WorldWideScience

Sample records for enhanced coal hydrogasification

  1. Microelement composition of coal hydrogasification products

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A.P.; Laktionova, N.V.; Titova, T.A.; Tsehdehvsuren, Ts.

    1983-01-01

    A study was made of the micro-elements present in the liquid products of coal hydrogenation using emission spectrum analysis. The micro-element contents and their variation are one order lower than those of the original coals. The majority of micro-elements concentrate in the solid hydrogenation residue. Liquid hydrogenation products contain Pb, Ni, Co, Cu, Mn and Ga within the same range as in Soviet petroleum, but tend to have a higher Ba content and an appreciably lower V content.

  2. Potassium catalyzed hydrogasification of low-rank coal for synthetic natural gas production

    Directory of Open Access Journals (Sweden)

    Skodras Georgios

    2016-01-01

    Full Text Available Potassium catalyzed isothermal coal hydrogasification was investigated, as an alternative route for synthetic natural gas production. Potassium chemisorption occurred on oxygen sites in the coal structure and was strongly affected by the solution pH and followed the Cation Exchange Capability (CEC which is also pH-dependent. A quadratic function described the relation between the solution pH and the fraction of the chemisorbed potassium, while; the cumulative distribution function of two Weibull probability density functions correlated the solution pH with the CEC that was linearly correlated with the fraction of the chemisorbed potassium. Coal hydrogasification is strongly affected by the increased alkalinity of the impregnating solution and increased methane yields were obtained while carbon conversion was slightly affected. This was attributed to the formation of profuse K+ substituted active sites that decompose under H2 attacks and trigger scission of the aromatic rings followed by K+ migration to neighboring complexes, thus, the hydrogasification reaction continuous to yield CH4, as codified in a three stage reaction mechanism. The relative specific hydrogasification rate was found to increase linearly with the CEC of the coal samples, suggesting that the oxygen functional groups, on which potassium is chemisorbed, act as “active sites” and are linked with the carbon’s reactivity.

  3. The hydrogasification of lignite and sub-bituminous coals

    Science.gov (United States)

    Bhatt, B.; Fallon, P. T.; Steinberg, M.

    1981-02-01

    A North Dakota lignite and a New Mexico sub-bituminous coal have been hydrogenated at up to 900°C and 2500 psi hydrogen pressure. Yields of gaseous hydrocarbons and aromatic liquids have been studied as a function of temperature, pressure, residence time, feed rates and H2/coal ratio. Coal feed rates in excess of 10 lb/hr have been achieved in the 1 in. I. D.×8 ft reactor and methane concentration as high as 55% have been observed. A four-step reaction model was developed for the production and decomposition of the hydrocarbon products. A single object function formulated from the weighted errors for the four dependent process, variables, CH4, C2H6, BTX, and oil yields, was minimized using a program containing three independent iterative techniques. The results of the nonlinear regression analysis for lignite show that a first-order chemical reaction model with respect to C conversion satisfactorily describes the dilute phase hydrogenation. The activation energy for the initial products formation was estimated to be 42,700 cal/gmole and the power of hydrogen partial pressure was found to be +0.14. The overall correlation coefficient was 0.83. The mechanism, the rate expressions, and the design curves developed can be used for scale-up and reactor design.

  4. Catalysis of metal-clay intercalation compound in the low temperature coal hydrogasification

    Energy Technology Data Exchange (ETDEWEB)

    Fuda, Kiyoshi; Kimura, Mitsuhiko; Miyamoto, Norimitsu; Matsunaga, Toshiaki

    1986-10-23

    Focusing the hydrogenating methanation by gaseous phase catalytic reactions of low temperature volatile components, the catalytic effects of Ni metal and the effects of carriers having sensitive effects on the catalytic activities of Ni metal were studied. Sample coals were prepared from Shin-Yubari coal, and Ni hydride-montmorillonite complex catalysts and the catalysts produced by carring Ni nitrate on alumina and burning in hydrogen gas flows were prepared. The hydrogasification were carried out in a reaction tube. As a result, the montmorillonite-Ni compounds catalysts had high catalitic effects and high conversion ratio of 90% or more in the low temperature coal gasification. The catalitic effects of carried Ni metal strongly depended on the carrier substances, and the rank of effects for the carriers was montmorillonite>zeorite>TiO/sub 2/>alpha-Al/sub 2/O/sub 3/>MgO>SiO/sub 2/=gamma-Al/sub 2/O/sub 3/. (3 figs, 3 tabs, 3 refs)

  5. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei [Arizona Public Service Company, Pheonix, AZ (United States); Rink, Nancy [Arizona Public Service Company, Pheonix, AZ (United States)

    2011-04-30

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit (°F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625°F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO2) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m2) and a total culture volume between 10,000 to 15,000 liters (L); a CO2 on-demand feeding system; an on-line data collection system for temperature, p

  6. Achievement report for fiscal 1997 on investigative research on society compatibility of development of coal hydrogasification technology; 1997 nendo sekitan suiso tenka gas ka gijutsu kaihatsu shakai tekigosei ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In view of possibility of the future tightness in natural gas supply, establishment of coal gasification technology was set as the final objective, which can supply cheaply and stably the substitution natural gas of high quality by using coal existing affluently over the world as the raw material. An investigative research is carried out under a five-year plan on society compatibility required to assess the possibility of the practical application thereof. Fiscal 1997 has performed in continuation from the previous year the 'survey on process level elevation' and 'survey on the society compatibility'. This report summarizes the achievements thereon. In the investigative research on the process level elevation, the Shell's methane synthesis process based on an oxygen blown and dry feed coal gasifier was evaluated, and the calculation process was pursued on material balance in a hydrogasification reactor as having been performed in the 'survey on developing the coal hydrogasification technology' in which its reasonability was verified. In the survey on the society compatibility of the process, a survey was carried out on natural gas (including non-conventional methane hydrate and coal bed methane) and coals as raw materials for hydrogasification. (NEDO)

  7. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Hobbs

    2007-05-31

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of

  8. Hydrogasification of various carbonaceous sources using pressure change properties

    Energy Technology Data Exchange (ETDEWEB)

    Cha, W.S.; Baek, I.H.; Jang, H.T. [Kunsan National University, Kunsan (Republic of Korea)

    2007-05-15

    Hydrogasification experiments were carried out in a batch reactor capable of operating at 800{sup o}C and 8 MPa. Carbonaceous matters used in the experiments were bituminous and anthracite coal and sawdust. It was found that the decreasing rate of hydrogen gas pressure was closely related to the rate of gas production. This result was confirmed by the change of char conversion. The methane content in the gas products and char conversion rose with the increase of temperature and pressure. The addition of water activated the hydrogasification reaction until the proper level of water amount (up to 30 wt%), but an excess level of water inhibited the reaction. The activation energy of bituminous coal and sawdust char obtained by the Arrhenius plot was 187 KJ/mole and 77 KJ/mole, respectively. In case of loading of catalysts, all catalysts loaded to the char did not give a positive effect in hydrogasification, but the catalytic effect depended on type of catalyst metals and char. In the present hydrogasification of bituminous coal and sawdust, the order of activities for the catalysts tested was K{sub 2}CO{sub 3} does not satisfy NaCO{sub 3} {gt} Fe(NO{sub 3}{sup 2}){gt} Ni(NO{sub 3}{sup 2}){gt} FeSO{sub 4}.

  9. Achievement report for fiscal 1997 (edition B) on auxiliary New Sunshine Project. Development of coal hydrogasification technology (Research by using experimental device); 1997 nendo New Sunshine keikaku hojo jigyo seika hokokusho (B ban). Sekitan suiso tenka gaska gijutsu kaihatsu - Jikken sochi ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    With an objective of using practically the coal hydrogasification technology (the ARCH process), developmental research has been performed. This paper summarizes the achievements in fiscal 1997. In the research by using a small testing device, the Taiheiyo coal was used to have derived hydrogasification data (distribution and yield of the reaction products) in case of having changed the temperature, residential time and H{sub 2}/caoal ratio at a pressure of 7.0 MPa. In the developmental research on the injector, a test to verify mixing performance was performed by simulating the coal/hydrogen with gas/gas and coal/gas at normal temperature and pressure. Furthermore, discussions were given on the heat conduction analysis and cooling structure, whereas an injector was designed and fabricated. With respect to the hot model test to verify the performance of the injector, detailed design and partial fabrication of the test device were carried out. In addition, development was conducted on the coal/gas system mixing simulation to simulate the states of dispersion and mixing of the coal as the first phase of developing the mixing and temperature rise simulation. (NEDO)

  10. Achievement report for fiscal 1998 (edition B) on auxiliary New Sunshine Project. Development of coal hydrogasification technology (Research by using experimental device); 1998 nendo New Sunshine keikaku hojo jigyo seika hokokusho (B ban). Sekitan suiso tenka gaska gijutsu kaihatsu - Jikken sochi ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    With an objective of using practically the coal hydrogasification technology (the ARCH process), developmental research has been performed on important elementary technologies using different experimental devices. This paper summarizes the achievements in fiscal 1998. In the research by using a small testing apparatus, the Taiheiyo coal was used to have derived hydrogasification data (distribution and yield of the reaction products) in case of having changed the reaction pressure, temperature rising rate, and H{sub 2}/caoal ratio, and to verify the possibility of increasing the BTX yield by installing a temperature zone in two steps. In the developmental research on the injector, a combustion test and a coal feeding test were performed on the injector having been designed and fabricated in the previous fiscal year to verify the basic performance and evaluate the heat resistance and durability. With respect to the hot model test, a test installation was completed with the injector mounted to conduct the trial operation and test. In addition, development was conducted on the coal temperature rise simulation as the second phase of developing the simulation of mixing of coal with high-temperature hydrogen and temperature rise. (NEDO)

  11. Advancement of flash hydrogasification. Quarterly technical progress report, October-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.Y.

    1985-09-01

    The design of test hardware and process development unit (PDU) modifications had been completed previously. Task VII involves the fabrication of test hardware and the modification of an existing 1-ton/h hydroliquefaction PDU at Rockwell's facilities for use as a hydrogasifier test facility. Test hardware fabrication has been completed. Modifications to the PDU were completed in July 1984. The modified facility can accommodate both 10- and 20-ft-long hydrogasifier reactors so that residence times will be in the range of 2 to 6 s when coal is fed at a nominal 1/2 ton/h into reactors at 1000 psia pressure. Provisions have been made for real-time analysis of the product gases using an on-line gas chromatograph system. Separate supplies of coal, hydrogen, oxygen, methane, and water (for steam generation) are provided so that short duration (1 to 2 h) hydrogasification tests along with preburner assembly performance evaluation tests can be conducted to meet the overall test program objectives. Performance characterization testing of the preburner assembly and two coal reactor tests to establish FHP reactor performance at baseline (low-steam concentration) hydrogasification conditions have been completed. Three reactor tests to investigate steam enhancement effects were conducted during this report period. An important program milestone was achieved when total carbon conversion to CO/sub x/ exceeded 18%, thereby confirming the Advanced Flash Hydropyrolysis (AFHP) chemistry predictions of significant heterogeneous/homogeneous CO production at high steam concentrations. Nominal reactor operating conditions for this test were 1950/sup 0/F, 1000 psig, 4.7-s residence time, and 45% inlet steam concentration. 6 refs., 13 figs., 10 tabs.

  12. Achievement report for fiscal 1999 on auxiliary New Sunshine Project. Development of coal hydrogasification technology (Survey and research on its social acceptability); 1999 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Sekitan suiso tenka gaska gijutsu kaihatsu - Shakai tekigo sei ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to evaluate feasibility of practical use and economy of the coal hydrogasification technology (the ARCH process), survey and research have been performed. This paper summarizes the achievements in fiscal 1999. In the survey on the social acceptability, survey has been made on the future trend in the demand and supply and the price of LNG, LPG, and coal for hydrogasification. As a result, it was discovered that the price of LNG imported into Japan is determined as if linked with the crude oil price, and Saudi Arabia is the price leader of the LPG price. With respect to the survey on the possibility of international cooperation, surveys were conducted on the prospects of the long-term demand and supply in China, natural gas resources, and the demand and supply thereof. The feasibility study has estimated the product gas manufacturing cost after the process has been improved. In the trial calculation on the three-mode cost, it was discovered that, although the profit from byproducts is great, the BTX maximized mode causes the manufacturing cost to be higher by as much as 2 to 3 yen per Nm{sup 3} than that of other modes because of higher unit consumption in raw materials and higher construction cost. (NEDO)

  13. Achievement report for fiscal 1999 (edition B) on auxiliary New Sunshine Project. Development of coal hydrogasification technology (Research by using experimental device); 1999 nendo New Sunshine keikaku hojo jigyo seika hokokusho (B ban). Sekitan suiso tenka gaska gijutsu kaihatsu - Jikken sochi ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective of using practically the coal hydrogasification technology (the ARCH process), developmental research has been performed on important elementary technologies using different experimental devices. This paper summarizes the achievements in fiscal 1999. In the research by using a small testing apparatus, the Taiheiyo coal was used to have performed demonstration operation on the replacement natural maximized case, the heat efficiency maximized case, and the BTX maximized case. As a result, the three cases were found nearly as anticipated in the simulation, whereas the replacement natural gas maximized case has achieved the targeted whole coal conversion rate of 60% or more. However, the BTX maximized case presented a value lower than the targeted BTX yield of 12%. In the developmental research on the injector, the injector having been fabricated for the hot model test was given another combustion test, where the focal temperature of 1,200 degree C or higher was derived. The hot model test has verified the non-agglomeration performance of coal by using as parameters the focal temperatures, coal cross sectional area loads, coal types, and injectors. It was verified that the Taiheiyo and Shin Mu coals do not agglomerate excessively. (NEDO)

  14. Production of synthetic fuels using syngas from a steam hydrogasification and reforming process

    Science.gov (United States)

    Raju, Arun Satheesh Kumar

    This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio

  15. 30 CFR 206.464 - Value enhancement of marketable coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Value enhancement of marketable coal. 206.464... MANAGEMENT PRODUCT VALUATION Indian Coal § 206.464 Value enhancement of marketable coal. If, prior to use, sale, or other disposition, the lessee enhances the value of coal after the coal has been placed in...

  16. 30 CFR 206.265 - Value enhancement of marketable coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Value enhancement of marketable coal. 206.265... MANAGEMENT PRODUCT VALUATION Federal Coal § 206.265 Value enhancement of marketable coal. If, prior to use, sale, or other disposition, the lessee enhances the value of coal after the coal has been placed in...

  17. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  18. EVALUATION OF BIOMASS REACTIVITY IN HYDROGASIFICATION FOR THE HYNOL PROCESS

    Science.gov (United States)

    The report gives results of an evaluation of the reactivity of poplar wood in hydrogasification under the operating conditions specific for the Hynol process, using a thermobalance reactor. Parameters affecting gasification behavior (e.g., gas velocity, particle size, system pres...

  19. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  20. Surface magnetic enhancement for coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1989-01-01

    The progress achieved during this quarter includes the ten months shelf life study of magnetizing reagent, the effect of cation regulators on minerals and coals, the combination effect of depressant and activator on the adsorption of magnetizing reagent, optimum magnetite size for magnetizing reagent, and the magnetic field strength for separating magnetic enhanced minerals. The work is generally on schedule with the original plan. The Phase I study (a fundamental study) is nearly completed. Selective conditions for adsorbing magnetizing reagent on minerals have been identified. The work for the next quarter will be mainly on the Phase II study. Coal will be selected, procured, characterized, and processed.

  1. Surface magnetic enhancement for coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1988-01-01

    The progress achieved during this quarter includes the reagent shelf life study, the evaluation and selection of magnetizing reagents, an experimental database for activating and depressing the adsorption of magnetizing reagents in the presence of various chemicals, an adsorption regulator investigation, the establishment of a coal surface controlling theory, and a magnetite size effect study for the separation of magnetic enhanced minerals. The work is on schedule with the original plan. Modifications include the addition of a regulator study to help proving the selectivity controlling theory. The fundamentals for applying the magnetizing reagent technology on coal cleaning are generally established during this quarter. Selective magnetic enhancement of minerals through the adsorption of magnetizing reagents has been experimentally proved. The work for the next quarter will be mainly on optimizing the selective adsorption conditions and the continuation on magnetite size effect study.

  2. Enhancement of surface properties for coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  3. Japan`s New Sunshine Project. 1996 Annual Summary of Coal Liquefaction and Gasification; 1996 nendo new sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gasuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    In reference to the results of the research and development under the fiscal 1996 New Sunshine Project, a report was summed up on coal liquefaction and coal gasification. As to the R and D of coal liquefaction technology, researches were conducted on liquefaction characteristics and engineering properties by coal kind, catalysts for coal liquefaction, liquefaction reaction of coal and reformation utilization of the liquefied products, liquefaction reaction mechanism and coking mechanism, solubility of coal in solvent and catalytic reaction mechanism, solvent reaction mechanism by hydrogen donor solvent, etc. Concerning the R and D of coal gasification technology, made were the basic study of eco-technology adaptable gasification technology and the study of coal gasification enhancing technology. Further, as to the development of bituminous coal liquefaction technology, carried out were the study in pilot plants and the support study of pilot plants. Additionally, R and D were done of the basic technology of coal liquefaction such as upgrading technology and environmentally acceptable coal liquefaction technology, and of coal hydrogasification technology. 3 refs., 81 figs., 25 tabs.

  4. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  5. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  6. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  7. Brown coal - on the way to industrial-scale upgrading

    International Nuclear Information System (INIS)

    Speich, P.

    1981-01-01

    The main fields of development of Rheinische Braunkohlenwerke AG (Rheinbraun) in the field of brown coal upgrading are reported, i.e. production of synthesis gas, SNG, and liquid products. The Rheinbraun research programme involves the processes of high-temperature-Winkler gasification, hydrogasification, hydroliquefaction, tube stills, and methanation plants. In the long run, nuclear power will be indispensable for base load power supply so that brown coal can be upgraded instead of being used directly for electric power generation. (HS) [de

  8. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    The international coal market trends are outlined and the place of Australian coal industry is discussed. It is shown that while the world supply and demand for coal has begun to tighten, the demand for coal is expected to remain strong in both Asia and Europe. Consequently, in 1991-1992 Australian black coal production and export returns are forecast to rise by 4% and 7% respectively. 1 fig

  9. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  10. Enhancement of surface properties for coal beneficiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  11. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  12. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  13. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1990-01-01

    The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

  14. Molecular biological enhancement of coal biodesulfurization. Final report, October 1988--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  15. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    It is estimated that World coal trade remained strong during the second quarter of 1991, with contributing factors including unseasonally large shipments to Japan for power generation, sustained Japanese steel production at around 112 Mt and some buildup in stocks in that country. Purchases by North Asian and European consumers also remained high. At the same time Soviet output and exports declined because of strikes and political unrest. In addition, exportable supplies in Poland fell. As a result the demand for Indonesian coal increased, and Australia exported larger than previously expected quantities of coal. ills

  16. Flash hydropyrolysis of coal. Quarterly report No. 11, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Fallon, P.; Bhatt, B.L.

    1980-02-01

    The following conclusions can be drawn from this work: (1) when the caking bituminous coals are used with diluents, only 20% Pittsburgh No. 8 coal can be added to the diluent swhile 40% Illinois No. 6 could be added due to the higher free swelling index of the Pittsburgh No. 8; (2) When limestone is used as a diluent, considerably more sulfur is retained in the char than when using sand; (3) when the char from an experiment using limestone is recycled as the diluent for another experiment, the char continually retains additional sulfur through at least three recycles; (4) decomposition of the limestone and reduction is indicated by the high concentrations of CO observed at 900/sup 0/C; (5) increasing the coal feed rate by a factor of 4 from 2.4 to 10.7 lb/hr at low H/sub 2//Coal ratios (approx. = 0.6) results in no appreciable change in gaseous HC yields (approx. = 27%) or concentration (approx. = 45%) but higher BTX yields (1.1% vs. 5.4%); (6) although only one experiment was conducted, it appears that hydrogasification of untreated New Mexico sub-bituminous coal at 950/sup 0/C does not give an increase in yield over hydrogasification at 900/sup 0/C; (7) the hydrogasification of Wyodak lignite gives approximately the same gaseous HC yields as that obtained from North Dakota lignite but higher BTX yields particularly at 900/sup 0/C and 1000 psi (9% vs. 2%); (8) treating New Mexico sub-bituminous coal with NaCO/sub 3/ does not increase its hydrogasification qualities between 600/sup 0/C and 900/sup 0/C at 1000 psi but does decrease the BTX yield.

  17. Optimization of enhanced coal-bed methane recovery using numerical simulation

    Science.gov (United States)

    Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.

    2015-02-01

    Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.

  18. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  19. Evaluation criteria for enhanced solar–coal hybrid power plant performance

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2014-01-01

    Attention has been directed toward hybridizing solar energy with fossil power plants since the 1990s to improve reliability and efficiency. Appropriate evaluation criteria were important in the design and optimization of solar–fossil hybrid systems. Two new criteria to evaluate the improved thermodynamic performances in a solar hybrid power plant were developed in this study. Correlations determined the main factors influencing the improved thermodynamic performances. The proposed criteria can be used to effectively integrate solar–coal hybridization systems. Typical 100 MW–1000 MW coal-fired power plants hybridized with solar heat at approximately 300 °C, which was used to preheat the feed water before entering the boiler, were evaluated using the criteria. The integration principle of solar–coal hybrid systems was also determined. The proposed evaluation criteria may be simple and reasonable for solar–coal hybrid systems with multi-energy input, thus directing system performance enhancement. - Highlights: • New criteria to evaluate the solar hybrid power plant were developed. • Typical solar–coal hybrid power plants were evaluated using the criteria. • The integration principle of solar–coal hybrid systems was determined. • The benefits of the solar–coal hybrid system are enhanced at lower solar radiation

  20. Radioactivity levels in Indian coal and some technologically enhanced exposure to natural radiation environment of India

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Mishra, U.C.

    1988-01-01

    The summary of results of gamma-spectrometric measurements of natural radioactivity levels in coal from mines, coal, fly-ash, slag and soil samples from thermal power plants in India are presented. These constitute the sources of technologic ally enhanced exposures to natural radiation. Brief description of sampling and measurement procedure is given. Radiation dose to the population from coal fired power plants for electricity generation have been calculated using the model developed by UNSCEAR and ORNL reports with correction for local population density. (author). 13 refs., 7 tabs., 8 figs

  1. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  2. Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

    Science.gov (United States)

    Barnhart, Elliott P.; Davis, Katherine J.; Varonka, Matthew; Orem, William H.; Cunningham, Alfred B.; Ramsay, Bradley D.; Fields, Matthew W.

    2017-01-01

    Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).

  3. An enhanced-gravity method to recover ultra-fine coal from tailings: Falcon concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Oruc; Selcuk Ozgen; Eyup Sabah [Afyon Kocatepe University, Afyonkarahisar (Turkey). Department of Mining Engineering

    2010-09-15

    The Falcon concentrator is an enhanced-gravity separator used for the concentration of fine and ultra-fine minerals. This study was conducted to evaluate the effects of different process variables on the performance of the Falcon SB-40 concentrator for beneficiation of tailings to recover ultra-fine coal. Various operating and design conditions such as bowl speed (G force), water pressure, pulp solid ratio and pulp feed rate were investigated. A hydrocyclone was used for pre-enrichment with the Falcon concentrator. Operation parameters of the hydrocyclone, namely feed solids, inlet pressure, vortex finder and apex diameters were investigated. In order to produce fine coal concentrates, regression equations were derived by applying the least squares method using Minitab 15 software. Response functions were produced for the ash content and the recovery of the clean coal concentrates for the performance of the hydrocyclone and Falcon concentrator under different operating conditions. Predicted values were found with the experimental values giving R{sup 2} values of between 0.73 and 0.58 for ash content and between 0.65 and 0.39 for recovery of the clean coal. It was shown that under optimized conditions the Falcon concentrator can produce a clean coal with an ash value of 36% from a feed coal of about 66% ash. 19 refs., 7 figs., 5 tabs.

  4. Enhanced efficiency steam turbine blading - for cleaner coal plant

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, A.; Bell, D.; Cao, C.; Fowler, R.; Oliver, P.; Greenough, C.; Timmis, P. [ALSTOM Power, Rugby (United Kingdom)

    2005-03-01

    The aim of this project was to increase the efficiency of the short height stages typically found in high pressure steam turbine cylinders. For coal fired power plant, this will directly lead to a reduction in the amount of fuel required to produce electrical power, resulting in lower power station emissions. The continual drive towards higher cycle efficiencies demands increased inlet steam temperatures and pressures, which necessarily leads to shorter blade heights. Further advances in blading for short height stages are required in order to maximise the benefit. To achieve this, an optimisation of existing 3 dimensional designs was carried out and a new 3 dimensional fixed blade for use in the early stages of the high pressure turbine was developed. 28 figs., 5 tabs.

  5. Environmental Assessment for Lignite Fuel Enhancement Project, Coal Creek Station, Great River Energy, Underwood, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-01-16

    The US Department of Energy (DOE) has prepared this EA to assess the environmental impacts of the commercial application of lignite fuel enhancement. The proposed demonstration project would be implemented at Great River Energy's Coal Creek Station near Underwood, North Dakota. The proposed project would demonstrate a technology to increase the heating value of lignite and other high-moisture coals by reducing the moisture in the fuels. Waste heat that would normally be sent to the cooling towers would be used to drive off a percentage of the moisture contained within the lignite. Application of this technology would be expected to boost power-generating efficiencies, provide economic cost savings for lignite and sub-bituminous power plants, and reduce air emissions. The proposed project would be constructed on a previously disturbed site within the Coal Creek Station and no negative impacts would occur in any environmental resource area.

  6. Molecular biological enhancement of coal biodesulfurization. Seventh quarter report, May--July 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  7. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  8. Enhanced coalbed methane recovery with respect to physical properties of coal and operational parameters

    Energy Technology Data Exchange (ETDEWEB)

    Balan, H.O. [Middle East Technical Univ., Ankara (Turkey); Gumrah, F. [Alberta Research Council, Devon, AB (Canada)

    2008-07-01

    Desorption-controlled reservoirs are difficult to model because of the complex nature of hydrocarbon transport processes. In the literature, there are parametric simulation studies that investigate the effect of each coal property on primary and enhanced coalbed methane recoveries. The normal trend is to change a model parameter in its range and to observe its impact on total methane recovery. This paper discussed a new approach that was followed during preparation of input data for a commercial compositional simulator. Rather than using a real field or a hypothetical data set, rank-dependent coal properties in the literature were chosen to construct a database which allowed more realistic outputs from the simulator. The paper described the methodology that was followed during preparation of the rank-dependent coal properties. After determining rank and component dependent simulation parameters, seven vertical-well cases were run in order to observe the behavior of the data set. Horizontal well cases were also simulated and compared to vertical well cases. Simulation cases that were presented included reservoir types; rank of coal; well pattern; drainage area; cleat permeability; anisotropy; molar composition of injected fluid; and horizontal well. Although at first glance the 100-acre drainage area seemed to be better than others, an economical analysis is needed before selecting the optimized one. 41 refs., 11 tabs., 25 figs., 1 appendix.

  9. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    Science.gov (United States)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  10. Promotion of iron-group catalysts by a calcium salt in hydrogasification of carbons at elevated pressures

    International Nuclear Information System (INIS)

    Haga, T.; Nishiyama, Y.

    1987-01-01

    The effect of Ca salt on hydrogasification of carbon, catalyzed by Fe, Co, or Ni, was studied as a function of pressure to 30 atm at 775-850 0 C, using a pitch coke as the main substrate. It was found that the Ca additive was an excellent promoter for all the Fe-group catalysts. Elevated pressures of hydrogen resulted in very high conversions of the carbon. The Ca promoter modified the activity patterns of the Fe-group catalysts, from an inductive character to an instantaneous one. For comparison, reactivities of activated carbon with a Ni-Ca catalyst and with Pt or Rh catalysts were examined. A similarity in the reaction patterns of the Ni-Ca catalyst and the Pt or Rh catalysts is indicated

  11. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Huang, Yuping; Zheng, Qipeng P.; Fan, Neng; Aminian, Kashy

    2014-01-01

    Highlights: • A novel deterministic optimization model for CO 2 -ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO 2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO 2 credit. - Abstract: Enhanced coal bed methane production with CO 2 injection (CO 2 -ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO 2 credits in the carbon market. As the technology of CO 2 -ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO 2 -ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO 2 -ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO 2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  12. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.

    Science.gov (United States)

    Sadhukhan, Anup Kumar; Gupta, Parthapratim; Goyal, Tripurari; Saha, Ranajit Kumar

    2008-11-01

    The primary objective of this work was to develop an appropriate model to explain the co-pyrolysis behaviour of lignite coal-biomass blends with different proportions using a thermogravimetric analyzer. A new parallel-series kinetic model was proposed to predict the pyrolysis behaviour of biomass over the entire pyrolysis regime, while a kinetic model similar to that of Anthony and Howard [Anthony, D.B., Howard, J.B., 1976. Coal devolatilization and hydrogasification. AIChE Journal 22(4), 625-656] was used for pyrolysis of coal. Analysis of mass loss history of blends showed an absence of synergistic effect between coal and biomass. Co-pyrolysis mass-loss profiles of the blends were predicted using the estimated kinetic parameters of coal and biomass. Excellent agreement was found between the predicted and the experimental results.

