the DCS and placebo groups at the conclusion of active treatment. Here, we assess the impact of DCS 11 weeks following active treatment to evaluate the impact of DCS on treatment response durability. Study participants included 60 outpatient youth with ASD, ages 5-11 years, all with IQ above 70, and significantly impaired social functioning who completed a 10-week active treatment phase during which they received weekly single doses of 50 mg of DCS or placebo administered 30 min prior to group social skills training. Following the 10-week active treatment phase, blinded follow-up assessments occurred at week 11 and week 22. The primary outcome measure for our durability of treatment evaluation was the parent-rated social responsiveness scale (SRS) total raw score at week 22. Analysis of the SRS total raw score demonstrated significant decrease for the DCS group compared to the placebo group ( p  = 0.042) indicating greater maintenance of treatment effect in the DCS group. DCS was well tolerated, with irritability being the most frequently reported adverse effect in both groups. The findings of this study suggest that DCS may help youth with ASD to maintain skills gained during sort-term social skills training. Larger-scale studies with longer follow-up will be necessary to further understand the long-term impact of DCS paired with structured social skills training. ClinicalTrials.gov, NCT01086475.

  12. Hierarchical ZnO microspheres built by sheet-like network: Large-scale synthesis and structurally enhanced catalytic performances

    International Nuclear Information System (INIS)

    Zhu Guoxing; Liu Yuanjun; Ji Zhenyuan; Bai Song; Shen Xiaoping; Xu Zheng

    2012-01-01

    Highlights: ► Hierarchical ZnO microspheres were prepared through a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. ► The building blocks of microspheres, sheet-like ZnO networks, are porous mesocrystal terminated with (0 1 −1 0) crystal planes. ► The hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability. - Abstract: Large-scale novel hierarchical ZnO microspheres were fabricated by a facile precursor procedure in the absence of self-assembled templates, organic additives, or matrices. A field emission scanning electron microscopy (FESEM) image reveals that the ZnO microspheres with diameter of 5–18 μm are built by sheet-like ZnO networks with average thickness of 40 nm and length of several microns. High resolution transmission electron microscopy (HRTEM) image indicates that the building blocks, sheet-like ZnO networks, are porous mesocrystal terminated with {0 1 −1 0} crystal planes. A potential application of the ZnO microspheres as a catalyst in the synthesis of 5-substituted 1H-tetrazoles was investigated. It was found that the hierarchical ZnO microsphere catalyst exhibits structure-induced enhancement of catalytic performance and a strong durability.

  13. Sustainability and durability analysis of reinforced concrete structures

    Science.gov (United States)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  14. Multi-factor Effects on the Durability of Recycle Aggregate Concrete

    Science.gov (United States)

    Ma, Huan; Cui, Yu-Li; Zhu, Wen-Yu; Xie, Xian-Jie

    2016-05-01

    Recycled Aggregate Concrete (RAC) was prepared with different recycled aggregate replacement ratio, 0, 30%, 70% and 100% respectively. The performances of RAC were examined by the freeze-thaw cycle, carbonization and sulfate attack to assess the durability. Results show that test sequence has different effects on the durability of RAC; the durability is poorer when carbonation experiment was carried out firstly, and then other experiment was carried out again; the durability is better when recycled aggregate replacement ratio is 70%.

  15. Effect of Unprofessional Supervision on Durability of Buildings.

    Science.gov (United States)

    Yahaghi, Javad

    2018-02-01

    The durability of buildings which depends on the nature of the supervisory system used in their construction is an important feature of the construction industry. This article tries to draw the readers' attention to the effect of untrained and unprofessional building supervisors and their unethical performance on the durability of buildings.

  16. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses.

    Directory of Open Access Journals (Sweden)

    Michele Tameris

    Full Text Available Vaccination against tuberculosis (TB should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb. The current TB vaccine, Bacille Calmette-Guerin (BCG, protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone.We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011.Of 252 potential participants, 183 (72.6% consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA-CCR7+ central memory or CD45RA-CCR7- effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3-5 years after vaccination.MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not

  17. Final Report - High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Andrew [3M Company, Maplewood, MN (United States)

    2017-05-31

    The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.

  18. Some Durability Aspects of Ambient Cured Bottom Ash Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Saravanakumar R.

    2017-09-01

    Full Text Available The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC.

  19. Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts

    International Nuclear Information System (INIS)

    Hsieh, Bing-Jen; Tsai, Meng-Che; Pan, Chun-Jern; Su, Wei-Nien; Rick, John; Chou, Hung-Lung; Lee, Jyh-Fu; Hwang, Bing-Joe

    2017-01-01

    Highlights: • The coverage of TiO x on Pt can be modified by thermal and fluoric acid treatments. • Strong metal support interaction (SMSI) can be testified by electrochemical method. • For the first time, the SMSI effect is observed at 200 °C with supporting TEM images. • Increased activity and stability are attributed to stronger SMSI. • This tunable approach is valid for other oxide supported catalysts, e.g. Pt/Nb-TiO 2 . - Abstract: A facile approach to enhance catalytic activity and durability of TiO 2 -supported Pt nanocatalysts by tuning strong metal support interaction (SMSI) is investigated in this work. No need for a high temperature treatment, the strong metal-support interaction (SMSI) in TiO 2 -supported Pt can be induced at 200° C by H 2 reduction. Moreover, electrochemical methods (methanol oxidation reaction and cyclic voltammetry) are first reported ever to be effective characterization tools for the coverage state caused by SMSI. In addition, the SMSI has also been confirmed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and Transmission Electron Microscopy. It is found that the encapsulation of TiO 2-x species on the surface Pt clusters was induced and modified by thermal reduction and fluoric acid treatment. The catalytic activity and durability of the TiO 2 -supported Pt nanocatalysts are strongly dependent of the state of SMSI. The proposed SMSI-tunable approach to enhance the ORR activity and stability is also proved applicable to Pt/Ti 0.9 Nb 0.1 O 2 nanocatalysts. We believe that the reported approach paves the way for manipulating the activity and stability of other TiO 2 -supported metal nanocatalysts. Furthermore, the suggested electrochemical methods offer facile and effective ways to verify the presence of coverage state before combining with other physical analysis.

  20. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Science.gov (United States)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  1. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  2. The Electrochemical Performance and Durability of Carbon Supported Pt Catalyst in Contact with Aqueous and Polymeric Proton Conductors

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Skou, Eivind Morten

    2014-01-01

    Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g. sulfuric acid), and a solid polymer electrolyte (e.g. Nafion®). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon...

  3. Durability aspects of high-performance concretes for a waste repository. Appendix 3: Canada

    International Nuclear Information System (INIS)

    Philipose, K.E.

    2001-01-01

    The IRUS facility for the disposal of low level radioactive waste at the Chalk River Nuclear Laboratories in Ontario, Canada relies on the durability of concrete for the required 500 years of service life. A research programme based on laboratory testing to design a durable concrete and assess its long-term behaviour was initiated in 1988. This appendix discusses the methodology to assess the long-term behaviour of concrete, and some initial observations. Longevity predictions for concrete formulations based on diffusion testing are also presented

  4. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  5. Durable Glass For Thousands Of Years

    International Nuclear Information System (INIS)

    Jantzen, C.

    2009-01-01

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al 3+ rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  6. DURABLE GLASS FOR THOUSANDS OF YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  7. Mixed hydrocarbon/fluoropolymer membrane/ionomer MEAs for durability studies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [Los Alamos National Laboratory; Kim, Yu Seung [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wilson, Mahlon S [Los Alamos National Laboratory; Welch, Cynthia [Los Alamos National Laboratory; Fenton, James [FLORIDA SOLAR ENERGY CENTER

    2010-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane/ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiment (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time is reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components.

  8. Quick test for durability factor estimation.

    Science.gov (United States)

    2010-03-01

    The Missouri Department of Transportation (MoDOT) is considering the use of the AASHTO T 161 Durability Factor (DF) as an endresult : performance specification criterion for evaluation of paving concrete. However, the test method duration can exceed ...

  9. Enhanced Performance of Recycled Aggregate Concrete with Atomic Polymer Technology

    Science.gov (United States)

    2012-06-01

    The atomic polymer technology in form of mesoporous inorganic polymer (MIP) can effectively improve material durability and performance of concrete by dramatically increase inter/intragranular bond strength of concrete at nano-scale. The strategy of ...

  10. Measuring Happiness: From Fluctuating Happiness to Authentic–Durable Happiness

    Science.gov (United States)

    Dambrun, Michaël; Ricard, Matthieu; Després, Gérard; Drelon, Emilie; Gibelin, Eva; Gibelin, Marion; Loubeyre, Mélanie; Py, Delphine; Delpy, Aurore; Garibbo, Céline; Bray, Elise; Lac, Gérard; Michaux, Odile

    2012-01-01

    On the basis of the theoretical distinction between self-centeredness and selflessness (Dambrun and Ricard, 2011), the main goal of this research was to develop two new scales assessing distinct dimensions of happiness. By trying to maximize pleasures and to avoid displeasures, we propose that a self-centered functioning induces a fluctuating happiness in which phases of pleasure and displeasure alternate repeatedly (i.e., Fluctuating Happiness). In contrast, a selfless psychological functioning postulates the existence of a state of durable plenitude that is less dependent upon circumstances but rather is related to a person’s inner resources and abilities to deal with whatever comes his way in life (i.e., Authentic–Durable Happiness). Using various samples (n = 735), we developed a 10-item Scale measuring Subjective Fluctuating Happiness (SFHS) and a 13-item scale assessing Subjective Authentic–Durable Happiness (SA–DHS). Results indicated high internal consistencies, satisfactory test–retest validities, and adequate convergent and discriminant validities with various constructs including a biological marker of stress (salivary cortisol). Consistent with our theoretical framework, while self-enhancement values were related only to fluctuating happiness, self-transcendence values were related only to authentic–durable happiness. Support for the distinction between contentment and inner-peace, two related markers of authentic happiness, also was found. PMID:22347202

  11. Tensile strength and durability characteristics of high-performance fiber reinforced concrete

    International Nuclear Information System (INIS)

    Ramadoss, P.; Nagamani, K.

    2008-01-01

    This paper presents investigations towards developing a better understanding of the contribution of steel fibers to the tensile strength of high-performance fiber reinforced concrete (HPFRC). For 32 series of mixes, flexural and splitting tensile strengths were determined at 28 days. The variables investigated were fiber volume fraction (0%, 0.5%, 1% and 1.5% with an aspect of 80), silica fume replacement level (SF/CM=0.05 and 0.10) and matrix composition (w/cm ratios ranging from 0.25 t 0.40). The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Comparative studies were performed on the tensile behavior of SFRC measured by two different loading tests: flexural test and splitting test. Based on the test results, using the least square method, empirical expressions were developed to predict 28-day tensile strength of HPFRC in terms of fiber reinforcing index. Durability tests were carried out to examine the performance of the SFRC. Relationship between flexural and splitting tensile strengths has been developed using regression analysis. The experimental values of previous researchers were compared with the values predicted by the empirical equations and the absolute variation obtained was within 6% and 5% for flexural and splitting tensile strengths respectively. (author)

  12. Utilizing waste materials to enhance mechanical and durability characteristics of concrete incorporated with silica fume

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Construction and demolition wastes are increasing significantly due to augmented boom of modern construction. Although the partial cement replacement materials do promote the idea of sustainable construction, the use of construction and demolition waste can also be considered to be viable option to advance the sustainability in modern construction practices. This paper investigates the use of industrial waste materials namely marble dust and crushed bricks as replacement of natural fine aggregates along with the use of silica fume as a partial cement replacement on the mechanical properties and durability characteristics of concrete. Partial replacement levels of waste materials were 10 and 20 percent by volume while the partial replacement level of silica fume was kept to 20 percent at all concrete samples. The results reported in this paper show that the use of marble dust as a replacement material to the natural fine aggregates resulted in an increase in the mechanical properties of concrete. However, the use of crushed bricks did not substantially contribute in the development of strength. Water permeability of concrete incorporated with both silica fume and waste materials (marble dust and crushed bricks decreased significantly. The decrease in water permeability of concrete was attributed to the pozzolanic reaction of silica fume with calcium hydroxide of cement and the filler effect of the waste materials of marble dust and crushed bricks. The use of waste materials also enhance the freeze and thaw resistance of concrete. Authors strongly suggest that the pozzolanic reaction and the development of the microstructure of the concrete through the use of waste materials are largely responsible from the advances in the durability of concrete.

  13. Durability testing of the high-capacity GA-4/GA-9 trailer

    International Nuclear Information System (INIS)

    Zimmer, A.; Lyon, T.

    1995-01-01

    GA designed trailers to transport the GA-4 and GA-9 LWT from-reactor spent nuclear fuel shipping casks. GA designed and fabricated the GA-9 trailer to ANSI N14.30 requirements and is now performing a durability test at the AlliedSignal Automotive Proving Grounds. The trailer, simulated cask and tractor. The test program objective is to evaluate and improve, as necessary, the trailer's durability, reliability and performance

  14. Recyclable magnetite-silver heterodimer nanocomposites with durable antibacterial performance

    Directory of Open Access Journals (Sweden)

    Chunyan Yong

    2018-03-01

    Full Text Available There is a significant need for magnetite-silver nanocomposites that exhibit durable and recyclable antimicrobial activity. In this study, magnetic iron oxide nanoparticles (Fe3O4 NPs coated with ethylenediamine-modified chitosan/polyacrylic acid copolymeric layer (Fe3O4@ECS/PAA were fabricated. Subsequently, directly deposited silver (Ag NPs procedure was carried out to form the antibacterial heterodimers of Fe3O4@ECS/PAA-Ag NPs. The composition and morphology of the resultant nanostructures were confirmed by FT-IR, XRD, TEM and TGA. The overall length of the heterodimers was approximately 45 nm, in which the mean diameter of Fe3O4@ECS/PAA NPs reached up to 35 nm, and that of Ag NPs was around 15 nm. The mass fraction of silver NPs in the nanocomposites was about 63.1%. The obtained Fe3O4@ECS/PAA NPs exhibited good colloidal stability, and excellent response to additional magnetic field, making the NPs easy to recover after antibacterial tests. In particular, the Fe3O4@ECS/PAA-Ag NPs retained nearly 100% biocidal efficiency (106–107 CFU/mg nanoparticles for both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus throughout ten cycles without washing with any solvents or water, exhibiting potent and durable antibacterial activity.

  15. Development of a global, predictive and performance approach of reinforced concrete structure durability based on durability indicators. Overview and future prospects. Microstructure characterization of concretes, study of their hydric and transport properties, assessment of free deformations and prediction of buildings lifetime

    International Nuclear Information System (INIS)

    Baroghel-Bouny, Veronique

    2008-12-01

    This document synthesizes the objectives, the adopted approach, as well as the main scientific results and the products (test methods, for example), obtained during the researches carried out or supervised by the author within various frameworks, primarily over the period 1995-2005, at LCPC as Head of the Section 'Microstructure and Durability of Concretes'. This document presents in particular a performance-based, global and predictive approach of the durability of (reinforced) concrete structures, based on the concept of durability indicators, and combining lab tests and numerical simulations. This type of approach was developed for the protection against rebar corrosion of reinforced concrete and against the degradations generated by alkali-silica reaction, within the framework of the Working Group of the French Association of Civil Engineering (AFGC) 'Concrete design for a given service life of structures - Durability indicators'. The objectives of this new approach and the selected durability indicators - simple but particularly relevant parameters with respect to the implied physicochemical mechanisms in a given environment - as well as the bases of this selection, are first of all presented. Significant examples, resulting in particular from the Research Project 'Transfers in concretes and durability of structures', from the Research Project 'Durability of reinforced concrete and of its components: management and performance-based approach', as well as from studies carried out within the framework of the Topic 'Durability' of the French National Project BHP 2000, are then presented. These examples address the understanding of the mechanisms (moisture transport, carbonation, chloride penetration, freezing, non-restrained deformations,.) or the development of tools for the characterization of concrete microstructure and of parameters related to the durability with respect to reinforcement corrosion. Among the examples given, are reported the quantification of

  16. Thermodynamic model of natural, medieval and nuclear waste glass durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table

  17. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    Energy Technology Data Exchange (ETDEWEB)

    Tazi, M.; Erchiqui, F. [Engineering department, Université de Quebec en Abitibi-Témiscamingue (Canada); Kaddami, H. [Université Caddi Ayad Marrakech, Laboratoire ’LCO2MC’, B.P. 549, Marrakech 40000, Maroc (Morocco); Bouazara, M. [Mechanical department, Université de Québec à Chicoutimi Canada (Canada); Poaty, B. [Technology Center of industrial residuals, QC Canada (Canada)

    2015-05-22

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials.

  18. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    International Nuclear Information System (INIS)

    Tazi, M.; Erchiqui, F.; Kaddami, H.; Bouazara, M.; Poaty, B.

    2015-01-01

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials

  19. Durability of low-pH injection grout. A literature survey

    International Nuclear Information System (INIS)

    Holt, E.

    2008-01-01

    This publication provides an overview of the durability of injection grouts. It is intended for use during planning and construction at the ONKALO underground research facility. The review has been done with respect to the application conditions, materials and service life requirements expressed by Posiva Oy. The publication describes all types of cement-based material durability, with an emphasis on the key issues of shrinkage cracking, leaching and sulphate attack. The second part of the report provides information on how durability expectations have changed with the history of injection grout development. The report gives information specific to low-pH injection grouts containing high amounts of silica fume performance and how their durability is expected to differ from traditional normal cement-based mixtures. The final part of the report provides suggestions for future research needs for ensuring the service life of injection grouts. The key finding from this study is that the low-pH grout material is not expected to have worse durability performance compared to the standard injection grout. Combining high amounts of silica fume with the cement to produce low-pH grout should result in a material having lower permeability and thus greater resistance to leaching and chemical attack. Further laboratory testing is needed to quantitatively verify these findings and to provide inputs for future service life modeling. (orig.)

  20. Influence of Local Sand on the Physicomechanical Comportment and Durability of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Nadia Tebbal

    2016-01-01

    Full Text Available This research consists of incorporating the crushed sand (CS in the composition of a concrete and studies the effect of its gradual replacement by the sand dune (SD on sustainability of high performance concrete (HPC in aggressive environments. The experimental study shows that the parameters of workability of HPC are improved when the CS is partially replaced by the SD (1/3 additional quantities of water is needed to meet the workability properties. The mechanical strengths decrease by adding the SD to CS, but they reach acceptable values with CS in moderate dosages. The HPC performances are significantly better than the control concrete made up with the same aggregates. The specification tests of durability show that the water absorbing coefficients by capillarity increase after adding SD to the CS.

  1. Performance and Durability of Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    This presentation highlights advanced environmental barrier coating (EBC) and SiC-SiC Ceramic Matrix Composites (CMC) systems for next generation turbine engines. The emphasis will be placed on fundamental coating and CMC property evaluations; and the integrated system performance and degradation mechanisms in simulated laboratory turbine engine testing environments. Long term durability tests in laser rig simulated high heat flux the rmomechanical creep and fatigue loading conditions will also be presented. The results can help improve the future EBC-CMC system designs, validating the advanced EBC-CMC technologies for hot section turbine engine applications.

  2. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  3. Texture-enhanced Al-Cu electrodes on ultrathin Ti buffer layers for high-power durable 2.6 GHz SAW filters

    Science.gov (United States)

    Fu, Sulei; Wang, Weibiao; Xiao, Li; Lu, Zengtian; Li, Qi; Song, Cheng; Zeng, Fei; Pan, Feng

    2018-04-01

    Achieving high resistance to acoustomigration and electromigration in the electrodes used in high-power and high-frequency surface acoustic wave (SAW) filters is important to mobile communications development. In this study, the effects of the Ti buffer layers on the textures and acoustomigration and electromigration resistances of the Al-Cu electrodes were studied comprehensively. The results demonstrate that both power durability and electromigration lifetime are positively correlated with the Al-Cu electrode texture quality. Ultrathin (˜2 nm) Ti can lead to the strongest Al-Cu (111) textured electrodes, with a full width at half maximum of the rocking curve of 2.09°. This represents a remarkable enhancement of the power durability of high-frequency 2.6 GHz SAW filters from 29 dBm to 35 dBm. It also produces lifetime almost 7 times longer than those of electrodes without Ti buffer layers in electromigration tests. X-ray diffraction and transmission electron microscopy analyses revealed that these improved acoustomigration and electromigration resistances can be attributed primarily to the reductions in overall and large-angle grain boundaries in the highly Al-Cu (111) textured electrodes. Furthermore, the growth mechanism of highly Al-Cu texture films is discussed in terms of surface-interface energy balance.

  4. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  5. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  6. Performance and durability tests of smart icephobic coatings to reduce ice adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Zaid A.; Turnbull, Barbara [Faculty of Engineering, University of Nottingham (United Kingdom); Choy, Kwang-Leong; Pandis, Christos [Institute for Materials Discovery, University College London (UCL) (United Kingdom); Liu, Junpeng; Hou, Xianghui; Choi, Kwing-So [Faculty of Engineering, University of Nottingham (United Kingdom)

    2017-06-15

    Highlights: • Repeated ice adhesion and removal occurs on nanocoatings. • Icephobicity of nanocoatings reduces with each test cycle. • Adhesion strength linked to contact angle hysteresis in Gaussian fit. • Icephobicity not linked to hydrophobicity. - Abstract: The accretion of ice can cause damage in applications ranging from power lines and shipping decks, to wind turbines and rail infrastructure. In particular on aircraft, it can change aerodynamic characteristics, greatly affecting the flight safety. Commercial aircraft are therefore required to be equipped with de-icing devices, such as heating mats over the wings. The application of icephobic coatings near the leading edge of a wing can in theory reduce the high power requirements of heating mats, which melt ice that forms there. Such coatings are effective in preventing the accretion of runback ice, formed from airborne supercooled droplets, or the water that the heating mats generate as it is sheared back over the wing's upper surface. However, the durability and the practicality of applying them over a large wing surface have been prohibitive factors in deploying this technology so far. Here, we evaluated the ice adhesion strength of four non-conductive coatings and seven thermally conductive coatings by shearing ice samples from coated plates by spinning them in a centrifuge device. The durability of the coating performance was also assessed by repeating the tests, each time regrowing ice samples on the previously-used coatings. Contact angle parameters of each coating were tested for each test to determine influence on ice adhesion strength. The results indicate that contact angle hysteresis is a crucial parameter in determining icephobicity of a coating and hydrophobicity is not necessarily linked to icephobicity.

  7. Influence of ceria on the thermally durability of Pt/Rh automotive catalyst

    International Nuclear Information System (INIS)

    Muraki, H.; Zhang, G.

    1998-01-01

    Full text: The use of cerium oxide as an oxygen storage component in automotive three-way catalysts has been well established. More recently the requirement of the three-way catalysts against the increase of the severity in emission standards has focused attention on the development of more active, durable catalysts. The thermally durability of Pt/Rh catalyst can be achieved by the utilization of thermally stable ceria as well as optimization of washcoat composition and structure in order to control the extent of interaction between PGM and ceria. In the present paper, we describe the influence of newly developed washcoat components and PGM interaction with ceria on catalytic performance. First, to clear that the interaction between PGM and ceria contributes to catalytic performance, several kinds of catalysts which have the varied interactions between PGM and ceria were prepared using engineered washcoat techniques and evaluated in the model gas reactor. It was obvious that the difference in performance among them after aging derived from a diversity of interactions between Pt, Rh, and ceria. Second, for the purpose of determining the thermally durability of the developed Pt/Rh catalyst, the catalysts including the current catalyst were aged under three different temperatures and evaluated on engine dynamometer. Result of engine dynamometer evaluation revealed that significant improvement in the thermal durability can be achieved by optimizing the PGM-ceria interaction. In conclusion, we recognize that a thermal durability of a three-way catalyst can be improved by the stabilization of proper PGM-ceria interaction after aging as well as the utilization of thermally durable ceria material

  8. Comparative Study on the Performance of Blended and Nonblended Fly Ash Geopolymer Composites as Durable Construction Materials

    Directory of Open Access Journals (Sweden)

    Debabrata Dutta

    2018-01-01

    Full Text Available This article represents that the mechanical and microstructural properties and durability of fly ash-based geopolymers blended with silica fume and borax are better than those of conventional fly ash-based geopolymers. Fly ash itself contains the sources of silica and alumina which are required for geopolymerisation. But a sufficient amount of high-reactive silica is able to rapidly initiate geopolymerisation with activation. Pure potassium hydroxide pellets and sodium silicate solution were used for preparation of alkaline activator solution. Fly ash geopolymer paste exhibited better mechanical properties in the presence of silica fume with slight portion of borax. The effect of silica fume-blended geopolymer paste on temperature fluctuation (heating and cooling cycle at certain temperatures showed better performance than nonblended fly ash-based specimens. Durability property was evaluated by immersion of geopolymer specimens in 10% magnesium sulfate solution for a period of one year. The change in weight, strength, and microstructure was studied and compared. In the magnesium sulfate solution, a significant drop of strength to around 37.26% occurred after one year for nonblended fly ash-based specimens. It is evident that specimens prepared incorporating silica fume had the best performance in terms of their properties.

  9. Study on the durability of concrete using granulated blast furnace slag as fine aggregate

    Science.gov (United States)

    Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan

    2018-03-01

    In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.

  10. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    Science.gov (United States)

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  11. Durability and Mechanical Performance of PMMA/Stone Sludge Nanocomposites for Acrylic Solid Surface Applications

    Directory of Open Access Journals (Sweden)

    Samah EL-Bashir

    2017-11-01

    Full Text Available Acrylic solid surface sheets were prepared by mixing different kinds of stone sludge fillers (SSF in Poly (methyl methacrylate (PMMA nanocomposites. PMMA nanocomposite syrups were made using free radical polymerization of methylmethacrylate (MMA, then two kinds of nanofillers were added, namely, hydrophilic nanosilica and clay Halloysite nanotubules (HNTs. Acrylic solid surface sheets were manufactured by mixing the syrups with SSFs. The morphology of the produced sheets was studied using optical, and Scanning Electron Microscopy (SEM that revealed the uniform distribution of stone sludge in the polymeric matrix. The study of the physical properties showed promising mechanical performance and durability of PMMA/SSF nanocomposites for acrylic solid surface applications.

  12. The effect of curing conditions on the durability of high performance concrete

    Science.gov (United States)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  13. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  14. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.

    Science.gov (United States)

    Wang, Ding; Zhang, Zongbo; Li, Yongming; Xu, Caihong

    2014-07-09

    Highly transparent and durable superhydrophobic hybrid nanoporous coatings with different surface roughnesses were fabricated via a simple solidification-induced phase-separation method using a liquid polysiloxane (PSO) containing SiH and SiCH═CH2 groups as precursors and methyl-terminated poly(dimethylsiloxane)s (PDMS) as porogens. Owing to the existence of SiCHn units, the hybrid material is intrinsically hydrophobic without modification with expensive fluorinated reagents. The roughness of the coating can be easily controlled at the nanometer scale by changing the viscosity of PDMS to achieve both superhydrophobicity and high transparency. The influence of surface roughness on the transparency and hydrophobicity of the coatings was investigated. The enhancement from hydrophobic to superhydrophobic with increasing surface roughness can be explained by the transition from the Wenzel state to the Cassie state. The optimum performance coating has an average transmittance higher than 85% in the visible-light range (400-780 nm), a water contact angle of 155°, and a slide angle lower than 1°. The coatings also exhibit good thermal and mechanical stability and durable superhydrophobicity, which paves the way for real applications of highly transparent superhydrophobic coatings.

  15. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. One-step Synthesis of Pt Nanoparticles Highly Loaded on Graphene Aerogel as Durable Oxygen Reduction Electrocatalyst

    International Nuclear Information System (INIS)

    Huang, Qinghong; Tao, Feifei; Zou, Liangliang; Yuan, Ting; Zou, Zhiqing; Zhang, Haifeng; Zhang, Xiaogang; Yang, Hui

    2015-01-01

    Synthesis of highly active and durable Pt based catalysts with a high metal loading for fuel cells’ applications still remains a big challenge. The three-dimensional (3D) graphene aerogel (GA) not only possess the intrinsic property of graphene, but also have abundant pore architecture for anchoring metal nanoparticles, thus would be suitable as metal catalysts’ support. This work reports a simple and mild one-step co-reduction synthesis of Pt nanoparticles highly loaded on 3D GA and the use as durable oxygen reduction catalyst. Both X-ray diffraction and TEM measurements confirm that Pt nanoparticles (ca. 60 wt.% Pt loading) with an average diameter of ca. 3.2 nm are uniformly decorated on the homogeneously interconnected pores of 3D GA even after a heat treatment at 300 °C. Such a Pt/GA catalyst exhibits significantly enhanced electrocatalytic activity and improved durability for the oxygen reduction reaction. The enhancement in both catalytic activity and durability may result from the unique 3-D architecture structure of GA, the uniform dispersion of Pt nanoparticles, and the interaction between the Pt nanoparticles and GA. The GA-supported Pt can serve as a highly active catalyst for fuel cell applications

  17. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  18. Test validation of environmental barrier coating (EBC) durability and damage tolerance modeling approach

    Science.gov (United States)

    Abdul-Aziz, Ali; Najafi, Ali; Abdi, Frank; Bhatt, Ramakrishna T.; Grady, Joseph E.

    2014-03-01

    Protection of Ceramic Matrix Composites (CMCs) is rather an important element for the engine manufacturers and aerospace companies to help improve the durability of their hot engine components. The CMC's are typically porous materials which permits some desirable infiltration that lead to strength enhancements. However, they experience various durability issues such as degradation due to coating oxidation. These concerns are being addressed by introducing a high temperature protective system, Environmental Barrier Coating (EBC) that can operate at temperature applications1, 3 In this paper, linear elastic progressive failure analyses are performed to evaluate conditions that would cause crack initiation in the EBC. The analysis is to determine the overall failure sequence under tensile loading conditions on different layers of material including the EBC and CMC in an attempt to develop a life/failure model. A 3D finite element model of a dogbone specimen is constructed for the analyses. Damage initiation, propagation and final failure is captured using a progressive failure model considering tensile loading conditions at room temperature. It is expected that this study will establish a process for using a computational approach, validated at a specimen level, to predict reliably in the future component level performance without resorting to extensive testing.

  19. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  20. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Dimitrios C. Papageorgopoulos

    2012-12-01

    Full Text Available Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs. Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC and that reduce methanol crossover (DMFC will be discussed.

