WorldWideScience

Sample records for enhanced dose uniformity

  1. Plasma sheath physics and dose uniformity in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Li Jianhui; Kwok, Dixon T. K.; Chu, Paul K.; Wang Zhuo

    2009-01-01

    Based on the multiple-grid particle-in-cell code, an advanced simulation model is established to study the sheath physics and dose uniformity along the sample stage in order to provide the theoretical basis for further improvement of enhanced glow discharge plasma immersion ion implantation and deposition. At t=7.0 μs, the expansion of the sheath in the horizontal direction is hindered by the dielectric cage. The electron focusing effect is demonstrated by this model. Most of the ions at the inside wall of the cage are implanted into the edge of the sample stage and a relatively uniform ion fluence distribution with a large peak is observed at the end. Compared to the results obtained from the previous model, a higher implant fluence and larger area of uniformity are disclosed.

  2. Dose sculpting with generalized equivalent uniform dose

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

    2005-01-01

    With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD 0 and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD 0 was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD 0 was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n could lead to

  3. Linac-based isocentric electron-photon treatment of radically operated breast carcinoma with enhanced dose uniformity in the field gap area.

    Science.gov (United States)

    Tenhunen, Mikko; Nyman, Heidi; Strengell, Satu; Vaalavirta, Leila

    2009-10-01

    Isocentric treatment technique is a standard method in photon radiotherapy with the primary advantage of requiring only a single patient set-up procedure for multiple fields. However, in electron treatments the size of the standard applicators does not generally allow to use an isocentric treatment technique. In this work we have modified and dosimetrically tested electron applicators for isocentric treatments in combination with photons. An isocentric treatment technique with photons and electrons for postmastectomy radiation therapy (PMRT) has been developed with special emphasis on improving the dose uniformity in the field gap area. Standard electron applicators of two Varian Clinac 2100CD linear accelerators were shortened by 10cm allowing isocentric treatments of 90cmelectron fields. Shortened applicators were commissioned and configured for the electron calculation algorithm of the treatment planning system. The field arrangement of PMRT was modified by combining three photon field segments with different gaps and overlaps with the electron field to improve dose uniformity. The developed technique and two other methods for PMRT were compared with each other in the group of 20 patients. Depth dose characteristics of the shortened applicators remained unchanged from those of the standard applicators. Penumbrae were broadened by 0-3mm depending on electron energy and depth as the air gap was increased from 5cm (standard applicator at SSD=100cm) to 10cm (shortened applicator at SSD=95cm). The dose calculation performance of the modified applicators at 95cmelectron dose calculation algorithm of the treatment planning system (Varian Eclipse). The modified isocentric treatment technique for PMRT was superior than the traditional two-dimensional technique. However, with the tangential photon fields without electrons the even better dose uniformity within PTV could be achieved but with increased irradiation of healthy tissues (lung, heart, and contralateral breast

  4. Clean focus, dose and CD metrology for CD uniformity improvement

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck

    2018-03-01

    Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.

  5. Evaluation of the dose uniformity for double-plane high dose rate interstitial breast implants with the use of dose reference points and dose non-uniformity ratio

    International Nuclear Information System (INIS)

    MAjor, T.; Polgar, C.; Somogyi, A.; Nemeth, G.

    2000-01-01

    This study investigated the influence of dwell time optimizations on dose uniformity characterized by dose values in dose points and dose non-uniformity ratio (DNR) and analyzed which implant parameters have influence on the DNR. Double-plane breast implants with catheters arranged in triangular pattern were used for the calculations. At a typical breast implant, dose values in dose reference points inside the target volume and volumes enclosed by given isodose surfaces were calculated and compared for non-optimized and optimized implants. The same 6-cm treatment length was used for the comparisons. Using different optimizations plots of dose non-uniformity ratio as a function of catheter separation, source step size, number of catheters, length of active sections were drawn and the minimum DNR values were determined. Optimization resulted in less variation in dose values over dose points through the whole volume and in the central plane only compared to the non-optimized case. At implant configurations consisting of seven catheters with 15-mm separation, 5-mm source step size and various active lengths adapted according to the type of optimization, the no optimization, geometrical (volume mode) and dose point (on dose points and geometry) optimization resulted in similar treatment volumes, but an increased high dose volume was observed due to the optimization. The dose non-uniformity ratio always had the minimum at average dose over dose normalization points, defined in the midpoints between the catheters through the implant volume. The minimum value of DNR depended on catheter separation, source step size, active length and number of catheters. The optimization had only a small influence on DNR. In addition to the reference points in the central plane only, dose points positioned in the whole implant volume can be used for evaluating the dose uniformity of interstitial implants. The dose optimization increases not only the dose uniformity within the implant but

  6. Dose uniformity estimations in the blood irradiator

    International Nuclear Information System (INIS)

    George, J.R.

    2002-01-01

    Use of irradiated blood in transfusions is recognized as the most effective way of preventing Graft Versus Host Disease (GVHD). This paper shows the study carried out in the dose rate variation for various source arrangements for optimising the source-sample chamber geometry, during the development of the Blood Irradiator, Bl-2000

  7. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  8. Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Tahmasebi-Birgani

    2014-04-01

    Full Text Available Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D through the non-uniform magnetic field, the Percentage Depth Dose(PDDs on central axis and dose profiles in three depths for each energy were measured in a 3D water phantom. Results For all magnet arrangements and for two different energies, the surface dose increment and shift in depth of maximum dose (dmax were observed. In addition, the pattern of dose distribution in buildup region was changed. Measurement of dose profile showed dose localization and spreading in some other regions. Conclusion The results of this study confirms that using magnetic field can alter the dose deposition patterns and as a result can produce dose enhancement as well as dose reduction in the medium using high-energy electron beams. These effects provide dose distribution with arbitrary shapes for use in radiation therapy.

  9. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  10. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation

    International Nuclear Information System (INIS)

    Goo, Hyun Woo

    2011-01-01

    A practical body-size adaptive protocol providing uniform image noise at various kV levels is not available for pediatric CT. To develop a practical contrast-enhanced pediatric chest CT protocol providing uniform image noise by using an individualized volume CT dose index (CTDIvol) determined by the cross-sectional area and density of the body at variable kV levels and with combined tube current modulation. A total of 137 patients (mean age, 7.6 years) underwent contrast-enhanced pediatric chest CT based on body weight. From the CTDIvol, image noise, and area and mean density of the cross-section at the lung base in the weight-based group, the best fit equation was estimated with a very high correlation coefficient (γ 2 = 0.86, P 2 vs. 326.3 ± 124.8 cm 2 ), mean density (-212.9 ± 53.1 HU vs. -221.1 ± 56.3 HU), and image noise (13.8 ± 2.3 vs. 13.6 ± 1.7 HU) between the weight-based and the CTDIvol groups (P > 0.05). Contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the cross-sectional area and density of the body provides more uniform noise and better dose adaptation to body habitus than does weight-based CT at variable kV levels and with combined tube current modulation. (orig.)

  11. Method to account for dose fractionation in analysis of IMRT plans: Modified equivalent uniform dose

    International Nuclear Information System (INIS)

    Park, Clinton S.; Kim, Yongbok; Lee, Nancy; Bucci, Kara M.; Quivey, Jeanne M.; Verhey, Lynn J.; Xia Ping

    2005-01-01

    Purpose: To propose a modified equivalent uniform dose (mEUD) to account for dose fractionation using the biologically effective dose without losing the advantages of the generalized equivalent uniform dose (gEUD) and to report the calculated mEUD and gEUD in clinically used intensity-modulated radiotherapy (IMRT) plans. Methods and Materials: The proposed mEUD replaces the dose to each voxel in the gEUD formulation by a biologically effective dose with a normalization factor. We propose to use the term mEUD D o /n o that includes the total dose (D o ) and number of fractions (n o ) and to use the term mEUD o that includes the same total dose but a standard fraction size of 2 Gy. A total of 41 IMRT plans for patients with nasopharyngeal cancer treated at our institution between October 1997 and March 2002 were selected for the study. The gEUD and mEUD were calculated for the planning gross tumor volume (pGTV), planning clinical tumor volume (pCTV), parotid glands, and spinal cord. The prescription dose for these patients was 70 Gy to >95% of the pGTV and 59.4 Gy to >95% of the pCTV in 33 fractions. Results: The calculated average gEUD was 72.2 ± 2.4 Gy for the pGTV, 54.2 ± 7.1 Gy for the pCTV, 26.7 ± 4.2 Gy for the parotid glands, and 34.1 ± 6.8 Gy for the spinal cord. The calculated average mEUD D o /n o using 33 fractions was 71.7 ± 3.5 Gy for mEUD 70/33 of the pGTV, 49.9 ± 7.9 Gy for mEUD 59.5/33 of the pCTV, 27.6 ± 4.8 Gy for mEUD 26/33 of the parotid glands, and 32.7 ± 7.8 Gy for mEUD 45/33 of the spinal cord. Conclusion: The proposed mEUD, combining the gEUD with the biologically effective dose, preserves all advantages of the gEUD while reflecting the fractionation effects and linear and quadratic survival characteristics

  12. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of)

    2011-07-15

    A practical body-size adaptive protocol providing uniform image noise at various kV levels is not available for pediatric CT. To develop a practical contrast-enhanced pediatric chest CT protocol providing uniform image noise by using an individualized volume CT dose index (CTDIvol) determined by the cross-sectional area and density of the body at variable kV levels and with combined tube current modulation. A total of 137 patients (mean age, 7.6 years) underwent contrast-enhanced pediatric chest CT based on body weight. From the CTDIvol, image noise, and area and mean density of the cross-section at the lung base in the weight-based group, the best fit equation was estimated with a very high correlation coefficient ({gamma}{sup 2} = 0.86, P < 0.001). For the next study, 177 patients (mean age, 7.9 years; the CTDIvol group) underwent contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the best fit equation. CTDIvol values on the dose report after CT scanning, noise differences from the target noise, areas, and mean densities were compared between these two groups. The CTDIvol values (mean{+-}standard deviation, 1.6 {+-} 0.7 mGy) and the noise differences from the target noise (1.1 {+-} 0.9 HU) of the CTDIvol group were significantly lower than those of the weight-based group (2.0 {+-} 1.0 mGy, 1.8 {+-} 1.4 HU) (P < 0.001). In contrast, no statistically significant difference was found in area (317.0 {+-} 136.8 cm{sup 2} vs. 326.3 {+-} 124.8 cm{sup 2}), mean density (-212.9 {+-} 53.1 HU vs. -221.1 {+-} 56.3 HU), and image noise (13.8 {+-} 2.3 vs. 13.6 {+-} 1.7 HU) between the weight-based and the CTDIvol groups (P > 0.05). Contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the cross-sectional area and density of the body provides more uniform noise and better dose adaptation to body habitus than does weight-based CT at variable kV levels and with combined tube current modulation. (orig.)

  13. Age-dependent effective doses for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2014-01-01

    Age-dependent effective doses for external exposure to photons emitted by radionuclides uniformly distributed in air are reported. The calculations were performed for 160 radionuclides, which are important for safety assessment of nuclear facilities. The energies and intensities of photons emitted from radionuclides were taken from the decay data DECDC used for dose calculations. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ) for 6 age groups: newborn, 1, 5, 10 and 15 years-old and adult. The effective doses for the adult are also compared to values given in the literature.

  14. The influence of x-ray energy on lung dose uniformity in total-body irradiation

    International Nuclear Information System (INIS)

    Ekstrand, Kenneth; Greven, Kathryn; Wu Qingrong

    1997-01-01

    Purpose: In this study we examine the influence of x-ray energy on the uniformity of the dose within the lung in total-body irradiation treatments in which partial transmission blocks are used to control the lung dose. Methods and Materials: A solid water phantom with a cork insert to simulate a lung was irradiated by x-rays with energies of either 6, 10, or 18 MV. The source to phantom distance was 3.9 meters. The cork insert was either 10 cm wide or 6 cm wide. Partial transmission blocks with transmission factors of 50% were placed anterior to the cork insert. The blocks were either 8 or 4 cm in width. Kodak XV-2 film was placed in the midline of the phantom to record the dose. Midplane dose profiles were measured with a densitometer. Results: For the 10 cm wide cork insert the uniformity of the dose over 80% of the block width varied from 6.6% for the 6 MV x-rays to 12.2% for the 18 MV x-rays. For the 6 cm wide cork insert the uniformity was comparable for all three x-ray energies, but for 18 MV the central dose increased by 9.4% compared to the 10 cm wide insert. Conclusion: Many factors must be considered in optimizing the dose for total-body irradiation. This study suggests that for AP/PA techniques lung dose uniformity is superior with 6 MV irradiation. The blanket recommendation that the highest x-ray energy be used in TBI is not valid for all situations

  15. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  16. Tumor and normal tissue responses to fractioned non-uniform dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kaellman, P; Aegren, A; Brahme, A [Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics

    1996-08-01

    The volume dependence of the radiation response of a tumor is straight forward to quantify because it depends primarily on the eradication of all its clonogenic cells. A tumor therefore has a parallel organization as any surviving clonogen in principle can repopulate the tumor. The difficulty with the response of the tumor is instead to know the density and sensitivity distribution of the most resistant clonogenic cells. The increase in the 50% tumor control dose and the decrease in the maximum normalized slope of the dose response relation, {gamma}, in presence of small compartments of resistant tumor cells have therefore been quantified to describe their influence on the dose response relation. Injury to normal tissue is a much more complex and gradual process. It depends on earlier effects induced long before depletion of the differentiated and clonogenic cells that in addition may have a complex structural and functional organization. The volume dependence of the dose response relation of normal tissues is therefore described here by the relative seriality, s, of the infrastructure of the organ. The model can also be generalized to describe the response of heterogeneous tissues to non uniform dose distributions. The new model is compared with clinical and experimental data on normal tissue response, and shows good agreement both with regard to the shape of dose response relation and the volume dependence of the isoeffect dose. The response of tumors and normal tissues are quantified for arbitrary dose fractionations using the linear quadratic cell survival parameters {alpha} and {beta}. The parameters of the dose response relation are derived both for a constant dose per fraction and a constant number of dose fractions, thus in the latter case accounting also for non uniform dose delivery. (author). 26 refs, 4 figs.

  17. Use of an electron reflector to improve dose uniformity at the vertex during total skin electron therapy

    International Nuclear Information System (INIS)

    Peters, V.G.

    2000-01-01

    Purpose: The vertex of the scalp is always tangentially irradiated during total skin electron therapy (TSET). This study was conducted to determine the dose distribution at the vertex for a commonly used irradiation technique and to evaluate the use of an electron reflector, positioned above the head, as a means of improving the dose uniformity. Methods and Materials: Phantoms, simulating the head of a patient, were irradiated using our standard procedure for TSET. The technique is a six-field irradiation using dual angled electron beams at a treatment distance of 3.6 meters. Vertex dosimetry was performed using ionization methods and film. Measurements were made for an unmodified 6 MeV electron beam and for a 4 MeV beam obtained by placing an acrylic scattering plate in the beam line. Studies were performed to examine the effect of electron scattering on vertex dose when a lead reflector, 50 x 50 cm in area, was positioned above the phantom. Results: The surface dose at the vertex, in the absence of the reflector, was found to be less than 40% of the prescribed skin dose. Use of the lead reflector increased this value to 73% for the 6 MeV beam and 99% for the degraded 4 MeV beam. Significant improvements in depth dose were also observed. The dose enhancement is not strongly dependent on reflector distance or angulation since the reflector acts as a large source of broadly scattered electrons. Conclusion: The vertex may be significantly underdosed using standard techniques for total skin electron therapy. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation

  18. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  19. Coating strategy for enhancing illumination uniformity in a lithographic condenser

    International Nuclear Information System (INIS)

    Gaines, D.P.; Vernon, S.P.; Sommargren, G.E.; Kania, D.R.

    1995-01-01

    A three-element Koehler condenser system has been fabricated, characterized, and integrated into an EUV lithographic system. The multilayer coatings deposited on the optics were designed to provide optimal radiation transport efficiency and illumination uniformity. Extensive EUV characterization measurements performed on the individual optics and follow-on system measurements indicated that the condenser was operating close to design goals. Multilayer d-spacings were within 0.05 nm of specifications, and reflectances were approximately 60%. Illumination uniformity was better than ±10%. The broadband transport efficiency was 11%

  20. Formulation design of oral pediatric Acetazolamide suspension: dose uniformity and physico-chemical stability study.

    Science.gov (United States)

    Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B

    2017-03-01

    The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.

  1. Non-uniform dwell times in line source high dose rate brachytherapy: physical and radiobiological considerations

    International Nuclear Information System (INIS)

    Jones, B.; Tan, L.T.; Freestone, G.; Bleasdale, C.; Myint, S.; Littler, J.

    1994-01-01

    The ability to vary source dwell times in high dose rate (HDR) brachytherapy allows for the use of non-uniform dwell times along a line source. This may have advantages in the radical treatment of tumours depending on individual tumour geometry. This study investigates the potential improvements in local tumour control relative to adjacent normal tissue isoeffects when intratumour source dwell times are increased along the central portion of a line source (technique A) in radiotherapy schedules which include a relatively small component of HDR brachytherapy. Such a technique is predicted to increase the local control for tumours of diameters ranging between 2 cm and 4 cm by up to 11% compared with a technique in which there are uniform dwell times along the line source (technique B). There is no difference in the local control rates for the two techniques when used to treat smaller tumours. Normal tissue doses are also modified by the technique used. Technique A produces higher normal tissue doses at points perpendicular to the centre of the line source and lower dose at points nearer the ends of the line source if the prescription point is not in the central plane of the line source. Alternatively, if the dose is prescribed at a point in the central plane of the line source, the dose at all the normal tissue points are lower when technique A is used. (author)

  2. Does Blue Uniform Color Enhance Winning Probability in Judo Contests?

    NARCIS (Netherlands)

    Dijkstra, P.D.; Preenen, P.T.Y.; Essen, H. van

    2018-01-01

    The color of an athlete's uniform may have an effect on psychological functioning and consequently bias the chances of winning contests in sport competition. Several studies reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white outfit. However, we argue

  3. Non-Uniform Dose Mapping Controlled by Modulated Vertical and Horizontal Scans

    International Nuclear Information System (INIS)

    Ninomiya, S.; Kimura, Y.; Kudo, T.; Ochi, A.; Toda, R.; Tsukihara, M.; Sato, F.; Fuse, G.; Ueno, K.; Sugitani, M.

    2008-01-01

    Since geometries of semi-conductor devices continue to shrink, the requirement for each process becomes severer to keep uniformity of electrical parameters of the semi-conductor devices. A larger wafer also causes larger variations. Thus it has been strongly required for ion implantation process to compensate for the variations from other processes because of its good dose controllability. A newly developed mapping of intentional non-uniform dosage system, which is named 'MIND system', is implemented in SEN's single-wafer-type implanters. The MIND system controls both horizontal and vertical scan speed simultaneously. Intentional two-dimensional non-uniform profiles of sheet resistance, such as concentric and eccentric profiles, are obtained only by single-step ion implantation.

  4. Equivalent uniform dose concept evaluated by theoretical dose volume histograms for thoracic irradiation.

    Science.gov (United States)

    Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F

    2007-03-01

    The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.

  5. Isodose distributions and dose uniformity in the Portuguese gamma irradiation facility calculated using the MCNP code

    CERN Document Server

    Oliveira, C

    2001-01-01

    A systematic study of isodose distributions and dose uniformity in sample carriers of the Portuguese Gamma Irradiation Facility was carried out using the MCNP code. The absorbed dose rate, gamma flux per energy interval and average gamma energy were calculated. For comparison purposes, boxes filled with air and 'dummy' boxes loaded with layers of folded and crumpled newspapers to achieve a given value of density were used. The magnitude of various contributions to the total photon spectra, including source-dependent factors, irradiator structures, sample material and other origins were also calculated.

  6. Fast dose planning Monte Carlo simulations in inhomogeneous phantoms submerged in uniform, static magnetic fields

    International Nuclear Information System (INIS)

    Yanez, R.; Dempsey, J. F.

    2007-01-01

    We present studies in support of the development of a magnetic resonance imaging (MRI) guided intensity modulated radiation therapy (IMRT) device for the treatment of cancer patients. Fast and accurate computation of the absorbed ionizing radiation dose delivered in the presence of the MRI magnetic field are required for clinical implementation. The fast Monte Carlo simulation code DPM, optimized for radiotherapy treatment planning, is modified to simulate absorbed doses in uniform, static magnetic fields, and benchmarked against PENELOPE. Simulations of dose deposition in inhomogeneous phantoms in which a low density material is sandwiched in water shows that a lower MRI field strength (0.3 T) is to prefer in order to avoid dose build-up near material boundaries. (authors)

  7. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  8. Optimization of equivalent uniform dose using the L-curve criterion

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-01-01

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning

  9. Optimization of equivalent uniform dose using the L-curve criterion

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2007-09-21

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  10. Optimization of equivalent uniform dose using the L-curve criterion.

    Science.gov (United States)

    Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R

    2007-10-07

    Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.

  11. Does Blue Uniform Color Enhance Winning Probability in Judo Contests?

    OpenAIRE

    Dijkstra, Peter D.; Preenen, Paul T. Y.; van Essen, Hans

    2018-01-01

    The color of an athlete's uniform may have an effect on psychological functioning and consequently bias the chances of winning contests in sport competition. Several studies reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white outfit. However, we argue there is no winning bias and that previous studies were confounded and based on small and specific data sets. We tested whether blue biases winning in judo using a very extensive judo data set (45,87...

  12. Dose Uniformity of Scored and Unscored Tablets: Application of the FDA Tablet Scoring Guidance for Industry.

    Science.gov (United States)

    Ciavarella, Anthony B; Khan, Mansoor A; Gupta, Abhay; Faustino, Patrick J

    This U.S. Food and Drug Administration (FDA) laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product, and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units , which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5 to 2.1 standard deviation (SD) of the percent label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3 to 9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting can have an effect on the amount of drug present in a split tablet and available for absorption. Tablet splitting has become a very common practice in the United States and throughout the

  13. Dose linearity and uniformity of a linear accelerator designed for implementation of multileaf collimation system-based intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Li Sicong; Ayyangar, Komanduri M.; Yoe-Sein, Maung; Pillai, Susha; Enke, Charles A.; Celi, Juan C.

    2003-01-01

    The dose linearity and uniformity of a linear accelerator designed for multileaf collimation system- (MLC) based IMRT was studied as a part of commissioning and also in response to recently published data. The linear accelerator is equipped with a PRIMEVIEW, a graphical interface and a SIMTEC IM-MAXX, which is an enhanced autofield sequencer. The SIMTEC IM-MAXX sequencer permits the radiation beam to be 'ON' continuously while delivering intensity modulated radiation therapy subfields at a defined gantry angle. The dose delivery is inhibited when the electron beam in the linear accelerator is forced out of phase with the microwave power while the MLC configures the field shape of a subfield. This beam switching mechanism reduces the overhead time and hence shortens the patient treatment time. The dose linearity, reproducibility, and uniformity were assessed for this type of dose delivery mechanism. The subfields with monitor units ranged from 1 MU to 100 MU were delivered using 6 MV and 23 MV photon beams. The doses were computed and converted to dose per monitor unit. The dose linearity was found to vary within 2% for both 6 MV and 23 MV photon beam using high dose rate setting (300 MU/min) except below 2 MU. The dose uniformity was assessed by delivering 4 subfields to a Kodak X-OMAT TL film using identical low monitor units. The optical density was converted to dose and found to show small variation within 3%. Our results indicate that this linear accelerator with SIMTEC IM-MAXX sequencer has better dose linearity, reproducibility, and uniformity than had been reported

  14. Is uniform target dose possible in IMRT plans in the head and neck?

    International Nuclear Information System (INIS)

    Vineberg, K.A.; Eisbruch, A.; Coselmon, M.M.; McShan, D.L.; Kessler, M.L.; Fraass, B.A.

    2002-01-01

    Purpose: Various published reports involving intensity-modulated radiotherapy (IMRT) plans developed using automated optimization (inverse planning) have demonstrated highly conformal plans. These reported conformal IMRT plans involve significant target dose inhomogeneity, including both overdosage and underdosage within the target volume. In this study, we demonstrate the development of optimized beamlet IMRT plans that satisfy rigorous dose homogeneity requirements for all target volumes (e.g., ±5%), while also sparing the parotids and other normal structures. Methods and Materials: The treatment plans of 15 patients with oropharyngeal cancer who were previously treated with forward-planned multisegmental IMRT were planned again using an automated optimization system developed in-house. The optimization system allows for variable sized beamlets computed using a three-dimensional convolution/superposition dose calculation and flexible cost functions derived from combinations of clinically relevant factors (costlets) that can include dose, dose-volume, and biologic model-based costlets. The current study compared optimized IMRT plans designed to treat the various planning target volumes to doses of 66, 60, and 54 Gy with varying target dose homogeneity while using a flexible optimization cost function to minimize the dose to the parotids, spinal cord, oral cavity, brainstem, submandibular nodes, and other structures. Results: In all cases, target dose uniformity was achieved through steeply varying dose-based costs. Differences in clinical plan evaluation metrics were evaluated for individual cases (eight different target homogeneity costlets), and for the entire cohort of plans. Highly conformal plans were achieved, with significant sparing of both the contralateral and ipsilateral parotid glands. As the homogeneity of the target dose distributions was allowed to decrease, increased sparing of the parotids (and other normal tissues) may be achieved. However, it

  15. Does Blue Uniform Color Enhance Winning Probability in Judo Contests?

    Directory of Open Access Journals (Sweden)

    Peter D. Dijkstra

    2018-01-01

    Full Text Available The color of an athlete's uniform may have an effect on psychological functioning and consequently bias the chances of winning contests in sport competition. Several studies reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white outfit. However, we argue there is no winning bias and that previous studies were confounded and based on small and specific data sets. We tested whether blue biases winning in judo using a very extensive judo data set (45,874 contests from all international judo tournaments between 2008 and 2014. In judo, the first called athlete for the fight used to wear the blue judogi but this was changed to the white judogi in 2011. This switch enabled us to compare the win bias before and after this change to isolate the effect of the color of the judogi. We found a significant win bias for the first called athlete, but this effect was not significantly related to the color of the judogi. The lack of a significant win effect of judogi color suggests that blue does not bias winning in judo, and that the blue-white pairing ensures an equal level of play. Our study shows the importance of thoroughly considering alternative explanations and using extensive datasets in color research in sports and psychology.

  16. Does Blue Uniform Color Enhance Winning Probability in Judo Contests?

    Science.gov (United States)

    Dijkstra, Peter D; Preenen, Paul T Y; van Essen, Hans

    2018-01-01

    The color of an athlete's uniform may have an effect on psychological functioning and consequently bias the chances of winning contests in sport competition. Several studies reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white outfit. However, we argue there is no winning bias and that previous studies were confounded and based on small and specific data sets. We tested whether blue biases winning in judo using a very extensive judo data set (45,874 contests from all international judo tournaments between 2008 and 2014). In judo, the first called athlete for the fight used to wear the blue judogi but this was changed to the white judogi in 2011. This switch enabled us to compare the win bias before and after this change to isolate the effect of the color of the judogi . We found a significant win bias for the first called athlete, but this effect was not significantly related to the color of the judogi . The lack of a significant win effect of judogi color suggests that blue does not bias winning in judo, and that the blue-white pairing ensures an equal level of play. Our study shows the importance of thoroughly considering alternative explanations and using extensive datasets in color research in sports and psychology.

  17. Reduced oxygen enhancement ratio at low doses

    International Nuclear Information System (INIS)

    Palcic, B.; Skarsgard, L.D.

    1984-01-01

    The oxygen depletion rate in cell suspensions was measured using a Clark electrode. It was found that under experimental conditions used in this laboratory for hypoxic irradiations, the oxygen levels before the start of irradiation are always below 0.1μm, the levels which could give any significant enhancement to radiation inactivation by x-rays. The measured O/sub 2/ depletion rates were comparable to those reported in the literature. Chinese hamster cells (CHO) were made hypoxic by gas exchange, combined with metabolic consumption of oxygen by cells at 37 0 C. Full survival curves were determined in the dose range 0 to 3Gy using the low dose survival assay. The results confirmed the authors' earlier finding that the OER decreases at low doses. The authors therefore believe that the dose-dependent OER is a true radiobiological phenomenon and not an artifact of the experimental method used in the low dose survival assay

  18. The importance of non-uniform dose-distribution in an organ

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1975-01-01

    The recent revival of interest in the 'hot particle' problem, especially as regards particulate plutonium and other actinide elements in the lung, stimulated the preparation of this paper. Non-uniformity of dose-distribution has been of concern to standards-setting bodies and other groups such as the National Academy of Sciences and to health protectionists for many years. This paper reviews data from animal experiments that are used by some to implicate particulate plutonium as being especially hazardous to man. Other relevant biological data are also discussed. (author)

  19. Role of the parameters involved in the plan optimization based on the generalized equivalent uniform dose and radiobiological implications

    International Nuclear Information System (INIS)

    Widesott, L; Strigari, L; Pressello, M C; Landoni, V; Benassi, M

    2008-01-01

    We investigated the role and the weight of the parameters involved in the intensity modulated radiation therapy (IMRT) optimization based on the generalized equivalent uniform dose (gEUD) method, for prostate and head-and-neck plans. We systematically varied the parameters (gEUD max and weight) involved in the gEUD-based optimization of rectal wall and parotid glands. We found that the proper value of weight factor, still guaranteeing planning treatment volumes coverage, produced similar organs at risks dose-volume (DV) histograms for different gEUD max with fixed a = 1. Most of all, we formulated a simple relation that links the reference gEUD max and the associated weight factor. As secondary objective, we evaluated plans obtained with the gEUD-based optimization and ones based on DV criteria, using the normal tissue complication probability (NTCP) models. gEUD criteria seemed to improve sparing of rectum and parotid glands with respect to DV-based optimization: the mean dose, the V 40 and V 50 values to the rectal wall were decreased of about 10%, the mean dose to parotids decreased of about 20-30%. But more than the OARs sparing, we underlined the halving of the OARs optimization time with the implementation of the gEUD-based cost function. Using NTCP models we enhanced differences between the two optimization criteria for parotid glands, but no for rectum wall

  20. Dose uniformity of budesonide Easyhaler® under simulated real-life conditions and with low inspiration flow rates.

    Science.gov (United States)

    Haikarainen, Jussi; Rytilä, Paula; Roos, Sirkku; Metsärinne, Sirpa; Happonen, Anita

    2017-01-01

    Budesonide Easyhaler® multidose dry powder inhaler is approved for the treatment of asthma. Objectives were to determine the delivered dose (DD) uniformity of budesonide Easyhaler® in simulated real-world conditions and with different inspiration flow rates (IFRs). Three dose delivery studies were performed using 100, 200, and 400 µg/dose strengths of budesonide. Dose uniformity was assessed during in-use periods of 4-6 months after exposure to high temperature (30°C) and humidity (60% relative humidity) and after dropping and vibration testing. The influence of various IFRs (31, 43, and 54 L/min) on the DD was also investigated. Acceptable dose uniformity was declared when mean DD were within 80-120% of expected dose; all data reported descriptively. DD was constant (range: 93-109% of expected dose) at all in-use periods and after exposure to high temperature and humidity for a duration of up to 6 months. DD post-dropping and -vibration were unaffected (range 98-105% of expected dose). Similarly, DD was constant and within 10% of expected dose across all IFRs. Results indicate that budesonide Easyhaler® delivers consistently accurate doses in various real-life conditions. Budesonide Easyhaler® can be expected to consistently deliver a uniform dose and improve asthma control regardless of high temperature and humidity or varying IFR.

  1. Spinal cord tolerance to single-session uniform irradiation in pigs: Implications for a dose-volume effect

    International Nuclear Information System (INIS)

    Medin, Paul M.; Foster, Ryan D.; Kogel, Albert J. van der; Sayre, James W.; McBride, William H.; Solberg, Timothy D.

    2013-01-01

    Background and purpose: This study was performed to test the hypothesis that spinal cord radiosensitivity is significantly modified by uniform versus laterally non-uniform dose distributions. Materials and methods: A uniform dose distribution was delivered to a 4.5–7.0 cm length of cervical spinal cord in 22 mature Yucatan minipigs for comparison with a companion study in which a laterally non-uniform dose was given [1]. Pigs were allocated into four dose groups with mean maximum spinal cord doses of 17.5 ± 0.1 Gy (n = 7), 19.5 ± 0.2 Gy (n = 6), 22.0 ± 0.1 Gy (n = 5), and 24.1 ± 0.2 Gy (n = 4). The study endpoint was motor neurologic deficit determined by a change in gait within one year. Spinal cord sections were stained with a Luxol fast blue/periodic acid Schiff combination. Results: Dose–response curves for uniform versus non-uniform spinal cord irradiation were nearly identical with ED 50 ’s (95% confidence interval) of 20.2 Gy (19.1–25.8) and 20.0 Gy (18.3–21.7), respectively. No neurologic change was observed for either dose distribution when the maximum spinal cord dose was ⩽17.8 Gy while all animals experienced deficits at doses ⩾21.8 Gy. Conclusion: No dose-volume effect was observed in pigs for the dose distributions studied and the endpoint of motor neurologic deficit; however, partial spinal cord irradiation resulted in less debilitating neurologic morbidity and histopathology

  2. Superiority of Equivalent Uniform Dose (EUD)-Based Optimization for Breast and Chest Wall

    International Nuclear Information System (INIS)

    Mihailidis, Dimitris N.; Plants, Brian; Farinash, Lloyd; Harmon, Michael; Whaley, Lewis; Raja, Prem; Tomara, Pelagia

    2010-01-01

    We investigate whether IMRT optimization based on generalized equivalent uniform dose (gEUD) objectives for organs at risk (OAR) results in superior dosimetric outcomes when compared with multiple dose-volume (DV)-based objectives plans for patients with intact breast and postmastectomy chest wall (CW) cancer. Four separate IMRT plans were prepared for each of the breast and CW cases (10 patients). The first three plans used our standard in-house, physician-selected, DV objectives (phys-plan); gEUD-based objectives for the OARs (gEUD-plan); and multiple, 'very stringent,' DV objectives for each OAR and PTV (DV-plan), respectively. The fourth plan was only beam-fluence optimized (FO-plan), without segmentation, which used the same objectives as in the DV-plan. The latter plan was to be used as an 'optimum' benchmark without the effects of the segmentation for deliverability. Dosimetric quantities, such as V 20Gy for the ipsilateral lung and mean dose (D mean ) for heart, contralateral breast, and contralateral lung were used to evaluate the results. For all patients in this study, we have seen that the gEUD-based plans allow greater sparing of the OARs while maintaining equivalent target coverage. The average ipsilateral lung V 20Gy reduced from 22 ± 4.4% for the FO-plan to 18 ± 3% for the gEUD-plan. All other dosimetric quantities shifted towards lower doses for the gEUD-plan. gEUD-based optimization can be used to search for plans of different DVHs with the same gEUDs. The use of gEUD allows selective optimization and reduction of the dose for each OAR and results in a truly individualized treatment plan.

  3. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  4. Dose enhancement in a room cobalt-60 source

    International Nuclear Information System (INIS)

    Simons, M.; Pease, R.L.; Fleetwood, D.M.; Schwank, J.R.; Krzesniak, M.

    1997-01-01

    A room Co-60 source was characterized using TLDs and pMOS RADFETs. Dose enhancement was measured using RADFETs with and without gold- flashed kovar lids. A methodology was developed to predict dose enhancement vs position and test configuration

  5. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  6. Achieving uniform dose with the use of a custom tissue compensator and a leveled beam for tangential breast fields

    International Nuclear Information System (INIS)

    Asbury, L.; Luttrell, L.; Lake, D.

    1989-01-01

    In order to achieve uniform dose distribution in intact breast treatments, wedges can be employed. This paper will describe a custom compensator made from brass chips used in conjunction with a leveled beam and a custom cast to treat breast shapes that are less suited to a standard wedge set up. Materials and design, dosimetry, criteria, efficacy and results will be described

  7. Uniform dose compensation using field within a field technique in T-shaped irradiation for esophageal cancer

    International Nuclear Information System (INIS)

    Murakami, Ryuji; Sugahara, Takeshi; Baba, Yuji; Yamashita, Yasuyuki

    2003-01-01

    We devised a uniform compensation method to improve dose distribution using the field within a field technique in T-shaped irradiation for esophageal cancer. Isodose curves and dose volume histograms (DVH) of the esophagus in the treatment volume were examined in ten patients treated for esophageal cancers. For the DVH analysis, the prescription dose was 40 Gy to the center of the treatment volume, and the volume ratio of the esophagus receiving within ±5% of the prescription dose (38-42 Gy) was regarded as an index of dose homogeneity (V±5%). The peak dose in the conventional antero-posterior opposed fields irradiation existed at the clavicular level, and the 90% isodose curve crossing the esophagus almost corresponded to the top level of the aortic arch. When 40 Gy is irradiated, the maximum dose of the esophagus and V±5% were 45.55±0.55 Gy and 59.7±13.2% respectively. The dose distribution of the esophagus became relatively homogeneous when a 10% dose was added using the field within a field technique to the area under the bottom level of the aortic arch, and the maximum dose and V±5% were 42.53±0.94 Gy and 91.7±7.1% respectively. A 10% and more overdose area existed at the clavicular level in the conventional antero-posterior opposed fields irradiation. A relatively homogeneous dose distribution could be obtained using the field within a field technique. (author)

  8. Isocentric integration of intensity-modulated radiotherapy with electron fields improves field junction dose uniformity in postmastectomy radiotherapy.

    Science.gov (United States)

    Wright, Pauliina; Suilamo, Sami; Lindholm, Paula; Kulmala, Jarmo

    2014-08-01

    In postmastectomy radiotherapy (PMRT), the dose coverage of the planning target volume (PTV) with additional margins, including the chest wall, supraclavicular, interpectoral, internal mammary and axillar level I-III lymph nodes, is often compromised. Electron fields may improve the medial dose coverage while maintaining organ at risk (OAR) doses at an acceptable level, but at the cost of hot and cold spots at the electron and photon field junction. To improve PMRT dose coverage and uniformity, an isocentric technique combining tangential intensity-modulated (IM)RT fields with one medial electron field was implemented. For 10 postmastectomy patients isocentric IMRT with electron plans were created and compared with a standard electron/photon mix and a standard tangent technique. PTV dose uniformity was evaluated based on the tolerance range (TR), i.e. the ratio of the standard deviation to the mean dose, a dice similarity coefficient (DSC) and the 90% isodose coverage and the hot spot volumes. OAR and contralateral breast doses were also recorded. IMRT with electrons significantly improved the PTV dose homogeneity and conformity based on the TR and DSC values when compared with the standard electron/photon and tangent technique (p < 0.02). The 90% isodose coverage improved to 86% compared with 82% and 80% for the standard techniques (p < 0.02). Compared with the standard electron/photon mix, IMRT smoothed the dose gradient in the electron and photon field junction and the volumes receiving a dose of 110% or more were reduced by a third. For all three strategies, the OAR and contralateral breast doses were within clinically tolerable limits. Based on these results two-field IMRT combined with an electron field is a suitable strategy for PMRT.

  9. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  10. Relationship between the generalized equivalent uniform dose formulation and the Poisson statistics-based tumor control probability model

    International Nuclear Information System (INIS)

    Zhou Sumin; Das, Shiva; Wang Zhiheng; Marks, Lawrence B.

    2004-01-01

    The generalized equivalent uniform dose (GEUD) model uses a power-law formalism, where the outcome is related to the dose via a power law. We herein investigate the mathematical compatibility between this GEUD model and the Poisson statistics based tumor control probability (TCP) model. The GEUD and TCP formulations are combined and subjected to a compatibility constraint equation. This compatibility constraint equates tumor control probability from the original heterogeneous target dose distribution to that from the homogeneous dose from the GEUD formalism. It is shown that this constraint equation possesses a unique, analytical closed-form solution which relates radiation dose to the tumor cell survival fraction. It is further demonstrated that, when there is no positive threshold or finite critical dose in the tumor response to radiation, this relationship is not bounded within the realistic cell survival limits of 0%-100%. Thus, the GEUD and TCP formalisms are, in general, mathematically inconsistent. However, when a threshold dose or finite critical dose exists in the tumor response to radiation, there is a unique mathematical solution for the tumor cell survival fraction that allows the GEUD and TCP formalisms to coexist, provided that all portions of the tumor are confined within certain specific dose ranges

  11. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers.

    Science.gov (United States)

    Le, Nguyen Hoai An; Van Phan, Hoang; Yu, Jiaqi; Chan, Hak-Kim; Neild, Adrian; Alan, Tuncay

    2018-01-01

    This article presents an acoustically enhanced microfluidic mixer to generate highly uniform and ultra-fine nanoparticles, offering significant advantages over conventional liquid antisolvent techniques. The method employed a 3D microfluidic geometry whereby two different phases - solvent and antisolvent - were introduced at either side of a 1 μm thick resonating membrane, which contained a through-hole. The vibration of the membrane rapidly and efficiently mixed the two phases, at the location of the hole, leading to the formation of nanoparticles. The versatility of the device was demonstrated by synthesizing budesonide (a common asthma drug) with a mean diameter of 135.7 nm and a polydispersity index of 0.044. The method offers a 40-fold reduction in the size of synthesized particles combined with a substantial improvement in uniformity, achieved without the need of stabilizers.

  12. SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G; Liu, J [Hunan University, Changsha, Hunan (China)

    2016-06-15

    Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vector Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer

  13. SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images

    International Nuclear Information System (INIS)

    Liu, G; Liu, J

    2016-01-01

    Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vector Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer

  14. Dose uniformity of loteprednol etabonate ophthalmic gel (0.5% compared with branded and generic prednisolone acetate ophthalmic suspension (1%

    Directory of Open Access Journals (Sweden)

    Marlowe ZT

    2013-12-01

    Full Text Available Zora T Marlowe, Stephen R DavioPharmaceutical Product Development, Global Pharmaceutical Research and Development, Bausch and Lomb, Inc, Rochester, NY, USAIntroduction: Loteprednol etabonate (LE ophthalmic gel 0.5% (Lotemax® is a new polycarbophil-based, nonsettling topical ophthalmic formulation. The formulation is a semisolid gel at rest and a shear thinning fluid when expressed through a dropper tip. The present study was undertaken to determine how the nonsettling character of LE ophthalmic gel affects dose uniformity. Prednisolone acetate ophthalmic suspension 1% (Pred Forte® and a generic prednisolone acetate suspension 1% were used as comparators.Methods: Drug concentrations of LE ophthalmic gel, Pred Forte, and a generic prednisolone acetate suspension were determined following simulated dosing – consisting of 2 drops, expressed four times daily for 2 weeks, with bottles that were shaken or not shaken immediately prior to expressing the drops. Drug concentrations were determined using a reverse-phase high-performance liquid chromatography (HPLC method and reported as a percentage of the declared (labeled concentration. Comparative kinetics of drug particle sedimentation were also determined for each formulation, using dispersion analysis under gravity.Results: Mean drug concentrations in drops of all three formulations were within a few percentage points of the declared concentration when the bottles were shaken for 5 seconds prior to dispensing. Only LE ophthalmic gel showed consistent and on-target concentrations when the bottles were unshaken prior to dispensing, with a mean (standard deviation [SD] percent declared concentration of 102% (1.92% over the 2-week dosing regimen. Drug concentrations for the branded and generic prednisolone acetate suspensions following expression from unshaken bottles were highly variable (overall relative SDs of 16.8% and 20.3%, respectively, with mean concentrations for both falling significantly

  15. Evaluation of the Analytical Anisotropic Algorithm (AAA) in dose calculation for fields with non-uniform fluences considering heterogeneity correction; Avaliacao do Algoritmo Analitico Anisotropico (AAA) no calculo de dose para campos com fluencia nao uniforme considerando correcao de heterogeneidade

    Energy Technology Data Exchange (ETDEWEB)

    Bornatto, P.; Funchal, M.; Bruning, F.; Toledo, H.; Lyra, J.; Fernandes, T.; Toledo, F.; Marciao, C., E-mail: pricila_bornatto@yahoo.com.br [Hospital Erasto Gaertner (LPCC), Curitiba, PR (Brazil). Departamento de Radioterapia

    2014-08-15

    The purpose of this study is to evaluate the calculation of dose distribution AAA (Varian Medical Systems) for fields with non-uniform fluences considering heterogeneity correction. Five different phantoms were used with different density materials. These phantoms were scanned in the CT BrightSpeed (©GE Healthcare) upon the array of detectors MAPCHECK2 TM (Sun Nuclear Corporation) and irradiated in a linear accelerator 600 CD (Varian Medical Systems) 6MV and rate dose 400MU/min with isocentric setup. The fluences used were exported from IMRT plans, calculated by ECLIPSE™ planning system (Varian Medical Systems), and a 10x10 cm{sup 2} field to assess the heterogeneity correction for uniform fluence. The measured dose distribution was compared to the calculated by Gamma analysis with approval criteria of 3% / 3 mm and 10% threshold. The evaluation was performed using the software SNCPatient (Sun Nuclear Corporation) and considering absolute dose normalized at maximum. The phantoms best performers were those with low density materials, with an average of 99.2% approval. Already phantoms with plates of higher density material presented various fluences below 95% of the points approved. The average value reached 94.3%. It was observed a dependency between fluency and approved percentage points, whereas for the same fluency, 100% of the points have been approved in all phantoms. The approval criteria for IMRT plans recommended in most centers is 3% / 3mm with at least 95% of points approved, it can be concluded that, under these conditions, the IMRT plans with heterogeneity correction can be performed , however the quality control must be careful because the difficulty of the system to accurately predict the dose distribution in certain situations. (author)

  16. Using FDG-PET activity as a surrogate for tumor cell density and its effect on equivalent uniform dose calculation

    International Nuclear Information System (INIS)

    Zhou Sumin; Wong, Terence Z.; Marks, Lawrence B.

    2004-01-01

    The concept of equivalent uniform dose (EUD) has been suggested as a means to quantitatively consider heterogeneous dose distributions within targets. Tumor cell density/function is typically assumed to be uniform. We herein propose to use 18 F-labeled 2-deoxyglucose (FDG) positron emission tomography (PET) tumor imaging activity as a surrogate marker for tumor cell density to allow the EUD concept to include intratumor heterogeneities and to study its effect on EUD calculation. Thirty-one patients with lung cancer who had computerized tomography (CT)-based 3D planning and PET imaging were studied. Treatment beams were designed based on the information from both the CT and PET scans. Doses were calculated in 3D based on CT images to reflect tissue heterogeneity. The EUD was calculated in two different ways: first, assuming a uniform tumor cell density within the tumor target; second, using FDG-PET activity (counts/cm 3 ) as a surrogate for tumor cell density at different parts of tumor to calculate the functional-imaging-weighted EUD (therefore will be labeled fEUD for convenience). The EUD calculation can be easily incorporated into the treatment planning process. For 28/31 patients, their fEUD and EUD differed by less than 6%. Twenty-one of these twenty-eight patients had tumor volumes 3 . In the three patients with larger tumor volume, the fEUD and EUD differed by 8%-14%. Incorporating information from PET imaging to represent tumor cell density in the EUD calculation is straightforward. This approach provides the opportunity to include heterogeneity in tumor function/metabolism into the EUD calculation. The difference between fEUD and EUD, i.e., whether including or not including the possible tumor cell density heterogeneity within tumor can be significant with large tumor volumes. Further research is needed to assess the usefulness of the fEUD concept in radiation treatment

  17. Factor analysis in optimization of formulation of high content uniformity tablets containing low dose active substance.