  13. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  14. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  15. Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Frailey, Scott; Parris, Thomas; Damico, James; Okwen, Roland; McKaskle, Ray; Monson, Charles; Goodwin, Jonathan; Beck, E; Berger, Peter; Butsch, Robert; Garner, Damon; Grube, John; Hackley, Keith; Hinton, Jessica; Iranmanesh, Abbas; Korose, Christopher; Mehnert, Edward; Monson, Charles; Roy, William; Sargent, Steven; Wimmer, Bracken

    2012-05-01

    The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well design an injection well and three monitoring wells was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A continuous injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6-0.7 tonne/day (0.66-0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at

  16. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Quarterly technical progress report, March--May 1990

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1990-12-31

    The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

  17. Surface magnetic enhancement for coal cleaning. Quarterly technical progress report no. 4, November 1, 1988--January 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1989-12-31

    The progress achieved during this quarter includes the ten months shelf life study of magnetizing reagent, the effect of cation regulators on minerals and coals, the combination effect of depressant and activator on the adsorption of magnetizing reagent, optimum magnetite size for magnetizing reagent, and the magnetic field strength for separating magnetic enhanced minerals. The work is generally on schedule with the original plan. The Phase I study (a fundamental study) is nearly completed. Selective conditions for adsorbing magnetizing reagent on minerals have been identified. The work for the next quarter will be mainly on the Phase II study. Coal will be selected, procured, characterized, and processed.

  18. Mechanism of Enhancing Extraction of Vanadium from Stone Coal by Roasting with MgO

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2017-02-01

    Full Text Available In this paper, the extraction of vanadium from stone coal by roasting with MgO and leaching with sulfuric acid has been investigated, and the mechanism analysis of stone coal roasting with MgO was studied. The results indicated that under the conditions that the mass fraction of the particles with grain size of 0–0.074 mm in raw ore was 75%, the roasting temperature was 500 °C, the roasting time was 1 h, MgO addition was 3 wt %, the sulfuric acid concentration was 20 vol %, the liquid-to-solid ratio was 1.5 mL/g, the leaching temperature was 95 °C, and leaching time was 2 h, resulting in a vanadium leaching efficiency of 86.63%, which increased by 7.73% compared with that of blank roasting. The mechanism analysis showed that the degree of calcite decomposition was low and, thus, magnesium vanadate was more easily formed than calcium vanadate below 500 °C. Moreover, magnesium vanadate was easier to dissolve than calcium vanadate during the sulfuric acid leaching process. Thus, the vanadium leaching efficiency was enhanced by using MgO as a roasting additive below 500 °C. Additionally, at high temperature the formation of tremolite would consume calcium oxide produced from the decomposition of calcite, thus, the formation of calcium vanadate was hindered, and V2O5 would react with MgO to form magnesium vanadate. Therefore, the vanadium leaching efficiency of roasting with MgO was higher than that of blank roasting at high temperature.

  19. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure

    Science.gov (United States)

    Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.

  20. Modelling of coal combustion enhanced through plasma-fuel systems in full-scale boilers

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Askarova; Z. Jankoski; E.I. Karpenko; E.I. Lavrischeva; F.C. Lockwood; V.E. Messerle; A.B. Ustimenko [al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2005-07-01

    Plasma activation promotes more effective and environmental friendly low-rank coal combustion. This work presents numerical modelling results of plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler. Two kinetic mathematical models were used in the investigation of the processes of air-fuel mixture plasma activation, ignition and combustion. A 1D kinetic code, PLASMA-COAL, calculates the concentrations of species, temperatures and velocities of treated coal-air mixtures in a burner incorporating a plasma source. It gives initial data for 3D-modeling of power boilers furnaces by the code FLOREAN. A comprehensive image of plasma activated coal combustion processes in a furnace of pulverised coal fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated. 15 refs., 6 figs., 4 tabs.

  1. Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhejun; Connell, Luke D.; Camilleri, Michael [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)

    2010-06-01

    Coal permeability is highly sensitive to the stress. Meanwhile, coal swells with gas adsorption, and shrinks with gas desorption. Under reservoir conditions these strain changes affect the cleat porosity and thus permeability. Coal permeability models, such as the Palmer and Mansoori and Shi and Durucan models, relate the stress and swelling/shrinkage effect to permeability using an approximate geomechanical approach. Thus in order to apply these models, stress-permeability behaviour, swelling/shrinkage behaviour and the geomechanical properties of the coal must be estimated. This paper presents a methodology for the laboratory characterization of the Palmer and Mansoori and Shi and Durucan permeability models for reservoir simulation of ECBM and CO{sub 2} sequestration in coal. In this work a triaxial cell was used to measure gas permeability, adsorption, swelling and geomechanical properties of coal cores at a series of pore pressures and for CH{sub 4}, CO{sub 2} and helium with pore pressures up to 13 MPa and confining pressures up to 20 MPa. Properties for the permeability models such as cleat compressibility, Young's modulus, Poisson's ratio and adsorption-induced swelling are calculated from the experimental measurements. Measurements on an Australian coal are presented. The results show that permeability decreases significantly with confining pressure and pore pressure. The permeability decline with pore pressure is a direct result of adsorption-induced coal swelling. Coal geomechanical properties show some variation with gas pressure and gas species, but there is no direct evidence of coal softening at high CO{sub 2} pressures for the coal sample studied. The experimental results also show that cleat compressibility changes with gas species and pressure. Then the measured properties were applied in the Shi and Durucan model to investigate the permeability behaviour during CO{sub 2} sequestration in coal. (author)

  2. Reduction Enhancement Mechanisms of a Low-Grade Iron Ore-Coal Composite by NaCl

    Science.gov (United States)

    Huang, Zhucheng; Zhong, Ronghai; Yi, Lingyun; Jiang, Tao; Wen, Liangming; Liang, Zhikai

    2018-02-01

    The reduction behavior of a low iron grade with high SiO2 content ore-coal composite was investigated in the temperature range of 1143 K to 1263 K (870 °C to 990 °C). Sodium chloride was chosen as an additive to promote this reduction process. The effect of the sodium chloride addition and its mechanism was also investigated. Results showed that the added sodium chloride could enhance the reduction of wustite to iron due to the decrease of fayalite, and a higher metallization ratio of reduced sample was obtained. Thermogravimetric-differential scanning calorimeter analysis showed that sodium chloride could greatly facilitate the gasification process of coal and, thus, provide sufficient carbon monoxide to the reduction process of iron oxides. Meanwhile, sodium chloride promoted the reduction process of iron ore pellets directly as the coal gasification effect was excluded. Microstructures of reduced sample revealed that sodium chloride broke the structure of ore and enhanced the growth of newly formed iron particles. As the ore-coal composite with mol (C/Fe = 1.4) and 3 mass pct sodium chloride addition was roasted at 1233 K (960 °C) for 55 minutes, a reduced sample with metallization ration of 74.45 pct could be obtained.

  3. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  4. Surface magnetic enhancement for coal cleaning. Quarterly technical progress report no. 3, August 1, 1988--October 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1988-12-31

    The progress achieved during this quarter includes the reagent shelf life study, the evaluation and selection of magnetizing reagents, an experimental database for activating and depressing the adsorption of magnetizing reagents in the presence of various chemicals, an adsorption regulator investigation, the establishment of a coal surface controlling theory, and a magnetite size effect study for the separation of magnetic enhanced minerals. The work is on schedule with the original plan. Modifications include the addition of a regulator study to help proving the selectivity controlling theory. The fundamentals for applying the magnetizing reagent technology on coal cleaning are generally established during this quarter. Selective magnetic enhancement of minerals through the adsorption of magnetizing reagents has been experimentally proved. The work for the next quarter will be mainly on optimizing the selective adsorption conditions and the continuation on magnetite size effect study.

  5. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  6. Chapter 4: Low compaction grading to enhance reforestation success on coal surface mines

    Science.gov (United States)

    R. Sweigard; J. Burger; C. Zipper; J. Skousen; C. Barton; P. Angel

    2017-01-01

    This Forest Reclamation Advisory describes final-grading techniques for reclaiming coal surface mines to forest postmining land uses. Final grading that leaves a loose soil and a rough surface increases survival of planted seedlings and forest productivity. Such practices are often less costly than traditional "smooth grading" while meeting the requirements...

  7. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  8. Coal pulveriser maintenance performance enhancement through the application of a combination of new technologies

    OpenAIRE

    2011-01-01

    M.Ing. The dissertation is an investigation on the implementation of new technologies (five off) in a coal pulverising with main aim to optimise mill maintenance interventions. The technologies in question are: • Stationary air throat replaced with a rotating throat assembly. • Hydro-pneumatic mill loading cylinders replaced with airbags. • Classifier cone modification. • Introduction of triton material for the mill spider guide plates. • High chrome mill grinding balls. Every maintenance ...

  9. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  10. The unconstitutionality of the compensatory fee according to section 8 of the Third Act on Enhanced Use of Coal for Electricity Generation ('Coal Pfennig'). Federal Constitutional Court, judgment of 11 Oct. 1994 - 2BvR 633/86

    International Nuclear Information System (INIS)

    Haager, K.; Lauffer, P.

    1995-01-01

    In order to protect the financial system of the federation as well as the appropriations power of the Bundestag from interference, and in order to account for the requirement of individual protection of the tax payers with regard to equality of burdens, a special levy shall be permitted by constitutional law only under very stringent conditions, and in very exceptional cases. The compensatory fee according to section 8 of the Third Act on Enhanced Use of Coal for Electricity Generation ('Coal Pfennig') thus is unconstitutional, as it puts an additional burden on the body of tax payers who as such do not bear responsibility for the financing of the purpose, to subsidise the use of coal for electricity generation. (orig.) [de

  11. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  12. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  13. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  14. Use of coal ash for enhancing biocrust development in stabilizing sand dunes

    Science.gov (United States)

    Zaady, Eli; Katra, Itzhak; Sarig, Shlomo

    2015-04-01

    In dryland environments, biocrusts are considered ecosystem engineers since they play significant roles in ecosystem processes. In the successional pathway of crust communities, the new areas are colonized after disturbance by pioneers such as filamentous cyanobacteria - Microcoleus spp. This stage is followed by colonization of green algae, mosses, and lichens. Aggregation of soil granules is caused by metabolic polysaccharides secreted by cyanobacteria and green algae, gluing the soil particles to form the crust layer. It was suggested that incorporating dust into the biocrusts encourages the growth of cyanobacteria, leading to a strengthening of the biocrusts' cohesion. Moreover, biocrusts cover a larger portion of the surface when the soil contains finer particles, and it was observed that at least 4-5% of clay and silt is required to support a measurable biocrust. While natural and undisturbed sand dunes are generally stabilized by biocrusts in the north-western Negev desert, stabilization of disturbed and movable sand dunes is one of the main problems in this desertified land, as in vast areas in the world. Daily breezes and seasonal wind storms transport sand particles to populated and agricultural areas causing damages to field crops and livelihood. Moving sand dunes consist of relatively coarse grains (250-2000 μm) with a low percent of clay and silt. This phenomenon negatively affects cyanobacterial colonization rate, even in relatively wet desert areas (100-250 mm rainfalls). In order to face the problem it was suggested to enrich the dune surface by using coal fly-ash. The research was conducted in two stages: first, examining the feasibility in Petri-dishes in laboratory conditions and in Experimental Aeolian Greenhouse conditions. The results showed that adding coal fly-ash and biocrust inoculum increased aggregate stability, penetration resistance and shear strength, as opposed to the control-sand plot. Using mobile wind-tunnel simulations, sand

  15. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance...... spectroscopy (EIS). Catalytic activity was evaluated as a function of various physical characteristics of doped ceria and manganese-based materials....

  16. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  17. Enhancing the use of coals by gas reburning-sorbent injection

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-27

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  18. Enhanced recovery of unconventional gas. Volume II. The program. [Tight gas basins; Devonian shale; coal seams; geopressured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Kuuskraa, V.A.; Brashear, J.P.; Doscher, T.M.; Elkins, L.E.

    1978-10-01

    This study was conducted to assist public decision-makers in selecting among many choices to obtain new gas supplies by addressing 2 questions: 1) how severe is the need for additional future supplies of natural gas, and what is the economic potential of providing part of future supply through enhanced recovery from unconventional natural gas resources. The study also serves to assist the DOE in designing a cost-effective R and D program to stimulate industry to recover this unconventional gas and to produce it sooner. Tight gas basins, Devonian shale, methane from coal seams, and methane from geopressured aquifers are considered. It is concluded that unconventional sources, already providing about 1 Tcf per year, could provide from 3 to 4 Tcf in 1985 and from 6 to 8 Tcf in 1990 (at $1.75 and $3.00 per Mcf, respectively). However, even with these additions to supply, gas supply is projected to remain below 1977 usage levels. (DLC)

  19. Starch-enhanced degradation of HMW PAHs by Fusarium sp. in an aged polluted soil from a coal mining area.

    Science.gov (United States)

    Zhao, Ou-Ya; Zhang, Xue-Na; Feng, Sheng-Dong; Zhang, Li-Xiu; Shi, Wei; Yang, Zhi-Xin; Chen, Miao-Miao; Fang, Xue-Dan

    2017-05-01

    The present study used strain ZH-H2 (Fusarium sp.) isolated by our group as the PAH-degrading strain and 5-6-rings PAHs as degradation objects. The soil incubation experiment was carried out to investigate the starch-enhanced degradation effects of HMW PAHs by Fusarium sp. in an Aged Polluted Soil from a Coal Mining Area. The results showed that the removal rates of BaP, InP and BghiP increased with increasing inoculation rate of ZH-H2 in the unsterile aged polluted soil of coal mining area, with the exception of BbF degradation which increased in the H2 treatment and then decreased. Different addition dosage of starch apparently resulted in degradation of 4 PAHs in soil, with removal rates of 14.47% for BaP, 23.83% for DbA, 30.77% for BghiP and 31.00% for InP obtained with treatment D2, respectively higher than in treatment D1. So starch addition apparently enhanced the degradation of the 4 PAHs, especially InP and BghiP, by native microbes in the aged HMW PAH-polluted soil. By adding starch to these aged polluted soils with inoculated strain ZH-H2, HMW-PAHs degradation was further improved and addition of 0.5 g kg -1 starch to soils with 1.0 g kg -1 Fusarium ZH-H2 (D 2  + H 2 ) performed best to the 4 HMW-PAHs in all of these combination treatments by a factor of up to 3.09, depending on the PAH. We found that the highest polyphenol oxidase activities under D 2  + H 2 treatments are consistent with the results of removal rates of 4 PAHs. Our findings suggest that the combination of Fusarium sp. ZH-H2 and starch offers a suitable alternative for bioremediation of aged PAH-contaminated soil in coal mining areas, with a recommended inoculation size of 0.5 g Fusarium sp. ZH-H2 and addition of 0.5 g kg -1 starch per kg soil. Copyright © 2016. Published by Elsevier Ltd.

  20. Enhanced concentrations of PAHs in groundwater at a coal tar site.

    Science.gov (United States)

    Mackay, A A; Gschwend, P M

    2001-04-01

    Concentrations of polycyclic aromatic hydrocarbons (PAHs) in groundwater at a coal tar site were elevated by factors ranging from 3 (pyrene) to 50 (indeno[1,2,3-cd]pyrene) over purely dissolved concentrations. Air-groundwater surface tension measurements (70.6 +/- 3 dyn/cm) were not sufficiently different from air-pure water measures (72.2 +/- 0.1 dyn/cm) to ascribe the observed enrichments to either cosolvents or surfactants in the groundwater. Excess pyrene was associated with colloids that passed an ultrafilter at ambient pH but became ultrafilterable when the groundwater pH was lowered to 1. This suggested pyrene association with humic acids. Given the decrease in groundwater total organic carbon (TOC) of 4 mgc/L upon acidification and ultrafiltration, a partition coefficient of 10(5) L/kgc was estimated for this pyrene association. Use of the results for pyrene and scaling for the differences in PAH hydrophobicities enabled good predictions of the observed enrichments of less water-soluble PAHs in the groundwater. This is strong field evidence indicating colloid-facilitated transport of HOCs in groundwater. Assuming that humic-bound PAHs were as mobile as the dissolved PAHs, the fluxes of individual PAHs (e.g., benzo[a]pyrene) from the tar source were as much as 20 times greater than estimates based solely on tarwater partitioning predictions.

  1. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  2. Co-Processing Coal and Natural Gas by the Hynol Process for Enhanced Methanol Production and Reduced CO2 Emissions

    National Research Council Canada - National Science Library

    Steinberg, Meyer

    1997-01-01

    ...) catalytic methanol synthesis. The Hynol Process is a total recycle process. Using a process simulation computer program, mass and energy balances and yields and efficiency data have been obtained for a range of natural gas to coal feedstock ratios...

  3. Process development studies on recovery of clean coal from ultra fine hardcoal tailings using enhanced gravity separator

    Energy Technology Data Exchange (ETDEWEB)

    Ozgen, S.; Turksoy, V.O.; Sabah, E.; Oruc, F. [Afyon Kocatepe Univ., Afyonkarahisar (Turkey). Dept. of Mining Engineering

    2009-10-15

    Gravity-based processing methods were used to process and recover clean coal from ultra-fine hardcoal tailings at a site in Turkey. The coal samples were analyzed using X-ray diffraction and X-ray fluorescence. A hydrocyclone was used to conduct classification tests and to separate the clay minerals from the coal. The effects of various operating parameters were also investigated. Regression analysis was used to characterize the relationship between the ash content and coal recovery rate and the feed solid, inlet pressure, diameter of vortex, and diameter of apex variables of the hydrocyclone. The effects of feed pressure were also investigated. The study showed that coal can be economically recovered from hardcoal tailings containing clay minerals. It was concluded that a coal sample with 6.98 per cent ash content and a net calorific value of 28,778 kJ was obtained with a weight recovery of 61.73 per cent. 25 refs., 8 tabs., 18 figs.

  4. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  5. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  6. China's coal export and inspection

    International Nuclear Information System (INIS)

    Xiaodong Li

    1993-01-01

    With the development of world's business and trade, coal has become a large part of the import and export goods in the international market. The total amount of coal trade has risen a lot. China is rich in coal resources. According to the estimate made by some experts, the reserve which has been explored recently could be exploited hundreds of years. China's output of raw coal has risen a lot during the past forty years. China coal industry has developed rapidly since the 1980s. It is possible for China to become a big coal export country since it has rich resources and increasing output. The paper suggests four steps which must be taken to expand coal exports in China: improve the level of management and administration of coal mines so as to raise the economic benefit; the follow-up production capacity of the present mines must be enhanced rapidly; step up construction of new large-scale mines; and China's coal washing capacity must be improved speedily since the low capacity has seriously influenced the improvement of coal quality. The paper describes the inspection bureaus and companies that have developed to perform inspection of exports in order to guarantee the quality of export coal

  7. Fundamental study on in situ capture of CO{sub 2} with Ca-based sorbents during lime-enhanced steam gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Koji Kuramoto; Sayaka Shibano; Atsuko Morita; Koichi Matsuoka; Yoshizo Suzuki; Hiroyuki Hatano; Lin Shi-Ying; Michiaki Harada; Takayuki Takarada [National Institute of AIST, Ibaraki (Japan)

    2005-07-01

    New hydrogen production process, HyPr-RING, has been proposed. This is a novel process where a high-pressure steam is decomposed thermochemically with coal under the presence of Ca-based CO{sub 2} sorbents in a single reactor, producing hydrogen in high yield with little release of CO{sub 2}. In an effort to develop this novel hydrogen production process, fundamental CO{sub 2} sorption characteristics of Ca-based sorbents during repetitive carbonation-calcination reactions under different pressures were investigated using a laboratory-scale horizontal-tube reactor. The results revealed that Ca-based sorbents were significantly deactivated by high temperature calcination treatment. An intermediate hydration treatment for the calcined sorbents (CaO) was found to enhance the reactivity and durability of the sorbents for multicycle CO{sub 2} sorption. Deactivation of Ca-based sorbents by coal-derived minerals during multicycle CO{sub 2} sorption reactions at elevated temperature and pressure was also investigated using a laboratory-scale horizontal-tube reactor. The sorbents tended to undergo a solid-solid reaction with coal-derived ash components such as silicon (Si) and aluminium (Al) during multicycle CO{sub 2} sorption with an intermediate hydration stage. This result suggests that steam enhanced the solid-solid reaction between the minerals and the sorbents at elevated temperature ({gt} 873 K) and pressure (6.0 MPa) and that the interaction should be avoided by selecting proper reaction conditions for efficient utilization of the Ca-based sorbents. 11 refs., 6 figs.

  8. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  9. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  10. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  11. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    International Nuclear Information System (INIS)

    Kenneth E. Baldrey

    2002-01-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO(sub 3) and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative

  12. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  13. Phenanthrene sorption to Chinese coal: Importance of coal's geochemical properties

    International Nuclear Information System (INIS)

    Yan Caixia; Yang Yi; Liu Min; Nie Minghua; Zhou, John L.

    2011-01-01

    Highlights: → Phen was chosen as the probe compound for determining the sorption of PAHs to a series of different Chinese coal samples. → The combined partition and adsorption model yielded a better fit than the Freundlich isotherm. → Compared to total carbon, BC might play more important role in the sorption of Phen to coal samples. → Relationships between aromatic and aliphatic carbon contents and sorption parameters indicated the significance of aromatic and aliphatic carbon in the coal sorption behavior. - Abstract: Phenanthrene (Phen) was chosen as the probe compound for determining the sorption of PAHs to a series of different coal samples from China. Based on elemental analysis and nuclear magnetic resonance (NMR) spectra analysis, coal samples were characterized with different metamorphic evolutional degrees. The experimental sorption data were fitted well by the Freundlich model, suggesting enhanced sorption capacity and strong nonlinearity of coal samples. The combined partition and adsorption model yielded a better fit than the Freundlich isotherm, indicating that adsorption dominated the sorption at low aqueous concentrations. Correlations between coal properties and sorption capacity values indicated that C%, H/C and O/C atomic ratios were the key factors controlling the sorption behavior. Compared to total carbon, BC might play more important role in the sorption of Phen to coal samples. Moreover, there existed nonlinear relationships between combined carbon, aromatic and aliphatic carbon contents and log K Fr and n values, respectively, indicating the significance of aromatic and aliphatic carbon in the coal sorption behavior.

  14. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  15. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies

    International Nuclear Information System (INIS)

    Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-01-01

    The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m 2 /g), high pore volume (1.23 cm 3 /g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. - Highlights: • A high efficiency adsorbent for sulfonamide removal is prepared from anthracite. • Effects of

  16. Ergonomics - Using Ergonomics to Enhance Safe Production at a Surface Coal Mine - A Case Study with Powder Crews

    Energy Technology Data Exchange (ETDEWEB)

    Torma-Krajewski, J.; Wiehagen, W.; Etcheverry, A.; Turin, F.; Unger, R. [Colorado School of Mines, Golden, CO (United States)

    2009-07-01

    Job tasks that involve exposure to work-related musculoskeletal disorder (WMSD) risk factors may impact both the risk of injury and production downtime. Common WMSD risks factors associated with mining tasks include forceful exertions, awkward postures, repetitive motion, jolting and jarring, forceful gripping, contact stress, and whole body and segmental vibration. Mining environments that expose workers to temperature/humidity extremes, windy conditions, and slippery and uneven walking surfaces also contribute to injury risk. National Institute for Occupational Safety and Health (NIOSH) researchers worked with powder crew members from the Bridger Coal Company to identify and rank routine work tasks based on perceived exposure to WMSD risk factors. This article presents the process followed to identify tasks that workers believed involved the greatest exposure to risk factors and discusses risk reduction strategies. Specifically, the proposed prill truck design changes addressed cab ingress/egress, loading blast holes, and access to the upper deck of the prill truck.

  17. Enhanced removal of sulfonamide antibiotics by KOH-activated anthracite coal: Batch and fixed-bed studies.

    Science.gov (United States)

    Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-04-01

    The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m(2)/g), high pore volume (1.23 cm(3)/g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.; Ramesh, R.

    1989-01-01

    This project is designed to develop an understanding of the fundamentals involved in flotation and flocculation of coal, and of coal in various states of oxidation. The main objective of this study is to accurately characterize the coal surface and elucidate mechanisms by which surface interactions between coal and various reagents enhance beneficiation of coals. Effects of oxidation on the modification of surface characteristics of coal by various reagents will also be studied. This quarter, the following studies were conducted in order to further develop our understanding of the role of heterogeneity in interfacial phenomena. (1) Since surface characterization is an important aspect in this project, ESCA (Electron Spectroscopy for Chemical Analysis) study of the coal surface was conducted. Surface derivatization, a technique often used in the preparation of organic compounds for gas-liquid chromatography, uses site specific molecular tags'' that bond to key chemical groups on the surface. Application of derivatization in conjunction with ESCA is a relatively new technique for quantifying functional groups on the surface which has not been possible till now. (2) A distribution of contact angles on the surface of coal (pseudo theta map) is presented based on our earlier results and other published information. The role of heterogeneity in contact angle studies is also examined. 14 refs., 2 tabs.

  19. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  20. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  1. Coal Waste Powder Amendment and Arbuscular Mycorrhizal Fungi Enhance the Growth of Jabon (Anthocephalus cadamba Miq Seedling in Ultisol Soil Medium

    Directory of Open Access Journals (Sweden)

    Sri Wilarso Budi

    2013-03-01

    Full Text Available Coal powder waste application on low nutrient media is expected to be able to increase plant growth and to improve Arbuscular mycorrhizal fungi (AMF development. The objective of this research was to determine the effect of coal waste powder on the growth of Anthocephallus cadamba Jack and AMF development grown on ultisol soil. Two factors in a completely randomised experimental design was conducted under greenhouse conditions and Duncan Multiple Range Test was used to analyse of the effect the treatment. The first factor was ultisol soil ammended with coal waste powder (control, soil amanded with coal waste 5%, soil amanded with coal waste 10% and soil amanded with coal waste 15% and the second factor was AMF inoculation (uninoculated control, inoculated with Gigaspora margarita. Plant height, diameter, shoot dry weight, percentage of AMF colonization and nutrient uptake were measured in this experiment. Results of this study showed that coal amendment and AMF when applied separately significantly increased height, diameter, shoot dry weight, root dry weight and nutrient uptake of 12 weeks A. cadamba seedling, but when the coal waste powder and AMF were combined the plant growth parameters were lower than those applied separately but significantly higher than control. The application of coal waste powder or AMF in ultisol soil could increase A. cadamba growth and development.

  2. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  3. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nesreen S. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Menzel, Robert [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Wang, Yifan [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Garcia-Gallastegui, Ainara [Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Mokhtar, Mohamed, E-mail: mmokhtar2000@yahoo.com [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia)

    2017-02-15

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH. - Graphical abstract: CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. - Highlights: • CuAl LDH/GO and CoAl LDH/GO hybrid materials with different LDH compositions were prepared. • Hybrids were fully characterised and their catalytic efficiency over the Classic Ullman Reaction was studied. • CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) in 25 min reaction times. • GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs. • After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  4. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  5. Determination of technologically enhanced naturally occurring radioactive material (TENORM) in ashes from coal-fired thermal power plants in the Philippines

    International Nuclear Information System (INIS)

    Parami, Vangeline Kinilitan

    2008-04-01

    The activity concentration (AC) of TENORM - 238 U, 226 Ra ( 238 U series), 232 Th, 228 Ra, 228 Th ( 232 Th series) and 40 K in feed coal, bottom ash and fly ash samples from four coal-fired thermal power plants C, M, P and S were determined using two techniques: inductively coupled plasma mass spectrometry (ICP-MS) and high purity germanium (HPGe) gamma spectrometry. For 232 Th and 238 U [determined at National Institute for Radiological Sciences (NIRS) by the ICP-MS)], Plant S feed coal (FC) sample that originated from China had the highest AC (15.77 ± 0.32 Bq/kg and 13.67 ± 0.82 Bq/kg, respectively), followed by Plant M FC sample also from China (8.31 ± 0.33 Bq/kg and 5.84 ± 0.12 Bq/kg, respectively), while Plants C and P FC samples that originated from the Philippines and Indonesia had the lowest ACs of 232 Th and 238 U. Plant S also had the highest bottom ash (BA) AC of 80.86 ± 3.23 Bq/kg and 100.20 ± 4.01 Bq/kg, respectively while Plant P had the highest fly ash (FA) AC of 155.96 ± 6.24 Bq/kg and 268.03 ± 10.72 Bq/kg, respectively. For AC's of 226 Ra, 228 Ra, 228 Th and 40 K determined by NIRS HPGe, Plant C had the highest in the FC sample (11.70 ± 1.39 Bq/kg, 13.65 ± 4.99 Bq/kg, 11.35 ± 3.96 Bq/kg ad 80.23 ± 10.91 Bq/kg, respectuvely). For AC's in the BA samples, Plant M had the highest 226 Ra (106.73 ± 6.74 Bq/kg) and Plant S had the highest 228 Ra and 40 K (66.64 ± 8.16 Bq/kg and 400.93 ± 43.06 Bq/kg, respectively For AC's in the FA samples, Plant S had the highest 226 Ra and 228 Ra AC's (131.13 ± 8.09 Bq/kg and 87.70 ± 10.45 Bq/kg, respectively) while Plant C had the highest 40 K AC (369.08 ± 40.87 Bq/kg). The highest AC enhancement of 238 U, 226 Ra ( 238 U series), 232 Th, 228 Ra, 228 Th ( 232 Th series) 40 K relative to feed coal occurred in Plant P FA sample, with 238 U showing the highest enhancement of 93.72 among the radionuclides. When normalized with 40 K, 238 U in Plant P FA sample also had the highest enrichment factor (EF

  6. Coal bed sequestration of carbon dioxide

    Science.gov (United States)

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  7. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin

    2018-03-01

    The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Science.gov (United States)

    Ahmed, Nesreen S.; Menzel, Robert; Wang, Yifan; Garcia-Gallastegui, Ainara; Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N.; Mokhtar, Mohamed

    2017-02-01

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  10. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  11. Clean Coal Initiatives in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-08-01

    Full Text Available Availability of, and access to, coal is a crucial element of modern economies and it helps pave the way for human development. Accordingly, the thermal power sector and steel industries have been given a high priority in the national planning processes in India and a concerted focus on enhancing these sectors have resulted in significant gain in generation and availability of electricity and steel in the years since independence. To meet the need of huge demand of power coal is excavated. The process of excavation to the use of coal is potential enough to degrade the environment. Coal Mining is a development activity, which is bound to damage the natural ecosystem by all its activities directly and ancillary, starting from land acquisition to coal beneficiation and use of the products. Huge areas in the Raniganj and Jharia coal field in India have become derelict due to abandoned and active opencast and underground mines. The study is pursued to illustrate the facts which show the urgent need to clean coal mining in India.