  1. Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles

    Science.gov (United States)

    Cheng, Yanqiu; Shang, Xiaoyu; Zhang, Youjia

    2017-07-01

    The freeze-thaw durability of recycled aggregate concrete has significance for the concrete buildings in the cold region. In this paper, the rapid freezing and thawing cycles experience on recycle aggregate concrete was conducted to study on the effects of recycle aggregate amount, water-binder ratio and fly ash on freeze-thaw durability of recycle aggregate concrete. The results indicates that recycle aggregate amount makes the significant influence on the freeze-thaw durability. With the increase of recycled aggregates amount, the freeze-thaw resistance for recycled aggregate concrete decreases. Recycled aggregate concrete with lower water cement ratio demonstrates better performance of freeze-thaw durability. It is advised that the amount of fly ash is less than 30% for admixture of recycled aggregates in the cold region.

  2. Design of Polymer-Coated Multi-Walled Carbon Nanotube/Carbon Black-based Fuel Cell Catalysts with High Durability and Performance Under Non-humidified Condition

    International Nuclear Information System (INIS)

    Yang, Zehui; Berber, Mohamed R.; Nakashima, Naotoshi

    2015-01-01

    To realize a high catalyst utilization, better fuel cell performance and durability as well as low production cost, an efficient design strategy of the catalyst layer that can improve both the oxygen accessibility and structure stability is highly required. Here, we describe the preparation of fuel cell electrocatalysts with an efficient fuel cell performance and better stability based on hybrids of multi-walled carbon nanotubes (MWNTs) and carbon black (CB) which were wrapped by a proton conducting polymer, poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole], before deposition of the platinum (Pt) metal catalyst. The catalyst mass activity after feeding only 10%-MWNTs to CB increased by 1.5 and 2 times than those of the MWNTs-based- and CB-based catalysts, respectively. The results also demonstrated that 90 wt% of the MWNTs in the catalyst layer allows it to be replaced by CB without any significant change in its durability and performance under 120 °C and non-humidified condition

  3. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Li, Qingfeng; Pan, Chao

    2011-01-01

    The effect of chloride as an air impurity and as a catalyst contaminant on the performance and durability of polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cell (HT-PEMFC) was studied. The ion chromatographic analysis reveals the existence of chloride contaminations....... The performance loss was recovered when switching from the HCl solution back to pure water in the air humidifier. Under an accelerated aging performance test conducted through potential cycling between 0.9 V and 1.2 V, the PBI-based fuel cell initially containing 0.5 NaCl mg cm−2 on the cathode catalyst layer...

  4. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  5. Durability Evaluation of Superconducting Magnets

    International Nuclear Information System (INIS)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-01-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application

  6. Durability Evaluation of Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  7. Développement durable de l'agriculture urbaine

    International Development Research Centre (IDRC) Digital Library (Canada)

    La gestion concertée et durable des filières maraîchères urbaines, Paule Moustier, Michel ..... avec des eaux usées, le plus souvent non traitées : dans quelle mesure cette agriculture peut-elle ...... Le contrôle des performances zootechniques

  8. Enhancement of Ultrahigh Performance Concrete Material Properties with Carbon Nanofiber

    Directory of Open Access Journals (Sweden)

    Libya Ahmed Sbia

    2014-01-01

    Full Text Available Ultrahigh performance concrete (UHPC realized distinctly high mechanical, impermeability, and durability characteristics by reducing the size and content of capillary pore, refining the microstructure of cement hydrates, and effectively using fiber reinforcement. The dense and fine microstructure of UHPC favor its potential to effectively disperse and interact with nanomaterials, which could complement the reinforcing action of fibers in UHPC. An optimization experimental program was implemented in order to identify the optimum combination of steel fiber and relatively low-cost carbon nanofiber in UHPC. The optimum volume fractions of steel fiber and carbon nanofiber identified for balanced improvement of flexural strength, ductility, energy sorption capacity, impact, and abrasion resistance of UHPC were 1.1% and 0.04%, respectively. Desired complementary/synergistic actions of nanofibers and steel fibers in UHPC were detected, which were attributed to their reinforcing effects at different scales, and the potential benefits of nanofibers to interfacial bonding and pull-out behavior of fibers in UHPC. Modification techniques which enhanced the hydrophilicity and bonding potential of nanofibers to cement hydrates benefited their reinforcement efficiency in UHPC.

  9. Integrated durability process in product development

    International Nuclear Information System (INIS)

    Pompetzki, M.; Saadetian, H.

    2002-01-01

    This presentation describes the integrated durability process in product development. Each of the major components of the integrated process are described along with a number of examples of how integrated durability assessment has been used in the ground vehicle industry. The durability process starts with the acquisition of loading information, either physically through loads measurement or virtually through multibody dynamics. The loading information is then processed and characterized for further analysis. Durability assessment was historically test based and completed through field or laboratory evaluation. Today, it is common that both the test and CAE environments are used together in durability assessment. Test based durability assessment is used for final design sign-off but is also critically important for correlating CAE models, in order to investigate design alternatives. There is also a major initiative today to integrate the individual components into a process, by linking applications and providing a framework to communicate information as well as manage all the data involved in the entire process. Although a single process is presented, the details of the process can vary significantly for different products and applications. Recent applications that highlight different parts of the durability process are given. As well as an example of how integration of software tools between different disciplines (MBD, FE and fatigue) not only simplifies the process, but also significantly improves it. (author)

  10. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance

    Science.gov (United States)

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-07-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a

  11. Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics.

    Science.gov (United States)

    Schellenberger, S; Gillgard, P; Stare, A; Hanning, A; Levenstam, O; Roos, S; Cousins, I T

    2018-02-01

    Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with "long" perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids. Copyright © 2017. Published by Elsevier Ltd.

  12. The identification and treatment of poor durability Karoo dolerite base course aggregate – evidence from case studies

    CSIR Research Space (South Africa)

    Leyland, RC

    2016-03-01

    Full Text Available that the poor performance of the case study materials was likely due to the poor durability of the materials, manifesting as a reduction in resistance to abrasion and attrition. The identification of the observed poor durability could not have been performed...

  13. Compression-after-Impact and Bend Fatigue Results of Glass/Epoxy Composites with Compliant Interlayer and Needling Interlaminar Enhancements

    Science.gov (United States)

    2017-05-22

    performance and durability observed in thick- section composites,14,15 the testing methodology presented for the 2-D materials was also extended to 3...Weapons and Materials Research Directorate, ARL Bradley D Lawrence Bennett Aerospace, Inc., Cary, NC Approved for public release...interlaminar enhancements decreased the strength and stiffness of the material but improved the durability. Needling had a larger improvement in compression

  14. Catalytic performance and durability of Ni/AC for HI decomposition in sulfur–iodine thermochemical cycle for hydrogen production

    International Nuclear Information System (INIS)

    Fu, Guangshi; He, Yong; Zhang, Yanwei; Zhu, Yanqun; Wang, Zhihua; Cen, Kefa

    2016-01-01

    Highlights: • The relation between Ni content and Ni particle dispersion were disclosed. • The effect of Ni content on the catalytic activity of Ni/AC catalyst was revealed. • The optimal content of Ni for Ni/AC catalysts in HI decomposition was found. - Abstract: This work reports the Ni content effect on the Ni/AC catalytic performance in the HI decomposition reaction of the sulfur–iodine (SI) thermochemical cycle for hydrogen production and the Ni/AC catalyst durability in a long-term test. Accordingly, five catalysts with the Ni content ranging from 5% to 15% were prepared by an incipient-wetness impregnation method. The activity of all catalysts was examined under the temperature range of 573–773 K. The catalytic performance evaluation suggests that Ni content plays a significant role in the Ni dispersion, Ni particle size, and eventually the catalytic activity in HI decomposition. 12% is the optimal Ni content for Ni/AC catalysts in HI decomposition which is balanced between poor dispersion of Ni particles and increasing active center. The results of 24 h durability test, which incorporated with BET and TEM investigations of the 12%Ni/AC catalyst before and after the reaction, indicate that establishing a better Ni particle dispersion pattern and improving the stability of Ni particles on the support should be considered in the future.

  15. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments.

    Science.gov (United States)

    Calado, Carlos; Camões, Aires; Monteiro, Eliana; Helene, Paulo; Barkokébas, Béda

    2015-03-27

    Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  16. Polylactic Acid-Based Polymer Blends for Durable Applications

    Science.gov (United States)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  17. The Effect of Thermooxidative Aging on the Durability of Glass Fiber-Reinforced Epoxy

    Directory of Open Access Journals (Sweden)

    Amin Khajeh

    2015-01-01

    Full Text Available Thin-skinned organic matrix composites within aeronautical structures are subjected to thermooxidative aging during their service life, leading to reductions in their durability. In this paper, a durability evaluation of fiberglass epoxy prepreg is performed on the original composite thickness before and after 800 h isothermal aging at 82°C. The characterization of both aged and unaged composites comprised tensile tests, DMA, FTIR, weight loss measurements, SEM, and DSC. The tensile strength and modulus of the composites increased after being exposed to pronounced aging conditions, whereas a decrease was observed in the toughness. DMA results revealed that the glass transition temperature and rubbery state modulus increased as a result of the thermooxidative aging. FTIR spectroscopy demonstrated the formation of carbonyl compounds due to oxidation of the chemical structure of the resin. SEM observations indicated the existence of minor superficial cracking and poor fiber-matrix adhesion after aging. In addition, a minor mass change was observed from mass loss monitoring methods. The overall findings suggest that postcuring and physical aging enhanced the brittleness of the resin, leading to a significant decline in the useful structural life of the thin-skinned composite.

  18. Hygrothermal Behavior, Building Pathology and Durability

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  19. Monetary Policy with Sectoral Linkages and Durable Goods

    DEFF Research Database (Denmark)

    Petrella, Ivan; Rossi, Raffaele; Santoro, Emiliano

    We study the normative implications of a New Keynesian model featuring intersectoral trade of intermediate goods between two sectors that produce durables and non-durables. The interplay between durability and sectoral production linkages fundamentally alters the intersectoral stabilization trade....... Aggregating durable and non-durable inflation depending on the relative degrees of sectoral price stickiness may induce a severe bias. Input materials attenuate the response of sectoral inflations to movements in the real marginal costs, so that the effective slopes of the sectoral supply schedules...

  20. Performance Evaluation and Durability Studies of Adhesive Bonds

    Science.gov (United States)

    Ranade, Shantanu Rajendra

    In this thesis, four test approaches were developed to characterize the adhesion performance and durability of adhesive bonds for specific applications in areas spanning from structural adhesive joints to popular confectionaries such as chewing gum. In the first chapter, a double cantilever beam (DCB) specimen geometry is proposed for combinatorial fracture studies of structural adhesive bonds. This specimen geometry enabled the characterization of fracture energy vs. bondline thickness trends through fewer tests than those required during a conventional "one at a time" characterization approach, potentially offering a significant reduction in characterization times. The second chapter investigates the adhesive fracture resistance and crack path selection in adhesive joints containing patterns of discreet localized weak interfaces created using physical vapor deposition of copper. In a DCB specimen tested under mode-I conditions, fracture energy within the patterned regions scaled according to a simple rule of mixture, while reverse R-curve and R-curve type trends were observed in the regions surrounding weak interface patterns. Under mixed mode conditions such that bonding surface with patterns is subjected to axial tension, fracture energy did not show R-curve type trends while it was observed that a crack could be made to avoid exceptionally weak interfaces when loaded such that bonding surface with defects is subjected to axial compression. In the third chapter, an adaptation of the probe tack test is proposed to characterize the adhesion behavior of gum cuds. This test method allowed the introduction of substrates with well-defined surface energies and topologies to study their effects on gum cud adhesion. This approach and reported insights could potentially be useful in developing chewing gum formulations that facilitate easy removal of improperly discarded gum cuds from adhering surfaces. In the fourth chapter we highlight a procedure to obtain insights

  1. Informing the improvement of forest products durability using small angle neutron scattering

    Science.gov (United States)

    Nayomi Plaza Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  2. Utilization of Durability Criterion to Develop Automotive Components

    DEFF Research Database (Denmark)

    Ricardo, Luiz Carlos Hernandes

    2010-01-01

    Today the automotive companies must reduce the time to development of new products with improvement in performance, durability and low cost reductions where possible. To achieve this goal the carmakers need to improve the design criterion of car systems like body, chassis and suspension component...

  3. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  4. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  5. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  6. Durability evaluation method on rebar corrosion of reinforced concrete

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori

    2013-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration of rebar corrosion caused by neutralization and penetration of salinity by referring to the recent papers. (author)

  7. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments

    Directory of Open Access Journals (Sweden)

    Carlos Calado

    2015-03-01

    Full Text Available Self-compacting concrete (SCC demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC. This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  8. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  9. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    The aim of the present project is to systematically quantify and improve the durability of the PEM FC including the following three PEM FC variants: LT PEM FC, DMFC, and HT PEM FC. Different factors influencing dissolution properties of noble metal catalyst platinum and platinum-ruthenium alloy has been studied. The dissolution was found to increase by increasing the CV cycle upper potential limit, number of potential cycles, solution acidity, oxygen partial pressure, involvement of chloride, and temperature. Ruthenium was found to deteriorate ten (10) times faster than platinum catalyst; and carbon supported catalyst (Pt: 20%, Ru: up to 100%) deteriorate ten (10) times faster than non-supported catalyst (Pt: 2%, Ru: 30%) at the same condition. Loss of sulphonic acid groups and fluoride from perfluorinated sulfonic acid membrane was confirmed by different techniques, which locally leads to loss of acidity, and consequently enhances dissolution of noble metal catalyst. Degradation of Nafion ionomer in the electrode was enhanced by noble metal catalyst and the thermal decomposition properties has synergetic effect with carbon degradation. Hydrophobicity of GDL and electrode on GDL were found to degrade e.g. radical attack, oxidation, and physical wear out. The very top micro surface structure turned out to be responsible for wetting property after chemical ageing. Optimal catalyst and ionomer ratio is also reflected in contact angle value, which can be understood in terms of catalyst/carbon - ionomer affinity and layered structure. Long-term tested and 'virgin' LT PEM MEAs have been characterised with respect to SEM, TEM, EDS, and XRD. Both failed and well-functioning MEAs have been characterised. The Post Mortem analysis has shown and quantified degradation mechanisms like catalyst growth and carbon corrosion. Furthermore, the effect of fuel starvation was shown by pronounced Ru-catalyst band within the membrane. The catalyst coarsening observed after

  10. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF

  11. The influence of adherent surface preparation on bond durability

    International Nuclear Information System (INIS)

    Rider, A.N.; Arnott, D.R.; Olsson-Jacques, C.L.

    1999-01-01

    Full text: One of the major factors limiting the use of adhesive bonding is the problem associated with the production of adhesive joints that can maintain their initial strength over long periods of time in hostile environments. It is well known that the adherent surface preparation method is critical to the formation of a durable adhesive bond. Work presented in this paper focuses on the critical aspects of the surface preparation of aluminium employed for the manufacture of aluminium-epoxy joints. The surface preparation procedure examined is currently employed by the RAAF for repairs requiring metal to adhesive bonding. The influence of each step in the surface preparation on the ultimate bond durability performance of the adhesive joint is examined by a combination of methods. Double cantilever wedge style adhesive joints are loaded in mode 1 opening and then exposed to a humid environment. X-ray photoelectron spectroscopy (XPS) and contact angle measurements of the aluminium adherent before bonding provides information about the adherent surface chemistry. XPS is also employed to analyse the surfaces of the bonded specimens post failure to establish the locus of fracture. This approach provides important information regarding the properties influencing bond durability as well as the bond failure mechanisms. A two step bond degradation model was developed to qualitatively describe the observed bond durability performance and fracture data. The first step involves controlled moisture ingress by stress induced microporosity of the adhesive in the interfacial region. The second step determines the locus of fracture through the relative dominance of one of three competitive processes, viz: oxide degradation, polymer desorption, or polymer degradation. A key element of the model is the control exercised over the interfacial microporosity by the combined interaction of stress and the relative densities of strong and weak linkages at the metal to adhesive interface

  12. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential at 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.

  13. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...... structure is retained even after a harsh durability test, which is performed by repeating cyclic voltammetry in the range of 0.05–1.4 V for 1800 cycles. A full cell is fabricated for direct formic acid fuel cell using the Pt1/ATO as an anode catalyst, and an order of magnitude higher cell power is obtained...

  14. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ...) Discussion of the manufacturer's in-use verification procedures including testing performed, vehicle... performed should also be documented in the manufacturer's submission. The in-use verification program shall...), the Alternate Service Accumulation Durability Program described in § 86.094-13(e) or the Standard Self...

  15. Tuning the Composition of Electrodeposited Bimetallic Tin-Lead Catalysts for Enhanced Activity and Durability in Carbon Dioxide Electroreduction to Formate.

    Science.gov (United States)

    Moore, Colin E; Gyenge, Előd L

    2017-09-11

    Bimetallic Sn-Pb catalysts with five different Sn/Pb atomic ratios were electrodeposited on Teflonated carbon paper and non-Teflonated carbon cloth using both fluoroborate- and oxide-containing deposition media to produce catalysts for the electrochemical reduction of CO 2 (ERC) to formate (HCOO - ). The interaction between catalyst composition, morphology, substrate, and deposition media was investigated by using cyclic voltammetry and constant potential electrolysis at -2.0 V versus Ag/AgCl for 2 h in 0.5 m KHCO 3 . The catalysts were analyzed before and after electrolysis by using SEM and XRD to determine the mechanisms of Faradaic efficiency loss and degradation. Catalysts that are mainly Sn with 15-35 at % Pb generated Faradaic efficiencies up to 95 % with a stable performance. However, pure Sn catalysts showed high initial stage formate production rates but experienced an extensive (up to 30 %) decrease of the Faradaic efficiency. The XRD results demonstrated the presence of polycrystalline SnO 2 after electrolysis using Sn-Pb catalysts with 35 at % Pb and its absence in the case of pure Sn. It is proposed that the presence of Pb (15-35 at %) in mainly Sn catalysts stabilized SnO 2 , which is responsible for the enhanced Faradaic efficiency and catalytic durability in the ERC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching

    International Nuclear Information System (INIS)

    Sivaraman, Sankar K; Santhanam, Venugopal

    2012-01-01

    Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 × 10 5 ) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface. (paper)

  17. Biological durability of wood in relation to end-use - Part 1. Towards a European standard for laboratory testing of the biological durability of wood

    NARCIS (Netherlands)

    Acker, Van J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Bayon, Le I.; Kleist, G.; Peek, R.D.

    2003-01-01

    The determination of biological durability of wood is an issue requiring sufficient reliability regarding end-use related prediction of performance. Five test institutes joined efforts to check standard test methods and to improve methodology and data interpretation for assessment of natural

  18. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    Science.gov (United States)

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-03-30

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  19. Hydrogen Oxidation-Selective Electrocatalysis by Fine Tuning of Pt Ensemble Sites to Enhance the Durability of Automotive Fuel Cells.

    Science.gov (United States)

    Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae

    2017-02-08

    A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. NiCrNx interlayer thickness dependence of spectral performance and environmental durability of protected-silver mirrors

    Science.gov (United States)

    Xu, Xu; Li, Bincheng; He, Wenyan; Wang, Changjun; Wei, Ming

    2018-04-01

    Gemini-style protected-silver mirror (Sub / NiCrNx / Ag / NiCrNx / SiNx / Air) is a suitable choice for optical instruments requiring both long-term environmental durability and high broadband reflectance. Three Gemini-style protected-silver mirrors with NiCrNx interlayer thicknesses between 0.1 and 0.6 nm were prepared by magnetron sputtering, and the dependences of spectral properties and environmental durability of these protected-silver mirrors on the thickness of NiCrNx interlayer between the silver layer and SiNx layer were investigated in-depth. The reflectance, transmittance and total scattering loss measurements, optical microscope, and scanning electron microscope imaging were employed to characterize the spectral properties and surface morphology, and accelerated environmental tests, including humidity test and salt fog test, were applied to investigate the environmental durability. The experimental results showed that both optical and corrosion-resistant properties of protected-silver mirrors were NiCrNx interlayer thickness dependent, and an optimum NiCrNx interlayer thickness should be ˜0.3 nm for Gemini-style protected-silver mirrors to have reasonably both high reflectance in a broadband spectral range from visible to far infrared and good corrosion resistance for long-lifetime applications in harsh environments.

  1. Durable superhydrophobic carbon soot coatings for sensor applications

    Science.gov (United States)

    Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.

    2016-01-01

    A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.

  2. Application of the cementitious grouts on stability and durability of semi flexible bituminous mixtures

    Science.gov (United States)

    Karami, Muhammad

    2017-11-01

    This paper describes the results of laboratory test for a high durability semi flexible bituminous mixtures (SFBM). The SFBM consists of an open asphalt structure where a high strength mortar is penetrated into the air voids of the bituminous mixtures. The SFBM combines the cement concrete's strength and the asphalt material flexibility. The objective of this study is to involve in the determination of stability and durability of SFBM by located the position of the specimen on an exposed area for 7, 90, 180 and 240 days. The performance of the SFBM was assessed using Marshall and wheel tracking apparatus. Total 18 specimens were prepared and examined for both of test. The Marshall specimens were cylindrical with dimension of 10.16 cm in diameter and 6.35 cm in high. For wheel tracking test, the specimens consisted of slabs with dimension of 30 cm in length, 30 cm in width and 5 cm in height. The results indicated that the first durability index and second durability index increased significantly. For Marshall test, the first and second durability index increased about 0.9% per day and 52.3%, respectively. However, for wheel tracking test, the first and second durability index increased about 1.9% per day and 119%, respectively.

  3. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  4. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2007-01-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program

  5. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  6. Production and remediation of low sludge simulated Purex waste glasses, 2: Effects of sludge oxide additions on glass durability

    International Nuclear Information System (INIS)

    Ramsey, W.G.

    1993-01-01

    Glass produced during the Purex 4 campaigns of the Integrated DWPF Melter System (IDMS) and the 774 Research Melter contained a lower fraction of sludge components than targeted by the Product Composition Control System (PCCS). Purex 4 glass was more durable than the benchmark (EA) glass, but was less durable than most other simulated SRS high-level waste glasses. Further, the measured durability of Purex 4 glass was not as well correlated with the durability predicted from the DWPF process control algorithm, probably because the algorithm was developed to predict the durability of SRS high-level waste glasses with higher sludge content than Purex 4. A melter run, designated Purex 4 Remediation, was performed using the 774 Research Melter to determine if the initial PCCS target composition determined for Purex 4 would produce acceptable glass whose durability could be accurately modeled by the DWPF glass durability algorithm. Reagent grade oxides and carbonates were added to Purex 4 melter feed stock to simulate a higher sludge loading. Each canister of glass produced was sampled and the glass durability was determined by the Product Consistency Test method. This document details the durability data and subsequent analysis

  7. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  8. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-01-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  9. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  10. Effect of nanoclay on durability and mechanical properties of flax fabric reinforced geopolymer composites

    Directory of Open Access Journals (Sweden)

    H. Assaedi

    2017-03-01

    Full Text Available The main concern of using natural fibres as reinforcement in geopolymer composites is the durability of the fibres. Geopolymers are alkaline in nature because of the alkaline solution that is required for activating the geopolymer reaction. The alkalinity of the matrix, however, is the key reason of the degradation of natural fibres. The purpose of this study is to determine the effect of nanoclay (NC loading on the mechanical properties and durability of flax fabric (FF reinforced geopolymer composites. The durability of composites after 4 and 32 weeks at ambient temperature is presented. The microstructure of geopolymer matrices was investigated using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The results showed that the incorporation of NC has a positive impact on the physical properties, mechanical performance, and durability of FF reinforced geopolymer composites. The presence of NC has a positive impact through accelerating the geopolymerization, reducing the alkalinity of the system and increasing the geopolymer gel.

  11. Reliability and durability in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-10-01

    The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)

  12. Durability as integral characteristic of concrete

    Science.gov (United States)

    Suleymanova, L. A.; Pogorelova, I. A.; Suleymanov, K. A.; Kirilenko, S. V.; Marushko, M. V.

    2018-03-01

    The carried-out research provides insight into the internal bonds energy in material as the basis of its durability, deformability, integrity and resistance to different factors (combined effects of external loadings and (or) environment), into the limits of technical possibilities, durability and physical reality of the process of concrete deterioration, which allows designing reliable and cost-effective ferroconcrete constructions for different purposes.

  13. Durability of filament-wound composite flywheel rotors

    Science.gov (United States)

    Koyanagi, Jun

    2012-02-01

    This paper predicts the durability of two types of flywheels, one assumes to fail in the radial direction and the other assumes to fail in the circumferential direction. The flywheel failing in the radial direction is a conventional filament-wound composite flywheel and the one failing in the circumferential direction is a tailor-made type. The durability of the former is predicted by Micromechanics of Failure (MMF) (Ha et al. in J. Compos. Mater. 42:1873-1875, 2008), employing time-dependent matrix strength, and that of the latter is predicted by Simultaneous Fiber Failure (SFF) (Koyanagi et al. in J. Compos. Mater. 43:1901-1914, 2009), employing identical time-dependent matrix strength. The predicted durability of the latter is much greater than that of the former, depending on the interface strength. This study suggests that a relatively weak interface is necessary for high-durability composite flywheel fabrication.

  14. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Science.gov (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  15. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    This study examines the initial performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O. Such a cell, when powered by renewable/nuclear energy, could be used to recycle CO2 into sustainable hydrocarbon fuels. Polarization curves and electrochemical impedance...... systematically varied test conditions enabled clear visual identification of five electrode processes that contribute to the cell resistance. The processes could be assigned to each electrode and to gas concentration effects by examining their dependence on gas composition changes and temperature. This study...

  16. Increase of cyclic durability of pressure vessels

    International Nuclear Information System (INIS)

    Vorona, V.A.; Zvezdin, Yu.I.

    1980-01-01

    The durability of multilayer pressure vessels under cyclic loading is compared with single-layer vessels. The relative conditional durability is calculated taking into account the assumption on the consequent destruction of layers and viewing a vessel wall as an indefinite plate. It is established that the durability is mainly determined by the number of layers and to a lesser degree depends on the relative size of the defect for the given layer thickness. The advantage of the multilayer vessels is the possibility of selecting layer materials so that to exclude the effect of agressive corrosion media on the strength [ru

  17. Investigation of the Durability of a Diaphragm for a Total Artificial Heart.

    Science.gov (United States)

    Gräf, Felix; Rossbroich, Ralf; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-10-01

    One of the most critical components regarding the durability of the ReinHeart total artificial heart (TAH) is its biocompatible diaphragm, which separates the drive unit from the ventricles. Hence, a durability tester was designed to investigate its required 5-year lifetime. The aim of this study was to prove the validity of accelerated testing of the polyurethane diaphragm. The durability tester allows simultaneous testing of 12 diaphragms and mimics physiological conditions. To accelerate the time of testing, it operates with an increased speed at a frequency of 8 Hz. To prove the correctness of this acceleration, a servo-hydraulic testing machine was used to study the effect of different frequencies and their corresponding loads. Thereby the viscoelastic behavior of the polyurethane was investigated. Additionally, high-speed video measurements were performed. The force against frequency and the high-speed video measurements showed constant behavior. In the range of 1-10 Hz, the maximum resulting forces varied by 3%, and the diaphragm movement was identical. Frequencies below 10 Hz allow a valid statement of the diaphragm's mechanical durability. Viscoelasticity of the polyurethane in the considered frequency-range is negligible. The accelerated durability test is applicable to polyurethane diaphragms, and the results are applicable to TAH use. The reliability of the diaphragm for a lifetime of 5 years was found to be 80% with a confidence of 62%. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    International Nuclear Information System (INIS)

    Meng, X F; Yoshida, K; Gu, N

    2010-01-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R a and R y values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  19. Enhancing LAN performance

    CERN Document Server

    Held, Gilbert

    2004-01-01

    Enhancing LAN Performance, Fourth Edition explains how to connect geographically separated LANs with appropriate bandwidth, the issues to consider when weighing the use of multiport or dualport devices, how to estimate traffic for new networks, the effects of configuration changes on the performance of Ethernet and Token Ring networks, the design of switch-based networks that prevent traffic bottlenecks, and other critical topics. It provides the tools to address these issues in relation to specific network requirements. This volume develops mathematical models of various LAN performance issue

  20. The Effect of Airborne Contaminants on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    St-Pierre, Jean [Univ. of Hawaii, Manoa, HI (United States); Pasaogullari, Ugur [Univ. of Connecticut, Storrs, CT (United States); Cheng, Tommy [Ballard Power Systems, Burnaby, BC (Canada); Collins, William [WPCSOL, East Windsor, CT (United States)

    2017-09-18

    The impact of contaminants on fuel cell performance was examined to document air filter specifications (prevention) and devise recovery procedures (maintenance) that are effective at the system level. Eight previously undocumented airborne contaminants were selected for detailed studies and characterization data was used to identify operating conditions that intensifying contamination effects. The use of many and complementary electrochemical, chemical and physical characterization methods and the derivation of several mathematical models supported the formulation of contamination mechanisms and the development of recovery procedures. The complexity of these contamination mechanisms suggests a shift to prevention and generic maintenance measures. Only two of the selected contaminants led to cell voltage losses after injection was interrupted. Proposed recovery procedures for calcium ions, a component of road de-icers, dessicants, fertilizers and soil conditioners, were either ineffective or partly effective, whereas for bromomethane, a fumigant, the cell voltage was recovered to its initial value before contamination by manipulating and sequencing operating conditions. However, implementation for a fuel cell stack and system remains to be demonstrated. Contamination mechanisms also led to the identification of membrane durability stressors. All 8 selected contaminants promote the formation of hydrogen peroxide, a known agent that can produce radicals that attack the ionomer and membrane molecular structure whereas the dehydrating effect of calcium ions on the ionomer and membrane increases their brittleness and favors the creation of pinholes under mechanical stresses. Data related to acetylene, acetonitrile and calcium ions are emphasized in the report.

  1. Durability of capital goods: taxes and market structure

    Energy Technology Data Exchange (ETDEWEB)

    Raviv, A [Carnegie-Mellon Univ., Pittsburgh; Zemel, E

    1977-04-01

    This paper examines the durability of capital goods produced under different market structures when tax considerations are included. Since investment tax credit and depreciation allowances are realized by the owner of the durable good, the durability of products produced by an industry which sells its output differs from that of an industry which rents. For each of these two commercial forms, both monopolistic and competitive market structure are considered. Potential gains from different forms of regulation are discussed.

  2. Durability of composites in a marine environment

    CERN Document Server

    Rajapakse, Yapa

    2014-01-01

    Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: •       Modelling water diffusion •       Damage induced by water •       Accelerated testing •       Including durability in design •       In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to t...

  3. A Novel Conductive Poly(3,4-ethylenedioxythiophene-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles

    Directory of Open Access Journals (Sweden)

    Fangcheng Xu

    2016-03-01

    Full Text Available In this study, we have investigated the contribution of bovine serum albumin (BSA to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene (PEDOT film on a platinum (Pt electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP to construct a functional HRP/AuNPs/PEDOT(BSA/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD+, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility.