    Science.gov (United States)

    Lukášová, Ivana; Muselík, Jan; Franc, Aleš; Goněc, Roman; Mika, Filip; Vetchý, David

    2017-11-15

    Warfarin is intensively discussed drug with narrow therapeutic range. There have been cases of bleeding attributed to varying content or altered quality of the active substance. Factor analysis is useful for finding suitable technological parameters leading to high content uniformity of tablets containing low amount of active substance. The composition of tabletting blend and technological procedure were set with respect to factor analysis of previously published results. The correctness of set parameters was checked by manufacturing and evaluation of tablets containing 1-10mg of warfarin sodium. The robustness of suggested technology was checked by using "worst case scenario" and statistical evaluation of European Pharmacopoeia (EP) content uniformity limits with respect to Bergum division and process capability index (Cpk). To evaluate the quality of active substance and tablets, dissolution method was developed (water; EP apparatus II; 25rpm), allowing for statistical comparison of dissolution profiles. Obtained results prove the suitability of factor analysis to optimize the composition with respect to batches manufactured previously and thus the use of metaanalysis under industrial conditions is feasible. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enhanced 2D-DOA Estimation for Large Spacing Three-Parallel Uniform Linear Arrays

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2018-01-01

    Full Text Available An enhanced two-dimensional direction of arrival (2D-DOA estimation algorithm for large spacing three-parallel uniform linear arrays (ULAs is proposed in this paper. Firstly, we use the propagator method (PM to get the highly accurate but ambiguous estimation of directional cosine. Then, we use the relationship between the directional cosine to eliminate the ambiguity. This algorithm not only can make use of the elements of the three-parallel ULAs but also can utilize the connection between directional cosine to improve the estimation accuracy. Besides, it has satisfied estimation performance when the elevation angle is between 70° and 90° and it can automatically pair the estimated azimuth and elevation angles. Furthermore, it has low complexity without using any eigen value decomposition (EVD or singular value decompostion (SVD to the covariance matrix. Simulation results demonstrate the effectiveness of our proposed algorithm.

  19. Enhancements to the timing of the OMEGA laser system to improve illumination uniformity

    Science.gov (United States)

    Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.

    2016-09-01

    Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.

  20. From conventional averages to individual dose painting in radiotherapy for human tumors: challenge to non-uniformity

    International Nuclear Information System (INIS)

    Maciejewski, B.; Rodney Withers, H.

    2004-01-01

    The exploitation of a number of current clinical trials and reports on outcomes after radiation therapy (i.e. breast, head and neck, prostate) in clinical practice reflects many limitations for conventional techniques and dose-fractionation schedules and for 'average' conclusions. Even after decades of evolution of radiation therapy we still do not know how to optimize treatment for the individual patient and only have 'averages' and ill-defined 'probabilities' to guide treatment prescription. Wide clinical and biological heterogeneity within the groups of patients recruited into clinical trials with a few-fold variation in tumour volume within one stage of disease is obvious. Basic radiobiological guidelines concerning average cell killing of uniformly distributed and equally radiosensitive tumour cells arose from elegant but idealistic in vitro experiments and seem to be of uncertain validity. Therefore, we are confronted with more dilemmas than dogmas. Nonlinearity and in homogeneity of human tumour pattern and response to irradiation are discussed. The purpose of this paper is to present and discuss various aspects of non-uniform tumour cell targeted radiotherapy using conformal and dose intensity modulated techniques. (author)

  1. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD).

    Science.gov (United States)

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-07

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within approximately 0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD(50), and conversely m and TD(50) are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d(ref), n, v(eff) and the Niemierko equivalent uniform dose (EUD), where d(ref) and v(eff) are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data.

  2. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD)

    International Nuclear Information System (INIS)

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-01

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within ∼0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD 50 , and conversely m and TD 50 are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d ref , n, v eff and the Niemierko equivalent uniform dose (EUD), where d ref and v eff are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data

  3. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  4. Dose uniformity of loteprednol etabonate ophthalmic gel (0.5%) compared with branded and generic prednisolone acetate ophthalmic suspension (1%).

    Science.gov (United States)

    Marlowe, Zora T; Davio, Stephen R

    2014-01-01

    Loteprednol etabonate (LE) ophthalmic gel 0.5% (Lotemax®) is a new polycarbophil-based, nonsettling topical ophthalmic formulation. The formulation is a semisolid gel at rest and a shear thinning fluid when expressed through a dropper tip. The present study was undertaken to determine how the nonsettling character of LE ophthalmic gel affects dose uniformity. Prednisolone acetate ophthalmic suspension 1% (Pred Forte®) and a generic prednisolone acetate suspension 1% were used as comparators. Drug concentrations of LE ophthalmic gel, Pred Forte, and a generic prednisolone acetate suspension were determined following simulated dosing - consisting of 2 drops, expressed four times daily for 2 weeks, with bottles that were shaken or not shaken immediately prior to expressing the drops. Drug concentrations were determined using a reverse-phase high-performance liquid chromatography (HPLC) method and reported as a percentage of the declared (labeled) concentration. Comparative kinetics of drug particle sedimentation were also determined for each formulation, using dispersion analysis under gravity. Mean drug concentrations in drops of all three formulations were within a few percentage points of the declared concentration when the bottles were shaken for 5 seconds prior to dispensing. Only LE ophthalmic gel showed consistent and on-target concentrations when the bottles were unshaken prior to dispensing, with a mean (standard deviation [SD]) percent declared concentration of 102% (1.92%) over the 2-week dosing regimen. Drug concentrations for the branded and generic prednisolone acetate suspensions following expression from unshaken bottles were highly variable (overall relative SDs of 16.8% and 20.3%, respectively), with mean concentrations for both falling significantly below the declared concentration for drops expressed at the beginning of the 2-week dosing regimen and significantly above the declared concentration for drops expressed near the end of the dosing

  5. Ideas on a practical method to make more uniform the measure and the account of doses

    International Nuclear Information System (INIS)

    Boussard, P.; Dollo, R.; De Kerviller, M.; Penneroux, M.

    1992-01-01

    The ICRP 60 publication and its consequences on the revision of CEC regulations and basic norms, discussions on dosimetry of outside workers and more generally on the development of exchanges of information between users have led EDF to question its practices for measuring counting doses. Faced with this wide range of french practices and in a desire for harmonisation, an EDF and CEA work team has established a summary of present methods, an evaluation of the consequences of these different strategies and have then suggested a harmonisation of dosimetric measures based on systematic methodology. (author)

  6. SU-F-E-03: PET/CT Guided Dose Boost to Hypoxic Sub-Volume in Nasopharyngeal Carcinomas Using Self-Optimizing Non-Uniform VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, J; Zheng, X; Liu, H; Chen, B; Zhuo, W [FuDan University HuaDong Hospital, Institute of Radiation Medicine Fudan University Shanghai, Shanghai (China)

    2016-06-15

    Purpose: This study is to evaluate the feasibility of simultaneously integrated boost (SIB) to hypoxic subvolume (HTV) in nasopharyngeal carcinomas under the guidance of 18F-Fluoromisonidazole (FMISO) PET/CT using a novel non-uniform volumetric modulated arc therapy (VMAT)technique. Methods: Eight nasopharyngeal carcinoma patients treated with conventional uniform VMAT were retrospectively analyzed. For each treatment, actual conventional uniform VMAT plan with two or more arcs (2–2.5 arcs, totally rotating angle < 1000o) was designed with dose boost to hopxic subvolume (total dose, 84Gy) in the gross tumor volme (GTV) under the guidance of 18F- FMISO PET/CT. Based on the same dataset, experimental single arc non-uniform VAMT plans were generated with the same dose prescription using customized software tools. Dosimetric parameters, quality assurance and the efficiency of the treatment delivery were compared between the uniform and non-uniform VMAT plans. Results: To develop the non-uniform VMAT technique, a specific optimization model was successfully established. Both techniques generate high-quality plans with pass rate (>98%) with the 3mm, 3% criterion. HTV received dose of 84.1±0.75Gy and 84.1±1.2Gy from uniform and non-uniform VMAT plans, respectively. In terms of target coverage and dose homogeneity, there was no significant statistical difference between actual and experimental plans for each case. However, for critical organs at risk (OAR), including the parotids, oral cavity and larynx, dosimetric difference was significant with better dose sparing form experimental plans. Regarding plan implementation efficiency, the average machine time was 3.5 minutes for the actual VMAT plans and 3.7 minutes for the experimental nonuniform VMAT plans (p>0.050). Conclusion: Compared to conventional VMAT technique, the proposed non-uniform VMAT technique has the potential to produce efficient and safe treatment plans, especially in cases with complicated anatomical

  7. Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT

    International Nuclear Information System (INIS)

    Ganeshan, B.; Miles, K.A.; Young, R.C.D.; Chatwin, C.R.

    2007-01-01

    Aim: To determine how hepatic entropy and uniformity of computed tomography (CT) images of the liver change after the administration of contrast material and to assess whether these additional parameters are more sensitive to tumour-related changes in the liver than measurements of hepatic attenuation or perfusion. Materials and methods: Hepatic attenuation, entropy, uniformity, and perfusion were measured using multi-phase CT following resection of colorectal cancer. Based on conventional CT and fluorodeoxyglucose positron emission tomography, 12 patients were classified as having no evidence of malignancy, eight with extra-hepatic tumours only, and eight with metastatic liver disease. Results: Hepatic attenuation and entropy increased after CM administration whereas uniformity decreased. Unlike hepatic attenuation, entropy and uniformity changed maximally in the arterial phase. No significant differences in hepatic perfusion or attenuation were found between patient groups, whereas arterial-phase entropy was lower (p = 0.034) and arterial-phase uniformity was higher (p = 0.034) in apparently disease-free areas of liver in patients with hepatic metastases compared with those with no metastases. Conclusion: Temporal changes in hepatic entropy and uniformity differ from those for hepatic attenuation. By reflecting the distribution of hepatic enhancement, these additional parameters are more sensitive to tumour-related changes in the liver than measurements of hepatic attenuation or perfusion

  8. High-dose contrast-enhanced MRI in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Koudriavtseva, T. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Pozzilli, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Di Biasi, C. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Iannilli, M. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Trasimeni, G. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Gasperini, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Argentino, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Gualdi, G.F. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy)

    1996-05-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs.

  9. High-dose contrast-enhanced MRI in multiple sclerosis

    International Nuclear Information System (INIS)

    Koudriavtseva, T.; Pozzilli, C.; Di Biasi, C.; Iannilli, M.; Trasimeni, G.; Gasperini, C.; Argentino, C.; Gualdi, G.F.

    1996-01-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs

  10. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products; Sistemas dosimetricos de altas dosis, tasa de dosis y uniformidad de dosis en alimentos y producto medico

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.; Vivanco, M.; Castro, E., E-mail: jvargas@ipen.gob.pe [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru)

    2014-08-15

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  11. A Monte Carlo Study of dose enhancement according to the enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Kim, Chang Soo [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-03-15

    Dose enhancement effects at megavoltage (MV) X and γ-ray energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide (Fe2O3) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co60 γ-ray were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

  12. A method for producing uniform dose distributions in the junction regions of large hinge angle electrol fields

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Beckham, W.A.; Roos, D.E.

    1996-01-01

    The planning problems presented by abutting electron fields are well recognised. Junctioning electron fields with large hinge angle compounds the problems because of the creation of closely situated 'hot' and 'cold' spots. The technique involving a compensated superficial x-ray (SXR) field to treat the junction region between electron fields was developed and used in a particular clinical case (treatment of a squamous cell carcinoma of the forehead/scalp). The SXR beam parameters were chosen and the compensator was designed to make the SXR field complementary to the electron fields. Application of a compensated SXR field eliminated 'cold' spots in the junction region and minimised 'hot' spots to (110%). In the clinical case discusses the 'hot' spots due to the SXR field would not appear because of increased attenuation of the soft x-rays in bone. The technique proposed produces uniform dose distribution up to 3 cm deep and can be considered as an additional tool for dealing with electron fields junctioning problems. (author)

  13. Using generalized equivalent uniform dose atlases to combine and analyze prospective dosimetric and radiation pneumonitis data from 2 non-small cell lung cancer dose escalation protocols.

    Science.gov (United States)

    Liu, Fan; Yorke, Ellen D; Belderbos, José S A; Borst, Gerben R; Rosenzweig, Kenneth E; Lebesque, Joos V; Jackson, Andrew

    2013-01-01

    To demonstrate the use of generalized equivalent uniform dose (gEUD) atlas for data pooling in radiation pneumonitis (RP) modeling, to determine the dependence of RP on gEUD, to study the consistency between data sets, and to verify the increased statistical power of the combination. Patients enrolled in prospective phase I/II dose escalation studies of radiation therapy of non-small cell lung cancer at Memorial Sloan-Kettering Cancer Center (MSKCC) (78 pts) and the Netherlands Cancer Institute (NKI) (86 pts) were included; 10 (13%) and 14 (17%) experienced RP requiring steroids (RPS) within 6 months after treatment. gEUD was calculated from dose-volume histograms. Atlases for each data set were created using 1-Gy steps from exact gEUDs and RPS data. The Lyman-Kutcher-Burman model was fit to the atlas and exact gEUD data. Heterogeneity and inconsistency statistics for the fitted parameters were computed. gEUD maps of the probability of RPS rate≥20% were plotted. The 2 data sets were homogeneous and consistent. The best fit values of the volume effect parameter a were small, with upper 95% confidence limit around 1.0 in the joint data. The likelihood profiles around the best fit a values were flat in all cases, making determination of the best fit a weak. All confidence intervals (CIs) were narrower in the joint than in the individual data sets. The minimum P value for correlations of gEUD with RPS in the joint data was .002, compared with P=.01 and .05 for MSKCC and NKI data sets, respectively. gEUD maps showed that at small a, RPS risk increases with gEUD. The atlas can be used to combine gEUD and RPS information from different institutions and model gEUD dependence of RPS. RPS has a large volume effect with the mean dose model barely included in the 95% CI. Data pooling increased statistical power. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models

    International Nuclear Information System (INIS)

    Soehn, Matthias; Yan Di; Liang Jian; Meldolesi, Elisa; Vargas, Carlos; Alber, Markus

    2007-01-01

    Purpose: Accurate modeling of rectal complications based on dose-volume histogram (DVH) data are necessary to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose (EUD)-based and dose-volume-based normal tissue complication probability (NTCP) models to rectal wall DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for Grade ≥ 2 rectal bleeding. Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized EUD (3) serial reconstruction unit (RU) model (4) Poisson-EUD model, and (5) mean dose- and (6) cutoff dose-logistic regression model. The parameters and their confidence intervals were determined using maximum likelihood estimation. Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quantitatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving > 73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than the EUD-based models. Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two parameters. Dose-volume-based cutoff-dose models performed worse

  15. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    Science.gov (United States)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  16. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Nicolucci, Patricia

    2014-01-01

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  17. Photon activation therapy: a Monte Carlo study on dose enhancement by various sources and activation media

    International Nuclear Information System (INIS)

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2013-01-01

    In the present study, a number of brachytherapy sources and activation media were simulated using MCNPX code and the results were analyzed based on the dose enhancement factor values. Furthermore, two new brachytherapy sources ( 131 Cs and a hypothetical 170 Tm) were evaluated for their application in photon activation therapy (PAT). 125 I, 103 Pd, 131 Cs and hypothetical 170 Tm brachytherapy sources were simulated in water and their dose rate constant and the radial dose functions were compared with previously published data. The sources were then simulated in a soft tissue phantom which was composed of Ag, I, Pt or Au as activation media uniformly distributed in the tumour volume. These simulations were performed using the MCNPX code, and dose enhancement factor (DEF) was obtained for 7, 18 and 30 mg/ml concentrations of the activation media. Each source, activation medium and concentration was evaluated separately in a separate simulation. The calculated dose rate constant and radial dose functions were in agreement with the published data for the aforementioned sources. The maximum DEF was found to be 5.58 for a combination of the 170 Tm source with 30 mg/ml concentration of I. The DEFs for 131 Cs and 170 Tm sources for all the four activation media were higher than those for other sources and activation media. From this point of view, these two sources can be more useful in photon activation therapy with photon emitter sources. Furthermore, 131 Cs and 170 Tm brachytherapy sources can be proposed as new options for use in the field of PAT.

  18. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    International Nuclear Information System (INIS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-01-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained

  19. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices

    Science.gov (United States)

    Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav

    2017-03-01

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.

  20. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    Thanks to their efficiency enhancement systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting. The post-buckling snap-through behavior of bilaterally constrained beams has been exploited to create sensing or energy harvesting mechanisms for quasi-static applications. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy has been generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism’s efficiency. This study aims to maximize the levels of harvestable power by controlling the location of snap-throughs along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometric properties of a uniform beam, non-uniform cross-sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-prismatic beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. The experimentally validated results show that changing the shape and geometric dimensions of non-uniform beams allows for the accurate controlling of the snap-through location at different buckling transitions. A 78.59% improvement in harvested energy levels has been achieved by optimization of beam shape.

  1. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  2. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

    International Nuclear Information System (INIS)

    Yang, Bingxin; Yuan, Min; Ma, Yide; Zhang, Jiuwen; Zhan, Kun

    2015-01-01

    Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images. In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm. Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods. The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented

  3. [Study of the influence of uniform transverse magnetic field on the dose distribution of high energy electron beam using Monte Carlo method].

    Science.gov (United States)

    You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun

    2014-12-01

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

  4. Comparative study of reference points by dosimetric analyses for late complications after uniform external radiotherapy and high-dose-rate brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Chen, S.-W.; Liang, J.-A.; Yeh, L.-S.; Yang, S.-N.; Shiau, A.-C.; Lin, F.-J.

    2004-01-01

    Purpose: This study aimed to correlate and compare the predictive values of rectal and bladder reference doses of uniform external beam radiotherapy without shielding and high-dose-rate intracavitary brachytherapy (HDRICB) with late sequelae in patients with uterine cervical cancer. Methods and materials: Between September 1992 and December 1998, 154 patients who survived more than 12 months after treatment were studied. Initially, they were treated with 10-MV X-rays (44 to 45 Gy/22 to 25 fractions over 4 to 5 weeks) to the whole pelvis, after which HDRICB was performed using 192 Ir remote afterloading at 1-week intervals for 4 weeks. The standard prescribed dose for each HDRICB was 6.0 Gy to point A. Patient- and treatment-related-factors were evaluated for late rectal complications using logistic regression modeling. Results: The probability of rectal complications showed better correlation of dose-response with increasing total ICRU (International Committee on Radiotherapy Units and Measurements) rectal dose. Multivariate logistic regression demonstrated a high risk of late rectal sequelae in patients who developed rectal complications (p 0.0001;relative risk, 15.06;95% CI, 2.89∼43.7) and total ICRU rectal dose greater than 16 Gy (p = 0.02;relative risk, 2.07;95% CI, 1.13∼4.55). The high risk factors for bladder complications were seen in patients who developed rectal complications (p = 0.0001;relative risk, 15.2;95% CI, 2.81∼44.9) and total ICRU bladder dose greater than 24 Gy (p = 0.02;relative risk, 8.93;95% CI, 1.79∼33.1). Conclusion: This study demonstrated the predictive value of ICRU rectal and bladder reference dosing in HDRICB for patients receiving uniform external beam radiation therapy without central shielding. Patients who had a total ICRU rectal dose greater than 16 Gy, or a total ICRU bladder dose over 24 Gy, were at risk of late sequelae

  5. Enhanced natural radiation exposure enhanced by human activity: the largest contributor to the Chinese population dose

    International Nuclear Information System (INIS)

    Pan Ziqiang; Liu Yanyang

    2011-01-01

    For the radiation exposure caused by human activities, the enhanced natural radiation exposure is the largest contributor to Chinese population dose. This problem has attracted social attention in recent years. Efforts have been made in several fields, such as radon indoors and in workplace, environmental problems associated with NORMs, occupational radiation hazards of non-uranium mine, and radiation dose evaluation for energy chain, but there are still many problems to be solved. In order to protect the health of workers and the public, while ensuring industrial production and economic development, it is also necessary to continue to strengthen research in all aspects above mentioned, and gradually promote the control of natural radiation exposure enhanced by human activities. (authors)

  6. Uniform Gold-Nanoparticle-Decorated {001}-Faceted Anatase TiO2 Nanosheets for Enhanced Solar-Light Photocatalytic Reactions.

    Science.gov (United States)

    Shi, Huimin; Zhang, Shi; Zhu, Xupeng; Liu, Yu; Wang, Tao; Jiang, Tian; Zhang, Guanhua; Duan, Huigao

    2017-10-25

    The {001}-faceted anatase TiO 2 micro-/nanocrystals have been widely investigated for enhancing the photocatalysis and photoelectrochemical performance of TiO 2 nanostructures, but their practical applications still require improved energy conversion efficiency under solar-light and enhanced cycling stability. In this work, we demonstrate the controlled growth of ultrathin {001}-faceted anatase TiO 2 nanosheets on flexible carbon cloth for enhancing the cycling stability, and the solar-light photocatalytic performance of the synthesized TiO 2 nanosheets can be significantly improved by decorating with vapor-phase-deposited uniformly distributed plasmonic gold nanoparticles. The fabricated Au-TiO 2 hybrid system shows an 8-fold solar-light photocatalysis enhancement factor in photodegrading Rhodamine B, a high photocurrent density of 300 μA cm -2 under the illumination of AM 1.5G, and 100% recyclability under a consecutive long-term cycling measurement. Combined with electromagnetic simulations and systematic control experiments, it is believed that the tandem-type separation and transition of plasmon-induced hot electrons from Au nanoparticles to the {001} facet of anatase TiO 2 , and then to the neighboring {101} facet, is responsible for the enhanced solar-light photochemical performance of the hybrid system. The Au-TiO 2 nanosheet system addresses well the problems of the limited solar-light response of anatase TiO 2 and fast recombination of photogenerated electron-hole pairs, representing a promising high-performance recyclable solar-light-responding system for practical photocatalytic reactions.

  7. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  8. Bile duct evaluation of potential living liver donors with Gd-EOB-DTPA enhanced MR cholangiography: Single-dose, double dose or half-dose contrast enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinner, Sonja, E-mail: Sonja.Kinner@uni-due.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Steinweg, Verena [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Maderwald, Stefan [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Radtke, Arnold; Sotiropoulos, Georgios [Department of General Surgery, University Hospital Essen (Germany); Forsting, Michael; Schroeder, Tobias [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany)

    2014-05-15

    Introduction: Detailed knowledge of the biliary anatomy is essential to avoid complications in living donor liver transplantation. The aim of this study was to determine the optimal dosage of Gd-EOB-DTPA for contrast-enhanced magnetic resonance cholangiography (ce-MRC) with reference to contrast-enhanced CT cholangiography (ce-CTC). Materials and methods: 30 potential living liver donors (PLLD) underwent both ce-CTC and ce-MRC. Ten candidates each received single, double or half-dose Gd-EOB-DTPA. Ce-MRC images with and without inversion recovery pulses (T1w ± IR) were acquired 20–30 min after intravenous contrast injection. Image data was quantitatively and qualitatively reviewed by two radiologists based on a on a 5-point scale. Data sets were compared using a Mann–Whitney-U-test or Wilcoxon-rank-sum-test. Kappa values were also calculated. Results: All image series provided sufficient diagnostic information both showing normal biliary anatomy and variant bile ducts. Ce-CTC showed statistically significant better results compared to all ce-MRC data sets. T1w MRC with single dose Gd-EOB-DTPA proved to be superior to half and double dose in subjective and objective evaluation without a statistically significant difference. Conclusions: Ce-MRC is at any dosage inferior to ce-CTC. As far as preoperative planning of bile duct surgery is focused on the central biliary anatomy, ce-MRC can replace harmful ce-CTC strategies, anyway. Best results were seen with single dose GD-EOB-DTPA on T1w MRC+IR.

  9. Ultrasound-assisted powder-coating technique to improve content uniformity of low-dose solid dosage forms

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo

    2010-01-01

    An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium...

  10. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

    Science.gov (United States)

    Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng

    2017-05-01

    This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

  11. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    Science.gov (United States)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  12. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    International Nuclear Information System (INIS)

    Islam, M R; Collums, T L; Monson, J; Benton, E R; Zheng, Y

    2013-01-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy −1  for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy −1  for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body. (paper)

  13. Enhanced low dose rate radiation effect test on typical bipolar devices

    International Nuclear Information System (INIS)

    Liu Minbo; Chen Wei; Yao Zhibin; He Baoping; Huang Shaoyan; Sheng Jiangkun; Xiao Zhigang; Wang Zujun

    2014-01-01

    Two types of bipolar transistors and nine types bipolar integrated circuit were selected in the irradiation experiment at different "6"0Co γ dose rate. The base current of bipolar transistor and input bias current of amplifier and comparator was measured, low dose enhance factor of test device was obtained. The results show that bipolar device have enhanced low dose rate sensitivity, enhancement factor of bipolar integrated circuit was bigger than that of transistor, and enhanced low dose rate sensitivity greatly varied with different structure and process of bipolar device. (authors)

  14. Measurement of dose enhancement close to high atomic number media using optical fibre thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Alalawi, Amani I.; Hugtenburg, R.P.; Abdul Rahman, A.T.; Barry, M.A.; Nisbet, A.; Alzimami, Khalid S.; Bradley, D.A.

    2014-01-01

    Present interest concerns development of a system to measure photoelectron-enhanced dose close to a tissue interface using analogue gold-coated doped silica-fibre thermoluminescence detectors and an X-ray set operating at 250 kVp. Study is made of the dose enhancement factor for various thicknesses of gold; measurements at a total gold thickness of 160 nm (accounting for incident and exiting photons) produces a mean measured dose enhancement factor of 1.33±0.01 To verify results, simulations of the experimental setup have been performed. - Highlights: • Dose enhancement • Thermoluminescence dosimeter • Monte Carlo simulation

  15. High-dose gadolinium-enhanced MRI for diagnosis of meningeal metastases

    International Nuclear Information System (INIS)

    Kallmes, D.F.; Gray, L.; Glass, J.P.

    1998-01-01

    We compared high-dose (0.3 mmol/kg) and standard-dose (0.1 mmol/kg) gadolinium-enhanced MRI for diagnosis of meningeal metastases in 12 patients with suspected meningeal metastases. They were imaged with both standard-dose and high-dose gadolinium. All patients with abnormal meningeal enhancement underwent at least one lumbar puncture for cerebrospinal fluid (CSF) cytology, while patients with normal meningeal enhancement were followed clinically. All patients with negative CSF cytology also were followed clinically. A single observer reviewed all the images, with specific attention to the enhancement pattern of the meninges. Abnormal leptomeningeal enhancement was present in three cases, and abnormal pachymeningeal enhancement in three other patients. All of these patients had abnormal CSF analyses. In two of the three cases of abnormal leptomeningeal enhancement the disease was more evident on high-dose than on standard-dose imaging; in one case the abnormal enhancement was visible only on high-dose imaging. In one of the three cases with abnormal pachymeningeal enhancement, the disease was evident prospectively only with high-dose imaging. (orig.)

  16. Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates.

    Science.gov (United States)

    Liu, Jing; Meng, Guowen; Li, Zhongbo; Huang, Zhulin; Li, Xiangdong

    2015-11-21

    Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar) arrays are fabricated via a combinatorial process of two-step etching to achieve hexagonal Si-micropillar arrays, chemical vapor deposition of flocky Ge-nanotapers on each Si-micropillar and decoration of Ag-NPs onto the Ge-nanotapers through galvanic displacement. With high density three-dimensional (3D) "hot spots" created from the large quantities of the neighboring Ag-NPs and large-scale uniform morphology, the hierarchical Ag-NP@Ge-nanotaper/Si-micropillar arrays exhibit strong and reproducible SERS activity. Using our hierarchical 3D SERS-substrates, both methyl parathion (a commonly used pesticide) and PCB-2 (one congener of highly toxic polychlorinated biphenyls) with concentrations down to 10(-7) M and 10(-5) M have been detected respectively, showing great potential in SERS-based rapid trace-level detection of toxic organic pollutants in the environment.

  17. Dose linearity and uniformity of Siemens ONCOR impression plus linear accelerator designed for step-and-shoot intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bhangle, Janhavi R.; Sathiya Narayanan, V.K.; Deshpande, Shrikant A.

    2007-01-01

    For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT), beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV. (author)

  18. Dose linearity and uniformity of Siemens ONCOR impression plus linear accelerator designed for step-and-shoot intensity-modulated radiation therapy

    Directory of Open Access Journals (Sweden)

    Bhangle Janhavi

    2007-01-01

    Full Text Available For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT, beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV.

  19. How Congruent Is a Strict Uniform Policy with Enhanced Academic Achievement and Self-Beliefs in Early Adolescence?

    Science.gov (United States)

    Hoskins, Jo A.

    2014-01-01

    This study focuses on the analysis of the impact of school uniforms on student self-esteem and self-efficacy. In the past, schools have implemented school uniform policies in order to help improve student achievement as well as strengthen discipline. However, previous research has indicated an association, which is tenuous at best, with regard to…

  20. Experience in treatment of the radiation syndrome in accident victims exposed with non-uniform distribution of the dose within a body

    International Nuclear Information System (INIS)

    Guskova, A.; Barabanova, A

    1996-01-01

    Experience in diagnosis and treatment of radiation accident victims undergone to radiation expose with non-uniform distribution of the dose within a body is presented and the most significant features of medical management of such patients are discussed. The term 'compound radiation injure' is proposed to use for this form of radiation disease. Treatment of compound radiation injure demands a participation of very qualified specialists. The first medical aid and management should include careful body surface monitoring. Beside daily haematological observation and cytogenetic study with corresponding treatment, careful observation and registration of skin reaction are necessary. Some features of treatment are the following: more early administration of anti infection means, including isolation in sterile room, timely surgical intervention, prophylacsis and treatment of endorganic intoxication improving of microcirculation, long time follow up study with pathogenic therapy. (author)

  1. Monte Carlo simulation of dose enhancement effect of X-ray at Au/Si interface

    International Nuclear Information System (INIS)

    Wu Zhengxin; He Chengfa; Lu Wu; Guo Qi; Yu Xin; Zhang Lei; Deng Wei; Zheng Qiwen; ARKIN Abulim

    2013-01-01

    Background: The dose enhancement factor of X-ray was found in 1970s, because of its bad damage to electronic devices. Purpose: This paper is mainly to calculate the dose-enhancement factor at Au/Si interfaces. Methods: The gradient distribution of dose with X-rays has been studied at and near the interface of Au/Si by Monte-Carlo simulation of particle transportation. The mechanism of dose enhancement is discussed based on the principles of interaction of photon with matter. A 3D Au/Si model has been established by MCNP5 program and the dose-enhancement factors of different thicknesses Au/Si interfaces were calculated by Monte Carlo method. Results: The calculated results demonstrate that there exists a stronger dose-enhancement in the Si side near the interface when the energy of X-ray is 30-300 keV. Conclusions: When the thickness of Au is 0-10 μm, dose-enhancement factor of X-ray increases along with the increase of the thickness of Au, when the thickness of Au exceeds 10 μm, dose-enhancement factor of X-ray decreases along with the increase of the thickness of Au. (authors)

  2. Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres

    Science.gov (United States)

    Chai, Bo; Xu, Mengqiu; Yan, Juntao; Ren, Zhandong

    2018-02-01

    The MoS2/CdS composites with layered MoS2 loaded on uniform CdS nanospheres were synthesized by a two-step process combination hydrothermal and solvothermal treatments, and then applied in photocatalytic hydrogen evolution under visible light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Raman spectra, UV-vis diffuse reflectance absorption spectra (UV-DRS), nitrogen adsorption-desorption measurement, photoluminescence spectra (PL) and photoelectrochemical tests. The effects of loading contents of MoS2 in the composites on the photocatalytic H2 evolution activity were comparatively investigated with 0.45 mol L-1 Na2S and 0.55 mol L-1 Na2SO3 as sacrificial agents. The results showed that the 5 wt% MoS2/CdS composite could achieve the highest photocatalytic H2 evolution rate of 372 μmol h-1 and apparent quantum efficiency (AQE) about 7.31% under 420 nm monochromatic light irradiation. The remarkably enhanced photocatalytic activity of MoS2/CdS composite could be attributed to the effective transfer and separation of photogenerated charge carriers, and MoS2 being as a cocatalyst to facilitating photocatalytic H2 evolution reaction. A tentative mechanism of MoS2/CdS composites as photocatalysts for H2 evolution was proposed.

  3. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jihun [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Sutherland, Kenneth [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Hashimoto, Takayuki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (D{sub sub}) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial D{sub sub} distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  4. Probabilistic uniformities of uniform spaces

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Lopez, J.; Romaguera, S.; Sanchis, M.

    2017-07-01

    The theory of metric spaces in the fuzzy context has shown to be an interesting area of study not only from a theoretical point of view but also for its applications. Nevertheless, it is usual to consider these spaces as classical topological or uniform spaces and there are not too many results about constructing fuzzy topological structures starting from a fuzzy metric. Maybe, H/{sup o}hle was the first to show how to construct a probabilistic uniformity and a Lowen uniformity from a probabilistic pseudometric /cite{Hohle78,Hohle82a}. His method can be directly translated to the context of fuzzy metrics and allows to characterize the categories of probabilistic uniform spaces or Lowen uniform spaces by means of certain families of fuzzy pseudometrics /cite{RL}. On the other hand, other different fuzzy uniformities can be constructed in a fuzzy metric space: a Hutton $[0,1]$-quasi-uniformity /cite{GGPV06}; a fuzzifiying uniformity /cite{YueShi10}, etc. The paper /cite{GGRLRo} gives a study of several methods of endowing a fuzzy pseudometric space with a probabilistic uniformity and a Hutton $[0,1]$-quasi-uniformity. In 2010, J. Guti/'errez Garc/'{/i}a, S. Romaguera and M. Sanchis /cite{GGRoSanchis10} proved that the category of uniform spaces is isomorphic to a category formed by sets endowed with a fuzzy uniform structure, i. e. a family of fuzzy pseudometrics satisfying certain conditions. We will show here that, by means of this isomorphism, we can obtain several methods to endow a uniform space with a probabilistic uniformity. Furthermore, these constructions allow to obtain a factorization of some functors introduced in /cite{GGRoSanchis10}. (Author)

  5. Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy

    International Nuclear Information System (INIS)

    Cho, Sungkoo; Jeong, Jonghwi; Kim, Chanhyeong; Yoon, Myonggeun

    2010-01-01

    Radiation dose enhancement by injection of a high atomic number (Z) material into tumor volumes has been studied for various radiation sources and different concentrations of gold nanoparticles. Brachytherapy employs low energy photons of less than ∼0.5 MeV, which indeed is the optimal energy range for radiation dose enhancement by introduction of high-Z material. The present study uses the MCNPX TM code to estimate the dose enhancement by gold nanoparticles for the four common brachytherapy sources ( 137 Cs, 192 Ir, 125 I, and 103 Pd). Additionally, cisplatin (H 6 Cl 2 N 2 Pt), a platinum-based chemotherapeutic drug, was used to evaluate the dose enhancement. The simulated source models were evaluated with reference to the calculated TG-43 parameter values. The dose enhancement in the tumor region due to the gold nanoparticles and cisplatin was evaluated according to the dose enhancement factor (DEF). The maximum values of the average DEFs were found to be 1.03, 1.11, 3.43, and 2.17 for the 137 Cs, 192 Ir, 125 I, and 103 Pd sources, respectively. The dose enhancement values for the low-energy sources were significantly higher than those for the high-energy sources. The dose enhancement due to cisplatin was calculated by using the same approach and was found to be comparable to that of the gold nanoparticles. The maximum value of the average DEF for cisplatin was 1.12 for the 5% concentration level in water and a 192 Ir source. We confirmed that cisplatin could be applied to cancer therapy that combines chemotherapeutic drugs with radiation therapy. The results presented herein will be used to study dose enhancement in tumor regions using various radiation modalities with high atomic number materials.

  6. Experimental study on x-rays dose enhancement effects for floating gate ROMs

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Han Fu Bin; He Chao Hui; Zhao Hui

    2002-01-01

    Experimental results of x-ray dose enhancement effects are given for floating gate read-only memory (ROMs) irradiated in the Beijing Synchrotron Radiation Facility. The wrong byte numbers vs. total irradiation dose have been tested and the equivalent relation of total dose damage is provided compared the response of devices irradiated with sup 6 sup 0 Co gamma-ray source. The x-ray dose enhancement factors for floating gate ROMs are obtained firstly in China. These results can be an effective evaluation data for x-rays radiation hardening technology

  7. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC.

    Science.gov (United States)

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-01-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  8. Study of hard X-ray dose enhancement effects for some kinds of semiconductor devices

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Zhou Hui; He Chao Hui; Xie Ya Ning; Huang Yu Ying; He Wei; Hu Tian Dou

    2002-01-01

    Experimental results of X-ray dose enhancement effects are given for CMOS4069 and floating gate ROMs irradiated in Beijing Synchrotron Radiation Facility and in cobalt source. Shift of threshold voltage vs. total dose for CMOS4069 and the errors vs. total dose for 28f256 and 29c256 have been tested on line and the equivalent relation of total dose damage under the same accumulated dose is provided comparing the response of devices irradiated by X-ray and gamma-ray source. These results can be provided for X-ray radiation hardening technology as an effective evaluation data

  9. CT findings of pancreatic carcinoma. Evaluation with the combined method of early enhancement CT and high dose enhancement CT

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Endo, Tokiko; Isomura, Takayuki; Ishigaki, Takeo; Ikeda, Mitsuru; Senda, Kouhei.

    1995-01-01

    Computed tomographic (CT) findings of pancreatic ductal adenocarcinoma were studied with the combined method of early enhancement CT and high dose enhancement CT in 72 carcinomas. Common Findings were change in pancreatic contour, abnormal attenuation in a tumor and dilatation of the main pancreatic duct. The incidence of abnormal attenuation and dilatation of the main pancreatic duct and bile duct was constant regardless of tumor size. The finding of hypoattenuation at early enhancement CT was most useful for demonstrating a carcinoma. However, this finding was negative in ten cases, five of which showed inhomogenous hyperattenuation at high dose enhancement CT. The detection of change in pancreatic contour and dilatation of the main pancreatic duct was most frequent at high dose enhancement CT. The finding of change in pancreatic contour and/or abnormal attenuation in a tumor could be detected in 47 cases at plain CT, 66 at early enhancement CT and 65 at high dose enhancement CT. Since the four cases in which neither finding was detected by any CT method showed dilatated main pancreatic duct, there was no case without abnormal CT findings. This combined CT method will be a reliable diagnostic technique in the imaging of pancreatic carcinoma. (author)

  10. Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurements

    International Nuclear Information System (INIS)

    Boudou, C; Tropres, I; Rousseau, J; Lamalle, L; Adam, J F; Esteve, F; Elleaume, H

    2007-01-01

    Synchrotron stereotactic radiotherapy (SSR) is a radiotherapy technique that makes use of the interactions of monochromatic low energy x-rays with high atomic number (Z) elements. An important dose-enhancement can be obtained if the target volume has been loaded with a sufficient amount of a high-Z element, such as iodine. In this study, we compare experimental dose measurements, obtained with normoxic polymer gel (nPAG), with Monte Carlo computations. Gels were irradiated within an anthropomorphic head phantom and were read out by magnetic resonance imaging. The dose-enhancement due to the presence of iodine in the gel (iodine concentration: 5 and 10 mg ml -1 ) was measured at two radiation energies (35 and 80 keV) and was compared to the calculated factors. nPAG dosimetry was shown to be efficient for measuring the sharp dose gradients produced by SSR. The agreement between 3D gel dosimetry and calculated dose distributions was found to be within 4% of the dose difference criterion and a distance to agreement of 2.1 mm for 80% of the voxels. Polymer gel doped with iodine exhibited higher sensitivity, in good agreement with the calculated iodine-dose enhancement. We demonstrate in this preliminary study that iodine-doped nPAG could be used for measuring in situ dose distributions for iodine-enhanced SSR treatment

  11. Low dose radiation enhances the Locomotor activity of D. melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ki Moon; Lee, Buyng Sub; Nam Seon Young; Kim, Ji Young; Yang, Kwang Hee; Choi, Tae In; Kim, Cha Soon [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of)

    2013-04-15

    Mild stresses at low level including radiation can induce the beneficial effects in many vertebrate and invertebrate species. However, a large amount of studies in radiation biology have focused on the detrimental effects of high dose radiation (HDR) such as the increased incidence of cancers and developmental diseases. Low dose radiation (LDR) induces biologically favorable effects in diverse fields, for example, cancer development, genomic instability, immune response, and longevity. Our previous data indicated that LDR promotes cells proliferation of which degree is not much but significant, and microarray data explained that LDR irradiated fruit flies showing the augmented immunity significantly changed the program for gene expression of many genes in Gene Ontology (GO) categories related to metabolic process. Metabolic process in development one of major contributors in organism growth, interbreeding, motility, and aging. Therefore, it is valuable to examine whether LDR change the physiological parameters related to metabolism, and how LDR regulates the metabolism in D. melanogaster. In this study, to investigate that LDR influences change of the metabolism, a representative parameter, locomotor activity. In addition, the activation of several cellular signal molecules was determined to investigate the specific molecular mechanism of LDR effects on the metabolism. We explored whether ionizing radiation affects the motility activity. We performed the RING assays to evaluate the locomotor activity, a representative parameter presenting motility of fruit flies. HDR dramatically decreased the motor activity of irradiated flies. Surprisingly, the irradiated flies at low dose radiation in both acute and chronic showed the significantly increased locomotor activity, compared to non-irradiated flies. Irradiation would induce change of the several signal pathways for flies to respond to it. The activation of some proteins involved in the cells proliferation and stress

  12. Iterative methods for dose reduction and image enhancement in tomography

    Science.gov (United States)

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  13. Dose of radiation enhancement, using silver nanoparticles in a human tissue equivalent gel dosimeter.

    Science.gov (United States)

    Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem

    2016-01-01

    To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.

  14. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement

    International Nuclear Information System (INIS)

    Cho, Jongmin; Manohar, Nivedh; Kerr, Matthew; Cho, Sang Hyun; Gonzalez-Lepera, Carlos; Krishnan, Sunil

    2016-01-01

    Some investigators have shown tumor cell killing enhancement in vitro and tumor regression in mice associated with the loading of gold nanoparticles (GNPs) before proton treatments. Several Monte Carlo (MC) investigations have also demonstrated GNP-mediated proton dose enhancement. However, further studies need to be done to quantify the individual physical factors that contribute to the dose enhancement or cell-kill enhancement (or radiosensitization). Thus, the current study investigated the contributions of particle-induced x-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), Auger and secondary electrons, and activation products towards the total dose enhancement. Specifically, GNP-mediated dose enhancement was measured using strips of radiochromic film that were inserted into vials of cylindrical GNPs, i.e. gold nanorods (GNRs), dispersed in a saline solution (0.3 mg of GNRs/g or 0.03% of GNRs by weight), as well as vials containing water only, before proton irradiation. MC simulations were also performed with the tool for particle simulation code using the film measurement setup. Additionally, a high-purity germanium detector system was used to measure the photon spectrum originating from activation products created from the interaction of protons and spherical GNPs present in a saline solution (20 mg of GNPs/g or 2% of GNPs by weight). The dose enhancement due to PIXE/PIGE recorded on the films in the GNR-loaded saline solution was less than the experimental uncertainty of the film dosimetry (<2%). MC simulations showed highly localized dose enhancement (up to a factor 17) in the immediate vicinity (<100 nm) of GNRs, compared with hypothetical water nanorods (WNRs), mostly due to GNR-originated Auger/secondary electrons; however, the average dose enhancement over the entire GNR-loaded vial was found to be minimal (0.1%). The dose enhancement due to the activation products from GNPs was minimal (<0.1%) as well. In conclusion, under the

  15. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents

    International Nuclear Information System (INIS)

    Rinck, P.A.; Muller, R.N.

    1999-01-01

    The relaxivities r 1 and r 2 of magnetic resonance contrast agents and the T 1 relaxation time values of tissues are strongly field dependent. We present quantitative data and simulations of different gadolinium-based extracellular fluid contrast agents and the modulation of their contrast enhancement by the magnetic field to be able to answer the following questions: How are the dose and field dependences of their contrast enhancement? Is there an interrelationship between dose and field dependence? Should one increase or decrease doses at specific fields? Nuclear magnetic relaxation dispersion data were acquired for the following contrast agents: gadopentetate dimeglumine, gadoterate meglumine, gadodiamide injection, and gadoteridol injection, as well as for several normal and pathological human tissue samples. The magnetic field range stretched from 0.0002 to 4.7 T, including the entire clinical imaging range. The data acquired were then fitted with the appropriate theoretical models. The combination of the diamagnetic relaxation rates (R 1 = 1/T 1 and R 2 = 1/T 2 ) of tissues with the respective paramagnetic contributions of the contrast agents allowed the prediction of image contrast at any magnetic field. The results revealed a nearly identical field and dose-dependent increase of contrast enhancement induced by these contrast agents within a certain dose range. The target tissue concentration (TTC) was an important though nonlinear factor for enhancement. The currently recommended dose of 0.1 mmol/kg body weight seems to be a compromise close to the lower limits of diagnostically sufficient contrast enhancement for clinical imaging at all field strengths. At low field contrast enhancement might be insufficient. Adjustment of dose or concentration, or a new class of contrast agents with optimized relaxivity, would be a valuable contribution to a better diagnostic yield of contrast enhancement at all fields. (orig.)

  16. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I; Xie, Y; Carota, G; Chen, Y; Dackow, J; Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A; Coulter, J; Civale, L

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I c ) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 μm thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I c in the orientation of field parallel to the c-axis and retain 28% of their self-field I c value at 77 K and 1 T. BaZrO 3 (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I c value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  17. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX 77059 (United States); Xie, Y; Carota, G; Chen, Y; Dackow, J [SuperPower Incorporated, 450 Duane Avenue Schenectady, NY 12304 (United States); Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Coulter, J; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-01-15

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  18. Enhanced and Uniform in-Field Performance in Long (Gd,Y)-Ba-Cu-O Tapes with Zirconium Doping Fabricated by Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Guevara, A. [University of Houston, Houston; Zhang, Y. [University of Houston, Houston; Kesign, I. [University of Houston, Houston; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Carota, G. [SuperPower Incorporated, Schenectady, New York; Chen, Y. [SuperPower Incorporated, Schenectady, New York; Dackow, J. [SuperPower Incorporated, Schenectady, New York; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Goyal, Amit [ORNL; Coulter, J. [Los Alamos National Laboratory (LANL); Civale, L. [Los Alamos National Laboratory (LANL)

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of {beta} {parallel} c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  19. Skin carcinogenesis following uniform and non-uniform β irradiation

    International Nuclear Information System (INIS)

    Charles, M.W.; Williams, J.P.; Coggle, J.E.

    1989-01-01

    Where workers or the general public may be exposed to ionising radiation, the irradiation is rarely uniform. The risk figures and dose limits recommended by the International Commission on Radiological Protection (ICRP) are based largely on clinical and epidemiological studies of reasonably uniform irradiated organs. The paucity of clinical or experimental data for highly non-uniform exposures has prevented the ICRP from providing adequate recommendations. This weakness has led on a number of occasions to the postulate that highly non-uniform exposures of organs could be 100,000 times more carcinogenic than ICRP risk figures would predict. This so-called ''hot-particle hypothesis'' found little support among reputable radiobiologists, but could not be clearly and definitively refuted on the basis of experiment. An experiment, based on skin tumour induction in mouse skin, is described which was developed to test the hypothesis. The skin of 1200 SAS/4 male mice has been exposed to a range of uniform and non-uniform sources of the β emitter 170 Tm (E max ∼ 1 MeV). Non-uniform exposures were produced using arrays of 32 or 8 2-mm diameter sources distributed over the same 8-cm 2 area as a uniform control source. Average skin doses varied from 2-100 Gy. The results for the non-uniform sources show a 30% reduction in tumour incidence by the 32-point array at the lower mean doses compared with the response from uniform sources. The eight-point array showed an order-of-magnitude reduction in tumour incidence compared to uniform irradiation at low doses. These results, in direct contradiction to the ''hot particle hypothesis'', indicate that non-uniform exposures produce significantly fewer tumours than uniform exposures. (author)

  20. SU-F-T-93: Breast Surface Dose Enhancement Using a Clinical Prone Breast Board

    International Nuclear Information System (INIS)

    Guerra, M; Jozsef, G

    2016-01-01

    Purpose: The use of specialized patient set-up devices in radiotherapy, such as prone breast boards, may have unwanted dosimetric effects. The goal of this study was to evaluate the effect of a clinically used prone breast board on skin dose due to buildup. Methods: GafChromic film (EBT3) was used for dose measurements on the surface of a solid water phantom shaped to mimic the curvature of the breast. We investigated two setup scenarios: the medial field border placed at the medial edge of the board and 1 cm contralaterally from that edge. A strip of film was taped to the medial surface of the phantom. Gantry angles varied from 10 to 30 degrees below the lateral gantry position, representing anterior oblique fields. The measurements were performed with and without the presence of the board; the ratio of their corresponding doses (dose enhancement) was evaluated. Results: For the cases where the field edge is at the edge of the board, the dose enhancement is negligible for all the tested angles. When the field edge is 1 cm inside the board, the maximum surface dose enhancement varies depending on the gantry angle between 2.2 for 30 degrees and 3.2 for 20 degrees. The length on the film at which the presence of the board is detectable (i.e. where there is dose enhancement) is longer for the shallower angles. Conclusion: Even the low-density, thin carbon fiber board with a thin soft foam pad on the top can produce significant dose enhancement on the skin in prone breast treatment due to loss of buildup. However, it happens only when the patient mid-sternum is over the board, i.e. the medial edge of the field traverses through the board and pad. Even then, the effect occurs only at the field edge, i.e. the penumbral region.