  12. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  13. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  14. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  15. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  16. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  17. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  18. Coal and the competition

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Arlington, VA (United States). FT Energy

    2000-07-01

    24 overheads/viewgraphs outline a presentation on competition in the US coal industry. It discussed four main subjects: key factors driving coal demand (environmental regulations, electric utility deregulation; competition with natural gas, inter-regional coal competition, supply availability and pricing; and the export market and competition from off-shore coal sources); coal's ability to boost market share; shifts in coal distribution and the risk of more branded coal; and attempts to keep more regional sources of coal in business. State tax incentives for coal use in Arizona, Ohio, Oklahoma, Virginia and Alabama were discussed.

  19. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  20. The coal industry and its greenhouse challenge

    International Nuclear Information System (INIS)

    Armstrong, A.

    1998-01-01

    The Australian coal industry is actively involved in greenhouse gas emission management and abatement issues. An Australian Coal Association (ACA) position paper on greenhouse in November 1989, recommended a number of strategies to minimise the greenhouse effect, including the enhancement of energy utilisation efficiency, improved energy conversion efficiency at coal-fired power stations, expanded use of solar heating, and improved recycling. All of the strategies have been implemented to various degrees. The management and abatement of greenhouse gas emissions within the coal industry has been approached from an individual operational level, and a 'higher' industry level

  1. Catalytic coal liquefaction with treated solvent and SRC recycle

    Science.gov (United States)

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  2. Impacts of seaborne trade on coal importing countries: global summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    In recent years, there has been a convergence of international trade with traditional domestic markets, with import increasing into many coal producing regions, the influence of trade on domestic markets has been twofold. Firstly, imported coal displaces domestic production, and in doing so, secondly international price trends may drive prices of what remains of the indigenous market for coal. While international trade does not provide any additional benefits in terms of reduced CO2 at a coal-fired power stations, importing coal provides many benefits, such as cost savings, improved coal quality, enhanced supply diversity, and often fills a gap which is left where domestic supply is unable to fulfil. This report examines the various factors that have led to rise in popularity of seaborne-traded coal, and seeks to discuss the future of domestically produced coal in some of the major coal markets of the world.

  3. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  4. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  5. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  6. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  7. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  8. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  9. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  10. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-08

    This is the ninth Technical Progress Report, describing work performed under DOE Contract No. (DE-FC2290PC896631) Development of a Coal Quality Expert.'' The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and ABB Combustion Engineering, Inc. This report covers the period from April 1, through June 30, 1992. Four companies and seven host utilities have teamed with CQ Inc. and ABB/CE to perform the work on this project. The work falls under DOE's Clean Coal Technology Program category of Advanced Coal Cleaning.'' The 45-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and. Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance. (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

  11. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  12. Advanced coal liquefaction research: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gall, W.; McIlvried, III, H. G.

    1988-07-01

    This study had two objectives: (1) To enhance the fundamental understanding of observed differences in the short contact time, donor solvent liquefaction of bituminous and subbituminous coals. (2) To determine if physical refining of subbituminous coals could be used to give a better feedstock for the first stage of two-stage liquefaction processes. Liquefaction studies using microautoclaves were carried out. Results are discussed. 11 refs., 25 figs., 29 tabs.

  13. Extraction of low rank coals by coal derived oils at 350 degrees C for producing clean fuels

    Energy Technology Data Exchange (ETDEWEB)

    Miura, K.; Mae, K.; Shindo, H.; Ashida, R.; Ihara, T. [Kyoto University, Kyoto (Japan). Dept. of Chemistry

    2003-07-01

    The authors have recently presented a new coal solvent extraction method that enhances the extraction yield dramatically. The method extracts coal using a flowing stream of either tetralin or 1-methylnaphthalene under 10 MPa at 200 to 400{sup o}C. The extract yield reached 65 to 80% for bituminous coals at 350{sup o}C, and the extract was almost free from mineral matter. Thus, this method was found to be effective to recover clean fuels from bituminous coals under rather mild conditions. To extend the extraction method to low rank coals and to make the method practically applicable, coal derived oils, carbol oil and creosote oil, were used in addition to tetralin in this study. Twenty kinds of coals were subjected to the extraction by tetralin and the coal derived oils at 350{sup o}C. Almost all sub-bituminous coals and brown coals examined were surprisingly extracted by 80% in the carbol oil at 350{sup o}C. It was also found that the extract was almost free from mineral matter and that most of sulfur was retained in the coal through the extraction by tetralin, whereas most of sulfur including pyritic sulfur was transferred into the soluble fraction through the extraction by the carbol oil. Thus, it was clarified that the proposed method was effective to produce a large amount of clean fuels from low rank coals under rather mild conditions.

  14. Assessment of shrinkage-swelling influences in coal seams using rank-dependent physical coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Huseyin Onur [Middle East Technical University, Ankara (Turkey); Gumrah, Fevzi [Middle East Technical University, Ankara (Turkey)]|[Alberta Research Council, Edmonton (Canada)

    2009-01-07

    Characterization of coal reservoirs and determination of in-situ physical coal properties related to transport mechanism are complicated due to having lack of standard procedures in the literature. By considering these difficulties, a new approach has been developed proposing the usage of relationships between coal rank and physical coal properties. In this study, effects of shrinkage and swelling (SS) on total methane recovery at CO{sub 2} breakthrough (TMRB), which includes ten-year primary methane recovery and succeeding enhanced coalbed methane (ECBM) recovery up to CO{sub 2} breakthrough, and CO{sub 2} sequestration have been investigated by using rank-dependent coal properties. In addition to coal rank, different coal reservoir types, molar compositions of injected fluid, and parameters within the extended Palmer and Mansoori (P and M) permeability model were considered. As a result of this study, shrinkage and swelling lead to an increase in TMRB. Moreover, swelling increased CO{sub 2} breakthrough time and decreased displacement ratio and CO{sub 2} storage for all ranks of coal. Low-rank coals are affected more negatively than high-rank coals by swelling. Furthermore, it was realized that dry coal reservoirs are more influenced by swelling than others and saturated wet coals are more suitable for eliminating the negative effects of CO{sub 2} injection. In addition, it was understood that it is possible to reduce swelling effect of CO{sub 2} on cleat permeability by mixing it with N{sub 2} before injection. However, an economical optimization is required for the selection of proper gas mixture. Finally, it is concluded from sensitivity analysis that elastic modulus is the most important parameter, except the initial cleat porosity, controlling SS in the extended P and M model by highly affecting TMRB. (author)

  15. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  16. Coal liquefaction co-processing

    Energy Technology Data Exchange (ETDEWEB)

    Nafis, D. A.; Humbach, M. J. [UOP, Inc., Des Plaines, IL (USA); Gatsis, J. G. [Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center

    1988-09-19

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high quality synthetic oil. A highly active dispersed V{sub 2}O{sub 5} catalyst is used to enhance operations at moderate reaction conditions. A three-year research program has been completed to study the feasibility of this technology. Results are discussed. 7 refs., 14 figs., 21 tabs.

  17. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  18. Flash hydrogenation of coal

    Science.gov (United States)

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  19. Enhancing the use of coals by gas reburning-sorbent injection. Quarterly report no. 8-A, June 1--August 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-27

    The objective of this project is to evaluate and demonstrate a cost effective emission control technology for acid rain precursors, oxides of nitrogen (NO{sub x}) and sulfur (SO{sub x}), on three coal fired utility boilers in Illinois. The units selected are representative of pre-NSPS design practices: tangential, wall, and cyclone fired. The specific objectives are to demonstrate reductions of 60 percent in NO{sub x} and 50 percent in SO{sub x} emissions, by a combination of two developed technologies, gas reburning (GR) and sorbent injection (SI). With GR, about 80--85 percent of the coal fuel is fired in the primary combustion zone. The balance of the fuel is added downstream as natural gas to create a slightly fuel rich environment in which NO{sub x} is converted to N{sub 2}. The combustion process is completed by overfire air addition. SO{sub x} emissions are reduced by injecting dry sorbents (usually calcium based) into the upper furnace. The sorbents trap SO{sub x} as solid sulfates that are collected in the particulate control device.

  20. Microwave-induced co-processing of coal and biomass

    OpenAIRE

    Yan, Jie-Feng

    2015-01-01

    Pyrolysis is an attractive alternative for the conversion of solid fuels to valuable chemicals and bio-fuels. In order to obtain more H2 and syngas from pyrolysis of coal and biomass, microwave has been adopted to enhance the co-pyrolysis of coal and biomass, which has been investigated systematically in this study. Firstly, conventional pyrolysis of coal and biomass was carried out using a vertical tube furnace. Characterizations of pyrolytic gas, liquid and solid products were conducted...

  1. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  2. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  3. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  4. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  5. Hydrogen/deuterium transfer in coal liquefaction

    International Nuclear Information System (INIS)

    Cronauer, D.C.; McNeil, R.I.; Young, D.C.; Ruberto, R.G.

    1982-01-01

    Reactions have been made with deuterium-labelled solvent (d 4 - and d 12 -tetralin) and both Powhatan bituminous (Pittsburgh Seam) coal and model compounds under coal liquefaction conditions to study hydrogen transfer mechanisms. Powhatan coal liquefies quickly. Hydrogen transfer from the solvent to the reaction products continues throughout the heating period (up to 60 min). Significant hydrogen/deuterium exchange occurs and this strongly affects the distribution of deuterium in the products and also affects the extent of conversion as measured by the amount of THF-insoluble material. Increased deuteration of the solvent leads to decreased conversion. This exchange is enhanced by heavy aromatic species and by the presence of mineral matter and unconverted coal solids. (author)

  6. Mechanization of coal cutting by plough

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Shik; Lee, Kyung-Woon; Kim, Oak-Hwan; Kim, Dae-Kyung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The reducing coal market has been enforcing the coal industry to make exceptional rationalization and restructuring efforts since the end of the eighties. To the competition from crude oil and natural gas has been added the growing pressure from rising wages and rising production cost as the workings get deeper. To improve the competitive position of the remaining 11 coal mines after the rationalization of the industry, studies to improve mining system have been carried out. A plough has been tested since Feb. 1997 at the Kyung Dong Colliery. Through several modifications it achieved following performances compared to coal pick. - Reduced working forces from 60 workers per day to 48 workers. - Enhanced advancing rate from 35cm per day to 46cm. - Improved productivity from 8.34 ton/man{center_dot}shift to 12.5 ton at the face. - Increased daily production rate from 500 tonne to 600 tonne. (author). 6 tabs., 17 figs.

  7. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  8. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  9. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudy, S.E.; Fedorak, P.M.

    1984-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. A method for measuring absolute quantities of methane produced has been refined and applied to cultures maintained on both phenol and p-cresol. Oxidative treatment studies have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Long-term experiments conclusively demonstrated the capability of anaerobic cultures to degrade m-cresol; presence of phenol and p-cresol was found to enhance this capability by shortening acclimation. Other long-term experiments indicated that the anaerobic degradability of o-cresol remains in doubt. The kinetics of phenol degradation in batch cultures containing various initial concentrations was also studied; at 43-199 mg/l levels, the final removal rates followed first order kinetics. Molecular hydrogen was identified as a possible limiting factor to the initiation of phenol degradation, and findings suggested phenol degraders prefer propionate over phenol as a substrate. A most probable number method, used for enumerating phenol degraders, estimated numbers too low to account for observed degradation rates, consistent with the hypothesis that phenol degradation depends on a consortium of organisms. Batch cultures could selectively degrade fermentable phenolics (mixed with non-fermentable ones) if the total phenolic concentration was near or below 700 mg/l. As other work has shown that fermentables comprise the majority of coal wastewater phenolics, such waters would be amenable to anaerobic biological treatment. 27 refs., 23 figs., 10 tabs.

  10. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  11. Surface electrochemical control for fine coal and pyrite separation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  12. Correlation between gas permeability and pore structure of coal matrix

    Science.gov (United States)

    Zhang, J.; Yang, J.; Gao, F.; Li, Y.; Niu, H.; Gao, H.

    2012-04-01

    The sequestration of CO2 in unminable coal seams represents a promising option for CO2 geologic storage, because the injected CO2 may enhance coalbed methane recovery (CO2-ECBM), which could partly offset the costs of the storage process. The CO2-ECBM technology is based on the relative affinity of CO2 and CH4 to coals under given pressure and temperature conditions. The excess sorption capacity of coals for CO2 is generally higher than the sorption capacity for methane. The coal seams are characterized by a dual porosity structure including cleat and matrix pores. The cleats in the coal seams are considered as highways for gas and water flow, while the matrix is the storage location of gas by adsorption. The slow transport process of gas in coal matrix may constrain the efficiency of the displacement of CH4 by CO2 due to the compacted pore structure of the coal matrix. Therefore, a detailed understanding of the correlation between permeability of gas and pore structure in coal matrix is crucial for the CO2-ECBM processes. Yangquan coals originating from the Qingshui basin, which contains gas-rich coals in China, were selected for the tests in this study. Yangquan coals are classified as anthracite. In order to avoid the influence of coal cleats on fluid flow, small coal plugs (~6 mm in diameter, ~13 mm in length) were selected and fixed in the sample compartment by special glue. A test system for simultaneously measuring adsorption-porosity-permeability on the coal matrix blocks in its free state is constructed. The permeability of gas and porosity in coal plugs to He under different gas pressure and temperature conditions were simultaneously investigated. The permeability and excess sorption capacity of the coal plugs to He, N2, CH4 and CO2 were compared at a constant gas pressure and temperature. It is expected that gas break through a cleat-plug is much faster than that through a coal matrix-plug. Different sample plugs with the different pore structure results

  13. Structure and chemistry of coals: calorimetric analyses. [Wetting heat

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1979-01-01

    Heats of immersion (h/sub i/) of coals have been shown to be a valuable means of investigating structure and chemistry of coals. This report outlines some of the factors involved. Lower ranked coals imbibe more liquids (i.e., H/sub 2/O) onto more polar sites (carbonyl, phenolic, etc.) than higher ranked coals. Mineral matter reacts strongly with polar liquids (i.e., H/sub 2/O) giving rise to enhanced h/sub i/. Grinding of coals not only decreases particle size but modifies the coal structure to an increasing degree dependent upon the extent and severity of grinding. The magnitude of h/sub i/ and the rate of reaction are both modified consistent with the existence of a shrinking core or unperturbed coal structure serving as substrate to which the modified (less ordered) material is bound. Chemical (alkali) attack seems to loosen the coal structure markedly to allow enhanced access to fluid reagents. These exploratory studies have shown that calorimetric analyses similar to those developed and used by A.C. Zettlemoyer and his coworkers are excellent means for elucidating the structure and chemistry of coals and related materials.

  14. Adsorption and strain: The CO 2-induced swelling of coal

    Science.gov (United States)

    Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O.

    2010-10-01

    Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal bed methane reservoirs in order to facilitate the recovery of the methane. The injected carbon dioxide gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling in confined conditions leads to a closure of the coal reservoir cleat system, which hinders further injection. In this work we provide a comprehensive framework to calculate the macroscopic strains induced by adsorption in a porous medium from the molecular level. Using a thermodynamic approach we extend the realm of poromechanics to surface energy and surface stress. We then focus on how the surface stress is modified by adsorption and on how to estimate adsorption behavior with molecular simulations. The developed framework is here applied to the specific case of the swelling of CO 2-injected coal, although it is relevant to any problem in which adsorption in a porous medium causes strains.

  15. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  16. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  17. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  18. Coal and our environment

    International Nuclear Information System (INIS)

    1992-01-01

    This booklet describes how coal is important for economic development and how it can be used without environmental damage. Aspects covered include: improved air quality; Clean Air Act; controlling emissions from coal; flue gas desulfurization; acid rain; the greenhouse effect and climatic change; the cost of clean air; surface coal mining and land reclamation; underground mining and subsidence; and mining and water pollution including acid mine drainage

  19. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    Science.gov (United States)

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    accessibility of supercritical CO2 to coal matrix porosity, limiting the extent to which hydrocarbons are mobilized. Conversely, the enhanced recovery of some surrogates from core plugs relative to dry, ground coal samples might indicate that, once mobilized, supercritical CO2 is capable of transporting these constituents through coal beds. These results underscore the need for using intact coal samples, and for better characterization of forms of water in coal, to understand fate and transport of organic compounds during supercritical CO2 injection into coal beds.

  20. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  1. Developing Queensland coal

    Energy Technology Data Exchange (ETDEWEB)

    Philp, A. [Australian QTherm (Australia)

    1998-11-01

    Despite regional economic woes and falling coal prices, there have been exciting developments in Queensland`s coal industry with the announcement of three new coal mines, four mine expansions and two mine feasibility studies being undertaken. The article describes new projects being undertaken in Coppabella, Morahbah North and Hall Creek all in the Northern Bowen Basin, and mine expansions underway at Burton, Enshan, Newlands and Oaky North. Feasibility studies are the progress in the Millmerran and Acland deposits in The Moreton Basin. However, a number of proposed expansions at some major mines, such as Moura, Saraji and Peak Downs, have been postponed due to falling international coal prices. 2 figs., 2 photos.

  2. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  3. Advanced reclamation of coal refuse ponds

    International Nuclear Information System (INIS)

    Honaker, R.Q.; Chugh, Y.P.; Patwardhan, A.

    1998-01-01

    A vast number of coal refuse ponds represent a significant economical resource base that may also be considered to be environmentally harmful. The fine coal fraction in a preparation plant consists of the purest particles in the entire preparation plant and, thus, if recovered, could enhance the quality of the plant product. However, until recently, the ability to effectively recover fine coal has been limited due to the lack of efficient fine particle separation technologies. As a result, a large portion of the fine coal produced in the US during this century has been disposed into refuse pond along with the acid producing components of the associated gangue material. Research conducted by Southern Illinois University scientists has found that advanced fine coal cleaning technologies can be used to recover high quality coal from refuse ponds while also utilizing a novel technique for neutralizing the acid generation potential of the pyrite-rich reject stream. Various circuitry arrangements will be discussed and metallurgical results presented in this publication

  4. Coal at the crossroads : energy panacea or environmental sunset?

    International Nuclear Information System (INIS)

    Page, B.

    2008-01-01

    This presentation provided information on the global scene for climate change and coal reserves. While the trend of rising prices for declining conventional oil and gas reserves is expected to continue, the index of coal reserves remains high, therefore the price for coal is rising more slowly. New environmental regulations will soon be mandated in both Canada and the United States for emissions of carbon dioxide, sodium oxide, nitrogen oxide, mercury, as well as water use and water quality. Coal reserves in Canada and around the world were presented along with rates of growth in global coal markets and its price advantage. Coal was noted as being essential for Canada's energy future. Although it is the least expensive generating fuel in Alberta, followed by natural gas, the gap between the two fuels is gradually widening, not because of the cost of coal for existing super-critical pulverized coal steam boilers, but because of the additional costs associated with new environmental technologies and cost overruns for construction. The reliability of new technologies to maximize hours on line and avoid unplanned stoppages or interruptions is also a cost factor. This presentation also addressed other topics involving the coal sector and the geo-political situation, including coal in Alberta; the sustainability challenge; and new federal regulations. The presentation included a schematic indicating the polygeneration potential of coal gasification. Another environmental solution to coal use includes carbon capture and sequestration (CCS) in which carbon dioxide is captured and pipelined to an underground storage site or used for enhanced oil recovery. It was concluded that the coal industry must do a much better job at communicating its message, addressing its critics, and influencing the public. figs

  5. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  6. The Indonesian coal industry

    International Nuclear Information System (INIS)

    Cook, A.; Daulay, B.

    2000-01-01

    In this comprehensive article the authors describe the origins and progress of the Indonesian coal industry and the role it plays, and will play, in the domestic energy scene and world coal trade. In the '80s, the Indonesian coal industry laid the basis for major expansion such that coal production rose from under a million tonnes in 1983 to 10.6 million tonnes in 1990, 50.9 million tonnes by 1996 and 61.2 million tonnes in 1992. At the same time, exports have increased from 0.4 million tonnes to 44.8 million tonnes. Current export levels are higher than originally expected, due in part to a slow down in the construction of electric power stations and a partial switch to natural gas. This has slowed the rate at which domestic coal demand has built up. The majority of coals currently exported are low rank steam coals, but some of the higher rank and very low ash coals are used for blast furnace injection, and a very small proportion may even be used within coking blends, even though they have poor coking properties. The Indonesian coal industry has developed very rapidly over the last six years to become a significant exporter, especially within the ASEAN context. The resources base appears to be large enough to support further increases in production above those already planned. It is probable that resources and reserves can be increased above the current levels. It is likely that some reserves of high value coals can be found, but it is also probable that the majority of additions to reserves will be lower in rank (and therefore quality) compared with the average of coals currently being mined. Reserves of qualities suitable for export will support that industry for a considerable period of time. However, in the longer term, the emphasis of production will increasingly swing to the domestic market

  7. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  8. Clean coal technologies and future prospects for coal

    International Nuclear Information System (INIS)

    Rose, A.; Torries, T.; Labys, W.

    1991-01-01

    The purpose of this paper is to analyze the future potential of coal in the US economy during the next 25 years in light of clean coal technologies. According to official US Department of Energy (DOE) designations, these technologies pertain only to the beneficiation, transformation, combustion, and postcombustion clean-up stages of the coal cycle; no coal mining or coal transport technologies are included. In general, clean coal technologies offer the prospect of mitigating environmental side-effects of coal utilization, primarily through improved operating efficiencies and lowered costs of air emission controls. If they prove successful, coal users will be able to meet more stringent environmental regulations at little or no additional cost. In assessing the influence of clean coal technologies on coal demand, we focus on the economics of three crucial areas: their development, their deployment, and coal utilization implications of their operation

  9. Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies

    Science.gov (United States)

    Hower, J.C.; Eble, C.F.; Quick, J.C.

    2005-01-01

    Mercury emissions from US coal-fired power plants will be regulated by the US Environmental Protection Agency (USEPA) before the end of the decade. Because of this, the control of Hg in coal is important. Control is fundamentally based on the knowledge of the amounts of Hg in mined, beneficiated, and as-fired coal. Eastern Kentucky coals, on a reserve district level, have Hg contents similar to the USA average for coal at mines. Individual coals show greater variation at the bench scale, with Hg enrichment common in the top bench, often associated with enhanced levels of pyritic sulfur. Some of the variation between parts of eastern Kentucky is also based on the position relative to major faults. The Pine Mountain thrust fault appears to be responsible for elemental enrichment, including Hg, in coals on the footwall side of the thrust. Eastern Kentucky coals shipped to power plants in 1999, the year the USEPA requested coal quality information on coal deliveries, indicate that coals shipped from the region have 0.09 ppm Hg, compared to 0.10 ppm for all delivered coals in the USA. On an equal energy basis, and given equal concentrations of Hg, the high volatile bituminous coals from eastern Kentucky would emit less Hg than lower rank coals from other USA regions. ?? 2005 Elsevier B.V. All rights reserved.

  10. Sustainable global energy development: The case of coal

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    Market-driven scenarios anticipate world coal demand to increase during the entire 21st century. The increase during 2000-2030 would range from 53 % to 100 %. Developing countries would take the lead in world coal demand growth. In western Europe, demand, and more so production, would decline, in central and eastern Europe increase. Carbon abatement policies would not impact on coal demand before 2020 - 2030. By 2050 however, under such constraints, coal demand would have declined by one third (only), - less in developing, more in developed countries. Under market conditions, the share of coal in world primary energy supplies, at 26 % in 2000, would decline to 24 % in 2020 and 22 % 2050. Carbon constraints would reduce the share of coal to 11 % in 2050, which (nevertheless) corresponds to 2.1 bill. tce (2000: 3.4 bill. tce). The major short-term competitor of coal would be gas, particularly under CO 2 emission constraints, although marginal gas is hardly better in terms of life cycle GHG emissions than marginal oil or coal. During 2001-2025, the increase of CO 2 emissions from coal (+1.1 bill. t of carbon) would be lower than for gas (+1.3 bill. t) and oil (+1.5 bill. t). In the longer term, new nuclear could emerge as a serious competitor. Electricity generators would remain the predominant customer for coal. By 2030, coal would cover 45 % of world electricity generation compared with 37 % in 2000. By 2020, coal-based methanol and hydrogen would cover 3 % of the world's transportation fuel demand (100 Mtoe), by 2050 14 % (660 Mtoe). Cumulative investments in coal mining, shipping and combustion during 2001-2030 would amount to USD 1900 billion, - 12 % of world investments in energy supply. International prices of coal relative to oil and gas would continue evolving in favour of coal enhancing its competitiveness. Almost nil in 2000, advanced coal combustion technologies would cover 33 % of world power generation in 2030, and 72 % of coal-based power generation

  11. India clamours for coal

    Energy Technology Data Exchange (ETDEWEB)

    Nadkarni, S.

    2000-10-01

    The steadily deteriorating quality of coal provided by government-owned companies in India has persuaded coal users to follow the lead of the World Bank and call for deregulation of the sector to allow quality coal to be procured at competitive prices from the global market.Some 24 opencast mines belonging to Coal India Limited subsidiaries were to be expanded to produce 112 mta of coal but the World Bank terminated a loan of 507 million dollars from the total sanctioned loan of 1.06 bn. CIL refuses to accept that the loan was terminated because the government failed to meet the terms and conditions imposed at the time of the loan sanction. In addition to slow demand from the power sector, the state-owned coal companies have found the World Bank terms impossible to meet. The favourable debt market in India has come to their aid but even this will not enable the quality of coal to be improved for use in many power plants. The Maharashtra State Electricity Board has called for the formation of a joint venture with the private sector to explore for and supply quality coal. 1 photo.

  12. Imported coal remains flexible

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, F.

    1982-01-01

    The new law on coal tariff quotas is one year old. During this period hard coal imports increased by 1 million tons, in spite of the slowed down economic activities and the wait-and-see attitude of consumers. The author gives a first survey.

  13. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  14. Mechanochemical hydrogenation of coal

    Science.gov (United States)

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  15. COAL USE REPORT

    Science.gov (United States)

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  16. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  17. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  18. The renaissance of coal

    International Nuclear Information System (INIS)

    Schernikau, Lars

    2013-01-01

    There is hardly another energy resource where public opinion and reality lie as far apart as they do for coal. Many think of coal as an inefficient relic from the era of industrialisation. However, such views underestimate the significance of this energy resource both nationally and globally. In terms of global primary energy consumption coal ranks second behind crude oil, which plays a central role in the energy sector. Since global electricity use is due to rise further, coal, being the only energy resource that can meet a growing electricity demand over decades, stands at the beginning of a renaissance, and does so also in the minds of the political leadership. Coal is indispensable as a bridging technology until the electricity demand of the world population can be met primarily through renewable resources.

  19. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  20. Bioremediation potential of coal-tar-oil-contaminated soil

    International Nuclear Information System (INIS)

    Lajoie, C.A.

    1991-01-01

    The bioremediation of coal tar oil contaminated soil was investigated in 90 day laboratory simulation experiments. The effect of soil moisture, humic acid amendment, and coal tar oil concentration on the rate of disappearance of individual coal tar oil constituents (PAHs and related compounds) was determined by methylene chloride extraction and gas chromatography. Mass balance experiments determined the fate of both the individual 14 C-labeled PAHs phenanthrene, pyrene, and benzo(a)pyrene, and the total coal tar oil carbon. Mineralization, volatilization, incorporation into microbial biomass, disappearance of individual coal tar oil constitutents, and the distribution of residual 14 C-activity in different soil fractions were measured. The rate of disappearance of coal tar oil constituents increased with increasing soil moisture over the experimental range. Humic acid amendment initially enhanced the rate of disappearance, but decreased the extent of disappearance. The amount of contamination removed decreased at higher coal tar oil concentrations. The practical limit for biodegradation in the system tested appeared to be between 1.0 and 2.5% coal tar oil. Mineralization accounted for 40 to 50% of the applied coal tar oil. Volatilization was a minor pathway of disappearance

  1. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  2. Coal: Less than lackluster

    International Nuclear Information System (INIS)

    Doerell, P.