  4. Pyramiding for Resistance Durability: Theory and Practice.

    Science.gov (United States)

    Mundt, Chris

    2018-04-12

    Durable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impact durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual. Interestingly, published examples of the successful use of pyramids in the traditional sense are rare. In contrast, most published descriptions of durable pyramids in practice are for cereal rusts, and tend to indicate an association between durability and cultivars combining major R-genes with incompletely expressed, adult plant resistance genes. Pyramids have been investigated experimentally for a diversity of pathogens, and many reduce disease levels below that of the single best gene. Resistance gene combinations have been identified through phenotypic reactions, molecular markers, and challenge against effector genes. As resistance genes do not express equally in all genetic backgrounds, however, a combination of genetic information and phenotypic analyses provide the ideal scenario for testing of putative pyramids. Not all resistance genes contribute equally to pyramids, and approaches have been suggested to identify the best genes and combinations of genes for inclusion. Combining multiple resistance genes into a single plant genotype quickly is a challenge that is being addressed through alternative breeding approaches, as well as through genomics tools such as resistance gene cassettes and gene editing. Experimental and modeling tests of pyramid durability are in their infancy, but have promise to help direct future studies of pyramids. Several areas for further work on resistance gene pyramids are suggested.

  5. Interfacial durability and electrical properties of CNT or ITO/PVDF nanocomposites for self-sensor and micro actuator applications

    International Nuclear Information System (INIS)

    Park, Joung-Man; Gu, Ga-Young; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, K. Lawrence

    2013-01-01

    Interfacial durability and electrical properties of CNT (carbon nanotube) or ITO (indium tin oxide) coated PVDF (poly(vinylidene fluoride)) nanocomposites were investigated for self-sensor and micro-actuator applications. The electrical resistivity of nanocomposites and the durability of interfacial adhesion were measured using a four points method during cyclic fatigue loading. Although the CNT/PVDF nanocomposites exhibited lower electrical resistivity due to the inherently low resistivity of CNT, both composite types showed good self-sensing performance. The durability of the adhesion at the interface was also good for both CNT and ITO/PVDF nanocomposites. Static contact angle, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were determined as checks to verify the durability of the interfacial adhesion. The actuation performance of CNT or ITO coated PVDF specimens was determined through measurements of the induced displacement using a laser displacement sensor, while both the frequency and voltage were changed. The displacement of these actuated nanocomposites increased with increasing voltage and decreased with increasing frequency. CNT/PVDF nanocomposites exhibited better performance as self-sensors and micro-actuators than did ITO/PVDF nanocomposites.

  6. The influence of humidity on strengths and durability of light guides fibers

    International Nuclear Information System (INIS)

    Karimov, S.N.; Kuksenko, V.S.; Sultonov, U.; Abdumanonov, A.; Shamsidinov, M.I.

    1993-01-01

    Humidity influence on durability and light water durability fibres is studied are studied in this article. Humidity energy under influence of process destruction decreases activity, durability and durability decreases is shown

  7. Durability and efficiency tests for direct methanol fuel cell's long-term performance assessment

    International Nuclear Information System (INIS)

    Yeh, Pulin; Chang, Chu Hsiang; Shih, Naichien; Yeh, Naichia

    2016-01-01

    This research assessed the long-term performance of direct methanol fuel cells. The experiment was performed at room temperature using 0.51 mol/L ∼0.651 mol/L methanol with a fuel consumption rate of 0.8 ± 0.1 cc/Wh at stack temperature of 60 °C–70 °C. DuPont Nafion115 proton exchange membrane was used as the base material of MEA (membrane electrode assembly), which is then examined via a series of processes that include I−V curve test, humidity cycle test, load cycle test, and hydrogen penetration test. The study employs membrane modification and cell structure adjustment approaches to reduce the methanol crossover in the cathode and identify the cell performance effect of the carbon paper gas diffusion layer. The test results indicated an efficiency of 25% can be achieved with a three-piece MEA assembly. According to the durability test, the stack power-generation efficiency has maintained at 15%–25% level. With such efficiency, the stack voltage output has been able to stay above 7.8-V for over 5000 h. This result is in line with industry standard. - Highlights: • Assess DMFC performance under non-optimal conditions for production readiness. • Output of 26-cell DMFC stack stays beyond 7.8v after 5000 operation hours. • Power-generation efficiency of 26-cell DMFC stack maintains between 15%–20%.

  8. Fused Microknot Optical Resonators in Folded Photonic Tapers for in-Liquid Durable Sensing

    Directory of Open Access Journals (Sweden)

    Alexandra Logvinova

    2018-04-01

    Full Text Available Optical microknot fibers (OMFs serve as localized devices, where photonic resonances (PRs enable self-interfering elements sensitive to their environment. However, typical fragility and drifting of the knot severely limit the performance and durability of microknots as sensors in aqueous settings. Herein we present the fabrication, electrical fusing, preparation, and persistent detection of volatile liquids in multiple wetting–dewetting cycles of volatile compounds and quantify the persistent phase shifts with a simple model relating to the ambient liquid, enabling durable in-liquid sensing employing OMF PRs.

  9. Durability of an inorganic polymer concrete coating

    Science.gov (United States)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  10. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  11. Durability and performance optimization of cathode materials for fuel cells

    Science.gov (United States)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  12. DURABILITY OF FLEXIBLE PAVEMENTS: A CASE STUDY OF ...

    African Journals Online (AJOL)

    user

    years, ranking, predominant factors affecting pavement durability and the estimate of durability. In this regard .... subgrade soil into the base course and provide the drainage of ..... [3] Oguara T. M. “A management model for road infrastructure ...

  13. Durability of air lime mortar

    DEFF Research Database (Denmark)

    Nielsen, Anders

    2016-01-01

    This contribution deals with the physical and chemical reasons why pure air lime mortars used in masonry of burned bricks exposed to outdoor climate have shown to be durable from the Middle Ages to our days. This sounds strange in modern times where pure air lime mortars are regarded as weak...... materials, which are omitted from standards for new masonry buildings, where use of hydraulic binders is prescribed. The reasons for the durability seam to be two: 1. The old mortars have high lime contents. 2. The carbonation process creates a pore structure with a fine pored outer layer and coarser pores...

  14. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  15. Performance-Enhancing Drugs: Know the Risks

    Science.gov (United States)

    ... edge by taking muscle-building supplements or other performance-enhancing drugs? Learn how these drugs work and how they can affect your health. By ... to testosterone and estradiol in both men and women. Andro is available legally ... use as a performance-enhancing drug is illegal in the United States. ...

  16. Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2012-11-01

    Full Text Available Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale friction and durability of damaged skin were measured and compared with those of virgin (intact/undamaged skin. The effect of skin cream on friction and durability of damaged and virgin skin samples is discussed. The effects of velocity, normal load, relative humidity and number of cycles were studied. The nanoscale studies were performed by using atomic force microscope (AFM, and macroscale studies were performed by using a pin-on-disk (POD reciprocating tribometer. It was found that damaged skin has different mechanical properties, surface roughness, contact angle, friction and durability compared to that of virgin skin. But similar changes occur after skin cream treatment. Rat and pig skin show similar trends in friction and durability.

  17. The morphology of durability issues in PEM fuel cells

    International Nuclear Information System (INIS)

    Kundu, S.; Fowler, M.; Simon, L.; Grot, S.

    2004-01-01

    'Full text:' The work presented here examines durability issues in PEM fuel cell materials by examining material morphology and linking morphological features to performance. Scanning electron microscope (SEM) techniques have been able to identify a variety of features on the catalyst layer, each with their own implication to the overall performance and durability of the membrane electrode assembly (MEA). These features include cracking, delamination of the catalyst layer, catalyst clustering, electrolyte clustering, and thickness variations. Links between several of these features and catalyst dispersion conditions was also examined, showing that how the material was manufactured influences the type of morphological features present. The SEM has also been used with accelerated aging techniques to closely examine aging of the gas diffusion layer (GDL). It can be shown that over time the GDL will loose its hydrophobic character and hence become more susceptible to flooding in a fuel cell. The impact of morphological changes were determined using fuel cell models and experimental work. The ultimate aim of this work is to provide material developers with the tools and knowledge necessary to design better materials and therefore bring fuel cells closer to commercialization. (author)

  18. Sleep Deprivation Impairs and Caffeine Enhances My Performance, but Not Always Our Performance.

    Science.gov (United States)

    Faber, Nadira S; Häusser, Jan A; Kerr, Norbert L

    2017-02-01

    What effects do factors that impair or enhance performance in individuals have when these individuals act in groups? We provide a framework, called the GIE ("Effects of Grouping on Impairments and Enhancements") framework, for investigating this question. As prominent examples for individual-level impairments and enhancements, we discuss sleep deprivation and caffeine. Based on previous research, we derive hypotheses on how they influence performance in groups, specifically process gains and losses in motivation, individual capability, and coordination. We conclude that the effect an impairment or enhancement has on individual-level performance is not necessarily mirrored in group performance: grouping can help or hurt. We provide recommendations on how to estimate empirically the effects individual-level performance impairments and enhancements have in groups. By comparing sleep deprivation to stress and caffeine to pharmacological cognitive enhancement, we illustrate that we cannot readily generalize from group results on one impairment or enhancement to another, even if they have similar effects on individual-level performance.

  19. Follow-up durability measurements and mitigation-performance improvement tests in 38 Eastern Pennsylvania houses having indoor radon-reduction systems. Final report, Oct 89-Feb 90

    International Nuclear Information System (INIS)

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1991-03-01

    The report gives results of follow-up tests in 38 difficult-to-mitigate Pennsylvania houses where indoor radon reduction systems had been installed 2 to 4 years earlier. Objectives were to assess system durability, methods for improving performance, and methods for reducing installation and operating costs. The durability tests indicated that the 38 systems have not experienced any significant degradation in indoor radon levels or in system flows/suctions, except in 6 houses where system fans failed, and in houses where homeowners turned off the systems. Tests to improve performance indicated that nearly all of the elevated residual radon levels are due to re-entrainment back into the house of very-high-radon exhaust gas from the soil depressurization systems, and to radon release from well water. Tests to reduce system costs showed that premitigation sub-slab suction field measurements can help prevent installation of too many suction pipes when communication is good, but suggest a need for too many pipes when communication is poor. Soil depressurization fans could not be turned down to the extent expected in some systems that were over-designed. Between 6 and 42% of the exhausted air was withdrawn from the house

  20. Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats

    Energy Technology Data Exchange (ETDEWEB)

    Spitsberg, Irene [Materials and Process Engineering Department, GE Aircraft Engines, Evendale, OH (United States)]. E-mail: irene.spitsberg@kennametal.com; More, Karren [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2006-02-15

    The role of pre-oxidation surface treatments on the oxide microstructure and the failure mechanism of multi-layer thermal barrier systems based on Pt-modified NiAl bond coats and electron beam deposited thermal barrier coatings (TBCs) have been studied. The primary pre-oxidation experimental variable was the partial pressure of oxygen in the pre-oxidizing atmosphere at constant temperature and bond coat composition. The durability of TBCs deposited on surfaces following different pre-oxidation treatments were measured and compared using furnace cycling tests. The oxide layers corresponding to different levels of TBC performance were characterized microstructurally, chemically, and compositionally using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. TBC performance was enhanced by the formation of a surface oxide having a coarse-grained columnar structure during the pre-oxidation process. Increased TBC durability was consistent with a slower oxide growth rate during exposure of the TBC to high-temperature, cyclic conditions, as was observed for this particular pre-oxidation condition. An oxide microstructure having fewer through-thickness transport pathways (grain boundaries) should also result in slower lateral oxide growth rates, consistent with a slowed rate of ratcheting as was observed in the pre-oxidized samples that had the best TBC performance. The desired surface oxide grain structure was achieved by pre-oxidizing the bond coat prior to TBC deposition at an intermediate partial pressure of oxygen.

  1. Testing the durability of concrete with neutron radiography

    International Nuclear Information System (INIS)

    Beer, F.C. de; Le Roux, J.J.; Kearsley, E.P.

    2005-01-01

    The ability of concrete to withstand the penetration of liquid and oxygen can be described as the durability of concrete. The durability of concrete, can in turn, be quantified by certain characteristics of the concrete such as the porosity, sorptivity and permeability. The quantification of neutron radiography images of concrete structures and, therefore, the determination of concrete characteristics validate conventional measurements. This study compares the neutron radiography capability to obtain quantitative data for porosity and sorptivity in concrete to laboratory or conventional measurements. The effects that water to cement ratio and curing time have on the durability of concrete are investigated

  2. A structural bond strength model for glass durability

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Metzger, T.B.

    1996-01-01

    A glass durability model, structural bond strength (SBS) model was developed to correlate glass durability with its composition. This model assumes that the strengths of the bonds between cations and oxygens and the structural roles of the individual elements in the glass arc the predominant factors controlling the composition dependence of the chemical durability of glasses. The structural roles of oxides in glass are classified as network formers, network breakers, and intermediates. The structural roles of the oxides depend upon glass composition and the redox state of oxides. Al 2 O 3 , ZrO 2 , Fe 2 O 3 , and B 2 O 3 are assigned as network formers only when there are sufficient alkalis to bind with these oxides. CaO can also improve durability by sharing non-bridging oxygen with alkalis, relieving SiO 2 from alkalis. The percolation phenomenon in glass is also taken into account. The SBS model is applied to correlate the 7-day product consistency test durability of 42 low-level waste glasses with their composition with an R 2 of 0.87, which is better than 0.81 obtained with an eight-coefficient empirical first-order mixture model on the same data set

  3. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan.

    Science.gov (United States)

    Xu, QingBo; Xie, LiJing; Diao, Helena; Li, Fang; Zhang, YanYan; Fu, FeiYa; Liu, XiangDong

    2017-12-01

    Carboxymethyl chitosan (CMCTS) and silver nanoparticles (Ag NPs) were successfully linked onto a cotton fabric surface through a simple mist modification process. The CMCTS binder was covalently linked to the cotton fabric via esterification and the Ag NPs were tightly adhered to the fiber surface by coordination bonds with the amine groups of CMCTS. As a result, the coating of Ag NPs on the cotton fabric showed excellent antibacterial properties and laundering durability. After 50 consecutive laundering cycles, the bacterial reduction rates (BR) against both S. aureus and E. coli remained over 95%. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue. Separate abstracts have been indexed for articles from this report.

  5. ENHANCEMENT OF DURABILITY OF TRACTOR SUSPENSION AXLES

    Directory of Open Access Journals (Sweden)

    I. Doshchechkina

    2017-12-01

    Full Text Available The ‘soft’ nitriding of the suspension axle surface of the T150K tractor at the depth of 0.08 mm enables us to enhance its constructive strength, to increase its service life by 25 % and have a considerable economic effect.

  6. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    Science.gov (United States)

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  7. Gram-Scale Synthesis of Highly Active and Durable Octahedral PtNi Nanoparticle Catalysts for Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo

    2018-01-01

    for the commercialization of PEMFCs. In this study, we focus on gram-scale synthesis of octahedral PtNi nanoparticles with Pt overlayers (PtNi@Pt) supported on the carbon, resulting in enhanced catalytic activity and durability. Such PtNi@Pt catalysts show high mass activity (1.24 A mgPt−1) at 0.9 V (vs RHE) for the ORR......Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic...... condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable...

  8. Durability of fired clay bricks containing granite powder

    OpenAIRE

    Xavier, G. C.; Saboya, F.; Maia, P. C.; Alexandre, J.

    2012-01-01

    Over the past few decades, hundreds of papers have been published on the benefits of including rock powder as a raw material in fired clay brick manufacture. Very little has been written, however, about the durability and long-term behaviour of the final product. As a rule, the ceramic bricks used in construction in developing countries are fired at low temperatures, which detracts from their mechanical performance. This is particularly visible in harsh environmental conditions, where weather...

  9. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites

    Energy Technology Data Exchange (ETDEWEB)

    Meng, X F [Department of Prosthodontics, The Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing 210008 (China); Yoshida, K [Division of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588 (Japan); Gu, N, E-mail: mengsoar@nju.edu.c [Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C and B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R{sub a} and R{sub y} values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane

  10. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  11. In Situ Formed Phosphoric Acid/Phosphosilicate Nanoclusters in the Exceptional Enhancement of Durability of Polybenzimidazole Membrane Fuel Cells at Elevated High Temperatures

    DEFF Research Database (Denmark)

    Zhang, Jin; Aili, David; Bradley, John

    2017-01-01

    -meso-silica. The results indicate that the optimum limit of PWA-meso-silica loading in the PA/PBI membranes is 15 wt%. Detaled analysis indicates that the mesoporous structure of the PWA-meso-silica framework disintegrates, forming phosphosilicate phases within the PBI polymeric matrix during fuel cell operation at 200°C......Most recently, we developed a phosphotungstic acid impregnated mesoporous silica (PWA-meso-silica) and phosphoric acid doped polybenzimidazole (PA/PBI) composite membrane for use in high temperature fuel cells and achieved exceptional durability under a constant current load of 200 mA cm−2 at 200°C...... for over 2700 h. In this work, the fundamental role of PWA-meso-silica in enhancing the stability of the PA/PBI membrane has been investigated. The microstructure, the PA uptake, swelling ratio, mechanical property and conductivity of PA/PBI/PWA-meso-silica composite membranes depend on the loading of PWA...

  12. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  13. Mechanical and Durability Properties of Concrete Made with Used Foundry Sand as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    G. Ganesh Prabhu

    2015-01-01

    Full Text Available In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS. With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.

  14. Nanocoating of ionic liquid and polypyrrole for durable electro-active paper actuators working under ambient conditions

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2010-01-01

    This paper reports that nanocoating of polypyrrole (PPy) and ionic liquid (IL) on cellulose film improves the electromechanical performance and durability of a cellulose electro-active paper actuator. Cellulose-PPy-IL nanocomposites were fabricated by the polymerization-induced adsorption process of PPy followed by subsequent activation in IL solutions. X-ray photoelectron spectroscopy, transmission electron microscopy and secondary ion mass spectroscopy analyses validated the successful nanocoating of the PPy and IL layers on the cellulose. The results revealed that the cellulose-PPy-IL nanocomposites are suitable for durable bending actuators working under ambient conditions. Preparation, characterization and performance test of the nanocomposites are explained.

  15. Importance of microscopy in durability studies of solidified and stabilized contaminated soils

    Science.gov (United States)

    Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.

    1999-01-01

    Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical

  16. Durable transparent carbon nanotube films for flexible device components

    International Nuclear Information System (INIS)

    Sierros, K.A.; Hecht, D.S.; Banerjee, D.A.; Morris, N.J.; Hu, L.; Irvin, G.C.; Lee, R.S.; Cairns, D.R.

    2010-01-01

    This paper describes a durable carbon nanotube (CNT) film for flexible devices and its mechanical properties. Films as thin as 10 nm thick have properties approaching those of existing electrodes based on indium tin oxide (ITO) but with significantly improved mechanical properties. In uniaxial tension, strains as high as 25% are required for permanent damage and at lower strains resistance changes are slight and consistent with elastic deformation of the individual CNTs. A simple model confirms that changes in electrical resistance are described by a Poisson's ratio of 0.22. These films are also durable to cyclic loading, and even at peak strains of 10% no significant damage occurs after 250 cycles. The scratch resistance is also high as measured by nanoscratch, and for a 50 μm tip a load of 140 mN is required to cause initial failure. This is more than 5 times higher than is required to cause cracking in ITO. The robustness of the transparent conductive coating leads to significant improvement in device performance. In touch screen devices fabricated using CNT no failure occurs after a million actuations while for devices based on ITO electrodes 400,000 cycles are needed to cause failure. These durable electrodes hold the key to developing robust, large-area, lightweight, optoelectronic devices such as lighting, displays, electronic-paper, and printable solar cells. Such devices could hold the key to producing inexpensive green energy, providing reliable solid-state lighting, and significantly reducing our dependence on paper.

  17. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Machinaga, Hironobu; Ueda, Eri; Mizuike, Atsuko; Takeda, Yuuki; Shimokita, Keisuke; Miyazaki, Tsukasa

    2014-01-01

    Effects of the annealing temperature on mechanical durability of indium-tin oxide (ITO) thin films deposited on polyethylene terephthalate (PET) substrates were investigated. The ITO films were annealed at the range from 150 °C to 195 °C after the DC sputtering deposition for the production of polycrystalline ITO layers on the substrates. The onset strains of cracking in the annealed ITO films were evaluated by the uniaxial stretching tests with electrical resistance measurements during film stretching. The results indicate that the onset strain of cracking in the ITO film is clearly increased by increasing the annealing temperature. The in-situ measurements of the inter-planer spacing of the (222) plane in the crystalline ITO films during film stretching by using synchrotron radiation strongly suggest that the large compressive stress in the ITO film increases the onset strain of cracking in the film. X-ray stress analyses of the annealed ITO films and thermal mechanical analyses of the PET substrates also clarifies that the residual compressive stress in the ITO film is enhanced with increasing the annealing temperature due to the considerably larger shrinkage of the PET substrate. - Highlights: • Indium-tin oxide (ITO) films were deposited on polyethylene terephthalate (PET). • Mechanical durability of the ITO is improved by high temperature post-annealing. • The shrinkage in the PET increases with rising the post-annealing temperature. • The shrinkage of the PET enhances the compressive stress in the ITO film. • Large compressive stress in the ITO film may improve its mechanical durability

  18. Durability analysis of gneiss using wear resistance

    Directory of Open Access Journals (Sweden)

    José Luiz Ernandes Dias Filho

    2014-01-01

    Full Text Available This paper presents a study conducted in gneiss in Santo Antonio de Pádua, RJ, BR, including durability analysis of the rock using slake durability test. Rocks in the region of Pádua are mostly used for ornamental purposes. A lab equipment was developed to evaluate the influence of rotation in the test, allowing for the speed variation of 7 RPM to 238 RPM. This study could be implemented in a wide variety of rock materials, targeting them according to their lifetime in the project. With variation of the wear levels, increasing weight loss was observed until the inertia moment in which the sample holds to the machine wall. The results indicate an increase in linear mass loss. These procedures allow a more precise analysis of durability than can be applied in different different regions of the world.

  19. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Science.gov (United States)

    Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach

    2017-01-01

    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...

  20. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete

    International Nuclear Information System (INIS)

    Beigi, Morteza H.; Berenjian, Javad; Lotfi Omran, Omid; Sadeghi Nik, Aref; Nikbin, Iman M.

    2013-01-01

    Highlights: • We investigate combine effects of fibers and nanosilica on SCC. • The mechanical, rheological, and durability properties were tested and compared. • Microstructural properties of concrete were assessed using AFM and XRD techniques. • Nanosilica and fibers can improve the mechanical properties and durability of SCC. - Graphical abstract: - Abstract: Previous studies have shown that application of fibers in concrete enhances scratching, flexural and tensile strength. Self-Compacting Concrete (SCC) is a highly flowable and coherent concrete able to self-compact under its own weight. On the other hand, nanosilica particles and artificial pozzolans possessing high efficiency in concrete technology can improve structural properties of cement-based materials. Previous studies have suggested self-compacting and fiber-reinforced concretes for more stable and efficient buildings. Therefore, the present study aimed to evaluate the effects of nanosilica and different concrete reinforcing fibers including steel, polypropylene and glass on the performance of concrete. In this study mechanical (compressive, splitting tensile and flexural strength, toughness and modulus of elasticity), rheological (L-Box, slump flow, T50) and durability (resist chloride ion penetration (RCPT) and water absorption) properties are assessed. In addition, microstructural properties of concrete were assessed using Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. Totally, 40 concrete mixes , labeled as A, B, C and D, with nanosilica contents of 0, 2, 4 and 6 weight percent (wt.%) of cement, respectively and three types of reinforcing fibers (steel: 0.2, 0.3 and 0.5 volume percent (v%) and polypropylene: 0.1, 0.15 and 0.2 v% and glass: 0.15, 0.2 and 0.3 v%) were evaluated. The results of the study showed that the presence of both nanosilica and reinforcing fibers in optimal percentages, can improve the mechanical properties and durability of self

  1. Durability and regeneration of activated carbon air-cathodes in long-term operated microbial fuel cells

    Science.gov (United States)

    Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-08-01

    The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.

  2. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  3. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...

  4. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...

  5. A novel mechanical design of broken rope protection device for enhancing the safety performances of overhead manned equipment in coal mine

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2015-08-01

    Full Text Available A novel mechanical design of the broken rope protection device is proposed to enhance the safety performances of the overhead manned equipment. According to the operating characteristics and functional requirements of the overhead manned equipment, a three-dimensional mechanical model of the broken rope protection device was redesigned. Based on the known parameters of the mechanical model, the stress and strength of the main components are readjusted using the statics characteristics of finite element analysis. To ensure the reliability of the control system of the broken rope protection device, the process of people’s falling, the response performance of the tension sensor, and the signal extraction of the broken rope are analyzed under different loading and unloading speeds. The working principle of the broken rope protection device is expounded in detail. The experimental results showed that better effect is obtained by the new broken rope protection device, which is characterized by good durability, low investment, and high reliability.

  6. Complexing agents and pH influence on chemical durability of type I moulded glass containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-06-16

    Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.

  7. Durability testing with West Valley borosilicate glass composition- Phase II

    International Nuclear Information System (INIS)

    Macedo, P.B.; Finger, S.M.; Barkatt, A.A.; Pegg, I.L.; Feng, X.; Freeborn, W.P.

    1988-06-01

    This report presents the research performed by the Catholic University of America Vitreous State Laboratory (VSL) during FY 1987 in support of the West Valley Demonstration Project (WVDP) nuclear waste vitrification process. A principal objective of this work is the optimization of the glass composition be used for the vitrification of the liquid high-level waste generated at West Valley during nuclear fuel reprocessing. This report discusses (1) the experimental investigations to optimize the reference glass composition (the current leading candidates are WVCM-50 and ATM-10) for the WVDP vitrification process; (2) the systematic experimental investigation performed to determine the effects of compositional variations in WVCM-50 and WV-205 reference glasses on their viscosity and durability (including initial results of long-term leach tests of WVCM-50 under repository conditions); (3) the development of short-time and predictive leach tests; (4) the development of a process model for the West Valley vitrification process which predicts the range of glass compositions which may be encountered during normal operations and the effects of deviations in process control parameters; and (5) the development of product models for predicting the durability and viscosity of nuclear waste glasses

  8. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  9. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  10. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  11. Evaluation of the Mechanical Durability of the Egyptian Machine Readable Booklet Passport

    Directory of Open Access Journals (Sweden)

    Ahmed Mahmoud Yosri

    2013-12-01

    Full Text Available In 2008 the first Egyptian booklet Machine Readable Passport/ MRP has been issued and its security and informative standard quality levels were proved in a research published in 2011. Here the durability profiles of the Egyptian MRP have been evaluated. Seven mechanical durability tests were applied on the Egyptian MRP. Such tests are specified in the International Civil Aviation Organization / ICAO standard requirements documents. These seven very severe durability tests resulted in that the Egyptian MRP has achieved better & higher results than the values detected in ICAO-Doc N0232: Durability of Machine Readable Passports - Version: 3.2. Hence, this research had proved the complete conformance between the Egyptian MRP mechanical durability profiles to the international requirements. The Egyptian booklet MRP doesn’t need any obligatory modification concerning its mechanical durability profiles.

  12. International Conference on Durability of Critical Infrastructure

    CERN Document Server

    Cherepetskaya, Elena; Pospichal, Vaclav

    2017-01-01

    This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.

  13. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    Science.gov (United States)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  14. Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Mehmet Gesoglu

    2015-01-01

    Full Text Available This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs in which natural coarse aggregate (NCA and/or natural fine aggregate (NFA were replaced by recycled coarse aggregate (RCA and/or recycled fine aggregate (RFA, respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA concretes had significantly poorer performance than natural aggregate (NA concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.

  15. Performance Enhancement by Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Parisa Gazerani

    2017-09-01

    Full Text Available Number of substances and strategies are available to increase performance in sport (Catlin and Murray, 1996. Since 2004, the World Anti-Doping Agency (WADA posts an updated list of substances and methods prohibited to athletes. Drugs (e.g., steroids, stimulants are a major part of this list; however, technologies and methods (e.g., gene doping are increasingly being identified and added (WADA, 2017. Among technologies and methods that might exert a potential effect on athletic performance, brain stimulation has recently been subjected to extensive discussion. Neuro-enhancement for doping purposes has been termed “neurodoping” in the literature (Davis, 2013; however, this concept needs further documentation before the term “neurodoping” can be used properly. Two major non-invasive techniques of brain stimulations are transcranial magnetic stimulation (TMS (Hallett, 2007; Rossi et al., 2009, and transcranial direct current stimulation (tDCS (Stagg and Nitsche, 2011. In TMS, an electric coil held over the head applies magnetic pulses to create currents in the brain. In tDCS, a low, continuous electrical current is delivered to the brain by using surface electrodes attached on the scalp. TMS and tDCS have been used in both research and clinic (Shin and Pelled, 2017 for example to examine alterations in cognitive function or motor skills or to assist in recovering motor function after a stroke (Gomez Palacio Schjetnan et al., 2013 or reducing fatigue in patients with multiple sclerosis (Saiote et al., 2014. In an opinion paper, it was proposed that use of emerging brain stimulation techniques might also enhance physical and mental performance in sports (Davis, 2013. The assumption was based on several reports. For example some studies have shown that TMS could shorten reaction times to visual, auditory and touch stimuli, reduce tremor, and enhance the acquisition of complex motor skills. Based on the current evidence, a recent review (Colzato

  16. A Framework of Retailer-Manufacturer Cooperation and Coopetition: Consumer Durable Goods Retailers’ Case Studies

    Directory of Open Access Journals (Sweden)

    Marzanna Katarzyna Witek-Hajduk

    2017-03-01

    Full Text Available Objective: The purpose of this paper is to develop a framework of cooperation and coopetition between retailers and key manufacturers from a perspective of retailers offering consumer durables. Research Design & Methods: In order to answer the research questions semi-structured, in-depth and face-to-face interviews with managers of six SMEs or large retailers operating in Poland and offering consumer durables were carried out. Findings: The empirical studies confirm both cooperation and coopetition between retailers and manufacturers – suppliers of consumer durables depending on, among others, the category of consumer goods and the balance of power between retailers and manufacturers. The scope of cooperation is not too wide, and concerns only some of the value chain processes indicated in the literature. Implications & Recommendations: Conducted studies are exploratory and need to be deepen with the use of quantitative research that will help determine the impact of the balance of power between manufacturers and retailers and the strength of retailer-manufacturer relations on the range / areas and financial and non-financial performance of this cooperation. Contribution & Value Added: The originality of this work lies in studying some aspects of retailers’ relations with their key suppliers operating in consumer durables market.