  1. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  2. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I. [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  3. The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters

    Science.gov (United States)

    Alamoudi, D.; Lohstroh, A.; Albarakaty, H.

    2017-11-01

    This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.

  4. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies

    Directory of Open Access Journals (Sweden)

    Duy Tien Ta

    2016-07-01

    Full Text Available Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1, an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL. Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I-catalyzed azide-alkyne cycloaddition (CuAAC “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR, respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms.

  5. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng, E-mail: cefpeng@scut.edu.cn

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  6. Radiation dose of aircrews during a solar proton event without ground-level enhancement

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2015-01-01

    Full Text Available A significant enhancement of radiation doses is expected for aircrews during ground-level enhancement (GLE events, while the possible radiation hazard remains an open question during non-GLE solar energetic particle (SEP events. Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 μSv h−1 at a conventional flight altitude of 12 km during the largest SEP event that did not cause a GLE. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere during non-GLE SEP events.

  7. Performance enhancement of photovoltaic array through string and central based MPPT system under non-uniform irradiance conditions

    International Nuclear Information System (INIS)

    Syafaruddin; Karatepe, Engin; Hiyama, Takashi

    2012-01-01

    Highlights: ► We propose MPPT method for tracking global MPP of PV arrays under non-uniform irradiance conditions. ► We compare the performance of string and central based MPPT. ► Intelligent control method is utilized to identify the global operating voltage in string and central based MPPT system. ► The performance of proposed method is tested on different size of PV. - Abstract: Mismatching losses reduction of photovoltaic (PV) array has been intensively discussed through the increasing penetration of residential and commercial PV systems. Many causes of mismatching losses have been identified and plenty of proposed methods to solve this problem have been recently proposed. This paper deals with reducing method of mismatching losses due to the non-uniform irradiance conditions. It is well-known that a certain number of multiple peaks occur on the power–voltage curve as the number of PV modules in one-string increases under non-uniform operating conditions. Since the conventional control method only drives the operating points of PV system to the local maxima close to open circuit voltage, only small portion of power can be extracted from the PV system. In this study, a radial basis function neural network (RBF-ANN) based intelligent control method is utilized to map the global operating voltage and non-irradiance operating condition in string and central based MPPT systems. The proposed method has been tested on 10 × 3 (2.2 kW), 15 × 3 (2.5 kW) and 20 × 3 (3.3 kW) of series–parallel PV array configuration under random-shaded and continuous-shaded patterns. The proposed method is compared with the ideal case and conventional method through a simple power–voltage curve of PV arrays. The simulation results show that there are significant increases of about 30–60% of the extracted power in one operating condition when the proposed method is able to shift the operating voltage of modules to their optimum voltages.

  8. Gadodiamide injection for enhancement of MRI in the CNS. Applications, dose, field and time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Aakeson, P

    1996-10-01

    Gadodiamide injection was comparable to Gd-DTPA with regard to both safety and diagnostic efficiency in the central nervous system. The contrast effect of Gd contrast agents is higher at 1.5 T than at 0.3 T both in phantoms and patients with a maximum ratio (signal lesion/signal grey matter) more than 50% higher at 1.5 T. To achieve high contrast effect, heavily T1-weighted images are important. Prolonging the TR from 400 ms to 600 ms reduced the ratio by 15-45% depending on concentration. The effective time window for imaging of BBB (Blood-Brain Barrier) damage is between 2-5 and 25-30 minutes after injection and several scans can be performed without loss of enhancement. To provide maximum detectability of BBB damage in patients, higher doses of Gd contrast media should be useful, especially at low field strengths, as the doses used clinically today do not utilize the maximum contrast effect. High-dose (0.3 mmol/kg b.w.) contrast enhanced MRI (0.3 T) with Gadodiamide injection allowed detection of significantly more and smaller metastases (i.e. BBB damage) than standard dose (0.1 mmol/kg b.w.) High dose contrast-enhanced MRI (0.3 T) did not increase the diagnostic information for the evaluation of patients with failed back surgery syndrome compared to standard dose MRI. 55 refs, 9 figs, 10 tabs.

  9. Gadodiamide injection for enhancement of MRI in the CNS. Applications, dose, field and time dependence

    International Nuclear Information System (INIS)

    Aakeson, P.

    1996-01-01

    Gadodiamide injection was comparable to Gd-DTPA with regard to both safety and diagnostic efficiency in the central nervous system. The contrast effect of Gd contrast agents is higher at 1.5 T than at 0.3 T both in phantoms and patients with a maximum ratio (signal lesion/signal grey matter) more than 50% higher at 1.5 T. To achieve high contrast effect, heavily T1-weighted images are important. Prolonging the TR from 400 ms to 600 ms reduced the ratio by 15-45% depending on concentration. The effective time window for imaging of BBB (Blood-Brain Barrier) damage is between 2-5 and 25-30 minutes after injection and several scans can be performed without loss of enhancement. To provide maximum detectability of BBB damage in patients, higher doses of Gd contrast media should be useful, especially at low field strengths, as the doses used clinically today do not utilize the maximum contrast effect. High-dose (0.3 mmol/kg b.w.) contrast enhanced MRI (0.3 T) with Gadodiamide injection allowed detection of significantly more and smaller metastases (i.e. BBB damage) than standard dose (0.1 mmol/kg b.w.) High dose contrast-enhanced MRI (0.3 T) did not increase the diagnostic information for the evaluation of patients with failed back surgery syndrome compared to standard dose MRI. 55 refs, 9 figs, 10 tabs

  10. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition.

    Science.gov (United States)

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-01-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  11. Low dose gamma irradiation enhances defined signaling components of intercellular reactive oxygen-mediated apoptosis induction

    International Nuclear Information System (INIS)

    Bauer, G

    2011-01-01

    Transformed cells are selectively removed by intercellular ROS-mediated induction of apoptosis. Signaling is based on the HOCl and the NO/peroxynitrite pathway (major pathways) and the nitryl chloride and the metal-catalyzed Haber-Weiss pathway (minor pathways). During tumor progression, resistance against intercellular induction of apoptosis is acquired through expression of membrane-associated catalase. Low dose radiation of nontransformed cells has been shown to enhance intercellular induction of apoptosis. The present study was performed to define the signaling components which are modulated by low dose gamma irradiation. Low dose radiation induced the release of peroxidase from nontransformed, transformed and tumor cells. Extracellular superoxide anion generation was strongly enhanced in the case of transformed cells and tumor cells, but not in nontransformed cells. Enhancement of peroxidase release and superoxide anion generation either increased intercellular induction of apoptosis of transformed cells, or caused a partial protection under specific signaling conditions. In tumor cells, low dose radiation enhanced the production of major signaling components, but this had no effect on apoptosis induction, due to the strong resistance mechanism of tumor cells. Our data specify the nature of low dose radiation-induced effects on specific signaling components of intercellular induction of apoptosis at defined stages of multistep carcinogenesis.

  12. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    Science.gov (United States)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  13. Development and validation of Monte Carlo dose computations for contrast-enhanced stereotactic synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Vautrin, M.

    2011-01-01

    Contrast-enhanced stereotactic synchrotron radiation therapy (SSRT) is an innovative technique based on localized dose-enhancement effects obtained by reinforced photoelectric absorption in the tumor. Medium energy monochromatic X-rays (50 - 100 keV) are used for irradiating tumors previously loaded with a high-Z element. Clinical trials of SSRT are being prepared at the European Synchrotron Radiation Facility (ESRF), an iodinated contrast agent will be used. In order to compute the energy deposited in the patient (dose), a dedicated treatment planning system (TPS) has been developed for the clinical trials, based on the ISOgray TPS. This work focuses on the SSRT specific modifications of the TPS, especially to the PENELOPE-based Monte Carlo dose engine. The TPS uses a dedicated Monte Carlo simulation of medium energy polarized photons to compute the deposited energy in the patient. Simulations are performed considering the synchrotron source, the modeled beamline geometry and finally the patient. Specific materials were also implemented in the voxelized geometry of the patient, to consider iodine concentrations in the tumor. The computation process has been optimized and parallelized. Finally a specific computation of absolute doses and associated irradiation times (instead of monitor units) was implemented. The dedicated TPS was validated with depth dose curves, dose profiles and absolute dose measurements performed at the ESRF in a water tank and solid water phantoms with or without bone slabs. (author) [fr

  14. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    International Nuclear Information System (INIS)

    Hurwitz, M; Margalit, D; Williams, C; Tso, T; Lee, S; Rosen, E

    2016-01-01

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li 2 Si 2 O 5 ), zirconium dioxide (ZrO 2 ), and gold alloy. Small thin squares (2×2×0.15 cm 3 ) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO 2 , and 9% for Li 2 Si 2 O 5 . This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  15. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, M; Margalit, D; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Tso, T; Lee, S; Rosen, E [Harvard School of Dental Medicine, Boston, MA (United States)

    2016-06-15

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  16. Facile synthesis of uniform hierarchical composites CuO-CeO{sub 2} for enhanced dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pan; Niu, Helin, E-mail: niuhelin@ahu.edu.cn; Chen, Jingshuai, E-mail: cjshuai@126.com; Song, Jiming; Mao, Changjie; Zhang, Shengyi [Anhui University, Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province (China); Gao, Yuanhao [Xuchang University, Institute of Surface Micro and Nano Materials (China); Chen, Changle [University of Science and Technology of China, CAS Key Laboratory of Soft Matter Chemistry (China)

    2016-12-15

    The hierarchically shaped CuO-CeO{sub 2} composites were prepared through a facile solvothermal method without using any template. The as-prepared products were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and N{sub 2} adsorption–desorption analysis. In the characterization, we found that CuO-CeO{sub 2} composites were showed uniform size and morphology which were consisted of the secondary nanoflakes interconnected with each other. Most interestingly, the composites showed efficient performance to remove methyl blue and Congo red dyes from water with maximum adsorption capacities of 2131.24 and 1072.09 mg g{sup −1}, respectively. In addition, because of their larger surface area and the unique hierarchical structures, the adsorption performance of the CuO-CeO{sub 2} composites is much better than the materials of CuO and CeO{sub 2}.

  17. Uniform distribution of ZnO nanoparticles on the surface of grpahene and its enhanced photocatalytic performance

    Science.gov (United States)

    Xue, Bing; Zou, Yingquan

    2018-05-01

    Herein, a ZnO-graphene nanocomposite photocatalyst was obtained by a facile one-step photochemical method. Both the reduction of graphene oxide (GO) and uniform loading of ZnO nanoparticles (NPs) on the surface of graphene were achieved during the photochemical reaction process using GO as the precursor of graphene and zinc chloride (ZnCl2) as the single source of ZnO. The products were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of ZnO/rGO composites was studied by the photodegradation of methylene blue (MB) dye. The as-prepared ZnO/rGO photocatalyst possesses great adsorptivity of dyes (e.g., MB) and high charge separation properties. After receiving the photoelectrons from ZnO, graphene plane can effectively transfer the photoelectrons, thereby showing highly efficient photocatalytic degradation towards pollutants. The effective introduction of rGO significantly improved the photocatalysis and sensing properties of ZnO, and we believe that the as-prepared ZnO/rGO nanocomposite would be promising for practical applications in future nanotechnology.

  18. Pellicle transmission uniformity requirements

    Science.gov (United States)

    Brown, Thomas L.; Ito, Kunihiro

    1998-12-01

    Controlling critical dimensions of devices is a constant battle for the photolithography engineer. Current DUV lithographic process exposure latitude is typically 12 to 15% of the total dose. A third of this exposure latitude budget may be used up by a variable related to masking that has not previously received much attention. The emphasis on pellicle transmission has been focused on increasing the average transmission. Much less, attention has been paid to transmission uniformity. This paper explores the total demand on the photospeed latitude budget, the causes of pellicle transmission nonuniformity and examines reasonable expectations for pellicle performance. Modeling is used to examine how the two primary errors in pellicle manufacturing contribute to nonuniformity in transmission. World-class pellicle transmission uniformity standards are discussed and a comparison made between specifications of other components in the photolithographic process. Specifications for other materials or parameters are used as benchmarks to develop a proposed industry standard for pellicle transmission uniformity.

  19. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    International Nuclear Information System (INIS)

    Johnston, Peter J.; Wilson, George D.

    2003-01-01

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  20. Quantitative MR changes in Gd-DTPA enhancement after high dose intravenous methylprednisolone in multiple sclerosis

    International Nuclear Information System (INIS)

    Barkhof, F.; Valk, J.; Hommes, O.R.; Scheltens, P.

    1991-01-01

    The purpose of this study was to investigate the effect of high dose intravenous methylprednisolone (MP) on gadolinium-DTPA enhancement in MS-lesions. By means of this the influence of MP on the permeability of the blood-brain barrier can be studied. (author). 19 refs.; 1 fig

  1. Measurement bias dependence of enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Mayer, D.C.; Fleetwood, D.M.

    1998-03-01

    Oxide trapped charge, field effects from emitter metallization, and high level injection phenomena moderate enhanced gain degradation of lateral pnp transistors at low dose rates. Hardness assurance tests at elevated irradiation temperatures require larger design margins for low power measurement biases

  2. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    Science.gov (United States)

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P 5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P deep learning method, gadolinium dose can be reduced 10-fold while preserving contrast information and avoiding significant image quality degradation. 3 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs

    CERN Document Server

    Gerardin, S; Cornale, D; Ding, L; Mattiazzo, S; Paccagnella, A; Faccio, F; Michelis, S

    2015-01-01

    We studied device-to-device variations as a function of total dose in MOSFETs, using specially designed test structures and procedures aimed at maximizing matching between transistors. Degradation in nMOSFETs is less severe than in pMOSFETs and does not show any clear increase in sample-to-sample variability due to the exposure. At doses smaller than 1 Mrad( SiO2) variability in pMOSFETs is also practically unaffected, whereas at very high doses-in excess of tens of Mrad( SiO2)-variability in the on-current is enhanced in a way not correlated to pre-rad variability. The phenomenon is likely due to the impact of random dopant fluctuations on total ionizing dose effects.

  4. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    Science.gov (United States)

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparison of half-dose and full-dose gadolinium MR contrast on the enhancement of bone and soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Costelloe, Colleen M. [University of Texas M. D. Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas (United States); University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Murphy, William A.; Haygood, Tamara M.; Kumar, Rajendra; McEnery, Kevin W.; Madewell, John E. [University of Texas M. D. Anderson Cancer Center, Department of Diagnostic Radiology, Houston, Texas (United States); Stafford, R.J. [University of Texas M. D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas (United States); Roy, Anjali [Cancer Treatment Centers of America Medical Diagnostic Imaging Group, Arizona (United States); Bassett, Roland L.; Harrell, Robyn K. [University of Texas M. D. Anderson Cancer Center, Department of Biostatistics, Houston, Texas (United States)

    2011-03-15

    To evaluate the effect of half-dose intravenous gadolinium contrast on the enhancement of bone and soft tissue tumors. This study is HIPAA compliant and informed consent was waived by the institutional review board. An institutional database search was performed over a 1-year period for patients with full- and half-dose MR examinations performed for musculoskeletal oncologic indications. Examination pairs that were identical with regard to field strength and presence or absence of fat saturation were included, resulting in 29 paired examinations. When multiple, the lesion that was best delineated and enhanced well on the first examination in the pair was chosen, yielding 17 bone and 12 soft tissue. Five musculoskeletal radiologists blinded to dosages were asked to assess for a difference in enhancement when comparing the lesion on both examinations and to rate the degree of difference on a three-point scale. They were also asked to identify the examination on which the lesion enhanced less (tallied as low dose). Results were analyzed with the exact binomial test. The readers perceived an enhancement difference in 41% (59/145) of studies (p = 0.03) and the majority were rated as ''mild'' (66%, 39/59). The readers did not accurately identify the low-dose examinations (54% correctly identified, 32/59, p = 0.60). Half-dose gadolinium enhancement of lesions could not be accurately distinguished from full-dose enhancement upon review of the same lesion imaged at both concentrations. (orig.)

  6. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters

    International Nuclear Information System (INIS)

    Smith, Clare L.; Ackerly, Trevor; Best, Stephen P.; Gagliardi, Frank; Kie, Katahira; Little, Peter J.; McCorkell, Giulia; Sale, Charlotte A.; Tsunei, Yusuke; Tominaga, Takahiro; Volaric, Sioe See; Geso, Moshi

    2015-01-01

    The main aims of this research was to employ alanine doped with gold-nanoparticles “AuNPs” to determine the levels of dose enhancement caused by these particles when irradiated with proton beams, low and high energy X-rays and electrons. DL-alanine was impregnated with 5 nm gold-nanoparticles (3% by weight) and added as a uniform layer within a wax pellet of dimensions 10 × 5 × 5 mm. Control pellets, containing DL-Alanine were also produced, and placed within a phantom, and exposed to various types of radiations: low energy (kV ranges) X-rays were obtained from a superficial machine, high energy (MV) X-rays and electrons derived from a linear accelerator, and protons were produced by the Hyogo Ion Beam Centre in Japan. Nominal doses received ranged from 2 to 20 Gy (within clinical range). The Electron Paramagnetic Resonance (EPR) spectra of the irradiated samples were recorded on a BRUKER Elexsys 9.5 MHz. The dose enhancement caused by gold nanoparticles for 80 kV x-rays was found to be more than 60% at about 5 Gy. Smaller dose enhancements (under the same measurement conditions) were observed for megavoltage x-ray beams (up to 10%). Dose enhancement caused by charged particles indicated minimal values for 6 MeV electrons (approximately 5%) whilst less than that is obtained with protons of 150 MeV. The proton results validate the latest simulation results based on Monte Carlo calculations but the dose enhancement is significantly less than that reported in cell and animal model systems, (about 20%). We attribute this difference to the fact that alanine only measures the levels of free radicals generated by the inclusion of nanoparticles and not the redox type radicals (such as reactive oxygen species) generated from aqueous media in cells. Dose enhancement caused by 5 nm gold-nanoparticles with radiotherapy type proton beams has been found to be less than 5% as determined when using alanine/wax as both a phantom and dosimeter. This agrees well

  7. Uniformly dispersed CdS nanoparticles sensitized TiO{sub 2} nanotube arrays with enhanced visible-light photocatalytic activity and stability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingjuan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China); Lv, Jun, E-mail: lvjun117@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China); Xu, Guangqing; Wang, Yan; Xie, Kui [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China); Chen, Zhong [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798 (Singapore); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009 (China)

    2013-12-15

    In this study, TiO{sub 2} nanotube arrays (TiO{sub 2}-NTs) with various intertube spaces were fabricated in the electrolyte with different water contents and the CdS nanoparticles (CdS NPs) were further deposited onto the TiO{sub 2}-NTs as a sensitizer via a sequential chemical bath deposition (S-CBD) method. The FE-SEM, TEM, XRD and XPS results demonstrated that the CdS NPs were uniformly deposited onto the surface of TiO{sub 2}-NTs. It was found that higher water content in electrolyte was in favor of large intertube space and pore size and the uniform deposition of CdS NPs. The photocatalytic degradation of methyl orange was tested with the as-prepared CdS/TiO{sub 2}-NTs under visible light (λ>400 nm). It was found that the photodegradation rate reached as high as 96.7% under visible irradiation for 180 min. In addition, a reasonable degradation rate of 75.8% was achieved even after 5 cycles, suggesting a good photocatalytic stability of the as-prepared CdS/TiO{sub 2}-NTs. - Graphical abstract: The whole sheet of CdS NPs sensitized TiO{sub 2}-NTs with the Ti subtract was used for degradation of methyl orange under visible light (λ>400 nm) on a XPA-7 photochemical reactor. - Highlights: • Intertube space, pore size were controlled by changing water content in electrolyte. • CdS nanoparticles were uniformly deposited onto the surface of TiO{sub 2} nanotubes. • The catalyst with Ti substrate used as a whole was very convenient for recycling. • Visible-light photocatalytic activity and stability were highly enhanced.

  8. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    Science.gov (United States)

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.

  9. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis.

    Science.gov (United States)

    Filippi, M; Campi, A; Martinelli, V; Colombo, B; Yousry, T; Canal, N; Scotti, G; Comi, G

    1995-01-01

    This study was performed to evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) increases the sensitivity of brain MRI for detecting enhancing lesions in patients with primary progressive multiple sclerosis (PPMS). T1 weighted brain MRI was obtained for 10 patients with PPMS in two sessions. In the first session, one scan was obtained five to seven minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, one scan before and two scans five to seven minutes and one hour after the injection of 0.3 mmol/kg Gd-DTPA (triple dose) were obtained. Four enhancing lesions were detected in two patients when the standard dose of Gd-DTPA was used. The numbers of enhancing lesions increased to 13 and the numbers of patients with such lesions to five when the triple dose of Gd-DTPA was used and to 14 and six in the one hour delayed scans. The mean contrast ratio for enhancing lesions detected with the triple dose of Gd-DTPA was higher than those for lesions present in both the standard dose (P DTPA many more enhancing lesions can be detected in patients with PPMS. This is important both for planning clinical trials and for detecting the presence of inflammation in vivo in the lesions of such patients. Images PMID:8530944

  10. A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators

    Science.gov (United States)

    Lee, Hoogil; Jeon, Hyunkyu; Gong, Seokhyeon; Ryou, Myung-Hyun; Lee, Yong Min

    2018-01-01

    To enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene (PE) separators, their surfaces were treated with thin and hydrophilic polydopamine layers. As a result, an aqueous ceramic coating slurry consisting of Al2O3 particles, carboxyl methyl cellulose (CMC) binders, and water solvent was easily spread on the separator surface, and a uniform ceramic layer was formed after solvent drying. Moreover, the ceramic coating layer showed greatly improved adhesion properties to the PE separator surface. Whereas the adhesion strength within the bulk coating layer (Fmid) ranged from 43 to 86 N m-1 depending on the binder content of 1.5-3.0 wt%, the adhesion strength at the interface between the ceramic coating layer and PE separator (Fsepa-Al2O3) was 245-360 N m-1, a value equivalent to an increase of four or five times. Furthermore, an additional ceramic coating layer of approximately 7 μm did not degrade the ionic conductivity and electrochemical properties of the bare PE separators. Thus, all the LiMn2O4/graphite cells with ceramic-coated separators delivered an improved cycle life and rate capability compared with those of the control cells with bare PE separators.

  11. Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control

    International Nuclear Information System (INIS)

    Shiau, C.-Y.; Sneed, Penny K.; Shu, H.-K.G.; Lamborn, Kathleen R.; McDermott, Michael W.; Chang, Susan; Nowak, Peter; Petti, Paula L.; Smith, Vernon; Verhey, Lynn J.; Ho, Maria; Park, Elaine; Wara, William M.; Gutin, Philip H.; Larson, David A.

    1997-01-01

    Purpose: This study aimed to analyze dose, initial pattern of enhancement, and other factors associated with freedom from progression (FFP) of brain metastases after radiosurgery (RS). Methods and Materials: All brain metastases treated with gamma-knife RS at the University of California, San Francisco, from 1991 to 1994 were reviewed. Evaluable lesions were those with follow-up magnetic resonance or computed tomographic imaging. Actuarial FFP was calculated using the Kaplan-Meier method, measuring FFP from the date of RS to the first imaging study showing tumor progression. Controlled lesions were censored at the time of the last imaging study. Multivariate analyses were performed using a stepwise Cox proportional hazards model. Results: Of 261 lesions treated in 119 patients, 219 lesions in 100 patients were evaluable. Major histologies included adenocarcinoma (86 lesions), melanoma (77), renal cell carcinoma (21), and carcinoma not otherwise specified (17). The median prescribed RS dose was 18.5 Gy (range, 10-22) and the median tumor volume was 1.3 ml (range, 0.02-30.9). The initial pattern of contrast enhancement was homogeneous in 68% of lesions, heterogeneous in 12%, and ring-enhancing in 19%. The actuarial FFP was 82% at 6 months and 77% at 1 year for all lesions, and 93 and 90%, respectively, for 145 lesions receiving ≥ 18 Gy. Multivariate analysis showed that longer FFP was significantly associated with higher prescribed RS dose, a homogeneous pattern of contrast enhancement, and a longer interval between primary diagnosis and RS. Adjusted for these factors, adenocarcinomas had longer FFP than melanomas. No significant differences in FFP were noted among lesions undergoing RS for recurrence after prior radiotherapy (119 lesions), RS alone as initial treatment (45), or RS boost (55). Conclusion: A minimum prescribed radiosurgical dose ≥ 18 Gy yields excellent local control of brain metastases. The influence of pattern of enhancement on local control, a

  12. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  13. Enhancing Performance and Uniformity of Perovskite Solar Cells via a Solution-Processed C70 Interlayer for Interface Engineering.

    Science.gov (United States)

    Zhou, Ya-Qing; Wu, Bao-Shan; Lin, Guan-Hua; Li, Yang; Chen, Di-Chun; Zhang, Peng; Yu, Ming-Yu; Zhang, Bin-Bin; Yun, Da-Qin

    2017-10-04

    Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C 70 interlayer between TiO 2 and (HC(NH 2 ) 2 PbI 3 ) x (CH 3 NH 3 PbCl 3 ) 1-x is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO 2 /C 70 ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C 70 molecules. In comparison with pristine TiO 2 -based PSCs, the efficiency and hysteresis index are, respectively, enhanced 28% and reduced 76% by adding the C 70 interlayer between TiO 2 and perovskite on the basis of statistical data of more than 50 cells. With the main advantages of low-temperature process and optimized interface, the champion efficiency of PSCs on flexible substrates could exceed 12% in contrast with the above 18% on rigid substrate.

  14. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    International Nuclear Information System (INIS)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2010-01-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g -1 , respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with

  15. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I, E-mail: mmakrigiorgos@lroc.harvard.ed [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States)

    2010-11-07

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g{sup -1}, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to

  16. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  17. Photon activation therapy with 127I-deoxyuridine: measurement of dose enhancement in cultured mammalian cells

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Laster, B.H.; Commerford, S.L.; Furcinitti, P.S.; Sylvester, B.; Gabel, D.; Popenoe, E.; Foster, S.

    1985-01-01

    A technique for radiation enhancement of conventional photon radiotherapy is outlined which has been called photon activation therapy (PAT) (6). High linear energy transfer (LET) radiations in the form of Auger electron distributions are generated by photons of appropriate energies, through photon activation of stable iodine incorporated as an analog of thymidine (Tyd) in DNA. Of the several halogenated deoxyribonucleosides evaluated, iodinated deoxyuridine (IdUrd) has been chosen as the only Tyd analog providing effective photon activation. This mechanism is combined with radiation sensitization produced by IdUrd to produce an overall radiation enhancement. Calculations show that at 5% replacement (IdUrd for Tyd) therapeutic (TG) will vary from ∼2 (single acute dose) to ∼17 (low dose rates associated with permanent implant brachytherapy). Parameters used in the calculation of TG have been evaluated in cell culture; dose enhancements obtained with x-rays (including photon activation) were found to be significantly higher than values measured with γ-rays (no photon activation). Comparison is made between theoretical and measured values. Because of the evident lack of repair of damage produced by both sensitization and photon activation, significant gains are expected to be realized following protracted irradiations. Exchanges (IdUrd for Tyd) for 105 have been obtained in vivo (murine tumors). The authors believe that the application of PAT would be most advantageous in the treatment of brain tumors (grade IV astrocytomas) with implanted 145 Sm sources

  18. TU-H-CAMPUS-TeP3-05: Evaluation of the Microscopic Dose Enhancement in the Nanoparticle-Enhanced Auger Therapy

    International Nuclear Information System (INIS)

    Sung, W; Jung, S; Ye, S

    2016-01-01

    Purpose: The aim of this study is to apply Monte Carlo simulations to investigate the nanoparticle dose enhancement for Auger therapy. Methods: Two nanoparticle fabrications were considered: nanoshell and nanosphere. In the first step, a single nanoparticle was irradiated with Auger emitters. The electrons were scored in a phase space at the outer surface of the nanoparticle with Geant4-Penelope. In the second step, the previously recorded phase space was used as a source and placed at the center of a cell-size water phantom. The nanoscale dose was evaluated in water around the nanoparticle with Geant4-DNA. The dose enhancement factor (DEF) is defined as the ratio of doses with and without nanoparticles. The nanoparticles were replaced by corresponding water nanoparticle with the same size and volume source which represents typical situation of Auger emitters without nanoparticle. Various sizes/materials of nanoparticles and isotopes were considered. Results: Nanoshell - Microscopic dose was increased up to 130% at 20 – 100 nm distances from the surface of Au- 125 I nanoshell. However, dose at less than 20 nm distance was reduced due to absorbed low energy electrons in gold nanoshell. The amounts and regions of the dose enhancement were dependent on nanoshell size, materials, and isotopes. Nanosphere - The increased amounts of electrons up to 300% and reduced average energy with nanosphere were observed compared with water nanoparticle. We observed localized dose enhancement (up to a factor 3.6) in the immediate vicinity (< 50 nm) of Au- 125 I nanosphere. The dose enhancement patterns vary according to nanosphere sizes and isotopes. Conclusion: We conclude that Auger therapy with nanoparticles can lead to change of electron energy spectrum and dose enhancements at certain range. The dose enhancement patterns vary according to nanoparticle sizes, materials, and isotopes. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

  19. Low-Dose Contrast-Enhanced Breast CT Using Spectral Shaping Filters: An Experimental Study.

    Science.gov (United States)

    Makeev, Andrey; Glick, Stephen J

    2017-12-01

    Iodinated contrast-enhanced X-ray imaging of the breast has been studied with various modalities, including full-field digital mammography (FFDM), digital breast tomosynthesis (DBT), and dedicated breast CT. Contrast imaging with breast CT has a number of advantages over FFDM and DBT, including the lack of breast compression, and generation of fully isotropic 3-D reconstructions. Nonetheless, for breast CT to be considered as a viable tool for routine clinical use, it would be desirable to reduce radiation dose. One approach for dose reduction in breast CT is spectral shaping using X-ray filters. In this paper, two high atomic number filter materials are studied, namely, gadolinium (Gd) and erbium (Er), and compared with Al and Cu filters currently used in breast CT systems. Task-based performance is assessed by imaging a cylindrical poly(methyl methacrylate) phantom with iodine inserts on a benchtop breast CT system that emulates clinical breast CT. To evaluate detectability, a channelized hoteling observer (CHO) is used with sums of Laguerre-Gauss channels. It was observed that spectral shaping using Er and Gd filters substantially increased the dose efficiency (defined as signal-to-noise ratio of the CHO divided by mean glandular dose) as compared with kilovolt peak and filter settings used in commercial and prototype breast CT systems. These experimental phantom study results are encouraging for reducing dose of breast CT, however, further evaluation involving patients is needed.

  20. Minimising activity and dose with enhanced image quality by radiopharmaceutical administrations

    International Nuclear Information System (INIS)

    Hoeschen, C.; Mattsson, S.; Cantone, M. C.; Mikuz, M.; Lacasta, C.; Ebel, G.; Clinthorne, N.; Giussani, A.

    2010-01-01

    Owing to the introduction of new diagnostic procedures, such as computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT), the individual dose caused by medical exposures has grown rapidly in the last years. This is especially a subject to radiation protection for nuclear medical diagnosis, since in this case radiopharmaceuticals are administered to the patient, meaning not only a radiation exposure to the diseased tissue but also to the healthy tissues of large parts of the body. 'Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations' (MADEIRA) is a project co-funded by the European Commission within the Seventh Euratom Framework Programme that aims to improve three-dimensional (3D) nuclear medical imaging technologies significantly. MADEIRA is aiming to improve the efficacy and safety of 3D PET and SPECT functional imaging by optimising the spatial resolution and the signal-to-noise ratio, improving the knowledge of the temporal variation of the radiopharmaceuticals' uptake in and clearance from tumorous and healthy tissues, and evaluation of the corresponding patient dose. Using an optimised imaging procedure that improves the information gained per unit administered dose, MADEIRA aims especially to reduce the dose to healthy tissues of the patient. In this paper, an overall summary of the current achievements will be presented. (authors)

  1. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    International Nuclear Information System (INIS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-01-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information. - Highlights: • CEDM techniques can enhance contrast uptake areas and suppress background tissue. • Dose for the dual-energy acquisition is about 20% higher than standard mode. • A new method is proposed to estimate the 3D dose distribution in dual-energy CEDM. • Depth of normalized dose ratio of 0.5 is less than but near 1 cm in the DE mode

  2. Highly Sensitive Micellar Enhanced Spectrofluorimetric Method for Determination of Mirtazapine in Tablets and Human Urine: Application to In Vitro Drug Release and Content Uniformity Test

    Directory of Open Access Journals (Sweden)

    Hany W. Darwish

    2016-01-01

    Full Text Available A highly sensitive and simple micelle enhanced spectrofluorimetric method was developed for assaying mirtazapine (MRZ in REMERON® tablets and spiked human urine directly without the need of derivatizing agent. The basis of the current procedure is the examination of the relative fluorescence intensity (RFI of MRZ in sodium lauryl sulphate (SLS micellar medium. The RFI of MRZ in water was enhanced markedly on addition of SLS. The RFI was measured at 403 nm after excitation at 320 nm. The fluorescence-concentration relationship was linear over the range 1–500 ng/mL, with lower detection limit of 0.399 ng/mL. The proposed method was successfully applied to the determination of MRZ in dosage form and spiked human urine. Recovery percentages of MRZ utilizing the current method were 99.05±1.83, 98.37±1.96, and 100.41±2.61% for pure powder, pharmaceutical dosage form, and spiked human urine, respectively. The application of the proposed method was extended to test content uniformity and the in vitro drug release of REMERON tablets, according to USP guidelines.

  3. Response of rat spinal cord to very small doses per fraction: lack of enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Shun, Wong C.; Yong, Hao; Hill, Richard P.

    1995-01-01

    Our previous work with rat spinal cord demonstrated that the linear quadratic (LQ) model based on data for large fraction sizes ((α(β)) of 2.4 Gy) failed to predict isoeffective doses between 1 and 2 Gy per fraction, and under-estimated the sparing effect of small doses per fraction given once daily. In contrast, data from mouse skin and kidney, and recent in vitro results revealed a paradoxical increase in radiosensitivity at below 1 Gy per fraction. To assess whether enhanced radiosensitivity is present in the spinal cord below 1 Gy per fraction, the rat spinal cord (C2-T2) was irradiated initially with three daily doses of 10.25 Gy (top-up doses representing 90% of tolerance), followed by graded single doses or fractionated doses in 1.5, 1.0, 0.8, 0.6 or 0.4 Gy fractions given once daily. To limit the overall treatment time to ≤ 8 weeks, a small number of the 0.6- and 0.4-Gy fractions were given twice daily with an interfraction interval of 16 h. The end-point was forelimb paralysis secondary to white matter necrosis, confirmed histologically. The ED 50 values, excluding the top-up doses, were 5.8, 10.6, 14.8, 15.2, 15.9 and 19.1 Gy for a single dose and doses in 1.5-, 1.0-, 0.8-, 0.6- and 0.4-Gy fractions, respectively. The data gave an (α(β)) of 2.1 Gy (95% CI, 1.4, 2.7 Gy). Pooling the data separately, the (α(β)) value was 2.3 Gy (95% CI, 0.82, 3.7 Gy) for fraction sizes ≥ 1 Gy, and 1.2 Gy (95% CI, 0.16, 2.3 Gy) for the 0.8-, 0.6- and 0.4-Gy experiments. These results in which top-up doses were given initially are consistent with a large sparing effect of very small fraction sizes in rat spinal cord provided sufficient time is allowed for repair of sublethal damage between fractions, and provide no evidence for a paradoxical increase in radiosensitivity in the rat spinal cord below 1 Gy down to 0.4 Gy per fraction

  4. Investigation of absorbed radiation dose in refraction-enhanced breast tomosynthesis by a Laue case analyser

    International Nuclear Information System (INIS)

    Sato, H.; Ando, M.; Shimao, D.

    2011-01-01

    An early diagnosis system for breast cancer using refraction-enhanced breast tomosynthesis is under development. Tomograms of breast specimens based on refraction-contrast were demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw projection image data of breast specimens for tomosynthesis were acquired for a total of 51 views over an angle of 50 deg., in increments of 1 deg., by rotating the object. The incident X ray was monochromatic synchrotron radiation with 20 keV. The purpose of this study was to estimate the absorbed dose of a new X-ray imaging method. As breast cancer almost always arises in glandular breast tissue, the average absorbed dose in such glandular tissue should be measured to estimate the radiation risk associated with mammography. The absorbed dose of the mammary gland due to monochromatic X rays was calculated by the Monte Carlo method, and the optimal X ray energy range for refraction-enhanced breast tomosynthesis was investigated through actual measurements. Compared with the conventional method, it was found to be below one-sixth per inspection. (authors)

  5. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT studies for the diagnosis of uterine cancer recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Suzuki, Kayo [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Nakamoto, Yuji [Kyoto University Hospital, Department of Diagnostic Radiology, Kyoto (Japan); Onishi, Yumiko; Sakamoto, Setsu; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Senda, Michio [Institute of Biomedical Research and Innovation, Department of Molecular Imaging, Kobe (Japan); Kita, Masato [Kobe City Medical Center General Hospital, Department of Obstetrics and Gynecology, Kobe (Japan)

    2010-08-15

    To evaluate low-dose non-enhanced CT (ldCT) and full-dose contrast-enhanced CT (ceCT) in integrated {sup 18}F-fluorodeoxyglucose (FDG) PET/CT studies for restaging of uterine cancer. A group of 100 women who had undergone treatment for uterine cervical (n=55) or endometrial cancer (n=45) underwent a conventional PET/CT scans with ldCT, and then a ceCT scan. Two observers retrospectively reviewed and interpreted the PET/ldCT and PET/ceCT images in consensus using a three-point grading scale (negative, equivocal, or positive) per patient and per lesion. Final diagnoses were obtained by histopathological examination, or clinical follow-up for at least 6 months. Patient-based analysis showed that the sensitivity, specificity and accuracy of PET/ceCT were 90% (27/30), 97% (68/70) and 95% (95/100), respectively, whereas those of PET/ldCT were 83% (25/30), 94% (66/70) and 91% (91/100), respectively. Sensitivity, specificity and accuracy did not significantly differ between two methods (McNemar test, p=0.48, p=0.48, and p=0.13, respectively). There were 52 sites of lesion recurrence: 12 pelvic lymph node (LN), 11 local recurrence, 8 peritoneum, 7 abdominal LN, 5 lung, 3 supraclavicular LN, 3 liver, 2 mediastinal LN, and 1 muscle and bone. The grading results for the 52 sites of recurrence were: negative 5, equivocal 0 and positive 47 for PET/ceCT, and negative 5, equivocal 4 and positive 43 for PET/ldCT, respectively. Four equivocal regions by PET/ldCT (local recurrence, pelvic LN metastasis, liver metastasis and muscle metastasis) were correctly interpreted as positive by PET/ceCT. PET/ceCT is an accurate imaging modality for the assessment of uterine cancer recurrence. Its use reduces the frequency of equivocal interpretations. (orig.)

  6. Clinical outcome of stereotactic body radiotherapy for primary and oligometastatic lung tumors: a single institutional study with almost uniform dose with different five treatment schedules

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Hatayama, Yoshiomi; Kawaguchi, Hideo; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Fujioka, Ichitaro; Ono, Shuichi; Tsushima, Eiki; Takai, Yoshihiro

    2016-01-01

    To evaluate clinical outcomes of stereotactic body radiotherapy (SBRT) for localized primary and oligometastatic lung tumors by assessing efficacy and safety of 5 regimens of varying fraction size and number. One-hundred patients with primary lung cancer (n = 69) or oligometastatic lung tumors (n = 31), who underwent SBRT between May 2003 and August 2010, were included. The median age was 75 years (range, 45–88). Of them, 98 were judged to have medically inoperable disease, predominantly due to chronic illness or advanced age. SBRT was performed using 3 coplanar and 3 non-coplanar fixed beams with a standard linear accelerator. Fraction sizes were escalated by 1 Gy, and number of fractions given was decreased by 1 for every 20 included patients. Total target doses were between 50 and 56 Gy, administered as 5–9 fractions. The prescribed dose was defined at the isocenter, and median overall treatment duration was 10 days (range, 5–22). The median follow-up was 51.1 months for survivors. The 3-year local recurrence rates for primary lung cancer and oligometastasis was 6 % and 3 %, respectively. The 3-year local recurrence rates for tumor sizes ≤3 cm and >3 cm were 3 % and 14 %, respectively (p = 0.124). Additionally, other factors (fraction size, total target dose, and BED 10 ) were not significant predictors of local control. Radiation pneumonia (≥ grade 2) was observed in 2 patients. Radiation-induced rib fractures were observed in 22 patients. Other late adverse events of greater than grade 2 were not observed. Within this dataset, we did not observe a dose response in BED 10 values between 86.4 and 102.6 Gy. SBRT with doses between 50 and 56 Gy, administered over 5–9 fractions achieved acceptable tumor control without severe complications

  7. SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

    International Nuclear Information System (INIS)

    Jansen, A; Schoenfeld, A; Poppinga, D; Chofor, N; Poppe, B

    2014-01-01

    Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm 3 were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurements were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat

  8. CTA-enhanced perfusion CT: an original method to perform ultra-low-dose CTA-enhanced perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Elizabeth; Wintermark, Max [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States)

    2014-11-15

    Utilizing CT angiography enhances image quality in PCT, thereby permitting acquisition at ultra-low dose. Dynamic CT acquisitions were obtained at 80 kVp with decreasing tube current-time product [milliamperes x seconds (mAs)] in patients suspected of ischemic stroke, with concurrent CTA of the cervical and intracranial arteries. By utilizing fast Fourier transformation, high spatial frequencies of CTA were combined with low spatial frequencies of PCT to create a virtual PCT dataset. The real and virtual PCT datasets with decreasing mAs were compared by assessing contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and noise and PCT values and by visual inspection of PCT parametric maps. Virtual PCT attained CNR and SNR three- to sevenfold superior to real PCT and noise reduction by a factor of 4-6 (p < 0.05). At 20 mAs, virtual PCT achieved diagnostic parametric maps, while the quality of real PCT maps was inadequate. At 10 mAs, both real and virtual PCT maps were nondiagnostic. Virtual PCT (but not real PCT) maps regained diagnostic quality at 10 mAs by applying 40 % adaptive statistical iterative reconstruction (ASIR) and improved further with 80 % ASIR. Our new method of creating virtual PCT by combining ultra-low-dose PCT with CTA information yields diagnostic perfusion parametric maps from PCT acquired at 20 or 10 mAs with 80 % ASIR. Effective dose is approximately 0.20 mSv, equivalent to two chest radiographs. (orig.)

  9. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

    Science.gov (United States)

    Palmer, Brian C.; DeLouise, Lisa A.

    2017-01-01

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

  10. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

    Science.gov (United States)

    Palmer, Brian C; DeLouise, Lisa A

    2016-12-15

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  11. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

    Directory of Open Access Journals (Sweden)

    Brian C. Palmer

    2016-12-01

    Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  12. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus

    Science.gov (United States)

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage, and environmental parameters. Glyphosate hormesis is well established, bu...

  13. Correlation study of actual temperature profile and in-line metrology measurements for within-wafer uniformity improvement and wafer edge yield enhancement (Conference Presentation)

    Science.gov (United States)

    Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou

    2018-03-01

    It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up

  14. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  15. Use of low-dose irradiation to enhance the safety and quality of chilled ready meals

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, E M [Department of Food Science, Queen' s University Belfast (QUB) (United Kingdom); Patterson, M F [Food Science Division, Department of Agriculture and Rural Development (DARD), Belfast (United Kingdom)

    2002-07-01

    The market for 'cook-chill' ready meals has expanded significantly during the past ten years. This specific category of food has been defined as a catering system based on the full cooking of food followed by fast chilling and storage in controlled temperature conditions (0-3 deg. C) and subsequent thorough re-heating before consumption. Such meals cover a wide range of commodities including meat, poultry, fish, vegetables, pasta and desserts and are used at home by consumers and by the catering industry for use, for example, as hospital meals or meals-on-wheels. These products have a relatively short shelf-life with a recommended maximum shelf-life of 5 days at 0-3 deg. C including the day of cooking. In addition, there are other concerns with regard to microbiological quality, reduced sensory quality and decreased nutritive value. It has been suggested that low-dose irradiation could be used to extend the shelf-life of these products while at the same time reducing the risk of food poisoning. Research carried out at QUB and DARD has readily demonstrated that the safety and shelf-life of chilled ready meals consisting of meat (chicken, beef or pork) and certain vegetables (e.g. broccoli, carrots and roast potatoes) can be enhanced by irradiation doses of 2 or 3 kGy without having a detrimental effect on sensory or nutritional quality. To date, investigations have been limited to such traditional meals with no research being carried out on the more popular ready meals such as lasagna, cottage pies, curries, etc. which have a relatively short shelf-life upon purchase. It is therefore the objective of this work program to investigate the effect of low-dose irradiation (1-5 kGy) on the microbiological, sensory and nutritional quality of these meals and to determine if their overall quality can be enhanced.

  16. An experimental study on the alteration of thermal enhancement ratio by combination of split dose hyperthermia irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ok; Kim, Hee Seup [Ewha Womens University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The study was undertaken to evaluate the alteration of thermal enhancement ratio as a function of time intervals between two split dose hyperthermias followed by irradiation. For the experiments, 330 mice were divided into 3 groups; the first, 72 mice were used to evaluate the heat reaction by single dose hyperthermia and heat resistance by split dose hyperthermia, the second, 36 mice were used to evaluate the radiation reaction by irradiation only, and the third, 222 mice were used for TER observation by combination of single dose hyperthermia and irradiation, and TER alteration by combination of split dose hyperthermia and irradiation. For each group the skin reaction score of mouse tail was used for observation and evaluation of the result of heat and irradiation. The results obtained are summarized as follows: 1. The heating time resulting 50% necrosis (ND{sub 5}0) Was 101 minutes in 43 .deg. C and 24 minutes in 45 .deg. C hyperthermia, which indicated that three is reciprocal proportion between temperature and heating time. 2. Development of heat resistance was observed by split dose hyperthermia. 3. The degree of skin reaction by irradiation only was increased proportionally as a function of radiation dose, and calculated radiation dose corresponding to skin score 1.5 (D{sub 1}.5) was 4,137 rads. 4. Obtained thermal enhancement ratio by combination of single dose hyperthermia and irradiation was increased proportionally as a function of heating time. 5. Thermal enhancement ratio was decreased by combination of split dose hyperthermia and irradiation, which was less intense and lasted longer than development of heat resistance. In summary, these studies indicate that the alteration of thermal enhancement ratio has influence on heat resistance by split dose hyperthermia and irradiation.