    1994-01-01

    Not many in the world coal industry will remember 1993 as a good year. The reasons for the poor state of affairs were first the weak economic climate, and second, the energy glut. For the first time after expanding steadily since the 70s, seaborne trade in hard coal fell by about 4% to 350M mt. Steam coal accounted for a good half of this volume. While demand continued to rise in the newly industrialized countries of the Pacific area, imports into Europe of both coking coal and steam coal fell sharply. The United States, CIS, and Canada had to accept substantial losses of export volume. Australia, as well as South Africa, Colombia, and Indonesia consolidated their market positions and Poland, too, recorded high volumes available for export. The positive news came from Australia, where in mid-December the New South Wales coal industry reported an increase in the net profit after tax from $A83M (about $55M) to $A98M (about $126M) in 1992/1993. This success was however ascribed less to an improvement in the fundamental mining indicators than to the fall in the Australian dollar and the lowering of corporate tax. The reduction in capital investment by 26% down to $A330M (after the previous year when it had also been cut by 25%) is seen by the chairman of the NSW Coal Assoc. as not auguring well for the industry's ability to meet the forecast growth in demand to the year 2000

  3. Coal potential of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Rose, G.; McElroy, C.T.

    1987-01-01

    This report attempts to bring together available information on the coal deposits of Antarctica and discuss factors that would be involved if these deposits were to be explored and mined. Most of the reported principal coal deposits in Antarctica lie generally within the Transantarctic Mountains: the majority are of Permian age and are present in the Victoria Group of the Beacon Supergroup. Several other deposits have been recorded in East Antarctica and in the Antarctic Peninsula, including minor occurrences of Mesozoic and Tertiary coal and carbonaceous shale.

  4. Extreme coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  5. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  6. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  7. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  8. Development of a coal quality expert. Technical progress report No. 6, [July 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-20

    The project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

  9. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  10. Quarterly coal report

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  11. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  12. Coal exports still growing

    International Nuclear Information System (INIS)

    Blain, M.

    1998-01-01

    It is shown that the swings and roundabouts of the Asian economic shake out and Australian dollar devaluation are starting to work their way through the Australian export coal market. Perhaps somewhat surprisingly, at this stage the results are not proving to be as bad as were at first predicted by some market watchers. Export revenue and tonnages are up 12% for the year to July 98. Coal exports totaling $9.5 billion left Australia's shores in the 12 months confirming coal as Australia's single largest export revenue earner. Sales volumes in the present financial year are still increasing, the market being driven by steadily increasing Asian demand for steaming coal from places like Korea, Malaysia, Thailand and the Philippines

  13. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Viterbo, J.

    2011-09-15

    As the energy demand grows, coal is more and more exported and its trade is very flourishing. Asian countries produce 61% of the world production and Japan is the biggest coal importer: 27% of the world exports. The world reserves are huge: 860 billions tonnes which represents 130 years of today's production. The use of coal is very polluting and the quest of a clean coal is a challenge for the next decade. Different ways of improvement are currently developed: -) the use of more efficient filters to block polluting releases, -) the recovery of the energy of the smokes, -) a higher thermal yield through the use of supercritical cycles, or the addition of a gasification step to a combined cycle, or the simultaneous production of power, heat and chemical by-products, and -) the storage of CO{sub 2} produced in deep geological reservoirs. (A.C.)

  14. Uranium in coal

    International Nuclear Information System (INIS)

    Facer, J.F. Jr.

    1979-05-01

    United States production of coal in 1977 was 695 million short tons of which 477 million tons were burned in power plants. The ash from these power plants was about 67 million tons containing an estimated 900 tons U 3 O 8 , assuming 14 percent ash from the type of coal used by utilities and 12 ppM U contained in ash. Perhaps 1 to 3 percent of the domestic uranium requirement could be met from coal ash, provided processing technology could be developed for uranium recovery at acceptable costs. However, the environmental problems for disposal of the slimy leached ash would be enormous. The average uranium grade of coal in the United States is less than half of that of the Earth's crust. Burning the coal concentrates the contained uranium in the ash from 2 to 20 times. However, even at 20 times concentration, the percent uranium in coal ash is less than 1/100 of the grade of the uranium ore being processed today from conventional deposits. Although it is conceivable that some coal ash might contain enough uranium to make the ash an economic source of uranium, this is not now the case for ash from any major coal-fired power plant in the United States. During 1963 to 67, about 180,000 tons of uranium-bearing carbonaceous rock from the southwestern part of the Williston Basin were mined and processed to recover about 1 million pounds of U 3 O 8 . None of this material has been mined since 1967. The uranium reserves of the area are small, and the environmental problems with calcining the lignitic material may be prohibitive. Some other uraniferous coal and lignite could be mined and processed as a uranium ore, but less than half of one percent of the domestic $30 reserves are in coal. A few samples of mid-continent coal have been reported to contain about 100 ppM U but little is known about the size of such deposits or the likelihood that they will be mined and used for power plant fuel to produce a high-uranium ash

  15. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  16. Coal utilization and environment

    International Nuclear Information System (INIS)

    Sanchez, J.C.D.; Formoso, M.L.L.

    1990-01-01

    This paper attempts at presenting a database on environmental pollution due to coal-fired power plants and coal-mining, according to regional and national bibliography available to the authors. Data on air, water and soil pollution in Rio Grande do Sul and Pollution due to mining in Santa Catarina are presented. The paper consists of a bibliographic compilation, with the quantification of polluting factors. (author)

  17. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available ). ..................................................................................................................25 Figure 1-3 Stress in coal pillar versus pillar compression. After Wagner (1980).......................27 Figure 1-4 Frequency of pillar collapse versus the design safety factor. ..................................38 Figure 1-5 Frequency... ......................................................................................57 Table 2-6 Calculation of factor of safety of pillars at collapsed sites in Klip River coal field.......................................................................................................................58 Table 2-7 Summary...

  18. Coal transporting systems

    International Nuclear Information System (INIS)

    Vasilevski, Goce; Sazdov, Dushko; Tasevski, Apostol

    1999-01-01

    Installation of transporting systems in coal open pits in Macedonia was connected with construction and purchasing of the equipment from foreign companies. During 1998 Electric Power Company of Macedonia in connection with needs of the Oslomej Thermal Power Plant and delivery conditions,decided to give this task to domestic companies. This paper presents the planning activities an the implementation of the new coal transporting system. (Author)

  19. Improvements in monitoring coal

    International Nuclear Information System (INIS)

    Wright, H.R.C.; Tulloch, A.T.; Basterfield, A.

    1984-01-01

    An instrument for determining a first characteristic of a material, eg ash in coal, by X-radiation comprises a turntable with material feeding means. An X-radiation source and detector unit determines the first characteristic, and a microwave source and detector unit, determine a second characteristic of the material, eg moisture in coal. The turntable is transparent to microwaves in at least the region traversed by the microwaves. (author)

  20. Oil from coal

    Energy Technology Data Exchange (ETDEWEB)

    Thurlow, G.G.

    1978-10-01

    Our great-grandchildren will view the petroleum age as a brief perturbation in the life-style of mankind, less than a hundred years in which we discovered, exploited, squandered and exhausted the natural resource of liquid petroelum laid down over many million years of pre-history. What the sources of energy in common use in our great-grandchildren's day will be is something we cannot know. By then, the need for liquid hydrocarbon fuels may have passed. What is more sure, however, is that for a while, man will want to continue to use the equipment and the methods familiar to him from this petroleum-product dominated age beyond the time when natural petroleum sources become scarce. During these decades there will be a need to produce liquid hydrocarbons from other sources and one of these sources, abundantly available at this time, will be coal. Converting coal to liquid basically entails accomplishing two steps: (1) the separation of the coal substance from the ash and impurities associated with the coal, and (2) breaking down the complex coal molecules into simpler molecules and increasing the hydrogen-to-carbon ratio. It is also necessary, of course, to develop processes which will lead to the production of a range of liquid products to meet the demands of the commerical market, whether as fuels or as chemical feedstocks. Converting coal to a liquid needs energy, both heat and power, and hydrogen; if all these have to be generated starting from coal, their production may use approaching half of the Btu value of the coal fed to the plant. The economic advantage of one process over another will be mainly dependent on the products required and the price assigned to them and on the effectiveness with which the plant can be engineered to minimize energy loss and to operate effectively.

  1. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  2. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  3. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  4. Coal market outlook in China

    International Nuclear Information System (INIS)

    Yu Zhufeng; Zheng Xingzhou

    2005-01-01

    Coal is the major primary energy source in China. It is forecast that coal will account for over 60% of the primary energy consumption mix, and the total coal demand will reach 2.3-2.9 billion tons in 2020. However, ensuring the coal supply will be faced with a lot of obstacles in fields such as the degree of detailed exploration of coal reserves, the level of mining technology and mine safety, the production capacity building of mines, transport conditions, and ecological and environmental impacts. More comprehensive measures should be adopted, including improvements in energy efficiency, strengthening coal production and transportation capacity, to rationalise coal mine disposition and the coal production structure, and to raise the levels of coal mining technologies and mine safety management, etc. (author)

  5. Coal recovery from a coal waste dump

    Directory of Open Access Journals (Sweden)

    Rozanski Zenon

    2016-01-01

    Full Text Available The possibilities and efficiency of coal recovery from the waste material located at the Central Coal Waste Dump in Poland were presented in this paper. The waste material includes significant amount of fly ash. Research conducted into determination of energetic properties of such wastes showed that the average ash content was 75.75% and the average gross calorific value was 7.81 MJ/kg. Coal was gravitationally separated from the waste material in a pulsatory jig and in a spiral washer including size fractions: 30-5 and 8-0 mm (this was crushed to a size <3.2 mm, respectively. The application of the pulsatory jig (pulse classifier allowed to obtain a high-quality energetic concentrate with the ash content lower than 12% and the gross calorific value higher than 26 MJ/kg (with average yield 7.8%. The spiral separator gave much worse results. The average gross calorific value for the concentrate was 11.6 MJ/kg, with the high ash content 56.5% and yield approximately 26%.

  6. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  7. Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Shivaji Sircar; Hugo S. Caram; Kwangkook Jeong; Michael G. Beaver; Fan Ni; Agbor Tabi Makebe

    2010-06-04

    The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents.

  8. EIA projections of coal supply and demand

    International Nuclear Information System (INIS)

    Klein, D.E.

    1989-01-01

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion

  9. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  10. 11th annual conference on clean coal technology, proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Topics covered at the conference include coal combustion technology, multi-purpose coal conversion technology (including entrained-bed coal flash pyrolysis process (CPX), hydrogen production from coal and coal liquefaction), coal ash utilization technology, next general technology (including dry coal cleaning technologies and coal conversion by supercritical water) and basic coal utilization technology (including ash behaviour during coal gasification).

  11. Coal: geology, resources and reserves. Political economy of mineral coal

    International Nuclear Information System (INIS)

    Allegre, Maurice; Martin-Amouroux, Jean-Marie

    2014-04-01

    A first article indicates the different types of coal (lignite, coking coal, thermal coal) and their calorific power. The author discusses the geology and genesis of coal, and then evokes the various extraction techniques. He comments the definition used regarding resources and reserves, comments various resource assessments, and discusses the future evolution of resources and reserves. He comments the consequences of coal geology for perspectives and costs of production. The second article comments the strong increase of World coal consumption since 1980 (a table is given with data for each continent), outlines that thermoelectricity is the engine of coal demand, that extraction costs and transport costs remained limited (when extraction costs become too high, the mining site is generally closed). The author comments the development of international trade on very competitive markets, and outlines that national coal policies are much different among countries

  12. What component of coal causes coal workers' pneumoconiosis?

    Science.gov (United States)

    McCunney, Robert J; Morfeld, Peter; Payne, Stephen

    2009-04-01

    To evaluate the component of coal responsible for coal workers' pneumoconiosis (CWP). A literature search of PubMED was conducted to address studies that have evaluated the risk of CWP based on the components of coal. The risk of CWP (CWP) depends on the concentration and duration of exposure to coal dust. Epidemiology studies have shown inverse links between CWP and quartz content. Coal from the USA and Germany has demonstrated links between iron content and CWP; these same studies indicate virtually no role for quartz. In vitro studies indicate strong mechanistic links between iron content in coal and reactive oxygen species, which play a major role in the inflammatory response associated with CWP. The active agent within coal appears to be iron, not quartz. By identifying components of coal before mining activities, the risk of developing CWP may be reduced.

  13. Leachability of trace elements in coal and coal combustion wastes

    International Nuclear Information System (INIS)

    Rice, C.A.; Breit, G.N.; Fishman, N.S.; Bullock, J.H. Jr.

    1999-01-01

    Leaching of trace elements from coal and coal combustion waste (CCW) products from a coal-fired power plant, burning coal from the Appalachian and Illinois basins, was studied using deionized (DI) water as a lixiviant to resemble natural conditions in waste disposal sites exposed to dilute meteoric water infiltration. Samples of bottom ash, fly ash, and feed coal were collected from two combustion units at monthly intervals, along with a bulk sample of wastes deposited in an on-site disposal pond. The units burn different coals, one a high-sulfur coal (2.65 to 3.5 weight percent S) and the other, a low-sulfur coal (0.6--0.9 eight percent S). Short-term batch leaches with DI water were performed for times varying from a few minutes to 18 hours. Select fly ash samples were also placed in long-term (> 1 year) flow-through columns

  14. Mill performance of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Bennett; G. O' Brien; D. Holcombe [CoalTech Pty Ltd. (Australia)

    2005-07-01

    Evaluating the potential performance of coal blends for use as pulverised fuel (PF) in power plants and pulverised coal injection (PCI) into blast furnaces requires knowledge of the size distribution of the organic and mineral matter components of a blend, especially when there are significant differences in the Hardgrove Grindability Index (HGI) of the component coals. The size distribution of the organic matter impacts on combustibility of thermal and PCI coal blends and handleability of PCI coal blends. Petrography techniques were used to examine four size fractions from the PF of single coals and blends to measure the size distribution of maceral groups. For most coals, a good estimate of a blend's size distribution can be made assuming that the size distribution of the individual coals, milled under the same conditions, are added together in the proportions of the blend. The exception is when a very soft coal (HGI 90) is blended with a very hard coal (HGI 35). In this case preferential milling (more reporting to the smaller size fractions) of the softer coal occurred. All coals studied in this project show some sign of preferential grinding of the softer maceral group when the coal was milled individually or in a blend. It is only when there is a large difference in the relative strength of the maceral groups of the coals blended that the preferential milling of a coal in a blend is observed in the size distribution of the blend. The results indicate that the breakage characteristics (change in size reduction per unit of energy) of maceral groups in individual coals do not change when they are blended with other coals. 12 refs., 5 figs., 2 tabs.

  15. Global thermal coal trade outlook

    International Nuclear Information System (INIS)

    Ewart, E.

    2008-01-01

    Wood Mackenzie operates coal consulting offices in several cities around the world and is the number one consulting company in terms of global coal coverage. The company offers a unique mine-by-mine research methodology, and owns a proprietary modeling system for coal and power market forecasting. This presentation provided an overview of global thermal markets as well as recent market trends. Seaborne markets have an impact on price far greater than the volume of trade would imply. Research has also demonstrated that the global thermal coal market is divided between the Pacific and Atlantic Basins. The current status of several major coal exporting countries such as Canada, the United States, Venezuela, Colombia, Indonesia, Australia, China, South Africa, and Russia was displayed in an illustration. The presentation included several graphs indicating that the seaborne thermal coal market is highly concentrated; traditional coal flow and pricing trends shift as Asian demand growth and supply constraints lead to chronic under supply; coal prices have risen to historic highs in recent times; and, the Asian power sector demand is a major driver of future growth. The correlation between oil and gas markets to thermal coal was illustrated along with two scenarios of coal use in the United States in a carbon-constrained world. The impact of carbon legislation on coal demand from selected coal regions in the United States was also discussed. Wood Mackenzie forecasts a very strong growth in global thermal coal demand, driven largely by emerging Asian economies. tabs., figs

  16. Bright outlook for coal

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    After enduring contract price cuts over the past two years of almost 17% for thermal coal and 23% for hard coking coal, the New South Wales coal industry is looking forward to a reversal of fortune for 2001. Increased export demand, improved prices, significant improvements in mine site productivity, a weak Australian dollar and the probability of a number of new projects or extensions progressing to development are likely to result in an increase in NSW saleable production to around 110 million tonnes (Mt) in 2000-01. Sharply weaker coal prices over the past two years, intensified international competition and the Asian economic downturn had a negative impact on profitability, investment, exports and employment in the NSW coal industry. As a result, the industry has undergone substantial restructuring. The restructuring process has led to a consolidation in ownership, reduced production costs and improved operational efficiency. The outcome is an industry well positioned to take advantage of the positive market conditions and one likely to experience levels of profitability not achieved over the past few years

  17. Coal processing plants

    Science.gov (United States)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  18. Coal production, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons)

  19. Clean coal technology

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  20. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  1. Coal fire interferometry

    International Nuclear Information System (INIS)

    Van Genderen, J.L.; Prakash, A.; Gens, R.; Van Veen, B.; Liding, Chen; Tao, Tang Xiao; Feng, Guan

    2000-07-01

    This BCRS project demonstrates the use of SAR interferometry for measuring and monitoring land subsidence caused by underground coal fires and underground mining in a remote area of north west China. China is the largest producer and consumer of coal in the world. Throughout the N.W., N. and N.E. of China, the coal-seams are very susceptible to spontaneous combustion, causing underground coal fires. As the thick coal seams are burned out, the overburden collapses, causing land subsidence, and producing new cracks and fissures, which allow more air to penetrate and continue the fire to spread. SAR interferometry, especially differential interferometry has been shown to be able to measure small differences in surface height caused by such land subsidence. This report describes the problems, the test area, the procedures and techniques used and the results obtained. It concludes with a description of some of the problems encountered during the project plus provides some general conclusions and recommendations. 127 refs

  2. Exchange of experience: sieve analyses of coal and coal paste

    Energy Technology Data Exchange (ETDEWEB)

    1943-02-01

    This report consisted of a cover letter (now largely illegible) and a graph. The graph showed percentages of material left behind as residue on sieves of various mesh sizes, graphed against the mesh sizes themselves. The materials for which data were shown were both dry coal and coal paste from Ludwigshafen, Scholven, Gelsenberg, and Poelitz. The dry coal from Poelitz seemed to be by far the least finely-ground, but the coal paste from Poelitz seemed to be the most finely-ground. The values for coal paste from the other three plants were very close together over most of the range of mesh sizes. The dry coal from Gelsenberg seemed to be the most finely-ground dry coal, while the dry coals from Scholven and Ludwigshafen gave similar values over most of the range of mesh sizes. In all cases, the coal paste from a plant was more finely-ground than the dry coal from the same plant, but for Gelsenberg, the difference between the two was not nearly as great as it was for the other plants, especially Poelitz. For example, for a sieve with about 3,600 cells per square centimeter, only about 10% of the Poelitz coal paste was retained versus about 85% of the Poelitz dry coal retained, whereas the corresponding figures for Gelsenberg materials were about 36% versus about 53%.

  3. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  4. Viscosity Depressants for Coal Liquefaction

    Science.gov (United States)

    Kalfayan, S. H.

    1983-01-01

    Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.

  5. Distribution of chlorine in coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Fenghua; Ren Deyi; Zhang Shuangquan [China Univ. of Mining and Technology, Beijing (China). Dept. of Resource and Engineering; Zhang Wang [Antaibao Opencast Mine, Pingshuo, Shanxi (China)

    1998-12-31

    The current advance of study on chlorine in coal is reviewed. The concentrations of chlorine in 45 Chinese coal samples are determined on whole coal basis using instrumental neutron activation analysis (INAA). The sequential chemical extraction method is put forward to determine the occurrence modes of chlorine in coal. The research shows that Chinese coals are not chlorine-rich ones compared with those from other countries. In coal from Pingshuo Antaibao Opencast Mine, 46.70%--91.78% of chlorine is in a water-soluble state, 5.20%--48.38% of it is organic chlorine bonded to coal molecules, and only 4.92%--18.78% is an organic one in an ion-exchange state; the proportions of organic chlorine increase with the decrease in ash of coal.

  6. TEKO returns to coal

    International Nuclear Information System (INIS)

    TREND

    2003-01-01

    Slovak government will not grant state long-term credit guarantee sized about 1 billion Slovak crowns, which Geoterm, a.s., Kosice company would like to get from World bank. Loan should be used as for construction of geothermal source in village Durkov near Kosice, which would be connected in Kosice thermal plant TEKO, a.s. Geothermal sources capacity after realization of planned investments should reach half of present output of plant. The nearest TEKO investments should head to changes in plant production process. Plant wants to redirect in heat and thermal energy production from existing dominant gas consumption to black coal incineration. Black coal incineration is more advantageous than natural gas exploitation in spite of ecologic loads. TEKO also will lower gas consumption for at least 30 per cent and rise up present black coal consumption almost twice

  7. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  8. Coal: the dinosaur wakes up

    International Nuclear Information System (INIS)

    Rousseau, Y.; Cosnard, D.

    2005-01-01

    In western countries, coal is considered as an industry of the past, but at the Earth's scale the situation is radically the opposite. Since three years, coal is the faster developing energy source, in particular thanks to China expansion and to the oil crisis which makes coal more competitive. This short paper presents the situation of coal mining in China: projects, working conditions and environmental impact. (J.S.)

  9. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  10. The new deal of coal

    International Nuclear Information System (INIS)

    Kalaydjian, F.; Cornot-Gandolphe, S.

    2008-01-01

    While coal appears as an inescapable resource to answer the energy needs of the 21. century, its highly CO 2 emitting combustion represents a major risk with respect to the requirements of the fight against climate change. In the first part of this book, the basic aspects of energy markets are explained and in particular the role that coal is going to play in the world's energy supplies. In the second part, the new coal usages are presented, which, combined with CO 2 capture and sequestration techniques, should allow to conciliate a massive use of coal and the respect of environmental constraints. This book is based on the works presented in February 2008 by the French institute of petroleum (IFP) about the new outlets of coal and the risks for climate change. Content: 1 - coal, energy of the 21. century: abundant and well distributed reserves; growing up world production; exponential world demand; international trade: still limited but in full expansion; 2 - Technologies for a CO 2 -free coal: CO 2 capture and sequestration technologies; towards poly-generation; production of coal-derived liquid fuels; 3 - Appendices: coals formation; coal in China: status and perspectives; coal in the USA: status and perspectives; coal in India: status and perspectives; COACH: an ambitious European project; CBM - E-CBM, status and perspectives. (J.S.)

  11. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Richard [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Michael [Battelle Memorial Inst., Columbus, OH (United States); Argumedo, Darwin [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Winecki, Slawomir [Battelle Memorial Inst., Columbus, OH (United States); Johnson, Kathryn [Battelle Memorial Inst., Columbus, OH (United States); Lane, Ann [Battelle Memorial Inst., Columbus, OH (United States); Riordan, Daniel [Battelle Memorial Inst., Columbus, OH (United States)

    2017-08-31

    REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.

  12. Coal terminal developments

    Energy Technology Data Exchange (ETDEWEB)

    Venter, J.

    2008-02-15

    The article reports developments at many coal terminals worldwide. These include Bulgaria's Port of Bourgas Temrinal 2A, Spain's Tarragona Port Services (TPS) terminal, New Zealand's Lyttleton Port of Christchurch (LPC), Kinder Morgan's terminals in the USA (the International Marine terminal, Cora terminal, Grand Rivers terminal and Fairless Hills terminal) and Croatia's Port of Ploce. Developments at coal terminals in France and Belgium are also summarized. Global transportation services offered by Rhenus are described. 12 photos.

  13. Upgraded Coal Interest Group -- A vision for coal-based power in 1999 and beyond

    International Nuclear Information System (INIS)

    Hughes, E.; Battista, J.; Stopek, D.; Akers, D.

    1999-01-01

    The US is at a critical junction. Global competition is now a reality for a large number of US businesses and, ultimately, almost all US businesses will compete to one degree or another in the global marketplace. Under these circumstances, maintaining and improving the standard of living of US citizens requires a plentiful supply of low-cost electric energy to reduce the cost of providing goods and services both in the US an abroad. At the same time, segments of the public demand increased environmental restrictions on the utility industry. If the electric utility industry is to successfully respond to the goals of reducing electricity costs, maintaining reliability, and reducing emissions, fuels technology research is critical. For coal-fired units, fuel cost typically represents from 60--70% of operating costs. Reducing fuel cost, reduces operating costs. This can provide revenue that could be used to finance emissions control systems or advanced type of boilers resulting from post-combustion research. At the same time, improving coal quality reduces emissions from existing boilers without the need for substantial capital investment by the utility. If quality improvements can be accomplished with little or no increase in fuel costs, an immediate improvement in emissions can be achieved without an increase in electricity costs. All of this is directly dependent on continued and expanded levels of research on coal with the cooperation and partnership between government and industry. The paper describes enhanced fuel technologies (use of waste coal, coal water slurries, biomass/composite fuels, improved dewatering technologies, precombustion control of HAPs, dry cleaning technologies, and international coal characterization) and enhanced emission control technologies

  14. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  15. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  16. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  17. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...... the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...... estimator is verified on a couple of sets of measurement data, from which it is concluded that the designed estimator estimates the real coal moisture content....

  18. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...... the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...... estimator is verified on a couple sets of measurement data, from which it is concluded that the designed estimator estimates the real coal moisture content....

  19. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    Science.gov (United States)

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  20. Coal: Demand up - prices down

    International Nuclear Information System (INIS)

    Prior, M.

    1993-01-01

    1992 was a year in which demand for traded coal moved upward in the steam-coal sector though it remained stagnant for metallurgical coal. Both Australia and South Africa exported record volumes and new extrants to the market came from Indonesia and Venezuela. Despite this upward movement in demand, coal prices slipped relentlessly downward to the point where at the year-end, significant mine closures were occurring throughout the world. The main question for 1993 is how long can the producers go on hurting before the prices start to move up? The overall world demand for steam coal is discussed

  1. Support of the business management of opencast brown coal mining with an enhanced variability of deposits based on mine surveyoral data management; Unterstuetzung der Betriebsfuehrung von Braunkohlentagebauen mit hoher Lagerstaettenvariabilitaet auf Grundlage des markscheiderischen Datenmanagements

    Energy Technology Data Exchange (ETDEWEB)

    Knipfer, Anja [Mitteldeutsche Braunkohlengesellschaft mbH, Zeitz (Germany). GIS/Risswerkfuehrung

    2012-04-15

    A variable manifestation of the deposit is a particular challenge for the operational management for the continuous supply of coal in a specified range. Mitteldeutsche Braunkohlengesellschaft mbH (Zeitz, Federal Republic of Germany) supports the planning and production process by a GNSS controlled dredging. The storage of all operating conditions at the database level is the basis for the different evaluations. The verification of the data separaed by waste and coal enables a statement to the recoverability of the seams under consideration of a impact mapping and production data. This is an aid for the continuous improvement of the extraction planning and management.

  2. World coking coal markets

    International Nuclear Information System (INIS)

    McCloskey, G.

    2010-01-01

    This article discussed conditions in world coking coal markets. There is increased demand from Asia for metallurgical coal imports. World iron production was up 22 percent in first 7 months of 2010. Supply is up in Australia, the United States, Canada, New Zealand, Russia, and Mongolia, but the unexpected surge in supply caused prices to drop following a robust start to the year. Coking coal exports are up for the United States and Australia, but a delay in expanded production is expected until 2014. There is increased demand from Brazil, India, Taiwan, South Korea, and Japan as well as new plants in Thailand, Indonesia, and Brazil. Unexpectedly, Australia is backing out of the Chinese market but increasing exports to Japan and South Korea. India is seeing flat performance in iron production and imports, and the United States has surged back into Asia. A considerable increase is expected in the seaborne import requirement by 2020. Prices are expected to fall and then rise. This presentation also discussed whether coking coal index pricing is impossible or inevitable. 3 tabs., 5 figs.

  3. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  4. Methanol from coal

    Science.gov (United States)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  5. Coal sampling device

    Energy Technology Data Exchange (ETDEWEB)

    Huck, W.R.

    1985-10-22

    This invention pertains to a device for taking samples of finely crushed particulate matter, such as coal from a flowing feed stream on a preset selection schedule, using a rotating drum which has one slot in its periphery and a receptable moveable into and out of the center area of the drum in alignment with said slot.

  6. Underground Coal Mining

    Science.gov (United States)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  7. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  8. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  9. Working levels in the coal fired power plant in Croatia

    International Nuclear Information System (INIS)

    Kovac, J.