  17. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  18. Temperature induced effects on the durability of MR fluids

    International Nuclear Information System (INIS)

    Wiehe, A; Maas, J; Kieburg, C

    2013-01-01

    Although commercial MR fluids exist for quite some time now and the feasibility as well as the advantages of the MR technology have been demonstrated for several applications by a variety of MR actuator prototypes, a sustainable market break-through of brake and clutch applications utilizing the shear mode is still missing. Essential impediments are the marginal knowledge about the durability of the MR technology. To overcome this situation, a long-term measurement system was developed for the durability analysis of MR fluid formulations within a technical relevant scale with respect to the volume of MR fluid and the transmitted torque. The focus of the presented series of measurements is given to the analysis of temperature induced effects on the durability. In this context four different failure indicators can be distinguished, namely an apparent negative viscosity, deviations in torque data obtained from different measurements as well as a pressure increase and a drop in the on-state torque. The measurement data of the present durability experiments indicate a significant dependency of the attainable energy intake density on the temperature. The aim of such durability tests is to establish a reliable data base for the industry to estimate the life-time of MR devices.

  19. Bases for extrapolating materials durability in fuel storage pools

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at ∼ 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage

  20. Intrahousehold Bargaining and the Demand for Consumer Durables in Brazil

    OpenAIRE

    Polato e Fava, Ana Claudia; Arends-Kuenning, Mary P.

    2013-01-01

    In Brazil, wives do most of the household work. About sixty percent of them also work outside the household, working a total of about 10 hours more per week than men. Because of this unequal distribution of household work, husbands and wives might have different priorities regarding the purchase of durable goods. Although both husbands and wives enjoy entertainment durable goods, wives might have a relative preference for household-production durable goods such as washing machines over entert...

  1. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    International Nuclear Information System (INIS)

    Inagaki, S; Sueoka, S; Harafuji, K

    2017-01-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress. (paper)

  2. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    Science.gov (United States)

    Inagaki, S.; Sueoka, S.; Harafuji, K.

    2017-06-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.

  3. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  4. Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.

    Science.gov (United States)

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao

    2017-11-16

    For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing

    NARCIS (Netherlands)

    Holmquist, Hanna; Schellenberger, Steffen; van der Veen, I.; Peters, G; Leonards, P.E.G.; Cousins, I

    2016-01-01

    Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent

  6. Durability of Low Platinum Fuel Cells Operating at High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Polevaya, Olga [Nuvera Fuel Cells Inc.; Blanchet, Scott [Nuvera Fuel Cells Inc.; Ahluwalia, Rajesh [Argonne National Lab; Borup, Rod [Los-Alamos National Lab; Mukundan, Rangachary [Los-Alamos National Lab

    2014-03-19

    was correlated with the upper potential limit in the cycle tests, although the performance degradation was found to be a strong function of initial Pt loading. A large fraction of the voltage degradation was found due to increased mass transfer overpotentials, especially in the lower Pt loading cells. Increased mass transfer overpotentials were responsible for a large fraction of the voltage degradation at high current densities. Analysis of the impedance and polarization data indicated O2 diffusion in the aged electrode ionomer to be the main source of the increased mass transfer overpotentials. Results from the experimental parametric studies were used to inform and calibrate newly developed durability model, simulating lifetime performance of the fuel cell under variety of load-cycle protocols, electrode loadings and throughout wide range of operating conditions, including elevated-to-3.0A/cm2 current densities. Complete durability model included several sub-models: platinum dissolution-and-growth as well as reaction-diffusion model of cathode electrode, applied sequentially to study the lifetime predictions of ECSA and polarization performance in the ASTs and NSTs. These models establish relations between changes in overpotentials, ECSA and oxygen mass transport in fuel cell cathodes. The model was calibrated using single cells with land-channel and open flowfield architectures. The model was validated against Nuvera Orion® (open flowfield) short stack data in the load cycle durability tests. The reaction-diffusion model was used to correlate the effective mass transfer coefficients for O2 diffusion in cathode ionomer and separately in gas pores with the operating conditions (pressure, temperature, gas velocity in flow field and current density), Pt loading, and ageing related growth in Pt particles and thinning of the electrode. Achievements of both modeling and experimental objectives were demonstrated in a full format, subscale stacks operating in a simulated

  7. The household decision making process in replacement of durable goods

    OpenAIRE

    Marell Molander, Agneta

    1998-01-01

    As durables are essential in many households, the level of ownership is high and, due to the high degree of penetration, a vast proportion of the current sales are replacement purchases. Even though a lot of research attention has been paid to decision making and decision processes many models are oriented towards non-durable goods and although a majority of purchases of many durable goods are replacements, few studies seem to make a distinction between a replacement purchase decision and a d...

  8. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  9. Effect Of Climatic Conditions On Durability

    Directory of Open Access Journals (Sweden)

    Ibrahem M. Al Kiki

    2013-04-01

    Full Text Available Durability is one of the most important subjects in the soil stabilization. Since there is no specifications concerned the durability of lime stabilized soils, several factors were selected to show their effects on the durability, namely: wetting, drying, freezing, thawing and slaking.The effect of each one of the above factors as well as the combined effect of two or more factors, were studied on the volume change and soil strength and weight loss of soil samples stabilized with optimum lime content except the slaking test at which soil samples stabilized with different lime content.Tests results showed that the higher the lime content the lower the slaking effect, also its found the soil strength decreased when the period of immersion or freezing increased. The strength of the lime stabilized soils decreased when subjected to the cycles of wetting and drying or to the cycles freezing and thawing. However, the  combined effect of wetting, drying, freezing and thawing has a pronounced effect on reduction of the lime stabilized clayey soil. The worst condition recorded when lime stabilized soil undergo to freezing then drying then wetting which should be avoided in the field

  10. Durability Evolution of RC Bridge under Coupling Action of Chloride Corrosion and Carbonization Based on DLA Model

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2015-01-01

    Full Text Available Chloride attack and carbonization are the main factors which affect the durability of concrete structures, and the respective theoretical models are systematically established. However, the quantitative analysis and models about the coupling effect of chloride attack and carbonization are less, so the precision and level of durability analysis of reinforced concrete are restricted. Diffusion-limited aggregation (DLA model can finely simulate the process of gas diffusion and condensation with randomness and fractal characteristics, which is suitable for revealing the durability evolution process of the chloride attack, carbonization, and the coupling action in concrete. Based on the principle of DLA, considering the factors such as diffusion depth, concrete properties, and exposure conditions which influence the characteristics of chloride diffusion and carbonization, as well as the coupling effect, an integrated DLA model is established. The concentration of carbon dioxide and chloride at any time and any location can be obtained and dynamically displayed based on the DLA model. The performance predict method for concrete and steel bars considering fatigue effect is presented based on DLA, according to the demand for bridge durability analysis. Numerical examples show that the method can dynamically and intensively simulate the durability evolution process of reinforced concrete bridge.

  11. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    Science.gov (United States)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  12. Decoration and durability

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Munch, Anders V.

    2015-01-01

    Throughout the scales of design there has been an exploding interest in the ornament that seems to be fuelled by different kinds of digital technology and media from CAD to digital printing in both 2D and 3D. In architecture and industrial design, it is discussed as a “return of ornament” because...... from fashion and tableware to archi- tecture and link ornamentation to the aesthetics of durability....

  13. A zwitterionic macro-crosslinker for durable non-fouling coatings.

    Science.gov (United States)

    Wang, Wei; Lu, Yang; Xie, Jinbing; Zhu, Hui; Cao, Zhiqiang

    2016-03-28

    A novel zwitterionic macro-crosslinker was developed and applied to fabricate durable non-fouling coatings on a polyurethane substrate. The zwitterionic macro-crosslinker coating exhibited superior durability over the traditional brush polymer coating and was able to retain its non-fouling property even after weeks of shearing in flowing liquid.

  14. Gene doping: a review of performance-enhancing genetics.

    Science.gov (United States)

    Gaffney, Gary R; Parisotto, Robin

    2007-08-01

    Unethical athletes and their mentors have long arrogated scientific and medical advances to enhance athletic performance, thus gaining a dishonest competitive advantage. Building on advances in genetics, a new threat arises from athletes using gene therapy techniques in the same manner that some abused performance-enhancing drugs were used. Gene doping, as this is known, may produce spectacular physiologic alterations to dramatically enhance athletic abilities or physical appearance. Furthermore, gene doping may present pernicious problems for the regulatory agencies and investigatory laboratories that are entrusted to keep sporting events fair and ethical. Performance-enhanced genetics will likewise present unique challenges to physicians in many spheres of their practice.

  15. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    Science.gov (United States)

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  16. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian; Chung, Neal Tai-Shung

    2016-01-01

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young's Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  17. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian

    2016-05-12

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young\\'s Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  18. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers.

    Science.gov (United States)

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F

    2016-02-08

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.

  19. Design of concrete structures for durability ; Example : Chloride penetration in the lining of a bored tunnel

    NARCIS (Netherlands)

    Siemes, T.; Polder, R.; Vries, H. de

    1998-01-01

    To design concrete structures for durability, all relevant performances that the structure has to fulfill and that can be influenced by degradations have to be defined. The probability that a given performance must be delivered within a design service life should also be considered. One of the

  20. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Nielsen, Laila

    1997-01-01

    (capillary water uptake) is used, involving an in-situ method and a laboratory method. Three different concrete qualities as well as steel fibres (ZP) and polypropylene fibres (PP) are used. Results of the durability tests on cracked FRC-beams are compared to results for uncracked FRC-beams and beams without......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by exposing beams to il-point bending until a predefined crack width is reached, using a newly developed test setup. As environmental load, exposure to water...

  1. Durability and Strength of Sustainable Self-Consolidating Concrete Containing Fly Ash

    Science.gov (United States)

    Mohamed, O.; Hawat, W. Al

    2018-03-01

    In this paper, the durability and strength of self-consolidating concrete (SCC) is assessed through development and testing of six binary mixes at fixed water-to-binder (w/b) ratio of 0.36. In each of the six SCC mixes, a different percentage of cement is replaced with fly ash. The development of compressive strength for each of the mixes is assessed by testing samples after 3, 7, and 28 days of curing. Durability of each of the six SCC mixes is assessed by measuring the charge passed in Rapid Chloride Permeability (RCP) test. Charge passed was measured in samples cured for 1, 3, 7, 14, 28, and 40 days of curing. All mixes out-performed the control mix in terms of resistance to chloride penetration. Binary mix in which 20% of cement is replaced with fly ash exhibited 28-day strength slightly surpassing the control mix.

  2. Geochemical and petrographic studies and the relationships to durability and leach resistance of vitrified products from the in situ vitrification process

    International Nuclear Information System (INIS)

    Timmons, D.M.; Thompson, L.E.

    1996-01-01

    Soil and sludge contaminated with hazardous and radioactive materials from sites in the United States and Australia were vitrified using in situ vitrification. Some of the resulting products were subjected to detailed geochemical, leach and durability testing using a variety of analytical techniques. The leach resistance and durability performance was compared to that of vitrified high level waste with borosilicate composition. Particular attention was given to crystallization behavior, the effects of crystallization on residual melt chemistry and how crystallization influences the behavior of contaminant ions. The results of this work show that the vitrified material studied has superior chemical durability and leach resistance relative to typical borosilicate waste glasses. Crystallization behavior was variable depending upon melt chemistry and cooling history. Crystallization was not observed to adversely affect chemical durability or leach resistance

  3. Chemical durability of glasses containing radioactive fission product waste

    International Nuclear Information System (INIS)

    Mendel, J.E.; Ross, W.A.

    1974-04-01

    Measurements made to determine the chemical durability of glasses for disposal of radioactive waste are discussed. The term glass covers materials varying from true glass with only minute quantities of crystallites, such as insoluble RuO 2 , to quasi glass-ceramics which are mostly crystalline. Chemical durability requirements and Soxhlet extractor leach tests are discussed

  4. 75 FR 51245 - Agency Information Collection Activities; Proposed Collection; Comment Request; Durable Nursery...

    Science.gov (United States)

    2010-08-19

    ... CONSUMER PRODUCT SAFETY COMMISSION [Docket No. CPSC-2010-0088] Agency Information Collection Activities; Proposed Collection; Comment Request; Durable Nursery Products Exposure Survey AGENCY: Consumer... efforts on durable infant and toddler products. The draft Durable Nursery Products Exposure Survey...

  5. Durability of Flexible Ureteroscopes: A Prospective Evaluation of Longevity, the Factors that Affect it, and Damage Mechanisms.

    Science.gov (United States)

    Legemate, Jaap D; Kamphuis, Guido M; Freund, Jan Erik; Baard, Joyce; Zanetti, Stefano P; Catellani, Michele; Oussoren, Harry W; de la Rosette, Jean J

    2018-03-10

    Flexible ureteroscopy is an established treatment modality for evaluating and treating abnormalities in the upper urinary tract. Reusable ureteroscope (USC) durability is a significant concern. To evaluate the durability of the latest generation of digital and fiber optic reusable flexible USCs and the factors affecting it. Six new flexible USCs from Olympus and Karl Storz were included. The primary endpoint for each USC was its first repair. Data on patient and treatment characteristics, accessory device use, ureteroscopy time, image quality, USC handling, disinfection cycles, type of damage, and deflection loss were collected prospectively. Ureteroscopy. USC durability was measured as the total number of uses and ureteroscopy time before repair. USC handling and image quality were scored. After every procedure, maximal ventral and dorsal USC deflection were documented on digital images. A total of 198 procedures were performed. The median number of procedures was 27 (IQR 16-48; 14h) for the six USCs overall, 27 (IQR 20-56; 14h) for the digital USCs, and 24 (range 10-37; 14h) for the fiber optic USCs. Image quality remained high throughout the study for all six USCs. USC handling and the range of deflection remained good under incremental use. Damage to the distal part of the shaft and shaft coating was the most frequent reason for repair, and was related to intraoperative manual forcing. A limitation of this study is its single-center design. The durability of the latest reusable flexible USCs in the current study was limited to 27 uses (14h). Damage to the flexible shaft was the most important limitation to the durability of the USCs evaluated. Prevention of intraoperative manual forcing of flexible USCs maximizes their overall durability. Current flexible ureteroscopes proved to be durable. Shaft vulnerability was the most important limiting factor affecting durability. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights

  6. Focused R&D For Electrochromic Smart Windowsa: Significant Performance and Yield Enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Mark Burdis; Neil Sbar

    2003-01-31

    There is a need to improve the energy efficiency of building envelopes as they are the primary factor governing the heating, cooling, lighting and ventilation requirements of buildings--influencing 53% of building energy use. In particular, windows contribute significantly to the overall energy performance of building envelopes, thus there is a need to develop advanced energy efficient window and glazing systems. Electrochromic (EC) windows represent the next generation of advanced glazing technology that will (1) reduce the energy consumed in buildings, (2) improve the overall comfort of the building occupants, and (3) improve the thermal performance of the building envelope. ''Switchable'' EC windows provide, on demand, dynamic control of visible light, solar heat gain, and glare without blocking the view. As exterior light levels change, the window's performance can be electronically adjusted to suit conditions. A schematic illustrating how SageGlass{reg_sign} electrochromic windows work is shown in Figure I.1. SageGlass{reg_sign} EC glazings offer the potential to save cooling and lighting costs, with the added benefit of improving thermal and visual comfort. Control over solar heat gain will also result in the use of smaller HVAC equipment. If a step change in the energy efficiency and performance of buildings is to be achieved, there is a clear need to bring EC technology to the marketplace. This project addresses accelerating the widespread introduction of EC windows in buildings and thus maximizing total energy savings in the U.S. and worldwide. We report on R&D activities to improve the optical performance needed to broadly penetrate the full range of architectural markets. Also, processing enhancements have been implemented to reduce manufacturing costs. Finally, tests are being conducted to demonstrate the durability of the EC device and the dual pane insulating glass unit (IGU) to be at least equal to that of conventional

  7. Durability of fibre reinforced concrete structures exposed to combined mechanical and environmental load

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1999-01-01

    The main conclusions from a research project on durability of cracked fibre reinforced concrete structures exposed to chlorides, water or freeze-thaw are presented. The effect of fibres and cracks on the durability of concrete is studied.......The main conclusions from a research project on durability of cracked fibre reinforced concrete structures exposed to chlorides, water or freeze-thaw are presented. The effect of fibres and cracks on the durability of concrete is studied....

  8. Improving the durability of the optical fiber sensor based on strain transfer analysis

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-05-01

    To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.

  9. Immediate Extinction Causes a Less Durable Loss of Performance than Delayed Extinction following Either Fear or Appetitive Conditioning

    Science.gov (United States)

    Woods, Amanda M.; Bouton, Mark E.

    2008-01-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In…

  10. The Effectiveness of Materials Different with Regard to Increasing the Durability

    Directory of Open Access Journals (Sweden)

    Erofeev Vladimir

    2016-01-01

    Full Text Available The article considers contemporary materials and structures for construction of buildings. The article conducts an economic study of the problem of durability. It addresses the issue of increasing longevity, affecting the term of service to building structures and the efficiency of their operation. Revealed the main factors affecting the durability. It identifies measures its realisation. The method of calculation of economic efficiency of improving the durability of building constructions.

  11. The Dynamic Pricing of Next Generation Consumer Durables

    OpenAIRE

    Barry L. Bayus

    1992-01-01

    Learning curve effects, aspects of consumer demand models (e.g., reservation price distributions, intertemporal utility maximizing behavior), and competitive activity are reasons which have been offered to explain why prices of new durables decline over time. This paper presents an alternative rationale based on the buying behavior for products with overlapping replacement cycles (i.e., next generation products). A model for consumer sales of a new durable is developed by incorporating the re...

  12. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete.

    Science.gov (United States)

    Liu, Hanbing; Wang, Xianqiang; Jiao, Yubo; Sha, Tao

    2016-03-07

    Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.

  13. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2016-03-01

    Full Text Available Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume contents had been investigated. Finally, the crumb rubber after pretreatment by six modifiers was introduced into the concrete mixture. Corresponding tests were conducted to verify the effectiveness of pretreatment methods as compared to the concrete containing untreated crumb rubber. It was observed that the mechanical strength of crumb rubber concrete was reduced, while durability was improved with the increasing of crumb rubber content. 20% replacement of fine aggregate and 5% replacement of the total mixture exhibited acceptable properties for practical applications. In addition, the results indicated that the modifiers had a positive impact on the mechanical and durability properties of crumb rubber concrete. It avoided the disadvantage of crumb rubber concrete having lower strength and provides a reference for the production of modified crumb rubber concrete.

  14. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  15. Effectiveness of stone treatments in enhancing the durability of bioclastic calcarenite in (Granada, Spain

    Directory of Open Access Journals (Sweden)

    Sebastián, E.

    2008-12-01

    Full Text Available Santa Pudia limestone, a biocalcarenite highly sensitive to decay, is one of the most commonly used building materials in historical monuments in the city of Granada, Spain. The compatibility between a variety of stone treatments (consolidants and/or water repellents and this calcarenite was analyzed and the resulting improvement in durability assessed. To this end, a two-stage accelerated ageing process was implemented. In the first, freshly quarried, undamaged specimens were altered to resemble the weathered stone in buildings. The second was conducted after applying the various treatments to the artificially aged stone to test their effectiveness. While all the treatments studied (Tegosivin HL100, Silo 111, Estel 1100 and Tegovakon V enhanced stone resistance to decay while barely affecting chromatic parameters, the most effective was Tegowakon V, as it provided the best results in the hydric tests on the limestone.La calcarenita de Santa Pudia es uno de los materiales rocosos de construcción más empleados en las edificaciones monumentales de la ciudad de Granada (España. Se ha evaluado la compatibilidad de diversos productos de tratamiento (de consolidación y/o hidrofugación con esta calcarenita y como son capaces de mejorar su durabilidad. Para ello, se han realizado dos fases de envejecimiento acelerado: la primera tenía el objetivo de acercar el material de cantera sin alterar (“sano” a las condiciones reales del material puesto en obra y actualmente deteriorado; la segunda, efectuada después de aplicar los tratamientos sobre la calcarenita deteriorada, con el fin de determinar su grado de eficacia. Se ha podido comprobar que aunque, en general, todos los productos de tratamiento seleccionados (Tegosivin HL100, Silo 111, Estel 1100 y Tegovakon V mejoran las propiedades del material frente al deterioro y apenas modifican sus parámetros cromáticos, el más eficaz es el Tegovakon V ya que es el que proporciona mejores resultados

  16. Cardiovascular Effects of Performance-Enhancing Drugs.

    Science.gov (United States)

    La Gerche, André; Brosnan, Maria J

    2017-01-03

    Exercise and competitive sports should be associated with a wide range of health benefits with the potential to inspire a positive community health legacy. However, the reputation of sports is being threatened by an ever-expanding armamentarium of agents with real or perceived benefits in performance enhancement. In addition to the injustice of unfair advantage for dishonest athletes, significant potential health risks are associated with performance-enhancing drugs. Performance-enhancing drugs may have an effect on the cardiovascular system by means of directly altering the myocardium, vasculature, and metabolism. However, less frequently considered is the potential for indirect effects caused through enabling athletes to push beyond normal physiological limits with the potential consequence of exercise-induced arrhythmias. This review will summarize the known health effects of PEDs but will also focus on the potentially greater health threat posed by the covert search for performance-enhancing agents that have yet to be recognized by the World Anti-Doping Agency. History has taught us that athletes are subjected to unmonitored trials with experimental drugs that have little or no established efficacy or safety data. One approach to decrease drug abuse in sports would be to accept that there is a delay from when athletes start experimenting with novel agents to the time when authorities become aware of these drugs. This provides a window of opportunity for athletes to exploit with relative immunity. It could be argued that all off-label use of any agent should be deemed illegal. © 2016 American Heart Association, Inc.

  17. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance. Separate articles from this report have been indexed into the database.

  18. Durability testing of the high-capacity GA-4/GA-9 trailer

    International Nuclear Information System (INIS)

    Zimmer, A.

    1993-01-01

    General Atomics (GA) is under contract to the US Department of Energy (DOE), Idaho Field Office, to develop two legal-weight truck from-reactor spent-fuel shipping casks with trailers. GA is developing these high capacity transport systems to support the Office of Civilian Radioactive Waste Management's (OCRWM) mission to transport spent fuel from reactors to a permanent disposal site. GA's goal is to maximize the number of fuel assemblies that the transport system can safely carry. The GA-4 Cask is being designed to transport four pressurized-water-reactor (PWR) spent-fuel assemblies, and the GA-9 Cask is being designed to transport nine boiling-water-reactor (BWR) spent-fuel assemblies. The use of these high-capacity transport systems will have a large benefit to-public safety since the number of legal-weight truck shipments will be reduced by at least a factor of four over existing spent-fuel shipping cask systems. Achieving these capacities requires that the weight of each component of the transport system. i.e., cask, trailer and tractor, be minimized. The weight of the trailer is of particular importance. With a high load-to-weight ratio, the durability and reliability of the trailer become significant factors in the success of the transport system. In order to verify that the trailer design will meet the durability and performance requirements to safely transport spent-fuel, GA has planned an extensive testing program. The testing program includes non-destructive examination (NDE) of the trailer welds, operational testing, a static load test, an over-the-road performance test, and a test to verify the durability of the trailer up to its 1,000,000-mile design life. Since a prototype cask will not be available for the testing, GA designed and built a dummy payload that simulates the correct weight distribution and approximates the dynamic response of the prototype cask

  19. Probabilistic Durability Analysis in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    A. Kudzys

    2000-01-01

    Full Text Available Expedience of probabilistic durability concepts and approaches in advanced engineering design of building materials, structural members and systems is considered. Target margin values of structural safety and serviceability indices are analyzed and their draft values are presented. Analytical methods of the cumulative coefficient of correlation and the limit transient action effect for calculation of reliability indices are given. Analysis can be used for probabilistic durability assessment of carrying and enclosure metal, reinforced concrete, wood, plastic, masonry both homogeneous and sandwich or composite structures and some kinds of equipments. Analysis models can be applied in other engineering fields.

  20. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  1. Durability of Bricks Coated with Red mud Based Geopolymer Paste

    Science.gov (United States)

    Singh, Smita; Basavanagowda, S. N.; Aswath, M. U.; Ranganath, R. V.

    2016-09-01

    The present study is undertaken to assess the durability of concrete blocks coated with red mud - fly ash based geopolymer paste. Concrete blocks of size 200 x 200 x 100mm were coated with geopolymer paste synthesized by varying the percentages of red mud and fly ash. Uncoated concrete blocks were also tested for the durability for comparison. In thermal resistance test, the blocks were subjected to 600°C for an hour whereas in acid resistance test, they were kept in 5% sulphuric acid solution for 4 weeks. The specimens were thereafter studied for surface degradation, strength loss and weight loss. Pastes with red mud percentage greater than 50% developed lot of shrinkage cracks. The blocks coated with 30% and 50% red mud paste showed better durability than the other blocks. The use of blocks coated with red mud - fly ash geopolymer paste improves the aesthetics, eliminates the use of plaster and improves the durability of the structure.

  2. Highly Durable Direct Methanol Fuel Cell with Double-Layered Catalyst Cathode

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-01-01

    Full Text Available Polymer electrolyte membrane (PEM is one of the key components in direct methanol fuel cells. However, the PEM usually gets attacked by reactive oxygen species during the operation period, resulting in the loss of membrane integrity and formation of defects. Herein, a double-layered catalyst cathode electrode consisting of Pt/CeO2-C as inner catalyst and Pt/C as outer catalyst is fabricated to extend the lifetime and minimize the performance loss of DMFC. Although the maximum power density of membrane electrode assembly (MEA with catalyst cathode is slightly lower than that of the traditional one, its durability is significantly improved. No obvious degradation is evident in the MEA with double-layered catalyst cathode within durability testing. These results indicated that Pt/CeO2-C as inner cathode catalyst layer greatly improved the stability of MEA. The significant reason for the improved stability of MEA is the ability of CeO2 to act as free-radical scavengers.

  3. Determinants of Long-Term Durable Glycemic Control in New-Onset Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Kyoung Jin Kim

    2017-08-01

    Full Text Available BackgroundLong-term durable glycemic control is a difficult goal in the management of type 2 diabetes mellitus (T2DM. We evaluated the factors associated with durable glycemic control in a real clinical setting.MethodsWe retrospectively reviewed the medical records of 194 new-onset, drug-naïve patients with T2DM who were diagnosed between January 2011 and March 2013, and were followed up for >2 years. Glycemic durability was defined as the maintenance of optimal glycemic control (glycosylated hemoglobin [HbA1c] <7.0% for 2 years without substitution or adding other glucose-lowering agents. Clinical factors and glycemic markers associated with glycemic durability were compared between two groups: a durability group and a non-durability group.ResultsPatients in the durability group had a higher baseline body mass index (26.1 kg/m2 vs. 24.9 kg/m2 and lower HbA1c (8.6% vs. 9.7% than the non-durability group. The initial choice of glucose-lowering agents was similar in both groups, except for insulin and sulfonylureas, which were more frequently prescribed in the non-durability group. In multiple logistic regression analyses, higher levels of education, physical activity, and homeostasis model assessment of β-cell function (HOMA-β were associated with glycemic durability. Notably, lower HbA1c (<7.0% at baseline and first follow-up were significantly associated with glycemic durability (adjusted odds ratio [OR], 7.48; 95% confidence interval [CI], 2.51 to 22.3 (adjusted OR, 9.27; 95% CI, 1.62 to 53.1, respectively, after adjusting for confounding variables including the types of glucose-lowering agents.ConclusionEarly achievement of HbA1c level within the glycemic target was a determinant of long-term glycemic durability in new-onset T2DM, as were higher levels of education, physical activity, and HOMA-β.

  4. Influence Of Density On The Durabilities Of Three Ghanaian Timbers ...

    African Journals Online (AJOL)

    Review of factors influencing wood durability shows although density varies depending on trunk position, its role appears controversial for many timber species. Thus, for the first time, the influence of density on the durability of three Ghanaian timbers (Nauclea diderrichii (de Wild.) Merr., Nesogordonia papaverifera (A. Chev ...

  5. High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, Jens Ulrik

    2012-01-01

    C and -0.5 A/cm2 with no long term degradation, as long as the inlet gases to the Ni/YSZ electrode were cleaned [3]. In this work, co-electrolysis of steam and carbon dioxide was studied in a TOFC® 10-cell stack, containing 3 different types ofNi/YSZ electrode supported cells with a footprint of 12X12 cm2....... The stack was operated at 800 oC and -0.75 A/cm2 with 60% conversion for a period of 1000 hours. One type of the cells showed no long term degradation but actually activation during the entire electrolysis period, while the other two types degraded. The performance and durability of the different cell types...... is discussed with respect to cell material composition and microstructure. The results of this study show that long term electrolysis is feasible without notable degradation also at lower temperature (800 oC) and higher current density (-0.75 A/cm2)....

  6. Judgments about illegal performance-enhancing substances: reasoned, reactive, or both?

    Science.gov (United States)

    Dodge, Tonya; Stock, Michelle; Litt, Dana

    2013-07-01

    This study applied aspects of the Theory of Reasoned Action and the Prototype/Willingness model to understand cognitions associated with the use of illegal performance-enhancing substances. There were two study objectives. One was to investigate whether the illegal-is-effective heuristic (i.e. belief that illegal performance-enhancing substances are more effective than legal performance-enhancing substances) affects willingness to use illegal performance-enhancing substances. The second was to examine whether attitudes, norms, and prototypes influence the willingness and intentions to use illegal performance-enhancing substances. The illegal-is-effective heuristic was a significant predictor of willingness but was not a significant predictor of intentions. Implications for future research and prevention efforts are discussed.

  7. Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Tosten, M.H.; Beam, D.C.

    1989-01-01

    The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 x 10 10 rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90 degree C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs

  8. Durable platinum/graphene catalysts assisted with polydiallyldimethylammonium for proton-exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Lei, M.; Liang, C.; Wang, Y.J.; Huang, K.; Ye, C.X.; Liu, G.; Wang, W.J.; Jin, S.F.; Zhang, R.; Fan, D.Y.; Yang, H.J.; Wang, Y.G.

    2013-01-01

    High performance and electrochemically stable Pt/graphene catalysts assisted with polydiallyldimethylammonium (PDDA) have been synthesized for PEM fuel cells. The preparation procedure and properties of the catalysts are investigated in detail. With the introduction of PDDA molecules, Pt nanoparticles can be well-dispersed on graphene support, resulting in improved electrochemical surface area and enhanced electrocatalytic activity. The corresponding electrochemical surface areas (ECSA) of catalyst layers calculated from the hydrogen desorption peak on cyclic voltammogram curves are 78.3, 72.5 and 73.6 cm 2 g −1 for catalyst layers with Pt/graphene, Pt-PDDA/graphene, and Pt/graphene-PDDA catalysts, respectively. Both PDDA modified Pt nanoparticles and PDDA modified graphene supports also exhibit high durability toward electrochemical oxidation cycles compared with the conventional produced Pt/graphene catalyst at the same conditions. After 3000 cycles, only 23.52% of the initial ECSA remains for Pt/graphene electrocatalyst whereas 43.04% and 37.7% of the initial ECSA for the Pt/graphene-PDDA and Pt-PDDA/graphene catalysts remain, respectively

  9. Brain performance enhancement for military operators

    NARCIS (Netherlands)

    Erp, J.B.F.; Reschke, S.; Grootjen, M.; Brouwer, A.-M.