  17. Final Progress Report: Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovitz, M; Cote, J

    2009-06-05

    The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and applications important for the U.S. and Canadian public, business and policy decision makers, as well as for international collaborations on regional, and especially climate related issues.

  18. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  19. Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, R.K.; Yerol Narayana; Bhat, N.N.; Anjaria, K.B.; Sreedevi, B.; Sapra, B.K.

    2014-01-01

    In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region. (author)

  20. Enhanced aflatoxin production by aspergillus parasiticus and aspergillus flavus after low dose gamma irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1992-01-01

    Spores of Aspergillus parasiticus IFO 30179 and A. flavus var. columnaris S46 were irradiated at 0.05, 0.2 and 0.4 kGy in the synthetic low salts (SL) broth, and the effect on aflatoxin production was examined after 10 days incubation at 30 or 25degC. In these two strains, irradiation of spores at 0.05 kGy resulted in higher B1 or G1 production than the non-irradiated controles. However, spores of the both strains irradiated at 0.2 or 0.4 kGy produced less aflatoxins than non-irradiated controles. In the SL broth, apparent stimulation by low dose irradiation was slight, and these enhanced effects were not observed after reinfection to fresh SL broth. In the case of food samples, the levels of aflatoxin B 1 and G 1 with A. parasiticus were increased from 15 to 90% by incubation of irradiated spores at 1 kGy in autoclaved polished rice, black pepper, white pepper and red pepper. These enhancement would be induced by change of composition in each substrates. Mutations of fungi induced by irradiation is not effective for enhancement of aflatoxin production. (author)

  1. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    Science.gov (United States)

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in

  2. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine

    Science.gov (United States)

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.

    2012-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  3. Pulsed dose rate brachytherapy as the boost in combination with external beam irradiation in base of tongue cancer. Long-term results from a uniform clinical series

    Directory of Open Access Journals (Sweden)

    Bengt Johansson

    2011-03-01

    Full Text Available Purpose: To evaluate long time outcome with regard to local tumour control, side effects and quality of life of combined pulsed dose rate (PDR boost and hyperfractionated accelerated external beam radiotherapy (EBRT for primary base of tongue (BOT cancers. Material and methods: Between 1994 and 2007, the number of 83 patients were treated with primary T1-T4 BOT cancers. Seven patients (8% were T1-2N0 (AJCC stage I-II and 76 (92% patients were T1-2N+ or T3-4N0-2 (AJCC stage III-IV. The mean estimated primary tumour volume was 15.4 (1-75 cm3. EBRT was given with 1.7 Gy bid to 40.8 Gy to primary tumour and bilateral neck lymph nodes in 2.5 weeks. PDR boost of 35 Gy and a neck dissection in clinical node positive case was performed 2-3 weeks later. The patients were followed for a median of 54 (2-168 months. Results: The 2-, 5- and 10-years rates of actuarial local control were 91%, 89% and 85%, overall survival 85%, 65% and 44%, disease free survival 86%, 80% and 76%, respectively. The regional control rate was 95%. Six patients (7% developed distant metastases. A dosimetric analysis showed a mean of 100% isodose volume of 58.2 (16.7-134 cm3. In a review of late complications 11 cases of minor (13% and 5 of major soft tissue necroses (6%, as well as 6 cases of osteoradionecroses (7% were found. The patients median subjective SOMA/LENT scoring at last follow up was as follow: grade 0 for pain and trismus, grade 1 for dysphagia and taste alteration, and grade 2 for xerostomia. Global visual- analogue-scale (VAS scoring of quality of life was 8. Conclusion: Local and regional tumour control rate was excellent in this treatment protocol. The data shows the PDR boost as at least as effective as published continuous low dose rate (CLDR results.

  4. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors.

    Science.gov (United States)

    Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun

    2017-04-05

    Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and -1.716 for liver, -0.153 and -1.546 for pancreas, and 2.427 and 0.866 for renal cortex, all P> 0.05). Signal-to-noise ratio of the abdominal organs was significantly lower in Group A than in Group B (t = -8.11 for liver, -7.83 for pancreas, and -5.38 for renal cortex, all P 3, indicating clinically acceptable image quality. Single-phase, dual-energy spectral CT used for children with solid abdominal tumors can reduce contrast dose and radiation dose and can also maintain clinically acceptable image quality.

  5. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    International Nuclear Information System (INIS)

    Vedelago, J.; Valente, M.; Mattea, F.

    2017-10-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  6. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Vedelago, J.; Valente, M. [Instituto de Fisica Enrique Gaviola - CONICET, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Mattea, F., E-mail: jvedelago@famaf.unc.edu.ar [Universidad Nacional de Cordoba, FAMAF, Laboratorio de Investigacion e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2017-10-15

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. This work presents preliminary results of properly synthesized and purify silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. (Author)

  7. Resonant creep enhancement in austenitic stainless steels due to pulsed irradiation at low doses

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Saito, T.

    1994-01-01

    Steady-state irradiation creep of austenitic stainless steels has been extensively studied as one of the most important design parameters in fusion reactors. The steady-state irradiation creep has been evaluated using in-pile and light-ion experiments. Those creep compliances of various austenitic steels range in the vicinity of ε/Gσ = 10 -6 ∼10 -5 (dpa sm-bullet MPa) -1 , depending on chemical composition etc. The mechanism of steady-state irradiation creep has been elucidated, essentially in terms of stress-induced preferential absorption of point defects into dislocations, and their climb motion. From this standpoint, low doses such as 10 -3 ∼10 -1 dpa would not give rise to any serious creep, and the irradiation creep may not be a critical issue for the low-dose fusion devices including ITER. It is, however, possible that pulsed irradiation causes different creep behaviors from the steady-state one due to dynamic unbalance of interstitials and vacancies. The authors have actually observed anomalous creep enhancement due to pulsed irradiation in austenitic stainless steels. The resonant behavior of creep indicates that pulsed irradiation may cause significant deformation in austenitic steels even at such low doses and slow pulsing rates, especially for the SA-materials. The first-wall materials in plasma operation of ∼10 2 s may suffer from unexpected transient creep, even in the near-term fusion deices, such as ITER. Though this effect might be a transient effect for a relatively short period, it should be taken into account that the pulsed irradiation makes influences on stress relaxation of the fusion components and on the irradiation fatigue. The mechanism and the relevant behaviors of pulse-induced creep will be discussed in terms of a point-defect model based on the resonant interstitial enrichment

  8. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Wei, A.; DeLaus, M.; Combs, W.E.; Pease, R.L.

    1994-01-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of ∼25 C, the net trapped-positive-charge density (N ox ) inferred from midgap C-V shifts is ∼25--40% greater for low-dose-rate ( 2 )/s) than for high-dose-rate (> 100 rad(SiO 2 )/s) exposure. Device modeling shows that such a difference in screen-oxide N ox is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the ∼ exp(N ox 2 ) dependence of the excess base current. At the higher rates, TSC measurements reveal a ∼10% decrease in trapped-hole density over low rates. Also, at high rates, up to ∼2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in Eδ' centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO 2 )/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications

  9. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, AL; Kam, WW-Y; Scales, N; McMahon, SJ; Bennett, JW; Byrne, HL; Schuemann, J; Paganetti, H; Banati, R; Kuncic, Z

    2016-01-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies ~ 70 eV, substantially lower than that of liquid water ~ 78 eV. Monte Carlo simulations for 10 – 50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of ~ 1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol. PMID:27435339

  10. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    Science.gov (United States)

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Dose enhancement by synchrotron radiation and heavy atoms for the treatment of gliomas

    International Nuclear Information System (INIS)

    Bobyk, L.

    2010-11-01

    High grade gliomas are brain tumors of bad prognosis. The standard therapeutic treatment combines surgery, radiotherapy and sometimes use of temozolomide (chemotherapy agent). Healthy tissues radio-sensitivity is a major limitation for radiotherapy treatment. The stereotactic radiotherapy by synchrotron radiation is an innovative technique which combines a low energy radiation (lower 100 keV) with the presence of heavy atoms in the tumoral zone. Such an approach is used to increase the differential of dose deposited in the tumor compared to surrounding healthy tissues. In this study, several compounds containing heavy atoms such as chemotherapy agents: cisplatin/carbo-platin, a DNA base analog: 5-iodo-2'-deoxyuridine (IUdR) and gold nano-particles were considered. The dose enhancement factor induced by the presence of these compounds located for some of them in the extracellular medium or inside the cells for others, was determined using in vitro studies. Thereafter, in vivo studies on rats bearing gliomas, were performed to study the toxicity, the kinetic of distribution and the localization of these compounds together with their potential efficacy of treatment combining intracerebral injection with low energy radiation. (author)

  12. Local dose enhancement in radiation therapy: Monte Carlo simulation study; Reforco local de dose em radioterapia utilizando nanoparticulas: estudo por simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Laura E. da; Nicolucci, Patricia, E-mail: laura.emilia.fm@gmail.com [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras

    2014-04-15

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  13. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  14. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts.

    Science.gov (United States)

    Tseng, Chih-Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D; Huh, Warner K; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T-C

    2009-05-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed.

  15. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    International Nuclear Information System (INIS)

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  16. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  17. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study

    International Nuclear Information System (INIS)

    Cho, S H

    2005-01-01

    A recent mice study demonstrated that gold nanoparticles could be safely administered and used to enhance the tumour dose during radiation therapy. The use of gold nanoparticles seems more promising than earlier methods because of the high atomic number of gold and because nanoparticles can more easily penetrate the tumour vasculature. However, to date, possible dose enhancement due to the use of gold nanoparticles has not been well quantified, especially for common radiation treatment situations. Therefore, the current preliminary study estimated this dose enhancement by Monte Carlo calculations for several phantom test cases representing radiation treatments with the following modalities: 140 kVp x-rays, 4 and 6 MV photon beams, and 192 Ir gamma rays. The current study considered three levels of gold concentration within the tumour, two of which are based on the aforementioned mice study, and assumed either no gold or a single gold concentration level outside the tumour. The dose enhancement over the tumour volume considered for the 140 kVp x-ray case can be at least a factor of 2 at an achievable gold concentration of 7 mg Au/g tumour assuming no gold outside the tumour. The tumour dose enhancement for the cases involving the 4 and 6 MV photon beams based on the same assumption ranged from about 1% to 7%, depending on the amount of gold within the tumour and photon beam qualities. For the 192 Ir cases, the dose enhancement within the tumour region ranged from 5% to 31%, depending on radial distance and gold concentration level within the tumour. For the 7 mg Au/g tumour cases, the loading of gold into surrounding normal tissue at 2 mg Au/g resulted in an increase in the normal tissue dose, up to 30%, negligible, and about 2% for the 140 kVp x-rays, 6 MV photon beam, and 192 Ir gamma rays, respectively, while the magnitude of dose enhancement within the tumour was essentially unchanged. (note)

  18. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    Science.gov (United States)

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  19. PET/CT in malignant melanoma: contrast-enhanced CT versus plain low-dose CT

    International Nuclear Information System (INIS)

    Pfluger, Thomas; Schneider, Vera; Fougere, Christian la; Bartenstein, Peter; Weiss, Mayo; Melzer, Henriette Ingrid; Coppenrath, Eva; Berking, Carola

    2011-01-01

    The aim of this study was to evaluate the diagnostic value of contrast-enhanced CT (CECT) versus non-enhanced low-dose CT (NECT) in the staging of advanced malignant melanoma with 18 F-fluordeoxyglucose (FDG) positron emission tomography (PET)/CT. In total, 50 18 F-FDG PET/CT examinations were performed in 50 patients with metastasized melanoma. For attenuation correction, whole-body NECT was performed followed by diagnostic CECT with contrast agent. For the whole-body PET, 18 F-FDG was applied. Criteria for evaluation were signs of vital tumour tissue (extent of lesions, contrast enhancement, maximum standardized uptake value >2.5). Findings suspicious for melanoma were considered lesions. NECT, CECT and 18 F-FDG PET were evaluated separately, followed by combined analysis of PET/NECT and PET/CECT. Findings were verified histologically and/or by follow-up (>6 months). Overall, 232 lesions were analysed, and 151 proved to be metastases. The sensitivity of NECT, CECT, PET, PET/NECT and PET/CECT was 62, 85, 90, 97 and 100%, and specificity was 52, 63, 88, 93 and 93%, respectively. Compared to CECT, NECT obtained additional false-negative results: lymph node (n = 19) and liver/spleen metastases (n = 9). Misinterpreted physiological structures mainly caused additional false-positive findings (n = 17). In combined analysis of PET/NECT, six false-positive [other tumours (n = 2), inflammatory lymph nodes (n = 2), inflammatory lung lesion (n = 1), blood vessel (n = 1)] and five false-negative findings [liver (n = 3), spleen (n = 1), lymph node metastases (n = 1)] remained. On PET/CECT, six false-positive [inflammatory lymph nodes (n = 3), other tumours (n = 2), inflammatory lung lesion (n = 1)] and no false-negative findings occurred. However, additional false findings on PET/NECT (6 of 232) did not change staging compared to PET/CECT. Our results indicate that it is justified to perform PET/NECT instead of PET/CECT for melanoma staging. (orig.)

  20. Effect of Photon Beam Energy, Gold Nanoparticle Size and Concentration on the Dose Enhancement in Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2013-02-01

    Full Text Available Introduction: Gold nanoparticles have been used as radiation dose enhancing materials in recent investigations. In the current study, dose enhancement effect of gold nanoparticles on tumor cells was evaluated using Monte Carlo (MC simulation. Methods: We used MCNPX code for MC modeling in the current study. A water phantom and a tumor region with a size of 1×1×1 cm3 loaded with gold nanoparticles were simulated. The macroscopic dose enhancement factor was calculated for gold nanoparticles with sizes of 30, 50, and 100 nm. Also, we simulated different photon beams including mono-energetic beams (50-120 keV, a Cobalt-60 beam, 6 & 18 MV photon beams of a conventional linear accelerator. Results: We found a dose enhancement factor (DEF of from 1.4 to 3.7 for monoenergetic kilovoltage beams, while the DEFs for megavoltage beams were negligible and less than 3% for all GNP sizes and concentrations. The optimum energy for higher DEF was found to be the 90 keV monoenergetic beam. The effect of GNP size was not considerable, but the GNP concentration had a substantial impact on achieved DEF in GNP-based radiation therapy. Conclusion: The results were in close agreement with some previous studies considering the effect of photon energy and GNP concentration on observed DEF. Application of GNP-based radiation therapy using kilovoltage beams is recommended.

  1. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  2. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  3. Quasi-uniform Space

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-09-01

    Full Text Available In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.

  4. Quasi-uniform Space

    OpenAIRE

    Coghetto Roland

    2016-01-01

    In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.

  5. Feasibility of attaining uniform grain structure and enhanced ductility in aluminum alloy by employing a beveled punch in equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Nejadseyfi, Omid, E-mail: o.nejadseyfi@gmail.com [Advanced Materials and Nanotechnology Research Lab, Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shokuhfar, Ali [Advanced Materials and Nanotechnology Research Lab, Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Sadeghi, Seyedali [Department of Mechanical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-01-10

    The advantage of using a beveled-edge punch in equal-channel angular pressing is investigated. Lambda angle (λ), the clockwise angle between the theoretical shear plane and punch/billet interface, is used to demonstrate how the punch tip is inclined. Transmission electron microscope is used to assess the microstructure of the samples processed using a beveled-edge punch. In addition, tensile tests at elevated temperature are performed. The results show that using a beveled-edge punch (λ=90°) in the process leads to formation of uniform subgrain structure and increases the tensile ductility for the samples at elevated temperature. Additionally, finite element simulations are performed to study the correlation between measured properties and mechanism of material deformation by employing a beveled-edge punch. Numerical simulations confirm the irregular deformation in case of λ=0° and uniform strain distribution for λ=90°, which were the main reasons of variation in mechanical properties.

  6. SU-G-TeP3-15: Radiation Dose Enhancement by Anatase TiO2NPs

    Energy Technology Data Exchange (ETDEWEB)

    Youkhana, E; Geso, M; Feltis, B [RMIT University, Melbourne, VIC (Australia)

    2016-06-15

    Purpose: This work investigates radiation dose enhancement caused by TiO2 nanoparticles covering entire X-ray energy ranges used in radiation therapy. Methods: Anatase TiO2NPs crystal were synthesised and modified as hydrophilic and hydrophobic to disperse in culture-medium and halocarbons (PRESAGE chemical composition) respectively. TiO2NPs were characterised using TEM, XPS, XRD, TGA and FTIR. Various Concentrations have been utilised for determination of radiation-dose enhancement. This investigation is carried out in two ways; one using PRESAGE dosimeter/phantom and the other is radiobiological and based on in vitro study using two types of cell lines, Human Keratinocyte (HaCaT) and prostate cancer cell lines. The x-ray used are both kilovoltage and megavoltage separately. The prepared PRESAGE dosimeters were scanned using optical CT scanner. Clonogenic and MTS assays were employed for cell cytotoxicity and viability measurements for determination of the levels of dose enhancement. Results: Significant about (50%, 45%) dose enhancement by TiO2-NPs for kV x-rays is measured in both ways (Presage and Cells study). Slightly more is detected with the cells. However, the dose enhancement with megavoltage beams was insignificant using Presage and under same conditions the cells survival curves indicates around 20% which is relatively high. This difference can only be attributed to some biochemical effects. Such as generation of reactive oxygen species (ROS), this can affect the cells while it can’t be detected by Presage. Elevation of hydroxyl radicals (•OH) of many orders is observed with the inclusion of TiO2-NPs in cells-medium. Conclusion: Dose enhancement inflicted by TiO2-NPs is proven to be significant with megavoltage beams and minimal with kV. The high dose enhancements obtained can be attributed to higher levels of ROS generated. Since MV beams are most commonly used, this research proves potential value for more efficient beam delivery. This has

  7. A highly uniform ZnO/NaTaO3 nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light

    International Nuclear Information System (INIS)

    Xing, Guanjie; Tang, Changhe; Zhang, Bo; Zhao, Lanxiao; Su, Yiguo; Wang, Xiaojing

    2015-01-01

    In this study, a highly uniform ZnO/NaTaO 3 composite was prepared via simple hydrothermal synthesis. XRD confirmed the composite was constructed by pure cubic phase of NaTaO 3 and hexagonal phase of ZnO. SEM analysis showed that as-prepared ZnO/NaTaO 3 shaped as an irregular ginger with an obviously smaller size than that of pure ZnO without obvious agglomeration. EDS mapping demonstrated that the four elements (Na, Ta, O, Zn) in the composite were very uniformly distributed. The photocatalytic behaviors of as-prepared composites were studied in the degradation of methylene blue both under UV and visible irradiation. The bare ZnO showed the highest activity with 99.8% methylene blue (MB) photodegraded in 70 min under UV light irradiation whereas 94% photodegraded rate was achieved for ZnO/NaTaO 3 . More importantly, the uniform composite of ZnO/NaTaO 3 exhibited effective degradation of methylene blue under visible light which can be attributed to the well dyes adsorption abilities and the high efficiency of electron separation, induced by the synergistic effect between ZnO and NaTaO 3 . It is confirmed the dye rather than a semiconductor is excited under visible light irradiation and a self-sensitized photocatalytic mechanism was then proposed based on the experimental results. - Graphical abstract: Visible light photocatalytic activity of ZnO/NaTaO 3 and proposed schematic of self-sensitization directed photogradation of MB. - Highlights: • Highly uniform ZnO/NaTaO 3 photocatalysts were fabricated by hydrothermal method. • ZnO/NaTaO 3 composite exhibited effective degradation of MB under visible light. • ZnO/NaTaO 3 composite effectively promoted dye adsorption and electrons separation. • A self-sensitized photocatalytic mechanism was proposed for the degradation of dye

  8. School Uniforms Redux.

    Science.gov (United States)

    Dowling-Sendor, Benjamin

    2002-01-01

    Reviews a recent decision in "Littlefield" by the 5th Circuit upholding a school uniform policy. Advises board member who wish to adopt a school uniform policy to solicit input from parents and students, research the experiences of other school districts with uniform policies, and articulate the interests they wish to promote through uniform…

  9. Do School Uniforms Fit?

    Science.gov (United States)

    White, Kerry A.

    2000-01-01

    In 1994, Long Beach (California) Unified School District began requiring uniforms in all elementary and middle schools. Now, half of all urban school systems and many suburban schools have uniform policies. Research on uniforms' effectiveness is mixed. Tightened dress codes may be just as effective and less litigious. (MLH)

  10. Mandatory School Uniforms.

    Science.gov (United States)

    Cohn, Carl A.

    1996-01-01

    Shortly after implementing a mandatory school uniform policy, the Long Beach (California) Public Schools can boast 99% compliance and a substantial reduction in school crime. The uniforms can't be confused with gang colors, save parents money, and help identify outsiders. A sidebar lists ingredients for a mandatory uniform policy. (MLH)

  11. Aortic and hepatic enhancement at multidetector CT: Evaluation of optimal iodine dose determined by lean body weight

    International Nuclear Information System (INIS)

    Kondo, Hiroshi; Kanematsu, Masayuki; Goshima, Satoshi; Watanabe, Haruo; Onozuka, Minoru; Moriyama, Noriyuki; Bae, Kyongtae T.

    2011-01-01

    Purpose: To determine the optimal iodine dose for aortic and hepatic enhancement at MDCT by comparing lean body weight (LBW) with total body weight (TBW). Materials and methods: This study was approved by our institutional review committee. One hundred and thirty-six patients were randomized into four groups: 550, 650, 750 mg iodine/(kg of LBW) and 600 mgI/(kg of TBW). The aortic and hepatic contrast enhancements (ΔHUs) during the portal venous-phase and variances of ΔHUs were compared. Results: Mean ΔHUs for 550, 650, 750 mgI/kg LBW and 600 mgI/kg TBW were: 95.1, 109.9, 122.4, and 131.2 HU, respectively, for the aorta. For the liver, 43.1, 55.4, 60.8, and 63.5 HU. Mean ΔHUs increased with iodine dose per kg LBW (p < 0.01), but no significant difference between 750 mgI/kg LBW and 600 mgI/kg TBW groups. Hepatic enhancement increased by ≥50 HU in 94% of patients with 750 mg/kg LBW. Variance of hepatic enhancement was marginally greater in the 600 mgI/kg TBW than in the 550 and 750 mgI/kg LBW. Conclusion: Hepatic enhancement variation was reduced with iodine doses based on LBW. Iodine dose of 750 mg iodine/kg LBW was appropriate to achieve hepatic enhancement ≥50 HU in 94% of patients.

  12. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    International Nuclear Information System (INIS)

    Wenzl, Tatiana; Wilkens, Jan J

    2011-01-01

    The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes. Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations in vivo. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose. The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose in vivo for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36

  13. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  14. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue.

    Science.gov (United States)

    Taha, Eslam; Djouider, Fathi; Banoqitah, Essam

    2018-03-26

    The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm 3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125 I, 131 Cs, and 103 Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131 Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

  15. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  16. SU-E-T-279: Dose Enhancement Effect Due to Cerium Oxide Nanoparticles Employed as Radiation Protectants

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Altundal, Y; Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [Univ Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana Farber Cancer Institute, Harvard Medical, Boston, MA (United States)

    2015-06-15

    Purpose: The goal of radiotherapy is to maximize radiation dose to diseased cells while minimizing radiation damage to normal tissues. In order to minimize damage to normal tissues, cerium oxide nanoparticles (nanoceria) are currently considered as a radioprotectant. However, some studies have reported concerns that nanoceria can also lead to radiotherapy dose enhancement due to the high atomic number of cerium, especially when used in conjunction with kV energy and brachytherapy sources. In this study, this concern is investigated to determine if the concentrations of nanoceria employed in in-vivo studies to confer radioprotection can engender a significant dose enhancement. Methods: Radiation with energies ranging from 50kVp to 140kVp is investigated in this work along with brachytherapy sources Pd-103 and I-125. A previously established theoretical model is used to calculate the dose enhancement factor (DEF). In this model, each cell is assumed to be a voxel of size (10 µm, 10 µm, 10 µm) with nanoceria homogeneously distributed among them. Electron energy loss formula of Cole is used to calculate energy (and hence dose) deposited by photoelectrons and Auger electrons in each tissue voxel due to irradiation of nanoceria. The DEF is defined as the ratio of the dose with and without nanoparticles. Results: DEF calculation results are smaller than 1.02 with dosages of nanoceria smaller than 0.645 mg/g, which is shown to be sufficiently protective by some previous in-vitro and in-vivo experiments. The brachytherapy sources show higher DEF’s than kVp radiations. DEF peaks are consistent with K shell and L shell energies of cerium, 40 keV and 6 keV, respectively. Conclusion: The results show that for sufficiently radioprotective concentrations of nanoceria, there will be minimal DEF when used in conjunction with clinically applicable kV energy radiotherapy sources or brachytherapy sources.

  17. A highly uniform ZnO/NaTaO{sub 3} nanocomposite: Enhanced self-sensitized degradation of colored pollutants under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guanjie; Tang, Changhe [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China); Zhang, Bo [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072 (China); Zhao, Lanxiao; Su, Yiguo [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China); Wang, Xiaojing, E-mail: wang_xiao_jing@hotmail.com [School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 (China)

    2015-10-25

    In this study, a highly uniform ZnO/NaTaO{sub 3} composite was prepared via simple hydrothermal synthesis. XRD confirmed the composite was constructed by pure cubic phase of NaTaO{sub 3} and hexagonal phase of ZnO. SEM analysis showed that as-prepared ZnO/NaTaO{sub 3} shaped as an irregular ginger with an obviously smaller size than that of pure ZnO without obvious agglomeration. EDS mapping demonstrated that the four elements (Na, Ta, O, Zn) in the composite were very uniformly distributed. The photocatalytic behaviors of as-prepared composites were studied in the degradation of methylene blue both under UV and visible irradiation. The bare ZnO showed the highest activity with 99.8% methylene blue (MB) photodegraded in 70 min under UV light irradiation whereas 94% photodegraded rate was achieved for ZnO/NaTaO{sub 3}. More importantly, the uniform composite of ZnO/NaTaO{sub 3} exhibited effective degradation of methylene blue under visible light which can be attributed to the well dyes adsorption abilities and the high efficiency of electron separation, induced by the synergistic effect between ZnO and NaTaO{sub 3}. It is confirmed the dye rather than a semiconductor is excited under visible light irradiation and a self-sensitized photocatalytic mechanism was then proposed based on the experimental results. - Graphical abstract: Visible light photocatalytic activity of ZnO/NaTaO{sub 3} and proposed schematic of self-sensitization directed photogradation of MB. - Highlights: • Highly uniform ZnO/NaTaO{sub 3} photocatalysts were fabricated by hydrothermal method. • ZnO/NaTaO{sub 3} composite exhibited effective degradation of MB under visible light. • ZnO/NaTaO{sub 3} composite effectively promoted dye adsorption and electrons separation. • A self-sensitized photocatalytic mechanism was proposed for the degradation of dye.

  18. Efforts towards enhancing the quality of radiological services in Malaysia: review of patient dose surveys 1993-2007

    International Nuclear Information System (INIS)

    Hairuman, H.; Sapiin, B.; Muthuvelu, P.; Hatta, N.; Hambali, A.S.

    2008-01-01

    Full text: The Ministry of Health (MoH) Malaysia is continuously taking steps to improve the quality of radiological services provided by the public and private medical institutions. This is to ensure that optimum diagnostic information is obtained with the least exposure to patients as well as staff. Over the years, MOH has taken both administrative and legislative measures to enforce the various requirements under the Atomic Energy Licensing Act 1984. In order to further upgrade and enhance the quality, safety and efficacy of radiological services, implementation of the Quality Assurance Programme (QAP) has been made mandatory. Implementation of the QAP comprises certification of irradiating equipment, training of personnel (continuous professional education), film reject rate analysis and film auditing and assessment. All these particulars must be documented and submitted annually to the MoH in order to comply with licensing requirements. It is envisaged that with the implementation of QAP, the medical institutions will be able to institutionalise and internalise the culture of quality and safety in the applications of radiation in medicine. This implementation will indirectly result in reduction of dose to the patient and importantly in optimization the use of ionizing radiation in medicine. With the QAP in place a survey of doses to patient in 7 routine X-ray examinations was initiated in 1993 to provide a reference dose baseline in Malaysia. This was then followed by further dose surveys involving other modalities namely interventional radiology, mammography, adult chest and abdominal X-rays and computer tomography dose index (CTDI) for head and body phantom in CT scanner. The results of these dose surveys will be reviewed in this paper. The results of the mean entrance surface dose (ESD) (mGy) to patients in 7 routine X-ray examination done (1993 - 1995), the mean values of dose area product (DAP) (Gycm 2 ) for patient undergoing interventional radiology

  19. Aortic and hepatic enhancement at multidetector CT: evaluation of optimal iodine dose determined by lean body weight.

    Science.gov (United States)

    Kondo, Hiroshi; Kanematsu, Masayuki; Goshima, Satoshi; Watanabe, Haruo; Onozuka, Minoru; Moriyama, Noriyuki; Bae, Kyongtae T

    2011-12-01

    To determine the optimal iodine dose for aortic and hepatic enhancement at MDCT by comparing lean body weight (LBW) with total body weight (TBW). This study was approved by our institutional review committee. One hundred and thirty-six patients were randomized into four groups: 550, 650, 750 mg iodine/(kg of LBW) and 600 mgI/(kg of TBW). The aortic and hepatic contrast enhancements (Δ HUs) during the portal venous-phase and variances of ΔHUs were compared. Mean ΔHUs for 550, 650, 750 mgI/kg LBW and 600 mgI/kg TBW were: 95.1, 109.9, 122.4, and 131.2HU, respectively, for the aorta. For the liver, 43.1, 55.4, 60.8, and 63.5 HU. Mean Δ HUs increased with iodine dose per kg LBW (p<0.01), but no significant difference between 750 mgI/kg LBW and 600 mgI/kg TBW groups. Hepatic enhancement increased by ≥50 HU in 94% of patients with 750 mg/kg LBW. Variance of hepatic enhancement was marginally greater in the 600 mgI/kg TBW than in the 550 and 750 mgI/kg LBW. Hepatic enhancement variation was reduced with iodine doses based on LBW. Iodine dose of 750 mg iodine/kg LBW was appropriate to achieve hepatic enhancement≥50 HU in 94% of patients. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Fabrication of Tb0.3Dy0.7Fe2/epoxy composites: Enhanced uniform magnetostrictive and mechanical properties using a dryprocess

    International Nuclear Information System (INIS)

    Dong Xufeng; Qi Min; Guan Xinchun; Ou Jinping

    2011-01-01

    To improve the uniformity of the magnetostrictive properties of Terfenol-D composites along the field direction, a dry method is developed in the present study. We examined the compaction pressure, particle volume fraction, particle size and composite configuration as factors that affected the magnetostrictive properties of the composites. The experimental results indicated that the magnetostrictive properties were improved with the increase of compaction pressure and particle volume fraction. In addition, larger average particle size was shown to result in more pronounced magnetostrictive properties. The particle alignment due to the orientation field is beneficial for the promotion of the magnetostrictive properties. The largest saturation magnetostriction and the maximum piezo-magnetic coefficient in the absence of a mechanical preload was obtained at 1005 ppm and 4.08 nm/A, respectively, for the aligned composite including a particle volume fraction of 77% and an average particle size of 210 μm. - Research Highlights: → Magnetostrictive composites were usually fabricated using a wet process. Since the settlement of the particles in the liquid polymers frequently occurred, the properties of the composites were inhomogeneous. → The dry process developed in the present study was proved effective to fabricate magnetostrictive composites with uniform properties. → The largest saturation magnetostriction and the maximum piezo-magnetic coefficient in the absence of a mechanical preload was obtained at 1005 ppm and 4.08 nm/A.

  1. CoFe2O4 nanoparticles as a catalyst: synthesis of a forest of vertically aligned CNTs of uniform diameters by plasma-enhanced CVD

    International Nuclear Information System (INIS)

    Baliyan, Ankur; Fukuda, Takahiro; Hayasaki, Yasuhiro; Uchida, Takashi; Nakajima, Yoshikata; Hanajiri, Tatsuro; Maekawa, Toru

    2013-01-01

    Controlling actively the structures of carbon nanotubes such as the alignment, length, diameter, chirality and the number of walls still remains a crucial challenge. The properties of CNTs are highly structure sensitive and particularly dependent on the diameter and number of walls. In this brief communication, we synthesise monodisperse CoFe 2 O 4 nanoparticles of uniform diameters, i.e. 4.8 and 6.9 nm, which are modified with oleic acid as a catalyst for the growth of CNTs. We show that a forest of vertically aligned CNTs of uniform diameters and lengths can be grown using CoFe 2 O 4 nanoparticles. The internal diameters and lengths of CNTs grown using CoFe 2 O 4 nanoparticles of 4.8 and 6.9 nm diameters are, respectively, 4.4 and 6.2 nm and 10 and 15 μm. It is clearly shown that the number of walls of CNTs can be engineered changing the materials of the catalytic nanoparticles. The present results may well encourage further systematic studies on the growth of CNTs using various combinations of elements for the catalytic nanoparticles under different external conditions, which may provide not only the possibilities of controlling the properties of CNTs but also an insight into the nucleation and growth mechanisms.

  2. Juvenile Hormone Analogues, Methoprene and Fenoxycarb Dose-Dependently Enhance Certain Enzyme Activities in the Silkworm Bombyx Mori (L

    Directory of Open Access Journals (Sweden)

    M. Rajeswara Rao

    2008-06-01

    Full Text Available Use of Juvenile Hormone Analogues (JHA in sericulture practices has been shown to boost good cocoon yield; their effect has been determined to be dose-dependent. We studied the impact of low doses of JHA compounds such as methoprene and fenoxycarb on selected key enzymatic activities of the silkworm Bombyx mori. Methoprene and fenoxycarb at doses of 1.0 μg and 3.0fg/larvae/48 hours showed enhancement of the 5th instar B. mori larval muscle and silkgland protease, aspartate aminotransaminase (AAT and alanine aminotransaminase (ALAT, adenosine triphosphate synthase (ATPase and cytochrome-c-oxidase (CCO activity levels, indicating an upsurge in the overall oxidative metabolism of the B.mori larval tissues.

  3. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154.

    Science.gov (United States)

    Gould, Robert W; Grannan, Michael D; Gunter, Barak W; Ball, Jacob; Bubser, Michael; Bridges, Thomas M; Wess, Jurgen; Wood, Michael W; Brandon, Nicholas J; Duggan, Mark E; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2018-01-01

    Although selective activation of the M 1 muscarinic acetylcholine receptor (mAChR) subtype has been shown to improve cognitive function in animal models of neuropsychiatric disorders, recent evidence suggests that enhancing M 4 mAChR function can also improve memory performance. Positive allosteric modulators (PAMs) targeting the M 4 mAChR subtype have shown therapeutic potential for the treatment of multiple symptoms observed in schizophrenia, including positive and cognitive symptoms when assessed in acute preclinical dosing paradigms. Since the cholinergic system has been implicated in multiple stages of learning and memory, we evaluated the effects of repeated dosing with the highly selective M 4 PAM VU0467154 on either acquisition and/or consolidation of learning and memory when dosed alone or after pharmacologic challenge with the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR) antagonist MK-801. MK-801 challenge represents a well-documented preclinical model of NMDAR hypofunction that is thought to underlie some of the positive and cognitive symptoms observed in schizophrenia. In wildtype mice, 10-day, once-daily dosing of VU0467154 either prior to, or immediately after daily testing enhanced the rate of learning in a touchscreen visual pairwise discrimination task; these effects were absent in M 4 mAChR knockout mice. Following a similar 10-day, once-daily dosing regimen of VU0467154, we also observed 1) improved acquisition of memory in a cue-mediated conditioned freezing paradigm, 2) attenuation of MK-801-induced disruptions in the acquisition of memory in a context-mediated conditioned freezing paradigm and 3) reversal of MK-801-induced hyperlocomotion. Comparable efficacy and plasma and brain concentrations of VU0467154 were observed after repeated dosing as those previously reported with an acute, single dose administration of this M 4 PAM. Together, these studies are the first to demonstrate that cognitive enhancing and antipsychotic

  4. Application of low dose radiation and low concentration contrast media in enhanced CT scans in children with congenital heart disease.

    Science.gov (United States)

    Liu, Zhimin; Song, Lei; Yu, Tong; Gao, Jun; Zhang, Qifeng; Jiang, Ling; Liu, Yong; Peng, Yun

    2016-09-01

    The aim of this study was to explore the feasibility of using low dose radiation and low concentration contrast media in enhanced CT examinations in children with congenital heart disease. Ninety patients with congenital heart disease were randomly divided into three groups of 30 patients each who underwent contrast-enhanced cardiac scans on a Discovery CT750 HD scanner. Group A received 270 mg I/mL iodixanol, and group B received 320 mg I/mL iodixanol contrast media and was scanned with prospective ECG triggering mode. Group C received 320 mg I/mL iodixanol and was scanned with conventional retrospective ECG gating mode. The same weight-based contrast injection protocol was used for all three groups. Images were reconstructed using a 30% adaptive statistical iterative reconstruction (ASIR) algorithm and a 50% ASIR in groups A and B and a 30% ASIR in group C. The subjective and objective image quality evaluations, diagnostic accuracies, radiation doses and amounts of contrast media in the three groups were measured and compared. All images in the three groups met the diagnostic requirements, with the same diagnostic accuracy and image quality scores greater than 3 in a 4-point scoring system. However, ventricular enhancement and the objective noise, signal-to-noise ratio, contrast-to-noise ratio and subjective image quality scores in group C were better than those in groups A and B (all Pcontrast dose (14% lower than that of groups B and C). Enhanced CT scan images with low dose radiation and low concentration contrast media can meet the diagnostic requirements for examining children with congenital heart disease while reducing the potential risk of radiation damage and contrast-induced nephropathy. © 2016 John Wiley & Sons Ltd.

  5. Intracavitary brachytherapy significantly enhances local control of early T-stage nasopharyngeal carcinoma: the existence of a dose-tumor-control relationship above conventional tumoricidal dose

    International Nuclear Information System (INIS)

    Teo, Peter Man Lung; Leung, Sing Fai; Lee, Wai Yee; Zee, Benny

    2000-01-01

    the chronic radiation complications, with the exception of chronic radiation nasopharyngeal ulceration/necrosis which occurred in 10 patients in Group A and 1 patient in Group B. Headache (n = 4) and foul smell (n = 8) consequential to ulceration/necrosis were mild and manageable by conservative means. A significant dose-tumor-control relationship existed when local failure was studied as a function of the total physical dose or the total biological equivalent dose (linear quadratic equation, α/β = 10) uncorrected for tumor repopulation during the time course of the radiotherapy. Conclusions: Supplementing ERT which delivered tumoricidal dose (uncorrected BED-10 ≥75 Gy), ICT significantly enhanced ultimate local control and avoided the necessity for morbid salvage treatments in early T-stage (T1/T2 nasal infiltration) NPC. The slight increase in chronic radiation ulceration/necrosis after ICT was acceptable with mild and manageable symptoms. Other late complications were not increased. A significant dose-tumor-control relationship exists above the conventional tumoricidal dose level

  6. Late Urinary Side Effects 10 Years After Low-Dose-Rate Prostate Brachytherapy: Population-Based Results From a Multiphysician Practice Treating With a Standardized Protocol and Uniform Dosimetric Goals

    International Nuclear Information System (INIS)

    Keyes, Mira; Miller, Stacy; Pickles, Tom; Halperin, Ross; Kwan, Winkle; Lapointe, Vincent; McKenzie, Michael; Spadinger, Ingrid; Pai, Howard; Chan, Elisa K.; Morris, W. James

    2014-01-01

    Purpose: To determine late urinary toxicity (>12 months) in a large cohort of uniformly treated low-dose-rate prostate brachytherapy patients. Methods and Materials: From 1998 to 2009, 2709 patients with National Comprehensive Cancer Network–defined low-risk and low-tier intermediate-risk prostate cancer were treated with Iodine 125 ( 125 I) low-dose-rate prostate brachytherapy; 2011 patients with a minimum of 25 months of follow-up were included in the study. Baseline patients, treatment, implant factors, and late urinary toxicity (Radiation Therapy Oncology Group [RTOG] grading system and International Prostate Symptom Score [IPSS]) were recorded prospectively. Time to IPSS resolution, late RTOG genitourinary toxicity was examined with Kaplan-Meier and log-rank tests. Cox proportional hazards regression was done for individual covariates and multivariable models. Results: Median follow-up was 54.5 months (range, 2-13 years). Actuarial toxicity rates reached 27% and 10% (RTOG ≥2 and ≥3, respectively) at 9-13 years. Symptoms resolved quickly in the majority of patients (88% in 6-12 months). The prevalence of RTOG 0, 1, 2, 3, and 4 toxicity with a minimum of 7 years' follow-up was 70%, 21%, 6.4%, 2.3%, and 0.08%, respectively. Patients with a larger prostate volume, higher baseline IPSS, higher D90, acute toxicity, and age >70 years had more late RTOG ≥2 toxicity (all P≤.02). The IPSS resolved slower in patients with lower baseline IPSS and larger ultrasound prostate volume, those not receiving androgen deprivation therapy, and those with higher D90. The crude rate of RTOG 3 toxicity was 6%. Overall the rate of transurethral resection of the prostate was 1.9%; strictures, 2%; incontinence, 1.3%; severe symptoms, 1.8%; late catheterization, 1.3%; and hematuria, 0.8%. The majority (80%) resolved their symptoms in 6-12 months. Conclusion: Long-term urinary toxicity after brachytherapy is low. Although actuarial rates increase with longer follow

  7. Late Urinary Side Effects 10 Years After Low-Dose-Rate Prostate Brachytherapy: Population-Based Results From a Multiphysician Practice Treating With a Standardized Protocol and Uniform Dosimetric Goals

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Mira, E-mail: mkeyes@bccancer.bc.ca; Miller, Stacy; Pickles, Tom; Halperin, Ross; Kwan, Winkle; Lapointe, Vincent; McKenzie, Michael; Spadinger, Ingrid; Pai, Howard; Chan, Elisa K.; Morris, W. James

    2014-11-01

    Purpose: To determine late urinary toxicity (>12 months) in a large cohort of uniformly treated low-dose-rate prostate brachytherapy patients. Methods and Materials: From 1998 to 2009, 2709 patients with National Comprehensive Cancer Network–defined low-risk and low-tier intermediate-risk prostate cancer were treated with Iodine 125 ({sup 125}I) low-dose-rate prostate brachytherapy; 2011 patients with a minimum of 25 months of follow-up were included in the study. Baseline patients, treatment, implant factors, and late urinary toxicity (Radiation Therapy Oncology Group [RTOG] grading system and International Prostate Symptom Score [IPSS]) were recorded prospectively. Time to IPSS resolution, late RTOG genitourinary toxicity was examined with Kaplan-Meier and log-rank tests. Cox proportional hazards regression was done for individual covariates and multivariable models. Results: Median follow-up was 54.5 months (range, 2-13 years). Actuarial toxicity rates reached 27% and 10% (RTOG ≥2 and ≥3, respectively) at 9-13 years. Symptoms resolved quickly in the majority of patients (88% in 6-12 months). The prevalence of RTOG 0, 1, 2, 3, and 4 toxicity with a minimum of 7 years' follow-up was 70%, 21%, 6.4%, 2.3%, and 0.08%, respectively. Patients with a larger prostate volume, higher baseline IPSS, higher D90, acute toxicity, and age >70 years had more late RTOG ≥2 toxicity (all P≤.02). The IPSS resolved slower in patients with lower baseline IPSS and larger ultrasound prostate volume, those not receiving androgen deprivation therapy, and those with higher D90. The crude rate of RTOG 3 toxicity was 6%. Overall the rate of transurethral resection of the prostate was 1.9%; strictures, 2%; incontinence, 1.3%; severe symptoms, 1.8%; late catheterization, 1.3%; and hematuria, 0.8%. The majority (80%) resolved their symptoms in 6-12 months. Conclusion: Long-term urinary toxicity after brachytherapy is low. Although actuarial rates increase with longer

  8. Low dose of caffeine enhances the efficacy of antidepressants in major depressive disorder and the underlying neural substrates.

    Science.gov (United States)

    Liu, Qing-Shan; Deng, Ran; Fan, Yuyan; Li, Keqin; Meng, Fangang; Li, Xueli; Liu, Rui

    2017-08-01

    Caffeine is one of the most frequently used psychoactive substances ingested mainly via beverage or food products. Major depressive disorder is a serious and devastating psychiatric disorder. Emerging evidence indicates that caffeine enhances the antidepressant-like activity of common antidepressant drugs in rodents. However, whether joint administration of low dose of caffeine enhances the antidepressant actions in depressed patients remains unclear. A total of 95 male inpatients were assigned to three groups and were asked to take either caffeine (60, 120 mg) or placebo (soymilk powder) daily for 4 wk on the basis of their current antidepressant medications. Results showed that chronic supplementation with low dose of caffeine (60 mg) produced rapid antidepressant action by reduction of depressive scores. Furthermore, low dose of caffeine improved cognitive performance in depressed patients. However, caffeine did not affect sleep as measured by overnight polysomnography. Moreover, chronic caffeine consumption elicited inhibition of hypothalamic-pituitary-adrenal axis activation by normalization of salivary cortisol induced by Trier social stress test. These findings indicated the potential benefits of further implications of supplementary administration of caffeine to reverse the development of depression and enhance the outcome of antidepressants treatment in major depressive disorder. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Curcumin uptake enhancement using low dose light illumination during incubation in Candida albicans

    Science.gov (United States)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Bagnato, Vanderlei S.; Guimarães, Francisco E. G.

    2017-07-01

    A new PDI protocol is presented in this study. C. albicans cells pre-illuminated with a low dose light demonstrated an increase of curcumin uptake when compared to dark incubation, leading to a higher PDI efficacy.

  10. School Uniforms. Research Brief

    Science.gov (United States)

    Walker, Karen

    2007-01-01

    Does clothing make the person or does the person make the clothing? How does what attire a student wears to school affect their academic achievement? In 1996, President Clinton cited examples of school violence and discipline issues that might have been avoided had the students been wearing uniforms ("School uniforms: Prevention or suppression?").…

  11. Games Uniforms Unveiled

    Institute of Scientific and Technical Information of China (English)

    Linda

    2008-01-01

    The uniforms for Beijing Olympics’ workers, technical staff and volunteers have been unveiled to mark the 200-day countdown to the Games. The uniforms feature the key element of the clouds of promise and will be in three colors:red for Beijing Olympic Games Committee staff, blue

  12. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Tsiamas, Panogiotis [Department of Radiation Oncology, St. Jude Children’s Hospital, Memphis, Tennessee 38105 (United States); Parsons, David; Yewondwossen, Mammo; Robar, James [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-01-15

    Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.

  13. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    Science.gov (United States)

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  14. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension.

    Directory of Open Access Journals (Sweden)

    Tao-Cheng Wu

    Full Text Available BACKGROUND: Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM, a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP and vascular protection in aged spontaneous hypertensive rats (SHRs. METHODOLOGY/PRINCIPAL FINDINGS: Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. CONCLUSIONS/SIGNIFICANCE: Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.

  15. Single dose silodosin prior to voiding cystourethrogram: a pharmacological adjunct to enhance visualization of posterior urethra.

    Science.gov (United States)

    Nagathan, Deepak Sharanappa; Dalela, Divakar; Sankhwar, Satyanarayan; Goel, Apul; Dwivedi, Amod Kumar; Yadav, Rahul

    2014-03-04

    Voiding cystourethrogram (VCUG) is needed to ascertain the upper end of urethral stricture. Occasionally, a patient is unable to open the bladder neck with resultant failure of the test. Realizing the strong and prompt alpha antagonistic action of silodosin, we evaluated single 8 mg dose as a pharmacological adjunct prior to VCUG to overcome this problem.