    1996-01-01

    The exposure from man-made natural sources is called technologically enhanced natural radiation - TENR. One of the first sources of uranium and thorium which was detected not being connected with the nuclear industry, was found during energy production using fossil fuels. As the combustion of coal increases, so will the magnitude of environmental and human health hazards associated with trace elements and radionuclides mobilized by the coal fuel cycle. The large fraction of coal ash that does not find commercial application is usually dumped in the vicinity of the coal fired power plant (CFPP). The coal ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series, especially fly ash. Among the decay products are the radon isotopes, 222 Rn, 220 Rn and 219 Rn, which are noble gases and thereby pose special problems in assessing the radiological hazard of fly ash. For that reason, investigations of the hazards were undertaken in the CFPP m Croatia, because the anthracite coal used for combustion has an average 10% sulphur and a variation of uranium. (author)

  10. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  11. Study of sorption and swelling on block coals

    Science.gov (United States)

    Qu, Shijie; Chen, Guoqing; Yang, Jianli; Shen, Wenzhong; Li, Yunmei; Niu, Hongxian; Busch, Andreas

    2013-04-01

    Reducing CO2 emission into atmosphere is very important for the mitigation of global climate change. Many processes have been proposed for this purpose, including CO2 sequestration in un-minable coalbeds and enhance coalbed methane production (CO2-ECBM). Several theoretical studies and worldwide demonstration sites have illustrated the potential of the process.Most of these projects experienced permeability reduction of the coalbed with time, leading to operational difficulties because of the loss of injectability. The permeability reduction is generally considered to be caused by the coal swelling that is induced by gas sorption, because it can narrow or close the cleat of the coalbed. As a result, the migration of injected CO2 in coal pore or cleat becomes more difficult. Therefore, sorption and swelling characterizations are important issues for forecasting the performance of aimed coalbed. In this work, CO2/CH4sorption and swelling isotherms of two Chinese block coals (QS and YQ) were measured simultaneously under different temperature and pressure conditions. It was found that the swelling ratio of coal block by CO2 sorption increased with the increase of the gas sorption amount until it approached to a value of ~3 mmol-gas/g-coal and decreased slightly afterwards for both coals; while the swelling ratio of coal block by CH4 sorption increased with the increase of the gas sorption amount in the entire test region for both coals. By correlating the gas sorption amount and the corresponding swelling ratio, it was found that the swelling ratio of coal block is independent of temperature and coal type when the gas sorption amount is less than ~2mmol/g-coal. The differential profile of the swelling ratio with respect to sorption amount is appeared with a maximum value at ~1 mmol/g-coal for CH4 and at ~1.8 mmol/g-coal for CO2. Based on the theories related to gas sorption and solid surface energy, a mathematical model which correlates sorption and swelling behavior

  12. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  13. Fuzzy risk assessment for mechanized underground coal mines in Turkey.

    Science.gov (United States)

    Iphar, Melih; Cukurluoz, Ali Kivanc

    2018-04-11

    The decision matrix method is preferred as a measure of risk evaluation considering the risk value obtained by two risk factors such as the likelihood and severity of a hazard. However, it has some deficiencies since a crisp risk score is assigned for likelihood and severity. In this article, a fuzzy logic-based safety evaluation method to enhance the risk assessment process is introduced to overcome the uncertainties encountered in the classical decision matrix risk assessment method. The proposed method is a more realistic evaluation of the risks which may be available in mechanized coal mines in Turkey. In this way, risky situations and operations in mechanized underground coal mines have been determined by expert knowledge and engineering judgement in linguistic forms. Thus, such an evaluation will be a valuable guide for coal mines in which fully mechanized coal production is expected in the near future.

  14. Coal resources availability in Botswana

    International Nuclear Information System (INIS)

    Modisi, M.P.

    1990-01-01

    This paper reports that Southern Africa, and Botswana in particular, is well-endowed with relatively large reserves of coal. The existence of coal in Botswana has been known since the end of the last century. Exploration activities by the Geological Survey and the private sector led to the discovery of major deposits and by the late 1960s reserves capable of supporting a mine at Morupule for the domestic market has been confirmed. The oil crises of 1973-74 and 1978-79 stimulated increased interest in coal exploration the world over and Botswana attracted several private sector companies looking for coal that could be traded on the international market. As a result vast resources and reserves of low to medium quality bituminous coal, suitable for the export market, were proved. Resources amounting to 21,680 million tonnes of in situ coal had been revealed by 1987. Reserves of possible economic exploitation are estimated at 10,180 million tonnes in two coal field areas, namely the Morupule Coal Field and the Mmamabula Coal Field. Since the collapse of oil prices and consequently coal prices in the mid-1980s, enthusiasm for coal exploration has plummeted and relatively little prospecting has taken place. The coal occurs within the Upper Carboniferous to Jurassic Karoo Supergroup which underlies some 60 percent of the country's land surface. The western part of the country is mantled by the Kalahari beds, a top layer of unconsolidated sands masking bedrock geology. Although coal seams have been intersected in boreholes in this western area, most exploration activity has taken place in the eastern part of the country where the Morupule and Mmamabula coal fields are located. It is in the east that most of the population is concentrated and infrastructure has been developed

  15. Buckets of money for coal

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    The revival of coal prices is providing record profits for Australian coal producers. As the world's largest coal exporter, any move in coal prices has significant ramifications for the Australian economy. The coal boom of the mid-1980s resulted in a massive increase in mine capacity and subsequently excess supply. This resulted in the decade between 1990 and 2000 seeing benchmark prices for coking coal in Japan plummeting to $US 39 a tonne (down from around the $US 52 mark) and a price of $US 28 for a tonne of steaming coal. Asia's financial problems, late in the decade coupled with a rapid fall in Asian steel making, also added to our coal export woes. As a result for most of the 1990s, Australia's coal sector delivered inadequate returns, was seen as over-capitalised and suffered from a profound investor indifference. But the sector is now seeing a definite turnaround in fortunes. Prices for thermal coal are on the rise and the benchmark coking coal prices to Asia have also jumped. Market analysts reported the price for contract deliveries of thermal coal in April this year were $US 34.50 ($AUD 69.35) up by $US 5.75 from the same time last year. The increased production is expected on the back of a continued rise in export demand, further improvement in prices, significant improvements in mine productivity, a weak Australian dollar and the probability of new projects and mine extensions going into operation. The improved returns have also flowed into rising valuations for listed coal miners. Over the last year, coal miners such as MIM and Gympie Gold, have delighted in share price gains of 12 per cent and 55 per cent respectively. These sort of performances are being repeated across the Australian industry

  16. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  17. Are underground coal miners satisfied with their work boots?

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-01-01

    Dissatisfaction with work boot design is common in the mining industry. Many underground coal miners believe their work boots contribute to the high incidence of lower limb injuries they experience. Despite this, the most recent research to examine underground coal mining work boot satisfaction was conducted over a decade ago. This present study aimed to address this gap in the literature by assessing current mining work boot satisfaction in relation to the work-related requirements for underground coal mining. 358 underground coal miners (355 men; mean age = 39.1 ± 10.7 years) completed a 54-question survey regarding their job details, work footwear habits, foot problems, lower limb and lower back pain history, and work footwear fit and comfort. Results revealed that underground coal miners were not satisfied with their current mining work boots. This was evident in the high incidence of reported foot problems (55.3%), lower back pain (44.5%), knee pain (21.5%), ankle pain (24.9%) and foot pain (42.3%). Over half of the underground coal miners surveyed believed their work boots contributed to their lower limb pain and reported their work boots were uncomfortable. Different working roles and environments resulted in differences in the incidence of foot problems, lower limb pain and comfort scores, confirming that one boot design cannot meet all the work-related requirements of underground coal mining. Further research examining the interaction of a variety of boot designs across the different underground surfaces and the different tasks miners perform is paramount to identify key boot design features that affect the way underground coal miners perform. Enhanced work boot design could improve worker comfort and productivity by reducing the high rates of reported foot problems and pain amongst underground coal miners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Coal in Europe: what future?: prospects of the coal industry and impacts study of the Kyoto Protocol

    International Nuclear Information System (INIS)

    Rudianto, E.

    2006-12-01

    From the industrial revolution to the 1960's, coal was massively consumed in Europe and its utilization was constantly raised. In the aftermath of World War II, coal had also an important part in reconstruction of Western Europe's economy. However, since the late 1960's, its demand has been declining. There is a (mis)conception from a number of policy makers that saying coal mining and utilizations in Europe is unnecessary. Therefore in the European Union (EU) Green Paper 2000, coal is described as an 'undesirable' fuel and the production of coal on the basis of economic criteria has no prospect. Furthermore, the commitment to the Kyoto Protocol in reducing greenhouse gases emission has aggravated this view. Faced with this situation, the quest for the future of coal industry (mining and utilization) in the lines of an energy policy is unavoidable. This dissertation did a profound inquiry trying to seek answers for several questions: Does the European Union still need coal? If coal is going to play a part in the EU, where should the EU get the coal from? What should be done to diminish negative environmental impacts of coal mining and utilization? and finally in regard to the CO 2 emission concerns, what will the state of the coal industry in the future in the EU? To enhance the analysis, a system dynamic model, called the Dynamics Coal for Europe (the DCE) was developed. The DCE is an Energy-Economy-Environment model. It synthesizes the perspectives of several disciplines, including geology, technology, economy and environment. It integrates several modules including exploration, production, pricing, demand, import and emission. Finally, the model emphasizes the impact of delays and feed-back in both the physical processes and the information and decision-making processes of the system. The calibration process for the DCE shows that the model reproduces past numbers on the scale well for several variables. Based on the results of this calibration process, it can

  19. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  20. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  1. Geomorphology of coal seam fires

    Science.gov (United States)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  2. Stress-strain-sorption behaviour of coal matrix material exposed to CO2

    NARCIS (Netherlands)

    Hol, S.|info:eu-repo/dai/nl/304823961

    2011-01-01

    Coal swells when it adsorbs carbon dioxide (CO2). The stress-strain behaviour associated with adsorption is of key importance in determining the feasibility of extracting methane (CH4) from coal via Enhanced Coalbed Methane production. ECBM involves injection of preferentially sorbing CO2 into the

  3. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  4. Controls on coal cleat spacing

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, G.K.W.; Esterle, J.S. [School of Earth Sciences, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2010-06-01

    This study was undertaken to determine the relationship between cleat spacing, cleat height and coal banding texture for Queensland Permian age coals of different rank, four of which are presented here. Whereas relationships between cleat frequency and rank, and with coal type or grade, have been reported in the past, relationships between the spacing and height among the different kinds of cleats are not quantitatively established. For other layered sedimentary rocks, joint or fracture spacing relates directly to both bed thickness and rock strength. Coal is similar to other layered rocks. Four major classes of cleats were distinguished, which were separate data populations when cleat spacing was plotted against cleat height; master cleats, single vitrain layer cleats, multiple vitrain layer package cleats, and durain (dull coal) cleats. Understanding the relationship between cleat height and spacing for specific coals, and the specific kinds of cleats within those coals, will lead to more accurate predictions of cleat density and hence coal permeability. This can improve modelling and prediction of methane gas deliverability in coal seams. In the Australian Permian coals studied, narrowly spaced cleats exist at all ranks, but the distribution of cleat spacing with cleat height is what varies for specific cleat classes. Cleat spacing was found to be directly proportional to cleat height in most cases. (author)

  5. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  6. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  7. Treatment of coal gasification wastewaters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T.L.; Lee, D.D.; Singh, S.P.N.

    1987-03-01

    A bench-scale fluidized-bed bioreactor was operated for over 4 months to characterize the biooxidation of major organic pollutants in coal gasification wastewater obtained from the Morgantown Energy Technology Center. Monohydric phenol was degraded first, followed by more complex phenolics, including polycyclic aromatic hydrocarbons (PAHs). Organic components were assayed by methylene chloride extraction followed by gas chromatography. Genetic capability for degradation of naphthalene by the biofilm was identified by gene probe analysis. Further studies were conducted to determine if the existing biofilm could be enhanced for naphthalene degradation by supplemental inoculation with a microbial culture having good naphthalene-degrading capabilities. The biofilm response was monitored using gene probe techniques. An assessment of wastewater treatment technologies for coal conversion wastewaters was initiated. A bibliography was compiled, arrangements were initiated to collaborate with other investigators doing wastewater treatability studies, and a site visit was made to the Great Plains plant. 201 refs., 3 figs., 5 tabs.

  8. Utilization of coal rejects and coal washery tailings in Yong Rong Power Plant

    International Nuclear Information System (INIS)

    Tao, T.; Kefa, C.; Mingjiang, N.; Guoguan, H.; Yong, C.; Xiang, Z.

    1991-01-01

    The coal rejects and coal washery tailings discharged by coal washery not only occupies farmland but also causes environmental pollution. With the development of coal industry, the problem becomes more serious. In this paper, the properties of coal rejects and coal washery tailings are analyzed. The technology that burn coal rejects and coal washery tailings in boilers to produce electric power is reported. It has been shown the technology is feasible and successful. It saves energy as well as protects the environment

  9. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    Science.gov (United States)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  10. Desulfurizing Coal By Chlorinolysis and Hydrogenation

    Science.gov (United States)

    Kalvinskas, J. J.; Rohatgi, N. K.

    1983-01-01

    85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.

  11. Bulk analysis of coal

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    1982-01-01

    Nuclear techniques used in the coal industry to determine specific energy, ash and moisture are outlined. Ash analysis by radioisotope X-ray techniques include a single X-ray measurement using a transmission or backscatter geometry and techniques with compensation for iron variations. Neutron techniques can be used to measure the concentration of some specific elements in coal. The measurement of specific energy, ash and moisture then depends on the correlation of the particular parameter with the measured elemental composition. Carbon can be determined by a combination of a measurement of 4.43 MeV 12 C gamma-rays from neutron inelastic scattering with a separate 60 Co gamma-ray scattering measurement. Sulphur meters are based on the measurement of 5.42 MeV neutron capture of gamma rays

  12. Coal mine subsidence

    International Nuclear Information System (INIS)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts

  13. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  14. New Hope Coal Australia: leaders in thin seam coal mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    New Hope Corporation Ltd.'s coal activities in Queensland are conducted under the business name of New Hope Coal Australia and comprise open-cut mines in the West Moreton coal fields, 40 km west of Brisbane. The company gained an award for its reject co-disposal system and another for its organic overburden conditioning programme. Walloon coal from the Jeebropilly and New Oakleigh open-cut mines has characteristics which are making it increasingly popular as power plant fuel. The article describes operations at these mines and also at Swanbank and Acland. Other projects with which New Hope is involved are mentioned. 4 photos.

  15. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  16. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  17. Coal liquefaction and hydrogenation

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  18. Coal - testing methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-04-01

    This Standard specifies the method for the particle-size analysis, the method for determination of the float and sink characteristics, the method for determination of Hardgrove grindability indices, the method for determination of the crucible swelling number, the method for determination of the swelling properties, the method for determination of the fluidity properties, the method for determination of the coking properties, the method for determination of the fusibility of ash, and the method for determination of Roga indices of coal.

  19. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  20. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  1. Coal: a human history

    Energy Technology Data Exchange (ETDEWEB)

    Freese, B.

    2002-12-01

    Prized as 'the best stone in Britain' by Roman invaders who carved jewellery out of it, coal has transformed societies, powered navies, fueled economies, and expanded frontiers. It made China a twelfth-century superpower, inspired the writing of the Communist Manifesto, and helped the northern states win the American Civil War. Yet the mundane mineral that built our global economy - and even today powers our electrical plants - has also caused death, disease, and environmental destruction. As early as 1306, King Edward I tried to ban coal (unsuccessfully) because its smoke became so obnoxious. Its recent identification as a primary cause of global warming has made it a cause celebre of a new kind. In this book, Barbara Freese takes us on an historical journey that begins three hundred million years ago and spans the globe. From the 'Great Stinking Fogs' of London to the rat-infested coal mines of Pennsylvania, from the impoverished slums of Manchester to the toxic city streets of Beijing, this book describes an ordinary substance that has done extraordinary things.

  2. Research on Improving Low Rank Coal Caking Ability by Moderate Hydrogenation

    Science.gov (United States)

    Huang, Peng

    2017-12-01

    The hydrogenation test of low metamorphic coal was carried out by using a continuous hydrogen reactor at the temperature of (350-400)°C and the initial hydrogen pressure of 3 ~ 6Mpa. The purpose of the experiment was to increase the caking property, and the heating time was controlled from 30 to 50min. The test results show that the mild hydrogenation test, no adhesion of low metamorphic coal can be transformed into a product having adhesion, oxygen elements in coal have good removal, the calorific value of the product has been improved significantly and coal particles during pyrolysis, swelling, catalyst, hydrogenation, structural changes and the combined effects of particles a new component formed between financial and is a major cause of coal caking enhancement and lithofacies change, coal blending test showed that the product can be used effectively in the coking industry.

  3. Adsorption and strain: The CO{sub 2}-induced swelling of coal

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O. [Universite Paris-Est, Champs Sur Marne (France)

    2010-10-15

    Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal bed methane reservoirs in order to facilitate the recovery of the methane. The injected carbon dioxide gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling in confined conditions leads to a closure of the coal reservoir cleat system, which hinders further injection. In this work we provide a comprehensive framework to calculate the macroscopic strains induced by adsorption in a porous medium from the molecular level. Using a thermodynamic approach we extend the realm of poromechanics to surface energy and surface stress. We then focus on how the surface stress is modified by adsorption and on how to estimate adsorption behavior with molecular simulations. The developed framework is here applied to the specific case of the swelling of CO{sub 2}-injected coal, although it is relevant to any problem in which adsorption in a porous medium causes strains.

  4. Cleaning and dewatering fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  5. CVFA: Coal vendor financial advisor

    International Nuclear Information System (INIS)

    Goote, W.G.; Andersen, S.

    1992-01-01

    An expert system for determining coal vendor financial viability in fuel purchasing contracts at an electric utility is described. The system blends rules, data objects, and financial knowledge to provide a rational basis for accepting or rejecting coal contracts given the financial capability of the coal vendor. The discussion concludes with a critique of managerial issues in the development of the system and its use in decision making. 3 refs., 1 fig

  6. Coal resources of Indiana

    Science.gov (United States)

    Spencer, Frank Darwyn

    1953-01-01

    The Indiana coal field forms the eastern edge of the eastern interior coal basin, which is near some of the most densely populated and highly productive manufacturing areas of the United States. (See fig. 1. ) For this reason Indiana coal reserves are an important State and National asset. In dollar value the coal mining industry is the largest of Indiana's natural-resource-producing industries. The total value of coil production for the year 1950 was more than 100 million dollars, or more than that of all other natural-resource industries in the State combined. As estimated herein, the original coal reserves of Indiana total 37,293 million tons, of which 27,320 million tons is contained in beds more than 42 inches thick; 7,632 million tons in beds 28 to 49. inches thick; and 2,341 million tons in beds 14 to 28 inches thick. The remaining reserves as of January 1951, total 35,806 million tons, of which 18,779 million tons is believed to be recoverable. The distribution of the reserves in these several categories is summarized by counties in table 1. Of the total original reserves of 37,293 million tons, 6,355 million tons can be classified as measured; 8,657 million tons as indicated; and 22,281 million tons as inferred. Strippable reserves constitute 3,524 million tons, or 9.5 percent of the total original reserves. The distribution of the strippable and nonstrippable original reserves is summarized in tables 2 and 3 by counties and by several categories, according to the thickness of the beds and the relative abundance and reliability of the information available for preparing the estimates. The distribution of the estimated 18,779 million tons of recoverable strippable and nonstrippable reserves in Indiana is further summarized by counties in table 4, and the information is presented graphically in figures 2 and 3. The tables i to 4 and figures 2 and 3 include beds in the 14- to 28-inch category, because thin beds have been mined in many places. However, many

  7. Coal: More than silver linings

    International Nuclear Information System (INIS)

    Doerell, P.E.

    1995-01-01

    While last year's coal survey was subtitled open-quotes Less than lacklusterclose quotes because of overproduction and depressed prices, the end of 1994 showed a definitely brighter picture. An indication was the recent attendance and the mood at the CoalTrans '94 Conference in Hamburg, the trade's biggest meeting. This atmosphere was described by many of the 1,300 delegates as open-quotes bullishclose quotes, with coal traders and consumers actually chasing suppliers-a rare occurrence in recent years. The reason for optimism is, of course, the end of the worldwide recession, resulting in increasing coal demand which stabilizes prices

  8. The Global Value of Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal plays an essential role in our global energy mix, particularly for power generation; and through that to the alleviation of energy poverty. The use of coal continues to grow rapidly and will continue, together with other fuels, to support world economic and social development particularly in rapidly developing world economies such as China and India. The purpose of this paper is to highlight for policy makers the value of coal to world economic and social development and so encourage development of a policy environment that will allow the coal and electricity industries to make the necessary investments in production capacity and CO2 emissions reduction technologies.

  9. World coal perspectives to 2030

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    In Summer 2004, The World Energy Council published a Study on 'Sustainable Global Energy Development: the Case of Coal'. The Study aims at developing an internationally consistent reply to the question whether and to what extent coal use could be economic and sustainable in meeting global energy demand to 2030 and beyond. It covers markets, trade and demand, mining and combustion technologies, restructuring and international policies, and perspectives. It considers both, the contribution that coal could make to economic development as well as the need for coal adapt to the exigencies of security of supply, local environmental protection and mitigation of climate change. (Author)

  10. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  11. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    Science.gov (United States)

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  12. Awakening a sleeping coal giant

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, B.

    2007-08-15

    Botswana, a southern African country that in the 1980s could not economically land a tonne of coal at the closest export terminal and even today mines no more than 1 million tpa, is to increase production to beyond 30 million tpa. A first ever coal conference in Gaborone called it the awakening of a coal giant. The alarm call for the coal giant is the realisation that without more generating capacity than its power utility Eskom can itself build in time, South Africa will in four to five years face a severe shortage of power. 1 ref., 5 figs., 2 tabs.

  13. Carbonization heat of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    H. Ueda; V. Zymla; F. Honnart [Nippon Steel (Japan)

    2005-07-01

    The heat of carbonization is an important element of the coke oven heat balance. It is therefore important to know its absolute value or, at least, its relative variation when coal properties and process parameters change, in order for it to be taken into account by automatic heating control systems. An experimental procedure was thus developed, enabling the heat flow over the whole carbonization temperature range (25-1100{sup o}C) to be measured by DTA. Five coals of different ranks (from 18 to 34% volatile matter) were tested. Results show that all of them exhibit similar behaviour: an endothermic effect below 500{sup o}C and an exothermic effect at higher temperatures. It was established that the heat of carbonization varies with coal rank. The highest exothermic peak was measured for medium volatile hard coking coal. Having ascertained the right measurement procedure, the influence of coal weathering and plastic addition to coal blends on carbonisation heat were studied as well. It was found that the weight loss of oxidized coals during a heating in nitrogen was reduced (coke yield increased) and the heat of carbonization dramatically decreased, especially for medium and high volatile coals. The copyrolysis of coals and plastics (PE, PP, PS, PET) showed also a notable decrease of exothermic heat of carbonization, even for relatively low percentage plastic addition (less then 2%). 6 refs., 5 figs.

  14. Coal, energy and environment: Proceedings

    International Nuclear Information System (INIS)

    Mead, J.S.; Hawse, M.L.

    1994-01-01

    This international conference held in Czechoslovakia was a bold attempt to establish working relationships among scientists and engineers from three world areas: Taiwan, the United States of America, and Czechoslovakia. The magic words unifying this gathering were ''clean coal utilization.'' For the ten nationalities represented, the common elements were the clean use of coal as a domestic fuel and as a source of carbon, the efficient and clean use of coal in power generation, and other uses of coal in environmentally acceptable processes. These three world areas have serious environmental problems, differing in extent and nature, but sufficiently close to create a working community for discussions. Beyond this, Czechoslovakia is emerging from the isolation imposed by control from Moscow. The need for each of these nations to meet and know one another was imperative. The environmental problems in Czechoslovakia are extensive and deep-seated. These proceedings contain 63 papers grouped into the following sections: The research university and its relationship with accrediting associations, government and private industry; Recent advances in coal utilization research; New methods of mining and reclamation; Coal-derived waste disposal and utilization; New applications of coal and environmental technologies; Mineral and trace elements in coal; Human and environmental impacts of coal production and utilization in the Silesian/Moravian region; and The interrelationships between fossil energy use and environmental objectives. Most papers have been processed separately for inclusion on the data base

  15. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  16. Experimental investigation on variation of physical properties of coal samples subjected to microwave irradiation

    Science.gov (United States)

    Hu, Guozhong; Yang, Nan; Xu, Guang; Xu, Jialin

    2018-03-01

    The gas drainage rate of low-permeability coal seam is generally less than satisfactory. This leads to the gas disaster of coal mine, and largely restricts the extraction of coalbed methane (CBM), and increases the emission of greenhouse gases in the mining area. Consequently, enhancing the gas drainage rate is an urgent challenge. To solve this problem, a new approach of using microwave irradiation (MWR) as a non-contact physical field excitation method to enhance gas drainage has been attempted. In order to evaluate the feasibility of this method, the methane adsorption, diffusion and penetrability of coal subjected to MWR were experimentally investigated. The variation of methane adsorbed amount, methane diffusion speed and absorption loop for the coal sample before and after MWR were obtained. The findings show that the MWR can change the adsorption property and reduce the methane adsorption capacity of coal. Moreover, the methane diffusion characteristic curves for both the irradiated coal samples and theoriginal coal samples present the same trend. The irradiated coal samples have better methane diffusion ability than the original ones. As the adsorbed methane decreases, the methane diffusion speed increases or remain the same for the sample subjected to MWR. Furthermore, compared to the original coal samples, the area of the absorption loop for irradiated samples increases, especially for the micro-pore and medium-pore stage. This leads to the increase of open pores in the coal, thus improving the gas penetrability of coal. This study provides supports for positive MWR effects on changing the methane adsorption and improving the methane diffusion and the gas penetrability properties of coal samples.

  17. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  18. Coal Mining-Related Respiratory Diseases

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  19. Southern Coal Corporation Clean Water Settlement

    Science.gov (United States)

    Southern Coal Corporation is a coal mining and processing company headquartered in Roanoke, VA. Southern Coal Corporation and the following 26 affiliated entities are located in Alabama, Kentucky, Tennessee, Virginia and West Virginia

  20. An overview of the geological controls in underground coal gasification

    Science.gov (United States)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  1. The effect of brown coal on the decrease in the content of mobile forms of copper and lead in ordinary calcareous chernozem

    Energy Technology Data Exchange (ETDEWEB)

    Bezuglova, O.S.; Ignatenko, E.L.; Morozov, I.V.; Shevchenko, I.D. [Rostov State University, Rostov na Donu (Russian Federation)

    1996-09-01

    Data on the use of brown coal as a soil detoxicant are presented. Purification of soil from heavy metals with brown coal depends on its sorptive properties and the ability of coal-derived humic acids to bind heavy metals into low mobile complexes. The effect of brown coal on the use of mobile copper by soil microorganisms leading to the enhancement of biological activity in chernozems is shown.

  2. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  3. Too Much Coal, Too Little Oil

    OpenAIRE

    Frederick van der Ploeg; Cees Withagen

    2011-01-01

    Optimal climate policy is studied. Coal, the abundant resource, contributes more CO2 per unit of energy than the exhaustible resource, oil. We characterize the optimal sequencing oil and coal and departures from the Herfindahl rule. "Preference reversal" can take place. If coal is very dirty compared to oil, there is no simultaneous use. Else, the optimal outcome starts with oil, before using oil and coal together, and finally coal on its own, The "laissez-faire" outcome uses coal forever or ...

  4. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  5. Determination of inorganic elements in coal and coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Koklu, U.; Akman, S.; Ruppert, L.F. [Istanbul Technical University, Istanbul (Turkey)

    1994-12-31

    Many different methods are applicable to the analysis of inorganic elements in coal and other geological materials. There are only a few elements, namely Cl, F, and P, that are still routinely determined by chemical methods; the majority of elements are determined by instrumental methods. The instrumental techniques commonly employed by coal analysts which will be briefly reviewed here include: instrumental neutron activation analysis (INAA), atomic emission spectroscopy (AES), atomic absorption spectroscopy (AAS), mass spectroscopy (MS), electron microscopy, and X-ray fluorescence (XRF). All of these methods, with the possible exception of electron microscopy, offer rapid and accurate multielement results for the bulk analyses of coal and coal products. There is no single method that can be used to determine all of the elements found in coal. However, nowadays AAS may be the most commonly used instrumental technique. For example, in 1983 about 70% of the geochemical exploration samples collected annually were analyzed with AAS. 105 refs., 1 tab.

  6. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion

  7. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  8. E-commerce and the coal industry

    International Nuclear Information System (INIS)

    Bolza, D.

    2000-01-01

    Industry observers currently peg the share of 'spot' contracts in Australia's black coal export market (valued at $9 billion a year) at 15%, compared with only 5% of market share four years ago. This quantum shift in purchasing habits is being driven largely by abundant coal supplies, a multi-source availability of coal, and falling prices - a scenario that is expected to remain unchanged for at least the next three to five years. Contracts are not only becoming shorter, they are also dealing with lower tonnages. And, unlike under older long term contracts, where prices are reset every one to two years, under the modern versions prices are being reset every three to six months. As buyers push to achieve more competitive pricing outcomes and maximise the supply of competitively priced fuel, this forces everyone associated with operating power plants to look for ways to reduce costs and implement higher levels of efficiency, by saving time and paperwork. Net-based trading in coal is happening. The major buyers and sellers operate most of the existing sites. Buyers see the Net as a means of reducing the cost of their fuel; sellers see it as a means of better displaying the product they offer. The use of the Net is seen as providing improved market intelligence, greater transparency, better marketing and service levels and enhanced efficiencies. The one-to-one approach remains a fixture and its future is assured. However, whether the Net will ultimately support independent trading sites similar to those whose income will come from brokering deals is hard to judge. Copyright (2000) CSIRO Energy Technology and Exploration and Mining

  9. The revolutionary importance of coal

    OpenAIRE

    Macfarlane, Alan

    2004-01-01

    Alan Macfarlane discusses the coal revolution, the change from energy harvested from the sun through plants and animals, to the stored carbon energy of millions of years of sunlight. Filmed on a coal heap in Coalbrookdale, where the industrial revolution in England began.