    2009-01-01

    Performance of military operators depends on both physical and cognitive aspects. Enhancement of operator performance should therefore address both the body and the brain. This paper focuses on the latter. We provide an extended list of areas where neuroscientific knowledge may be important like

  10. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions. In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.

  11. Durability of heavyweight concrete containing barite

    International Nuclear Information System (INIS)

    Binici, Hanifi

    2010-01-01

    The supplementary waste barite aggregates deposit in Osmaniye, southern Turkey, has been estimated at around 500 000 000 tons based on 2007 records. The aim of the present study is to investigate the durability of concrete incorporating waste barite as coarse and river sand (RS), granule blast furnace slag (GBFS), granule basaltic pumice (GBP) and ≤ 4 mm granule barite (B) as fine aggregates. The properties of the fresh concrete determined included the air content, slump, slump loss and setting time. They also included the compressive strength, flexural and splitting tensile strengths and Young's modulus of elasticity, resistance to abrasion and sulphate resistance of hardened concrete. Besides these, control mortars were prepared with crushed limestone aggregates. The influence of waste barite as coarse aggregates and RS, GBFS, GBP and B as fine aggregates on the durability of the concretes was evaluated. The mass attenuation coefficients were calculated at photon energies of 1 keV to 100 GeV using XCOM and the obtained results were compared with the measurements at 0.66 and 1.25 MeV. The results showed the possibility of using these waste barite aggregates in the production of heavy concretes. In several cases, some of these properties have been improved. Durability of the concrete made with these waste aggregates was improved. Thus, these materials should be preferably used as aggregates in heavyweight concrete production. (orig.)

  12. Creep Behavior and Durability of Cracked CMC

    Science.gov (United States)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  13. Freeze-thaw durability of air-entrained concrete.

    Science.gov (United States)

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  14. Optimal Monetary Policy with Durable Consumption Goods and Factor Demand Linkages

    DEFF Research Database (Denmark)

    Petrella, Ivan; Santoro, Emiliano

    of production in both sectors, according to an input-output matrix calibrated on the US economy. As shown in a number of recent contributions, this roundabout technology allows us to reconcile standard two-sector New Keynesian models with the empirical evidence showing co-movement between durable and non......-durable spending in response to a monetary policy shock. A main result of our monetary policy analysis is that strategic complementarities generated by factor demand linkages amplify social welfare loss. As the degree of interconnection between sectors increases, the cost of misperceiving the correct production......This paper deals with the implications of factor demand linkages for monetary policy design. We develop a dynamic general equilibrium model with two sectors that produce durable and non-durable goods, respectively. Part of the output produced in each sector is used as an intermediate input...

  15. Sensorimotor Rhythm Neurofeedback Enhances Golf Putting Performance.

    Science.gov (United States)

    Cheng, Ming-Yang; Huang, Chung-Ju; Chang, Yu-Kai; Koester, Dirk; Schack, Thomas; Hung, Tsung-Min

    2015-12-01

    Sensorimotor rhythm (SMR) activity has been related to automaticity during skilled action execution. However, few studies have bridged the causal link between SMR activity and sports performance. This study investigated the effect of SMR neurofeedback training (SMR NFT) on golf putting performance. We hypothesized that preelite golfers would exhibit enhanced putting performance after SMR NFT. Sixteen preelite golfers were recruited and randomly assigned into either an SMR or a control group. Participants were asked to perform putting while electroencephalogram (EEG) was recorded, both before and after intervention. Our results showed that the SMR group performed more accurately when putting and exhibited greater SMR power than the control group after 8 intervention sessions. This study concludes that SMR NFT is effective for increasing SMR during action preparation and for enhancing golf putting performance. Moreover, greater SMR activity might be an EEG signature of improved attention processing, which induces superior putting performance.

  16. Estimation of Concrete Carbonation Depth Considering Multiple Influencing Factors on the Deterioration of Durability for Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hae-Chang Cho

    2016-01-01

    Full Text Available While the durability of concrete structures is greatly influenced by many factors, previous studies typically considered only a single durability deterioration factor. In addition, these studies mostly conducted their experiments inside the laboratory, and it is extremely hard to find any case in which data were obtained from field inspection. Accordingly, this study proposed an Adaptive Neurofuzzy Inference System (ANFIS algorithm that can estimate the carbonation depth of a reinforced concrete member, in which combined deterioration has been reflected based on the data obtained from field inspections of 9 buildings. The proposed ANFIS algorithm closely estimated the carbonation depths, and it is considered that, with further inspection data, a higher accuracy would be achieved. Thus, it is expected to be used very effectively for durability estimation of a building of which the inspection is performed periodically.

  17. Evolutionary model of an anonymous consumer durable market

    Science.gov (United States)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal

  18. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    Science.gov (United States)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  19. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    Science.gov (United States)

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.

  20. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    . As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...... or ionically cross-linking and structure modification With load, thermal or startup-shutdown cycling, the performance loss was found to be much bigger, about 300 µV per cycle or 40 µV per operating hour, due to the increased acid loss and catalyst support corrosion, particularly under open circuit voltage...... operation. Further efforts are outlined to the future work....

  1. On the Durability of Nuclear Waste Forms from the Perspective of Long-Term Geologic Repository Performance

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2013-12-01

    Full Text Available High solid/water ratios and slow water percolation cause the water in a repository to quickly (on a repository time scale reach radionuclide solubility controlled by the equilibrium with alteration products; the total release of radionuclides then becomes insensitive to the dissolution rates of primary waste forms. It is therefore suggested that future waste form development be focused on conditioning waste forms or repository environments to minimize radionuclide solubility, rather than on marginally improving the durability of primary waste forms.

  2. Predicting the long-term durability of hemp–lime renders in inland and coastal areas using Mediterranean, Tropical and Semi-arid climatic simulations

    International Nuclear Information System (INIS)

    Arizzi, Anna; Viles, Heather; Martín-Sanchez, Inés; Cultrone, Giuseppe

    2016-01-01

    Hemp-based composites are eco-friendly building materials as they improve energy efficiency in buildings and entail low waste production and pollutant emissions during their manufacturing process. Nevertheless, the organic nature of hemp enhances the bio-receptivity of the material, with likely negative consequences for its long-term performance in the building. The main purpose of this study was to study the response at macro- and micro-scale of hemp–lime renders subjected to weathering simulations in an environmental cabinet (one year was condensed in twelve days), so as to predict their long-term durability in coastal and inland areas with Mediterranean, Tropical and Semi-arid climates, also in relation with the lime type used. The simulated climatic conditions caused almost unnoticeable mass, volume and colour changes in hemp–lime renders. No efflorescence or physical breakdown was detected in samples subjected to NaCl, because the salt mainly precipitates on the surface of samples and is washed away by the rain. Although there was no visible microbial colonisation, alkaliphilic fungi (mainly Penicillium and Aspergillus) and bacteria (mainly Bacillus and Micrococcus) were isolated in all samples. Microbial growth and diversification were higher under Tropical climate, due to heavier rainfall. The influence of the bacterial activity on the hardening of samples has also been discussed here and related with the formation and stabilisation of vaterite in hemp–lime mixes. This study has demonstrated that hemp–lime renders show good durability towards a wide range of environmental conditions and factors. However, it might be useful to take some specific preventive and maintenance measures to reduce the bio-receptivity of this material, thus ensuring a longer durability on site. - Highlights: • Realistic simulations in the cabinet of one-year exposure to environmental conditions • Influence of the lime type on the durability of hemp–lime renders

  3. Predicting the long-term durability of hemp–lime renders in inland and coastal areas using Mediterranean, Tropical and Semi-arid climatic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Arizzi, Anna, E-mail: anna.arizzi@ouce.ox.ac.uk [School of Geography and the Environment, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY (United Kingdom); Viles, Heather [School of Geography and the Environment, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY (United Kingdom); Martín-Sanchez, Inés [Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada (Spain); Cultrone, Giuseppe [Departamento de Mineralogía y Petrología, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada (Spain)

    2016-01-15

    Hemp-based composites are eco-friendly building materials as they improve energy efficiency in buildings and entail low waste production and pollutant emissions during their manufacturing process. Nevertheless, the organic nature of hemp enhances the bio-receptivity of the material, with likely negative consequences for its long-term performance in the building. The main purpose of this study was to study the response at macro- and micro-scale of hemp–lime renders subjected to weathering simulations in an environmental cabinet (one year was condensed in twelve days), so as to predict their long-term durability in coastal and inland areas with Mediterranean, Tropical and Semi-arid climates, also in relation with the lime type used. The simulated climatic conditions caused almost unnoticeable mass, volume and colour changes in hemp–lime renders. No efflorescence or physical breakdown was detected in samples subjected to NaCl, because the salt mainly precipitates on the surface of samples and is washed away by the rain. Although there was no visible microbial colonisation, alkaliphilic fungi (mainly Penicillium and Aspergillus) and bacteria (mainly Bacillus and Micrococcus) were isolated in all samples. Microbial growth and diversification were higher under Tropical climate, due to heavier rainfall. The influence of the bacterial activity on the hardening of samples has also been discussed here and related with the formation and stabilisation of vaterite in hemp–lime mixes. This study has demonstrated that hemp–lime renders show good durability towards a wide range of environmental conditions and factors. However, it might be useful to take some specific preventive and maintenance measures to reduce the bio-receptivity of this material, thus ensuring a longer durability on site. - Highlights: • Realistic simulations in the cabinet of one-year exposure to environmental conditions • Influence of the lime type on the durability of hemp–lime renders

  4. Recent advances in the mechanical durability of superhydrophobic materials.

    Science.gov (United States)

    Milionis, Athanasios; Loth, Eric; Bayer, Ilker S

    2016-03-01

    Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ancient analogues concerning stability and durability of cementitious wasteform

    International Nuclear Information System (INIS)

    Jiang, W.; Roy, D.M.

    1994-01-01

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called open-quotes pozzolanclose quotes which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors' concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms

  6. Sodium Mercaptoethane Sulfonate Reduces Collagenolytic Degradation and Synergistically Enhances Antimicrobial Durability in an Antibiotic-Loaded Biopolymer Film for Prevention of Surgical-Site Infections

    Directory of Open Access Journals (Sweden)

    Joel Rosenblatt

    2017-01-01

    Full Text Available Implant-associated surgical-site infections can have significant clinical consequences. Previously we reported a method for prophylactically disinfecting implant surfaces in surgical pockets, where an antibiotic solution containing minocycline (M and rifampin (R was applied as a solid film in a crosslinked biopolymer matrix that partially liquefied in situ to provide extended prophylaxis. Here we studied the effect of adding sodium 2-mercaptoethane sulfonate (MeSNA on durability of prophylaxis in an in vitro model of implant-associated surgical-site infection. Adding MeSNA to the M/R biopolymer, antimicrobial film extended the duration for which biofilm formation by multidrug-resistant Pseudomonas aeruginosa (MDR-PA was prevented on silicone surfaces in the model. M/R films with and without MeSNA were effective in preventing colonization by methicillin-resistant Staphylococcus aureus. Independent experiments revealed that MeSNA directly inhibited proteolytic digestion of the biopolymer film and synergistically enhanced antimicrobial potency of M/R against MDR-PA. Incubation of the MeSNA containing films with L929 fibroblasts revealed no impairment of cellular metabolic activity or viability.

  7. Peripheral visual performance enhancement by neurofeedback training.

    Science.gov (United States)

    Nan, Wenya; Wan, Feng; Lou, Chin Ian; Vai, Mang I; Rosa, Agostinho

    2013-12-01

    Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.

  8. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  9. Decoration and Durability

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Munch, Anders V.

    2015-01-01

    Throughout the scales of design there has been an exploding interest in the ornament that seems to be fuelled by different kinds of digital technology and media from CAD to digital printing in both 2D and 3D. In architecture and industrial design it is discussed as a Return of ornament, because...... appropriate or not. This leads us to suggest an array of parameters that points out different situations and meanings of ornamentation: Product categories, Durability of materials, Styles, Aesthetic experience, Emotional attachment and Historical references. We discuss these parameters in cases from fashion...

  10. Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures

    Science.gov (United States)

    2010-02-01

    Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry

  11. Freeze-Thaw Durability of Air-Entrained Concrete

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  12. Does Caffeine Enhance Athletic Performance?

    Directory of Open Access Journals (Sweden)

    Marcou Juliana

    2016-04-01

    Conclusion: Caffeine consumption may enhance athletic endurance, based on strong evidence, but further research needs to be conducted. High caffeine doses than the optimal, 3-6 mg/kg, before exercise does not confer any additional improvement in athletic performance. Additional, higher caffeine doses may cause side effects in athletes.

  13. Performance of Microbial Concrete Developed Using Bacillus Subtilus JC3

    Science.gov (United States)

    Rao, M. V. Seshagiri; Reddy, V. Srinivasa; Sasikala, Ch.

    2017-12-01

    Concrete is vulnerable to deterioration, corrosion, and cracks, and the consequent damage and loss of strength requires immensely expensive remediation and repair. So need for special concrete that they would respond to crack formation with an autonomous self-healing action lead to research and development of microbial concrete. The microbial concrete works on the principle of calcite mineral precipitation by a specific group of alkali-resistant spore-forming bacteria related to the genus Bacillus called Bacillus subtilis JC3, this phenomenon is called biomineralization or Microbiologically Induced Calcite Crystal Precipitation. Bacillus subtilis JC3, a common soil bacterium, has inherent ability to precipitate calcite crystals continuously which enhances the strength and durability performance of concrete enormously. This microbial concrete can be called as a "Self healing Bacterial Concrete" because it can remediate its cracks by itself without any human intervention and would make the concrete more durable and sustainable. This paper discuss the incorporation of microorganism Bacillus subtilis JC3 (developed at JNTU, India) into concrete and presents the results of experimental investigations carried out to study the improved durability and sustainability characteristics of microbial concrete.

  14. Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability

    Science.gov (United States)

    Long, Shiwei; Cao, Xun; Sun, Guangyao; Li, Ning; Chang, Tianci; Shao, Zewei; Jin, Ping

    2018-05-01

    Vanadium dioxide (VO2) is one of the most well-known thermochromic materials, which exhibits a notable optical change from transparent to reflecting in the infrared region upon a metal-insulator phase transition. For practical applications, VO2 thin films should be in high crystalline quality to obtain a strong solar modulation ability (ΔTsol). Meanwhile, narrow hysteresis loops and robust ambient durability are also indispensable for sensitivity and long-lived utilization, respectively. In this work, a series of high-quality V2O3/VO2 bilayer structures were grown on quartz glass substrates by reactive magnetron sputtering. Basically, the bottom V2O3 acts as the buffer layer to improve the crystallinity of the top VO2, while the VO2 serves as the thermochromic layer to guarantee the solar modulation ability for energy-saving. We observed an obvious increase in ΔTsol of 76% (from 7.5% to 13.2%) for VO2 films after introducing V2O3 buffer layers. Simultaneously, a remarkable reduction by 79% (from 21.9 °C to 4.7 °C) in width of hysteresis loop was obtained when embedding 60 nm V2O3 buffer for 60 nm VO2. In addition, VO2 with non-stoichiometry of V2O3±x buffer demonstrates a broadening hysteresis loops width, which is derived from the lattice distortion caused by lattice imperfection. Finally, durability of VO2 has been significantly improved due to positive effects of V2O3 buffer layer. Our results lead to a comprehensive enhancement in crystallinity of VO2 and shed new light on the promotion of thermochromic property by homologous oxides for VO2.

  15. Durability of building joint sealants

    Science.gov (United States)

    Christopher C. White; Kar Tean Tan; Donald L. Hunston; R. Sam Williams

    2009-01-01

    Predicting the service life of building joint sealants exposed to service environments in less than real time has been a need of the sealant community for many decades. Despite extensive research efforts to design laboratory accelerated tests to duplicate the failure modes occurring in field exposures, little success has been achieved using conventional durability...

  16. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  17. Surface chemistry and durability of borosilicate glass

    International Nuclear Information System (INIS)

    Carroll, S.A.; Bourcier, W.L.; Phillips, B.L.

    1994-01-01

    Important glass-water interactions are poorly understood for borosilicate glass radioactive waste forms. Preliminary results show that glass durability is dependent on reactions occurring at the glass-solution interface. CSG glass (18.2 wt. % Na 2 O, 5.97 wt. % CaO, 11.68 wt. % Al 2 O 3 , 8.43 wt. % B 2 O 3 , and 55.73 wt. % SiO 2 ) dissolution and net surface H + and OH - adsorption are minimal at near neutral pH. In the acid and alkaline pH regions, CSG glass dissolution rates are proportional to [H + ] adsorbed 2 and [OH - ] adsorbed 0.8 , respectively. In contrast, silica gel dissolution and net H + and OH - adsorption are minimal and independent of pH in acid to neutral solutions. In the alkaline pH region, silica gel dissolution is proportional to [OH - ] adsorbed 0.9 adsorbed . Although Na adsorption is significant for CSG glass and silica gel in the alkaline pH regions, it is not clear if it enhances dissolution, or is an artifact of depolymerization of the framework bonds

  18. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  19. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability.

    Science.gov (United States)

    Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe

    2014-02-22

    Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.

  20. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied

  1. 42 CFR 418.106 - Condition of participation: Drugs and biologicals, medical supplies, and durable medical equipment.

    Science.gov (United States)

    2010-10-01

    ... well as an expiration date (if applicable). (2) Disposing. (i) Safe use and disposal of controlled... written account of the investigation must be made available to State and Federal officials if required by... ensure that manufacturer recommendations for performing routine and preventive maintenance on durable...

  2. Increase of operational reliability and durability of square sectoral working bodies of flexible screw conveyors

    Directory of Open Access Journals (Sweden)

    O.L. Lyashuk

    2017-12-01

    Full Text Available The construction of the device for guiding screw sectional working bodies of increased operational reliability and durability and the method of determination of the force of guiding the design parameters are given. Two main methods of manufacturing screw mechanisms of machines of various service purposes were investigated and it was established that twisted screws, in terms of their strength and performance, considerably exceed rolling stock. The design of the device for manufacturing screw working bodies of conveyors by means of cutting by periodic and continuous methods, as the most reliable in operation, is developed. The specifics of their work are due to various operations of technological processes, as well as physical and mechanical properties of goods, determine the nomenclature and design parameters of screw mechanisms (SM. In studying the processes of forming screw spirals, the basic precision characteristics of the methods of drilling and rolling are established. A comparative study of two main methods in terms of their operational and durable capabilities has been carried out. An important factor determining the reliability and durability of a screw is the difference in the thickness of the inner and outer edges.

  3. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  4. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    Science.gov (United States)

    Bassuoni, Mohamed Tamer F.

    The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion

  5. Performance enhancement of hermetic compressor using phase change materials

    Science.gov (United States)

    Mahmoud, I. M.; Rady, M. A.; Huzayyin, A. S.

    2015-08-01

    The present study is motivated by the need for the research of simple measures for increasing energy efficiency of hermetic compressor. The measure is the application of phase change materials for performance enhancement. The first experimental study should be guide for choice of PCM. It has been performed to investigate the effects of thermostat setting temperature on the performance of hermetic compressor. The effects of thermostat setting temperature with and without load on power consumption have been analyzed. Performance enhancement using phase change materials (PCMs) has been studied by employing a phase change material Rubitherm-42 (RT-42) on the top surface of compressor. Choice of PCM material is based on basic compressor performance measured in the first part of the present study. Experiments have been carried out for different load values and different quantities of PCM. The quantity and phase change characteristic of PCM are essential parameters that determine the percentage of performance enhancement in term of energy consumption. Reduction of energy consumption of about 10% has been achieved in the present study by using PCM. The present study shows that how to reduce the electrical power consumption to enhance compressor heat dissipation method to improve efficiency.

  6. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  7. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  8. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  9. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  10. Overview of ORNL/NRC programs addressing durability of concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1994-01-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal

  11. Review of durability of cementitious engineered barriers in repository environments

    International Nuclear Information System (INIS)

    Parrott, L.J.; Lawrence, C.D.

    1992-01-01

    This report is concerned with the durability of cementitious engineered barriers in a repository for low and intermediate level nuclear waste. Following the introduction the second section of the review identifies the environmental conditions associated with a deep, hard rock repository for ILW and LLW that are relevant to the durability of cementitious barriers. Section three examines the microstructure and macrostructure of cementitious materials and considers the physical and chemical processes of radionuclide immobilization. Potential repository applications and compositions of cementitious materials are reviewed in Section four. The main analysis of durability is dealt with in Section five. The different types of cementitious barrier are considered separately and their most probable modes of degradation are analysed. Concluding remarks that highlight critical technical matters are given in Section six. (author)

  12. Durability of sealants exposed to outdoor weathering and hot compression cycles

    Science.gov (United States)

    Gregory T. Schueneman; Steven Lacher; Christopher G. Hunt; Christopher C. White; Donald L. Hunston

    2011-01-01

    Sealants play an important role in weatherproofing structures by filling gaps and preventing air and water intrusion. When incorrectly selected or improperly applied, they may fail quickly, compromising durability of the structure. To ensure reliability and prevent the need for costly repairs to structures, it is necessary to measure durability and predict life...

  13. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Neufeld, Kai; Liu, Yi-Lin

    2010-01-01

    Anode-supported solid oxide fuel cells (SOFCs) based on Ni–yttria-stabilized zirconia (YSZ) anodes, YSZ electrolytes, and lanthanum strontium manganite (LSM)–YSZ cathodes were studied with respect to durability in humid air (~4%) typically over 1500 h. Operating temperature and current density were...... varied between 750 and 850°C and 0.25–0.75 A/cm2, respectively. The introduction of humidity affected the cell voltage under polarization of the cell, and this effect was (at least partly) reversible upon switching off the humidity. Generally, the studied cells were operated in humid air under...... technologically relevant conditions over more than 1500 h. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750°C in humid air, conditions that cause significant cell voltage degradation in dry air on cells...

  14. Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

    DEFF Research Database (Denmark)

    Hagen, Anke; Chen, Ming; Neufeld, Kai

    2009-01-01

    Anode supported SOFCs based on Ni-YSZ anodes, YSZ electrolytes, and LSM-YSZ cathodes were studied with respect to durability in humid air (~4%) over typically 1500 hours. Operating temperature and current density were varied between 750 and 850 oC and 0.25-0.75 A/cm2, respectively. It was found...... that the introduction of humidity affected the cell voltage under polarization of the cell and that this effect was (at least partly) reversible upon switching off the humidity, probably related to a segregation of impurities towards the three phase boundary in the presence of humidity. Generally, the studied cells...... were successfully operated in humid air under technologically relevant conditions. Improvements at the cathode/electrolyte interface made it possible to obtain highly stable cells, which can be operated under high current density and at 750 oC in humid air - conditions that are known to cause...

  15. Development of Nano technology in High Performance Concrete

    International Nuclear Information System (INIS)

    Nima Farzadnia; Abang Abdullah Abang Ali; Ramazan Demirboga; Demirboga, R.

    2011-01-01

    Concrete is the most widely used building material all around the world which has been undergoing many changes aligned with technological advancement. The most recent available type of concrete is high performance concrete which is produced by employing different admixtures both chemical and mineral to enhance mechanical properties and durability. Recently, technology has made it easy for scientist to study nano sized admixtures and their effect on microstructure of concrete. This paper reviews nano particles in cement composites and how they can improve different properties of concrete. (author)

  16. Durability Tests of Ball Valve Prototype with Flowmeter Operation

    Science.gov (United States)

    Rogula, J.; Romanik, G.

    2018-02-01

    The results of the investigation of the prototypical ball valve are presented in this article. The innovation of the tested valve is a ball with a built-in measuring orifice. The valve has been subjected to durability tests. Leakage under three temperatures: ambient, -30°C and +100°C was analyzed. Sealing elements of the valve were tested for roughness and deviation of shape before and after the cycles of operation. Ball valve operation means cycles of open/close. It was planned to perform 1000 cycles at each temperature condition accordingly. Tests of the valve were performed under gas pressure equal to 10 MPa. The research was carried out under the Operational Program "Intelligent Development" (POIR 01.01.01-00-0013 / 15 "Development of devices for measurement of media flow on industrial trunk-lines".

  17. 40 CFR 610.33 - Durability tests.

    Science.gov (United States)

    2010-07-01

    ....33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY... problems, deterioration in spark plug life, increase in carburetor or combustion chamber deposits, or..., then a durability run may be made as described in subpart E, in which fuel economy and exhaust...

  18. Nanoporous niobium nitride (Nb2N) with enhanced electrocatalytic performance for hydrogen evolution

    Science.gov (United States)

    Li, Yan; Zhang, Jianli; Qian, Xingyue; Zhang, Yue; Wang, Yining; Hu, Rudan; Yao, Chao; Zhu, Junwu

    2018-01-01

    The transition metal nitrides (TMNs) with nanoporous structure have shown great promise as potential electrocatalysts for the hydrogen evolution reaction (HER). Herein, self-organized nanoporous Nb2N was first successfully synthesized through the anodization of niobium in mixed oxalic acid/HF electrolyte, followed by a simple annealing treatment in the ammonia atmosphere. Due to the highly ordered nanoporous structure with abundant active sites and the enhanced electrical conductivity, the Nb2N exhibits a high catalytic current (326.3 mA cm-2) and low onset potential (96.3 mV), which is almost 3.9 times and 4.2 times better than that of Nb2O5, respectively. Meanwhile, the Nb2N also presents low Tafel slope (92 mV dec-1), and excellent cycling durability. More importantly, this study will provide more opportunities for designing and fabricating niobium compounds as an innovative HER catalysts.

  19. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  20. Durability of critical infrastructures

    OpenAIRE

    Raluca Pascu; Ramiro Sofronie

    2011-01-01

    The paper deals with those infrastructures by which world society, under the pressure ofdemographic explosion, self-survives. The main threatening comes not from terrorist attacks, but fromthe great natural catastrophes and global climate change. It’s not for the first time in history when suchmeasures of self-protection are built up. First objective of this paper is to present the background fordurability analysis. Then, with the aid of these mathematical tools the absolute durability of thr...

  1. Self-curing concrete types; water retention and durability

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-09-01

    This study was carried out to compare among concretes without or with silica fume (SF along with chemical type of shrinkage reducing admixture, polyethylene-glycol (Ch, and leca as self-curing agents for water retention even at elevated temperature (50 °C and their durability. The cement content of 400 kg/m3, silica fume of 15% by weight of cement, polyethylene-glycol of 2% by weight of cement, pre-saturated lightweight aggregate (leca 15% by volume of sand and water with Ch/binder ratio of 0.4 were selected in this study. Some of the physical and mechanical properties were determined periodically up to 28 days in case of exposure to air curing in temperature of (25 °C and (50 °C while up to 6 months of exposure to 5% of carbon dioxide and wet/dry cycles in 8% of sodium chloride for durability study. The concrete mass loss and the volumetric water absorption were measured, to evaluate the water retention of the investigated concretes. Silica fume concrete either without or with Ch gave the best results under all curing regimes; significant water retention and good durability properties.

  2. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter

    2012-01-01

    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented...... as a transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode...... of the infiltrated submicron sized particles was surprisingly robust. TEM analysis revealed the nano sized Ni particles to be trapped within the CGO matrix, which along the self limiting grain growth of the CGO seem to be able to stabilize the submicron structured anode....

  3. Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning

    OpenAIRE

    Woods, Amanda M.; Bouton, Mark E.

    2008-01-01

    Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In all experiments, conditioning and extinction were accomplished in single sessions, and retention testing took place 24 h after extinction. In both f...

  4. Addressing Infrastructure Durability and Sustainability by Self Healing Mechanisms : Recent Advances in Self Healing Concrete and Asphalt

    NARCIS (Netherlands)

    Schlangen, H.E.J.G.; Sangadji, S.

    2013-01-01

    Infrastructures cover a very broad spectrum of different materials. This paper focuses on civil engineering structures, concrete and asphalt in particular. The public demand for such infrastructures is high level of service and performance, high durability and minimum negative ecological impact. New

  5. Durability 2007. Injection grout investigations. Background description

    International Nuclear Information System (INIS)

    Orantie, K.; Kuosa, H.

    2008-12-01

    The aim of this project was to evaluate the durability risks of injection grouts. The investigations were done with respect to the application conditions, materials and service life requirements at the ONKALO underground research facility. The study encompassed injection grout mixtures made of ultrafine cement with and without silica fume. Some of the mixtures hade a low pH and thus a high silica fume content. The project includes a background description on durability literature, laboratory testing programme, detailed analysis of results and recommendations for selecting of ideal grout mixtures. The background description was made for the experimental study of low-pH and reference rock injection grouts as regards pore- and microstructure, strength, shrinkage/swelling and thus versatile durability properties. A summary of test methods is presented as well as examples, i.e. literature information or former test results, of expected range of results from the tests. Also background information about how the test results correlate to other material properties and mix designs is presented. Besides the report provides basic information on the pore structure of cement based materials. Also the correlation between the pore structure of cement based materials and permeability is shortly discussed. The test methods included in the background description are compressive strength, measurement of bulk drying, autogenous and chemical shrinkage and swelling, hydraulic conductivity / permeability, capillary water uptake test, mercury intrusion porosimetry (MIP) and thin section analysis. Three main mixtures with water-binder ratio of 0.8, 1.0 and 1.4 and silica fume content of 0, 15 and 40% were studied in the laboratory. Besides two extra mixtures were studied to provide additional information about the effect of varying water-dry-material ratio and silica fume content on durability. The evaluation of water tightness based on water permeability coefficient and micro cracking was

  6. Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Colin [W. L. Gore & Associates Inc., Newark, DE (United States)

    2017-05-23

    Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goal is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the

  7. The prospective buyer of consumer durables

    NARCIS (Netherlands)

    Jonge, Leendert de; Oppedijk van Veen, Walle Melis

    1982-01-01

    In this book, an empirical investigation is reported wich aims at the specification of models of individual households’ purchase behaviour for particular consumer durable goods, such as private passenger cars and television sets. In particular, the focus is on models wich can be used for predicting

  8. Durability of Dukovany shallow land repository engineered barriers. Appendix 7: Czech Republic

    International Nuclear Information System (INIS)

    Vokal, A.; Nachmilner, L.; Wasserbauer, R.; Dohnalek, J.