  16. Double dose: High family conflict enhances the effect of media violence exposure on adolescents’ aggression

    NARCIS (Netherlands)

    Fikkers, K.M.; Piotrowski, J.T.; Weeda, W.D.; Vossen, H.G.M.; Valkenburg, P.M.

    2013-01-01

    We investigated how exposure to media violence and family conflict affects adolescents’ subsequent aggressive behavior. We expected a double dose effect, meaning that high media violence exposure would lead to higher levels of aggression for adolescents in high conflict families compared to low

  17. Subeffective doses of dexketoprofen trometamol enhance the potency and duration of fentanyl antinociception

    Science.gov (United States)

    Gaitán, Gema; Herrero, Juan F

    2002-01-01

    The combination of classic non-steroidal antiinflammatory drugs (NSAIDs) with opiates induces more analgesia than the summed effect of each drug given separately. No studies have been performed using new generation NSAIDs and fentanyl nor on the duration of this effect. We have studied the analgesic effect of fentanyl alone and after the administration of subeffective doses of dexketoprofen trometamol in rat nociceptive responses. The responses were evoked by noxious mechanical stimulation and were recorded as single motor units in male Wistar rats anaesthetized with α-chloralose. The effective dose 50 (ED50) observed with fentanyl was 22.4±1.5 μg kg−1 and full recovery was apparent 20 min later. The administration of a total dose of 40 μg kg−1 of dexketoprofen trometamol did not induce any significant effect on the nociceptive responses. In the presence of dexketoprofen trometamol, the ED50 for fentanyl was 5 fold lower than before: 3.8±1.1 μg kg−1 and no significant recovery was observed 45 min later. The opioid antagonist naloxone (200 μg kg−1) did not reverse the effect, although in control experiments the same dose was able to prevent any action of fentanyl given alone. We conclude that the combination of fentanyl and subeffective doses of dexketoprofen trometamol induces a more potent and longer lasting analgesic effect than that observed with fentanyl alone, and that this is not an opioid mediated action. PMID:11815374

  18. Reduction of dose enhancement from backscattered radiation at tissue-metal interfaces irradiated with 6MeV electrons

    International Nuclear Information System (INIS)

    Steel, B.

    1996-01-01

    Due to Electron Back Scatter (EBS), electron irradiation of tissue having under lying lead shielding results in an increase in dose to the tissue on the entrance side of the lead. In these situations dose increases as high as 80% have been reported in the literature. Saunders (British Journal of Radiology, 47, 467-470) noted that dose enhancement is dependent on atomic number of the under lying material approximately as Z 0.5 , and it increases at lower incident electron energies. In our clinic we use 2mm of lead shielding to protect under lying normal tissue when 6MeV electrons are used to treat lips and ears. The object of this study was to find the thinnest combination of materials to reduce the total dose to an acceptable level, with the provisos that; the patient does not come into contact with the lead or other metals, the finished shield could comfortabley be placed between the patient's lip and teeth, and that the materials are sufficietly malleable to work into custom shields. Various combinations of dental wax and aluminium were trialed. That which proved to give the best compromise between reduction of EBS and total shielding thickness was, 1mm of aluminim on the beam side of the lead with 1mm of dental wax to completely enclose the shield. In practice the manufactured shields are approximately 6 mm thick, and are usually not uncomfortable for the patient. (author)

  19. Enhanced low dose rate sensitivity (ELDRS) in a voltage comparator which only utilizes complementary vertical NPN and PNP transistors

    International Nuclear Information System (INIS)

    Krieg, J.F.; Titus, J.L.; Emily, D.; Gehlhausen, M.; Swonger, J.; Platteter, D.

    1999-01-01

    For the first time, enhanced low dose rate sensitivity (ELDRS) is reported in a vertical bipolar process. A radiation hardness assurance (RHA) test method was successfully demonstrated on a linear circuit, the HS139RH quad comparator, and its discrete transistor elements. This circuit only uses vertical NPN and PNP transistors. Radiation tests on the HS139RH were performed at 25 C using dose rates of 50 rd(Si)/s, 100 mrd(Si)/s and 10 mrd(Si)/s, and at 100 C using a dose rate of 10 rd(Si)/s. Tests at dose rates of 50 rd(Si)/s at 25 C and 10 rd(Si)/s at 100 C were performed on discrete vertical NPN and PNP transistor elements which comprise the HS139RH. Transistor and circuit responses were evaluated. The die's passivation overcoat layers were varied to examine the effect of removing a nitride layer and thinning a deposited SiO 2 (silox) layer

  20. SU-E-T-244: Designing Low-Z Targets To Enhance Surface Dose: A Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R [Nova Scotia Cancer Centre, Halifax, NS (Canada); Robar, J [Capital District Health Authority, Halifax, NS (Canada); Parsons, D [Dalhousie University, Halifax, Nova Scotia (Canada)

    2015-06-15

    Purpose: Recent developments in The Varian Truebeam linac platform allows for the introduction of low-Z targets into the beam line for the imaging purposes. We have proposed using a low-Z target for radiation therapy purposes to enhance the surface dose during radiation treatment. The target arm of the Varian Truebeam accelerator consists of multiple targets with are linearly translated into the beam line. We have designed two Low-Z targets made of carbon: 1) a step target consisting of three steps of 15%, 30% and 60% CSDA range for 2.5 MeV electrons Figure 1a; 2) and a ramp target, an incline plane 2cm long with thicknesses ranging from 0% to 60% CSDA range, Figure 1b. The purpose of this work will determine the spectral characteristics of these target designs and determine if they have practical clinical applications for enhancing surface dose. Methods: To calculate the spectral characteristics of these targets, a standard Monte Carlo model of a Varian Clinac accelerator was used. Simulations were performed with a carbon step target, and a carbon ramp target, located at the same position as the electron foil in the rotating carousel. Simulations were carried out using a 2.5 MeV electron beam. Results: The step target design produced spectral characteristics which were similar to spectral model using a single disk target of the same thickness. The ramp target provides a means to have positional variation of the spectral components of the beam, however, the electron component as 60% CSDA us much broader than the step target. Conclusion: The carbon step-target provides a spectral distribution which is similar to a carbon disk of comparable thickness. The spectral distribution from the ramp-target can be modified as a function of position to provide a wide range of low energy electrons for surface dose enhancement.

  1. Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.

    2014-01-01

    Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer

  2. Double Dose: High Family Conflict Enhances the Effect of Media Violence Exposure on Adolescents’ Aggression

    Directory of Open Access Journals (Sweden)

    Patti M. Valkenburg

    2013-07-01

    Full Text Available We investigated how exposure to media violence and family conflict affects adolescents’ subsequent aggressive behavior. We expected a double dose effect, meaning that high media violence exposure would lead to higher levels of aggression for adolescents in high conflict families compared to low conflict families. A total of 499 adolescents (aged 10 to 14, 48% girls participated in a two-wave longitudinal survey (4-month interval. Survey questions assessed their exposure to violence on television and in electronic games, family conflict, and aggressive behavior. Analyses revealed a significant interaction between media violence and family conflict. In families with higher conflict, higher media violence exposure was related to increased subsequent aggression. This study is the first to show a double dose effect of media violence and family conflict on adolescents’ aggression. These findings underscore the important role of the family in shaping the effects of adolescents’ media use on their social development.

  3. SU-F-T-648: Sharpening Dose Fall-Off Via Beam Number Enhancements For Stereotactic Brain Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, J; Braunstein, S; McDermott, M; Sneed, P; Ma, L [University of California San Francisco, San Francisco, CA (United States); Pierce, M [Indiana University, Bloomington, IN (United States)

    2016-06-15

    Purpose: Sharp dose fall-off is the hallmark of brain radiosurgery to deliver a high dose of radiation to the target while minimizing dose to normal brain tissue. In this study, we developed a technique for the purpose of enhancing the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter via patient head tilt and simultaneous beam intensity modulations. Methods: Computer scripting for the proposed beam number enhancement (BNE) technique was developed. The technique was tested and then implemented on a clinical treatment planning system for a dedicated brain radiosurgical system (GK Perfexion, Elekta Oncology). To study technical feasibility and dosimetric advantages of the technique, we compared treatment planning quality and delivery efficiency for 20 radiosurgical cases previously treated at our institution. These cases included relatively complex treatments such as acoustic schwannoma, meningioma, brain metastasis and mesial temporal lobe epilepsy. Results: The BNE treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI= 1.41±0.15 versus 1.41±0.20, P>0.9) as the original treatment plans. The total beam-on time for theBNE treatment plans were comparable (within 1.0 min or 1.8%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.9±0.3 versus original GI =3.0±0.3 p<0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 2.0% to 5.0% (p<0.02). Furthermore, with 4 to 5-fold increase in the total number of beams, the GI decreased by as much as 20% or 0.5 in absolute values. Conclusion: BNE via head tilt and simultaneous beam intensity modulation is an effective and efficient technique that physically sharpens the peripheral dose gradient for brain radiosurgery.

  4. Three-dimensional noble-metal nanostructure: A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Tian Cui-Feng; You Hong-Jun; Fang Ji-Xiang

    2014-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique for highly sensitive structural detection of low concentration analyte. The SERS activities largely depend on the topography of the substrate. In this review, we summarize the recent progress in SERS substrate, especially focusing on the three-dimensional (3D) noble-metal substrate with hierarchical nanostructure. Firstly, we introduce the background and general mechanism of 3D hierarchical SERS nanostructures. Then, a systematic overview on the fabrication, growth mechanism, and SERS property of various noble-metal substrates with 3D hierarchical nanostructures is presented. Finally, the applications of 3D hierarchical nanostructures as SERS substrates in many fields are discussed. (invited review — international conference on nanoscience and technology, china 2013)

  5. Uniform deposition of water-soluble CdS quantum dots on TiO2 nanotube arrays by cyclic voltammetric electrodeposition: Effectively prevent aggregation and enhance visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Xiaojiao; Lin, Shiwei; Liao, Jianjun; Pan, Nengqian; Li, Danhong; Cao, Xiankun; Li, Jianbao

    2013-01-01

    Highlights: • Water-soluble CdS QDs were deposited on the TNTAs by DC electrodeposition, CV electrodeposition, and SILAR. • The CV method could effectively prevent the aggregation and uniformly deposit CdS QDs onto the TNTAs. • The CTAB/CdS/TNTAs prepared by the CV method exhibited superior photoelectrical properties and photocatalytic activity. -- Abstract: Water-soluble CdS quantum dots (QDs) covered with cationic surfactant-cetyltrimethylammonium bromide (CTAB) were deposited on the highly ordered TiO 2 nanotube arrays (TNTAs) by various methods, such as direct current (DC) electrodeposition, cyclic voltammetric (CV) electrodeposition, and successive ionic layer adsorption reaction (SILAR). The morphology measurements show that CTAB capping could well control the QD size and the CV method could effectively prevent the nanoparticle aggregation and uniformly deposit QDs onto TNTAs. Among all the deposition methods studied, the sample prepared by the CV method possesses superior photoelectrical properties and photocatalytic activity. A maximum photoconversion efficiency of 2.81% is achieved for the CdS/TNTAs prepared by CV electrodeposition, which exhibits about 17 times enhancement over the efficiency of the sample prepared by DC electrodeposition. And the photocatalytic degradation of methyl orange under visible-light irradiation demonstrates that the rate constant of the sample prepared by the CV method is almost seven times of that of the untreated TNTAs. Moreover, the underlying mechanism for the improving properties has been discussed

  6. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    International Nuclear Information System (INIS)

    Zhen, Xin; Chen, Haibin; Zhou, Linghong; Yan, Hao; Jiang, Steve; Jia, Xun; Gu, Xuejun; Mell, Loren K; Yashar, Catheryn M; Cervino, Laura

    2015-01-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. (paper)

  7. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    Science.gov (United States)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  8. Reducing radiation dose in liver enhanced CT scan by setting mAs according to plain scan noise

    International Nuclear Information System (INIS)

    Yang Shangwen; He Jian; Yang Xianfeng; Zhou Kefeng; Xin Xiaoyan; Hu Anning; Zhu Bin

    2013-01-01

    Objective: To investigate the feasibility of setting mAs in liver enhanced CT scan according to plain scan noise with fixed mA CT scanner, in order to reduce the radiation dose. Methods: One hundred continuous patients underwent liver enhanced CT scan (group A) prospectively. Two hundred and fifty mAs was used in plain and enhanced CT scans. Noises of plain and venous phase CT images were measured, and the image quality was evaluated. The equation between mAs of enhanced scan and noise of plain scan image was derived. Another 100 continuous patients underwent liver enhanced CT scan (group B). Enhanced scan mAs was calculated from noise on plain scan by using the equation above. Noises on venous phase images were measured and the image quality was measured. Based on body mass index (BMI), patients in groups A and B were divided into three subgroups respectively: BMI < 18.5 kg/m 2 , 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 and BMI ≥ 25.0 kg/m 2 . Image quality score was compared with nonparametric rank sum test, CT dose index (CTDI) and effective dose (ED) were measured and compared between each subgroup with 2 independent samples t or t' test. Results: The equation between enhanced scan mAs (mAsX) and plain scan noise (SDp) was as follows: mAsX = mAs1 × [(0.989 × SDp + 1.06) /SDx] 2 , mAs1 = 250 mAs, SDx = 13. In patients with BMI < 18.5 kg/m 2 , ED of group A [(6.86 ± 0.38) mSv, n = 12] was significantly higher than group B [(2.66 ± 0.46) mSv, n = 10)] (t = 18.52, P < 0.01). In patients with 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 , ED of group A [(7.08 ± 0.91) mSv, n = 66] was significantly higher than group B [(4.50 ± 1.41) mSv, n = 73] (t' = 10.57, P < 0.01). In patients with BMI ≥ 25.0 kg/m 2 , there was no significant difference between EDs of group A (7.54 ± 0.62 mSv, n = 22) and group B [(8.19 ± 3.16) mSv, n = 17] (t' = 0.89, P = 0.39). Image quality of 5 patients in group A and none in group B did not meet the diagnostic requirement

  9. TU-H-CAMPUS-TeP3-03: Dose Enhancement by Gold Nanoparticles Around the Bragg Peak of Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J; Sutherland, K [Department of Medical Physics, Hokkaido University Graduate School of Medicine (Japan); Hashimoto, T [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Peng, H; Xing, L [Department of Radiation Oncology, Stanford University and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Shirato, H [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, H [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-06-15

    Purpose: To make clear the spatial distribution of dose enhancement around gold nanoparticles (GNPs) located near the proton Bragg peak, and to evaluate the potential of GNPs as a radio sensitizer. Methods: The dose enhancement by electrons emitted from GNPs under proton irradiation was estimated by Geant4 Monte Carlo simulation toolkit in two steps. In an initial macroscopic step, 100 and 195 MeV proton beams were incident on a water cube, 30 cm on a side. Energy distributions of protons were calculated at four depths, 50% and 75% proximal to the Bragg peak, 100% peak, and 75% distal to the peak (P50, P75, Peak, and D75, respectively). In a subsequent microscopic step, protons with the energy distribution calculated above were incident on a 20 nm diameter GNP in a nanometer-size water box and the spatial distribution of dose around the GNP was determined for each energy distribution. The dose enhancement factor (DEF) was also deduced. Results: The dose enhancement effect was spread to several tens of nanometers in the both depth and radial directions. The enhancement area increased in the order of P50, P75, Peak, and D75 for both cases with 100 and 195 MeV protons. In every position around the Bragg peak, the 100 MeV beam resulted in a higher dose enhancement than the 195 MeV beam. At P75, the average and maximum DEF were 3.9 and 17.0 for 100 MeV, and 3.5 and 16.2 for 195 MeV, respectively. These results indicate that lower energy protons caused higher dose enhancement in this incident proton energy range. Conclusion: The dose enhancement around GNPs spread as the position in the Bragg peak region becomes deeper and depends on proton energy. It is expected that GNPs can be used as a radio sensitizer with consideration of the location and proton beam energy.

  10. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    Science.gov (United States)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  11. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  12. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors

    OpenAIRE

    Tong Yu; Jun Gao; Zhi-Min Liu; Qi-Feng Zhang; Yong Liu; Ling Jiang; Yun Peng

    2017-01-01

    Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors...

  13. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder José, E-mail: ederguidelli@pg.ffclrp.usp.br; Baffa, Oswaldo [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP (Brazil)

    2014-03-15

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  14. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-01-01

    Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR). Methods: The authors produced alanine dosimeters containing several mass percentage of silver and gold nanoparticles. Nanoparticle sizes were measured by dynamic light scattering and by transmission electron microscopy. The authors determined the dose enhancement factor (DEF) theoretically, using a widely accepted method, and experimentally, using ESR spectroscopy. Results: The DEF is governed by nanoparticle concentration, size, and position in the alanine matrix. Samples containing gold nanoparticles afford a DEF higher than 1.0, because gold nanoparticle size is homogeneous for all gold concentrations utilized. For samples containing silver particles, the silver mass percentage governs the nanoparticles size, which, in turns, modifies nanoparticle position in the alanine dosimeters. In this sense, DEF decreases for dosimeters containing large and segregated particles. The influence of nanoparticle size-position is more noticeable for dosimeters irradiated with higher beam energies, and dosimeters containing large and segregated particles become less sensitive than pure alanine (DEF < 1). Conclusions: ESR dosimetry gives the DEF in a medium containing metal nanoparticles, although particle concentration, size, and position are closely related in the system. Because this is also the case as in many real systems of materials containing inorganic nanoparticles, ESR is a valuable tool for

  15. Model predictions and analysis of enhanced biological effectiveness at low dose rates

    International Nuclear Information System (INIS)

    Watt, D.E.; Sykes, C.E.; Younis, A.-R.S.

    1988-01-01

    A severe challenge to all models purporting to describe the biological effects of ionizing radiation has arisen with the discovery of two phenomena: the anomalous trend with dose rate of the frequency of neoplastic transformation of mammalian cells and the apparent excessive damaging power of electron-capture radionuclides when incorporated into cell nuclei. A new model is proposed which predicts and enables interpretation of these phenomena. Radiation effectiveness is found to be expressible absolutely in terms of the geometrical cross-sectional area of the radiosensitive sites. The duration of the irradiation, the mean free path for ionization, the influence of particles in the slowing-down spectrum perrtaining in the medium and two collective time factors determining the mean repair rate and the mean lifetime of unidentified reactive chemical species [pt

  16. Uniform random number generators

    Science.gov (United States)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  17. Restricting uniformly open surjections

    Czech Academy of Sciences Publication Activity Database

    Kania, Tomasz; Rmoutil, M.

    2017-01-01

    Roč. 355, č. 9 (2017), s. 925-928 ISSN 1631-073X Institutional support: RVO:67985840 Keywords : Banach space * uniform spaces Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.396, year: 2016 http://www.sciencedirect.com/science/article/pii/S1631073X17302261?via%3Dihub

  18. Uniformly irradiated polymer film

    International Nuclear Information System (INIS)

    Fowler, S.L.

    1979-01-01

    Irradiated film having substantial uniformity in the radiation dosage profile is produced by irradiating the film within a trough having lateral deflection blocks disposed adjacent the film edges for deflecting electrons toward the surface of the trough bottom for further deflecting the electrons toward the film edge

  19. SU-E-T-235: Monte Carlo Analysis of the Dose Enhancement in the Scalp of Patients Due to Titanium Plate Backscatter During Post-Operative Radiotherapy

    International Nuclear Information System (INIS)

    Hardin, M; Elson, H; Lamba, M; Wolf, E; Warnick, R

    2014-01-01

    Purpose: To quantify the clinically observed dose enhancement adjacent to cranial titanium fixation plates during post-operative radiotherapy. Methods: Irradiation of a titanium burr hole cover was simulated using Monte Carlo code MCNPX for a 6 MV photon spectrum to investigate backscatter dose enhancement due to increased production of secondary electrons within the titanium plate. The simulated plate was placed 3 mm deep in a water phantom, and dose deposition was tallied for 0.2 mm thick cells adjacent to the entrance and exit sides of the plate. These results were compared to a simulation excluding the presence of the titanium to calculate relative dose enhancement on the entrance and exit sides of the plate. To verify simulated results, two titanium burr hole covers (Synthes, Inc. and Biomet, Inc.) were irradiated with 6 MV photons in a solid water phantom containing GafChromic MD-55 film. The phantom was irradiated on a Varian 21EX linear accelerator at multiple gantry angles (0–180 degrees) to analyze the angular dependence of the backscattered radiation. Relative dose enhancement was quantified using computer software. Results: Monte Carlo simulations indicate a relative difference of 26.4% and 7.1% on the entrance and exit sides of the plate respectively. Film dosimetry results using a similar geometry indicate a relative difference of 13% and -10% on the entrance and exit sides of the plate respectively. Relative dose enhancement on the entrance side of the plate decreased with increasing gantry angle from 0 to 180 degrees. Conclusion: Film and simulation results demonstrate an increase in dose to structures immediately adjacent to cranial titanium fixation plates. Increased beam obliquity has shown to alleviate dose enhancement to some extent. These results are consistent with clinically observed effects

  20. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    International Nuclear Information System (INIS)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang; Wu Lijun

    2007-01-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of γ-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process ( G -methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy α-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose α-particle irradiation and nitric oxide generated by irradiation was also very important in this process

  1. High dose, heavy ion implantation into metals: the use of sacrificial surface layers to enhance retention

    International Nuclear Information System (INIS)

    Clapham, L.

    1994-01-01

    While of considerable interest for the production of metallic alloys, high dose, heavy ion implantation is highly problematical, since the process is limited by sputtering effects. Sputtering is less significant, however, for light target materials, such as C and Al. This paper summarizes studies involving the use of light materials (such as C and Al) which act as slowly sputtering ''sacrificial layers'' when deposited on metallic targets prior to heavy ion implantation. The use of C and Al sacrificial coatings has enabled implanted ion retentions of 100% to be obtained in a number of ion-metal target systems, where the retentions in uncoated samples were as low as 20%. Ion implantation invariably leads to mixing at the sacrificial layer-metal target interface. This mixing may be detrimental in certain systems, so it is useful to be able to minimize or remove this mixed region. To achieve this, a number of techniques have been investigated: (1) removal of the mixed region in the latter stages of the implant; (2) using a barrier layer or chemical effects to minimize mixing at the sacrificial layer-metal interface; (3) choosing a sacrificial layer material which forms a mixed region which has desirable properties. The results of these investigations, for a number of different ion-target systems, are outlined in this paper. (orig.)

  2. Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} luminescence whisker based on vapor-phase deposition: Facile synthesis, uniform morphology and enhanced luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian, E-mail: xujian@stu.xmu.edu.cn [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Hassan, Dhia A. [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Education for Pure Science, University of Basrah, 61004 (Iraq); Zeng, Renjie; Peng, Dongliang [Department of Materials Science and Engineering, Xiamen University, Xiamen 361005 (China); Fujian Key Lab of Advanced Special Material, Xiamen University, Xiamen 361005 (China); Key Laboratory of High Performance Ceramic Fibers, Ministry of Education, Xiamen 361005 (China)

    2015-11-15

    Highlights: • For the first time, it is possible to obtain Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} whisker. • The whiskers are smooth and uniform with L/D ratio over 50. • Durability and thermal stability of the whisker are enhanced. - Abstract: A high performance strontium silicate phosphor has been successfully synthesized though a facile vapor-phase deposition method. The product consists of single crystal whiskers which are smooth and uniform, and with a sectional equivalent diameter of around 5 μm; the aspect ratio is over 50 and no agglomeration can be observed. X-ray diffraction result confirmed that the crystal structure of the whisker was α’-Sr{sub 2}SiO{sub 4}. The exact chemical composition was Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} which was analyzed by energy dispersive spectrometer and inductively coupled plasma-mass spectrometer. The whisker shows broad green emission with peak at 523 nm ranging from 470 to 600 nm (excited at 370 nm). Compared with traditional Sr{sub 2}SiO{sub 4}:Eu phosphor, durability (at 85% humidity and 85 °C) and thermal stability of the whisker are obviously improved. Moreover, growth mechanism of the Sr{sub 1.98}Eu{sub 0.02}SiO{sub 4} whiskers is Vapor–Liquid–Solid. On a macro-scale, the product is still powder which makes it suitable for the current packaging process of WLEDs.

  3. Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP.

    Science.gov (United States)

    Ottaiano, Tatiana F; Andrade, Sheila S; de Oliveira, Cleide; Silva, Mariana C C; Buri, Marcus V; Juliano, Maria A; Girão, Manoel J B C; Sampaio, Misako U; Schmaier, Alvin H; Wlodawer, Alexander; Maffei, Francisco H A; Oliva, Maria Luiza V

    2017-04-01

    Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin α IIb β 3 through interactions with the KGD/KGE sequence motif in huPK. Integrin α IIb β 3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS 473 , ERK1/2, and p38 MAPK, and to Ca 2+ release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and α IIb β 3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity.

    Science.gov (United States)

    Das, Arabinda; McDonald, Daniel; Lowe, Stephen; Bredlau, Amy-Lee; Vanek, Kenneth; Patel, Sunil J; Cheshier, Samuel; Eskandari, Ramin

    2017-03-01

    Immunotherapy can be an effective treatment for pediatric medulloblastoma (MB) patients. However, major subpopulations do not respond to immunotherapy, due to the lack of antigenic mutations or the immune-evasive properties of MB cells. Clinical observations suggest that radiation therapy (RT) may expand the therapeutic reach of immunotherapy. The aim of the present investigation is to study the effect of low-dose X-ray radiation (LDXR, 1 Gy) on the functional immunological responses of MB cells (DAOY, D283, and D341). Induction of MB cell death was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Production of reactive oxygen species (ROS) was measured by fluorescent probes. Changes in the expression of  human leukocyte antigen (HLA) molecules and caspase-3 activities during treatment were analyzed using Western blotting and caspase-3 assay. Western blot analysis demonstrated that LDXR upregulated the expression of HLA class I and HLA II molecules by more than 20% compared with control and high-dose (12 Gy) groups in vitro. Several of these HLA subtypes, such as MAGE C1, CD137, and ICAM-1, have demonstrated upregulation. In addition, LDXR increases ROS production in association with phosphorylation of NF-κB and cell surface expression of mAb target molecules (HER2 and VEGF). These data suggest that a combined LDXR and mAb therapy can create a synergistic effect in vitro. These results suggest that LDXR modulates HLA molecules, leading to alterations in T-cell/tumor-cell interaction and enhancement of T-cell-mediated MB cell death. Also, low-dose radiotherapy combined with monoclonal antibody therapy may one day augment the standard treatment for MB, but more investigation is needed to prove its utility as a new therapeutic combination for MB patients.

  5. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses

    Energy Technology Data Exchange (ETDEWEB)

    Barzan, David; Maier, Patrick; Wenz, Frederik; Herskind, Carsten [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Zeller, W. Jens [Pharmacology of Cancer Treatment, German Cancer Research Center, Heidelberg (Germany)

    2010-02-15

    Background and Purpose: The transmembrane protein caveolin-1 (CAV1) is an essential component of caveolae, small membrane invaginations involved in vesicle formation. CAV1 plays a role in signal transduction, tumor suppression and oncogene transformation. Previous studies with CAV1 knockout mice and CAV1 knockdown in pancreatic tumor cells implicated CAV1 in mediating radioresistance. The aim of this work was to test the effect of CAV1 overexpression after irradiation in human cells lacking endogenous CAV1 expression. Material and Methods: Human CAV1 was overexpressed in lymphoblastoid TK6 cells (TK6-wt) using a eukaryotic expression plasmid, pCI-CAV1, or a lentiviral SIN (self-inactivating) vector, HR'SIN-CAV1. CAV1 expression was verified in TK6 cells with Western blot analysis or intracellular FACS (fluorescence-activated cell sorting) staining. The effect of CAV1 on proliferation kinetics after irradiation of TK6 cells was measured with a growth assay. Results: TK6-wt showed no detectable endogenous CAV1 expression. Lentivirally mediated transduction with HR'SIN-CAV1 (TK6-CAV1) resulted in a considerably stronger CAV1 expression in comparison to TK6 cells electroporated with pCI-CAV1. Intracellular FACS analysis showed that 90% of transduced cells expressed CAV1. CAV1 enhanced early proliferation of TK6 cells after irradiation with a dose of 2 Gy, whereas proliferation of unirradiated cells was not affected. CAV1 also protected cells after irradiation with 4 Gy. This radioprotective effect was supported by a reduction of radiation-induced apoptosis. Conclusion: A model system for expression of exogenous CAV1 by stable lentiviral transduction of TK6 cells was established. Functional assays demonstrated enhanced early proliferation by CAV1 expression in TK6 cells after irradiation with clinically relevant doses supporting the role of CAV1 as a prosurvival factor. (orig.)

  6. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses

    International Nuclear Information System (INIS)

    Barzan, David; Maier, Patrick; Wenz, Frederik; Herskind, Carsten; Zeller, W. Jens

    2010-01-01

    Background and Purpose: The transmembrane protein caveolin-1 (CAV1) is an essential component of caveolae, small membrane invaginations involved in vesicle formation. CAV1 plays a role in signal transduction, tumor suppression and oncogene transformation. Previous studies with CAV1 knockout mice and CAV1 knockdown in pancreatic tumor cells implicated CAV1 in mediating radioresistance. The aim of this work was to test the effect of CAV1 overexpression after irradiation in human cells lacking endogenous CAV1 expression. Material and Methods: Human CAV1 was overexpressed in lymphoblastoid TK6 cells (TK6-wt) using a eukaryotic expression plasmid, pCI-CAV1, or a lentiviral SIN (self-inactivating) vector, HR'SIN-CAV1. CAV1 expression was verified in TK6 cells with Western blot analysis or intracellular FACS (fluorescence-activated cell sorting) staining. The effect of CAV1 on proliferation kinetics after irradiation of TK6 cells was measured with a growth assay. Results: TK6-wt showed no detectable endogenous CAV1 expression. Lentivirally mediated transduction with HR'SIN-CAV1 (TK6-CAV1) resulted in a considerably stronger CAV1 expression in comparison to TK6 cells electroporated with pCI-CAV1. Intracellular FACS analysis showed that 90% of transduced cells expressed CAV1. CAV1 enhanced early proliferation of TK6 cells after irradiation with a dose of 2 Gy, whereas proliferation of unirradiated cells was not affected. CAV1 also protected cells after irradiation with 4 Gy. This radioprotective effect was supported by a reduction of radiation-induced apoptosis. Conclusion: A model system for expression of exogenous CAV1 by stable lentiviral transduction of TK6 cells was established. Functional assays demonstrated enhanced early proliferation by CAV1 expression in TK6 cells after irradiation with clinically relevant doses supporting the role of CAV1 as a prosurvival factor. (orig.)

  7. Elevated sodium chloride concentrations enhance the bystander effects induced by low dose alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han Wei; Zhu Lingyan; Jiang Erkang; Wang Jun; Chen Shaopeng; Bao Linzhi; Zhao Ye; Xu An; Yu Zengliang [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: ljw@ipp.ac.cn

    2007-11-01

    Previous studies have shown that high NaCl can be genotoxic, either alone or combined with irradiation. However, little is known about the relationship between environmental NaCl at elevated conditions and radiation-induced bystander effects (RIBE). RIBE, which has been considered as non-targeted bystander responses, has been demonstrated to occur widely in various cell lines. In the present study, RIBE under the elevated NaCl culture condition was assessed in AG 1522 cells by both the induction of {gamma}-H2AX, a reliable marker of DNA double-strand break (DSB) for the early process (<1 h post irradiation), and the generation of micronuclei (MN), a sensitive marker for relative long process of RIBE. Our results showed that in the absence of irradiation, NaCl at elevated concentration such as 8.0, 9.0 and 10.0 g/L did not significantly increase the frequency of {gamma}-H2AX foci-positive cells and the number of foci per positive cell comparing with that NaCl at a normal concentration (6.8 g/L). However, with 0.2 cGy {alpha}-particle irradiation, the induced fraction of {gamma}-H2AX foci-positive cells and the number of induced {gamma}-H2AX foci per positive cell were significantly increased in both irradiated and adjacent non-irradiated regions. Similarly, the induction of MN by 0.2 cGy {alpha}-particle irradiation also increased with the elevated NaCl concentrations. With N{sup G}-methyl-L-arginine, an inhibitor of nitric oxide synthase, the induced fraction of foci-positive cells was effectively inhibited both in 0.2 cGy {alpha}-particle irradiated and adjacent non-irradiated regions under either normal or elevated NaCl conditions. These results suggested that the cultures with elevated NaCl medium magnified the damage effects induced by the low dose {alpha}-particle irradiation and nitric oxide generated by irradiation was also very important in this process.

  8. Do uniform tangential interfacial stresses enhance adhesion?

    Science.gov (United States)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  9. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  10. Women in service uniforms

    OpenAIRE

    Hanna Karaszewska; Maciej Muskała

    2012-01-01

    The article discusses the problems of women who work in the uniformed services with the particular emphasis on the performing of the occupation of the prison service. It presents the legal issues relating to equal treatment of men and women in the workplace, formal factors influencing their employment, the status of women in prison, and the problems of their conducting in the professional role. The article also presents the results of research conducted in Poland and all over the world, on th...

  11. Ultra low-dose of gadobenate dimeglumine for late gadolinium enhancement (LGE) imaging in acute myocardial infarction: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Galea, Nicola, E-mail: nicola.galea@uniroma1.it [Department of Radiological Sciences, Pathology and Oncology, Policlinico Umberto I, “Sapienza” University of Rome, Viale Regina Elena 315, 00161 Rome (Italy); Francone, Marco, E-mail: marco.francone@uniroma1.it [Department of Radiological Sciences, Pathology and Oncology, Policlinico Umberto I, “Sapienza” University of Rome, Viale Regina Elena 315, 00161 Rome (Italy); Zaccagna, Fulvio, E-mail: f.zaccagna@gmail.com [Department of Radiological Sciences, Pathology and Oncology, Policlinico Umberto I, “Sapienza” University of Rome, Viale Regina Elena 315, 00161 Rome (Italy); Ciolina, Federica, E-mail: federica.ciolina@gmail.com [Department of Radiological Sciences, Pathology and Oncology, Policlinico Umberto I, “Sapienza” University of Rome, Viale Regina Elena 315, 00161 Rome (Italy); Cannata, David, E-mail: davidrum@yahoo.it [Department of Radiological Sciences, Pathology and Oncology, Policlinico Umberto I, “Sapienza” University of Rome, Viale Regina Elena 315, 00161 Rome (Italy); Algeri, Emanuela, E-mail: emanuela_algeri@yahoo.com [Service de Radiologie et Imagerie Cardiovasculaire, Hôpital Cardiologique, Centre Hospitalier Régional et Universitaire de Lille, Avenue Oscar Lambret, 59037 Lille Cedex (France); Agati, Luciano, E-mail: luciano.agati@uniroma1.it [Department of Cardiovascular, Respiratory, Nephrologic, Anestesiologic and Geriatric Sciences, Sapienza University of Rome, Policlinico Umberto I, Via del Policlinico 165, 00161 Rome, Rome (Italy); and others

    2014-12-15

    Highlights: • We compared two gadolinium dose for late enhancement imaging in acute infarction. • We evaluated image quality both qualitatively and quantitatively. • Low dose regimen is feasible and provides better image quality at 5–10 min delay. • Standard dose warrants better image quality and should be routinely preferred. - Abstract: Purpose: To assess the feasibility of using an ultra-low dose (0.05 mmol/kg of body weight [BW]) of high relaxivity contrast agent for late gadolinium enhancement (LGE) imaging in patients with acute myocardial infarction (AMI). Materials and methods: 17 consecutive patients (mean age, 60.1 ± 10.3 years) with ST-segment elevation AMI underwent two randomized cardiac magnetic resonance studies (exam intervals between 24 and 48 h) on a 1.5 T unit during the first week after the event using gadobenate dimeglumine (Gd-BOPTA) at the dose of 0.1 mmol/kg BW (standard dose or SD group) and 0.05 mmol/kg BW (half dose or HD group). Image quality was qualitatively assessed. Quantitative analysis of LGE were performed by measuring signal intensity (SI), signal-to-noise ratio (SNR) in the infarcted myocardium (IM), non-infarcted myocardium (N-IM) and left ventricular cavity (LVC) in images acquired at 1, 3, 5, 10, 15 and 20 min after administration of Gd-BOPTA using both contrast media protocol. Contrast-to-noise ratio (CNR) between IM and N-IM (CNR IM/N-IM) and between IM and LVC (CNR IM/LVC) were also quantified for each time point. Moreover the extent of infarcted myocardium was measured. Results: 102 LGE images were evaluated for each dose group. Quality score was significantly higher for SD at 1, 15 and 20 min (0.002 < p < 0.046) and for HD at 5 min (p = 0.013). SNR has been higher in the SD group compared to the HD group even though not statistically significant at any time-point for both IM (SD vs. HD: 87.7 ± 73 vs. 65 ± 66; 0.15 < p < 0.38) and N-IM (SD vs. HD: 22 ± 61 vs. 9.9 ± 6.5; 0.09 < p < 0.43). LVC SNR was

  12. Evaluation of radiation dose in chest scan with enhanced dual-source computed tomography in children with congenital heart disease

    International Nuclear Information System (INIS)

    Hou Zhihui; Lu Bin; Tang Xiang; Han Lei

    2011-01-01

    Objective: To evaluate the radiation dose from enhanced dual-source computed Tomography (DSCT) scan on children with congenital heart disease (CHD). Methods: Seventy children with CHD, age from 1 month to 8 years old, were scanned with enhanced DSCT. Children were divided by age into 5 years old group. The differences among three groups were tested by F test. Then, the SNK test was used to compare the difference between each group. Multiple linear regression analysis was used to test the relationship of dose length product (DLP) with the age, weight, voltage, current, pitch and scan sheet. Results: The average value of DLP was (144.46± 74.07) mGy·cm for all the 70 cases, and that of effective does (ED) was (4.68±2.34) mSv. There were significant differences of DLP among the 3 groups [ 5 years (208.00±73.87) mGy · cm, F=8.26, P=0.0009]. The SNK test showed statistical differences of DLP between 5 years old group (q=5.21, 6.52, P=0.009, 0.004). The difference of DLP between 1-5 years old group and > 5 years old group did not reach significant (q=0.28, P=0.48). The differences of ED was not statistically significant among the three groups [ 5 years (3.74±1.33) mSv, F=0.54, P=0.59]. DLP was positively correlated with age (4.3 years, r=0.54186, P=0.0008), weight (12.1 kg, r=0.56371, P=0.0004), voltage [(95.48±6.99) kV, r=0.63269, P<0.01], current [(138.55±40.67) mA, r=0.79608, P< 0.0001] and scan sheet (236.10±46.51, r=0.72192, P<0.01). DLP was negative correlated with pitch (0.48±0.03, r=-0.46693, P=0.0047). Conclusion: Higher DLP was observed in children over 1 year old under enhanced DSCT scan, but ED was not statistically significant among the three groups due to the higher K value in the children under 1 year old. (authors)

  13. Solar Variability and the Near-Earth Environment: Mining Enhanced Low Dose Rate Sensitivity Data From the Microelectronics and Photonics Test Bed Space Experiment

    Science.gov (United States)

    Turflinger, T.; Schmeichel, W.; Krieg, J.; Titus, J.; Campbell, A.; Reeves, M.; Marshall (P.); Hardage, Donna (Technical Monitor)

    2004-01-01

    This effort is a detailed analysis of existing microelectronics and photonics test bed satellite data from one experiment, the bipolar test board, looking to improve our understanding of the enhanced low dose rate sensitivity (ELDRS) phenomenon. Over the past several years, extensive total dose irradiations of bipolar devices have demonstrated that many of these devices exhibited ELDRS. In sensitive bipolar transistors, ELDRS produced enhanced degradation of base current, resulting in enhanced gain degradation at dose rates 1 rd(Si)/s. This Technical Publication provides updated information about the test devices, the in-flight experiment, and both flight-and ground-based observations. Flight data are presented for the past 5 yr of the mission. These data are compared to ground-based data taken on devices from the same date code lots. Information about temperature fluctuations, power shutdowns, and other variables encountered during the space flight are documented.

  14. Kinetic characterization of glucose aerodehydrogenase from Aspergillus niger EMS-150-F after optimizing the dose of mutagen for enhanced production of enzyme

    OpenAIRE

    Umbreen, Huma; Zia, Muhammad Anjum; Rasul, Samreen

    2013-01-01

    In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS) that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield ...

  15. Time and spatial heat transfer performance around an isothermally heated sphere placed in a uniform, downwardly directed flow (in relation to the enhancement of latent heat storage rate in a spherical capsule)

    International Nuclear Information System (INIS)

    Koizumi, H.

    2004-01-01

    The aim of this study is to reveal the temporal and spatial heat transfer performance of an isothermally heated sphere placed in a uniform, downwardly directed flow using a micro-foil heat flow sensor (HFS). A HFS, whose response time is about 0.02 s, was pasted on the surface of a heated copper sphere. Experiments were carried out using air with a Grashof number of 3.3 x 10 5 and with several Reynolds numbers (Re) up to 1800. Three flow patterns appeared: a chaotic flow at Re<240; a two-dimensional steady separated flow at 240 ≤ Re<500, and a three-dimensional unsteady separated flow at Re ≥ 500. In addition, the instantaneous and time-averaged heat transfer performance around the sphere in each of the three regions was clarified. Next, enhancement of the latent heat storage rate of a solid phase change material (PCM) in a spherical capsule was performed. The flow around the spherical capsule, in which the solid PCM was filled and placed in a heated, upwardly directed flow, is the approximate adverse flow phenomenon around the heated sphere which was placed in a downwardly directed flow. In other words, the buoyant flow and the forced flow are in the opposite directions in these two cases. Tests of latent heat storage were run for two Reynolds numbers which represented different flow characteristics in the heat transfer experiments, Re=150 and 1800. Furthermore, copper plates were inserted into the solid PCM, of which thermal conductivity was considerably low, to enhance the latent heat storage rate for the two Reynolds number flows

  16. Estimation of dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiothearpy - A phantom dosimetric study with radiochromic film

    Directory of Open Access Journals (Sweden)

    Rajesh Ashok Kinhikar

    2014-01-01

    Full Text Available The objective of this study was to investigate the dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiotherapy. The influence of titanium-mandibular plate with the screws on radiation dose was tested on four real bones from mandible with the metal and screws fixed. Radiochromic films were used for dosimetry. The bone and metal were inserted through the film at the center symmetrically. This was then placed in a small jig (7 cm × 7 cm × 10 cm to hold the film vertically straight. The polymer granules (tissue-equivalent were placed around the film for homogeneous scatter medium. The film was irradiated with 6 MV X-rays for 200 monitor units in Trilogy linear accelerator for 10 cm × 10 cm field size with source to axis distance of 100 cm at 5 cm. A single film was also irradiated without any bone and metal interface for reference data. The absolute dose and the vertical dose profile were measured from the film. There was 10% dose enhancement due to the backscatter radiation just adjacent to the metal-bone interface for all the materials. The extent of the backscatter effect was up to 4 mm. There is significant higher dose enhancement in the soft tissue/skin due to the backscatter radiation from the metallic components in the treatment region.

  17. Women in service uniforms

    Directory of Open Access Journals (Sweden)

    Hanna Karaszewska

    2012-12-01

    Full Text Available The article discusses the problems of women who work in the uniformed services with the particular emphasis on the performing of the occupation of the prison service. It presents the legal issues relating to equal treatment of men and women in the workplace, formal factors influencing their employment, the status of women in prison, and the problems of their conducting in the professional role. The article also presents the results of research conducted in Poland and all over the world, on the functioning of women in prison and their relations with officers of the Prison Service, as well as with inmates.

  18. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  19. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile

    2013-05-01

    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  20. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S Jr

    2011-01-01

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual

  1. Low dose radiation enhancing inhibitory effect of tumor-associated antigen peptide extract on H-22 hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuyue, Sun; Jingyi, Fu; Yong, Zhao [Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Inst. of Zoology, Chinese Academy of Sciences, Beijing (China); Jianxiang, Liu; Zhibo, Fu; Xiuyi, Li; Shuzheng, Liu; Shouliang, Gong

    2005-06-15

    Objective: To determine whether there is synergically inhibitory effect of low dose radiation (LDR) and tumor-associated antigen peptides (TAP) on tumor growth in vivo, which may provide experimental basis for potential clinical co-application of these two approaches to treat cancers. Methods: TAP extract (MW {<=}3x10{sup 6}) from tumor cell membrane was prepared with mild acid elution method , as reported. The mice were whole-bodily irradiated with 75 mGy X-rays 12 h before immunization with TAP extract. After immunization , the levels of CD3, CD69, TCR{alpha}{beta} cells and T cell subsets in the spleen were detected with FACS. The tumor growth rate was estimated, and the responses to Con A, the cytokine productions and CTL activities of splenocytes were also analyzed 7 d after immunization with TAP. Results: The present experimental results showed that the TAP extract significantly reduced the incidence of the transplanted tumor, delayed the average appearing time and decreased the growth speed of the tumor. The response of splenocytes from mice immunized with TAP extract to Con A increased significantly compared with that in the control group. Irradiation with 75 mGy X-rays 12 h before immunization further enhanced the inhibitory effect of TAP extract on tumor growth, and increased the percentage of CD8{sup +} splenocytes. Conclusion: These results suggest that whole-body irradiation with LDR exerts a synergic inhibitory effect with TAP on tumor growth in vivo, in which enhanced cellular immune responses may be involved. (authors)

  2. Should School Nurses Wear Uniforms?

    Science.gov (United States)

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  3. Plume and Dose Modeling Performed to Assess Waste Management Enhancements Associated with Envirocare's Decision to Purchase of an Engineered Rail Rollover Facility Enclosure

    International Nuclear Information System (INIS)

    Rogers, T.; Clayman, B.

    2003-01-01

    This paper describes the modeling performed on a proposed enclosure for the existing railcar rollover facility located in Clive, Utah at a radioactive waste disposal site owned and operated by Envirocare of Utah, Inc. (Envirocare). The dose and plume modeling information was used as a tool to justify the decision to make the capital purchase and realize the modeled performance enhancements

  4. Oesteosarcomagenic doses of radium (224Ra) and infectious endogenous retroviruses enhance proliferation and osteogenic differentiation of skeletal tissue dofferentiating in vitro

    International Nuclear Information System (INIS)

    Schmidt, J.; Heermeier, K.; Linzner, U.; Luz, A.; Silbermann, M.; Livne, E.; Erfle, V.

    1994-01-01

    Cartilage tissue from embryonic mice which undergoes osteogenic differentiation during in vitro cultivation was used to study the effect of osteosarcomagenic doses of α-irradiation and bone-tumor-inducing retroviruses on proliferation and phenotypic differentiation of skeletal cells in a defined tissue culture model. Irradiated mandibular condyles showed dose-dependent enhancement of cell proliferation at day 7 of the culture and increased osteogenic differentiation at day 14. Maximal effects were found with 7.4 Bq/ml of 224 Ra-labeled medium. Doses of 740 and 7400 Bq/ml of 224 Ra-labeled medium induced increasing cell death. Retrovirus infection enhanced osteogenic differentiation and extended the viability of irradiated cells. After transplantation none of the treated tissues developed tumors in syngeneic mice. (orig.)

  5. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, S; Kushima, N; Katsura, K; Tanabe, S; Hayakawa, T; Sakai, H; Yamada, T; Takahashi, H; Abe, E; Wada, S; Aoyama, H [Niigata University, Niigata (Japan)

    2016-06-15

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cm × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.

  6. 210Po, 210Pb, 226Ra in aquatic ecosystems and polders, anthropogenic sources, distribution and enhanced radiation doses in The Netherlands

    International Nuclear Information System (INIS)

    Koester, H.W.; Marwitz, P.A.; Berger, G.W.; Weers, A.W. van; Hagel, P.; Nieuwenhuize, J.