  10. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  11. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  12. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  13. Brown coal gasification made easy

    International Nuclear Information System (INIS)

    Hamilton, Chris

    2006-01-01

    Few Victorians will be aware that gas derived from coal was first used in 1849 to provide lighting in a baker's shop in Swanston Street, long before electric lighting came to the State. The first commercial 'gas works' came on stream in 1856 and Melbourne then had street lighting run on gas. By 1892 there were 50 such gas works across the State. Virtually all were fed with black coal imported from New South Wales. Brown coal was first discovered west of Melbourne in 1857, and the Latrobe Valley deposits were identified in the early 1870s. Unfortunately, such wet brown coal did not suit the gas works. Various attempts to commercialise Victorian brown coal met with mixed success as it struggled to compete with imported New South Wales black coal. In June 1924 Yallourn A transmitted the first electric power to Melbourne, and thus began the Latrobe Valley's long association with generating electric power from brown coal. Around 1950, the Metropolitan Gas Company applied for financial assistance to build a towns gas plant using imported German gasification technology which had been originally designed for a brown coal briquette feed. The State Government promptly acquired the company and formed the Gas and Fuel Corporation. The Morwell Gasification Plant was opened on 9 December 1956 and began supplying Melbourne with medium heating value towns gas

  14. Uranium content of Philippine coals

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Sombrito, E.Z.; Nuguid, Z.S.; Bulos, A.M.; Bucoy, B.M.; De la Cruz, M.

    1984-01-01

    Uranium content of coal samples from seven areas in the Philippines, i.e. Cebu, Semirara, Bislig, Albay, Samar, Malangas and Polilio Is. was found to contain trace quantities of uranium. The mean value of 0.401 ppm U is lower than reported mean uranium contents for coal from other countries. (ELC)

  15. Nuclear energy, coal, and environment

    International Nuclear Information System (INIS)

    Yang Yin; Pan Ziqiang.

    1989-01-01

    From the view point of environmental protection, nuclear plants are superior to coal-fired ones. Coal-fired plants and other uses of burning create serious environmental problems, whereas no noticeable impacts are identified for nuclear plants. Even with respect to radiation risk, with equal energy output, a coal-fired plant is one order of magnitude higher than a nuclear station. Energy is a prerequisite for the development of a national economy and the improvement of living standards. Economic growth must be coordinated with the exploitation of energy resources. The worsening shortage of energy has made it imperative that China step up its energy development and pay full attention to the development of nuclear energy. Among direct energy sources, about 70% came from coal in the past. The public has been greatly concerned over the pollution caused by coal-fired power stations and/or other industrial and domestic use of coal burning. With increasing mining of coal, the issues related to pollution from the use of coal will become more serious and prominent. 17 refs., 3 tabs

  16. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    Science.gov (United States)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  17. Coal-fired water pump

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, J.E.; Kawa, W.; Lewis, P.S.; Hiteshue, R.W.

    1966-01-01

    The technical feasibility of using energy from explosive ignitions of coal dust to pump water was demonstrated in an exploratory investigation. Ignition of small amounts of pulverized coal that were dispersed in air over columns of water pumped 5.3 gallons of water per cycle when operated against a head of 30.75 feet. Water displacement was accomplished by either manual or automatic operation through a single cycle and by automatic operation through a continuous series of cycles of 1-minute duration. Operating through single cycles, slurries containing up to 3 pounds of coal and 4.6 gallons of water were also pumped. Possible uses of an efficient coal-fired pump would include pumping water for irrigation purposes, removing water from mines, transporting coal from mines in the form of a slurry, and pumping water to elevated reservoirs at electric power-plants so that it could be used to generate electricity during peak periods of demand.

  18. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  19. Preparation of slightly hydrogenated coal

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1943-05-03

    Processes serving as producers of slightly hydrogenated coal are discussed. It was established that the working process of an extracting hydrogenation from coal alone did not present optimal conditions for production of slightly hydrogenated coal, and therefore led to unfavorably high costs. More favorable operating costs were expected with the use of larger amounts of gas or with simultaneous production of asphalt-free oils in larger quantity. The addition of coal into the hydrogenation of low temperature carbonization tars made it possible to produce additional briquetting material (slightly hydrogenated coal) in the same reaction space without impairment of the tar hydrogenation. This was to lower the cost still more. For reasons of heat exchange, the process with a cold separator was unfavorable, and consideration of the residue quality made it necessary to investigate how high the separator temperature could be raised. 3 tables.

  20. Surfactant-Assisted Coal Liquefaction

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  1. Coal liquids -- Who needs them?

    International Nuclear Information System (INIS)

    Gray, D.; Tomlinson, G.

    1995-01-01

    The paper discusses the global energy demand situation as presented at the last World Energy Congress. The total energy demand was calculated for each country and projected to 2100. The paper then discusses the energy situation in the United States, especially the forecasted demand for crude oil and natural gas liquids. Imports will be needed to make up the shortfall in domestic production. The shortfall in conventional petroleum could be supplied by converting coal into liquid fuels. Currently the cost of high quality coal liquids is too high to compete with petroleum, but trends suggest that the price will be competitive in the year 2030 using current technology. Continuing research on coal liquefaction will reduce the price of coal liquids so that coal liquids could play a significant role sooner

  2. Coal: a revival for France?

    International Nuclear Information System (INIS)

    Brones, W.

    2007-01-01

    All energy consumption forecasts indicate a world production peak of fossil fuels around 2030 followed by a rapid decline. The oil peak should probably occur earlier. In this context the huge worldwide reserves of coal represent a fantastic opportunity to meet the world power demand which should double between 2002 and 2030 with in particular a huge growth in China and India. If promising alternate technologies (coal liquefaction..) exist which would allow to replace petroleum by coal, the main question remains the management of CO 2 . Capture and sequestration techniques are already implemented and tested and the search for new coal deposits is going on, in particular in France in the Nievre area. Economic studies about the profitability of coal exploitation in France stress on the socio-economical advantage that a revival of this activity would represent, in particular in terms of employment. (J.S.)

  3. Memorandum on coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Struss

    1942-10-27

    The first test facility was built in Ludwigshafen in Building 35 in 1924. During the Technical Committee meeting of February 4, 1926, Carl Bosch reported briefly for the first time on the status of coal hydrogenation and promised a comprehensive report to follow. Next, in connection with the Technical Committee meeting of July 13, 1926, Bosch arranged for the Committee to tour the test facility. Subsequently, the first industrial facility, for a yearly output of 100,000 tons, was built in Leuna with great speed and began production in April 1927. For this facility RM 26.6 million in credit was appropriated during 1926 and 1927 (the costs, including associated units, were estimated at RM 46 million; the RM 26.6 million covered only erection of the plant). A further RM 264 million was written off to hydrogenation in the years 1926 to 1931 on tests in new areas. At the end of 1929 the large scale tests at Merseburg were interrupted. On April 7, 1932, in the Nitrogen Branch discussion at Ludwigshafen, Dr. Schneider reported on the improvement in coal decomposition percentage which had meanwhile been achieved: from 60% to 95%. He proposed a last large-scale test, which was to require RM 375,000 up to the starting point and RM 170,000 per month during the six-month test period. This last test then led to definitive success in 1933.

  4. Coal pile leachate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E C; Kimmitt, R R

    1982-09-01

    The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

  5. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    Science.gov (United States)

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  6. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  7. Development of a Coal Quality Expert. Technical progress report No. 6, [July 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-20

    This is the sixth Technical Progress Report, describing work performed under DOE Contract No. DE-FC22-90PC89663, ``Development of a Coal Quality Expert.`` The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and Combustion Engineering, Inc. This report covers the period from July 1 through September 30, 1991. Four companies and seven host utilities have teamed with CQ Inc. and C-E to perform the work on this project. The work falls under DOE`s Clean Coal Technology Program category of ``Advanced Coal Cleaning.`` The 45-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; and develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests. The project consists of the following seven tasks: Project management; coal cleanability characterization; pilot-scale combustion testing; utility boiler field testing; CQIM completion and development of CQE specification; develop CQE and CQE workstation testing and Validation.

  8. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  9. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., (United States)

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  10. Australia's export coal industry: a project of the Coal Australia Promotion Program. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet presents an overview of the Australian coal industry, emphasises the advantages of using Australian coal and outlines government policies, both Commonwealth and State, which impact on coal mine development, mine ownership and coal exports. It also provides information on the operations and products of each producer supplying coal and coke to export markets and gives contact details for each. The emphasis is on black coal, but information on coal briquettes and coke is also provided. Basic information on the rail networks used for the haulage of export coal and on each of the bulk coal loading terminals is also included.(Author). 3 figs., photos

  11. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Directory of Open Access Journals (Sweden)

    Xiaoshi Li

    2014-01-01

    Full Text Available The enrichment of coalbed methane (CBM and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation are studied using a scanning electron microscope (SEM and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm and supermicropores (4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal.

  12. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    Science.gov (United States)

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  13. Underground coal gasification technology impact on coal reserves in Colombia

    OpenAIRE

    John William Rosso Murillo

    2013-01-01

    In situ coal gasification technology (Underground Coal Gasification–UCG–) is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national G...

  14. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  15. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  16. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  17. Geochemistry of vanadium (V) in Chinese coals.

    Science.gov (United States)

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  18. Mechanism of instantaneous coal outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Guan, P.; Wang, H.Y.; Zhang, Y.X. [Peking University, Beijing (China). School of Earth & Space Science

    2009-10-15

    Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

  19. Economy of bituminous coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    von Hochstetter, H.

    1944-05-11

    The influence of various factors on the production cost of (Janina) bituminous coal hydrogenation is analyzed briefly. The initial reckoning yielded a production cost of 188 marks per metric ton of gasoline and middle oils. The savings concomitant to changes of one percent in gasification, one percent in utilization of purified coal, one percent raising of space/time yield, one percent increase in throughput, one percent in coal concentration in the paste, and one percent in low temperature carbonization yield are listed. Factors affecting hydrogen consumption are listed in a table. Investigations showed the carbon-richest coal to produce a deviation in the effect of gasification upon the working costs by only 10 percent when compared with the Janina coal. Thus, the values listed were considered as guidelines for all kinds of bituminous coal. The calculations admitted the following conclusions: a maximum concentration of coal in the paste is desirable; one can assume a 2 percent reduction in the utilization with a 10 percent increase in throughput, as long as no changes in low temperature carbonization yield take place by changing the distribution in oil production; this configuration would change if the major concern were gas production instead of working costs, or if hydrogen production were the bottleneck. 1 table.

  20. Natural gas in coal beds

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, A.I.; Voytov, G.I.

    1983-01-01

    The special importance is noted of the problem of computing and careful use of the energy raw material, coal, oil and natural gases. An examination is made of the mechanism for the formation of carboniferous gases in the beds with the use of the model of coal macromolecule. A schematic section is presented for the coal field and plan for vertical gas zonality. The change in chemical composition of the natural gases with depth is governed by the countermovement of the natural gases: from top to bottom the gases of the earth's atmosphere move, mainly oxygenand nitrogen, from bottom to top, the gases of metamorphic and deep origin. Constant isotope composition of the carbon in the fossil coals is noted. The distribution of the quanitity deltaC/sup 13/ of carbon in the fossil coals of the Donets basin is illustrated. The gas content of the coal beds and gas reserves are discussed. The flowsheet is shown for the unit for degasification of the coal bed before the cleaning face.

  1. The ''Jahrhundertvertrag'' (contract guaranteeing enhanced use of inland coal for electricity generation up to the end of the century) examined in the light of German and EC cartel law

    International Nuclear Information System (INIS)

    Maertens, M.

    1995-01-01

    The horizontal agreements concluded between the various electric utilities within the framework of the ''Jahrhundertvertrag'', (JHV), are a violation both of section 1 GWB (act against restraints on competition) and Art. 85 of the EC Treaty, and thus are void. The same applies to the horizontal agreements concluded between the coal mining companies in Germany, representing a violation of Art. 65, section 1 of the ECSC Treaty. As a result, the various vertical contracts concluded by the electical utilities and the coal mining companies are likewise affected by the decisions declaring the above agreements to be void. None of the applicable cartel law regimes permits exemptions from prohibition of restrictive practices beyond those provided for by cartel law. The electric utilities might receive permission from the German Federal Minister of Economics under section 8, sub-sec. 2 GWB, legalizing their agreements, but this permission would give legal effect to the cartel agreements in terms of civil law only if the EC Commission would decide to exempt this cartel from prohibition of restrictive practices of the EC Treaty by a decision in compliance with Art. 85, section 3 of the EC Treaty. The horizontal agreements of the mining companies are subject to Art. 65, section 2 of the ECSC treaty, and these stringent provisions do not leave room for an exemption in this case [de

  2. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  3. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  4. Bioprocessing of lignite coals using reductive microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  5. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  6. Pyrolysis and combustion behaviour of coal-MBM blends.

    Science.gov (United States)

    Skodras, G; Grammelis, P; Basinas, P

    2007-01-01

    In the present work, thermogravimetric analysis was employed in order to investigate the behaviour of MBM and their blends with Greek brown coal, under pyrolysis and combustion conditions. MBM presented enhanced pyrolysis rates reflecting its high volatile and low ash contents compared to Greek brown coal. Increased conversion rates were observed when MBM was added in the brown coal sample. Significant interactions were detected between the two fuel blend components leading to significant deviations from the expected behaviour. The catalytic effect of mineral matter on the pyrolysis of MBM resulted in reaction rate decrease and DTG curve shift to lower temperatures for the demineralised MBM. Alterations in the combustion process due to the mineral matter were minimal when testing the blends. Interactions maintained during combustion and lower reactivity of MBM was achieved due to the reduced oxygen content.

  7. Australian coal industry continues expansion

    International Nuclear Information System (INIS)

    Edwards, G.E.

    1991-01-01

    Recent saleable Australian black coal production figures are given along with trends in development of new operations and new technology aiming to provide a sound basis for the continuing expansion of the Australian coal industry. Export prices from 1982 to 1991 to Japan (Australia's major export market) are provided, together with Australian dollar return to exporters at the exchange rate prevailing at the start of each contract year. An increased demand for steaming coal is expected, thus maintaining Australia's position as the world's larger exporter. 4 tabs

  8. Clean coal technology: coal's link to the future

    International Nuclear Information System (INIS)

    Siegel, J.S.

    1992-01-01

    Coal, the world's most abundant fossil fuel, is very important to the world's economy. It represents about 70% of the world's fossil energy reserves. It produces about 27% of the world's primary energy, 33% of the world's electricity, and it is responsible for about $21 billion in coal trade - in 1990, 424 million tons were traded on the international market. And, most importantly, because of its wide and even distribution throughout the world, and because of its availability, coal is not subject to the monopolistic practices of other energy options. How coal can meet future fuel demand in an economical, efficient and environmentally responsive fashion, with particular reference to the new technologies and their US applications is discussed. (author). 6 figs

  9. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  10. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. (DynaGen, Inc., Cambridge, MA (United States)); Marquis, J.K. (Boston Univ., MA (United States). School of Medicine)

    1989-11-07

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to selectively catalyze oxidation at sulfur.

  11. Coal mine site reclamation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Coal mine sites can have significant effects on local environments. In addition to the physical disruption of land forms and ecosystems, mining can also leave behind a legacy of secondary detrimental effects due to leaching of acid and trace elements from discarded materials. This report looks at the remediation of both deep mine and opencast mine sites, covering reclamation methods, back-filling issues, drainage and restoration. Examples of national variations in the applicable legislation and in the definition of rehabilitation are compared. Ultimately, mine site rehabilitation should return sites to conditions where land forms, soils, hydrology, and flora and fauna are self-sustaining and compatible with surrounding land uses. Case studies are given to show what can be achieved and how some landscapes can actually be improved as a result of mining activity.

  12. Coal transportation road damage

    International Nuclear Information System (INIS)

    Burtraw, D.; Harrison, K.; Pawlowski, J.A.

    1994-01-01

    Heavy trucks are primarily responsible for pavement damage to the nation's highways. In this paper we evaluate the pavement damage caused by coal trucks. We analyze the chief source of pavement damage (vehicle weight per axle, not total vehicle weight) and the chief cost involved (the periodic overlay that is required when a road's surface becomes worn). This analysis is presented in two stages. In the first section we present a synopsis of current economic theory including simple versions of the formulas that can be: used to calculate costs of pavement wear. In the second section we apply this theory to a specific example proximate to the reference environment for the Fuel Cycle Study in New Mexico in order to provide a numerical measure of the magnitude of the costs

  13. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  14. Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

    Science.gov (United States)

    Yao, Yuan

    Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental

  15. Thallium in coal: Analysis and environmental implications

    OpenAIRE

    López Antón, María Antonia; Spears, D. Alan; Díaz Somoano, Mercedes; Martínez Tarazona, María Rosa

    2013-01-01

    The ecotoxicological importance of thallium stems from its acute toxicity, the effects of which are as harmful to living organisms as those of lead and mercury. The main anthropogenic sources of thallium are the emissions from coal combustion processes, underlining the need to control this element in coal and coal by-products. Despite the threat posed by thallium, very little information has been published on its behaviour in coal-fired power plants or on its modes of occurrence in coal, its ...

  16. Coal distribution, January--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-17

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. This issue presents information for January through June 1990. Coal distribution data are shown (in tables 1--34) by coal-producing state of origin, consumer use, method of transportation, and state of destination. 6 figs., 34 tabs.

  17. Coal competition: prospects for the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

  18. Nigerian bituminous coal as a fuel-coal. | OGUGBUAJA | Global ...

    African Journals Online (AJOL)

    Nigerian bituminous coal as a fuel-coal. V O OGUGBUAJA, C L NDIOKWERE, G A DIMARI. http://dx.doi.org/10.4314/gjpas.v6i2.16113 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL ...

  19. Prospects For Coal And Clean Coal Technologies In Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The coal sector in Kazakhstan is said to have enough reserves to last over 100 years, but the forecasted reserves are expected to last several hundreds of years. This makes investing in the fuel and energy sector of the country an attractive option for many international and private organisations. The proven on-shore reserves will ensure extraction for over 30 years for oil and 75 years for gas. The future development of the domestic oil sector depends mainly on developing the Kazakh sector of the Caspian Sea. The coal sector, while not a top priority for the Kazakh government, puts the country among the world's top ten coal-rich countries. Kazakhstan contains Central Asia's largest recoverable coal reserves. In future, the development of the raw materials base will be achieved through enriching and improving the quality of the coal and the deep processing of coal to obtain fluid fuel and synthetic substances. Developing shale is also topical. The high concentration of methane in coal layers makes it possible to extract it and utilise it on a large scale. However, today the country's energy sector, which was largely established in the Soviet times, has reached its potential. Kazakhstan has about 18 GW of installed electricity capacity, of which about 80% is coal fired, most of it built before 1990. Being alert to the impending problems, the government is planning to undertake large-scale modernisation of the existing facilities and construct new ones during 2015-30. The project to modernise the national electricity grid aims to upgrade the power substations to ensure energy efficiency and security of operation. The project will result in installation of modern high-voltage equipment, automation and relay protection facilities, a dispatch control system, monitoring and data processing and energy management systems, automated electricity metering system, as well as a digital corporate telecommunication network.

  20. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  1. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.

    2012-01-01

    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  2. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  3. U.S. coal outlook in Asia

    International Nuclear Information System (INIS)

    Johnson, C.J.

    1997-02-01

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies

  4. On the analysis of building a public information platform based on e-Commerce for coal logistics

    Directory of Open Access Journals (Sweden)

    Zeguo Qiu

    2013-09-01

    Full Text Available Purpose: Putting forward the concept and features of the public information platform for coal logistics based on electronic commerce, as well as the requirements of upper and lower intersections of the coal supply chain. Meanwhile, this paper will also probe into the current condition of statistics management in coal logistics, and then discuss how to build a public information platform based on electronic commerce for coal logistics. Design/methodology/approach: According to the further exploring the concepts and relevant characteristics and the development of coal logistics and supply chain management in China of the current period. Findings/ Practical implications: An advanced public information platform for coal logistics utilizes to best advantage modern information technologies and managerial concepts in the operation of coal logistics, such as e-commerce, e-information, supply chain management, etc. This not only stimulates efficient integration of business flow, information flow, logistics and capital flow of the coal industry, brings about in-depth integration of the logistics resources of the coal industry, but also greatly improves the efficiency of the operation of coal logistics, reduces the cost of coal logistics, and enhances the overall competitiveness of upstream and downstream companies along the coal supply chain. Research limitations/implications: Although the coal logistics public information platform has been applied in some enterprises in China, not yet in a broader range of applications, which need the joint efforts of all parties. Originality/value: Fitted to the e-commerce era, the Public Information Platform for Coal Logistics envisioned in this article is highly feasible and worthy of reference to relevant institutions.

  5. Australia's coal industry bottoms out

    International Nuclear Information System (INIS)

    Edwards, G.E.

    2000-01-01

    The last decade has been a tough period for the Australian coal industry, despite increases in production, productivity and exports. Profitability has fallen, mines have closed and ownerships have changed hands. The start of the new millennium seems to be heralding in a welcome change of fortune for the Australian coal industry, with signs that a recovery is finally arriving. Coal provides around 26% of global primary energy needs (compared with oil at 40%, gas at 24%, nuclear at 7% and renewables at 3%) and generates about 37% of the world's electricity (compared with renewables at 21%, nuclear at 17%, gas at 16% and oil at 9%). This is in spite of the adverse publicity that coal has been receiving regarding its contribution to the Greenhouse Effect, even relative to other fossil fuels, principally natural gas

  6. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  7. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  8. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  9. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  10. Black coal. Annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    An overview is given of the situation of the world energy industry with regard to all energy carriers. Then energy-political conclusions are drawn for German black coal and the resulting prospects are detailed. Finally, some socio-political aspects are considered with regard to German black-coal mining: Workforce policy, tariff policy, social security and social safeguards for the adaptation process. (orig.) [de

  11. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  12. Summary of coal production data

    International Nuclear Information System (INIS)

    Kuhn, E.A.

    1992-01-01

    The paper contains two tables which give data on coal production for both 1990 and 1991. The states included are: Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming. Data on the following are given: number of active mines (total, underground, surface, and auger mines), average number of men working, man hours, total production, number of fatalities, and average value per ton of coal

  13. Apparatus for entrained coal pyrolysis

    Science.gov (United States)

    Durai-Swamy, Kandaswamy

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  14. Critical paths to coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G.R.

    1977-01-01

    The present dilemma of energy producers, converters, and policy decision makers is presented. The consequences of environmental control regulations, coupled with the need for conservation and energy, and of energy resources on the increased utilization of coal, are discussed. Several recent technical accomplishments that make possible increased utilization of coal for power generation are described. Groundwork is laid for discussion of the technical development that must occur if the United States is to retain its energy viability.

  15. Results of combustion and emissions testing when co-firing blends of binder-enhanced densified refuse-derived fuel (b-dRDF) pellets and coal in a 440 MW{sub e} cyclone fired combustor. Volume 3: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, O.

    1994-07-01

    This report contains the data resulting from the co-firing of b-dRDF pellets and coal in a 440-MW{sub e} cyclone-fired combustor. These tests were conducted under a Collaborative Research and Development Agreement (CRADA). The CRADA partners included the U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), Otter Tail Power Company, Green Isle Environmental, Inc., XL Recycling Corporation, and Marblehead Lime Company. The report is made up of three volumes. This volume contains other supporting information, along with quality assurance documentation and safety and test plans. With this multi-volume approach, readers can find information at the desired level of detail, depending on individual interest or need.

  16. Report to the United States Congress clean coal technology export markets and financing mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

  17. An analytical coal permeability model for tri-axial strain and stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Luke D.; Lu, Meng; Pan, Zhejun [Unconventional Gas Reservoirs, CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Vic 3168 (Australia)

    2010-11-01

    Coal permeability is sensitive to the effective stress and is therefore coupled to the geomechanical behaviour of the seam during gas migration. As coal shrinks with gas desorption and swells with adsorption, understanding this coupling to geomechanical behaviour is central to interpreting coal permeability. Existing coal permeability models, such as those proposed by Shi and Durucan (2004) and Palmer and Mansoori (1996), simplify the geomechanical processes by assuming uni-axial strain and constant vertical stress. However it is difficult to replicate these conditions in laboratory tri-axial permeability testing and during laboratory core flooding tests for enhanced coal bed methane. Often laboratory tests involve a hydrostatic stress state where the pressure in the confining fluid within the tri-axial cell is uniformly applied to the sample exterior. In this experimental arrangement the sample is allowed to undergo tri-axial strain. This paper presents two new analytical permeability model representations, derived from the general linear poroelastic constitutive law, that include the effects of tri-axial strain and stress for coal undergoing gas adsorption induced swelling. A novel approach is presented to the representation of the effect of coal sorption strain on cleat porosity and thus permeability. This involves distinguishing between the sorption strain of the coal matrix, the pores (or cleats) and the bulk coal. The developed model representations are applied to the results from a series of laboratory tests and it is shown that the models can predict the laboratory permeability data. As part of this characterisation the various sorption strains are identified and it is shown that the pore strain is significantly larger than (approximately 50 times) the bulk sorption strain. The models also provide further insight into how coal permeability varies with coal shrinkage and swelling and how the permeability rebound pressure depends upon the effective stress

  18. Report to the United States Congress clean coal technology export markets and financing mechanisms

    International Nuclear Information System (INIS)

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country's coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently

  19. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  20. Physical and chemical coal cleaning

    Science.gov (United States)

    Wheelock, T. D.; Markuszewski, R.

    1981-02-01

    Coal is cleaned industrially by freeing the occluded mineral impurities and physically separating the coal and refuse particles on the basis of differences in density, settling characteristics, or surface properties. While physical methods are very effective and low in cost when applied to the separation of coarse particles, they are much less effective when applied to the separation of fine particles. Also they can not be used to remove impurities which are bound chemically to the coal. These deficiencies may be overcome in the future by chemical cleaning. Most of the chemical cleaning methods under development are designed primarily to remove sulfur from coal, but several methods also remove various trace elements and ash-forming minerals. Generally these methods will remove most of the sulfur associated with inorganic minerals, but only a few of the methods seem to remove organically bound sulfur. A number of the methods employ oxidizing agents as air, oxygen, chlorine, nitrogen dioxide, or a ferric salt to oxidize the sulfur compounds to soluble sulfates which are then extracted with water. The sulfur in coal may also be solubilized by treatment with caustic. Also sulfur can be removed by reaction with hydrogen at high temperature. Furthermore, it is possible to transform the sulfur bearing minerals in coal to materials which are easily removed by magnetic separation.

  1. Environmental protection during coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Vavilin, V.P.; Reznikov, I.G.; Perel' , Eh.P.; Kirilenko, V.M.

    1983-03-01

    The paper evaluates effects of surfactants used in underground coal mining for dust suppression on efficiency of water treatment and on mine water pollution. Two surfactant types are compared: conventional surfactants such as BD, OP-7 or OP-10 and a new generation of soft surfactants which do not have a negative influence on water treatment systems (active sludge, nitrification process, etc.). The results of tests carried out by the KGMI Institute and the VNIIPAV Institute are discussed. About 100 surfactants of both types were evaluated. Coal samples of the following coal types were used: PZh, Zh, G, K, A, T and D coal. Coal samples with grain size from 0.315 mm to 0.4 mm were wet by surfactant solutions in water. The following surfactant concentrations were used: 0.001, 0.005, 0.01, 0.05, 0.1 and 0.5 g/l. Fresh water and mine water with increased mineral content was used. Selected results of the experiments aimed at determining the optimum surfactants for use in underground coal mining are shown in a table. The following surfactants are described: secondary alkyl sulfates (of the 'Progress' type), diethanolamides, monoethanolamides, alkyl sulfonates, Avirol', Savo, Sintanol DC-10, etc.

  2. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  3. Changes in pore structure of coal caused by coal-to-gas bioconversion.

    Science.gov (United States)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Wang, Yi; Hu, Guanglong; Liang, Yanna

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show that the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.

  4. Ten questions on the future of coal

    International Nuclear Information System (INIS)

    Ruelle, G.

    2005-01-01

    The author comments data and information on the main uses of coal, the evolution of the coal share in the world energy consumption, the amounts and locations of coal reserves in comparison with oil and gas, the coal reserves left in the European Union, the world coal market characteristics with respect to those of oil and gas, the reason of the bad environmental reputation of coal, the internal cost of a KWh produced by a coal power station, the external cost resulting from its environmental pollution, the possibility of reducing those defects by 2020, 2040, 2060, the way of transforming coal into oil and to which cost, in order to expand its use to modern transports, the role of coal during the 21. century and the possibilities of CO 2 sequestration

  5. NSW coal industry overview and outlook

    International Nuclear Information System (INIS)

    Hughes, W.

    2003-01-01

    Australia is the fourth-largest coal producer in the world, after China, the USA and India. In 2001, Australia produced some 257 Million tonnes (Mt) of hard coal, with almost 45% of this coming from NSW. Australia is the world's largest exporter of hard coal. In 2001, Australia exported some 193 Mt of hard coal, well ahead of its nearest rival, China, at 91 Mt and South Africa and Indonesia at 69 and 66 Mt respectively. Of the total coal exports from Australia in 2001, nearly 40% came from NSW. Trade in coal is forecast to continue its growth, particularly for thermal coal. Substantial growth in Asian demand for thermal coal is forecast over the next decade. Asian demand is expected to increase from 193 Mt in 2000 to 333 Mt in 2020. By 2020, Asian demand is expected to make up 62% of world seaborne thermal coal trade

  6. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  7. Studies for the stabilization of coal-oil mixtures. Final report, August 1978-May 1981

    Energy Technology Data Exchange (ETDEWEB)

    Botsaris, G.D.; Glazman, Y.M.; Adams-Viola, M.