    2001-01-01

    The main aim of this project was to explore the durability of engineering barriers used at Dukovany shallow land repository as a support of safety assessments. This appendix summarises the principal results focused on durability of asphaltopropyleneconcrete (APC) hydroisolation and steel reinforced concrete construction

  9. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection

    Directory of Open Access Journals (Sweden)

    Marie-Laure Pilet-Nayel

    2017-10-01

    Full Text Available Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  10. Highly durable and low permeable concrete for LLW facilities

    International Nuclear Information System (INIS)

    Yanagibashi, Kunio; Saito, Toshio; Odagawa, Masaro.

    1997-01-01

    Concrete used for LLW facilities is required to be highly durable. The authors evaluated concrete containing glycol ether derivatives and silica fume as admixtures. Compressive strength, diffusion coefficient of water, depth of accelerated carbonation, drying shrinkage, depth of chlorides penetration and resistance to freezing and thawing were investigated using concrete specimens. Compressive strength, depth of accelerated carbonation, diffusion coefficient of 137 Cs were investigated using mortar specimens before and after irradiation of gamma rays. Results showed that using glycol ether derivatives and silica fume was effective in improving the durability. (author)

  11. Enhancing team-sport athlete performance: is altitude training relevant?

    Science.gov (United States)

    Billaut, François; Gore, Christopher J; Aughey, Robert J

    2012-09-01

    Field-based team sport matches are composed of short, high-intensity efforts, interspersed with intervals of rest or submaximal exercise, repeated over a period of 60-120 minutes. Matches may also be played at moderate altitude where the lower oxygen partial pressure exerts a detrimental effect on performance. To enhance run-based performance, team-sport athletes use varied training strategies focusing on different aspects of team-sport physiology, including aerobic, sprint, repeated-sprint and resistance training. Interestingly, 'altitude' training (i.e. living and/or training in O(2)-reduced environments) has only been empirically employed by athletes and coaches to improve the basic characteristics of speed and endurance necessary to excel in team sports. Hypoxia, as an additional stimulus to training, is typically used by endurance athletes to enhance performance at sea level and to prepare for competition at altitude. Several approaches have evolved in the last few decades, which are known to enhance aerobic power and, thus, endurance performance. Altitude training can also promote an increased anaerobic fitness, and may enhance sprint capacity. Therefore, altitude training may confer potentially-beneficial adaptations to team-sport athletes, which have been overlooked in contemporary sport physiology research. Here, we review the current knowledge on the established benefits of altitude training on physiological systems relevant to team-sport performance, and conclude that current evidence supports implementation of altitude training modalities to enhance match physical performances at both sea level and altitude. We hope that this will guide the practice of many athletes and stimulate future research to better refine training programmes.

  12. Predicting the long-term durability of hemp-lime renders in inland and coastal areas using Mediterranean, Tropical and Semi-arid climatic simulations.

    Science.gov (United States)

    Arizzi, Anna; Viles, Heather; Martín-Sanchez, Inés; Cultrone, Giuseppe

    2016-01-15

    Hemp-based composites are eco-friendly building materials as they improve energy efficiency in buildings and entail low waste production and pollutant emissions during their manufacturing process. Nevertheless, the organic nature of hemp enhances the bio-receptivity of the material, with likely negative consequences for its long-term performance in the building. The main purpose of this study was to study the response at macro- and micro-scale of hemp-lime renders subjected to weathering simulations in an environmental cabinet (one year was condensed in twelve days), so as to predict their long-term durability in coastal and inland areas with Mediterranean, Tropical and Semi-arid climates, also in relation with the lime type used. The simulated climatic conditions caused almost unnoticeable mass, volume and colour changes in hemp-lime renders. No efflorescence or physical breakdown was detected in samples subjected to NaCl, because the salt mainly precipitates on the surface of samples and is washed away by the rain. Although there was no visible microbial colonisation, alkaliphilic fungi (mainly Penicillium and Aspergillus) and bacteria (mainly Bacillus and Micrococcus) were isolated in all samples. Microbial growth and diversification were higher under Tropical climate, due to heavier rainfall. The influence of the bacterial activity on the hardening of samples has also been discussed here and related with the formation and stabilisation of vaterite in hemp-lime mixes. This study has demonstrated that hemp-lime renders show good durability towards a wide range of environmental conditions and factors. However, it might be useful to take some specific preventive and maintenance measures to reduce the bio-receptivity of this material, thus ensuring a longer durability on site. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions

    DEFF Research Database (Denmark)

    Liao, Jianhui; Yang, Jingshuai; Li, Qingfeng

    2013-01-01

    Phosphoric acid doped polybenzimidazole membranes have been explored as proton exchange membranes for high temperature polymer electrolyte membrane fuel cells. Long-term durability of the membrane is of critical concern and has been evaluated by accelerated degradation tests under Fenton conditions...... of the polymer. Fuel cell durability tests with contaminations of ferrous ions did show considerable performance degradation, however, primarily due to the catalyst deterioration rather than the membrane degradation........ In this study effects of phosphoric acid and ferrous ions were investigated by measurements of the weight loss, intrinsic viscosity and size exclusion chromatography (SEC) of the polymer membranes. Ferrous ions resulted in, as expected, catalytic formation of peroxide radicals and hence the accelerated polymer...

  14. An approach for holistic energy retrofitting based on assessment of economic viability and durability of energy saving measures

    DEFF Research Database (Denmark)

    Morelli, Martin

    2014-01-01

    saving measures and forget to consider, whether it is more prudent to demolished the building and erect a new building. An evaluation approach is presented to assess whether to retrofit an existing building or to demolish and replace it. The primary concept of the method is to develop a retrofitting...... as constraint to determine the amount of building retrofitting for implementation. The approach includes also durability assessments of the energy saving measures. An example is carried out to illustrate the application of the approach. The example highlights the importance of including risk assessment...... and durability evaluation of the energy saving measures when performing holistic energy retrofitting of buildings....

  15. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  16. Electro-active paper for a durable biomimetic actuator

    International Nuclear Information System (INIS)

    Yun, Sung-Ryul; Yun, Gyu Young; Kim, Jung Hwan; Chen, Yi; Kim, Jaehwan

    2009-01-01

    Cellulose electro-active paper (EAPap), known as a smart material, has merits in terms of low voltage operation, light weight, dryness, low power consumption, biodegradability, abundance and low price. Since EAPap requires low power consumption, a remotely driven actuator has been proposed using microwave power transmission. This concept is attractive for many biomimetic systems such as crawling micro-insect robots, flying objects like dragon flies and smart wallpapers. However, the actuation performance of EAPap is sensitive to humidity and degrades with time. Thus, in this paper, a durable EAPap is studied. The fabrication of EAPap is explained and the actuation performance is shown with applied electric field, frequency, humidity level and time. The fabrication process includes dissolving cellulose fibers, eliminating solvent and Li ions with a mixture of deionized water and isopropyl alcohol, washing with water, drying and coating with gold. The morphology of the fabricated EAPap is analyzed by taking scanning electron microscope images and x-ray diffractograms. The actuation performance is tested in terms of bending displacement with frequency, time and humidity level

  17. Durable fear memories require PSD-95

    Science.gov (United States)

    Fitzgerald, Paul J.; Pinard, Courtney R.; Camp, Marguerite C.; Feyder, Michael; Sah, Anupam; Bergstrom, Hadley; Graybeal, Carolyn; Liu, Yan; Schlüter, Oliver; Grant, Seth G.N.; Singewald, Nicolas; Xu, Weifeng; Holmes, Andrew

    2014-01-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. While overly persistent fear memories underlie anxiety disorders such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Post-synaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Employing a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95GK), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95GK mice to retrieve remote cued fear memories was associated with hypoactivation of the infralimbic cortex (IL) (not anterior cingulate (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated PSD-95 virus-mediated knockdown in the IL, not ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  18. Enhancing Organizational Performance: A Toolbox for Self ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Do you know if your organization is performing efficiently? If it isn't, do you know why? This guidebook presents an innovative and thoroughly tested model for organizational self-assessment. The tools and tips in Enhancing Organizational Performance go beyond measuring the impact of programs, products, and services.

  19. Influence of Some Nuclear Waste on The Durability and Mechanical Properties of Borosilicate glass

    International Nuclear Information System (INIS)

    El-Alaily, N.A.

    2003-01-01

    Various glass systems have been shown to be suitable for producing waste glass forms that are thermally and mechanically stable and exhibit good chemical durability. In this study borosilicate glass containing sodium oxide and aluminum oxide was prepared as a host for high level nuclear waste. The glass durability when the samples were immersed either in distilled water or ground water at 70 degree was studied. The density, porosity and mechanical properties were also investigated. The effects of exposing the samples immersed in groundwater to gamma rays in the glass durability and all other mentioned properties were also studied. The results showed that immersing the glass in ground water causing a decrease in the glass durability. The exposure of the glass immersed in ground water to the gamma rays increases the durability of the glass. The mechanical properties of the prepared glass were good. Although these properties decrease for the corroded glass but they were still good

  20. Chemical durability of silicoborate glasses

    International Nuclear Information System (INIS)

    Nieto, M.I.; Rodriguez, M.A.; Rubio, J.; Fernandez, A.; Oteo, J.L.

    1987-01-01

    A general view of the durability in silicoborate glasses is presented with more emphasis on the etching factors (chemical composition, lattice structure, pH...) the techniques used for this study and the experimental results. Likewise, the research presently developed in this area at the Instituto de Ceramica y Vidrio, CSIC, is related to the applications. Future research in this field is also mentioned. (author) 15 figs

  1. Preliminary results of durability testing with borosilicate glass compositions

    International Nuclear Information System (INIS)

    Adel-Hadadi, M.; Adiga, R.; Barkatt, Aa.

    1987-01-01

    This is a report on the first year of research conducted at the Vitreous State Laboratory of the Catholic University of America in support of the West Valley Demonstration Project. One objective is the vitrification of liquid waste generated by previous nuclear fuel reprocessing. This work has been directed principally at the problem of glass composition optimization. This has necessitated the development of a coordinated program of glass production, durability measurements, and processability assessment. A small-scale continuous melter has been constructed for melting uranium and thorium containing glasses and for studying glass processing characteristics. Glass viscosities have been measured over a range of temperatures. A large number of glasses have also been produced in small crucible melts. Glass durability has been assessed using four types of leach tests: MCC-3, MCC-1, IAEA/ISO, and pulsed-flow tests. Extensive data from these tests are reported. The data have led to the design of very durable glasses (comparable to the Savannah River Laboratory Defense Waste Reference Glass) which have the requisite waste loading and processing characteristics. 14 refs., 4 figs., 77 tabs

  2. Effect of manufactured sand on the durability characteristics of concrete

    Directory of Open Access Journals (Sweden)

    S. S. SARAVANAN

    2016-12-01

    Full Text Available Concrete is the most sought after material due to increase in construction activities and infrastructural developments. Availability of natural sand is decreasing thereby increase in the cost of construction. In the present work undertaken, an attempt has been made to give an alternative to natural sand. Optimization of replacement of natural sand with manufactured sand in concrete, durability studies such as water absorption, rapid chloride permeability test, sorptivity, acid resistance, alkaline resistance, impact resistance and abrasion resistance of M40 and M50 grades of concrete have been studied with manufactured sand as fine aggregate and compared the results with the conventional sand concrete. The results shows that there is an increase in the durability properties up to 70 % level of replacements of sand with manufactured sand as fine aggregate and for 100 % use of manufactured sand also gives the better durability than the conventional sand concrete.

  3. Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces via Electrodeposition.

    Science.gov (United States)

    Jain, R; Pitchumani, R

    2018-03-13

    Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been limited by their poor mechanical durability and longevity. We present a low-cost, facile process to develop superhydrophobic copper-based coatings via an electrodeposition route, that addresses this limitation. Through electrodeposition, a stable, multiscale, cauliflower shaped fractal morphology was obtained and upon modification by stearic acid, the prepared coatings show extreme water repellency with contact angle of 162 ± 2° and roll-off angle of about 3°. Systematic studies are presented on coatings fabricated under different processing conditions to demonstrate good durability, mechanical and underwater stability, corrosion resistance, and self-cleaning effect. The study also presents an approach for rejuvenation of slippery superhydrophobic nature (roll-off angle <10°) on the surfaces after long-term water immersion. The presented process can be scaled to larger, durable coatings with controllable wettability for diverse applications.

  4. Advantage from Funding Durable Centers Leasing

    Directory of Open Access Journals (Sweden)

    Alina Zając

    2009-09-01

    Full Text Available In present market conditions huge number of businessmen has problems from gain over from banks capital on purchase of durable centers not only, but also on develop - ment and operating activity Individual can use with different forms funding investment, it which is between different leasing.

  5. Study on determination of durability analysis process and fatigue damage parameter for rubber component

    International Nuclear Information System (INIS)

    Moon, Seong In; Cho, Il Je; Woo, Chang Su; Kim, Wan Doo

    2011-01-01

    Rubber components, which have been widely used in the automotive industry as anti-vibration components for many years, are subjected to fluctuating loads, often failing due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop a durability analysis process for vulcanized rubber components, that can predict fatigue life at the initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. Also, to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and normal and shear strain was proposed as the fatigue damage parameter for rubber components. Fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed

  6. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    Science.gov (United States)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  7. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    Science.gov (United States)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  9. An extraordinary transmission analogue for enhancing microwave antenna performance

    Directory of Open Access Journals (Sweden)

    Sarin V. Pushpakaran

    2015-10-01

    Full Text Available The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finite Difference Time Domain (FDTD method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.

  10. Design procedure for formulating and assessing the durability of particulate grouts

    International Nuclear Information System (INIS)

    Okonkwo, I.O.; Altschaeff, A.G.

    1989-01-01

    The current disposal plans for low-level wastes call for stabilizing or encapsulating and storing of these wastes in steel drums which in turn are buried in shallow trenches. Complete sealing is accomplished with grout, a liquid injection comprising principally of cement and fly ash, etc. Upon solidification, the grout forms a rigid mass around the drum, thereby eliminating access of groundwater into or out of the waste barrier, or leaching of radionuclides. Since the primary mechanism for the likely introduction of hazardous and/or radioactive elements into the biosphere in this situation, is through physical or chemical deterioration of the waste barrier, it is necessary that the effect of adverse environments on the durability of the grouts be examined and incorporated in barrier design. Currently, procedures for formulating grout mixes to assure a given impermeability or durability of the grout over its service period is lacking, and so are the techniques for monitoring the in-service performance of waste barrier systems. This paper depicts a serious limitation in waste barrier system technology, for it is time that optimization in design be possible. To allow this, a method is needed that creates the grout formulation specification for an optimization of behavior parameters in the resulting product. These considerations suggest a strong need for improvement in the grout formulation specification to allow a focus upon behavior properties desired by the engineer in the creation of optimum performance. This paper addresses these problems

  11. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing.

    Science.gov (United States)

    Holmquist, H; Schellenberger, S; van der Veen, I; Peters, G M; Leonards, P E G; Cousins, I T

    2016-05-01

    Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the

  12. Price freezes, durables and residential electricity demand - Evidence from the Greater Buenos Aires

    Energy Technology Data Exchange (ETDEWEB)

    Casarin, Ariel; Delfino, Maria Eugenia

    2010-09-15

    This paper examines the determinants of residential electricity demand in the Greater Buenos Aires between 1997 and 2006. During the second half of this period, residential tariffs remained nominally fixed, while an income boom boosted up the sales of durables. This study differs from previous works in that it explicitly considers the impact of the stock of air-conditioners on residential demand. The paper reports short- and long-run elasticities and examines the contribution of prices and durables to recent demand growth. Simulations illustrate the impact of prices and durables on future demand.

  13. Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications

    Science.gov (United States)

    Hu, Meishao; Ni, Jiangpeng; Zhang, Boping; Neelakandan, Sivasubramaniyan; Wang, Lei

    2018-06-01

    Crosslinking is an effective method to improve the properties of high temperature proton exchange membranes based on polybenzimidazole. However, the compact structure of crosslinked polybenzimidazole hinders the phosphoric acid absorption of the membranes, resulting in a relatively poor fuel cell performance. Recently, we find that branched polymers can absorb more phosphoric acid with a larger free volume, but suffer from deteriorated mechanical strength. In this work, a new method is proposed to obtain excellent over-all properties of high temperature proton exchange membranes. A series of crosslinked polybenzimidazoles containing branching structure as membrane materials are successfully prepared for the first time. Compared with conventional crosslinked membranes, these crosslinked polybenzimidazole membranes containing branching structure exhibit a higher phosphoric acid doping level and proton conductivity, improved durability, lower swelling rate and comparable mechanical strength. In particular, the fuel cell base on the crosslinked and branched membrane with a 10% ratio of crosslinker in non-humidified hydrogen/air at 160 °C achieves a power density of 404 mW cm-2. The results indicate that the combination of crosslinking and branching is an effective approach to improve the properties of polybenzimidazole membrane materials.

  14. Five Performance Enhancements for Hybrid Hash Join

    National Research Council Canada - National Science Library

    Graefe, Goetz

    1992-01-01

    .... We discuss five performance enhancements for hybrid hash join algorithms, namely data compression, large cluster sizes and multi-level recursion, role reversal of build and probe inputs, histogram...

  15. Performance management system enhancement and maintenance

    Science.gov (United States)

    Cleaver, T. G.; Ahour, R.; Johnson, B. R.

    1984-01-01

    The research described in this report concludes a two-year effort to develop a Performance Management System (PMS) for the NCC computers. PMS provides semi-automated monthly reports to NASA and contractor management on the status and performance of the NCC computers in the TDRSS program. Throughout 1984, PMS was tested, debugged, extended, and enhanced. Regular PMS monthly reports were produced and distributed. PMS continues to operate at the NCC under control of Bendix Corp. personnel.

  16. Design of concrete structures for durability. Example: Chloride penetration in the lining of a bored tunnel

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1998-01-01

    The present design method for durability of concrete is based on a set of rules that give no objective in-sight in the service life to expect from the concrete structure. An objective comparison between different durability measures is therefor not possible. Especially if the lack of durability can

  17. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    Science.gov (United States)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  18. Durability of wood-plastic composite lumber

    Science.gov (United States)

    Rebecca E. Ibach

    2010-01-01

    Wood-plastic composite (WPC) lumber has been marketed as a low-maintenance, high-durability product. Retail sales in the United States were slightly less than $1 billion in 2008. Applications include docking, railing, windows, doors, fencing, siding, moldings, landscape timbers, car interior parts, and furniture. The majority of these products are used outdoors and...

  19. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    Science.gov (United States)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  1. Performance Assessment of Communication Enhancement Devices TEA HI Threat Headset

    Science.gov (United States)

    2015-08-01

    AFRL-RH-WP-TR-2015-0076 Performance Assessment of Communication Enhancement Devices: TEA HI Threat Headset Hilary L. Gallagher...of Communication Enhancement Devices: TEA HI Threat Headset 5a. CONTRACT NUMBER FA8650-14-D-6501 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...technology in military applications. Objective performance data provided an assessment of the performance of these devices. The TEA HI Threat headset

  2. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  3. Study on durability and reliability of strut type suspension noise based on experimental methods

    International Nuclear Information System (INIS)

    Kim, Gu Gyong; Kang, Sung Su; Lee, Yong Jun; Park, Soon Cheol; Jung, Won Wook

    2012-01-01

    When cars are released from the factory, strut noises are very small and therefore it is difficult to perceive them. As the use time and travel distance increase, however, strut noises get larger so as to cause users much uneasiness. The noises generated at the field include engine noises and flow noises and therefore it is difficult to clearly discern the noises generated from struts. This study developed a test method which can reproduce field strut noises in the lab. Using the newly developed noise evaluation test, this study analyzed the effects that insulator performance degradation and failure can have on car noises. The study also confirmed that the insulator durability test by the simple back-and-forth motion cannot completely reflect the state of the parts failure in the field. Based on this, the study also confirmed that field noises can be reproduced through a durability test that considers heat aging

  4. Enhancement on Wingate Anaerobic Test Performance With Hyperventilation.

    Science.gov (United States)

    Leithäuser, Renate M; Böning, Dieter; Hütler, Matthias; Beneke, Ralph

    2016-07-01

    Relatively long-lasting metabolic alkalizing procedures such as bicarbonate ingestion have potential for improving performance in long-sprint to middle-distance events. Within a few minutes, hyperventilation can induce respiratory alkalosis. However, corresponding performance effects are missing or equivocal at best. To test a potential performance-enhancing effect of respiratory alkalosis in a 30-s Wingate Anaerobic Test (WAnT). 10 men (mean ± SD age 26.6 ± 4.9 y, height 184.4 ± 6.1 cm, body-mass test 1 80.7 ± 7.7 kg, body-mass test 2 80.4 ± 7.2 kg, peak oxygen uptake 3.95 ± 0.43 L/min) performed 2 WAnTs, 1 with and 1 without a standardized 15-min hyperventilation program pre-WAnT in randomized order separated by 1 wk. Compared with the control condition, hyperventilation reduced (all P respiratory alkalosis can enhance WAnT cycling sprint performance well in the magnitude of what is seen after successful bicarbonate ingestion.

  5. Durability and service life design of concrete structures. Experiences and the way to prove in The Netherlands

    NARCIS (Netherlands)

    Siemes, A.J.M.; Vrouwenvelder, A.C.W.M.

    2002-01-01

    After the introduction of reinforced concrete it was believed that the material was extremely durable. Soon it was found however, that reinforced concrete could have serious durability problems and that special care should be taken to avoid them. Durability became an issue.

  6. [Investigation of team processes that enhance team performance in business organization].

    Science.gov (United States)

    Nawata, Kengo; Yamaguchi, Hiroyuki; Hatano, Toru; Aoshima, Mika

    2015-02-01

    Many researchers have suggested team processes that enhance team performance. However, past team process models were based on crew team, whose all team members perform an indivisible temporary task. These models may be inapplicable business teams, whose individual members perform middle- and long-term tasks assigned to individual members. This study modified the teamwork model of Dickinson and McIntyre (1997) and aimed to demonstrate a whole team process that enhances the performance of business teams. We surveyed five companies (member N = 1,400, team N = 161) and investigated team-level-processes. Results showed that there were two sides of team processes: "communication" and "collaboration to achieve a goal." Team processes in which communication enhanced collaboration improved team performance with regard to all aspects of the quantitative objective index (e.g., current income and number of sales), supervisor rating, and self-rating measurements. On the basis of these results, we discuss the entire process by which teamwork enhances team performance in business organizations.

  7. THE RELEVANCE OF ELECTRONIC COMMERCE FOR DURABLE DEVELOPMENT. CHALLENGES FOR ROMANIA

    OpenAIRE

    Assist. Ph.D Student Maruntelu Irina

    2009-01-01

    This article aims to approach the topic of the electronic commerce considering the context of the durable development, without exclusively limiting to the economic dimension of sustainable development. This paper aims to offer a vision on the e-commerce based on an optimistic approach of the reconciliation between economic growth and durable development, but moderate by the current realities (digital divide between countries/regions, economic crisis etc). Furthermore, by identifying some of t...

  8. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  9. Performance Enhancements for Advanced Database Management Systems

    OpenAIRE

    Helmer, Sven

    2000-01-01

    New applications have emerged, demanding database management systems with enhanced functionality. However, high performance is a necessary precondition for the acceptance of such systems by end users. In this context we developed, implemented, and tested algorithms and index structures for improving the performance of advanced database management systems. We focused on index structures and join algorithms for set-valued attributes.

  10. Complexing Agents and pH Influence on Chemical Durability of Type I Molded Glass Containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-01-01

    Among the factors that affect the glass surface chemical durability, pH and complexing agents present in aqueous solution have the main role. Glass surface attack can be also related to the delamination issue causing glass particles' appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed. The present study emphasizes the possible synergy between a few complexing agents with pH on borosilicate glass chemical durability.Hydrolytic attack was performed in small-volume 23 mL type I glass containers autoclaved according to the European Pharmacopoeia or United States Pharmacopeia for 1 h at 121 °C, in order to enhance the chemical attack due to time, temperature, and the unfavorable surface/volume ratio. Solutions of 0.048 M or 0.024 M (M/L) of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid), together with sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ±0.05 units at fixed values 5.5, 6.6, 7, 7.4, 8, and 9 by LiOH diluted solution.Because silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by inductively coupled plasma atomic emission spectrophotometry. The work was completed by the analysis of the silicon release in the worst attack conditions of molded glass, soda lime type II glass, and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by scanning electron microscopy was finally performed to check for the surface status after the worst chemical attack condition by citric acid. LAY ABSTRACT: Glass, like every packaging material, can have some usage limits, mainly in basic pH solutions. The issue of glass surface degradation particles that appear in vials (delamination) has forced a number of drug product recalls in recent years

  11. Performance Support Systems: Integrating AI, Hypermedia, and CBT to Enhance User Performance.

    Science.gov (United States)

    McGraw, Karen L.

    1994-01-01

    Examines the use of a performance support system (PSS) to enhance user performance on an operational system. Highlights include background information that describes the stimulus for PSS development; discussion of the major PSS components and the technology they require; and discussion of the design of a PSS for a complex database system.…

  12. Peer groups and operational cycle enhancements to the performance indicator report

    International Nuclear Information System (INIS)

    Stromberg, H.M.; DeHaan, M.S.; Gentillon, C.D.; Wilson, G.E.; Vanden Heuvel, L.N.

    1992-01-01

    Accurate performance evaluation and plant trending by the performance indicator program are integral parts of monitoring the operation of commercial nuclear power plants. The presentations of the NRC/AEOD performance indicator program have undergone a number of enhancements. The diversity of the commercial nuclear plants, coupled with continued improvements in the performance indicator program, has resulted in the evaluation of plants in logical peer groups and highlighted the need to evaluate the impact of plant operational conditions on the performance indicators. These enhancements allow a more-meaningful evaluation of operating commercial nuclear power plant performance. This report proposes methods to enhance the presentation of the performance indicator data by analyzing the data in logical peer groups and displaying the performance indicator data based on the operational status of the plants. Previously, preliminary development of the operational cycle displays of the performance indicator data was documented. This report extends the earlier findings and presents the continued development of the peer groups and operational cycle trend and deviation data and displays. This report describes the peer groups and enhanced PI data presentations by considering the operational cycle phase breakdowns, calculation methods, and presentation methods

  13. Review of research on the hygrothermal environmental durability of structural adhesively bonded joints

    Directory of Open Access Journals (Sweden)

    Xiao HAN

    2017-06-01

    Full Text Available In recent years, structural adhesive bonding technology has been widely used in many industrial fields, with many advantages over traditional mechanical connection methods, such as riveting, welding and bolt connection. Due to the adhesive characteristics of polymer materials, the environmental durability of adhesive joint becomes the key problems in engineering structure connection feasibility and long-term service reliability. On the basis of the review of the research of the hot-humid environmental durability of structural adhesive joints, the effects of temperature, moisture and coupled condition on the structural mechanical behaviour are discussed, introducing the published research progress and results both at home and abroad. The prospects are provided: the future research work can be combined with a variety of observation scales of environmental aging test and numerical simulation method, delve into sub hygroscopic, creep, thermal expansion and hygroscopic expansion aging behavior, such as the environment of model prediction method simulation in more than a variety of mechanical performance degradation behavior of coupling conditions, and provide more reliable theoretical modeling and experimental data for engineering design and application of cementing structure.

  14. Durable bistable auxetics made of rigid solids

    Science.gov (United States)

    Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano

    2018-02-01

    Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.

  15. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    Science.gov (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  16. The effect of compositional parameters on the TCLP and PCT durability of environmental glasses

    International Nuclear Information System (INIS)

    Resce, J.L.; Overcamp, T.J.

    1995-01-01

    The relationship between glass composition and the chemical durability of environmental waste glass is very important for both the development of glass formulations and the prediction of glass durability for process control. The development of such a model is extremely difficult for several reasons. Firstly, chemical durability is dependent upon the type of leach test employed; the leach tests themselves being only crude approximations of actual environmental conditions or long term behavior. Secondly, devitrification or crystallinity can also play a major role in durability, but is much more difficult to quantify. Lastly, the development of any one model for all glass types is impractical because of the wide variety of wastestreams, the heterogeneity of the wastestreams, and the large variety of components within each wastestream. Several ongoing efforts have been directed toward this goal, but as yet, no model has been proven acceptable

  17. Durable and Robust Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Knibbe, Ruth; Hauch, Anne

    project had as one of its’ overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended......The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year...... for use within the CHP (Combined Heat and Power) market segment with stationary power plants in the range 1 – 250 kWe in mind. Lowered operation temperature is considered a good way to improve the stack durability since corrosion of the interconnect plates in a stack is lifetime limiting at T > 750 °C...

  18. THE EFFECT OF HEAT TREATMENT ON THE DURABILITY OF BAMBOO Gigantochloa scortechinii

    Directory of Open Access Journals (Sweden)

    Norashikin Kamarudin

    2012-07-01

    Full Text Available Bamboo signifies as one of the fastest growing plants and it can be used for various products. In tropical countries such as Indonesia and Malaysia, bamboo is abundantly available at reasonable prices, therefore it is used for numerous purposes. However, as lignocellulosic material, bamboo is susceptible to fungal and insect attacks. Heat treatment is an option to improve bamboo's durability. The objective of this study was to improve the durability of bamboo using hot oil palm treatment. A Malaysian grown bamboo species, Buluh Semantan (Gigantochloa scortechinii, as a study material was soaked in hot oil palm for various temperatures and soaking time, before being inoculated with the basidiomycete Coriolus versicolor in an agar block test. The results demonstrated that the longer the heating time, the more improved the durability of bamboo. Altering the temperature in the palm oil treatment produced varying results. Bamboo blocks that heated in hot oil palm at 100°C for 60 minutes shows considerably less weight eduction that indicates less fungal attack. Overall, the higher the temperature, the better the durability of bamboo. Please indicates what the meaning of heat treatment in this experiment, it is not clear.

  19. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    International Nuclear Information System (INIS)

    Eppler, F.H.; Yim, M.S.

    1998-01-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al 2 O 3 to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition

  20. Assessing the representativeness of durability tests for wood pellets by DEM Simulation - Comparing conditions in a durability test with transfer chutes

    Science.gov (United States)

    Mahajan, Aditya; Dafnomilis, Ioannis; Hancock, Victoria; Lodewijks, Gabriel; Schott, Dingena

    2017-06-01

    Dust generation when handling wood pellets is related to the durability of the product, in other words the wear rate of particles subject to forces. During transport, storage and handling wood pellets undergo different forces when interacting with different pieces of equipment. This paper assesses the representativeness of the tumbling can test in relation to transfer chutes, by comparing forces acting on wood pellets in durability tests and in transfer chutes using DEM. The study also incorporates effects such as shape and size variations. The results showed that the tumbling can test underestimates compressive and tangential forces. Since the tested material is subject to milder conditions than in reality, it can be concluded that this test is not representative for the conditions in the supply chain of wood pellets.