    1992-01-01

    Surveys of Dutch waters show that the Oosterschelde estuary and regular fresh waters have the lowest levels of 210 Po, 210 Pb and 226 Ra. Elsewhere effluents from phosphates and iron ore processing industries cause nearby enhancements. At a distance of 50-100 km, enhancements of 210 Po in edible parts of mussels and shrimps are of the order of 100 Bq.kg -1 dry weight. Estimates indicate that high consumption rates of seafood from specific waters may result in dose enhancements of 0.1-0.3 mSv.y -1 which probably affect a group of less than 1000 anglers and an unknown number of frequent mussel and shrimp consumers. Harbour sludge, with probably enhanced activity levels due to the phospho-gypsum effluents, has been used as landfill in polders around Rotterdam. Here enhanced doses of 0.3-1 mSv.y -1 may occur from consumption of local livestock produce and from inhalation of enhanced indoor radon. Further research is indicated to obtain information on effluent emissions, their associated environmental enhancements and risks. (author)

  7. [sup 210]Po, [sup 210]Pb, [sup 226]Ra in aquatic ecosystems and polders, anthropogenic sources, distribution and enhanced radiation doses in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Koester, H W; Marwitz, P A [National Inst. of Public Health and Environmental Protection (RIVM), Bilthoven (Netherlands); Berger, G W [Netherlands Inst. for Sea Research, Den Burg (Netherlands); Weers, A.W. van [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Hagel, P [National Inst. of Fisheries Research (RIVO-DLO), Ijmuiden (Netherlands); Nieuwenhuize, J [Centre for Estuarine and Coastal Ecology, Yerseke (Netherlands)

    1992-01-01

    Surveys of Dutch waters show that the Oosterschelde estuary and regular fresh waters have the lowest levels of [sup 210]Po, [sup 210]Pb and [sup 226]Ra. Elsewhere effluents from phosphates and iron ore processing industries cause nearby enhancements. At a distance of 50-100 km, enhancements of [sup 210]Po in edible parts of mussels and shrimps are of the order of 100 Bq.kg[sup -1] dry weight. Estimates indicate that high consumption rates of seafood from specific waters may result in dose enhancements of 0.1-0.3 mSv.y[sup -1] which probably affect a group of less than 1000 anglers and an unknown number of frequent mussel and shrimp consumers. Harbour sludge, with probably enhanced activity levels due to the phospho-gypsum effluents, has been used as landfill in polders around Rotterdam. Here enhanced doses of 0.3-1 mSv.y[sup -1] may occur from consumption of local livestock produce and from inhalation of enhanced indoor radon. Further research is indicated to obtain information on effluent emissions, their associated environmental enhancements and risks. (author).

  8. Effect of three different doses of arginine enhanced enteral nutrition on nutritional status and outcomes in well nourished postsurgical cancer patients: a randomized single blinded prospective trial.

    Science.gov (United States)

    De Luis, D A; Izaola, O; Terroba, M C; Cuellar, L; Ventosa, M; Martin, T

    2015-01-01

    Patients with head and neck cancer undergoing surgery have a high occurrence of postoperative complications. The aim of our study was to investigate whether postoperative nutrition of head and neck cancer patients, using an enhanced enteral formula with three different doses of arginine could improve nutritional variables as well as clinical outcome, depending of arginine dose. A population of 84 patients with oral and laryngeal cancer was enrolled. At surgery patients were randomly assigned to three different treatment groups, each one containing at less 28 patients. Group I (28 patients) received an enteral diet supplements with a low physiological dose of arginine (5.7 g per day), group II (28 patients) received an isocaloric, isonitrogenous enteral formula with a medium dose of arginine (12.3 g per day) and group III (28 patients) received an isocaloric, isonitrogenous enteral formula with a high dose of arginine (18.9 g per day). The length of postoperative stay had a trend to be better with high dose of arginine received (31.9 ± 17.2 days in group I vs 27.8 ± 15.2 days in group II vs 24.8 ± 18.3 days in group III: p = 0.034). No differences were detected in postoperative infections complications and diarrhea. Fistula was less frequent in groups II and III than I (10.7% group I vs 3.6% group II vs 3.6% group III: p = 0.033), The length of postoperative stay had a trend to be better with high dose of arginine received (31.9 ± 17.2 days in group I vs 27.8 ± 15.2 days in group II vs 24.8 ± 18.3 days in group III: p = 0.034). Our results suggest that these patients could benefit from a high dose of arginine enhanced enteral formula to decrease length of hospital stay and fistula wound complications.

  9. Radiochromic film as a radiotherapy surface-dose detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; Wollongong Univ., NSW; Mathur, J.N.

    1996-01-01

    Radiochromic film is shown to be a useful surface-dose detector for radiotherapy x-ray beams. Central-axis percentage surface-dose results as measured by Gafchromic film for a 6 MVp x-ray beam produced by a Varian 2100C Linac at 100 cm SSD are 16%, 25%, 35%, 41% for 10, 20, 30 and 40 cm square field sizes, respectively. Using a simple, uniform light source and a CCD camera connected to an image analysis system, quantitative 3D surface doses are accurately attainable in real time as either numerical data, a black-and-white image or a colour-enhanced image. (Author)

  10. Assessment indices for uniform and non-uniform thermal environments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Different assessment indices for thermal environments were compared and selected for proper assessment of indoor thermal environments.30 subjects reported their overall thermal sensation,thermal comfort,and thermal acceptability in uniform and non-uniform conditions.The results show that these three assessment indices provide equivalent evaluations in uniform environments.However,overall thermal sensation differs from the other two indices and cannot be used as a proper index for the evaluation of non-uniform environments.The relationship between the percentage and the mean vote for each index is established.

  11. A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis.

    Science.gov (United States)

    Daftarian, Pirouz M; Stone, Geoffrey W; Kovalski, Leticia; Kumar, Manoj; Vosoughi, Aram; Urbieta, Maitee; Blackwelder, Pat; Dikici, Emre; Serafini, Paolo; Duffort, Stephanie; Boodoo, Richard; Rodríguez-Cortés, Alhelí; Lemmon, Vance; Deo, Sapna; Alberola, Jordi; Perez, Victor L; Daunert, Sylvia; Ager, Arba L

    2013-12-01

    Amphotericin B (AmB), the most effective drug against leishmaniasis, has serious toxicity. As Leishmania species are obligate intracellular parasites of antigen presenting cells (APC), an immunopotentiating APC-specific AmB nanocarrier would be ideally suited to reduce the drug dosage and regimen requirements in leishmaniasis treatment. Here, we report a nanocarrier that results in effective treatment shortening of cutaneous leishmaniasis in a mouse model, while also enhancing L. major specific T-cell immune responses in the infected host. We used a Pan-DR-binding epitope (PADRE)-derivatized-dendrimer (PDD), complexed with liposomal amphotericin B (LAmB) in an L. major mouse model and analyzed the therapeutic efficacy of low-dose PDD/LAmB vs full dose LAmB. PDD was shown to escort LAmB to APCs in vivo, enhanced the drug efficacy by 83% and drug APC targeting by 10-fold and significantly reduced parasite burden and toxicity. Fortuitously, the PDD immunopotentiating effect significantly enhanced parasite-specific T-cell responses in immunocompetent infected mice. PDD reduced the effective dose and toxicity of LAmB and resulted in elicitation of strong parasite specific T-cell responses. A reduced effective therapeutic dose was achieved by selective LAmB delivery to APC, bypassing bystander cells, reducing toxicity and inducing antiparasite immunity.

  12. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.

    Science.gov (United States)

    Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart

    2017-11-15

    In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. SU-G-TeP3-05: In Vitro Demonstration of Endothelial Dose Enhancement Due to Gold Nanoparticles During Low-Voltage Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yasmin-Karim, S; Makrigiorgos, GM [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Moreau, M; Ngwa, W [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Kumar, R [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Northeastern University, Boston, MA (United States); Hanlon, J; Arnoldussen, M [Oraya Therapeutics Inc., Newark, CA (United States); Hempstead, J; Celli, J [University of Massachusetts Boston, Boston, MA (United States)

    2016-06-15

    Purpose: Oraya Therapy uses low-voltage, stereotactic, highly targeted X-rays for the treatment of wet age-related macular degeneration (AMD) — offering a new option for patients worldwide. Neovascular endothelial cells play a crucial role in the pathogenesis of this disease. This in-vitro study investigates the potential of gold nanoparticles (GNP) to enhance endothelial cell damage during low-voltage radiotherapy towards potential applications in the treatment of wet-AMD. Methods: Primary human umbilical cord vein endothelium cells (HUVEC) were treated with 1.4 nm sized GNPs for 24 hrs and then irradiated with variable X-ray doses using an Oraya therapy system (100 kVp) or a Small Animal Radiation and Research platform (SARRP) at other beam qualities (up to 220 kVp). Radio-sensitization was assessed by clonogenic assays. Variable concentrations of GNPs (0.05 mg/ml, 0.1 mg/ml, 0.25 mg/ml, 0.5 mg/ml, and 1 mg/ml) where employed. The dose enhancement factor (DEF) was calculated as the ratio of radiation doses required to give the same biological effect (survival factor, SF) with and without GNPs. Results: Preliminary results show DEFs of up to 2.62 for the different combinations of x-ray doses and GNP concentrations and beam qualities. In general the DEF increased with increase in GNP concentration. However, for high doses the effect of GNP becomes less apparent likely due to already high cell kill by the radiation alone. Conclusion: The findings suggest that targeted GNPs can play a significant synergistic role in enhancing stereotactic radiosurgery for wet AMD. The results also provide impetus for ongoing studies to find the optimal synergy between the doses or beam energies and GNPs concentration. This will benefit in-vivo studies towards development of nanoparticle-aided radiotherapy for treatment of wet-AMD and potentially ocular cancers.

  14. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  15. Enhanced Engraftment of a Very Low-Dose Cord Blood Unit in an Adult Haemopoietic Transplant by Addition of Six Mismatched Viable Cord Units

    Directory of Open Access Journals (Sweden)

    Stephen J. Proctor

    2010-01-01

    , supported by six mismatched cord blood units (one unit per 10 kg recipient weight. No adverse reaction occurred following the infusion of mismatched units and engraftment of the suboptimal-dose matched unit occurred rapidly, with no molecular evidence of engraftment of mismatched cords. Early molecular remission of ALL was demonstrated using a novel PCR for a mitochondrial DNA mutation in the leukaemic clone. The cell dose of the matched cord was well below that recommended to engraft a 70 kg recipient. We suggest that a factor or factors in the mismatched cords enhanced/supported engraftment of the matched cord.

  16. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  17. Final Progress Report submitted via the DOE Energy Link (E-Link) in June 2009 [Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovitz, Michael S. [Univ. of Quebec (Canada); Cote, Jean [Univ. of Quebec (Canada)

    2009-10-09

    The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. The results of the successful SGMIP multi-model ensemble simulations of the U.S. climate are available at the SGMIP web site (http://essic.umd.edu/~foxrab/sgmip.html) and through the link to the WMO/WCRP/WGNE web site: http://collaboration.cmc.ec.gc.ca/science/wgne. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and

  18. UVIS Flat Field Uniformity

    Science.gov (United States)

    Quijano, Jessica Kim

    2009-07-01

    The stability and uniformity of the low-frequency flat fields {L-flat} of the UVIS detector will be assessed by using multiple-pointing observations of the globular clusters 47 Tucanae {NGC104} and Omega Centauri {NGC5139}, thus imaging moderately dense stellar fields. By placing the same star over different portions of the detector and measuring relative changes in its brightness, it will be possible to determine local variations in the response of the UVIS detector. Based on previous experience with STIS and ACS, it is deemed that a total of 9 different pointings will suffice to provide adequate characterization of the flat field stability in any given band. For each filter to be tested, the baseline consists of 9 pointings in a 3X3 box pattern with dither steps of about 25% of the FOV, or 40.5", in either the x or y direction {useful also for CTE measurements, if needed in the future}. During SMOV, the complement of filters to be tested is limited to the following 6 filters: F225W, F275W, F336W, for Omega Cen, and F438W, F606W, and F814W for 47 Tuc. Three long exposures for each target are arranged such that the initial dither position is observed with the appropriate filters for that target within one orbit at a single pointing, so that filter-to-filter differences in the observed star positions can be checked. In addition to the 9 baseline exposures, two sets of short exposures will be taken:a} one short exposure will be taken of OmegaCen with each of the visible filters {F438W, F606W and F814W} in order to check the geometric distortion solution to be obtained with the data from proposal 11444;b} for each target, a single short exposure will be taken with each filter to facilitate the study of the PSF as a function of position on the detector by providing unsaturated images of sparsely-spaced bright stars.This proposal corresponds to Activity Description ID WF39. It should execute only after the following proposal has executed:WF21 - 11434

  19. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C; Parsons, D [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Robar, J; Kelly, R [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Dept of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Nova Scotia Cancer Centre, Halifax, NS (Canada)

    2014-06-15

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC.

  20. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Parsons, C; Parsons, D; Robar, J; Kelly, R

    2014-01-01

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC

  1. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement.

    Science.gov (United States)

    Beik, Jaber; Jafariyan, Maryam; Montazerabadi, Alireza; Ghadimi-Daresajini, Ali; Tarighi, Parastoo; Mahmoudabadi, Alireza; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2017-12-12

    X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.

  2. School Uniforms: Esprit de Corps.

    Science.gov (United States)

    Ryan, Rosemary P.; Ryan, Thomas E.

    1998-01-01

    The benefits of school uniforms far outweigh their short-term costs. School uniforms not only keep students safe, but they increase their self-esteem, promote a more positive attitude toward school, lead to improved student behavior, and help blur social-class distinctions. Students are allowed to wear their own political or religious messages,…

  3. Uniform Single Valued Neutrosophic Graphs

    Directory of Open Access Journals (Sweden)

    S. Broumi

    2017-09-01

    Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.

  4. Comments on Beckmann's Uniform Reducts

    OpenAIRE

    Cook, Stephen

    2006-01-01

    Arnold Beckmann defined the uniform reduct of a propositional proof system f to be the set of those bounded arithmetical formulas whose propositional translations have polynomial size f-proofs. We prove that the uniform reduct of f + Extended Frege consists of all true bounded arithmetical formulas iff f + Extended Frege simulates every proof system.

  5. MO-FG-CAMPUS-IeP1-02: Dose Reduction in Contrast-Enhanced Digital Mammography Using a Photon-Counting Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Kang, S; Eom, J [Konyang University, Daejeon (Korea, Republic of)

    2016-06-15

    Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions included in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.

  6. Low-tube-voltage selection for non-contrast-enhanced CT: Comparison of the radiation dose in pediatric and adult phantoms.

    Science.gov (United States)

    Shimonobo, Toshiaki; Funama, Yoshinori; Utsunomiya, Daisuke; Nakaura, Takeshi; Oda, Seitaro; Kiguchi, Masao; Masuda, Takanori; Sakabe, Daisuke; Yamashita, Yasuyuki; Awai, Kazuo

    2016-01-01

    We used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT. Using a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors. The mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. High-Dose Estradiol-Replacement Therapy Enhances the Renal Vascular Response to Angiotensin II via an AT2-Receptor Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Tahereh Safari

    2015-01-01

    Full Text Available Physiological levels of estrogen appear to enhance angiotensin type 2 receptor- (AT2R- mediated vasodilatation. However, the effects of supraphysiological levels of estrogen, analogous to those achieved with high-dose estrogen replacement therapy in postmenopausal women, remain unknown. Therefore, we pretreated ovariectomized rats with a relatively high dose of estrogen (0.5 mg/kg/week for two weeks. Subsequently, renal hemodynamic responses to intravenous angiotensin II (Ang II, 30–300 ng/kg/min were tested under anesthesia, while renal perfusion pressure was held constant. The role of AT2R was examined by pretreating groups of rats with PD123319 or its vehicle. Renal blood flow (RBF decreased in a dose-related manner in response to Ang II. Responses to Ang II were enhanced by pretreatment with estradiol. For example, at 300 ng kg−1 min−1, Ang II reduced RBF by 45.7±1.9% in estradiol-treated rats but only by 27.3±5.1% in vehicle-treated rats. Pretreatment with PD123319 blunted the response of RBF to Ang II in estradiol-treated rats, so that reductions in RBF were similar to those in rats not treated with estradiol. We conclude that supraphysiological levels of estrogen promote AT2R-mediated renal vasoconstriction. This mechanism could potentially contribute to the increased risk of cardiovascular disease associated with hormone replacement therapy using high-dose estrogen.

  8. Dose enhancement in the neighborhood of foreign bodies of the skin due to electron irradiation. A Monte-Carlo study using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Bernd [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (DE). Inst. of Radiation Research (ISF)

    2011-07-01

    Foreign bodies penetrate into the skin in the region of the hand very frequently. If they are amicrobic, they can get stuck in the skin and do no harm to the body in normal case. However, when handling with a radioactive material, like an Sr-90/Y-90 syringe for example, a stuck foreign body in a finger can lead to an enhanced absorbed dose in the neighbourhood of a few hundredths of millimetre of a foreign body, which just is in magnitude of a body cell. In the following, we shall investigate the dose enhancement effect of graphite, lead, and gold when embedded in soft tissue and irradiated with electrons. This case study focusses on the region close to the piece of metal (foreign body) without consideration for the depth in which the foreign body is located. It holds some other idealised assumptions (concerning vacuum, shape and size of foreign bodies, tissue composition, and direction of the radiation field) but still is near to real situations. Among others, this case study served to estimate the dose enhancement in the neighbourhood of a pike of lead located at the right forefinger of a member of our Institute of Radiation Research after an Sr-90/Y-90 irradiation. (orig.)

  9. Exposing exposure: enhancing patient safety through automated data mining of nuclear medicine reports for quality assurance and organ dose monitoring.

    Science.gov (United States)

    Ikuta, Ichiro; Sodickson, Aaron; Wasser, Elliot J; Warden, Graham I; Gerbaudo, Victor H; Khorasani, Ramin

    2012-08-01

    To develop and validate an open-source informatics toolkit capable of creating a radiation exposure data repository from existing nuclear medicine report archives and to demonstrate potential applications of such data for quality assurance and longitudinal patient-specific radiation dose monitoring. This study was institutional review board approved and HIPAA compliant. Informed consent was waived. An open-source toolkit designed to automate the extraction of data on radiopharmaceuticals and administered activities from nuclear medicine reports was developed. After iterative code training, manual validation was performed on 2359 nuclear medicine reports randomly selected from September 17, 1985, to February 28, 2011. Recall (sensitivity) and precision (positive predictive value) were calculated with 95% binomial confidence intervals. From the resultant institutional data repository, examples of usage in quality assurance efforts and patient-specific longitudinal radiation dose monitoring obtained by calculating organ doses from the administered activity and radiopharmaceutical of each examination were provided. Validation statistics yielded a combined recall of 97.6% ± 0.7 (95% confidence interval) and precision of 98.7% ± 0.5. Histograms of administered activity for fluorine 18 fluorodeoxyglucose and iodine 131 sodium iodide were generated. An organ dose heatmap which displays a sample patient's dose accumulation from multiple nuclear medicine examinations was created. Large-scale repositories of radiation exposure data can be extracted from institutional nuclear medicine report archives with high recall and precision. Such repositories enable new approaches in radiation exposure patient safety initiatives and patient-specific radiation dose monitoring.

  10. A range modulator to produce uniform 38K yield

    International Nuclear Information System (INIS)

    Eilbert, R.F.; Koehler, A.M.; Sisterson, J.M.

    1976-01-01

    A range modulator has been designed for use with a monoenergetic proton beam to achieve uniform yield of a nuclear reaction with depth in a tissue equivalent medium. Uniform yield to +- 1.5% over a 10 cm depth for the reaction 40 Ca(p, 2pn) 38 K has been demonstrated using protons of 160 MeV initial energy. The modulator is a rotating stepped absorber made of stacked acrylic plastic sheets. The angular extent of each sheet is determined by a computer program which also calculates the resultant depth of dose curve. Peaks in the dose curve may be reduced with slight effect on the yield curve. (author)

  11. Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance

    International Nuclear Information System (INIS)

    Olch, Arthur J.

    2002-01-01

    Film-based quality assurance (QA) is an important element of any intensity modulated radiation therapy (IMRT) program. XV2 film is often used for IMRT QA, however, it has saturation and energy response limitations which hinder accurate film dosimetry. A new commercially released ready-pack film has been introduced that has an extended dose range (EDR2), reportedly allowing measured doses above 600 cGy without saturation. Also, this film may have less energy dependence due to its composition. The purpose of this paper is to study and compare the two types of film with respect to absolute dose accuracy for IMRT plans, percent depth dose accuracy for square fields between 2 and 20 cm, ability to measure composite plan isodoses and single beam fluence maps for IMRT cases, and sensitivity to processor variations over time. In 19 IMRT patient QA tests, the EDR2 film was able to achieve an absolute dose accuracy of better than 2% vs over 4% for XV2 film. The EDR2 film was able to reproduce ionization chamber and diode-measured percent depth doses to 20 cm depth generally to within 1% over the range of field sizes tested compared to about 10% for the XV2 film. When compared to calculations, EDR2 film agreed better than XV2 film for both composite plan isodoses and single beam fluence intensity maps. The EDR2 film was somewhat more resistant to processor changes over time than the XV2 film, with a standard deviation of dose reproducibility of less than 2% compared to 6%, respectively

  12. Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes

    Directory of Open Access Journals (Sweden)

    Pech Maciej

    2011-04-01

    Full Text Available Abstract Backround Hepatic radiation toxicity restricts irradiation of liver malignancies. Better knowledge of hepatic tolerance dose is favourable to gain higher safety and to optimize radiation regimes in radiotherapy of the liver. In this study we sought to determine the hepatic tolerance dose to small volume single fraction high dose rate irradiation. Materials and methods 23 liver metastases were treated by CT-guided interstitial brachytherapy. MRI was performed 3 days, 6, 12 and 24 weeks after therapy. MR-sequences were conducted with T1-w GRE enhanced by hepatocyte-targeted Gd-EOB-DTPA. All MRI data sets were merged with 3D-dosimetry data. The reviewer indicated the border of hypointensity on T1-w images (loss of hepatocyte function or hyperintensity on T2-w images (edema. Based on the volume data, a dose-volume-histogram was calculated. We estimated the threshold dose for edema or function loss as the D90, i.e. the dose achieved in at least 90% of the pseudolesion volume. Results At six weeks post brachytherapy, the hepatocyte function loss reached its maximum extending to the former 9.4Gy isosurface in median (i.e., ≥9.4Gy dose exposure led to hepatocyte dysfunction. After 12 and 24 weeks, the dysfunctional volume had decreased significantly to a median of 11.4Gy and 14Gy isosurface, respectively, as a result of repair mechanisms. Development of edema was maximal at six weeks post brachytherapy (9.2Gy isosurface in median, and regeneration led to a decrease of the isosurface to a median of 11.3Gy between 6 and 12 weeks. The dose exposure leading to hepatocyte dysfunction was not significantly different from the dose provoking edema. Conclusion Hepatic injury peaked 6 weeks after small volume irradiation. Ongoing repair was observed up to 6 months. Individual dose sensitivity may differ as demonstrated by a relatively high standard deviation of threshold values in our own as well as all other published data.

  13. Supra-aortic low-dose contrast-enhanced time-resolved magnetic resonance (MR) angiography at 3 T: comparison with time-of-flight MR angiography and high-resolution contrast-enhanced MR angiography.

    Science.gov (United States)

    Lee, Youn-Joo; Kim, Bum-soo; Koo, Ja-Sung; Kim, Bom-Yi; Jang, Jinhee; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin

    2015-06-01

    Low-dose, time-resolved, contrast-enhanced, magnetic resonance angiography (TR-CEMRA) has been described previously; however, a comparative study between low dose TR-CEMRA and time-of-flight MRA (TOF-MRA) in the diagnosis of supra-aortic arterial stenosis has not yet been published. To demonstrate the feasibility and effectiveness of low-dose TR-CEMRA compared with TOF-MRA, using high-resolution contrast-enhanced MRA (HR-CEMRA) as the reference standard. This prospective study consisted of 30 consecutive patients. All patients underwent TOF-MRA of the neck and circle of Willis and supra-aortic HR-CEMRA, followed by supra-aortic low-dose TR-CEMRA. Gadoterate meglumine (Gd-DOTA, Dotarem(®), Guerbet, Roissy CdG Cedex, France) was injected at a dose of 0.1 mmol/kg for HR-CEMRA, followed by a 0.03 mmol/kg bolus for low-dose TR-CEMRA. Three readers evaluated the assessibility and image quality, and then two readers classified each stenosis into the following categories: normal (0-30%), mild stenosis (31-50%), moderate (51-70%), severe (71-99%), and occlusion. TR-CEMRA and HR-CEMRA showed a greater number of assessable arterial segments than TOF-MRA (P supra-aortic arterial stenosis, and could be more useful option than TOF-MRA. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. A study of enhanced diffusion during high dose high flux pulsed metal ion implantation into steel and aluminium

    International Nuclear Information System (INIS)

    Zhang Tonghe; Ji Chengzhou; Shen Jinghua; Chen Jun

    1992-01-01

    The depth profiles of metal ions implanted into steel and aluminium were measured by Rutherford backscattering (RBS). The ions of Mo, W and Y, produced by a metal vapour vacuum are ion source (MEVVA) were implanted at an energy range from 25 to 50 keV for doses of (2-5)x10 17 cm -2 into H13 steel and aluminium. Beam currents were from 0.5 to 1.0 A. The beam flux is in the range of 25 to 75 μAcm -2 . In order to simulate the profiles, a formula which includes the sputtering yield, diffusion coefficients and reaction rate was obtained. The results demonstrate that the penetration depth and retained dose increase with increasing beam flux for Mo implanted into aluminium. The peak concentration of Mo implanted H13 steel increases with increasing ion flux. In contrast to this for Y implantation into steel, the peak concentration of Y decreases with increasing ion flux. For an ion flux of 25 μAcm -2 for Mo, Y and W implantation into steel, the penetration depth and retained dose are 3-5 times greater than the theoretical values. The diffusion coefficients are about 10 -16 to 10 -15 s -1 . If the ion flux is greater than 47 μAcm -2 , the penetration depth and retained dose are 5 to 10 times greater than the theoretical values for Mo implanted aluminium. The diffusion coefficients increase with increasing ion flux for Mo implanted aluminium. The diffusion coefficients hardly change with increasing ion flux for Y and Mo implanted H13 steel. The retained dose increases 0.43 to 1.16 times for Y implanted steel for an ion flux of 25 μAcm -2 . Finally, the influence of phases precipitates, reaction rate and diffusion on retained dose, diffusion coefficient and penetration depth are discussed. (orig.)

  15. Influence of enhanced fluid intake on reduction of committed dose after acute intake of tritiated water vapour by occupational workers at Narora Atomic Power Station, India

    International Nuclear Information System (INIS)

    Pawar, S.K.; Mitra, S.R.; Chand, Lal

    2001-01-01

    The study of acute exposure cases of male radiation workers to tritiated water vapour (HTO) in Narora Atomic Power Station, using the bi-exponential function has provided direct practical evidence that the committed dose following an HTO exposure is directly proportional to effective half-life which in turn is inversely proportional to the fluid intake. Urine samples from these workers apparently in good health, were collected and measured for tritium concentration in urine up to maximum of 163 days after the exposure. They were advised to increase their fluid intakes to accelerate the elimination of tritium for dose mitigation. Their fluid intakes reverted to normal levels in the later stage of the post exposure period. The non-linear regression analysis of the data of tritium concentration in urine showed an effective half-life of 1.5 to 3.8 days during the period of enhanced fluid intake, 3.4 to 6.9 days during the period of normal and slightly above normal fluid intake and 23.6 to 52.3 days due to elimination of metabolized organically bound tritium. This increase in elimination rate due to enhanced fluid intake directly resulted in dose mitigation of 45.1 to 76.0 percent in different subjects. (author)

  16. Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Qi, Wencai; Zhang, Liang; Wang, Lin; Xu, Hangbo; Jin, Qingsheng; Jiao, Zhen

    2015-05-01

    Heavy metals are important environmental pollutants with negative impact on plant growth and development. To investigate the physiological and molecular mechanisms of heavy metal stress mitigated by low-dose gamma irradiation, the dry seeds of Arabidopsis thaliana were exposed to a Cobalt-60 gamma source at doses ranging from 25 to 150Gy before being subjected to 75µM CdCl2 or 500µM Pb(NO3)2. Then, the growth parameters, and physiological and molecular changes were determined in response to gamma irradiation. Our results showed that 50-Gy gamma irradiation gave maximal beneficial effects on the germination index and root length in response to cadmium/lead stress in Arabidopsis seedlings. The hydrogen peroxide and malondialdehyde contents in seedlings irradiated with 50-Gy gamma rays under stress were significantly lower than those of controls. The antioxidant enzyme activities and proline levels in the irradiated seedlings were significantly increased compared with the controls. Furthermore, a transcriptional expression analysis of selected genes revealed that some components of heavy metal detoxification were stimulated by low-dose gamma irradiation under cadmium/lead stress. Our results suggest that low-dose gamma irradiation alleviates heavy metal stress, probably by modulating the physiological responses and gene expression levels related to heavy metal resistance in Arabidopsis seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biodegradation of an oil-hydrocarbon contaminated soil, enhanced by surfactants: Effect of the type and dose of surfactant

    International Nuclear Information System (INIS)

    Torres, L. G.; Galindo, C.; Rojas, N.; Iturbe, R.

    2009-01-01

    The aim of this work was to study the effect of different parameters, such as surfactant type an dose, soil initial hydrocarbons concentration, and soil granulometry, over the total petroleum hydrocarbons TPH degradation, as well as over the microbial count (as colony formation units CFU/g soil) along the process. (Author)

  18. A single daily dose enhances the adherence to immunosuppressive treatment in kidney transplant recipients: a cross-sectional study.

    Science.gov (United States)

    Obi, Yoshitsugu; Ichimaru, Naotsugu; Kato, Taigo; Kaimori, Jun-Ya; Okumi, Masayoshi; Yazawa, Koji; Rakugi, Hiromi; Nonomura, Norio; Isaka, Yoshitaka; Takahara, Shiro

    2013-04-01

    Nonadherence to treatment regimens for immunosuppressive agents is one of the major risk factors for allograft failure in kidney transplant recipients. The aim of this study was to estimate the relative effect of daily dosing on treatment adherence, not to identify how patients are non-adherent, in long-term kidney transplant recipients. In January 2009, a cross-sectional, anonymous, and voluntary questionnaire survey was given to kidney transplant recipients who regularly visited Inoue Hospital. A self-reporting questionnaire underestimates nonadherence, but we reasoned that the effect of the dosing regimen should be estimated with relative accuracy by using the generalized ordered logit/partial proportional hazard odds model given that the distribution patterns in the degree of nonadherence have been shown to be similar with other measures. Of 336 eligible patients, 312 (92.9 %) participated in this study. Two hundred seventy-four patients (87.8 %) were more than 3 years post-transplant. Univariate analysis revealed that a single daily dose was significantly associated with better adherence. After controlling for age, sex, time since transplantation, and the number of prescribed drugs, the effect of a single daily dose still remained significant [odds ratio, 0.40 (95 % confidence interval, 0.19-0.81); p = 0.011]. Several sensitivity analyses yielded similar results. To our knowledge, this is the first report that, in long-term kidney transplant recipients, a single daily regimen-one of few modifiable factors-might improve treatment adherence and allograft survival.

  19. No indications of an enhanced UV-light-induced unscheduled DNA synthesis in splenocytes of mice following a low-dose irradiation in vivo or in vitro

    International Nuclear Information System (INIS)

    Wojcik, A.; Seemayer, C.A.; Mueller, W.U.; Streffer, C.

    1995-01-01

    One of the open questions regarding the adaptive response to ionizing radiation is whether it can be induced in G 0 lymphocytes. In the majority of experiments in which an adaptive response in G 0 lymphocytes was observed, the adapting dose was applied in vivo. In order to investigate whether there is some in vivo component of adaptive response, mouse splenocytes of the C57BL/6 strain were irradiated with 0.1 Gy x-rays either in vivo or in vitro, and their UV-light-induced unscheduled DNA synthesis (UDS) levels were determined autoradiographically. An augmented UV-light-induced UDS following an adapting dose applied in vivo has previously been described by several authors in splenocytes of C57BL/6 mice, indicating that the adapting dose enhanced the DNA repair capacity of lymphocytes. In the present investigation, however, no evidence of an adaptive response could be seen regardless of whether the adapting dose was given in vivo or in vitro. Those results present a further indication for the fact that the adaptive response to ionizing radiation is not always inducible, even in lymphocytes of an inbred mouse strain in which its existence has been reported before. (orig.)

  20. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  1. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  2. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  3. Dose Tc-99m MIBI scintimammography provide more information additive to contrast enhanced MRI in highly suspected breast cancer patients?

    International Nuclear Information System (INIS)

    Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki; Bae, Young Tae

    2000-01-01

    The aim of this study was to investigate whether Tc-99m MIBI scintimammography (SMM) provide more information than contrast enhanced MRI in highly suspected breast cancer patients. This study included 32 breast lesions of 29 highly suspected patients having breast cancer. All patients were performed SMM and contrast enhanced MRI. The SMMs and contrast enhanced MRI were correlated with histopathologic results. Thirty breast lesions were diagnosed malignant diseases and 2 were diagnosed benign diseases. SMM showed 29 true positives (TP), 1 true negative (TN), 1 false positive (FP), and 1 false negative (FN). The sensitivity was 96.6%. Contrast enhanced MRI revealed 24 TP, 0 TN, 1 FP, 3 FN and 4 indeterminate cases. The sensitivity was 88.8%. In the assessment of axillary lymph node metastasis, SMM showed 9 TP, 10 TN, 0 FP, and 3 FN. The sensitivity and specificity were 75% and 100%. Contrast enhanced MRI revealed 6 TP, 9 TN, 1 FP, and 6 FN. The sensitivity and specificity were 50% and 90%. Among 4 indeterminate cases with MRI findings, SMM correctly diagnosed malignant breast diseases in 3 lesions. However, SMM showed false positive in 1 lesion. SMM could correctly diagnosed malignant breast diseases more 5 lesions than contrast enhanced MRI. SMM revealed higher sensitivity in detection of primary breast cancer and axillary LN metastasis than contrast enhanced MRI. SMMs could correctly diagnosed malignant breast diseases even if the MRI showed indeterminate findings. In highly suspected patients having breast cancer, SMM may provide additive information in detection of breast cancer if contrast enhanced MRI showed indeterminate findings but this is to be determined later by large population based study

  4. Effects of Potential Lane-Changing Probability on Uniform Flow

    International Nuclear Information System (INIS)

    Tang Tieqiao; Huang Haijun; Shang Huayan

    2010-01-01

    In this paper, we use the car-following model with the anticipation effect of the potential lane-changing probability (Acta Mech. Sin. 24 (2008) 399) to investigate the effects of the potential lane-changing probability on uniform flow. The analytical and numerical results show that the potential lane-changing probability can enhance the speed and flow of uniform flow and that their increments are related to the density.

  5. A sub-threshold dose of pilocarpine increases glutamine synthetase in reactive astrocytes and enhances the progression of amygdaloid-kindling epilepsy in rats.

    Science.gov (United States)

    Sun, Hong-Liu; Deng, Da-Ping; Pan, Xiao-Hong; Wang, Chao-Yun; Zhang, Xiu-Li; Chen, Xiang-Ming; Wang, Chun-Hua; Liu, Yu-Xia; Li, Shu-Cui; Bai, Xian-Yong; Zhu, Wei

    2016-03-02

    The prognosis of patients exposed to a sub-threshold dose of a proconvulsant is difficult to establish. In this study, we investigated the effect of a single sub-threshold dose of the proconvulsant pilocarpine (PILO) on the progression of seizures that were subsequently induced by daily electrical stimulation (kindling) of the amygdaloid formation. Male Sprague–Dawley rats were each implanted with an electrode in the right basolateral amygdala and an indwelling cannula in the right ventricle. The animals were randomized into groups and were administered one of the following treatments: saline, PILO, saline+L-α-aminoadipic acid (L-AAA; one dosage tested), PILO+L-AAA, or PILO+L-methionine sulfoximine (three dosages tested). Amygdaloid stimulation and electroencephalography were performed once daily. We performed immunohistochemistry and western blot for glial fibrillary acidic protein and glutamine synthetase (GS). We also assayed the enzymic activity of GS in discrete brain regions. An intraperitoneal injection of a sub-threshold PILO dose enhanced the progression of amygdaloid-kindling seizures and was accompanied by an increase in reactive-astrocyte and GS (content and activity) in the hippocampus and piriform cortex. L-AAA and L-methionine sulfoximine, inhibitors of astrocytic and GS function, respectively, abolished the effect of PILO on amygdaloid-kindling seizures. We conclude that one sub-threshold dose of a proconvulsant may enhance the progression of subsequent epilepsy and astrocytic GS may play a role in this phenomenon. Thus, a future therapy for epilepsy could be inhibition of astrocytes and/or GS.

  6. Metformin as an initial adjunct to low-dose liraglutide enhances the weight-decreasing potential of liraglutide in obese polycystic ovary syndrome: Randomized control study.

    Science.gov (United States)

    Jensterle, Mojca; Goricar, Katja; Janez, Andrej

    2016-04-01

    Liraglutide (LIRA) treatment is associated with the dose-dependent reduction of weight. Higher doses are more effective than lower doses, although higher doses are also more poorly tolerated. Metformin may enhance the weight-lowering potential of LIRA via the stimulatory modulation of incretin in addition to its direct beneficial effects in PCOS. The aim of the present study was to evaluate whether metformin as an adjunct to low-dose LIRA affects body weight with increased efficacy compared with low-dose LIRA alone in obese patients with PCOS. In a 12-week study, 44 obese women with PCOS were randomly offered either combined treatment (COMBO) with 1,000 mg metformin twice a day and 1.2 mg LIRA once a day, or treatment with 1.2 mg LIRA alone. The primary outcome of treatment was an alteration in the levels of obesity. A total of 43 patients [aged 30.3±4.4 years; body mass index (BMI) 37.2±4.5 kg/m 2 ; mean ± standard deviation] completed the study. The subjects treated with COMBO lost on average 6.2±2.4 kg compared with a 3.8±3.5 kg weight loss in the patients treated with LIRA alone (P=0.024). The BMI decreased by 2.2±0.8 kg/m 2 in patients treated with COMBO and by 1.4±1.2 kg/m 2 in patients treated with LIRA alone (P=0.024). A clinically significant ≥5% weight reduction was achieved in 59.1% of patients treated with COMBO and 42.9% of patients treated with LIRA alone. Reductions in glucose levels following oral glucose tolerance testing, as well as in androstenedione levels in the COMBO group were significantly greater compared with those in the LIRA group. The side effects were mild and transient in the two treatment groups. A combination of metformin and low-dose LIRA was more effective than low-dose LIRA alone in reducing body weight in obese patients with PCOS.

  7. Dexmedetomidine Dose Dependently Enhances the Local Anesthetic Action of Lidocaine in Inferior Alveolar Nerve Block: A Randomized Double-Blind Study.

    Science.gov (United States)

    Ouchi, Kentaro; Sugiyama, Kazuna

    2016-01-01

    Dexmedetomidine (DEX) dose dependently enhances the local anesthetic action of lidocaine in rats. We hypothesized that the effect might also be dose dependent in humans. We evaluated the effect of various concentrations of DEX with a local anesthetic in humans. Eighteen healthy volunteers were randomly assigned by a computer to receive 1.8 mL of 1 of 4 drug combinations: (1) 1% lidocaine with 2.5 ppm (parts per million) (4.5 μg) DEX, (2) lidocaine with 5.0 ppm (9.0 μg) DEX, (3) lidocaine with 7.5 ppm (13.5μg) DEX, or (4) lidocaine with 1:80,000 (22.5 μg) adrenaline (AD), to produce inferior alveolar nerve block. Pulp latency and lower lip numbness (for assessing onset and duration of anesthesia) were tested, and sedation level, blood pressure, and heart rate were recorded every 5 minutes for 20 minutes, and every 10 minutes from 20 to 60 minutes. Pulp latency of each tooth increased compared with baseline, from 5 to 15 minutes until 60 minutes. There were no significant intergroup differences at any time point. Anesthesia onset was not different between groups. Anesthesia duration was different between groups (that with DEX 7.5 ppm was significantly longer than that with DEX 2.5 ppm and AD; there was no difference between DEX 2.5 ppm and AD). Blood pressure decreased from baseline in the 5.0 and 7.5 ppm DEX groups at 30 to 60 minutes, although there was no hypotension; moreover, heart rate did not change in any group. Sedation score did not indicate deep sedation in any of the groups. Dexmedetomidine dose dependently enhances the local anesthetic action of lidocaine in humans. Dexmedetomidine at 2.5 ppm produces similar enhancement of local anesthesia effect as addition of 1:80,000 AD.

  8. Identifying non-toxic doses of manganese for manganese-enhanced magnetic resonance imaging to map brain areas activated by operant behavior in trained rats.

    Science.gov (United States)

    Gálosi, Rita; Szalay, Csaba; Aradi, Mihály; Perlaki, Gábor; Pál, József; Steier, Roy; Lénárd, László; Karádi, Zoltán

    2017-04-01

    Manganese-enhanced magnetic resonance imaging (MEMRI) offers unique advantages such as studying brain activation in freely moving rats, but its usefulness has not been previously evaluated during operant behavior training. Manganese in a form of MnCl 2 , at a dose of 20mg/kg, was intraperitoneally infused. The administration was repeated and separated by 24h to reach the dose of 40mg/kg or 60mg/kg, respectively. Hepatotoxicity of the MnCl 2 was evaluated by determining serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, albumin and protein levels. Neurological examination was also carried out. The animals were tested in visual cue discriminated operant task. Imaging was performed using a 3T clinical MR scanner. T1 values were determined before and after MnCl 2 administrations. Manganese-enhanced images of each animal were subtracted from their baseline images to calculate decrease in the T1 value (ΔT1) voxel by voxel. The subtracted T1 maps of trained animals performing visual cue discriminated operant task, and those of naive rats were compared. The dose of 60mg/kg MnCl 2 showed hepatotoxic effect, but even these animals did not exhibit neurological symptoms. The dose of 20 and 40mg/kg MnCl 2 increased the number of omissions and did not affect the accuracy of performing the visual cue discriminated operant task. Using the accumulated dose of 40mg/kg, voxels with a significant enhanced ΔT1 value were detected in the following brain areas of the visual cue discriminated operant behavior performed animals compared to those in the controls: the visual, somatosensory, motor and premotor cortices, the insula, cingulate, ectorhinal, entorhinal, perirhinal and piriform cortices, hippocampus, amygdala with amygdalohippocampal areas, dorsal striatum, nucleus accumbens core, substantia nigra, and retrorubral field. In conclusion, the MEMRI proved to be a reliable method to accomplish brain activity mapping in correlation with the operant behavior

  9. A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition.

    Science.gov (United States)

    Schiffmann, L M; Brunold, M; Liwschitz, M; Goede, V; Loges, S; Wroblewski, M; Quaas, A; Alakus, H; Stippel, D; Bruns, C J; Hallek, M; Kashkar, H; Hacker, U T; Coutelle, O

    2017-02-28

    Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg -1 body weight) or high (5 mg kg -1 body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs.

  10. Study on dependence of dose enhancement on cluster morphology of gold nanoparticles in radiation therapy using a body-centred cubic model

    Science.gov (United States)

    Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho

    2017-10-01

    Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4  ×  4  ×  4 µm3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21  ±  0.13, 1.16  ±  0.11, and 1.08  ±  0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.

  11. Fabrication of Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2}/epoxy composites: Enhanced uniform magnetostrictive and mechanical properties using a dryprocess

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xufeng, E-mail: dongxf@dlut.edu.c [School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian (China); Qi Min [School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian (China); Guan Xinchun [School of Civil Engineering, Harbin Institute of Technology, 150090 Harbin (China); Ou Jinping [School of Civil Engineering, Harbin Institute of Technology, 150090 Harbin (China); School of Civil Engineering, Dalian University of Technology, 116024 Dalian (China)

    2011-02-15

    To improve the uniformity of the magnetostrictive properties of Terfenol-D composites along the field direction, a dry method is developed in the present study. We examined the compaction pressure, particle volume fraction, particle size and composite configuration as factors that affected the magnetostrictive properties of the composites. The experimental results indicated that the magnetostrictive properties were improved with the increase of compaction pressure and particle volume fraction. In addition, larger average particle size was shown to result in more pronounced magnetostrictive properties. The particle alignment due to the orientation field is beneficial for the promotion of the magnetostrictive properties. The largest saturation magnetostriction and the maximum piezo-magnetic coefficient in the absence of a mechanical preload was obtained at 1005 ppm and 4.08 nm/A, respectively, for the aligned composite including a particle volume fraction of 77% and an average particle size of 210 {mu}m. - Research Highlights: Magnetostrictive composites were usually fabricated using a wet process. Since the settlement of the particles in the liquid polymers frequently occurred, the properties of the composites were inhomogeneous. The dry process developed in the present study was proved effective to fabricate magnetostrictive composites with uniform properties. The largest saturation magnetostriction and the maximum piezo-magnetic coefficient in the absence of a mechanical preload was obtained at 1005 ppm and 4.08 nm/A.

  12. CoFe{sub 2}O{sub 4} nanoparticles as a catalyst: synthesis of a forest of vertically aligned CNTs of uniform diameters by plasma-enhanced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Baliyan, Ankur [Graduate School of Interdisciplinary New Science, Toyo University (Japan); Fukuda, Takahiro [Bio-Nano Electronics Research Centre, Toyo University (Japan); Hayasaki, Yasuhiro; Uchida, Takashi; Nakajima, Yoshikata; Hanajiri, Tatsuro; Maekawa, Toru, E-mail: maekawa@toyo.jp [Graduate School of Interdisciplinary New Science, Toyo University (Japan)

    2013-06-15

    Controlling actively the structures of carbon nanotubes such as the alignment, length, diameter, chirality and the number of walls still remains a crucial challenge. The properties of CNTs are highly structure sensitive and particularly dependent on the diameter and number of walls. In this brief communication, we synthesise monodisperse CoFe{sub 2}O{sub 4} nanoparticles of uniform diameters, i.e. 4.8 and 6.9 nm, which are modified with oleic acid as a catalyst for the growth of CNTs. We show that a forest of vertically aligned CNTs of uniform diameters and lengths can be grown using CoFe{sub 2}O{sub 4} nanoparticles. The internal diameters and lengths of CNTs grown using CoFe{sub 2}O{sub 4} nanoparticles of 4.8 and 6.9 nm diameters are, respectively, 4.4 and 6.2 nm and 10 and 15 {mu}m. It is clearly shown that the number of walls of CNTs can be engineered changing the materials of the catalytic nanoparticles. The present results may well encourage further systematic studies on the growth of CNTs using various combinations of elements for the catalytic nanoparticles under different external conditions, which may provide not only the possibilities of controlling the properties of CNTs but also an insight into the nucleation and growth mechanisms.

  13. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  14. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  15. Detection of brain metastasis. Comparison of Turbo-FLAIR imaging, T2-weighted imaging and double-dose gadolinium-enhanced MR imaging

    International Nuclear Information System (INIS)

    Okubo, Toshiyuki; Hayashi, Naoto; Shirouzu, Ichiro; Abe, Osamu; Ohtomo, Kuni; Sasaki, Yasuhito; Aoki, Shigeki; Wada, Akihiko

    1998-01-01

    The purpose of this study was to compare Turbo-FLAIR imaging, T 2 -weighted imaging, and double-dose gadolinium-enhanced MR imaging in the detection of brain metastasis. Using the three sequences, 20 consecutive patients with brain metastases were prospectively studied with a 1.5-Tesla system. Three independent, blinded readers assessed the images for the presence, size, number, and location of metastatic lesions. In the detection of large lesions (>0.5 cm), Turbo-FLAIR imaging (38/48, 79%) was not significantly different from gadolinium-enhanced imaging (42/48, 88%) (p=0.273). T 2 -weighted imaging (31/48, 65%), however, was inferior to gadolinium-enhanced imaging (p<0.05). There was no difference between Turbo-FLAIR imaging and gadolinium-enhanced imaging in the accuracy of detecting solitary brain metastasis (4/4, 100%). In conclusion, Turbo-FLAIR imaging is a useful, noninvasive screening modality for brain metastasis. Its use may lead to cost savings in the diagnosis of brain metastases and may impact positively the cost-effectiveness of treatment. (author)

  16. Combined evaluation of rest-redistribution thallium-201 tomography and low-dose dobutamine echocardiography enhances the identification of viable myocardium in patients with chronic coronary artery disease

    International Nuclear Information System (INIS)

    Pace, L.; Cuocolo, A.; Salvatore, M.; Perrone-Filardi, P.; Prastaro, M.; Vezzuto, P.; Crisci, T.; Dellegrottaglie, S.; Piscione, F.; Chiariello, M.; Mainenti, P.P.; Varrone, A.