    1981-01-01

    A fundamental understanding of the stabilization of coal-oil mixtures (COM) was developed. Aggregation of the coal particles was determined to control both the sedimentation and rheological properties of the COM. Sedimentation stability of COM prepared with coal, 80% < 200 mesh, is achieved by particle aggregation, which leads to the formation of a network of particles throughout the oil. The wettability of coal powders was evaluated by the Pickering emulsion test and a spherical agglomeration test to assess its effect on the stability of various COM formulations. Sedimentation stability of hydrophilic coal-oil-water mixtures (COWM) involves the formation of water bridges between the coal particles, while less stabilization of oleophilic COWM is achieved by the formation of an emulsion. Anionic SAA were least sensitive to the coal type and enhanced the aggregation stability of the suspension. The effect of cationic SAA, nonionic SAA and polymer additives depended upon the specific chemical structure of the SAA, the water content of the COM and the type of coal. The sedimentation stability of ultrafine COM was not directly due to the fineness of the powder but due to the formation of a network of flocculated particles.

  8. Characteristics and synergistic effects of co-pyrolysis of yinning coal and poplar sawdust

    Directory of Open Access Journals (Sweden)

    Zhu Shenghua

    2016-01-01

    Full Text Available Co-process of biomass and coal is perceived as a way to enhance the energy utilization by virtue of the integrated and interactive effects between different types of carbonaceous fuels. The purpose of this study was to investigate the co-pyrolysis characteristics of Yining coal and poplar sawdust, and to determine whether there is any synergistic effect in pyrolytic product yields. The coal was blended with sawdust at a mass fraction of 9:1, 7:3, 5:5, 3:7 and 1:9 respectively. The change of char yields, maximum weight loss rate and the corresponding temperature of different coal/sawdust blends during pyrolysis were compared by thermogravimetric analysis (TG. The total tar yields during separate coal, sawdust as well as their blends pyrolysis were acquired from the low temperature aluminum retort distillation test. By compare the experimental and theoretical value of the char yields from TG and tar yields from carbonization test, it was observed that co-pyrolysis of coal/sawdust blends produced less char and tar than the total amount produced by separate coal and sawdust pyrolysis. The different product distribution suggested that there was synergy effect in gas product yields. The co-pyrolysis of demineralized and devolatilized sawdust with coal indicated that the ash in the sawdust was the main contributor to the synergistic effect.

  9. Development of a Coal Quality Expert. Final technical progress report No. 9

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-08

    This is the ninth Technical Progress Report, describing work performed under DOE Contract No. (DE-FC2290PC896631) ``Development of a Coal Quality Expert.`` The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and ABB Combustion Engineering, Inc. This report covers the period from April 1, through June 30, 1992. Four companies and seven host utilities have teamed with CQ Inc. and ABB/CE to perform the work on this project. The work falls under DOE`s Clean Coal Technology Program category of ``Advanced Coal Cleaning.`` The 45-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and. Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance. (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

  10. Development of an inexact optimization model for coupled coal and power management in North China

    International Nuclear Information System (INIS)

    Liu, Y.; Huang, G.H.; Cai, Y.P.; Cheng, G.H.; Niu, Y.T.; An, K.

    2009-01-01

    In this study, an inexact coupled coal and power management (ICCPM) model was developed for planning coupled coal and power management systems through integrating chance-constrained programming (CCP), interval linear programming (ILP) and mixed integer linear programming (MILP) techniques. The ICCPM model can effectively handle uncertainties presented in terms of probability density functions and intervals. It can also facilitate dynamic analysis of capacity expansions, facility installation and coal inventory planning within a multi-period and multi-option context. Complexities in coupled coal and power management systems can be systematically reflected in this model, thus applicability of the modeling process would be highly enhanced. The developed ICCPM model was applied to a case of long-term coupled coal and power management systems planning in north China. Interval solutions associated with different risk levels of constraint violations have been obtained, which can be used for generating decision alternatives and helping identify desired policies. The generated results can also provide desired solutions for coal and power generation, capacity initiation and expansion, and coal blending with a minimized system cost, a maximized system reliability and a maximized coal transportation security. Tradeoffs between system costs and constraint-violation risks can also be tackled.

  11. Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data

    Science.gov (United States)

    Roslin, A.; Esterle, J. S.

    2016-06-01

    The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.

  12. Effect of Recycle Solvent Hydrotreatment on Oil Yield of Direct Coal Liquefaction

    Directory of Open Access Journals (Sweden)

    Shansong Gao

    2015-07-01

    Full Text Available Effects of the recycle solvent hydrotreatment on oil yield of direct coal liquefaction were carried out in the 0.18 t/day direct coal liquefaction bench support unit of National Engineering Laboratory for Direct Coal Liquefaction (China. Results showed that the hydrogen-donating ability of the hydrogenated recycle solvent improved and the hydrogen consumption of solvent hydrotreatment was increased by decreasing liquid hourly space velocity (LHSV from 1.5 to 1.0 h−1 and increasing reaction pressure from 13.7 to 19.0 MPa. The hydrogen-donating ability of the hydrogenated recycle solvent was enhanced, thus promoting the oil yield and coal conversion of the liquefaction reaction. The coal conversion and distillates yield of coal liquefaction were increased from 88.74% to 88.82% and from 47.41% to 49.10%, respectively, with the increase in the solvent hydrotreatment pressure from 13.7 to 19.0 MPa. The coal conversion and distillates of coal liquefaction were increased from 88.82% to 89.27% and from 49.10% to 54.49%, respectively, when the LHSV decreased from 1.5 to 1.0 h−1 under the solvent hydrotreatment pressure of 19.0 MPa.

  13. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed

    International Nuclear Information System (INIS)

    Feng Qiyan; Zhou Lai; Chen Zhongwei; Liu Jishan

    2008-01-01

    Complicated coupled binary gas-solid interaction arises during carbon dioxide sequestration in a coal seam, which combines effects of CO 2 -CH 4 counter adsorption, CO 2 -CH 4 counter diffusion, binary gas flow and coal bed deformation. Through solving a set of coupled field governing equations, a novel full coupled Finite Element (FE) model was established by COMSOL Multiphysics. The new FE model was applied to the quantification of coal porous pressure, coal permeability, gas composition fraction and coal displacement when CO 2 was injected in a CH 4 saturated coal bed. Numerical results demonstrate that CH 4 is swept by the injected CO 2 accompanied by coal volumetric deformation. Compared to the single CH 4 in situ, CH 4 -CO 2 counter-diffusion induced coal swelling can make more compensation for coal shrinkage due to effective stress. Competing influences between the effective stress and the CH 4 -CO 2 counter-diffusion induced volume change governs the evolution of porous pressure and permeability, which is controlled by the porous pressure correspondingly. This achievement extends our ability to understand the coupled multi-physics of the CO 2 geological sequestration and CO 2 enhanced coal bed methane recovery under field conditions. (authors)

  14. Residual coal exploitation and its impact on sustainable development of the coal industry in China

    International Nuclear Information System (INIS)

    Zhang, Yujiang; Feng, Guorui; Zhang, Min; Ren, Hongrui; Bai, Jinwen; Guo, Yuxia; Jiang, Haina; Kang, Lixun

    2016-01-01

    Although China owns large coal reserves, it now faces the problem of depletion of its coal resources in advance. The coal-based energy mix in China will not change in the short term, and a means of delaying the coal resources depletion is therefore urgently required. The residual coal was exploited first with a lower recovery percentage and was evaluated as commercially valuable damaged coal. This approach is in comparison to past evaluations when the residual coal was allocated as exploitation losses. Coal recovery rates, the calculation method of residual coal reserves and statistics of its mines in China were given. On this basis, a discussion concerning the impacts on the delay of China's coal depletion, development of coal exploitation and sustainable developments, as well as technologies and relevant policies, were presented. It is considered that the exploitation of residual coal can effectively delay China's coal depletion, inhibit the construction of new mines, redress the imbalance between supply and demand of coal in eastern China, improve the mining area environment and guarantee social stability. The Chinese government supports the exploitation technologies of residual coal. Hence, exploiting residual coal is of considerable importance in sustainable development of the coal industry in China. - Highlights: •Pay attention to residual coal under changing energy-mix environment in China. •Estimate residual coal reserves and investigate its exploitation mines. •Discuss impacts of residual coal exploitation on delay of coal depletion in China. •Discuss impacts on coal mining industry and residual coal exploitation technology. •Give corresponding policy prescriptions.

  15. Scrubbing King Coal's dirty face : a new gasification project southeast of Edmonton hopes to make coal cleaner now and for future generations

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2008-01-15

    This article described the proposed Dodds-Roundhill Coal Gasification Project. This first commercial coal gasification plant in Canada will be developed by Edmonton-based Sherritt International Corporation, in a 50/50 partnership with the Ontario Teachers' Pension Plan. The project will include a surface coal mine and a coal gasification facility located approximately 80 km southeast of Edmonton, Alberta. Coal gasification is emerging as a clean alternative for converting coal into energy products. It involves the gasification process which breaks down coal to produce hydrogen, carbon monoxide and carbon dioxide, collectively known as synthesis gas (syngas). The syngas can then be used for fuel, as a petrochemical feedstock, or it can be further processed into hydrogen for use by bitumen upgraders and crude oil refineries in Alberta. Carbon dioxide, which is highly concentrated are relatively easy to capture will be either sequestered or used in enhanced oil recovery. Construction will begin in mid-2009 following project application and an environmental impact assessment. 3 figs.

  16. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    Science.gov (United States)

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  17. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudey, S.E.; Fedorak, P.M.

    1983-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. Previous work indicating that only phenol and p-cresol are readily fermented to methane has been confirmed along with the evidence of highly selective removal of these substrate mixtures. A quantitative method for measuring absolute quantities of methane produced has been refined and applied to draw and feed cultures maintained on phenol and p-cresol. Ultimate production stoichiometry from batch cultures has been measured and applied to draw and feed experiments to provide a valuable basis for predicting methane generation potential for these substrates. Oxidative pretreatment studies with peroxide and ozone have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Evaluation of alternate sources of anaerobic sources of anaerobic bacteria has not yet provided phenolic degradation potential beyond that available from the municipal digester sludge being used. Although mixed cultures of anaerobic bacteria have been sustained in draw and feed culture for over 15 months with phenol as sole carbon source, it has not been possible to isolate the phenol degraders in pure culture. 3 refs., 12 refs., 3 tabs.

  18. Coal gasification in Europe

    International Nuclear Information System (INIS)

    Furfari, S.

    1992-01-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes

  19. CO2 Sequestration Potential of Texas Low-Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  20. A new light for coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Nadkarni, S.

    2001-09-01

    Recent moves by the Indian government look set to offer unrestricted entry into India for private coal players. The Coal and Mines Nationalisation Act will be amended to allow unrestricted entry to private players in exploration and production of coal. The move will be followed by winding up the regional officers of the coal controller of Coal India Limited (CIL) in order to give greater autonomy to its subsidiaries and prospective entrepreneurs. A centralized office will have the task of facilitating smooth functioning of new entrants, regulating distribution of coal and granting permission for opening and reopening mines and seams. CIL has already closed several sales offices. 1 photo.

  1. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  2. Heating plant overcomes coal crisis

    International Nuclear Information System (INIS)

    Sobinkovic, B.

    2006-01-01

    At the last moment Kosice managed to overcome the threat of a more than 30-percent heating price increase. The biggest local heat producer, Teplaren Kosice, is running out of coal supplies. The only alternative would be gas, which is far more expensive. The reason for this situation was a dispute of the heating plant with one of its suppliers, Kimex. Some days ago, the dispute was settled and the heating plant is now expecting the first wagon loads of coal to arrive. These are eagerly awaited, as its supplies will not last for more than a month. It all started with a public tender for a coal supplier. Teplaren Kosice (TEKO) announced the tender for the delivery of 120,000 tons of coal in June. Kimex, one of the traditional and biggest suppliers, was disqualified in the course of the tender. The winners of the tender were Slovenergo, Bratislava and S-Plus Trade, Vranov nad Toplou. TEKO signed contracts with them but a district court in Kosice prohibited the company from purchasing coal from these contractors. Kimex filed a complaint claiming that it was disqualified unlawfully. Based on this the court issued a preliminary ruling prohibiting the purchase of coal from the winners of the tender. The heating plant had to wait for the final verdict. The problem was then solved by the company's new Board of Directors, who were appointed in mid October who managed to sign new contracts with the two winners and Kimex. The new contracts cover the purchase of 150-thousand tons of coal, which is 30,000 more than in the original tender specification. Each company will supply one third. (authors)

  3. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  4. Advanced clean coal technology international symposium 2001. Current status of high efficiency coal utilization technology and coal ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Papers are presented under the following session headings: current status of coal utilization technology; movement for environmental control in the USA, EU and Japan; and coal combustion products utilization technologies.

  5. Outline for the establishment of an orderly coal trade market

    International Nuclear Information System (INIS)

    Murai, S.

    1988-01-01

    This paper reports on the present situation of the coal trade market. It discusses the changes in the coal trade market, the present situation of the coal trade in Japan, supply trends, demand trends and fluctuation of exchange rates. This paper also reports on the problems associated with establishing an orderly coal trade market by the examination of contract form, development of coal technology to expand coal use, cooperation with developing countries and creating a new coal market by establishing a coal complex

  6. The World Coal Quality Inventory: South America

    Science.gov (United States)

    Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.

    2006-01-01

    Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.

  7. Drivers for the renaissance of coal

    Science.gov (United States)

    Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael

    2015-01-01

    Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries. PMID:26150491

  8. Drivers for the renaissance of coal.

    Science.gov (United States)

    Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael

    2015-07-21

    Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries.

  9. Coal: an economic source of energy

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2001-01-01

    Coal, in spite its abundance availability in Pakistan, is a neglected source of energy. Its role as fuel is not more than five percent for the last four decades. Some of the coal, mined, in used as space heating in cold areas of Pakistan but more than 90% is being used in brick kilns. There are 185 billion tonnes of coal reserves in the country and hardly 3 million tonnes of coal is, annually, mined. Lakhra coal field is, presently, major source of coal and is considered the largest productive/operative coal field of Pakistan. It is cheaper coal compared to other coals available in Pakistan. As an average analysis of colas of the country, it shows that most of the coals are lignitic in nature with high ash and sulfur content. The energy potential is roughly the same but the cost/ton of coal is quite different. It may be due to methods of mining. There should be some criteria for fixing the cost of the coal. It should be based on energy potential of unit mass of coal. (author)

  10. Modelling Underground Coal Gasification—A Review

    Directory of Open Access Journals (Sweden)

    Md M. Khan

    2015-11-01

    Full Text Available The technical feasibility of underground coal gasification (UCG has been established through many field trials and laboratory-scale experiments over the past decades. However, the UCG is site specific and the commercialization of UCG is being hindered due to the lack of complete information for a specific site of operation. Since conducting UCG trials and data extraction are costly and difficult, modeling has been an important part of UCG study to predict the effect of various physical and operating parameters on the performance of the process. Over the years, various models have been developed in order to improve the understanding of the UCG process. This article reviews the approaches, key concepts, assumptions, and limitations of various forward gasification UCG models for cavity growth and product gas recovery. However, emphasis is given to the most important models, such as packed bed models, the channel model, and the coal slab model. In addition, because of the integral part of the main models, various sub-models such as drying and pyrolysis are also included in this review. The aim of this study is to provide an overview of the various simulation methodologies and sub-models in order to enhance the understanding of the critical aspects of the UCG process.

  11. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  12. The coal sector in Colombia

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    Inside the plan of development of the sub-sector coal, implemented by the Ministry of Mines and Energy, has like one of the objectives to achieve that in the year 2001, this is the energy second in order of importance for the consumption of the country, overcome alone for the petroleum and their derived. The consumption of this energy in Colombia has shown a stable behavior in the last 15 years, period in which incursions of the coal have not been observed in new markets of the national economy, having a growth of so single 2.1% a year. Inside the plan of development of the sub-sector coal, implemented by the Ministry of Mines and Energy, the coal is had as one of the objectives to achieve that in the year 2001, this it is the energy second in order of importance for the consumption of the country, overcome alone for the petroleum and their derived. The author also refers to the role of the state; the coal in the national economy and it shows charts related with the exports and demand, among other items

  13. Uncertainty Analysis using Experimental Design Methods for Assessing CO2 Sequestration and Coal Bed Methane Production Potential of Subbituminous Coals of the Nenana Basin, Interior Alaska

    Science.gov (United States)

    Dixit, N.; Ahmadi, M.; Hanks, C.; Awoleke, O.

    2016-12-01

    Naturally fractured, unmineable coal seam reservoirs are attractive targets for geological sequestration of CO2 because of their high CO2-adsorption capacities and possible cost offsets from enhanced coal bed methane production (ECBM). In this study, we have investigated CO2 sequestration and CH4 production potential of the subbituminous Healy Creek Formation coals through preliminary sensitivity analyses, experimental design methods and fluid flow simulations. Our primary sensitivity analyses indicated that the total cumulative volumes of CO2 sequestered and CH4 produced from the Healy Creek coals are mostly sensitive to bottomhole injection pressure, coal matrix porosity, fracture porosity and permeability, and coal volumetric strain. The results of Plackett-Burman experimental design were used to further constrain the most influential reservoir parameters and generate proxy models for probabilistic reservoir forecasts. Our probabilistic estimates for the mature, subbituminous Healy Creek coals in the entire Nenana basin indicate that it is possible to sequestrate between 0.87 TCF (P10) and 0.2 TCF (P90) of CO2 while producing between 0.29 TCF (P10) and 0.1 TCF (P90) of CH4 at the end of 20-year forecast. Our study demonstrated application of experimental design methods and Monte Carlo analysis in reducing these uncertainties in reservoir properties and quantifying their effect on reservoir performance. In addition, the results of fluid flow scenarios show that the CO2 sequestration through a primary reservoir depletion method is the most effective way to inject CO2 in the coals of the Nenana basin. Including a horizontal well instead of the vertical well resulted in relatively high average gas production rates and subsequent faster production decline. Our CO2 buoyancy scenario suggested that the effect of CO2 buoyancy and the nature of the caprock should be considered when identifying potential geologic sites for CO2 sequestration and in CO2 storage capacity

  14. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  15. Quarterly coal report, January--March 1992

    International Nuclear Information System (INIS)

    Young, P.

    1992-01-01

    The United States produced 257 million short tons of coal in the first quarter of 1992. This was the second highest quarterly production level ever recorded. US coal exports in January through March of 1992 were 25 million short tons, the highest first quarter since 1982. The leading destinations for US coal exports were Japan, Italy, France, and the Netherlands, together receiving 46 percent of the total. Coal exports for the first quarter of 1992 were valued at $1 billion, based on an average price of $42.28 per short ton. Steam coal exports totaled 10 million short tons, an increase of 34 percent over the level a year earlier. Metallurgical coal exports amounted to 15 million short tons, about the same as a year earlier. US coal consumption for January through March 1992 was 221 million short tons, 2 million short tons more than a year earlier (Table 45). All sectors but the residential and commercial sector reported increased coal consumption

  16. 78 FR 60866 - National Coal Council Meeting

    Science.gov (United States)

    2013-10-02

    ...: Washington Court Hotel, 525 New Jersey Avenue NW., Washington, DC 20001-1527. FOR FURTHER INFORMATION CONTACT... general policy matters relating to coal and the coal industry Purpose of Meeting: The November 2013...

  17. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  18. Coal mine subsidence and structures

    International Nuclear Information System (INIS)

    Gray, R.E.

    1988-01-01

    Underground coal mining has occurred beneath 32 x 10 9 m 2 (8 million acres) of land in the United States and will eventually extend beneath 162 x 10 9 m 2 (40 million acres). Most of this mining has taken place and will take place in the eastern half of the United States. In areas of abandoned mines where total extraction was not achieved, roof collapse, crushing of coal pillars, or punching of coal pillars into softer mine floor or roof rock is now resulting in sinkhole or trough subsidence tens or even hundreds of years after mining. Difference in geology, in mining, and building construction practice between Europe and the United States preclude direct transfer of European subsidence engineering experience. Building damage cannot be related simply to tensile and compressive strains at the ground surface. Recognition of the subsidence damage role played by ground-structure interaction and by structural details is needed

  19. Fibre Optics In Coal Mining

    Science.gov (United States)

    Cooper, Paul

    1984-08-01

    Coal mines have a number of unique problems which affect the use of fibre optic technology. These include a potentially explosive atmosphere due to the evolution of methane from coal, and a dirty environment with no cleaning facilities readily available. Equipment being developed by MRDE to allow the exploitation of optical fibres underground includes: A hybrid electrical/fibre optic connector for the flexible power trailing cable of the coal-face shearer; An Intrinsically Safe (IS) pulsed laser transmitter using Frequency Shift Key (FSK) data modulation; An IS Avalanche Photo Diode Receiver suitable for pulsed & continuous wave optical signals; A mine shaft and roadway cable/ connector system incorporating low loss butt-splices and preterminated demountable connectors.

  20. World coal prices and future energy demand

    International Nuclear Information System (INIS)

    Bennett, J.

    1992-01-01

    The Clean Air Act Amendments will create some important changes in the US domestic steam coal market, including price increases for compliance coal by the year 2000 and price decreases for high-sulfur coal. In the international market, there is likely to be a continuing oversupply which will put a damper on price increases. The paper examines several forecasts for domestic and international coal prices and notes a range of predictions for future oil prices

  1. Industry at odds over export coal prices

    International Nuclear Information System (INIS)

    Yarwood, Ken.

    1993-01-01

    The United Mine Workers' Union claims that Australia is not getting enough for its coal. Moreover, coal company executives argue that the open market policy was failing the industry and that the export customers were manipulating Australian producers. Consequently, the unions are calling for Federal Government intervention and support the establishment of a national coal authority to co-ordinate the marketing of coal and investment in the industry. ills

  2. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  3. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  4. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  5. Selected results of the slovak coal research

    Directory of Open Access Journals (Sweden)

    Hredzák Slavomír

    1997-09-01

    Full Text Available The contribution gives the review of Slovak brown coal research in the last 10 years. The state and development trends of the coal research in Slovakia from the point of view of the clean coal technologies application are described. Some selected results which have been obtained at the Institute of Geotechnics of the Slovak Academy of Sciences are also introduced.

  6. Nucleonic coal detector with independent, hydropneumatic suspension

    Science.gov (United States)

    Jones, E. W.; Handy, K.

    1977-01-01

    The design of a nucleonic, coal interface detector which measures the depth of coal on the roof and floor of a coal mine is presented. The nucleonic source and the nucleonic detector are on independent hydropneumatic suspensions to reduce the measurement errors due to air gap.

  7. Improved nucleonic coal-thickness monitor

    Science.gov (United States)

    Crouch, C. E.; Rose, S. D.; Jones, E. W.

    1979-01-01

    Design for coal-thickness-sensing instrument features independent hydropneumatic suspension of radiation source and detector. Monitor uses source and detector which are independently mounted, to follow contour of coal surface more closely and to eliminate errors caused by variations in airgap along radiation path. Device may help to bring fully-automated coal mining closer to reality.

  8. Quality aspects of thermal coal marketing

    International Nuclear Information System (INIS)

    Dunstone, D.

    1998-01-01

    Australia's thermal coal industry is under increasing competition. A successful marketing strategy must distinguish the product from that of Australian competitors, leaving the buyer in no doubt as to its value. The marketing of thermal coal is a very different experience and encompasses an interesting commercial and technical mix. The technical merits of a coal may be effectively used to prepare the way for a sale. However, once the technical hurdle is passed (i.e. the coal is classified as acceptable), the three factors which influence the sale are price, price and price. The other aspect of marketing is that marketing, especially technical market support, must realize that the buyer often has no experience in using the coals purchased. This is particularly true with thermal coals. Virtually no thought is given as to how the coal performs or how much is used. Consequently, it is not uncommon for cheap, low quality coals to be purchased, even though it is not the choice that will result in the lowest power generation cost when all other factors are taken into consideration. The author has developed a model which allows to differentiate between coals for a range of properties relative to the use of the coal, so that a coal company can calculate the break-even price in term of cost per kWh of electricity generated and enable a more valid cost comparison between coals to be made

  9. The single electron chemistry of coals

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Flowers, R.A. II.

    1991-04-22

    The simplest explanation for these shifts in the infrared spectra is there exists in coal single electron donors which are capable of transferring an electron to TCNQ in the ground state. All of the TCNQ placed in the coal appears to be converted to the radical anion as displayed in the IR spectrum for all of the coals except for the 100% loading.

  10. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  11. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  12. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  13. Indaba 2009. Clean coal technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Topics covered include coal reserves/mining beneficiation, combustion and power generation, underground coal gasification, coalbed methane, coal gasification and conversion, coke, and emission reduction. The presentations (overheads/viewgraphs) are included on the CD-ROM, along with 12 of the papers, and a delegates list.

  14. The environment, public relations and coal

    Energy Technology Data Exchange (ETDEWEB)

    Wood, W.J. (Coal Association of Canada, Calgary, AB (Canada))

    1990-09-01

    Information is presented in note format. The presentation covers world environmental issues such as the greenhouse effect, an overview of the coal industry's role in atmospheric emissions of CO{sub 2}, and finally, the need for the coal industry to make the public aware of coal's current and future role in our economic and energy future.

  15. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  16. Connect the Spheres with the Coal Cycle

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    Coal fueled the Industrial Revolution and, as a result, changed the course of human history. However, the geologic history of coal is much, much longer than that which is recorded by humans. In your classroom, the coal cycle can be used to trace the formation of this important economic resource from its plant origins, through its lithification, or…

  17. 48 CFR 908.7110 - Coal.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Coal. 908.7110 Section 908... REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7110 Coal. DOE offices and authorized contractors may participate in the Defense Fuel Supply Center (DFSC) coal contracting program for...

  18. Analysis of coal streams with californium-252

    International Nuclear Information System (INIS)

    Worster, B.W.

    1976-01-01

    The sulfur, ash, water, and energy content of coal are increasingly important parameters to various coal users because of their relationship to air pollution, energy conservation, and to the proper operation of coal-burning plants. For example, ash accumulation is critical in electric power plants and suppliers of coal operate under contracts specifying maximum ash and sulfur content of their product. Conventional analysis of streams of coal on the order of 100 to 2000 tons/hour have relief on elaborate mechanical sampling mechanisms to take primary, secondary, and tertiary cuts from the coal stream with pulverizing stages between cuts to reduce it down to a fine powder which is analyzed off-line with wet chemical methods. (X-ray backscatter techniques have been applied to small coal streams for ash analysis.) This technique is too slow for process control in coal cleaning and blending operations, and is unreliable because of the highly heterogeneous nature of coal as it comes from the mine. Analysis of the entire stream of coal for the parameters of interest appears to be feasible only by analyzing the prompt gamma rays produced by capture of thermal neutrons diffusing through the coal. At FMC Corporation, we are performing extensive tests of the analysis of coal on-line for its important parameters using a californium-252 neutron source. In this paper we report the progress of our tests and the outlook for commercial industrial application of the method

  19. Cost of mining Eastern coal

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper, Chapter 7.2.3 of the 'surface mining' reference book, gives an example of how the cost of mining a ton of coal is calculated. Conditions set down are for a coal tract of 50.6 ha in West Virginia, USA to be mined by the contour surface method, the seam being 101.6cm thick. Elements of the costing are: permitting and bonding costs, engineering and construction costs, equipment and other operating expenses (such as hauling and wheeling), royalties, direct taxes and fees, costs of revegetation, and employment costs (payroll and medical expenses). 5 tabs

  20. Coal conversion wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Hrudey, S.E.; Fedorak, P.M. (University of Alberta, Edmonton, AB (Canada))

    1988-12-01

    Phenolic compounds are one of the major components of coal conversion wastewaters, and their deleterious impact on the environment, particularly in natural water systems, is well documented. Phenols, at higher concentrations, have been shown to inhibit the activity of anaerobic bacteria used to degrade organic compounds. This study examines combined treatment requirements for an authentic, high strength phenolic coal conversion wastewater using both batch and semi- continuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in situ addition of activated carbon during anaerobic treatment were also examined, and proved effective in removing phenol. 61 refs., 34 tabs., 30 figs., 7 append.

  1. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  2. Capacity modelling of the coal value chain at Sasol Coal Supply

    CSIR Research Space (South Africa)

    Harmse, M

    2007-05-01

    Full Text Available , chemical and related manufacturing and marketing operations, complemented by interests in technology development, oil and gas exploration, and production. At Secunda, petrochemicals are produced from coal which is mined in the area and transported... via a complex conveyor system from the mine bunkers to stockpiles at the two gas production plants. Coal stackers are used to build the stockpiles while coal reclaimers remove the coal from the stockpiles and feed the plants. Since the coal...

  3. ANALYSIS OF COAL TAR COMPOSITIONS PRODUCED FROM SUB-BITUMINOUS KALIMANTAN COAL TAR

    OpenAIRE

    Dewi Selvia Fardhyanti; Astrilia Damayanti

    2016-01-01

    Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kinds of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmo...