  1. Research notes : durability of composite repairs on bridges.

    Science.gov (United States)

    2009-08-01

    The research showed that conditions that allow moisture to get under the carbon fiber reinforced polymer composites (CFRP) combined with freeze-thaw were detrimental to durability. In addition, the results showed that the American Concrete Institute ...

  2. Thermal performance enhancement in nanofluids containing diamond nanoparticles

    International Nuclear Information System (INIS)

    Xie Huaqing; Yu Wei; Li Yang

    2009-01-01

    Nanofluids, nanoparticle suspensions prepared by dispersing nanoscale particles in a base fluid, have been gaining interest lately due to their potential to greatly outperform traditional thermal transport liquids. Diamond has the highest thermal transport capacity in nature and diamond particles are often used as filler in mixtures for upgrading the performance of a matrix. It is reasonable to expect that the addition of diamond nanoparticles (DNPs) would lead to thermal performance enhancement in a base fluid. In this study, homogeneous and stable nanofluids composed of DNPs as the inclusions and a mixture of ethylene glycol (EG) and water as base fluid have been prepared. Acid mixtures of perchloric acid, nitric acid and hydrochloric acid were employed to purify and tailor the DNPs to eliminate impurities and to enhance their dispersibilty. Ultrasound and the alkalinity of solution are beneficial to the deaggregation of the soft DNP aggregations. The thermal conductivity enhancement of the DNP nanofluids increases with DNP loading and the thermal conductivity enhancement is more than 18.0% for a nanofluid at a DNP volume fraction of 0.02. Viscosity measurements show that the DNP nanofluids demonstrate Newtonian behaviour, and the viscosity significantly decreases with temperature. With increasing volume fraction of DNPs, the convective heat transfer coefficient increases first, and then decreases with a further increase in the volume fraction of DNPs. The nanofluid with a volume fraction of 0.005 has optimal overall thermal performance.

  3. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    OpenAIRE

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  4. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  5. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  6. Old materials and techniques to improve the durability of earth buildings

    OpenAIRE

    Camões, Aires; Eires, R.; Jalali, Said

    2012-01-01

    Quite a big part of the world’s heritage is still made by earth constructions. The durability of the existent heritage, as well as the new earth buildings is particularly conditioned by erosion caused by water action, especially in countries with high rainfall index. With this research one intends to value the ancient knowledge in order to allow higher durability. Analysing the old building techniques to protect the earth material from the water action it is possible to understand how ear...

  7. Reliability algorithms applied to reinforced concrete structures durability assessment

    Directory of Open Access Journals (Sweden)

    C. G. Nogueira

    Full Text Available This paper addresses the analysis of probabilistic corrosion time initiation in reinforced concrete structures exposed to ions chloride penetration. Structural durability is an important criterion which must be evaluated in every type of structure, especially when these structures are constructed in aggressive atmospheres. Considering reinforced concrete members, chloride diffusion process is widely used to evaluate the durability. Therefore, at modelling this phenomenon, corrosion of reinforcements can be better estimated and prevented. These processes begin when a threshold level of chlorides concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in the literature, deterministic approaches fail to predict accurately the corrosion time initiation due to the inherently randomness observed in this process. In this regard, the durability can be more realistically represented using probabilistic approaches. A probabilistic analysis of ions chloride penetration is presented in this paper. The ions chloride penetration is simulated using the Fick's second law of diffusion. This law represents the chloride diffusion process, considering time dependent effects. The probability of failure is calculated using Monte Carlo simulation and the First Order Reliability Method (FORM with a direct coupling approach. Some examples are considered in order to study these phenomena and a simplified method is proposed to determine optimal values for concrete cover.

  8. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  9. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  10. Influence of surface topography on the surface durability of steam oxidised sintered iron

    Directory of Open Access Journals (Sweden)

    José Daniel Biasoli de Mello

    2005-06-01

    Full Text Available Durability of surfaces has been reported as the main factor affecting tribological behavior of steam oxidised sintered iron. The presence of surface pores and their negative influence on load bearing capacity, suggest that surface topography might play an important role on the durability of the oxide layer. In this paper, the influence of compaction pressure and powder grade on surface topography, and as a consequence, its effect on the tribological behavior of steam oxidised sintered iron has been analysed. Specimens prepared from atomised iron powders with different sizes were compacted using 4 different pressures, sintered, and then subjected to steam treatment. Tribological characterisation was carried out in a reciprocating sliding wear test. Although the processing parameters affected the surface topography to a considerable extent, the main influence may be attributed to powder grade. A strong influence of surface topography on the durability distance, evaluated in terms of the evolution of contact resistance with total sliding distance, has been highlighted. Surfaces which were smoother and had high load-carrying capacity were always associated with a higher durability distance.

  11. OPTIONS D'INTENSIFICATION DURABLE DES CULTURES ...

    African Journals Online (AJOL)

    (Received 14 August, 2001 ; accepted 10 May, 2002) RÉSUMÉ Pour intensifier de manière durable les cultures vivrières dans les zones de terres de barre dégradées au sud du Togo, plusieurs options ont été évaluées avec les paysans. Grâce à des entretiens collectifs de type participatif, sept différents groupes ...

  12. Advanced Durability Analysis. Volume 2. Analytical Predictions, Test Results and Analytical Correlations

    Science.gov (United States)

    1989-02-27

    Deteministic Crack Growth ApprMach ( CApm -DCG-) Ndaft)/dt m 101Ca )I SUVICE TINE Wh Two-stit btei’uinistic-stochastic Crack Groth Approach (WHO-CG) Figure...physical description of the state of damage for a durability- critical component and a logical basis for estimating structural maintenance/repair require...The stress level for each stress region is important for crack growth predictions. Therefore, the stress analysis for durability- critical components

  13. Laboratory evaluation of performance and durability of polymer grouts for subsurface hydraulic/diffusion barriers. Informal report, October 1993--May 1994

    International Nuclear Information System (INIS)

    Heiser, J.H.; Milian, L.W.

    1994-05-01

    Contaminated soils, buried waste and leaking underground storage tanks pose a threat to the environment through contaminant transport. One of the options for control of contaminant migration from buried waste sites is the construction of a subsurface barrier. Subsurface barriers increase the performance of waste disposal sites by providing a low permeability layer that can reduce percolation water migration into the waste site, minimize surface transport of contaminants, and reduce migration of volatile species. Also, a barrier can be constructed to envelop the site or plume completely, there by containing the contaminants and the potential leakage. Portland cement grout curtains have been used for barriers around waste sites. However, large castings of hydraulic cements result invariably in cracking due to shrinkage, thermal stresses induced by the hydration reactions, and wet-dry cycling prevalent at and sites. Therefore, improved, low permeability, high integrity materials are under investigation by the Department of Energy's (DOE) Office of Technology Development, Integrated Demonstrations and Programs. The binders chosen for characterization include: an acrylic, a vinylester styrene, bitumen, a polyester styrene, furfuryl alcohol, and sulfur polymer cement. These materials cover broad ranges of chemical and physical durability, performance, viscosity, and cost. This report details the results of laboratory formulation, testing, and characterization of several innovative polymer grouts. An appendix containing a database of the barrier materials is at the end of this report

  14. Life context of pharmacological academic performance enhancement among university students--a qualitative approach.

    Science.gov (United States)

    Hildt, Elisabeth; Lieb, Klaus; Franke, Andreas Günter

    2014-03-07

    Academic performance enhancement or cognitive enhancement (CE) via stimulant drug use has received increasing attention. The question remains, however, whether CE solely represents the use of drugs for achieving better academic or workplace results or whether CE also serves various other purposes. The aim of this study was to put the phenomenon of pharmacological academic performance enhancement via prescription and illicit (psycho-) stimulant use (Amphetamines, Methylphenidate) among university students into a broader context. Specifically, we wanted to further understand students' experiences, the effects of use on students and other factors, such as pressure to perform in their academic and private lives. A sample of 18 healthy university students reporting the non-medical use of prescription and illicit stimulants for academic performance enhancement was interviewed in a face-to-face setting. The leading questions were related to the situations and context in which the students considered the non-medical use of stimulants. Based on the resultant transcript, two independent raters identified six categories relating to the life context of stimulant use for academic performance enhancement: Context of stimulant use beyond academic performance enhancement, Subjective experience of enhancement, Timing of consumption, Objective academic results, Side effects, Pressure to perform. The answers reveal that academic performance enhancement through the use of stimulants is not an isolated phenomenon that solely aims at enhancing cognition to achieve better academic results but that the multifaceted life context in which it is embedded is of crucial relevance. The participants not only considered the stimulants advantageous for enhancing academic performance, but also for leading an active life with a suitable balance between studying and time off. The most common reasons given for stimulant use were to maximize time, to increase motivation and to cope with memorizing

  15. The durability of waveguide fibers at cyclic change of loading, temperature and humidity

    International Nuclear Information System (INIS)

    Karimov, S.N.; Sultonov, U.; Shamsidinov, M.I.

    1992-01-01

    Present article is devoted to durability of waveguide fibers at cyclic change of loading, temperature and humidity. The mounting scheme and loading of sample is presented. The dependence of glass fiber durability on number of thermal cycles at various humidity rates was considered. The dependence of number of cycles on maximal loading at cyclic temperature change was studied.

  16. Durable protection of the surface of wood used outdoors: material constraints, problems and approaches to solutions

    Directory of Open Access Journals (Sweden)

    Merlin A.

    2018-01-01

    Full Text Available The aesthetic durability of wooden structures is a major challenge for the use of this material in construction. Wood is used for its technical performances but also for its architectural qualities and its aesthetic perception. The premature aging of the wooden structures is detrimental because these disorders, even if they do not affect the strength of the structures, are mostly irremediable. The surface protection of wood is generally ensured by the use of a finish, whose essential role is to protect wood from climatic aggressions (water, solar radiation, oxygen, .... The secondary wood processing industry consists of a series of manufacturing and processing activities, each containing a portion of the added value of the product. The application of a finish on a wood-based work is usually the last and most visible step in this value chain.In outdoor use, the protection of the wood surface with transparent finishes is not yet sufficiently durable to be able to compete with materials used in industrial carpentry such as PVC or aluminum. Opaque finishes generally provide more durable protection but they mask the appearance of the wood sought by users.With the aim of positioning wood in this construction sector, research on transparent finishes has focused on the efficiency and improvement of the durability of the protection of the surface appearance of structures. Faced with climatic aggressions, the optimum conservation of a structure is not only linked to the performance of the finish but also to the characteristics of the wood material. In particular, in order to fulfill its protective function, the finish film must be able to follow the dimensional variations of the wood it covers without breaking and without detachment. In addition to the criteria for the effectiveness of finishes in the protection of structures, the environmental impact must be considered with increasing attention. Currently, more than 80% of composite or solid wood

  17. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    Science.gov (United States)

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent.

  18. Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance.

    Science.gov (United States)

    Wang, Jun; Li, Kai; Zhong, Hai-xia; Xu, Dan; Wang, Zhong-li; Jiang, Zheng; Wu, Zhi-jian; Zhang, Xin-bo

    2015-09-01

    Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced thermo-mechanical performance and strain-induced ...

    Indian Academy of Sciences (India)

    Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films ... School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea; School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea ...

  20. Am/Cm target glass durability dependence on pH (U). Revision 1

    International Nuclear Information System (INIS)

    Daniel, W.E.; Best, D.R.

    1996-03-01

    At the Westinghouse Savannah River Company near Aiken, South Carolina, a process is being developed to safely vitrify all of the highly radioactive americium/curium (Am/Cm) material and a portion of the other fissile actinide materials stored on site. One goal of this campaign is to provide Oak Ridge National Laboratory with the excess Am/Cm so it can be recycled as opposed to simply disposing of it as waste. The vitrification will allow safe transportation of the Am/Cm to Oak Ridge as well as safe storage once it arrives. The Am/Cm Target glass being used in this project has been specifically designed to be extremely durable in aqueous environments while it can be selectively attacked by nitric acid to recover the valuable Am and Cm isotopes. Similar glass compositions could be used for storage and retrieval of other actinides on the WSRC site. Previous reports have presented the time, temperature, and compositional dependence of the Am/Cm glass durability. This paper will show results from a pH study on the Am/Cm Target glass durability. The data indicate that the Am/Cm Target Glass durability decreases as pH decreases from a neutral reading. These findings support the extraction of the valuable isotopes from the glass using nitric acid

  1. First-order model for durability of Hanford waste glasses as a function of composition

    International Nuclear Information System (INIS)

    Hrma, P.; Piepel, G.F.; Schweiger, M.J.; Smith, D.E.

    1992-04-01

    Two standard chemical durability tests, the static leach test MCC-1 and product consistency test PCT, were conducted on simulated borosilicate glasses that encompass the expected range of compositions to be produced in the Hanford Waste Vitrification Plant (HWVP). A first-order empirical model was fitted to the data from each test method. The results indicate that glass durability is increased by addition of Al 2 O 3 , moderately increased by addition of ZrO 2 and SiO 2 , and decreased by addition of Li 2 O, Na 2 O, B 2 O 3 , and MgO. Addition of Fe 2 O 3 and CaO produce an indifferent or reducing effect on durability according to the test method. This behavior and a statistically significant lack of fit are attributed to the effects of multiple chemical reactions occurring during glass-water interaction. Liquid-liquid immiscibility is suspected to be responsible for extremely low durability of some glasses

  2. The effects of silica fume and hydrated lime on the strength development and durability characteristics of concrete under hot water curing condition

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Sustainability is considered to be highly important for preserving continued industrial growth and human development. Concrete, being the world’s largest manufacturing material comprises cement as an essential binding component for strength development. However, excessive production of cement due to high degree of construction practices around the world frames cement as a leading pollutant of releasing significant amounts of CO2 in the atmosphere. To overcome this environmental degradation, silica fume and hydrated lime are used as partial replacements to cement. This paper begins with the examination of the partial replacement levels of hydrated lime and silica fume in concrete and their influence on the mechanical properties and durability characteristics of concrete. The effect of hot water curing on concrete incorporated with both silica fume and hydrated lime is also investigated in this paper. The results reported in this paper show that the use of silica fume as a partial replacement material improved both the mechanical properties and durability characteristics of concrete due to the formation of calcium silica hydrate crystals through the pozzolanic reaction. Although the hydrated lime did not significantly contribute in the development of strength, its presence enhanced the durability of concrete especially at long-term. The results also showed that hot water curing enhanced the strength development of concrete incorporated with silica fume due to the accelerated rate of both the hydration and pozzolanic reaction that takes place between silica fume and calcium hydroxide of the cement matrix particularly at early times. The results reported in this paper have significant contribution in the development of sustainable concrete. The paper does not only address the use of alternative binders as a partial replacement material in concrete but also suggest proper curing conditions for the proposed replacement materials. These practices

  3. Optimizing Performance in Psychology Students - Neurofeedback as a performance enhancing tool

    OpenAIRE

    Elvebredd, Pernille Malene Sandberg

    2014-01-01

    Neurofeedback has been shown to be successful in treating epilepsy and ADHD and in enhancing performance in musicians and dancers. The objective of the current study was to examine the effect of a neurofeedback beta1/theta protocol as a tool for optimizing performance in healthy psychology students. To achieve this, 19-channel EEG was recorded during a visual Go/NoGo task at two time points, both prior to and following either ten sessions of neurofeedback training (10 individuals) or ten sess...

  4. Experimental research on the durability cutting tools for cutting-off steel profiles

    Directory of Open Access Journals (Sweden)

    Cristea Alexandru

    2017-01-01

    Full Text Available The production lines used for manufacturing U-shaped profiles are very complex and they must have high productivity. One of the most important stages of the fabrication process is the cutting-off. This paper presents the experimental research and analysis of the durability of the cutting tools used for cutting-off U-shaped metal steel profiles. The results of this work can be used to predict the durability of the cutting tools.

  5. Durable and mass producible polymer surface structures with different combinations of micro–micro hierarchy

    International Nuclear Information System (INIS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A

    2016-01-01

    Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro–micro hierarchy has been proven to be effective in replacing micro–nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro–micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie–Baxter state. (paper)

  6. Activity, Performance, and Durability for the Reduction of Oxygen in PEM Fuel Cells, of Fe/N/C Electrocatalysts Obtained from the Pyrolysis of Metal-Organic-Framework and Iron Porphyrin Precursors

    International Nuclear Information System (INIS)

    Yang, Lijun; Larouche, Nicholas; Chenitz, Régis; Zhang, Gaixia; Lefèvre, Michel; Dodelet, Jean-Pol

    2015-01-01

    Graphical abstract: TOC After a first decay common to all electrocatalysts, only NC Por-0.8 -1150 Ar + NH3 shows an improvement in durability attributable to a decrease in water flooding its catalytic sites, particularly those located in micropores. - Abstract: Fe/N/C type catalysts have been produced by ballmilling ZIF-8 (a metal-organic-framework) and a chloroiron-tetramethoxyporphyrin (ClFeTMPP). The resulting material was first pyrolyzed in Ar at temperatures ranging from 850 to 1150 °C, then in NH 3 at 950 °C in order to produce two series of catalysts: the Ar and the Ar + NH 3 ones. They were labeled NC Por-x-T Ar or NC Por-x-T Ar + NH 3 , where x is the nominal Fe loading in wt% and T is the temperature of the first pyrolysis in Ar. At 80 °C in H 2 /O 2 fuel cell, the most active and performing catalyst is NC Por-0.8-1050 Ar + NH 3 . All NC Por-0.8-T Ar + NH 3 catalysts with T comprised between 850 and 1050 °C display the same instability behavior. The only catalyst showing an improvement in durability is NC Por-0.8-1150 Ar + NH 3 . It is proposed that the drastic change in durability upon increasing the first pyrolysis temperature, from 1050 to 1150 °C in Ar, is attributable to an important decrease in the heteroatom content (a drop of 32% for both N and O atoms) of the catalyst upon graphitization, reducing the hydrophilic character of its carbonaceous support and decreasing the possibility of water flooding its catalytic sites, particularly the sites located in micropores

  7. Application of the Durability Reinforcement Technique on the Frame Structure

    International Nuclear Information System (INIS)

    Kwon, Sung Hun; Yoo, Hong Hee

    2009-01-01

    In this paper, the technique to reinforce the durability performance of structure using the sensitivity information for the frame structure is applied. The fatigue life calculation for the frame structure is performed from the quasi-static and transient analysis and the characteristics of two methods are compared for the fatigue analysis. Then the reinforcement technique is applied. First, some design variables related to the locations of fatigue failure is selected. Then sensitivities of fatigue life at fracture points with respect to the variation of design variables are calculated and the vector composed of gaps between the target life and initial life cycles is calculated. If the number of fatigue fracture points is same as the number of design variables, the variations of the design variables are calculated from the linear algebraic equation. If not, the variations of the design variables are calculated from the optimization formulation with the constraints

  8. Durability Properties of Self Compacting Concrete containing Fly ash, Lime powder and Metakaolin

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmad Khan

    2016-01-01

    Full Text Available This paper investigates the durability properties of Self-compacting concrete (SCC, with different amounts of fly ash (FA, lime powder (LP and metakaolin (MK. A total of 6 mixes were prepared that have a constant water-binder ratio (w/b of 0.41 and superplasticizer dosage of 1% by weight of cement. In addition to compressive strength, the durability properties of SCC mixes were determined by means of Initial surface absorption test (ISAT and Capillary suction test. The test results indicated that the durability properties of the mixes appeared to be very dependent on the type and amount of the mineral admixture used; the mixes containing MK were found to have considerably higher permeability resistance. Good co-relation between strength and absorption were achieved.

  9. Durable chemical sensors based on field-effect transistors

    NARCIS (Netherlands)

    Reinhoudt, David

    1995-01-01

    The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a

  10. Weathering durability of commercial polymeric coatings tested by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Chen, H.; Peng, Q.; Huang, Y.Y.; Zhang, R.; Li, Y.; Zhang, J.; Wu, Y.C.; Richardson, J.R.; Sandreczki, T.C.; Jean, Y.C.

    2003-01-01

    A series of commercial coatings were prepared according to the industrial specifications and were exposed to Florida natural weathering and controlled UVA irradiation. The Doppler broadening energy spectra (DBES) of positron annihilation were measured as a function of incident positron energy at different periods of weathering. A significant decrease in the S parameter was observed and it was used as an indicator to test coating durability in micro-scale. Application to weathering durability of commercial polymeric coatings under natural weathering and controlled UVA irradiation is investigated by using the S parameter from the DBES

  11. Performance limits of plasmon-enhanced organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Salvador, Michael [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Yao, Kai [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Jen, Alex K.-Y. [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-07-21

    We use a combination of experiment and modeling to explore the promise and limitations of using plasmon-resonant metal nanoparticles to enhance the device performance of organic photovoltaics (OPVs). We focus on optical properties typical of the current generation of low-bandgap donor polymers blended with the fullerene (6,6)-phenyl C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) and use the polymer poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline) (PIDT-PhanQ) as our test case. We model the optical properties and performance of these devices both in the presence and absence of a variety of colloidal silver nanoparticles. We show that for these materials, device performance is sensitive to the relative z-position and the density of nanoparticles inside the active layer. Using conservative estimates of the internal quantum efficiency for the PIDT-PhanQ/PC{sub 71}BM blend, we calculate that optimally placed silver nanoparticles could yield an enhancement in short-circuit current density of over 31% when used with ∼ 80-nm-thick active layers, resulting in an absolute increase in power conversion efficiency of up to ∼2% for the device based on optical engineering.

  12. In situ carbon encapsulation of vertical MoS2 arrays with SnO2 for durable high rate lithium storage: dominant pseudocapacitive behavior.

    Science.gov (United States)

    Li, Mengjiao; Deng, Qinglin; Wang, Junyong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2018-01-03

    Improving the conductivity and charge transfer kinetics is favourable for innovation of sustainable energy devices such as metal oxide/sulfide-based electrodes. Herein, with an intercalation pseudocapacitance effect, an in situ polymerization-carbonization process for novel carbon-sealed vertical MoS 2 -SnO 2 anchored on graphene aerogel (C@MoS 2 -SnO 2 @Gr) has enabled excellent rate performance and durability of the anode of lithium ion batteries to be achieved. The integrated carbon layer and graphene matrix provide a bicontinuous conductive network for efficient electron/ion diffusion pathways. The charge transfer kinetics could be enhanced by the synergistic effects between vertical MoS 2 nanosheets and well-dispersed SnO 2 particles. Based on the crystal surface matching, the ameliorated electric contact between MoS 2 and SnO 2 can promote the extraction of Li + from Li 2 O and restrain the serious aggregation of Li x Sn. As a result, the improved reversibility leads to a higher initial coulombic efficiency (ICE) of 80% (0.1 A g -1 current density) compared to that of other materials. In particular, with the dominating surface capacitive process, the C@MoS 2 -SnO 2 @Gr electrode delivers a stable capacity of 680 mA h g -1 at 2.5 A g -1 for 2000 cycles. Quantitative insight into the origin of the boosted kinetics demonstrated the high pseudocapacitance contribution (above 90%) which leads to the durable high rate Li ion storage.

  13. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  14. Disentangling the Impact of Control-Enhancing Mechanisms on Firm Performance

    DEFF Research Database (Denmark)

    Zattoni, Alessandro; Pedersen, Torben

    2011-01-01

    shareholders to expropriate minority shareholders. The aim of this article is to contribute to the current debate investigating the implications of these control-enhancing mechanisms on firm performance. To reach this purpose, we collected ownership data on the (100) largest listed companies per capitalization......Governance scholars and investors traditionally advocate against the use of control enhancing mechanisms, i.e. mechanisms aimed at separating voting and cash flow rights. These mechanisms may, in fact, determine a deviation from the proportionality principle and may encourage large and controlling...... in five European countries (i.e. France, Germany, Italy, Spain, and the UK). Then we tested the consequences of control-enhancing mechanisms for firm performance using 2SLS regression models. Our results show that (i) mechanisms that lock-in control do have a direct and negative impact on firm performance...

  15. Durability of cement and geopolimer composites

    Science.gov (United States)

    Błaszczyński, T.; Król, M.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.

  16. Durable and Sustainable Road Constructions for Developing Countries

    NARCIS (Netherlands)

    Molenaar, A.A.A.

    2013-01-01

    This paper discusses the possibilities to build durable and sustainable pavement structures in developing countries. Attention will be paid to geometric design aspects which have a significant effect on pavement life. Following this attention will be paid to the importance of controlling wheel loads

  17. Framework for a procedure for design for durability

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1996-01-01

    The design for durability of structures and building components is in general based on implicit requirements with respect to the quality and dimensions of the composing building materials and components. These requirements are based on long term experience. This approach has disadvantages. It is

  18. Enhanced Microgrid Dynamic Performance Using a Modulated Power Filter Based on Enhanced Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2017-06-01

    Full Text Available This paper presents a design of microgrid (MG with enhanced dynamic performance. Distributed energy resources (DER are widely used in MGs to match the various load types and profiles. DERs include solar PV cells, wind energy sources, fuel cells, batteries, micro gas-engines and storage elements. MG will include AC/DC circuits, developed power electronics devices, inverters and power electronic controllers. A novel modulated power filters (MPF device will be applied in MG design. Enhanced bacterial foraging optimization (EBFO will be proposed to optimize and set the MPF parameters to enhance and tune the MG dynamic response. Recent dynamic control is applied to minimize the harmonic reference content. EBFO will adapt the gains of MPF dynamic control. The present research achieves an enhancement of MG dynamic performance, in addition to ensuring improvements in the power factor, bus voltage profile and power quality. MG operation will be evaluated by the dynamic response to be fine-tuned by MPF based on EBFO. Digital simulations have validated the results to show the effectiveness and efficient improvement by the proposed strategy.

  19. Total System Performance Assessment: Enhanced Design Alternative V

    International Nuclear Information System (INIS)

    N. Erb; S. Miller; V. Vallikat

    1999-01-01

    This calculation documents the total system performance assessment modeling of Enhanced Design Analysis (EDA) V. EDA V is based on the TSPA-VA base design which has been modified with higher thermal loading, a quartz sand invert, and line loading with 21 PWR waste packages that have 2-cm thick titanium grade 7 corrosion resistance material (CRM) drip shields placed over dual-layer waste packages composed of 'inside out' VA reference material (CRWMS M and O 1999a). This document details the changes and assumptions made to the VA reference Performance Assessment Model (CRWMS M and O 1998a) to incorporate the design changes detailed for EDA V. The performance measure for this evaluation is expected value dose-rate history. Time histories of dose rate are presented for EDA V and a Defense in Depth (DID) analysis base on EDA V. Additional details concerning the Enhanced Design Alternative II are provided in the 'LADS 3-12 Requests' interoffice correspondence (CRWMS M and O 1999a)

  20. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  1. Durability studies on the high calcium flyash based GPC

    African Journals Online (AJOL)

    Keywords: Geopolymer concrete, high calcium flyash, durability, corrosion resistance, polarisation test. ... Reddy, et al (2011) reported that excellent resistance to chloride .... being the metal on the higher electro potential range, to the negative ...

  2. THE STUDY ON THE DURABILITY OF SUBMERGED STRUCTURE DISPLACEMENT DUE TO CONCRETE FAILURE

    Directory of Open Access Journals (Sweden)

    M. Mohd

    2016-09-01

    Full Text Available Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  3. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction

    Science.gov (United States)

    Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng

    2018-05-01

    Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.

  4. Development of a CB Resistant Durable, Flexible Hydration System

    National Research Council Canada - National Science Library

    Hall, Peyton W; Zeller, Frank T; Bulluck, John W; Dingus, Michael L

    2002-01-01

    A durable, flexible hydration system resistant to contamination by contact with VX, GD, and HD chemical agents, as well as damage by the decontaminants sodium hypochlorite and DS-2 is being developed for aviator use...

  5. Durability Analysis and Experimental Validation of Environmental Barrier Coating (EBC Performance Using Combined Digital Image Correlation and NDE

    Directory of Open Access Journals (Sweden)

    Ali Abdul-Aziz

    2016-12-01

    Full Text Available To understand the failure mechanism or to predict the spallation life of environmental barrier coatings (EBC on fiber reinforced ceramic matrix composites, the fracture strength of EBC and the process of the crack growth in EBC layers need to be experimentally determined under standard or simulated engine operating conditions. The current work considers a multi layered barium strontium aluminum silicate (BSAS-based EBC-coated, melt infiltrated silicon carbide fiber reinforced silicon carbide matrix composite (MI SiC/SiC specimen that was tensile tested at room temperature. Numerous tests were performed under tensile loading conditions, and the specimen was loaded until failure under pre-determined stress levels. The specimen was examined with optical microscopy, scanning electron microscopy (SEM, computed tomography (CT scan, and digital image correlation (DIC camera. Observation from the computed tomography scanning, the SEM, and the optical microscopy did not offer conclusive information concerning the cracks that spawned during the tests. However, inspection with the DIC camera offered some indication that cracks had developed and allowed their detection and the location of their initiation site. Thus, this study provides detailed discussion of the results obtained from the experimental investigation and the nondestructive evaluation (NDE, and it also includes assessment of the stress response predicted by analytical modeling and their impact on EBC durability and crack growth formation under complex loading settings.

  6. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    Science.gov (United States)

    Carmona-Quiroga, Paula M; Jacobs, Robert M J; Martínez-Ramírez, Sagrario; Viles, Heather A

    2017-01-01

    Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax) on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  7. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    Directory of Open Access Journals (Sweden)

    Paula M Carmona-Quiroga

    Full Text Available Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  8. The establishment of a method for evaluating the long-term water-tightness durability of underground concrete structure taking into account some deteriorations

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Kawanishi, Motoi

    1996-01-01

    To establish a method of evaluating the long-term water-tightness durability of underground concrete structures, the authors firstly studied a deterioration evaluation model to express the deterioration condition of concrete structures and constructed, on the basis of this model, a function evaluation model to estimate the lowering of functions due to deterioration, consequently indicating a 'concept for evaluating the deterioration and functions of concrete structures' which will make it possible to perform the functional evaluation of concrete structures. Based on this concept, the authors then discusses a technique for evaluating the long-term water-tightness durability of underground concrete structures, specifically indicating the technique by means of illustrations. (author)

  9. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    International Nuclear Information System (INIS)

    Menaa, Bouzid; Mizuno, Megumi; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-01-01

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me 2 SiO-SnO-P 2 O 5 (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. 29 Si magic angle spinning (MAS) NMR and 31 P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me 2 SiO-SnO-P 2 O 5 system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q 2 unit (two bridging oxygens per phosphorus atom) over the Q 3 unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SA 2 SiO-SnO-P 2 O 5 matrix. In addition, this structural change is accompanied by a decrease of the coefficient of thermal expansion and an increase of the water durability of the glasses with the acids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure

  10. Will It Every Fly? Modeling the Takeoff of Really New Consumer Durables

    OpenAIRE

    Peter N. Golder; Gerard J. Tellis

    1997-01-01

    A consistent pattern observed for really new household consumer durables is a takeoff or dramatic increase in sales early in their history. The takeoff tends to appear as an elbow-shaped discontinuity in the sales curve showing an average sales increase of over 400%. In contrast, most marketing textbooks as well as diffusion models generally depict the growth of new consumer durables as a smooth sales curve. Our discussions with managers indicate that they have little idea about the takeoff a...