    1998-01-01

    The purpose of this study was to evaluate whether combined evaluation by discriminant analysis of rest-redistribution thallium-201 tomography and low-dose dobutamine echocardiography enhances the accuracy in identifying viable myocardium in patients with chronic coronary artery disease. Rest-redistribution 201 Tl has high sensitivity but low specificity in identifying viable myocardium, while the opposite is true for low-dose dobutamine echocardiography. Forty-six patients underwent low-dose dobutamine echocardiography and rest-redistribution 201 Tl tomography on the same day. Rest echocardiography was repeated at least 30 days (mean 40±20) after myocardial revascularization. Discriminant analysis was applied to the results of 201 Tl tomography and dobutamine echocardiography to classify a/dyskinetic segments as viable or non-viable. In 92 a/dyskinetic segments that were revascularized, rest-redistribution 201 Tl tomography yielded an accuracy of 75%, while the accuracy of dobutamine echocardiography was 70% (P 201 Tl imaging are useful and complementary techniques for identifying viable myocardium in patients with chronic coronary artery disease. Combined evaluation by discriminant analysis significantly improves accuracy, although the cost-effectiveness of such an approach remains to be determined. (orig.)

  17. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  18. Comparison of acquisition time and dose for late gadolinium enhancement imaging at 3.0 T in patients with chronic myocardial infarction using Gd-BOPTA

    International Nuclear Information System (INIS)

    Doltra, A.; Skorin, A.; Gebker, R.; Klein, C.; Fleck, E.; Kelle, S.; Hamdan, A.; Schnackenburg, B.; Nagel, E.

    2014-01-01

    To compare contrast doses and acquisition times for late gadolinium enhancement (LGE) imaging at 3.0 T using gadobenate dimeglumine (Gd-BOPTA) in patients with chronic myocardial infarction. Thirty-four patients with chronic myocardial infarction were randomised to 0.10, 0.15 and 0.20 mmol/kg of Gd-BOPTA. T1-weighted inversion recovery gradient echo sequences were performed at 5, 10, 15 and 20 min post-administration of contrast in a 3.0-T scanner. Scar-to-myocardium contrast-to-noise ratio (CNR), scar-to-blood CNR, scar size and image quality were assessed. Imaging at 5 min was associated with a lower scar-to-blood CNR in comparison to 10, 15 and 20 min at 0.10 mmol/kg, and in comparison to 15 and 20 min at 0.20 mmol/kg. At 0.10-mmol/kg, imaging at 5 min yielded smaller infarct sizes in comparison to 15 and 20 min. Finally, at 0.20-mmol/kg, imaging at 5 min was associated with poorer image quality in comparison to later times. In LGE imaging at 3.0 T, low doses of Gd-BOPTA perform equally well as higher doses. Early acquisition (5 min) is associated with lower infarct sizes and image quality. Studies with sufficient diagnostic quality can be obtained after 10 min using 0.10 mmol/kg Gd-BOPTA. (orig.)

  19. eDrugCalc: an online self-assessment package to enhance medical students' drug dose calculation skills.

    Science.gov (United States)

    McQueen, Daniel S; Begg, Michael J; Maxwell, Simon R J

    2010-10-01

    Dose calculation errors can cause serious life-threatening clinical incidents. We designed eDrugCalc as an online self-assessment tool to develop and evaluate calculation skills among medical students. We undertook a prospective uncontrolled study involving 1727 medical students in years 1-5 at the University of Edinburgh. Students had continuous access to eDrugCalc and were encouraged to practise. Voluntary self-assessment was undertaken by answering the 20 questions on six occasions over 30 months. Questions remained fixed but numerical variables changed so each visit required a fresh calculation. Feedback was provided following each answer. Final-year students had a significantly higher mean score in test 6 compared with test 1 [16.6, 95% confidence interval (CI) 16.2, 17.0 vs. 12.6, 95% CI 11.9, 13.4; n= 173, P variable in all tests with 2.7% of final-year students scoring formative dose-calculation package and encouragement to develop their numeracy. Further research is required to establish whether eDrugCalc reduces calculation errors made in clinical practice. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  20. SU-F-T-661: Dependence of Gold Nano Particles Cluster Morphology On Dose Enhancement of Photon Radiation Therapy Apply for Radiation Biology Effect

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University (Korea, Republic of); Chung, K; Han, Y; Park, H [Samsung Medical Center, Sungkyunkwan University School of Medicine radiation oncology (Korea, Republic of)

    2016-06-15

    Purpose: Injected gold nano particles (GNPs) to a body for dose enhancement are known to form in the tumorcell cluster morphology. We investigated the dependence of dose enhancement on the morphology characteristic with an approximated morphology model by using Monte Carlo simulations. Methods: For MC simulation, TOPAS version 2.0P-03 was used. GNP cluster morphology was approximated as a body center cubic(BCC) model by placing 8 GNPs at the corner and one at the center of cube with length from 2.59 µm to 0.25 µm located in a 4 µm length water filled cube phantom. 4 µm length square shaped beams of poly-energetic 50, 260 kVp photons were irradiated to the water filled cube phantom with 100 nm diameter GNPs in it. Dose enhancement ratio(DER) was computed as a function of distance from the surface of the GNP at the cube center for 18 cubes geometries. For scoring particles, 10 nm width of concentric shell shaped detector was constructed up to 100 nm from the center. Total dose in a sphere of 100 nm radius of detector were normalized to 2.59 µm length cube morphology. To verified biological effect of BCC model applied to cell survival curve fitting. Results: DER increase as the distance of the GNPs reduces. DER was largest for 0.25 µm length cube. Dependence of GNP distance DER increment was 1.73, 1.60 for 50 kVp, 260 kVp photons, respectively. Also, Using BCC model applied to cell survival curve was well prediction. Conclusion: DER with GNPs was larger when they are closely packed in the phantom. Therefore, better therapeutic effects can be expected with close-packed GNPs. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].

  1. A quantitative experimental phantom study on MRI image uniformity.

    Science.gov (United States)

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-02

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e., Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included Spin Echo (SE) and gradient echo (GRE) scanned in three planes (i.e., Axial, Coronal, and Sagittal). Moreover, three surface coil types (i.e., Head and Neck or HN, Brain, and TMJ coils) and two image correction methods (i.e., Surface Coil Intensity Correction or SCIC, Phased array Uniformity Enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the NEMA peak-deviation non-uniformity method. Results showed that TMJ coils elicited the least uniform image and Brain coils outperformed HN coils when metallic materials were present. Additionally, when metallic materials were present, SE outperformed GRE especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e., no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g., coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  2. Uniformity calibration for ICT image

    International Nuclear Information System (INIS)

    Zeng Gang; Liu Li; Que Jiemin; Zhang Yingping; Yin Yin; Wang Yanfang; Yu Zhongqiang; Yan Yonglian

    2004-01-01

    The uniformity of ICT image is impaired by beam hardening and the inconsistency of detector units responses. The beam hardening and the nonlinearity of the detector's output have been analyzed. The correction factors are determined experimentally by the detector's responses with different absorption length. The artifacts in the CT image of a symmetrical aluminium cylinder have been eliminated after calibration. (author)

  3. School Uniforms: Guidelines for Principals.

    Science.gov (United States)

    Essex, Nathan L.

    2001-01-01

    Principals desiring to develop a school-uniform policy should involve parents, teachers, community leaders, and student representatives; beware restrictions on religious and political expression; provide flexibility and assistance for low-income families; implement a pilot program; align the policy with school-safety issues; and consider legal…

  4. Uniform peanut performance test 2017

    Science.gov (United States)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 14 entries were evaluated at 8 locations....

  5. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production.

    Science.gov (United States)

    Leung, Michael K K; Chow, James C L; Chithrani, B Devika; Lee, Martin J G; Oms, Barbara; Jaffray, David A

    2011-02-01

    The aim of this study is to understand the characteristics of secondary electrons generated from the interaction of gold nanoparticles (GNPs) with x-rays as a function of nanoparticle size and beam energy and thereby further the understanding of GNP-enhanced radiotherapy. The effective range, deflection angle, dose deposition, energy, and interaction processes of electrons produced from the interaction of x-rays with a GNP were calculated by Monte Carlo simulations. The GEANT4 code was used to simulate and track electrons generated from a 2, 50, and 100 nm diameter GNP when it is irradiated with a 50 kVp, 250 kVp, cobalt-60, and 6 MV photon beam in water. When a GNP was present, depending on the beam energies used, secondary electron production was increased by 10- to 2000-fold compared to an absence of a GNP. Low-energy photon beams were much more efficient at interacting with the GNP by two to three orders of magnitude compared to MV energies and increased the deflection angle. GNPs with larger diameters also contributed more dose. The majority of the energy deposition was outside the GNP, rather than self-absorbed by the nanoparticle. The mean effective range of electron tracks for the beams tested ranged from approximately 3 microm to 1 mm. These simulated results yield important insights concerning the spatial distributions and elevated dose in GNP-enhanced radiotherapy. The authors conclude that the irradiation of GNP at lower photon energies will be more efficient for cell killing. This conclusion is consistent with published studies.

  6. Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera.

    Science.gov (United States)

    Williamson, Sally M; Baker, Daniel D; Wright, Geraldine A

    2013-06-01

    The decline of honeybees and other pollinating insects is a current cause for concern. A major factor implicated in their decline is exposure to agricultural chemicals, in particular the neonicotinoid insecticides such as imidacloprid. Honeybees are also subjected to additional chemical exposure when beekeepers treat hives with acaricides to combat the mite Varroa destructor. Here, we assess the effects of acute sublethal doses of the neonicotinoid imidacloprid, and the organophosphate acaricide coumaphos, on honey bee learning and memory. Imidacloprid had little effect on performance in a six-trial olfactory conditioning assay, while coumaphos caused a modest impairment. We report a surprising lack of additive adverse effects when both compounds were administered simultaneously, which instead produced a modest improvement in learning and memory.

  7. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior

    International Nuclear Information System (INIS)

    Kim, Cha Soon; Lee, Byung Sub; Lee, In Kyung; Yang, Kwang Hee; Kim, Ji-Young; Nam, Seon Young; Seong, Ki Moon

    2015-01-01

    Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 − 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR. (author)

  8. 70-Day Supraphysiologic Dose of the Power-Enhancing Drug Oxymetholone: the Effects on Oogenesis in NMRI Mice

    Directory of Open Access Journals (Sweden)

    M Azarniya

    2012-05-01

    Full Text Available

    Background and objectives

    Oxymetholone is an orally-administered active anabolic-androgenic steroid. This drug was synthesized in 1959. It is a 17α-methylated, 5α-saturated compound. It is used for the treatment of a variety of diseases including anemia, growth delay in children, myocardial damage in heart failure and treatment of HIV associated wasting. This is one of the drugs used in high doses by the doping athletes because of its anabolic effects and its influence on muscular mass. In this study, the effect of oxymetholone in supraphysiologic doses was evaluated on oogenesis in NMRI mice.

    Methods

    In our experiments, 12 mg/kg/day oxymetholone was injected intraperitoneally to 4- and 6-week old mice for 70 days.

    Results

    The results demonstrated a significant difference between treatment and control groups after both 35 and 70 days of treatment. This drug led to significant decrease in the number of corpus lutea, decrease in the number of atretic follicles, decrease in the weight and diameter of ovaries, decrease in the diameter of granulosa layer, increase in number of primordial follicles, decrease in number of primary follicles, decrease in number of growing follicles, decrease in the number of graafian follicles, and decrease in the progesterone level. Additionally, disordered formation of granulosa layers and growing of oocytes in antra, anomaly of the ovular medulla and formation of two oocytes in one folliculus were observed in some mice.

    Conclusion

    The results show that oxymetholone decreases the ovarian growth and the rate of ovulation.

  9. 70-Day Supraphysiologic Dose of the Power-Enhancing Drug Oxymetholone: the Effects on Oogenesis in NMRI Mice

    Directory of Open Access Journals (Sweden)

    M. Azarniya

    2007-04-01

    Full Text Available Background and objectivesOxymetholone is an orally-administered active anabolic-androgenic steroid. This drug was synthesized in 1959. It is a 17α-methylated, 5α-saturated compound. It is used for the treatment of a variety of diseases including anemia, growth delay in children, myocardial damage in heart failure and treatment of HIV associated wasting. This is one of the drugs used in high doses by the doping athletes because of its anabolic effects and its influence on muscular mass. In this study, the effect of oxymetholone in supraphysiologic doses was evaluated on oogenesis in NMRI mice.MethodsIn our experiments, 12 mg/kg/day oxymetholone was injected intraperitoneally to 4- and 6-week old mice for 70 days. ResultsThe results demonstrated a significant difference between treatment and control groups after both 35 and 70 days of treatment. This drug led to significant decrease in the number of corpus lutea, decrease in the number of atretic follicles, decrease in the weight and diameter of ovaries, decrease in the diameter of granulosa layer, increase in number of primordial follicles, decrease in number of primary follicles, decrease in number of growing follicles, decrease in the number of graafian follicles, and decrease in the progesterone level. Additionally, disordered formation of granulosa layers and growing of oocytes in antra, anomaly of the ovular medulla and formation of two oocytes in one folliculus were observed in some mice.ConclusionThe results show that oxymetholone decreases the ovarian growth and the rate of ovulation. Keywords: Oxymetholone; Anabolic Steroid; Oogenesis; Androgens

  10. Low dose prospective ECG-gated delayed enhanced dual-source computed tomography in reperfused acute myocardial infarction comparison with cardiac magnetic resonance

    International Nuclear Information System (INIS)

    Wang Rui; Zhang Zhaoqi; Xu Lei; Ma Qin; He Yi; Lu Dongxu; Yu Wei; Fan Zhanming

    2011-01-01

    Purpose: To determine whether prospective electrocardiogram (ECG)-gated delayed contrast-enhanced dual-source computed tomography (DCE-DSCT) can accurately delineate the extension of myocardial infarction (MI) compared with delayed enhanced cardiac MR (DE-MR). Material and methods: Eleven patients were examined using dual-source CT and cardiac MR in 2 weeks after a first reperfused MI. DCE-DSCT scan protocol was performed with prospective ECG-gating sequential scan model 7 min after contrast administration. In a 17-model, infarcted myocardium detected by DE-MR was categorized as transmural and subendocardial extension. Segment of infarcted location and graded transmurality were compared between DCE-MDCT and DE-MR. Results: In all eleven patients, diagnostic quality was obtained for depicting delayed enhanced myocardium. Agreement between DCE-DSCT and MR was good on myocardial segment based comparison (kappa = 0.85, p < 0.001), and on transmural and subendocardial infarction type comparison (kappa = 0.82, p < 0.001, kappa = 0.52, p < 0.001, respectively). CT value was higher on infarcted region than that of normal region (100.02 ± 9.57 HU vs. 72.63 ± 7.32 HU, p < 0.001). Radiation dose of prospectively ECG-gating protocol were 0.99 ± 0.08 mSv (0.82-1.19 mSv). Conclusions: Prospective ECG-gated DCE-DSCT can accurately assess the extension and the patterns of myocardial infarction with low radiation dose.

  11. Low dose prospective ECG-gated delayed enhanced dual-source computed tomography in reperfused acute myocardial infarction comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Rui, E-mail: rui_wang1979@yahoo.cn [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Zhang Zhaoqi, E-mail: zhaoqi5000@vip.sohu.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Xu Lei, E-mail: leixu2001@hotmail.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Ma Qin, E-mail: tel1367@gmail.com [Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); He Yi, E-mail: heyi139@sina.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Lu Dongxu, E-mail: larry.hi@163.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Yu Wei, E-mail: yuwei02@gmail.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Fan Zhanming, E-mail: fanzm120@tom.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China)

    2011-11-15

    Purpose: To determine whether prospective electrocardiogram (ECG)-gated delayed contrast-enhanced dual-source computed tomography (DCE-DSCT) can accurately delineate the extension of myocardial infarction (MI) compared with delayed enhanced cardiac MR (DE-MR). Material and methods: Eleven patients were examined using dual-source CT and cardiac MR in 2 weeks after a first reperfused MI. DCE-DSCT scan protocol was performed with prospective ECG-gating sequential scan model 7 min after contrast administration. In a 17-model, infarcted myocardium detected by DE-MR was categorized as transmural and subendocardial extension. Segment of infarcted location and graded transmurality were compared between DCE-MDCT and DE-MR. Results: In all eleven patients, diagnostic quality was obtained for depicting delayed enhanced myocardium. Agreement between DCE-DSCT and MR was good on myocardial segment based comparison (kappa = 0.85, p < 0.001), and on transmural and subendocardial infarction type comparison (kappa = 0.82, p < 0.001, kappa = 0.52, p < 0.001, respectively). CT value was higher on infarcted region than that of normal region (100.02 {+-} 9.57 HU vs. 72.63 {+-} 7.32 HU, p < 0.001). Radiation dose of prospectively ECG-gating protocol were 0.99 {+-} 0.08 mSv (0.82-1.19 mSv). Conclusions: Prospective ECG-gated DCE-DSCT can accurately assess the extension and the patterns of myocardial infarction with low radiation dose.

  12. Technical Note: A simulation study on the feasibility of radiotherapy dose enhancement with calcium tungstate and hafnium oxide nano- and microparticles.

    Science.gov (United States)

    Sherck, Nicholas J; Won, You-Yeon

    2017-12-01

    To assess the radiotherapy dose enhancement (RDE) potential of calcium tungstate (CaWO 4 ) and hafnium oxide (HfO 2 ) nano- and microparticles (NPs). A Monte Carlo simulation study was conducted to gauge their respective RDE potentials relative to that of the broadly studied gold (Au) NP. The study was warranted due to the promising clinical and preclinical studies involving both CaWO 4 and HfO 2 NPs as RDE agents in the treatment of various types of cancers. The study provides a baseline RDE to which future experimental RDE trends can be compared to. All three materials were investigated in silico with the software Penetration and Energy Loss of Positrons and Electrons (PENELOPE 2014) developed by Francesc Salvat and distributed in the United States by the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory. The work utilizes the extensively studied Au NP as the "gold standard" for a baseline. The key metric used in the evaluation of the materials was the local dose enhancement factor (DEF loc ). An additional metric used, termed the relative enhancement ratio (RER), evaluates material performance at the same mass concentrations. The results of the study indicate that Au has the strongest RDE potential using the DEF loc metric. HfO 2 and CaWO 4 both underperformed relative to Au with lower DEF loc of 2-3 × and 4-100 ×, respectively. The computational investigation predicts the RDE performance ranking to be: Au > HfO 2 > CaWO 4 . © 2017 American Association of Physicists in Medicine.

  13. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    Directory of Open Access Journals (Sweden)

    Mao Ouyang

    Full Text Available Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261 tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.

  14. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Chattopadhyay, Niladri; Kwon, Yongkyu Luke [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lechtman, Eli [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Reilly, Raymond M. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4 (Canada)

    2013-11-15

    Purpose: The authors’ aims were to model how various factors influence radiation dose enhancement by gold nanoparticles (AuNPs) and to propose a new modeling approach to the dose enhancement factor (DEF).Methods: The authors used Monte Carlo N-particle (MCNP 5) computer code to simulate photon and electron transport in cells. The authors modeled human breast cancer cells as a single cell, a monolayer, or a cluster of cells. Different numbers of 5, 30, or 50 nm AuNPs were placed in the extracellular space, on the cell surface, in the cytoplasm, or in the nucleus. Photon sources examined in the simulation included nine monoenergetic x-rays (10–100 keV), an x-ray beam (100 kVp), and {sup 125}I and {sup 103}Pd brachytherapy seeds. Both nuclear and cellular dose enhancement factors (NDEFs, CDEFs) were calculated. The ability of these metrics to predict the experimental DEF based on the clonogenic survival of MDA-MB-361 human breast cancer cells exposed to AuNPs and x-rays were compared.Results: NDEFs show a strong dependence on photon energies with peaks at 15, 30/40, and 90 keV. Cell model and subcellular location of AuNPs influence the peak position and value of NDEF. NDEFs decrease in the order of AuNPs in the nucleus, cytoplasm, cell membrane, and extracellular space. NDEFs also decrease in the order of AuNPs in a cell cluster, monolayer, and single cell if the photon energy is larger than 20 keV. NDEFs depend linearly on the number of AuNPs per cell. Similar trends were observed for CDEFs. NDEFs using the monolayer cell model were more predictive than either single cell or cluster cell models of the DEFs experimentally derived from the clonogenic survival of cells cultured as a monolayer. The amount of AuNPs required to double the prescribed dose in terms of mg Au/g tissue decreases as the size of AuNPs increases, especially when AuNPs are in the nucleus and the cytoplasm. For 40 keV x-rays and a cluster of cells, to double the prescribed x-ray dose (NDEF = 2

  15. Enhanced response rates in pancreatic cancer with concurrent continuous infusion(CI) low dose chemotherapy and hyperfractionated radiotherapy

    International Nuclear Information System (INIS)

    Bronn, Donald G.; Franklin, Roman; Krishnan, Rajan S.; Richardson, Ralph W.; Conlin, Christopher

    1996-01-01

    Objective: Many patients with a diagnosis of pancreatic cancer are not offered any therapeutic intervention other than surgical bypass due to very poor prognosis, poor patient tolerance to current therapeutic regimens, and a dismal tumor response to therapy. In view of these circumstances, an acceptable treatment regimen for pancreatic cancer must first demonstrate an ability to obtain a rapid tumor response with a regimen that will be well tolerated enabling the patient to maintain a good quality of life with full ambulatory status. Materials and Methods: Nine unresectable pancreatic cancer patients ((4(9)) had liver metastases) with an average age of 62 (range: 41-79) were treated with a concurrent regimen consisting of 5-Fluorouracil (CI 200-250 mg/m 2 /24 hrs) and Cisplatin (CI 5mg/24 hrs: 2 weeks on, 1 week off) given simultaneously with 3-D planned BID hyperfractionated radiotherapy to the pancreas (5940 cGy/66 fractions/6.5 weeks), and whole liver (1980 cGy/22 fractions/2 weeks), plus additional dose to the partial liver in metastatic disease. Continuous infusion combination chemotherapy was continued alone after radiotherapy for a total of six months. Chemotherapy was delivered by dual light weight portable external pumps. Hyperalimentation was used as needed to maintain nutritional status and warfarin thromboembolic prophylaxis was also utilized. Tumor response was monitored by monthly abdominal CAT scans, serum markers (CEA, CA 19-9), weight gain, and symptomatology. Full radiographic resolution of tumor mass was considered to be a complete response (CR), whereas 50% or greater radiographic decrease in size was considered a partial response (PR). Evaluation was done by independent diagnostic radiologists. Results: CR and PR of the pancreatic mass was achieved in 88% of all patients ((8(9))). CR was achieved in 44% of all patients ((4(9))). Patients with liver metastases exhibited 75% ((3(4))) PR in liver masses and either CR or PR in the primary site. All

  16. 46 CFR 310.11 - Cadet uniforms.

    Science.gov (United States)

    2010-10-01

    ... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2010-10-01 2010-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping MARITIME...

  17. Combination of nitric oxide stimulation with high-dose 18F-FDG promotes apoptosis and enhances radiation therapy of endothelial cells

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Park, Jin-Won; Jung, Kyung-Ho; Lee, Eun Jeong; Lee, Kyung-Han

    2012-01-01

    Introduction: High-dose 18 F-FDG can provide targeted nuclear therapy of cancer. Endothelial cell injury is a key determinant of tumor response to radiotherapy. Here, we tested the hypothesis that activation of endothelial cell glycolytic metabolism with nitric oxide can enhance the therapeutic effect of high-dose 18 F-FDG. Methods: Calf pulmonary artery endothelial (CPAE) cells were treated with graded doses of 18 F-FDG. Glycolysis was stimulated by 24 h of exposure to the nitric oxide donor, sodium nitroprusside (SNP). Cell viability was assessed by MTT and clonogenic assays. Apoptosis was evaluated by ELISA of cytosolic DNA fragments and Western blots of cleaved caspase-3. Results: SNP stimulation (0.1 and 1 mM) augmented CPAE cell 18 F-FDG uptake to 2.6- and 4.6-fold of controls without adverse effects. Treatment with 333 μCi/ml 18 F-FDG alone reduced viable cell number to 35.4% of controls by Day 3. Combining 0.1 mM SNP stimulation significantly enhanced the killing effect, reducing cell numbers to 19.2% and 39.2% of controls by 333 and 167 μCi/ml of 18 F-FDG, respectively. 18 F-FDG also suppressed clonogenic survival to 80.8% and 43.2% of controls by 83 and 167 μCi/ml, which was again intensified by SNP to 59.7% and 21.1% of controls. The cytotoxic effect of 18 F-FDG was attributed to induction of apoptosis as shown by increased cytosolic fragmented DNA and cleaved caspase-3 levels (26.4% and 30.7% increases by 167 μCi/ml). Combining SNP stimulation significantly increased both of these levels to 1.8-fold of control cells. Conclusion: High-dose 18 F-FDG combined with nitric oxide-stimulated glycolysis is an effective method to inhibit endothelial cell survival and promote apoptosis. These results suggest a potential role of this strategy for targeted radiotherapy of angiogenic vasculature.

  18. Transversals in 4-uniform hypergraphs

    DEFF Research Database (Denmark)

    Henning, Michael A; Yeo, Anders

    2016-01-01

    with maximum degree ∆(H) ≤ 3, then τ (H) ≤ n/4 + m/6, which proves a known conjecture. We show that an easy corollary of our main result is that if H is a 4-uniform hypergraph with n vertices and n edges, then τ (H) ≤3/7 n, which was the main result of the Thomassé-Yeo paper [Combinatorica 27 (2007), 473...

  19. ESPRIT And Uniform Linear Arrays

    Science.gov (United States)

    Roy, R. H.; Goldburg, M.; Ottersten, B. E.; Swindlehurst, A. L.; Viberg, M.; Kailath, T.

    1989-11-01

    Abstract ¬â€?ESPRIT is a recently developed and patented technique for high-resolution estimation of signal parameters. It exploits an invariance structure designed into the sensor array to achieve a reduction in computational requirements of many orders of magnitude over previous techniques such as MUSIC, Burg's MEM, and Capon's ML, and in addition achieves performance improvement as measured by parameter estimate error variance. It is also manifestly more robust with respect to sensor errors (e.g. gain, phase, and location errors) than other methods as well. Whereas ESPRIT only requires that the sensor array possess a single invariance best visualized by considering two identical but other-wise arbitrary arrays of sensors displaced (but not rotated) with respect to each other, many arrays currently in use in various applications are uniform linear arrays of identical sensor elements. Phased array radars are commonplace in high-resolution direction finding systems, and uniform tapped delay lines (i.e., constant rate A/D converters) are the rule rather than the exception in digital signal processing systems. Such arrays possess many invariances, and are amenable to other types of analysis, which is one of the main reasons such structures are so prevalent. Recent developments in high-resolution algorithms of the signal/noise subspace genre including total least squares (TLS) ESPRIT applied to uniform linear arrays are summarized. ESPRIT is also shown to be a generalization of the root-MUSIC algorithm (applicable only to the case of uniform linear arrays of omni-directional sensors and unimodular cisoids). Comparisons with various estimator bounds, including CramerRao bounds, are presented.

  20. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  1. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  2. Optimizing dose and administration regimen of a high-relaxivity contrast agent for myocardial MRI late gadolinium enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Francesco; Di Leo, Giovanni; Papini, Giacomo D.E. [Universita degli Studi di Milano, Dipartimento di Scienze Medico-Chirurgiche, Milan (Italy); IRCCS Policlinico San Donato, Radiology Unit, Via Morandi 30, 20097 San Donato Milanese, Milan (Italy); Giacomazzi, Francesca [IRCCS Policlinico San Donato, Unit of Cardiac Surgery, Via Morandi 30, 20097 San Donato Milanese, Milan (Italy); Di Donato, Marisa [University of Florence, Department of Critical Care Medicine, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Milan (Italy); Sardanelli, Francesco, E-mail: francesco.sardanelli@unimi.it [Universita degli Studi di Milano, Dipartimento di Scienze Medico-Chirurgiche, Milan (Italy); IRCCS Policlinico San Donato, Radiology Unit, Via Morandi 30, 20097 San Donato Milanese, Milan (Italy)

    2011-10-15

    Objectives: To investigate the time-course of late gadolinium enhancement of infarcted myocardium using gadobenate dimeglumine at different dosages and administration regimens. Materials and methods: After institutional review board approval and informed consent, we studied 13 patients (aged 63 {+-} 11 years) with chronic myocardial infarction. They underwent two gadobenate dimeglumine-enhanced MR examinations (interval 24-48 h) using short-axis inversion-recovery gradient-echo sequences, with the following two different protocols, in randomized order: 0.05 mmol/kg and imaging at the 2.5th, 5th, 7.5th and 10th minute plus 0.05 mmol/kg and imaging at the 12.5th, 15th, 17.5th and 20th minute; the same as before but using 0.1 mmol/kg for both contrast injections. Contrast-to-noise ratios (CNRs) between infarcted myocardium, non-infarcted myocardium and left ventricle cavity were calculated for each time-point (2.5-min steps). Friedman ANOVA was used for comparing the CNR time-course; Wilcoxon test for comparing CNR at the 10th and the 20th minute. Results: The CNR between infarcted and non-infarcted myocardium obtained at the 20th minute with 0.05 plus 0.05 mmol/kg resulted significantly higher than that obtained at the 10th minute with 0.05 mmol/kg (P = 0.033) while not significantly different from that obtained at the 10th (0.1 mm/kg) or at the 20th minute with 0.1 plus 0.1 mmol/kg. The CNR between infarcted myocardium and the left ventricle cavity obtained at the 20th minute with 0.05 plus 0.05 mmol/kg resulted significantly higher than all other measured values (P {<=} 0.017). Conclusion: Using gadobenate dimeglumine, 0.05 plus 0.05 mmol/kg allows for a higher CNR between infarcted myocardium and the left ventricle cavity allowing for reliable assessment of the sub-endocardial infarctions.

  3. Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, R.J.; Strouse, P.J. [Section of Pediatric Radiology, University of Michigan Health System, Ann Arbor (United States); Londy, F.J. [Dept. of Radiology, University of Michigan Hospitals, Ann Arbor, MI (United States); Wakefield, T.W. [Dept. of Surgery, Section of Vascular Surgery, University of Michigan Hospitals, Ann Arbor, MI (United States)

    2001-08-01

    Objective. To evaluate a gadolinium-enhanced MR angiography (Gd-MRA) imaging protocol for the assessment of thoracic vessels using double-dose gadolinium and quiet breathing. An animal model was used to simulate imaging in infants and young children. Material and methods. Six baboons (Papio anubis), mean weight 5.7 kg, were sedated and intubated. After the injection of double-dose Gd-DTPA (0.2 mmol/kg) through a peripheral vein, a coronal spoiled 3D gradient-echo volume acquisition was obtained during quiet breathing. Two radiologists reviewed the images for visualization of aortic arch, brachiocephalic vessel origins, pulmonary arteries (central, upper lobe and descending branches), and pulmonary veins (upper and lower). Results. Visualization was excellent for the aortic arch, brachiocephalic vessel origins, and pulmonary arteries, including the hilar branches. Visualization was excellent for the lower and right upper pulmonary veins and fair for the left upper pulmonary vein. There was excellent agreement between radiologists. Conclusion. Imaging of thoracic vessels with Gd-MRA using double gadolinium during quiet breathing was effective in our animal model. The advantages of this technique include a short imaging time and depiction of vascular segments - branches of pulmonary arteries and intraparenchymal segments of pulmonary veins - not optimally visualized with other non-invasive imaging techniques. (orig.)

  4. Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Strouse, P.J.; Londy, F.J.; Wakefield, T.W.

    2001-01-01

    Objective. To evaluate a gadolinium-enhanced MR angiography (Gd-MRA) imaging protocol for the assessment of thoracic vessels using double-dose gadolinium and quiet breathing. An animal model was used to simulate imaging in infants and young children. Material and methods. Six baboons (Papio anubis), mean weight 5.7 kg, were sedated and intubated. After the injection of double-dose Gd-DTPA (0.2 mmol/kg) through a peripheral vein, a coronal spoiled 3D gradient-echo volume acquisition was obtained during quiet breathing. Two radiologists reviewed the images for visualization of aortic arch, brachiocephalic vessel origins, pulmonary arteries (central, upper lobe and descending branches), and pulmonary veins (upper and lower). Results. Visualization was excellent for the aortic arch, brachiocephalic vessel origins, and pulmonary arteries, including the hilar branches. Visualization was excellent for the lower and right upper pulmonary veins and fair for the left upper pulmonary vein. There was excellent agreement between radiologists. Conclusion. Imaging of thoracic vessels with Gd-MRA using double gadolinium during quiet breathing was effective in our animal model. The advantages of this technique include a short imaging time and depiction of vascular segments - branches of pulmonary arteries and intraparenchymal segments of pulmonary veins - not optimally visualized with other non-invasive imaging techniques. (orig.)

  5. Kinetic characterization of glucose aerodehydrogenase from Aspergillus niger EMS-150-F after optimizing the dose of mutagen for enhanced production of enzyme

    Directory of Open Access Journals (Sweden)

    Huma Umbreen

    2013-12-01

    Full Text Available In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield at 2% corn steep liquor (CSL, 36 hours fermentation time, pH 5, 30°C temperature, 0.3% KH2PO4, 0.3% urea and 0.06% CaCO3. The enzyme was then purified and resulted in 57.88 fold purification with 52.12% recovery. On kinetic characterization, the enzyme showed optimum activity at pH 6 and temperature 30°C. The Michaelis-Menton constants (Km, Vmax, Kcat and Kcat/Km were 20 mM, 45.87 U mL-1, 1118.81 s-1 and 55.94 s-1 mM-1, respectively. The enzyme was found to be thermaly stable and the enthalpy and free energy showed an increase with increase in temperature and ΔS* was highly negative proving the enzyme from A. niger EMS-150-F resistant to temperature and showing a very little disorderliness.

  6. Sequential gadolinium-enhanced magnetic resonance angiography of the aortoiliac and the femoropopliteal arteries with repetitive administration of low-dose contrast agent

    International Nuclear Information System (INIS)

    Ito, Koichiro; Kumazaki, Tatsuo

    2000-01-01

    To obtain a wide-range contrast MR angiography in a single examination, we performed two sequential administrations of low-dose (0.08 mmol/kg) gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) with three dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady-state (3D IR-fast SPGR) sequence. Signal characteristics of the sequence were estimated by computed simulations and an in vitro study. A clinical study of 19 examinations was done with sequential MR angiography of the aortoiliac and femoropopliteal arteries. Great signal differences were observed between the high and low Gd concentrations. Higher Gd concentrations generated significantly stronger signals. Greater signals were produced at TIs of longer than 150 msec than at shorter than 100 msec. In the clinical study, the arteries were visualized with sufficient signals even with a small amount of contrast agent. Contrast-to-noise ratios between the arteries and surrounding skeletal muscles or fat tissues ranged from 10.5±9.6 to 4.7±2.2 and 6.6±2.8 to -3.1±11.2, respectively. No venous enhancement was found with diluted contrast agent on the second MR angiography. Two consecutive contrast MR angiographies can be obtained with repetitive administration of low-dose contrast agent. (author)

  7. Sequential gadolinium-enhanced magnetic resonance angiography of the aortoiliac and the femoropopliteal arteries with repetitive administration of low-dose contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Koichiro [Nippon Medical School, Inba, Chiba (Japan). Chiba Hokusoh Hospital; Kumazaki, Tatsuo

    2000-12-01

    To obtain a wide-range contrast MR angiography in a single examination, we performed two sequential administrations of low-dose (0.08 mmol/kg) gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) with three dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady-state (3D IR-fast SPGR) sequence. Signal characteristics of the sequence were estimated by computed simulations and an in vitro study. A clinical study of 19 examinations was done with sequential MR angiography of the aortoiliac and femoropopliteal arteries. Great signal differences were observed between the high and low Gd concentrations. Higher Gd concentrations generated significantly stronger signals. Greater signals were produced at TIs of longer than 150 msec than at shorter than 100 msec. In the clinical study, the arteries were visualized with sufficient signals even with a small amount of contrast agent. Contrast-to-noise ratios between the arteries and surrounding skeletal muscles or fat tissues ranged from 10.5{+-}9.6 to 4.7{+-}2.2 and 6.6{+-}2.8 to -3.1{+-}11.2, respectively. No venous enhancement was found with diluted contrast agent on the second MR angiography. Two consecutive contrast MR angiographies can be obtained with repetitive administration of low-dose contrast agent. (author)

  8. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  9. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Optimization of overlap uniformness for ptychography.

    Science.gov (United States)

    Huang, Xiaojing; Yan, Hanfei; Harder, Ross; Hwu, Yeukuang; Robinson, Ian K; Chu, Yong S

    2014-05-19

    We demonstrate the advantages of imaging with ptychography scans that follow a Fermat spiral trajectory. This scan pattern provides a more uniform coverage and a higher overlap ratio with the same number of scan points over the same area than the presently used mesh and concentric [13] patterns. Under realistically imperfect measurement conditions, numerical simulations show that the quality of the reconstructed image is improved significantly with a Fermat spiral compared with a concentric scan pattern. The result is confirmed by the performance enhancement with experimental data, especially under low-overlap conditions. These results suggest that the Fermat spiral pattern increases the quality of the reconstructed image and tolerance to data with imperfections.

  11. Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions.

    Science.gov (United States)

    Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René; Chrystyn, Henry

    2015-10-01

    Spiromax(®) is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide-formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Mean values for both budesonide and formoterol were within 85%-115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were 60 L/min. DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment.

  12. SU-E-T-231: Measurements of Gold Nanoparticle-Mediated Proton Dose Enhancement Due to Particle-Induced X-Ray Emission and Activation Products Using Radiochromic Films and CdTe Detector

    International Nuclear Information System (INIS)

    Cho, J; Cho, S; Manohar, N; Krishnan, S

    2014-01-01

    Purpose: There have been several reports of enhanced cell-killing and tumor regression when tumor cells and mouse tumors were loaded with gold nanoparticles (GNPs) prior to proton irradiation. While particle-induced xray emission (PIXE), Auger electrons, secondary electrons, free radicals, and biological effects have been suggested as potential mechanisms responsible for the observed GNP-mediated dose enhancement/radiosensitization, there is a lack of quantitative analysis regarding the contribution from each mechanism. Here, we report our experimental effort to quantify some of these effects. Methods: 5-cm-long cylindrical plastic vials were filled with 1.8 mL of either water or water mixed with cylindrical GNPs at the same gold concentration (0.3 mg Au/g) as used in previous animal studies. A piece of EBT2 radiochromic film (30-µm active-layer sandwiched between 80/175-µm outer-layers) was inserted along the long axis of each vial and used to measure dose enhancement due to PIXE from GNPs. Vials were placed at center-of-modulation (COM) and 3-cm up-/down-stream from COM and irradiated with 5 different doses (2–10 Gy) using 10-cm-SOBP 160-MeV protons. After irradiation, films were cleaned and read to determine the delivered dose. A vial containing spherical GNPs (20 mg Au/g) was also irradiated, and gamma-rays from activation products were measured using a cadmium-telluride (CdTe) detector. Results: Film measurements showed no significant dose enhancement beyond the experimental uncertainty (∼2%). There was a detectable activation product from GNPs, but it appeared to contribute to dose enhancement minimally (<0.01%). Conclusion: Considering the composition of EBT2 film, it can be inferred that gold characteristic x-rays from PIXE and their secondary electrons make insignificant contribution to dose enhancement. The current investigation also suggests negligible dose enhancement due to activation products. Thus, previously-reported GNP-mediated proton dose

  13. Vote par sondage uniforme incorruptible

    OpenAIRE

    Blanchard , Nicolas

    2016-01-01

    International audience; Introduit en 2012 par David Chaum, le vote par sondage uniforme (random-sample voting) est un protocole de vote basé sur un choix d'une sous-population représentative , permettant de limiter les coûts tout en ayant de nombreux avantages, principalement lorsqu'il est couplé a d'autres techniques comme ThreeBallot. Nous analysons un problème de corruptibilité potentielle où les votants peuvent vendre leur vote au plus offrant et proposons une variation du protocole reméd...

  14. Enhancement of High-Intensity Actions and Physical Performance During a Simulated Brazilian Jiu-Jitsu Competition With a Moderate Dose of Caffeine.

    Science.gov (United States)

    Diaz-Lara, Francisco Javier; Del Coso, Juan; Portillo, Javier; Areces, Francisco; García, Jose Manuel; Abián-Vicén, Javier

    2016-10-01

    Although caffeine is one of the most commonly used substances in combat sports, information about its ergogenic effects on these disciplines is very limited. To determine the effectiveness of ingesting a moderate dose of caffeine to enhance overall performance during a simulated Brazilian jiu-jitsu (BJJ) competition. Fourteen elite BJJ athletes participated in a double-blind, placebo-controlled experimental design. In a random order, the athletes ingested either 3 mg/kg body mass of caffeine or a placebo (cellulose, 0 mg/kg) and performed 2 simulated BJJ combats (with 20 min rest between them), following official BJJ rules. Specific physical tests such as maximal handgrip dynamometry, maximal height during a countermovement jump, permanence during a maximal static-lift test, peak power in a bench-press exercise, and blood lactate concentration were measured at 3 specific times: before the first combat and immediately after the first and second combats. The combats were video-recorded to analyze fight actions. After the caffeine ingestion, participants spent more time in offensive actions in both combats and revealed higher blood lactate values (P Performance in all physical tests carried out before the first combat was enhanced with caffeine (P caffeine and placebo. Caffeine might be an effective ergogenic aid for improving intensity and physical performance during successive elite BJJ combats.

  15. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    International Nuclear Information System (INIS)

    Sun, Hao; Hou, Xin-Yi; Xue, Hua-Dan; Li, Xiao-Guang; Jin, Zheng-Yu; Qian, Jia-Ming; Yu, Jian-Chun; Zhu, Hua-Dong

    2015-01-01

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  16. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hao, E-mail: sunhao_robert@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Hou, Xin-Yi, E-mail: hxy_pumc@126.com [Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Xue, Hua-Dan, E-mail: bjdanna95@hotmail.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Li, Xiao-Guang, E-mail: xglee88@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Jin, Zheng-Yu, E-mail: zhengyu_jin@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Qian, Jia-Ming, E-mail: qjiaming57@gmail.com [Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Yu, Jian-Chun, E-mail: yu-jch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Zhu, Hua-Dong, E-mail: huadongzhu@hotmail.com [Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China)

    2015-05-15

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  17. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  18. Visualization of endolymphatic hydrops in meniere's disease after single-dose intravenous gadolinium-based contrast medium. Timing of optimal enhancement

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Yamazaki, Masahiro; Kawai, Hisashi; Bokura, Kiminori; Sone, Michihiko; Nakashima, Tsutomu

    2012-01-01

    Visualization of endolymphatic hydrops (EH) in patients with Meniere's disease (MD) is now possible by heavily T 2 -weighted 3-dimensional fluid-attenuated inversion recovery (h T 2 W-3D-FLAIR) obtained 4 hours after intravenous (IV) administration of single dose gadolinium-based contrast medium (GBCM). Although maximum enhancement has been reported 4 hours after contrast administration in healthy volunteers, the timing of optimal enhancement in patients with MD is not reported. We investigated if that optimal timing is earlier or later than 4 hours. We evaluated 10 consecutive patients with suspected MD whom we randomly divided into 2 groups. We obtained h T 2 W-3D-FLAIR before GBCM administration and 10 min, 3.5 hours, and 4 hours after GBCM administration in Group A and before and 10 min, 4 hours, and 4.5 hours after GBCM administration in Group B. We compared signal intensity ratio (SIR) values of the perilymph and pons between 3.5 and 4 hours in Group A and between 4 and 4.5 hours in Group B and evaluated grades of EH at 3.5 and 4 hours in Group A and at 4 and 4.5 hours in Group B. SIR values did not differ significantly between 3.5 and 4 hours in Group A and between 4 and 4.5 hours in Group B. However, SIR values at 4 hours were significantly higher in Group A than Group B. Grades of EH agreed between 3.5 and 4 hours in Group A and between 4 and 4.5 hours in Group B. The optimal timing of contrast enhancement in patients with suspected MD remains unclear, but evaluation of EH may be possible from 3.5 to 4.5 hours after contrast administration. (author)

  19. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    International Nuclear Information System (INIS)

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-01-01

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway

  20. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Science.gov (United States)

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  1. Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating.

    Science.gov (United States)

    Hu, Run; Luo, Xiaobing; Zheng, Huai; Qin, Zong; Gan, Zhiqiang; Wu, Bulong; Liu, Sheng

    2012-06-18

    A conformal phosphor coating can realize a phosphor layer with uniform thickness, which could enhance the angular color uniformity (ACU) of light-emitting diode (LED) packaging. In this study, a novel freeform lens was designed for simultaneous realization of LED uniform illumination and conformal phosphor coating. The detailed algorithm of the design method, which involves an extended light source and double refractions, was presented. The packaging configuration of the LED modules and the modeling of the light-conversion process were also presented. Monte Carlo ray-tracing simulations were conducted to validate the design method by comparisons with a conventional freeform lens. It is demonstrated that for the LED module with the present freeform lens, the illumination uniformity and ACU was 0.89 and 0.9283, respectively. The present freeform lens can realize equivalent illumination uniformity, but the angular color uniformity can be enhanced by 282.3% when compared with the conventional freeform lens.

  2. Decidability of uniform recurrence of morphic sequences

    OpenAIRE

    Durand , Fabien

    2012-01-01

    We prove that the uniform recurrence of morphic sequences is decidable. For this we show that the number of derived sequences of uniformly recurrent morphic sequences is bounded. As a corollary we obtain that uniformly recurrent morphic sequences are primitive substitutive sequences.

  3. Uniform Statistical Convergence on Time Scales

    Directory of Open Access Journals (Sweden)

    Yavuz Altin

    2014-01-01

    Full Text Available We will introduce the concept of m- and (λ,m-uniform density of a set and m- and (λ,m-uniform statistical convergence on an arbitrary time scale. However, we will define m-uniform Cauchy function on a time scale. Furthermore, some relations about these new notions are also obtained.

  4. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer

    Directory of Open Access Journals (Sweden)

    Zhang L

    2017-03-01

    Full Text Available Lianru Zhang, Rutian Li, Hong Chen, Jia Wei, Hanqing Qian, Shu Su, Jie Shao, Lifeng Wang, Xiaoping Qian, Baorui Liu The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China Abstract: Cell membrane-derived nanoparticles are becoming more attractive because of their ability to mimic many features of their source cells. This study reports on a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this system, the surface of poly-lactic-co-glycolic acid nanoparticles was camouflaged using T-lymphocyte membranes, and local low-dose irradiation (LDI was used as a chemoattractant for nanoparticle targeting. The T-lymphocyte membrane coating was verified using dynamic light scattering, transmission electron microscopy, and confocal laser scanning microscopy. This new platform reduced nanoparticle phagocytosis by macrophages to 23.99% (P=0.002. Systemic administration of paclitaxel-loaded T-lymphocyte membrane-coated nanoparticles inhibited the growth of human gastric cancer by 56.68% in Balb/c nude mice. Application of LDI at the tumor site significantly increased the tumor growth inhibition rate to 88.50%, and two mice achieved complete remission. Furthermore, LDI could upregulate the expression of adhesion molecules in tumor vessels, which is important in the process of leukocyte adhesion and might contribute to the localization of T-lymphocyte membrane-encapsulated nanoparticles in tumors. Therefore, this new drug-delivery platform retained both the long circulation time and tumor site accumulation ability of human cytotoxic T lymphocytes, while local LDI could significantly enhance tumor localization. Keywords: cell membrane, drug delivery system, gastric cancer, low-dose irradiation, nanoparticles

  5. Uniform magnetic excitations in nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Britt Rosendahl

    2005-01-01

    We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...