  4. Automated mineralogical logging of coal and coal measure core

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Fraser; Joan Esterle; Colin Ward; Ruth Henwood; Peter Mason; Jon Huntington; Phil Connor; Reneta Sliwa; Dave Coward; Lew Whitbourn [CSIRO Exploration & Mining (Australia)

    2006-06-15

    A mineralogical core logging system based on spectral reflectance (HyLogger{trademark}) has been used to detect and quantify mineralogies in coal and coal measure sediments. The HyLogger{trademark} system, as tested, operates in the visible-to-shortwave infrared spectral region, where iron oxides, sulphates, hydroxyl-bearing and carbonate minerals have characteristic spectral responses. Specialized software assists with mineral identification and data display. Three Phases of activity were undertaken. In Phase I, carbonates (siderite, ankerite, calcite) and clays (halloysite, dickite) were successfully detected and mapped in coal. Repeat measurements taken from one of the cores after three months demonstrated the reproducibility of the spectral approach, with some spectral differences being attributed to variations in moisture content and oxidation. Also, investigated was HyLogger{trademark} ability to create a 'brightness-profile' on coal materials, and these results were encouraging. In Phase II, geotechnically significant smectitic clays (montmorillonite) were detected and mapped in cores of clastic roof and floor materials. Such knowledge would be useful for mine planning and design purposes. In Phase III, our attempts at determining whether phosphorus-bearing minerals such as apatite could be spectrally detected were less than conclusive. A spectral index could only be created for apatite, and the relationships between the spectrally-derived apatite-index, the XRD results and the analytically-derived phosphorus measurements were ambiguous.

  5. Underground coal gasification technology impact on coal reserves in Colombia

    Directory of Open Access Journals (Sweden)

    John William Rosso Murillo

    2013-12-01

    Full Text Available In situ coal gasification technology (Underground Coal Gasification–UCG– is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national GDP. According with the Energy Ministry (Ministerio de Minas y Energía [1] mining has been around 5% of total GDP in the last years. This is a significant fact due to the existence of a considerable volume of reserves not accounted for (proved reserves at year 2010 were 6.700 million of tons. Source: INGEOMINAS and UPME, and the coal future role’s prospect, in the world energy production.

  6. Clean coal technology: gasification of South African coals - IFSA 2008

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2008-11-01

    Full Text Available Electricity demand in South Africa is increasing at a rate of 1000 MW per year. Whilst there is increasing pressure to adopt non-fossil fuel electricity generating technologies, the abundant reserves and low cost of coal make it the preferred energy...

  7. Heavy-metal content and oxidative damage in Hypsiboas faber: the impact of coal-mining pollutants on amphibians.

    Science.gov (United States)

    Zocche, Jairo José; da Silva, Luciano Acordi; Damiani, Adriani Paganini; Mendonça, Rodrigo Ávila; Peres, Poliana Bernardo; dos Santos, Carla Eliete Iochims; Debastiani, Rafaela; Dias, Johnny Ferraz; de Andrade, Vanessa Moraes; Pinho, Ricardo Aurino

    2014-01-01

    It has been identified worldwide that amphibians are experiencing massive population declines. This decrease could be further enhanced by the exposure of amphibians to pollutants, which would enhance reactive oxygen species production and cause subsequent alterations in oxidant defense levels. The present study was aimed at understanding the impact of mineral coal on amphibians. For this purpose, chemical elemental contents and oxidative stress indexes in Hypsiboas faber from coal-mining areas and in an unpolluted area in the Catarinense Coal Basin, Brazil, were assessed. The highest contents of sulfur, chlorine, iron, zinc, and bromine were registered in specimens from the coal-mining area, whereas the highest contents of potassium calcium, and silicon were registered in specimens from the control area. It was found that there was a significant increase (p coal-mining area, whereas the level of catalase showed no differences between the animal groups. The levels of TBARS showed no differences between the tested groups. However, carbonylation decreased significantly (p coal-mining area, and there was a significant increase (p coal-mining area. In conclusion, the antioxidant system of H. faber is sensitive to pollutants present in coal-mining wastes, and its SOD and GPx activity may be a potential biomarker for monitoring the level of contaminants in the environment.

  8. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  9. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  10. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    International Nuclear Information System (INIS)

    Suwala, W.

    1997-01-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors' development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs

  11. Coal industry defies recession with record exports

    International Nuclear Information System (INIS)

    Casey, Denis.

    1994-01-01

    Despite the worldwide recession which has adversely affected many commodities, the New South Wales coal industry achieved record production and exports during 1992-93. Although saleable coal production increased by only a modest 0.7%, experts rose by an impressive 7.1% to 57.4 million tonnes. Coking coal jumped by 14.6% to 23.6 million tonnes while thermal coal increased by 2.7% to 33.8 million tonnes. The value of coal experts amounted at $3.1 million. 1 tab

  12. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  13. Assessment of Research Needs for Coal Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1983-08-01

    The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

  14. Coal-fired diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  15. Summary of coal production data

    International Nuclear Information System (INIS)

    1998-01-01

    Data are presented on the productivity of surface and underground coal mining from Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming, and remaining US states. Productivity data are given as tons per employee-hour as well as total tons for 1990 through 1997. The number of fatal accidents is also given

  16. Cooperative research in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  17. Land use and coal technology

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Arid Lands Ecology Reserve and the Hanford National Environmental Research Park were established to promote the use of the Hanford Site for ecological research, especially studies related to energy technologies and their potential for environmental impacts. Coal is currently regarded as the most dependable interim source of energy in the United States. To meet expected demands, coal needs to be mined in large quantities and may be mined predominantly in locations of sparse precipitation. Often the most economical way to extract coal is through surface mining. It is expected that following coal extraction the pits will be filled with overburden, graded to approximate original contour, native topsoil applied to prescribed depths and planted with climatically adapted herbs, shrubs or trees. Because primary productivity in dry regions is characteristically low, it is realistic to expect, if the above procedure is followed, that the revegetated surfaces will also produce little phytomass in the years following restoration. Appropriate data are needed for accurate estimation of the economic feasibility of a particular restoration practice or its alternative. Research programs are discussed briefly

  18. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  19. Hydrogenation balances for bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Hoelscher

    1944-02-11

    This report was intended to set up predictive curves concerning how certain variables involved in coal hydrogenation output would change in response to changes in certain operational or input variables, for hydrogenation of Gelsenberg coal. The particular dependences investigated in the article were the following: (1) for liquid phase, the dependence of oil output, amount of product to be distilled, and hydrogen use upon the ash content of the coal, the carbon content of the coal, and the percentage of formation of gases, and (2) for vapor phase, the dependence of gasoline yield, hydrogen use, and excess hydrocarbon gas products on the percentage of gasification in the 6434 step. Within certain limits of validity, these dependences seemed mostly to be linear and were illustrated in graphs in the report (most of which were very hard to read on the microfilm image). The limits of validity were 2 to 8% ash content, 80 to 86.2% carbon content, 20 to 25% gasification in liquid phase, and 17 to 25% gasification in the 6434 vapor phase. As an example of the data and calculations, it was observed that at 2% ash content, there was 628 kg of oil output in the liquid phase, at 4% ash content, there was 621 kg oil output, and at 8% ash content, there was 607 kg oil output, so it was calculated that oil output would decrease by 0.56% for each percent increase in ash content between 2% and 8%. 7 tables, 2 graphs.

  20. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.

    2012-01-01

    In 1908, members of the “Danmark Expedition” discovered a coal deposit in a very remote area in western Germania Land, close to the margin of the inland ice in northeast Greenland. The deposit was, however, neither sampled nor described, and was revisited in 2009 for the first time since its...

  1. Summary of coal production data

    International Nuclear Information System (INIS)

    1999-01-01

    Data are presented on the productivity of surface and underground coal mining from Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming, and remaining US states. Productivity data are given as tons per employee-hour as well as total tons for 1989 through 1998. The number of fatal accidents is also given

  2. Pyrolitics Oils in Coal Flotation

    Czech Academy of Sciences Publication Activity Database

    Čáblík, V.; Išek, J.; Herková, M.; Halas, J.; Čáblíková, L.; Vaculíková, Lenka

    2014-01-01

    Roč. 34, č. 2 (2014), s. 9-14 ISSN 1640-4920 Institutional support: RVO:68145535 Keywords : pyrolytic oils * flotation, black coal * new flotation reagents Subject RIV: CB - Analytical Chemistry, Separation http://homen.vsb.cz/hgf/546/IM_2014_02.pdf

  3. Investigation on characterization of Ereen coal deposit

    Directory of Open Access Journals (Sweden)

    S. Jargalmaa

    2016-03-01

    Full Text Available The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbituminous coal. The SEM images of initial coal sample have compact solid pieces. The SEM image of carbonized and activated carbon samples are hard material with high developed macro porosity structure. The SEM images of hard residue after thermal dissolution in autoclave characterizes hard pieces with micro porous structure in comparison with activated carbon sample. The results of the thermal dissolution of Ereen coal in tetralin with constant weight ratio between coal and tetralin (1:1.8 at the 450ºC show that 38% of liquid product can be obtained by thermal decomposition of the COM (coal organic matter.Mongolian Journal of Chemistry 16 (42, 2015, 18-21

  4. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  5. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  6. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  7. Coal marketing in Asia: Opportunities and challenges

    International Nuclear Information System (INIS)

    Klingner, D.

    1996-01-01

    In Asia, coal currently accounts for over 40 percent of the fossil fuel used for commercial energy. This paper briefly surveys the forces that are likely to decide the future role coal will play as a prime source of energy in the vigorous economies of Asia. As Australia is well placed to profit from Asia's growing need for coal, the challenge to Australian coal suppliers is how to maximize its potential contribution. Four-fifths of all new coal fired electrical generating capacity in the world in the next decade will be located in Asia. Three-quarters of Australia's coal exports are to Asian customers and, conversely, 40 percent of Asian imports are from Australia. Australian coal suppliers have established ties and a depth of marketing experience in the region on which to build. However, pricing policies, and the emergence of the private power producers, together with environmental pressures, will present challenges for the future. (author). 1 fig

  8. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  9. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  10. World coal outlook to the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The 1983 edition of the World Coal Outlook to the Year 2000 examines the worldwide impact of lower oil prices and lower economic activity on the demand, production, and international trade in coal. The report includes detailed regional forecasts of coal demand by end-use application. Regions include the US, Canada, Western Europe, Japan, Other Asia, Latin America, Africa, Australia/New Zealand, Communist Europe, and Communist Asia. In addition, regional coal production forecasts are provided with a detailed analysis of regional coal trade patterns. In all instances, the changes relative to Chase's previous forecasts are shown. Because of the current situation in the oil market, the report includes an analysis of the competitive position of coal relative to oil in the generation of electricity, and in industrial steam applications. The report concludes with an examination of the impact of an oil price collapse on the international markets for coal.

  11. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  12. Role of coal in the world and Asia

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

  13. Role of coal in the world and Asia

    International Nuclear Information System (INIS)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning

  14. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  15. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  16. Assessment of reliability and efficiency of mining coal seams located above or below extracted coal seams with support coal pillars. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.

    1981-04-01

    Mining thin (under 1.1 m) coal seams located above or below extracted thicker coal seams in which coal support pillars were left is one of the ways of increasing coal output without major investment in Donbass coal mines. It is planned that by 1985 25 thin coal seams will be mined in the Donbass. Investigations show that mining thin coal seams with gradients up to 12 degrees by a system of raise faces without leaving coal pillars is economical using mining systems available at present. This mining scheme is economical also in the case of coal seams located in zones of geologic dislocations. Using integrated mining systems (coal cutter, powered supports and face conveyor) in this coal seams would reduce mining cost from 0.2 to 0.3 rubles/t. Using automated integrated mining systems is economical in working faces with coal output exceeding 900 t/d. (3 refs.) (In Russian)

  17. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].

    Science.gov (United States)

    Zhou, Jun; Yang, Zhe; Liu, Xiao-feng; Wu, Lei; Tian, Yu-hong; Zhao, Xi-cheng

    2016-02-01

    The pyrolysis of low rank coal to produce bluecoke, coal tar and gas is considered to be the optimal method to realize its clean and efficient utilization. However, the current mainstream pyrolysis production technology generally has a certain particle size requirements for raw coal, resulting in lower yield and poorer quality of coal tar, lower content of effective components in coal gas such as H₂, CH₄, CO, etc. To further improve the yield of coal tar obtained from the pyrolysis of low rank coal and explore systematically the effect of microwave power, pyrolysis time and particle size of coal samples on the yield and composition of microwave pyrolysis products of low rank coal through the analysis and characterization of products with FTIR and GC-MS, introducing microwave pyrolysis of low rank coal into the microwave pyrolysis reactor circularly was suggested to carry out the co-pyrolysis experiment of the low rank coal and coal gas generated by the pyrolysis of low rank coal. The results indicated that the yield of the bluecoke and liquid products were up to 62.2% and 26.8% respectively when the optimal pyrolysis process conditions with the microwave power of 800W, pyrolysis time of 40 min, coal samples particle size of 5-10 mm and circulating coal gas flow rate of 0.4 L · min⁻¹ were selected. The infrared spectrogram of the bluecoke under different microwave power and pyrolysis time overlapped roughly. The content of functional groups with -OH, C==O, C==C and C−O from the bluecoke through the pyrolysis of particle size coal samples had a larger difference. To improve microwave power, prolonging pyrolysis time and reducing particle size of coal samples were conducive to converting heavy component to light one into coal tar.

  18. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z.; Morikawa, M.; Fujii, Y. [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  19. Coal-to-liquids: Potential impact on U.S. coal reserves

    Science.gov (United States)

    Milici, R.C.

    2009-01-01

    The production of liquid fuels from coal will very likely become an important part of the hydrocarbon energy mix of the future, provided that technical and environmental obstacles are overcome economically. The coal industry should be able to handle a coal-to-liquids (CTL) industry of modest size, using 60-70 million short tons or 54-64 million metric tonnes of coal per annum, without premature depletion of the country's coal reserves. However, attempts to use CTL technology to replace all petroleum imports would deplete the nation's coal reserves by the end of the century. ?? 2009 U.S. Government.

  20. JV Task 5 - Predictive Coal Quality Effects Screening Tool (PCQUEST)

    Energy Technology Data Exchange (ETDEWEB)

    Jason Laumb; Joshua Stanislowski

    2007-07-01

    PCQUEST, a package of eight predictive indices, was developed with U.S. Department of Energy (DOE) support by the Energy & Environmental Research Center to predict fireside performance in coal-fired utility boilers more reliably than traditional indices. Since the development of PCQUEST, the need has arisen for additional improvement, validation, and enhancement of the model, as well as to incorporate additional fuel types into the program database. PCQUEST was developed using combustion inorganic transformation theory from previous projects and from empirical data derived from laboratory experiments and coal boiler field observations. The goal of this joint venture project between commercial industry clients and DOE is to further enhance PCQUEST and improve its utility for a variety of new fuels and systems. Specific objectives include initiating joint venture projects with utilities, boiler vendors, and coal companies that involve real-world situations and needs in order to strategically improve algorithms and input-output functions of PCQUEST, as well as to provide technology transfer to the industrial sector. The main body of this report provides a short summary of the projects that were closed from February 1999 through July 2007. All of the reports sent to the commercial clients can be found in the appendix.

  1. Analysis of thermal coal pricing and the coal price distortion in China from the perspective of market forces

    International Nuclear Information System (INIS)

    Cui, Herui; Wei, Pengbang

    2017-01-01

    The price of thermal coal has always been the focus of the debate between coal mining industry and electric power industry. The thermal coal price is always lower than other same quality coal, and this phenomenon of thermal coal price distortion has been existing in China for a long time. The distortion coal price can not reflect the external cost and the resource scarcity of coal, which could result in environment deteriorating and inefficient resource allocation. This paper studied the phenomenon of thermal coal price distortion through economic theoretical modeling and empirical cointegration analysis from the perspective of market forces. The results show that thermal coal price is determined by electricity price, the prediction elasticity of a electricity enterprise, price elasticity of demand of electricity, the input prediction elasticity of a electricity enterprise and the price elasticity of supply of thermal coal. The main reason of coal price distortion is the unbalance market force of coal industry and thermal coal generation industry. The distortion rate of coal price is positively related to the market force of electric power industry and negatively related to the industrial concentration of coal industry. - Highlights: • This paper studied thermal coal pricing and the coal price distortion in China. • The main reason of coal price distortion is the unbalance market force. • Thermal coal price is also influenced by electricity price and price elasticity of demand of electricity. • The distortion rate of coal price is negatively related to the industrial concentration of coal industry.

  2. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  3. Quarterly coal report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  4. Water pollution profile of coal washeries

    International Nuclear Information System (INIS)

    Gupta, R.K.; Singh, Gurdeep

    1995-01-01

    Environmental problems in coal mining industry is increased with the demand of good quality of coal through coal washing/beneficiation activities. The coal washeries in general have been identified as one of the serious sources of water pollution particularly of Damodar river. Coal washeries though are designed on close water circuit, most of these however, fail to operate on close water circuit thus resulting in enormous quantity of effluents containing coal fines as well. This apart from posing serious water pollution problem also results into economic losses. The present study attempts to provide an insight into water pollution profile from coal washeries in Jharia coalfield. Various process parameters/unit operations in coal washing are also described. Effluents from various selected coal washeries of Jharia coalfield are sampled and analysed over a period of six months during 1993. Suspended solids, oil and grease and COD in the washery effluents are identified as the three major water quality parameters causing lots of concern for Damodar river pollution. Reasons for unavoidable discharge of effluents containing coal fines are also described. (author). 14 refs., 4 tabs., 2 figs

  5. Users Handbook for the Argonne Premium Coal Sample Program

    Energy Technology Data Exchange (ETDEWEB)

    Vorres, K.S.

    1993-10-01

    This Users Handbook for the Argonne Premium Coal Samples provides the recipients of those samples with information that will enhance the value of the samples, to permit greater opportunities to compare their work with that of others, and aid in correlations that can improve the value to all users. It is hoped that this document will foster a spirit of cooperation and collaboration such that the field of basic coal chemistry may be a more efficient and rewarding endeavor for all who participate. The different sections are intended to stand alone. For this reason some of the information may be found in several places. The handbook is also intended to be a dynamic document, constantly subject to change through additions and improvements. Please feel free to write to the editor with your comments and suggestions.

  6. Queensland coal sets new records in 2001

    International Nuclear Information System (INIS)

    Smith, R.; Coffey, D.; Abbott, E.

    2002-01-01

    In 2001 the Queensland coal industry consolidated on record expansion in the export market over the past two years and again, increased its sales to overseas customers. New sales records were set in both the export and domestic markets. Unprecedented international demand for Queensland metallurgical coals coupled with improved prices and a favourable A$-US$ exchange rate created strong market conditions for the Queensland coal export industry, boosting confidence for further expansion and new developments. Australian coal exports in 2001 amounted to 194 Mt and are forecast to reach 275 million tonnes per annum (Mtpa) in 2020. The Queensland coal industry is poised to capture a significant share of this market growth. Queensland's large inventory of identified coal, currently estimated at more than 37 billion tonnes (raw coal m situ), is adequate to sustain the industry for many years and allow new opencut and underground mines to develop according to future market demand. Recent coal exploration successes are expected to add significant tonnage to the inventory (Coxhead, Smith and Coffey, 2002). Most of the coal exported from Queensland is mined in the Bowen Basin of central Queensland and additional tonnage of Walloon coal is exported by mines in the Moreton Basin and Surat Basin in south-east Queensland. The Walloon Coal Measures and its equivalents contain large resources of undeveloped opencut, high volatile, clean-burning thermal coal. The environmental advantages in the utilisation of these coals are now recognised and strong growth in production is expected in the near future for supply to both the domestic and export markets. Establishment of new rail transport and civil infrastructure will however, be required to support the development of large scale mining operations in this region

  7. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  8. Enhancing the safety and efficiency of the driving gear of coal mining machinery by using water as a hydraulic fluid and enhancing the reliability of scraper-chain conveyors; Erhoehung der Sicherheit und Leistungsfaehigkeit der Antriebstechnik von Arbeitsmaschinen durch Verwendung von Wasserhydraulik sowie Erhoehung der Zuverlaessigkeit der Kettenkratzerfoerderer

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, J.; Boeing, R.; Graetz, A.; Loehning, H.D.; Plum, D.

    1997-12-31

    The objective pursued is to increasingly use water or high water-content fluids as a substitute for other hydraulic fluids in driving gear of mining machinery. The state of the art of the technology is represented only by individual solutions achieved for given purposes which are not suitable for other applications, let alone for coal mining machinery. The research project was to identify hydraulic components that will permit the use of water or watery substances as a hydraulic fluid in mining applications. The components have been found and further developed, and finally systems with linear and rotatory drives have been tested at various test facilities in order to derive information on the system behaviour of pressurized fluids and machinery components and their suitability for coal mining applications. (orig./CB) [Deutsch] In der untertaegigen Antriebstechnik sollen vermehrt Wasser und wasserhaltige Fluessigkeiten eingesetzt werden. Der Stand der Technik fuehrt bei der Anwendung von Wasserhydraulik immer wieder nur Einzelloesungen auf, die nicht allgemein und insbesondere im Steinkohlenbergbau angewendet werden koennen. Im Rahmen dieses Forschungsvorhabens wurden fuer die Wasserhydraulik geeignete Komponenten untersucht, weiterentwickelt und schliesslich Systeme mit linearen und rotatorischen Antrieben auf verschiedenen Pruefstaenden erprobt, um Aussagen ueber das Systemverhalten von Druckfluessigkeit und Bauelementen fuer Bergbauanwendungen zu bekommen. (orig./MSK)

  9. Organization, activities, and issues with particular emphasis on coal

    International Nuclear Information System (INIS)

    Cole, D.R.

    1992-01-01

    The paper discusses Colorado's coal industry; the Colorado Mining Association; lobbying and legislative actions; industry networking, information, and communications; coal issues and activities; and Colorado issues and activities. Some of the latter include: land reclamation of mined lands; oil and gas drilling and coal mine conflicts; wild and scenic river designations; general permitting of coal mining discharges; and coal mine land reclamation awards

  10. Impact of petroleum industry horizontal divestiture on the coal market

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, D.L.; Dymond, L.H.; Marris, R.L.

    1979-06-22

    Volume 2 contains appendices as follows: coal supply curves, coal supply model modifications, coal mine financing data, legislative proposals for horizontal divestiture, overview of oil companies in coal industry (including their coal reserves) and the major sources of data and bibliography. (LTN)

  11. 30 CFR 206.260 - Allocation of washed coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.260 Section 206... MANAGEMENT PRODUCT VALUATION Federal Coal § 206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the net...

  12. 30 CFR 206.459 - Allocation of washed coal.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.459 Section 206... MANAGEMENT PRODUCT VALUATION Indian Coal § 206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the net...

  13. Analysis of green liquor influence on coal steam gasification process

    Directory of Open Access Journals (Sweden)

    Karczewski Mateusz

    2017-01-01

    Full Text Available Gasification is a clean and efficient technology with a long history dating up to the 19th century. The possible application of this process ranges from gas production and chemical synthesis to the energy sector and therefore this technology holds noticeable potential for future applications. In order to advance it, a new efficient approaches for this complex process are necessary. Among possible methods, a process enhancing additives, such as alkali and alkaline earth metals seems to be a promising way of achieving such a goal, but in practice might turn to be a wasteful approach for metal economy, especially in large scale production. This paper shows alkali abundant waste material that are green liquor dregs as a viable substitute. Green liquor dregs is a waste material known for its low potential as a fuel, when used separately, due to its low organic content, but its high ash content that is also abundant in alkali and alkaline earth elements seems to make it a suitable candidate for application in coal gasification processes. The aim of this work is an evaluation of the suitability of green liquor waste to work as a potential process enhancing additive for coal steam gasification process. During the experiment, three blends of hard coal and green liquor dregs were selected, with consideration for low corrosive potential and possibly high catalytic activity. The mixtures were gasified in steam under four different temperatures. Their energies syngas yield, coal conversion degree and energies of activation were calculated with use of Random Pore Model (RPM and Grain Model (GM which allowed for their comparison.

  14. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    International Nuclear Information System (INIS)

    NONE

    2000-01-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over$5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal-abundant, secure, and economical-can continue in its

  15. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2001-09-30

    As of September 28, 2001, all the major project tasks have been completed. A presentation was given to the North Dakota State Penitentiary (NDSP) and the North Dakota Division of Community Services (DCS). In general, the feasibility study has resulted in the following conclusions: (1) Municipal wood resources are sufficient to support cofiring at the NDSP. (2) Steps have been taken to address all potential fuel-handling issues with the feed system design, and the design is cost-effective. (3) Fireside issues of cofiring municipal wood with coal are not of significant concern. In general, the addition of wood will improve the baseline performance of lignite coal. (4) The energy production strategy must include cogeneration using steam turbines. (5) Environmental permitting issues are small and do not affect economics. (6) The base-case economic scenario provides for a 15-year payback of a 20-year municipal bond and does not include the broader community benefits that can be realized.

  16. Coal and American energy policy

    International Nuclear Information System (INIS)

    Lawson, R.L.

    1991-01-01

    This paper reports on the role of coal in establishing America's energy security. There is no mismatch of subject and keynote, for in the truest sense the author's topic is nothing less than the health and safety of the United States. Both will begin with the way we handle things in the coal mines at the working face. If energy policy were a piece of new equipment, the National Energy Strategy would be the equivalent of specifications---what the new hardware should be capable of doing. The National Energy Security Act of 1991 is the blueprint for the equipment. The hardware still must be assembled, tested and perfected. Undertaken between oil-related U.S. military deployments to stabilize the oil-exporting regions of the Persian Gulf that dominate world markets, the strategy has two objectives. There are multiple threats to America's energy security

  17. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  18. MOLECULAR ACCESSIBILITY IN OXIDIZED AND DRIED COALS

    Energy Technology Data Exchange (ETDEWEB)

    Lowell D. Kispert

    1999-07-01

    Changes in physical and chemical structure of the micropore system in eight solvent swelled Argonne Premium Coal Sample (APCS) coals upon weathering were studied using the EPR spin probe method. Spin probes, which are allowed to diffuse into the coal structure during swelling, are trapped when the swelling solvent is removed. Excess spin probes are removed from the coal surface and larger pores so that only the presence of spin probes trapped in pores which closely approximate the size of the spin probe are detected. Detailed explanations and illustrations of the experimental procedure used are given. Careful examination of the weathering process on coal as a function of rank was accomplished using the EPR spin probe method. The retention of spin probes in eight APCS coals provided valuable insight into both the loss of water and the oxidation which occur during the weathering process. The results could be explained in terms of the autoxidation process observed in other polymeric systems. It was shown that initial oxidation of coal can result in increased cross-linking in the coal structure. As the oxidation process continued, both the covalent and hydrogen bonded character of the coal were significantly altered. The retention character of some coals during oxidation was shown to change by as much as three orders of magnitude. Experiments were performed to study the effects of short term oxidation and dehydration on coal structure by exposing the coal samples to argon or oxygen for time periods up to five minutes. The results indicate that the structure of coal is extremely sensitive to environmental changes and exhibits significant changes in as little as 30 seconds. Exposure of Illinois No.6 coal to argon or oxygen for 30 seconds caused a decrease in the retention of polar spin probes by as much as an order of magnitude. The studies presented here suggest that the structure of coal is dynamic in nature, and has an intimate relationship with the nature of its

  19. Sumpor u ugljenu (Sulphur in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2004-12-01

    Full Text Available The presence of sulphur in coal possesses important environmetal problems in its usage. The sulphur dioxide (S02 emissions produced during coal combustion account for a significant proportion of the total global output of anthropogenic SO2. The extent of sulphur separation depends on several variables such as the form of sulphur in coal, intimacy of contact between minerals and the products of devolatilization. The total sulphur in coal varies in the range of 0.2 - 11 wt %, although in most cases it is beetwen 1 and 3 wt %. Sulphur occurs in a variety of both inorganic and organic forms. Inorganic sulphur is found mainly as iron pyrite, marcasite, pyrrhotite, sphalerite, galena, chalcopirite and as sulphates (rarely exceeds w = 0,1 %. Organic sulphur is found in aromatic rings and aliphatic functionalities usually as mercaptans, aliphatic and aryl sulfides, disulfides and thiophenes. Organic and pyritic sulphur quantities depend on coal rank. Higher rank coals tend to have a high proportion of labile sulphur. All the organic sulphur is bivalent and it is spread throughout the organic coal matrix. Sulphur occurs in all the macerals and most minerals. Vitrinite contains the major part of organic sulphur and metals. Elemental sulphur is produced during coal weathering. The depolymerization methods as pyrolysis and hydrogenation are very drastic methods wich change the structure of the coal and the sulphur groups. In the case of pyrolysis, high levels of desulphurization, in chars and additional production of liquid hydrocarbon can be achieved. Thiophenes and sulphides were the major sulphur components of tars from coal pyrolysis. Hyrdogen sulphide and the lower mercaptans and sulphides were found in the volatile matters. Hydrogen sulphide and thiophenes are practically the only sulphur products of coal hydrogenation. H2S is produced in char hydrodesulphurization. A number of options are available for reducing sulphur emissions including the

  20. HINDERED DIFFUSION OF COAL LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Theodore T. Tsotsis; Muhammad Sahimi; Ian A. Webster

    1996-01-01

    It was the purpose of the project described here to carry out careful and detailed investigations of petroleum and coal asphaltene transport through model porous systems under a broad range of temperature conditions. The experimental studies were to be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms and a more accurate concept of the asphaltene structure. The following discussion describes some of our accomplishments.