  11. Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers

    International Nuclear Information System (INIS)

    Koontz, S.L.; Jacobs, S.; Le, J.

    1993-03-01

    MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen

  12. Enhancing backyard poultry enterprise performance in the techiman ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... Enhancing backyard poultry enterprise performance in the techiman area: A value chain analysis ... from each community as well as service providers and support institutions in ...

  13. MEMS Actuators for Improved Performance and Durability

    Science.gov (United States)

    Yearsley, James M.

    Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high

  14. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering.

    Science.gov (United States)

    Lebental, B; Chainais, P; Chenevier, P; Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  15. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres

    Directory of Open Access Journals (Sweden)

    Clark Steve

    2011-05-01

    Full Text Available Abstract Background It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution, and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. Results After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW and multi-walled (CNTTANG2, CNTSPIN showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an

  16. Amenagements sportifs et developpement durable : Des enjeux ...

    African Journals Online (AJOL)

    ... contredite » éprouvée par (Jeu, 1977), comme l'apanage d'une double hybridation culturelle des pays en développement. Derrière l'apparence de la dislocation des héritages, doit émerger une définition nouvelle sur les rapports que les sports devraient entretenir avec l'environnement pour un développement durable.

  17. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  18. Use of recycled fine aggregate in concretes with durable requirements.

    Science.gov (United States)

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Lean Production Practices to Enhance Organisational Performance

    Directory of Open Access Journals (Sweden)

    Shah Satya

    2017-01-01

    Full Text Available Service sector organisations are constantly overcoming the challenges facing the over-production and waste reduction within their environments. Industries are also becoming very competitive thus forcing them to seek suitable production organisation strategies with the aim towards enhancing their competitiveness and efficiency. The aim of this research study is to investigate the impact of lean production practices on the performance of service based businesses through the case study of a local baked goods supplier. The research framework adopted consists of questionnaire survey method implemented with different end users, thus covering the overall production – retail – customer cycle. The research results and analysis justify the objective of the research that lean production practices enhance the performance of the supplier company and the common tool identified were JIT (Just in Time, Value Steam Mapping (VSP and the 5S methods. The results also suggest that JIT method has a higher impact towards improvement on performance relating to quality, speed, dependability, flexibility and cost of the supplier. However, the research study also identifies that one of the major challenges faced by the organisation while adopting lean practices was the lack of commitment from top management, continuous training and employee engagement measures.

  20. Sports, genre et developpement durable : l'heritage d'une ...

    African Journals Online (AJOL)

    Sports, genre et developpement durable : l'heritage d'une distribution ... to new populations in situation of confrontation with the difference that Goffman (1975) ... and women (gender), maintain the sports field and behind the appearance of a ...

  1. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  2. Prognostic durability of liver fibrosis tests and improvement in predictive performance for mortality by combining tests.

    Science.gov (United States)

    Bertrais, Sandrine; Boursier, Jérôme; Ducancelle, Alexandra; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Moal, Valérie; Calès, Paul

    2017-06-01

    There is currently no recommended time interval between noninvasive fibrosis measurements for monitoring chronic liver diseases. We determined how long a single liver fibrosis evaluation may accurately predict mortality, and assessed whether combining tests improves prognostic performance. We included 1559 patients with chronic liver disease and available baseline liver stiffness measurement (LSM) by Fibroscan, aspartate aminotransferase to platelet ratio index (APRI), FIB-4, Hepascore, and FibroMeter V2G . Median follow-up was 2.8 years during which 262 (16.8%) patients died, with 115 liver-related deaths. All fibrosis tests were able to predict mortality, although APRI (and FIB-4 for liver-related mortality) showed lower overall discriminative ability than the other tests (differences in Harrell's C-index: P fibrosis, 1 year in patients with significant fibrosis, and liver disease (MELD) score testing sets. In the training set, blood tests and LSM were independent predictors of all-cause mortality. The best-fit multivariate model included age, sex, LSM, and FibroMeter V2G with C-index = 0.834 (95% confidence interval, 0.803-0.862). The prognostic model for liver-related mortality included the same covariates with C-index = 0.868 (0.831-0.902). In the testing set, the multivariate models had higher prognostic accuracy than FibroMeter V2G or LSM alone for all-cause mortality and FibroMeter V2G alone for liver-related mortality. The prognostic durability of a single baseline fibrosis evaluation depends on the liver fibrosis level. Combining LSM with a blood fibrosis test improves mortality risk assessment. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  3. The Overjustification Effect in Retarded Children: Durability and Generalizability.

    Science.gov (United States)

    Ogilvie, Lee; Prior, Margot

    1982-01-01

    Generalizability and durability of the overjustification effect (on decline in intrinsic motivation due to the lack of rewards in behavior modification programs) were examined in 35 normal preschool children and 17 mental age-matched retarded children. (Author/SW)

  4. Effect of a functional monomer (MDP) on the enamel bond durability of single-step self-etch adhesives.

    Science.gov (United States)

    Tsuchiya, Kenji; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsubota, Keishi; Tsujimoto, Akimasa; Berry, Thomas P; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The present study aimed to determine the effect of the functional monomer, 10-methacryloxydecyl dihydrogen phosphate (MDP), on the enamel bond durability of single-step self-etch adhesives through integrating fatigue testing and long-term water storage. An MDP-containing self-etch adhesive, Clearfil Bond SE ONE (SE), and an experimental adhesive, MDP-free (MF), which comprised the same ingredients as SE apart from MDP, were used. Shear bond strength (SBS) and shear fatigue strength (SFS) were measured with or without phosphoric acid pre-etching. The specimens were stored in distilled water for 24 h, 6 months, or 1 yr. Although similar SBS and SFS values were obtained for SE with pre-etching and for MF after 24 h of storage in distilled water, SE with pre-etching showed higher SBS and SFS values than MF after storage in water for 6 months or 1 yr. Regardless of the pre-etching procedure, SE showed higher SBS and SFS values after 6 months of storage in distilled water than after 24 h or 1 yr. To conclude, MDP might play an important role in enhancing not only bond strength but also bond durability with respect to repeated subcritical loading after long-term water storage. © 2015 Eur J Oral Sci.

  5. Determination of Stone-Mastic Asphalt Concrete Durability

    Science.gov (United States)

    Yastremsky, D. A.; Abaidullina, T. N.; Chepur, P. V.

    2018-05-01

    The paper is focused on determination of durability of the stone-mastic asphalt (SMA) concrete, containing various stabilizing additives: "Armidon" (authors’ development) and "Viatop". At the first stage of experiments, the APA method was used to determine the rutting in the SMA containing these additives. Strength test for only top layers of asphalt concrete surface is insufficient for the calculation of the pavement fatigue resistance limits. Due to this fact, a comprehensive approach was employed which incorporates the interaction of the surface and subgrade natural soil. To analyze the road surface stress-strain state and to determine the durability margin, a numerical model was used (describes the processes of fatigue life). The model was developed basing on the finite element method (FEM) in the ANSYS program. Conducted studies and numerical calculations allowed obtaining the minimum and maximum stress values in the structure affected zones and in the zones of plastic deformations occurrence in artificial and natural bases. It allows predicting deformation processes during repeated wheel loads caused by moving vehicles. In course of studies, the results of static stresses in the pavement were also obtained.

  6. Durability of coconut shell powder (CSP) concrete

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.

    2017-11-01

    The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.

  7. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  8. Development of an ASTM standard glass durability test, the Product Consistency Test (PCT), for high level radioactive waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-01-01

    The nation's first, and the world's largest, facility to immobilize high-level nuclear waste in durable borosilicate glass has started operation at the Savannah River Site (SRS) in Aiken, South Carolina. The product specifications on the glass wasteform produced in the Defense Waste Processing Facility (DWPF) required extensive characterization of the glass product before actual production began and for continued characterization during production. To aid in this characterization, a glass durability (leach) test was needed that was easily reproducible, could be performed remotely on highly radioactive samples, and could yield results rapidly. Several standard leach tests were examined with a variety of test configurations. Using existing tests as a starting point, the DWPF Product Consistency Test (PCT was developed in which crushed glass samples are exposed to 90 ± 2 degree C deionized water for seven days. Based on extensive testing, including a seven-laboratory round robin and confirmatory testing with radioactive samples, the PCT is very reproducible, yields reliable results rapidly, and can be performed in shielded cell facilities with radioactive samples

  9. Design of a Cognitive Tool to Enhance Problemsolving Performance

    Science.gov (United States)

    Lee, Youngmin; Nelson, David

    2005-01-01

    The design of a cognitive tool to support problem-solving performance for external representation of knowledge is described. The limitations of conventional knowledge maps are analyzed in proposing the tool. The design principles and specifications are described. This tool is expected to enhance learners problem-solving performance by allowing…

  10. The Development and Validation of a Rubric to Enhance Performer Feedback for Undergraduate Vocal Solo Performance

    Science.gov (United States)

    Herrell, Katherine A.

    2014-01-01

    This is a study of the development and validation of a rubric to enhance performer feedback for undergraduate vocal solo performance. In the literature, assessment of vocal performance is under-represented, and the value of feedback from the assessment of musical performances, from the point of view of the performer, is nonexistent. The research…

  11. Durability Issues and Status of PBI-Based Fuel Cells

    DEFF Research Database (Denmark)

    Jakobsen, Mark Tonny Dalsgaard; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2016-01-01

    This chapter briefly reviews durability and stability issues with key materials and components for HT-PEMFCs, including the polymer membrane, the doping acid, the electrocatalyst, the catalyst support and bipolar plates. Degradation mechanisms and their dependence on fuel cell operating condition...

  12. Superhydrophobicity enhancement through substrate flexibility

    Science.gov (United States)

    Vasileiou, Thomas; Gerber, Julia; Prautzsch, Jana; Schutzius, Thomas; Poulikakos, Dimos

    2017-11-01

    Inspired by manifestations in nature, micro/nanoengineering superhydrophobic surfaces has been the focus of much work. Generally, hydrophobicity is increased through the combined effects of surface texturing and chemistry; being durable, rigid substrate materials are the norm. However, many natural and technical materials are flexible, and the resulting effect on hydrophobicity has been largely unexplored. Here, we show that the rational tuning of flexibility can work collaboratively with the surface micro/nanotexture to enhance liquid repellency performance, defined by impalement and breakup resistance, contact time reduction, and restitution coefficient increase. Reduction in substrate stiffness and areal density imparts immediate acceleration and intrinsic responsiveness to impacting droplets, mitigating the collision and lowering the impalement probability by 60 % without the need for active actuation. We demonstrate the above discoveries with materials ranging from thin steel or polymer sheets to butterfly wings. Partial support of the Swiss National Science Foundation under Grant 162565 and the European Research Council under Advanced Grant 669908 (INTICE) is acknowledged.

  13. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2012-02-15

    Surfaces with a very high apparent water contact angle (CA) and low water contact angle hysteresis (CAH) exhibit many useful characteristics, among them extreme water repellency, low drag for fluid flow, and a self-cleaning effect. The leaf of the Lotus plant (Nelumbo nucifera) achieves these properties using a hierarchical structure with roughness on both the micro- and nanoscale. It is of great interest to create durable surfaces with the so-called "Lotus effect" for many important applications. In this study, hierarchically structured surfaces with Lotus-effect properties were fabricated using micro- and nanosized hydrophobic silica particles and a simple spray method. In addition, hierarchically structured surfaces were prepared by spraying a nanoparticulate coating over a micropatterned surface. To examine the similarities between surfaces using microparticles versus a uniform micropattern as the microstructure, CA and CAH were compared across a range of pitch values for the two types of microstructures. Wear experiments were performed using an atomic force microscope (AFM), a ball-on-flat tribometer, and a water jet apparatus to verify multiscale wear resistance. These surfaces have potential uses in engineering applications requiring Lotus-effect properties and high durability. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    Science.gov (United States)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  15. Durability properties of high volume fly ash self compacting concretes

    Energy Technology Data Exchange (ETDEWEB)

    P. Dinakar; K.G. Babu; Manu Santhanam [Indian Institute of Technology, Chennai (India). Building Technology Division

    2008-11-15

    This paper presents an experimental study on the durability properties of self compacting concretes (SCCs) with high volume replacements of fly ash. Eight fly ash self compacting concretes of various strength grades were designed at desired fly ash percentages of 0, 10, 30, 50, 70 and 85%, in comparison with five different mixtures of normal vibrated concretes (NCs) at equivalent strength grades. The durability properties were studied through the measurement of permeable voids, water absorption, acid attack and chloride permeation. The results indicated that the SCCs showed higher permeable voids and water absorption than the vibrated normal concretes of the same strength grades. However, in acid attack and chloride diffusion studies the high volume fly ash SCCs had significantly lower weight losses and chloride ion diffusion.

  16. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  17. Durable flame retardant finish for silk fabric using boron hybrid silica sol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang-hua; Gu, Jiali; Chen, Guo-qiang [National Engineering Laboratory for Modern Silk, Soochow University (China); Xing, Tie-ling, E-mail: xingtieling@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University (China); Jiangsu HuaJia Group (China)

    2016-11-30

    Highlights: • Highly homogeneous boron hybrid silica sol flame retardant system was prepared through sol-gel method. • The silk samples treated and cross-linked by this hybrid sol and BTCA solution showed a higher limiting oxygen index (LOI) more than 31.0% and a better washing durability for more than 30 times washing. • The smoke suppression, combustion performance and thermal stability properties of the treated samples have a significant improvement. - Abstract: A hybrid silica sol was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor and boric acid (H{sub 3}BO{sub 3}) as flame retardant additive and then applied to silk fabric. In order to endow silk fabric with durable flame retardancy, 1,2,3,4-butanetetracarboxylic acid (BTCA) was used as cross-linking agent for the sake of strong linkage formation between the hybrid silica sol and silk fabric. The FT-IR and XPS analysis demonstrated the Si-O-B formation in the sol system, as well as the linkage between the sol and silk after the treatment. The limiting oxygen index (LOI) and smoke density test indicated good flame retardancy and smoke suppression of the treated silk fabrics. The micro calorimeter combustion (MCC) test and thermo gravimetric (TG) analysis showed that the treated samples had less weight loss in the high temperature and lower heat release rate when burning. The washing durability evaluation results indicated that there was a distinct improvement for the silk samples treated with BTCA even after 30 times washing. In addition, the influence of the processing order of BTCA and silica sol treatment on the limiting oxygen index (LOI) of the finished silk fabric was also investigated. And the results demonstrated that the sample treated with BTCA first and then with the silica sol exhibited better LOI value (32.3%) than that of the sample by the conversed treatment order. Moreover the tensile property of treated samples was nearly unchanged, but the handle of sol treated

  18. E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-03-11

    Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Special Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I&A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I

  19. E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations

    International Nuclear Information System (INIS)

    Phifer, M. A.

    2014-01-01

    Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Special Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I and A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I and

  20. Shuttle performance enhancement using an uprated OMS engine

    Science.gov (United States)

    Mallini, Charles J.; Boyd, William C.

    1988-01-01

    The NASA Space Shuttle's Orbital Maneuvering Engine (OME) has been investigated as the basis for an enhancement of Shuttle operational flexibility. The Johnson Space Center has given attention to an upgrading of the OME through the use of a gas generator-driven turbopump to raise engine specific impulse. Hardware tests have demonstrated the projected performance gains, which will yield an enhanced, intact ascent-abort capability, as well an an improved on-orbit payload and altitude capability. Attention is given to the application of these capabilities to the Hubble Space Telescope's deployment.

  1. Durability assessment of soft elastomeric capacitor skin for SHM of wind turbine blades

    Science.gov (United States)

    Downey, Austin; Pisello, Anna Laura; Fortunati, Elena; Fabiani, Claudia; Luzi, Francesca; Torre, Luigi; Ubertini, Filippo; Laflamme, Simon

    2018-03-01

    Renewable energy production has become a key research driver during the last decade. Wind energy represents a ready technology for large-scale implementation in locations all around the world. While important research is conducted to optimize wind energy production efficiency, a critical issue consists of monitoring the structural integrity and functionality of these large structures during their operational life cycle. This paper investigates the durability of a soft elastomeric capacitor strain sensing membrane, designed for structural health monitoring of wind turbines, when exposed to aggressive environmental conditions. The sensor is a capacitor made of three thin layers of an SEBS polymer in a sandwich configuration. The inner layer is doped with titania and acts as the dielectric, while the external layers are filled with carbon black and work as the conductive plates. Here, a variety of samples, not limited to the sensor configuration but also including its dielectric layer, were fabricated and tested within an accelerated weathering chamber (QUV) by simulating thermal, humidity, and UV radiation cycles. A variety of other tests were performed in order to characterize their mechanical, thermal, and electrical performance in addition to their solar reflectance. These tests were carried out before and after the QUV exposures of 1, 7, 15, and 30 days. The tests showed that titania inclusions improved the sensor durability against weathering. These findings contribute to better understanding the field behavior of these skin sensors, while future developments will concern the analysis of the sensing properties of the skin after aging.

  2. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  3. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  4. Enhanced performance hybrid-arq

    KAUST Repository

    Fareed, Muhammad Mehboob

    2016-06-16

    Apparatuses, computer readable media, and methods are provided for enhancing hybrid automatic repeat request (ARQ) performance. In an example method, a communication device transmits a first element of a vector, where the vector is selected using the information bits to be transmitted as an index in a code book. In some embodiments, this code book is constructed using Linear Constellation Precoding (LCP). If a NACK is received, the communication device transmits a second element of the vector. The process of transmitting elements of the vector continues until an ACK is received or the maximum number of transmission attempts is reached. If an ACK is received, the communication device transmits a first element of another vector of the code book that encodes a second set of information bits. This procedure may continue until all information bits have been transmitted successfully.

  5. Enhanced performance hybrid-arq

    KAUST Repository

    Fareed, Muhammad Mehboob; Yang, Hong-Chuan; Alouini, Mohamed-Slim

    2016-01-01

    Apparatuses, computer readable media, and methods are provided for enhancing hybrid automatic repeat request (ARQ) performance. In an example method, a communication device transmits a first element of a vector, where the vector is selected using the information bits to be transmitted as an index in a code book. In some embodiments, this code book is constructed using Linear Constellation Precoding (LCP). If a NACK is received, the communication device transmits a second element of the vector. The process of transmitting elements of the vector continues until an ACK is received or the maximum number of transmission attempts is reached. If an ACK is received, the communication device transmits a first element of another vector of the code book that encodes a second set of information bits. This procedure may continue until all information bits have been transmitted successfully.

  6. Efficiency of Sodium Polyacrylate to Improve Durability of Concrete under Adverse Curing Condition

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2015-01-01

    Full Text Available The conventional external curing process requires supply of large amount of water in addition to mixing water as well as strict quality control protocol. However, in a developing country like Bangladesh, many local contractors do not have awareness and required knowledge on importance of curing which often results in weaker concrete with durability issues. Moreover, at times it is difficult to maintain proper external curing process due to nonavailability of water and skilled laborer. Internal curing can be adopted under such scenario since this method is simple and less quality intensive. Usually, naturally occurring porous light weight aggregates (LWA are used as internal curing agent. However, naturally occurring LWA are not available in many countries like Bangladesh. Under these circumstances, Super Absorbent Polymer (SAP can be utilized as an alternative internal curing agent. In this study, sodium polyacrylate (SP as SAP has been used to produce internally cured concrete. Desorption isotherm of SP has been developed to investigate its effectiveness as internal curing agent. Test results showed that internally cured concrete with SP performed better in terms of both strength and durability as compared to control samples when subjected to adverse curing conditions where supply of additional water for external curing was absent.

  7. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baumgardner, Marc E. [Gonzaga University; Lakshminarayanan, Arunachalam [Colorado State University; Olsen, Daniel B. [Colorado State University; Marchese, Anthony J. [Colorado State University

    2017-10-18

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durability issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.

  8. Alternative nano-structured thin-film materials used as durable thermal nanoimprint lithography templates

    Science.gov (United States)

    Bossard, M.; Boussey, J.; Le Drogoff, B.; Chaker, M.

    2016-02-01

    Nanoimprint templates made of diamond-like carbon (DLC) and amorphous silicon carbide (SiC) thin films and fluorine-doped associated materials, i.e. F-DLC and F-SiC were investigated in the context of thermal nanoimprint lithography (NIL) with respect to their release properties. Their performances in terms of durability and stability were evaluated and compared to those of conventional silicon or silica molds coated with antisticking molecules applied as a self-assembled monolayer. Plasma-enhanced chemical vapor deposition parameters were firstly tuned to optimize mechanical and structural properties of the DLC and SiC thin films. The impact of the amount of fluorine dopant on the deposited thin films properties was then analyzed. A comparative analysis of DLC, F-DLC as well as SiC and F-SiC molds was then carried out over multiple imprints, performed into poly (methyl methacrylate) (PMMA) thermo-plastic resist. The release properties of un-patterned films were evaluated by the measurement of demolding energies and surface energies, associated with a systematic analysis of the mold surface contamination. These analyses showed that the developed materials behave as intrinsically easy-demolding and contamination-free molds over series of up to 40 imprints. To our knowledge, it is the first time that such a large number of imprints has been considered within an exhaustive comparative study of materials for NIL. Finally, the developed materials went through standard e-beam lithography and plasma etching processes to obtain nanoscale-patterned templates. The replicas of those patterned molds, imprinted into PMMA, were shown to be of high fidelity and good stability after several imprints.

  9. Procedures for finding optimal layouts of vehicle components with respect to durability

    Energy Technology Data Exchange (ETDEWEB)

    Eschenauer, H.A.; Idelberger, H. [Univ. of Siegen (Germany); Bieker, G.; Rottler, A. [Bombardier, Siegen-Netphen (Germany); Weinert, M. [Ford Motor Comp., Cologne (Germany)

    2007-07-01

    When designing complete systems or system components, it is of vital importance for the manufacturers to optimally fulfill the continuously increasing demands pertaining to safety, durability, reduction of energy consumption, noise reduction, improvement of comfort, accuracy, etc. This applies to all types of traffic and transportation systems like rail vehicles, automobiles, airplanes and ships. By combining structural analysis and simulation methods with optimization algorithms, required specifications can be met faster and more reliably, and hence the production development cycles can be substantially reduced. This paper shall give an overview on results of a method with the features of a damage approximation as precisely as possible on the one hand and, on the other hand, a load-time history with few different load cycles so that a nonlinear calculation can be performed in the shortest possible time. Simulations with rigidly and elastically modeled components like bogie frames or carbodies show that depending on the type of modeling substantial differences may occur with respect to dynamic behavior and the interaction quantity between the bodies. This aspect has to be taken into consideration for quantitatively sufficient fatigue strength and durability calculation. Mathematical optimization procedures are in general an efficient tool to guarantee the optimal fulfillment of all required design objectives and constraints in all stages of the design process. Some of the procedures are illustrated at two examples (bogie frame, carbody). (orig.)

  10. In vivo tissue response and durability of five novel synthetic polymers in a rabbit model.

    Science.gov (United States)

    Sahin, E; Cingi, C; Eskiizmir, G; Altintoprak, N; Calli, A; Calli, C; Yilgör, I; Yilgör, E

    2016-04-01

    Alloplastic materials are frequently used in facial plastic surgeries such as rhinoplasty and nasal reconstruction. Unfortunately, the ideal alloplastic material has not been found. This experimental study evaluates the tissue response and durability of five novel polymers developed as an alloplastic material. In this experimental study involving a tertiary university hospital, six subcuticular pockets were formed at the back of 10 rabbits for the implantation of each polymer and sham group. Each pocket was excised with its adjacent tissue after three months, and collected for histopathological examination. Semi-quantitative examination including neovascularisation, inflammation, fibrosis, abscess formation, multinucleated foreign body giant cells was performed, and integrity of polymer was evaluated. A statistical comparison was performed. No statically significant difference was detected in neovascularisation, inflammation, fibrosis, abscess formation and multinucleated foreign body giant cells when a paired comparison between sham and polymer II, III and IV groups was performed individually. Nevertheless, the degree of fibrosis was less than sham group in polymer I (p = .027) and V (p = .018), although the other variables were almost similar. The integrity of polymers III (9 intact, 1 fragmented) and IV (8 intact, 2 absent) was better than the other polymers. These novel synthetic polymers could be considered as good candidates for clinical applicability. All polymers provided satisfactory results in terms of tissue response; however, fibrovascular integration was higher in polymers II, III and IV. In addition, the durability of polymer III and IV was better than the others. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  11. Caffeine ingestion enhances Wingate performance: a meta-analysis.

    Science.gov (United States)

    Grgic, Jozo

    2018-03-01

    The positive effects of caffeine ingestion on aerobic performance are well-established; however, recent findings are suggesting that caffeine ingestion might also enhance components of anaerobic performance. A commonly used test of anaerobic performance and power output is the 30-second Wingate test. Several studies explored the effects of caffeine ingestion on Wingate performance, with equivocal findings. To elucidate this topic, this paper aims to determine the effects of caffeine ingestion on Wingate performance using meta-analytic statistical techniques. Following a search through PubMed/MEDLINE, Scopus, and SportDiscus ® , 16 studies were found meeting the inclusion criteria (pooled number of participants = 246). Random-effects meta-analysis of standardized mean differences (SMD) for peak power output and mean power output was performed. Study quality was assessed using the modified version of the PEDro checklist. Results of the meta-analysis indicated a significant difference (p = .005) between the placebo and caffeine trials on mean power output with SMD values of small magnitude (0.18; 95% confidence interval: 0.05, 0.31; +3%). The meta-analysis performed for peak power output indicated a significant difference (p = .006) between the placebo and caffeine trials (SMD = 0.27; 95% confidence interval: 0.08, 0.47 [moderate magnitude]; +4%). The results from the PEDro checklist indicated that, in general, studies are of good and excellent methodological quality. This meta-analysis adds on to the current body of evidence showing that caffeine ingestion can also enhance components of anaerobic performance. The results presented herein may be helpful for developing more efficient evidence-based recommendations regarding caffeine supplementation.

  12. Durability of adhesive glass-metal connections for structural applications

    NARCIS (Netherlands)

    Van Lancker, B.; Dispersyn, J.; De Corte, W.; Belis, J.

    2016-01-01

    The use of adhesive bonds for structural glass-metal connections in the building envelope has increased in recent years. Despite the multiple advantages compared to more traditional bolted connections, long-term behaviour and durability of the adhesives have to be investigated accurately. Because,

  13. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  14. Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M.; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E.; Mukerjee, Sanjeev

    2015-01-01

    The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo3/HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling. PMID:26413384

  15. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

  16. Enhanced Motor Imagery-Based BCI Performance via Tactile Stimulation on Unilateral Hand

    Directory of Open Access Journals (Sweden)

    Xiaokang Shu

    2017-12-01

    Full Text Available Brain-computer interface (BCI has attracted great interests for its effectiveness in assisting disabled people. However, due to the poor BCI performance, this technique is still far from daily-life applications. One of critical issues confronting BCI research is how to enhance BCI performance. This study aimed at improving the motor imagery (MI based BCI accuracy by integrating MI tasks with unilateral tactile stimulation (Uni-TS. The effects were tested on both healthy subjects and stroke patients in a controlled study. Twenty-two healthy subjects and four stroke patients were recruited and randomly divided into a control-group and an enhanced-group. In the control-group, subjects performed two blocks of conventional MI tasks (left hand vs. right hand, with 80 trials in each block. In the enhanced-group, subjects also performed two blocks of MI tasks, but constant tactile stimulation was applied on the non-dominant/paretic hand during MI tasks in the second block. We found the Uni-TS significantly enhanced the contralateral cortical activations during MI of the stimulated hand, whereas it had no influence on activation patterns during MI of the non-stimulated hand. The two-class BCI decoding accuracy was significantly increased from 72.5% (MI without Uni-TS to 84.7% (MI with Uni-TS in the enhanced-group (p < 0.001, paired t-test. Moreover, stroke patients in the enhanced-group achieved an accuracy >80% during MI with Uni-TS. This novel approach complements the conventional methods for BCI enhancement without increasing source information or complexity of signal processing. This enhancement via Uni-TS may facilitate clinical applications of MI-BCI.

  17. Durable Tactile Glove for Human or Robot Hand

    Science.gov (United States)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  18. Membrane installation for enhanced up-flow anaerobic sludge blanket (UASB) performance.

    Science.gov (United States)

    Liu, Yin; Zhang, Kaisong; Bakke, Rune; Li, Chunming; Liu, Haining

    2013-09-01

    It is postulated that up-flow anaerobic sludge blanket (UASB) reactor efficiency can be enhanced by a membrane immersed in the reactor to operate it as an anaerobic membrane bioreactor (AnMBR) for low-strength wastewater treatment. This postulate was tested by comparing the performance with and without a hollow fiber microfiltration membrane module immersed in UASB reactors operated at two specific organic loading rates (SOLR). Results showed that membrane filtration enhanced process performance and stability, with over 90% total organic carbon (TOC) removal consistently achieved. More than 91% of the TOC removal was achieved by suspended biomass, while less than 6% was removed by membrane filtration and digestion in the membrane attached biofilm during stable AnMBRs operation. Although the membrane and its biofilm played an important role in initial stage of the high SOLR test, linear increased TOC removal by bulk sludge mainly accounted for the enhanced process performance, implying that membrane led to enhanced biological activity of the suspended sludge. The high retention of active fine sludge particles in suspension was the main reason for this significant improvement of performance and biological activity, which led to decreased SOLR with time to a theoretical optimal level around 2  g COD/g MLVSS·d and the establishment of a microbial community dominated by Methanothrix-like microbes. It was concluded that UASB process performance can be enhanced by transforming such to AnMBR operation when the loading rate is too high for sufficient sludge retention, and/or when the effluent water quality demands are especially stringent. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Optical design applications for enhanced illumination performance

    Science.gov (United States)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  20. D.R.O.P. The Durable Reconnaissance and Observation Platform

    Science.gov (United States)

    McKenzie, Clifford; Parness, Aaron

    2012-01-01

    The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb concrete surfaces up to 85deg at a rate of 25cm/s, make rapid horizontal to vertical transitions, carry an audio/visual reconnaissance payload, and survive impacts from 3 meters. DROP is manufactured using a combination of selective laser sintering (SLS) and shape deposition manufacturing (SDM) techniques. The platform uses a two-wheel, two-motor design that delivers high mobility with low complexity. DROP extends microspine climbing technology from linear to rotary applications, providing improved transition ability, increased speeds, and simpler body mechanics while maintaining microspines ability to opportunistically grip rough surfaces. Various aspects of prototype design and performance are discussed, including the climbing mechanism, body design, and impact survival.