  6. Structure determination of uniformly {sup 13}C, {sup 15}N labeled protein using qualitative distance restraints from MAS solid-state {sup 13}C-NMR observed paramagnetic relaxation enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hajime [Hokkaido University, Graduate School of Life Science (Japan); Egawa, Ayako [Osaka University, Institute for Protein Research (Japan); Kido, Kouki [Hokkaido University, Graduate School of Life Science (Japan); Kameda, Tomoshi [National Institute of Advanced Industrial Science and Technology, Biotechnology Research Institute for Drug Discovery (Japan); Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu [Hokkaido University, Faculty of Advanced Life Science (Japan); Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan); Demura, Makoto, E-mail: demura@sci.hokudai.ac.jp [Hokkaido University, Faculty of Advanced Life Science (Japan)

    2016-01-15

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn{sup 2+} mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library.

  7. Spacetime transformations from a uniformly accelerated frame

    International Nuclear Information System (INIS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-01-01

    We use the generalized Fermi–Walker transport to construct a one-parameter family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the weak hypothesis of locality, we obtain local spacetime transformations from a uniformly accelerated frame K′ to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. (paper)

  8. Parallel processing and non-uniform grids in global air quality modeling

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, Mikhail A.

    2002-01-01

    A large-scale global air quality model, running efficiently on a single vector processor, is enhanced to make more realistic and more long-term simulations feasible. Two strategies are combined: non-uniform grids and parallel processing. The communication through the hierarchy of non-uniform grids

  9. Enhanced therapeutic effect of APAVAC immunotherapy in combination with dose-intense chemotherapy in dogs with advanced indolent B-cell lymphoma.

    Science.gov (United States)

    Marconato, L; Stefanello, D; Sabattini, S; Comazzi, S; Riondato, F; Laganga, P; Frayssinet, P; Pizzoni, S; Rouquet, N; Aresu, L

    2015-09-22

    The aim of this non-randomized controlled trial was to compare time to progression (TTP), lymphoma-specific survival (LSS), and safety of an autologous vaccine (consisting of hydroxyapatite ceramic powder and Heat Shock Proteins purified from the dogs' tumors, HSPPCs-HA) plus chemotherapy versus chemotherapy alone in dogs with newly diagnosed, clinically advanced, histologically confirmed, multicentric indolent B-cell lymphoma. The vaccine was prepared from dogs' resected lymph nodes and administered as an intradermal injection. Forty-five client-owned dogs were enrolled: 20 dogs were treated with dose-intense chemotherapy, and 25 received concurrent immunotherapy. Both treatment arms were well tolerated, with no exacerbated toxicity in dogs also receiving the vaccine. TTP was significantly longer for dogs treated with chemo-immunotherapy versus those receiving chemotherapy only (median, 209 versus 85 days, respectively, P=0.015). LSS was not significantly different between groups: dogs treated with chemo-immunotherapy had a median survival of 349 days, and those treated with chemotherapy only had a median survival of 200 days (P=0.173). Among vaccinated dogs, those mounting an immune response had a significantly longer TTP and LSS than those with no detectable response (P=0.012 and P=0.003, respectively). Collectively these results demonstrate that vaccination with HSPPCs-HA may produce clinical benefits with no increased toxicity, thereby providing a strategy for enhancing chemotherapy in dogs with advanced indolent lymphoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Discovery of Uniformly Expanding Universe

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2012-01-01

    Full Text Available Saul Perlmutter and the Brian Schmidt – Adam Riess teams reported that their Friedmann-model GR-based analysis of their supernovae magnitude-redshift data re- vealed a new phenomenon of “dark energy” which, it is claimed, forms 73% of the energy / matter density of the present-epoch universe, and which is linked to the further claim of an accelerating expansion of the universe. In 2011 Perlmutter, Schmidt and Riess received the Nobel Prize in Physics “for the discovery of the accelerating ex- pansion of the Universe through observations of distant supernovae”. Here it is shown that (i a generic model-independent analysis of this data reveals a uniformly expanding universe, (ii their analysis actually used Newtonian gravity, and finally (iii the data, as well as the CMB fluctuation data, does not require “dark energy” nor “dark matter”, but instead reveals the phenomenon of a dynamical space, which is absent from the Friedmann model.

  11. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    Energy Technology Data Exchange (ETDEWEB)

    Balderson, M.J.; Kirkby, C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta (Canada)

    2014-08-15

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.

  12. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    International Nuclear Information System (INIS)

    Balderson, M.J.; Kirkby, C.

    2014-01-01

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted

  13. Minimal dose of milk protein concentrate to enhance the anabolic signalling response to a single bout of resistance exercise; a randomised controlled trial.

    Science.gov (United States)

    Mitchell, Cameron J; Zeng, Nina; D'Souza, Randall F; Mitchell, Sarah M; Aasen, Kirsten; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2017-01-01

    Resistance training is a potent stimulus to induce muscle hypertrophy. Supplemental protein intake is known to enhance gains in muscle mass through activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, which initiates protein translation. While the optimal dose of high quality protein to promote post exercise anabolism in young or older men has been investigated, little is known about the minimum doses of protein required to potentiate the resistance exercise activation of anabolic signalling in middle aged men. Twenty healthy men (46.3 ± 5.7 years, BMI: 23.9 ± 6.6 kg/m 2 ) completed a single bout of unilateral resistance exercise consisting of 4 sets of leg extension and press at 80% of 1 repetition maximum. Participants were randomised to consume either formulated milk product containing 9 g milk protein (FMP) or an isoenergetic carbohydrate placebo (CHO) immediately post exercise, in a double blind fashion. A single muscle biopsy was collected at pre-exercise baseline and then bilateral biopsies were collected 90 and 240 min after beverage consumption. P70S6K Thr389 phosphorylation was increased with exercise irrespective of group, P70S6K Thr421/Ser424 was increased with exercise only in the FMP group at 240 min. Likewise, rpS6 Ser235/236 phosphorylation was increased with exercise irrespective of group, rpS6 Ser240/244 increased to a greater extent following exercise in the FMP group. mRNA expression of the amino acid transporter, LAT1/ SLC7A5 increased with both exercise and beverage consumption irrespective of group. PAT1/ SLC36A1 , CAT1/ SLC7A1 and SNAT2/ SLC38A2 mRNA increased only after exercise regardless of group. Nine grams of milk protein is sufficient to augment some measures of downstream mTORC1 signalling after resistance exercise but does not potentiate exercise induced increases in amino acid transporter expression. Formulated products containing nine grams of milk protein would be expected stimulate muscle

  14. Effect of duration of contrast material injection on peak enhancement times and values of the aorta, main portal vein, and liver at dynamic MDCT with the dose of contrast medium tailored to patient weight

    International Nuclear Information System (INIS)

    Erturk, S.M.; Ichikawa, T.; Sou, H.; Tsukamoto, T.; Motosugi, U.; Araki, T.

    2008-01-01

    Aim: To investigate the effects of contrast material injection duration on peak enhancement times and attenuation values of the aorta, main portal vein, and liver at MDCT when the dose of contrast material is adjusted to patient weight. Material and methods: Seventy-five patients were randomly assigned to one of five groups, with durations of injection of 25, 30, 35, 40, or 45 s. All patients were injected with 2 ml/kg iodine (300 mg/ml). Attenuation values and peak enhancement times for the aorta, main portal vein, and liver were determined. The relationship between patient weight and enhancement times and values, the differences regarding peak enhancement times, and the relationship between injection duration and enhancement values were investigated using Pearson correlation, analysis of variance (ANOVA), and Spearman rank correlation, respectively. Results: No significant correlations were seen between patient weight and peak enhancement times or values. Mean peak enhancement times for the aorta, main portal vein, and liver were 9-11 s, 18-22 s, and 30-34 s, respectively (p > 0.05). The correlations between injection duration and peak enhancement values were significant and negative. Conclusions: Regardless of patient weight and injection duration, peak enhancement times of aorta, main portal vein and liver were approximately 10, 20, and 30 s, respectively. The enhancement values tended to be higher for shorter injection durations

  15. School uniforms: tradition, benefit or predicament?

    OpenAIRE

    Van Aardt, Annette Marie; Wilken, Ilani

    2012-01-01

    This article focuses on the controversies surrounding school uniforms. Roleplayers in this debate in South Africa are parents, learners and educators, and arguments centre on aspects such as identity, economy and the equalising effect of school uniforms, which are considered in the literature to be benefits. Opposing viewpoints highlight the fact that compulsory uniforms infringe on learners’ constitutional rights to self-expression. The aim of this research was to determine the perspectives ...

  16. Improving dose homogeneity in head and neck radiotherapy with custom 3-D compensation

    International Nuclear Information System (INIS)

    Brock, Linda K.; Harari, Paul M.; Sharda, Navneet N.; Paliwal, Bhudatt R.; Kinsella, Timothy J.

    1996-01-01

    delivered to selected, clinically relevant, anatomic volumes (i.e., larynx, TMJ, parotid) were also reduced 3-15% with custom compensation. Dose variation between measured and calculated doses was ±2.9%, which falls within the system uncertainty. Design and construction of the compensators was generally noted to be practical and accurate. Fabrication and positioning of the compensators was found to be accurate to within ±1 mm of design specifications. Conclusion: 3-D custom tissue compensation can substantially improve dose homogeneity within the treatment volume for H and N cancer patients treated with radiotherapy. Maximum doses and clinically important volumes receiving greater than 5-10% of the prescribed dose are routinely reduced. Improved dose uniformity across the treatment volume may reduce normal tissue complication rates and/or allow for safe delivery of higher total doses in an attempt to enhance locoregional tumor control. Precision immobilization and day-to-day treatment reproducibility become critical for the effective implementation of such 3-D compensation. The 3-D custom compensator system is practical, reproducible and has the potential to enhance the quality and outcome of the treatments delivered

  17. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bengua, Gerard [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Kobayashi, Tooru [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Tanaka, Kenichi [Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Nakagawa, Yoshinobu [National Kagawa Children' s Hospital, Zentsuji-cho, Zentsuji, Kagawa 765-8501 (Japan)

    2004-03-07

    The characteristics of a number of candidate boron-dose enhancer (BDE) materials for boron neutron capture therapy (BNCT) using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons were evaluated based on the treatable protocol depth (TPD), defined in this paper. Simulation calculations were carried out by means of MCNP-4B transport code for candidate BDE materials, namely, (C{sub 2}H{sub 4}){sub n}, (C{sub 2}H{sub 3}F){sub n}, (C{sub 2}H{sub 2}F{sub 2}){sub n}, (C{sub 2}HF{sub 3}){sub n}, (C{sub 2}D{sub 4}){sub n}, (C{sub 2}F{sub 4}){sub n}, beryllium metal, graphite, D{sub 2}O and {sup 7}LiF. Dose protocols applied were those used for intra-operative BNCT treatment for brain tumour currently used in Japan. The maximum TPD (TPD{sub max}) for each BDE material was found to be between 4 cm and 5 cm in the order of (C{sub 2}H{sub 4}){sub n} < (C{sub 2}H{sub 3}F){sub n} < (C{sub 2}H{sub 2}F{sub 2}){sub n} < (C{sub 2}HF{sub 3}){sub n} < beryllium metal < (C{sub 2}D{sub 4}){sub n} < graphite < (C{sub 2}F{sub 4}){sub n} < D{sub 2}O < {sup 7}LiF. Based on the small and arbitrary variations in the TPD{sub max} for these materials, an explicit advantage of a candidate BDE material could not be established from the TPD{sub max} alone. The dependence of TPD on BDE thickness was found to be influenced by the type of BDE material. For materials with hydrogen, sharp variations in TPD were observed, while those without hydrogen exhibited more moderate fluctuations in TPD as the BDE thickness was varied. The BDE thickness corresponding to TPD{sub max} (BDE(TPD{sub max})) was also found to depend on the type of BDE material used. Thicker BDE(TPD{sub max}), obtained mostly for BDE materials without hydrogen, significantly reduced the dose rates within the phantom. The TPD{sub max}, the dependence of TPD on BDE thickness and the BDE (TPD{sub max}) were ascertained as appropriate optimization criteria in choosing suitable BDE materials for BNCT. Among the candidate BDE materials

  18. Restaging of patients with lymphoma. Comparison of low dose CT (20 mAs) with contrast enhanced diagnostic CT in combined [18F]-FDG PET/CT

    International Nuclear Information System (INIS)

    Fougere, C. la; Pfluger, T.; Schneider, V.; Hacker, M.; Broeckel, N.; Bartenstein, P.; Tiling, R.; Morhard, D.; Hundt, W.; Becker, C.

    2008-01-01

    Aim: assessment of the clinical benefit of i.v. contrast enhanced diagnostic CT (CE-CT) compared to low dose CT with 20 mAs (LD-CT) without contrast medium in combined [ 18 F]-FDG PET/CT examinations in restaging of patients with lymphoma. Patients, methods: 45 patients with non-Hodgkin lymphoma (n = 35) and Hodgkin's disease (n = 10) were included into this study. PET, LD-CT and CE-CT were analyzed separately as well as side-by-side. Lymphoma involvement was evaluated separately for seven regions. Indeterminate diagnoses were accepted whenever there was a discrepancy between PET and CT findings. Results for combined reading were calculated by rating indeterminate diagnoses according the suggestions of either CT or PET. Each patient had a clinical follow-up evaluation for > 6 months. Results: region-based evaluation suggested a sensitivity/specificity of 66/93% for LD-CT, 87%/91% for CE-CT, 95%/96% for PET, 94%/99% for PET/LD-CT and 96%/99% for PET/CE-CT. The data for PET/CT were obtained by rating indeterminate results according to the suggestions of PET, which turned out to be superior to CT. Lymphoma staging was changed in two patients using PET/CE-CT as compared to PET/LD-CT. Conclusion: overall, there was no significant difference between PET/LD-CT and PET/CE-CT. However, PET/CE-CT yielded a more precise lesion delineation than PET/LD-CT. This was due to the improved image quality of CE-CT and might lead to a more accurate investigation of lymphoma. (orig.)

  19. Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion.

    Directory of Open Access Journals (Sweden)

    Cinthia Silva-Vilches

    Full Text Available Immature or semi-mature dendritic cells (DCs represent tolerogenic maturation stages that can convert naive T cells into Foxp3+ induced regulatory T cells (iTreg. Here we found that murine bone marrow-derived DCs (BM-DCs treated with cholera toxin (CT matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CThi, CTlo or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β. Only DCs matured under CThi conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CTlo- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3+ iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CTlo- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE by inducing Foxp3+ Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.

  20. Value of Single-Dose Contrast-Enhanced Magnetic Resonance Angiography Versus Intraarterial Digital Subtraction Angiography in Therapy Indications in Abdominal and Iliac Arteries

    International Nuclear Information System (INIS)

    Schaefer, Philipp J.; Schaefer, Fritz K. W.; Mueller-Huelsbeck, Stefan; Both, Markus; Heller, Martin; Jahnke, Thomas

    2007-01-01

    The objective of the study was to prove the value of single-dose contrast-enhanced magnetic resonance angiography [three-dimensional (3D) ceMRA] in abdominal and iliac arteries versus the reference standard intra-arterial digital subtraction angiography (i.a.DSA) when indicating a therapy. Patients suspected of having abdominal or iliac artery stenosis were included in this study. A positive vote of the local Ethics Committee was given. After written informed consent was obtained, 37 patients were enrolled, of which 34 were available for image evaluation. Both 3D ceMRA and i.a. DSA were performed for each patient. The dosage for 3D ceMRA was 0.1 mmol/kg body weight in a 1.5-T scanner with a phased-array coil. The parameters of the 3D-FLASH sequence were as follows: TR/TE 4.6/1.8 ms, effective thickness 3.5 mm, matrix 512 x 200, flip angle 30 o , field of view 420 mm, TA 23 s, coronal scan orientation. Totally, 476 vessel segments were evaluated for stenosis degree by two radiologists in a consensus fashion in a blinded read. For each patient, a therapy was proposed, if clinically indicated. Sensitivity, specificity, positive and negative predictive values, and accuracy for stenoses ≥50% were 68%, 92%, 44%, 97%, and 90%, respectively. In 13/34 patients, a discrepancy was found concerning therapy decisions based on MRA findings versus therapy decisions based on the reference standard DSA. The results showed that the used MRA imaging technique of abdominal and iliac arteries is not competitive to i.a. DSA, with a high rate of misinterpretation of the MRAs resulting in incorrect therapies

  1. A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sang Hoon; Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Han, Young Yih [Dept. of Radiation Oncology, amsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-03-15

    In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median R{sup 2} of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.

  2. A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

    International Nuclear Information System (INIS)

    Jung, Sang Hoon; Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Han, Young Yih

    2016-01-01

    In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median R 2 of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer

  3. Contrast-enhanced magnetic resonance angiography (MRA): evaluation of three different contrast agents at two different doses (0.05 and 0.1 mmol/kg) in pigs at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Voth, M.; Vos, B.; Pietsch, H. [Bayer Schering Pharma AG, Diagnostic Imaging, Berlin (Germany); Michaely, Henrik J. [University of Heidelberg, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Schwenke, C. [ScoSSiS - Statistical Consulting, Berlin (Germany)

    2011-02-15

    To compare the image quality of contrast-enhanced magnetic resonance angiography (CE-MRA) of the supra-aortic vessels at 0.05 mmol/kg bw and 0.1 mmol/kg bw, between gadobutrol, Gd-DTPA and Gd-BOPTA quantitatively and qualitatively a total of eight pigs were evaluated intraindividually at 1.5 T. Each pig was examined using 0.1 mmol/kg gadobutrol, Gd-DTPA and Gd-BOPTA on day one and 0.05 mmol/kg on day two. MRA datasets for the carotid artery and the infraorbital artery were qualitatively assessed regarding overall image quality on an ordinal four-point scale (4-excellent, 1-non-diagnostic). The signal-to noise-ratio (SNR) was measured. The qualitative assessment of the carotid artery showed a higher median image quality for the 0.1 mmol dose than for the 0.05 mmol dose for all three compounds. No difference was found for the infraorbital artery. Mean SNR of Gd-BOPTA, Gd-DTPA, gadobutrol at 0.05 mmol/kg were 36.0 {+-} 13.4/37.9 {+-} 16.3/43.7 {+-} 0.4 and at 0.1 mmol/kg they were 50.1 {+-} 12.4/46.6 {+-} 6.5 / 54.6 {+-} 10.2. Gd-BOPTA 0.05 revealed a significantly lower SNR than all other agents at normal dose. Full-dose gadolinium MRA results in higher image quality and significantly higher SNR compared with the half dose. Gadobutrol and Gd-BOPTA have similar enhancement properties at full dose but at half dose, gadobutrol appears superior. (orig.)

  4. School Uniform Policies in Public Schools

    Science.gov (United States)

    Brunsma, David L.

    2006-01-01

    The movement for school uniforms in public schools continues to grow despite the author's research indicating little if any impact on student behavior, achievement, and self-esteem. The author examines the distribution of uniform policies by region and demographics, the impact of these policies on perceptions of school climate and safety, and…

  5. School Uniform Policies: Students' Views of Effectiveness.

    Science.gov (United States)

    McCarthy, Teresa M.; Moreno, Josephine

    2001-01-01

    Focus-group interviews of New York City middle-school students about their perceptions of the effectiveness of the school-uniform policy. Finds that students' perceptions of the effects of school-uniform policy on school culture varied considerably with those intended by the principal. (Contains 40 references.) (PKP)

  6. School Uniforms and Discourses on Childhood.

    Science.gov (United States)

    Bodine, Ann

    2003-01-01

    This ethnographic study examined the introduction of school uniforms in the public schools of one California city. Findings indicated that the uniform issue intersected with issues such as student safety and violence, family stress, egalitarianism, competitive dressing, and a power struggle over shaping the childhood environment. It was concluded…

  7. Student Dress Codes and Uniforms. Research Brief

    Science.gov (United States)

    Johnston, Howard

    2009-01-01

    According to an Education Commission of the States "Policy Report", research on the effects of dress code and school uniform policies is inconclusive and mixed. Some researchers find positive effects; others claim no effects or only perceived effects. While no state has legislatively mandated the wearing of school uniforms, 28 states and…

  8. School Dress Codes and Uniform Policies.

    Science.gov (United States)

    Anderson, Wendell

    2002-01-01

    Opinions abound on what students should wear to class. Some see student dress as a safety issue; others see it as a student-rights issue. The issue of dress codes and uniform policies has been tackled in the classroom, the boardroom, and the courtroom. This Policy Report examines the whole fabric of the debate on dress codes and uniform policies…

  9. A School Uniform Program That Works.

    Science.gov (United States)

    Loesch, Paul C.

    1995-01-01

    According to advocates, school uniforms reduce gang influence, decrease families' clothing expenditures, and help mitigate potentially divisive cultural and economic differences. Aiming to improve school climate, a California elementary school adopted uniforms as a source of pride and affiliation. This article describes the development of the…

  10. Devaney's chaos on uniform limit maps

    International Nuclear Information System (INIS)

    Yan Kesong; Zeng Fanping; Zhang Gengrong

    2011-01-01

    Highlights: → The transitivity may not been inherited even if the sequence functions mixing. → The sensitivity may not been inherited even if the iterates of sequence have some uniform convergence. → Some equivalence conditions for the transitivity and sensitivity for uniform limit function are given. → A non-transitive sequence may converge uniformly to a transitive map. - Abstract: Let (X, d) be a compact metric space and f n : X → X a sequence of continuous maps such that (f n ) converges uniformly to a map f. The purpose of this paper is to study the Devaney's chaos on the uniform limit f. On the one hand, we show that f is not necessarily transitive even if all f n mixing, and the sensitive dependence on initial conditions may not been inherited to f even if the iterates of the sequence have some uniform convergence, which correct two wrong claims in . On the other hand, we give some equivalence conditions for the uniform limit f to be transitive and to have sensitive dependence on initial conditions. Moreover, we present an example to show that a non-transitive sequence may converge uniformly to a transitive map.

  11. Growth functions for some uniformly amenable groups

    Directory of Open Access Journals (Sweden)

    Dronka Janusz

    2017-04-01

    Full Text Available We present a simple constructive proof of the fact that every abelian discrete group is uniformly amenable. We improve the growth function obtained earlier and find the optimal growth function in a particular case. We also compute a growth function for some non-abelian uniformly amenable group.

  12. On Uniform Exponential Trichotomy in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Kovacs Monteola Ilona

    2014-06-01

    Full Text Available In this paper we consider three concepts of uniform exponential trichotomy on the half-line in the general framework of evolution operators in Banach spaces. We obtain a systematic classification of uniform exponential trichotomy concepts and the connections between them.

  13. Controlling of density uniformity of polyacrylate foams

    International Nuclear Information System (INIS)

    Shan Wenwen; Yuan Baohe; Wang Yanhong; Xu Jiayun; Zhang Lin

    2010-01-01

    The density non-uniformity existing in most low-density foams will affect performance of the foams. The trimethylolpropane trimethacrylate (TMPTA) foam targets were prepared and controlling methods of the foams, density uniformity were explored together with its forming mechanism. It has been found that the UV-light with high intensity can improve the distribution uniformity of the free radicals induced by UV photons in the solvents, thus improve the density uniformity of the foams. In addition, container wall would influence the concentration distribution of the solution, which affects the density uniformity of the foams. Thus, the UV-light with high intensity was chosen together with polytetrafluoroethylene molds instead of glass molds to prepare the foams with the density non-uniformity less than 10%. β-ray detection technology was used to measure the density uniformity of the TMPTA foams with the density in the range of 10 to 100 mg · cm -3 , and the results show that the lower the foam density is, the worse the density uniformity is. (authors)

  14. A Uniform Syntax and Discourse Structure

    DEFF Research Database (Denmark)

    Hardt, Daniel

    2013-01-01

    I present arguments in favor of the Uniformity Hypothesis: the hypothesis that discourse can extend syntax dependencies without conflicting with them. I consider arguments that Uniformity is violated in certain cases involving quotation, and I argue that the cases presented in the literature...

  15. Enhancement of viability of radiosensitive (PBMC and resistant (MDA-MB-231 clones in low-dose-rate cobalt-60 radiation therapy

    Directory of Open Access Journals (Sweden)

    Patrícia Lima Falcão

    2015-06-01

    Full Text Available Abstract Objective: In the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231 cells line and radiosensitive peripheral blood mononuclear cells (PBMC, as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and Methods: The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation. Conclusion: Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.

  16. Application of biological dose concept in dose optimization for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Li Yunhai; Liao Yuan; Zhou Lijun; Pan Ziqiang; Feng Yan

    2003-01-01

    Objective: On basis of physical dose optimization, LQ model was used to investigate the difference between the curves of biological effective dose and physical isodose. The influence of applying the biological dose concept on three dimensional conformal radiotherapy of prostate carcinoma was discussed. Methods: Four treatment plannings were designed for physical dose optimization: three fields, four-box fields, five fields and six fields. Target dose uniformity and protection of the critical tissue-rectum were used as the principal standard for designing the treatment planning. Biological effective dose (BED) was calculated by LQ model. The difference between the BED curve drawn in the central layer and the physical isodose curve was studied. The difference between the adjusted physical dose (APD) and the physical dose was also studied. Results: Five field planning was the best in target dose uniformity and protection of the critical tissue-rectum. The physical dose was uniform in the target, but the biological effective doses revealed great discrepancy in the biological model. Adjusted physical dose distribution also displayed larger discrepancy than the physical dose unadjusted. Conclusions: Intensified Modulated Radiotherapy (IMRT) technique with inversion planning using biological dose concept may be much more advantageous to reach a high tumor control probability and low normal tissue complication probability

  17. Investigation of the impact of dose fluctuations on tumour control

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Royal Adelaide Hospital,; Booth, J.; Adelaide University,; Rosenfeld, A.

    2001-01-01

    Full text: The importance of spatial uniformity of the dose across the Planning Target Volume (PTV) has been investigated previously with the conclusion stated in 'uniform dose theorem' concluding that the uniform dose results in the highest Tumour Control Probability (TCP). The dose fluctuations, which appear in fractionated treatments as a result of setup errors, organ motion, treatment machine calibration and other reasons can be seen as temporal dose non-uniformity. The intuitive expectation, that the temporal dose non-uniformity would also reduce TCP, has been tested. The impact of temporal dose non-uniformity has been investigated considering intra and inter-treatment dose fluctuations. The dose was considered to be spatially uniform. The convolution technique was used and analytical expression of TCP accounting for the dose fluctuation has also been derived. Both techniques used Probability Density Function (PDF) to account for the dose fluctuations. The dose fluctuations with PDF symmetrical around its mean value (Gaussian) as well as non-symmetrical PDFs were both investigated. The symmetrical PDFs represented the fluctuations, which appear in the whole PTV as a result of day to day variation in treatment machine output. Non-symmetrical PDFs represented the dose fluctuations at the edges of PTV as a result of setup errors and organ motion. The effect of the dose fluctuations has been expressed in terms of an extra dose δ (positive or negative) which should be added to the value of temporally uniform dose in order to provide the same TCP as the one resulting from temporally non-uniform (fluctuating) dose. Intra-treatment dose fluctuations resulted in an increased TCP, though the effect is relatively small (δ<1 Gy for the treatment dose of 60 Gy). However, inter-treatment fluctuations of the dose reduced TCP for a patient population. The size of effect increases with the standard deviation of the PDF. Random ultra-treatment dose fluctuations resulted in

  18. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Pei, Jian; Park, In-Ho; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Wen, Min; Jang, Woo-Youl; Jung, Shin

    2015-01-01

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  19. Enhanced Glucose Tolerance and Pancreatic Beta Cell Function by Low Dose Aspirin in Hyperglycemic Insulin-Resistant Type 2 Diabetic Goto-Kakizaki (GK Rats

    Directory of Open Access Journals (Sweden)

    Layla Amiri

    2015-07-01

    Full Text Available Background/Aim: Type 2 diabetes is the most common metabolic disorder, characterized by insulin resistance and pancreatic islet beta-cell failure. The most common complications associated with type 2 diabetes are hyperinsulinemia, hyperglycemia, hyperlipidemia, increased inflammatory and reduced insulin response. Aspirin (ASA and other non-steroidal anti-inflammatory drugs (NSAIDs have been associated with the prevention of diabetes, obesity and related cardiovascular disorders. Aspirin has been used in many clinical and experimental trials for the prevention of diabetes and associated complications. Methods: In this study, five month old Goto-Kakizaki (GK rats, which showed signs of mild hyperglycemia (fasting blood glucose 80-95 mg/dl vs 55-60 mg/dl Wistar control rats were used. Two subgroups of GK and Wistar control rats were injected intraperitoneally with 100 mg aspirin/kg body weight/ day for 5 weeks. Animals were sacrificed and blood and tissues were collected after performing glucose tolerance (2 h post 2g IP glucose ingestion tests in experimental and control groups. Results: Aspirin caused a moderate decrease in hyperglycemia. However, we observed a significant improvement in glucose tolerance after ASA treatment in GK rats compared to the nondiabetic Wistar rats. Also, the ASA treated GK rats exhibited a significant decrease in insulinemia. ASA treatment also caused a marked reduction in the pro-inflammatory prostaglandin, PGE2, which was significantly higher in GK rats. On the other hand, no significant organ toxicity was observed after ASA treatment at this dose and time period. However, the total cholesterol and lipoprotein levels were significantly increased in GK rats, which decreased after ASA treatment. Immunofluorescence staining for insulin/glucagon secreting pancreatic cells showed improved beta-cell structural and functional integrity in ASA-treated rats which was also confirmed by SDS-PAGE and Western blot analysis

  20. Modelling the effect of non-uniform radon progeny activities on transformation frequencies in human bronchial airways

    International Nuclear Information System (INIS)

    Fakir, H.; Hofmann, W.; Aubineau-Laniece, I.

    2006-01-01

    The effects of radiological and morphological source heterogeneities in straight and Y-shaped bronchial airways on hit frequencies and Micro-dosimetric quantities in epithelial cells have been investigated previously. The goal of the present study is to relate these physical quantities to transformation frequencies in sensitive target cells and to radon-induced lung cancer risk. Based on an effect-specific track length model, computed linear energy transfer (LET) spectra were converted to corresponding transformation frequencies for different activity distributions and source - target configurations. Average transformation probabilities were considerably enhanced for radon progeny accumulations and target cells at the carinal ridge, relative to uniform activity distributions and target cells located along the curved and straight airway portions at the same exposure level. Although uncorrelated transformation probabilities produce a linear dose - effect relationship, correlated transformations first increase depending on the LET, but then decrease significantly when exceeding a defined number of hits or cumulative exposure level. (authors)

  1. Estudo da circulação hepatomesentérica pela angiografia por ressonância magnética com gadolínio: comparação entre doses simples e dupla no estudo de pacientes esquistossomóticos Gadolinium-enhanced magnetic resonance angiography for hepatomesenteric vascular evaluation: single and double doses comparison in schistosomiasis patients

    Directory of Open Access Journals (Sweden)

    Rogério Pedreschi Caldana

    2006-08-01

    Full Text Available OBJETIVO: Determinar a freqüência de visualização dos segmentos da circulação hepatomesentérica pela angiografia por ressonância magnética (angio-RM com contraste e comparar o valor do método, utilizando-se duas diferentes dosagens de gadolínio (doses simples e dupla. MATERIAIS E MÉTODOS: Estudo prospectivo de 36 pacientes esquistossomóticos submetidos a angio-RM. Os exames foram realizados em equipamento de RM de 1,5 T, usando-se bobina de corpo e bomba injetora para a administração endovenosa do contraste. Foram utilizadas, de maneira randomizada, dose dupla do contraste paramagnético (0,2 mmol/kg de Gd-DTPA em 21 pacientes e dose simples (0,1 mmol/kg em outros 15 pacientes. Os exames foram interpretados por dois observadores em consenso, que classificaram o grau de visualização de 25 segmentos vasculares estabelecidos para análise, sem conhecimento da dose de gadolínio utilizada. RESULTADOS: Os segmentos vasculares proximais e de maior calibre foram as estruturas com melhor grau de visualização na maioria da amostra em estudo. O tronco celíaco, a artéria hepática comum, a artéria esplênica, a croça e terço médio da artéria mesentérica superior, a veia porta, a veia esplênica e a veia mesentérica superior apresentaram grau 2 de visualização em mais de 70% da amostra. Quanto à comparação das diferentes dosagens, não houve diferença significante (p OBJECTIVE: To evaluate the visibility of hepatomesenteric vascular segments by 3D gadolinium-enhanced magnetic resonance (MR angiography and to compare the method effectiveness between two different gadolinium doses (single and double doses. MATERIALS AND METHODS: A prospective study was performed with 36 schistosomiasis patients who were submitted to 3D contrast-enhanced MR angiography. Scans were performed in a high-field equipment (1.5 T, with body coil and power injector for intravenous contrast administration. Contrast double doses (Gd-DTPA 0.2 mmol/kg and

  2. On Uniform Weak König's Lemma

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich

    2002-01-01

    The so-called weak Konig's lemma WKL asserts the existence of an infinite path b in any infinite binary tree (given by a representing function f). Based on this principle one can formulate subsystems of higher-order arithmetic which allow to carry out very substantial parts of classical mathematics...... which-relative to PRA -implies the schema of 10-induction). In this setting one can consider also a uniform version UWKL of WKL which asserts the existence of a functional which selects uniformly in a given infinite binary tree f an infinite path f of that tree. This uniform version of WKL...

  3. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  4. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  5. Low-Dose Priming before Vaccination with the Phase I Chloroform-Methanol Residue Vaccine against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella burnetii▿

    Science.gov (United States)

    Waag, David M.; England, Marilyn J.; Bolt, Christopher R.; Williams, Jim C.

    2008-01-01

    Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 μg, followed by a booster dose of 30 μg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection. PMID:18701647

  6. Low-dose priming before vaccination with the phase I chloroform-methanol residue vaccine against Q fever enhances humoral and cellular immune responses to Coxiella burnetii.

    Science.gov (United States)

    Waag, David M; England, Marilyn J; Bolt, Christopher R; Williams, Jim C

    2008-10-01

    Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 microg, followed by a booster dose of 30 microg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection.

  7. Uniformity factor of temperature difference in heat exchanger networks

    International Nuclear Information System (INIS)

    Chen, Shang; Cui, Guo-min

    2016-01-01

    Highlights: • A uniformity factor of temperature (UFTD) is proposed to heat exchanger network (HEN). • A novel stage-wise superstructure with inner utilities is presented based on UFTD. • New model and DE method is combined as an optimization method. • Optimal HEN structures with inner utilities can be obtained with new method. - Abstract: A uniformity factor of temperature difference (UFTD) is proposed and set up to guide the optimization of Heat exchanger network (HEN). At first, the factor is presented to evaluate the whole enhancement of HEN by handling the logical mean temperature difference as two-dimensional discrete temperature field in system. Then, the factor is applied to different HENs, of which the comparison indicates that a more uniform discrete temperature field leads to a lower UFTD which correlated with a better whole enhancement to improve the optimization level of HEN. A novel stage-wise superstructure model where inner utility can be generated is presented for further analysis of correlation between UFTD and the efficiency of HEN, and more optimal HEN structures can be obtained as inner utility added. Inner utility appears to violate the thermodynamic law, but it makes the discrete temperature field more uniform and improves the heat transfer efficiency of the whole HEN, which brings much more profit than the side effect of inner utility. In sum, the UFTD can not only evaluate the optimization level of the HEN, but also be an optimization object to design new HEN with higher efficiency of energy utilization and lower total annual cost.

  8. Heat enhances radiation inhibition of wound healing

    International Nuclear Information System (INIS)

    Twomey, P.; Hill, S.; Joiner, M.; Hobson, B.; Denekamp, J.

    1987-01-01

    To study the effect of hyperthermia on the inhibition of healing by radiation, the authors used 2 models of wound tensile strength in mice. In one, tensile strength of 1 cm strips of wounded skin was measured. In the other, strength was measured on 2 by 1 by .3 cm surgical prosthetic sponges of polyvinyl alcohol which has been cut, resutured, and implanted subcutaneously. Granulation tissue grows into the pores of the sponges which gradually fill with collagen. Tensile strength in both models was measured on day 14 using a constant strain extensiometer. The wounds were given graduated doses of ortho-voltage radiation with or without hyperthermia. Maximum radiation sensitivity occurred during the period of rapid neovascularization in the first 5 days after wounding, when a loss of 80% in wound strength occurred with doses less than 20 gray. For single radiation doses given 48 hours after wounding, the authors found a steep dose-response curve with half maximum reduction in strength occurring in both models at approximately 10 gray. Hyperthermia was produced in two ways. Skin wounds were heated in a circulating water bath. In the sponge model, more uniform heating occurs with an RF generator scaled to the mouse. At a dose of 43 C for 30 minutes, no inhibition of healing by heat alone was found. However the combination of heat and radiation produced definite enhancement of radiation damage, with thermal enhancement ratios of up to 1.9 being observed

  9. TU-H-CAMPUS-TeP3-04: Probing the Dose Enhancement Due to a Clinically-Relevant Concentration of Gold Nanoparticles and Yb-169 Gamma Rays Using PRESAGE Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J [UT MD Anderson Cancer Center, Houston, TX (United States); Oklahoma State University, Stillwater, OK (United States); Alqathami, M; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To probe physical evidences of the dose enhancement due to a low/clinically-relevant concentration of gold nanoparticles (GNPs) and Yb-169 gamma rays using PRESAGE dosimeters. Methods: A PRESAGE cuvette was placed at approximately 2 mm above the plane containing three novel Yb-169 brachytherapy seeds (3.2, 3.2, and 5.3 mCi each). Two types of PRESAGE dosimeters were used – plain PRESAGEs (controls) and PRESAGEs loaded with 0.02 wt. % of GNPs (GNP-PRESAGEs). Each PRESAGE dosimeter was irradiated with different time durations (0 to 24 hours) to deliver 0, 4, 8, 16 and 24 Gy of dose. For a reference/comparison, both types of PRESAGEs were also irradiated using 250 kVp x-rays with/without Er-filter to deliver 0, 3, 10, and 30 Gy of dose. Er-filter was used to emulate Yb-169 spectrum using 250 kVp x-rays. The absorption spectra of PRESAGEs were measured using a UV spectrophotometer and used to determine the corresponding optical densities (ODs). Results: GNP-PRESAGEs exposed to Yb-169 sources showed ∼65% increase in ODs compared with controls. When exposed to Er-filtered and unfiltered 250 kVp x-rays, they produced smaller increases in ODs, ∼41% and ∼37%, respectively. There was a linear relationship between ODs and delivered doses with a goodness-of-fit (R2) greater than 0.99. Conclusion: A notable increase in the ODs (∼65%) was observed for GNP-PRESAGEs irradiated by Yb-169 gamma rays. Considering the observed OD increases, it was highly likely that Yb-169 gamma rays were more effective than both Er-filtered and unfiltered 250 kVp x-rays, in terms of producing the dose enhancement. Due to several unknown factors (e.g., possible difference in the dose response of GNP-PRESAGEs vs. PRESAGEs), however, a further investigations is necessary to establish the feasibility of quantifying the exact amount of macroscopic or microscopic/local GNP-mediated dose enhancement using PRESAGE or similar volumetric dosimeters. Supported by DOD/PCRP grant W81XWH-12

  10. Improving dose homogeneity in routine head and neck radiotherapy with custom 3-D compensation

    International Nuclear Information System (INIS)

    Harari, P.M.; Sharda, N.N.; Brock, L.K.; Paliwal, B.R.

    1998-01-01

    Background and purpose: Anatomic contour irregularity and tissue inhomogeneity can lead to significant radiation dose variation across the complex treatment volumes found in the head and neck (HandN) region. This dose inhomogeneity can routinely create focal hot or cold spots of 10-20% despite beam shaping with blocks or beam modification with wedges. Since 1992, we have implemented the routine use of 3-D custom tissue compensators fabricated directly from CT scan contour data obtained in the treatment position in order to improve dose uniformity in patients with tumors of the HandN. Materials and methods: Between July 1992 and January 1997, 160 patients receiving comprehensive HandN radiotherapy had 3-D custom compensators fabricated for their treatment course. Detailed dosimetric records have been analyzed for 30 cases. Dose uniformity across the treatment volume and clinically relevant maximum doses to selected anatomic sub-sites were examined with custom-compensated, uncompensated and optimally-wedged plans. Results: The use of 3-D custom compensators resulted in an average reduction of dose variance across the treatment volume from 19±4% for the uncompensated plans to 5±2% with the use of 3-D compensators. Optimally-wedged plans were variable, but on average a 10±3% dose variance was noted. For comprehensive HandN treatment which encompassed the larynx within the primary field design, the peak doses delivered were reduced by 5-15% with 3-D custom compensation as compared to optimal wedging. Conclusions: The use of 3-D custom tissue compensation can improve dose homogeneity within the treatment volume for HandN cancer patients. Maximum doses to clinically important structures which often receive greater than 105-110% of the prescribed dose are routinely reduced with the use of 3-D custom compensators. Improved dose uniformity across the treatment volume can reduce normal tissue complication profiles and potentially allow for delivery of higher total doses in

  11. Uniform Facility Data Set US (UFDS-1997)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Uniform Facility Data Set (UFDS), formerly the National Drug and Alcohol Treatment Unit Survey or NDATUS, was designed to measure the scope and use of drug abuse...

  12. Uniform Facility Data Set US (UFDS-1998)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Uniform Facility Data Set (UFDS) was designed to measure the scope and use of drug abuse treatment services in the United States. The survey collects information...

  13. Nonimaging solar concentrator with uniform irradiance

    Science.gov (United States)

    Winston, Roland; O'Gallagher, Joseph J.; Gee, Randy C.

    2004-09-01

    We report results of a study our group has undertaken under NREL/DOE auspices to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators.

  14. Uniforms, status and professional boundaries in hospital.

    Science.gov (United States)

    Timmons, Stephen; East, Linda

    2011-11-01

    Despite their comparative neglect analytically, uniforms play a key role in the delineation of occupational boundaries and the formation of professional identity in healthcare. This paper analyses a change to the system of uniforms in one UK hospital, where management have required all professions (with the exception of doctors) to wear the same 'corporate' uniform. Focus groups were conducted with the professionals and patients. We analyse this initiative as a kind of McDonaldisation, seeking to create a new 'corporate' worker whose allegiance is principally to the organisation, rather than a profession. Our findings show how important uniforms are to their wearers, both in terms of the defence of professional boundaries and status, as well as the construction of professional identity. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  15. Uniform Reserve Training and Retirement Category Administration

    National Research Council Canada - National Science Library

    Kohner, D

    1997-01-01

    This Instruction implement policy as provided in DoD Directive 1215.6, assigns responsibilities and prescribes procedures that pertain to the designation and use of uniform Reserve component (RC) categories (RCCs...

  16. Tolerancing a lens for LED uniform illumination

    Science.gov (United States)

    Ryu, Jieun; Sasian, Jose

    2017-08-01

    A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.

  17. Characterization of long-term dose stability of N-isopropylacrylamide polymer gel dosimetry

    International Nuclear Information System (INIS)

    Chang, Y.J.; Central Taiwan University of Science and Technology, Taichung City, Taiwan, ROC; Chen, C.H.; Hsieh, B.T.

    2014-01-01

    In this study, the detailed characteristics, including spatial uniformity, dose distributions, inter-batch variability, reproducibility, and long-term temporal stability, of N-isopropylacrylamide (NIPAM) polymer gel dosimeter were investigated. A commercial 10x fast optical computed tomography scanner (OCTOPUS TM -10×, MGS Research, Inc., Madison, CT, USA) was used to measure NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom that measured 10 cm × 10 cm was irradiated via a single-field treatment plan with a field size of 4 cm × 4 cm. The maximum standard deviation of spatial uniformity for NIPAM gel was less than 0.29 %. The average standard deviation among the three batches of gel dosimeters was less than 1 %. The gamma pass rate could reach as high as 96.76 % when a 3 % dose difference and a 3 mm dose-to-agreement criteria were used. The long-term measurement of irradiated NIPAM gel dosimeter indicated that the dose maps attained a gradually stable value 15 h post-irradiation and remained stable until 72 h post-irradiation. The gamma pass rate could achieve a maximum value between 24 and 72 h post-irradiation. The edge enhancement effect that occurred around the irradiated region was observed 72 h post-irradiation. Thus, the results from this study suggest that NIPAM gel dosimeter should be measured approximately 24 h post-irradiation to reduce the occurrence of the edge enhancement effect. (author)

  18. Uniform emergency codes: will they improve safety?

    Science.gov (United States)

    2005-01-01

    There are pros and cons to uniform code systems, according to emergency medicine experts. Uniformity can be a benefit when ED nurses and other staff work at several facilities. It's critical that your staff understand not only what the codes stand for, but what they must do when codes are called. If your state institutes a new system, be sure to hold regular drills to familiarize your ED staff.

  19. Quasiparticles in non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1994-01-01

    A quasiparticle concept is generalized for the case of non-uniformly magnetized plasma. Exact and reduced continuity equations for the microscopic density in the quasiparticle phase space are derived, and the nature of quasiparticles is analyzed. The theory is developed for the general case of relativistic particles in electromagnetic fields, besides non-uniform but stationary magnetic fields. Effects of non-stationary magnetic fields are briefly investigated also. 26 refs

  20. External dose distributions of exposure to natural uranium slab for calibration of beta absorbed dose

    International Nuclear Information System (INIS)

    Chen Lishu

    1987-01-01

    The depth dose distributions and uniformity of beta radiation fields from a natural uranium slab in equilibration were measured using a tissue equivalent extrapolation chamber and film dosimeter. The advantages for calibration of enviromental dose instument or survey meter and personal dosimeter, for routine monitoring in terms of directional dose equivalent and superficial individual dose equivalent were summarized. Finally, the values measured agree well with that of theoretical calculation

  1. External dose distributions of exposure to natural uranium slab for calibration of beta absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Lishu, Chen

    1987-05-01

    The depth dose distributions and uniformity of beta radiation fields from a natural uranium slab in equilibration were measured using a tissue equivalent extrapolation chamber and film dosimeter. The advantages for calibration of enviromental dose instument or survey meter and personal dosimeter, for routine monitoring in terms of directional dose equivalent and superficial individual dose equivalent were summarized. Finally, the values measured agree well with that of theoretical calculation.

  2. The mathematical description of uniformity and related theorems

    International Nuclear Information System (INIS)

    Luo Chuanwen; Yi Chundi; Wang Gang; Li Longsuo; Wang Chuncheng

    2009-01-01

    Uniform index is a conception that can describe the uniformity of a finite point set in a polyhedron, and is closely related to chaos. In order to study uniform index, the concept of contained uniform index is defined, which is similar to uniform index and has good mathematical properties. In this paper, we prove the convergence of the contained uniform index, and develop the base of proving the convergence of uniform index.

  3. Impact of Uniform Methods on Interlaboratory Antibody Titration Variability: Antibody Titration and Uniform Methods.

    Science.gov (United States)

    Bachegowda, Lohith S; Cheng, Yan H; Long, Thomas; Shaz, Beth H

    2017-01-01

    -Substantial variability between different antibody titration methods prompted development and introduction of uniform methods in 2008. -To determine whether uniform methods consistentl