WorldWideScience

Sample records for enhanced biological properties

  1. Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources

    Directory of Open Access Journals (Sweden)

    Csaba Hegedűs

    2016-01-01

    Full Text Available The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS. The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants.

  2. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2015-12-01

    rebaudioside or rubusoside treatment. As Ru concentration increases, the solubility of quercetin in water increases. The solubilization of quercetin in Ru solution did not reduce its biological functions such as the DPPH radical-scavenging and mushroom tyrosinase activity; also, quercetin-rubusoside increased the inhibition activity against the 3CLpro of SARS and human intestinal maltase, when compared with the activity of quercetin in DMSO. Thus, rubusoside and rebaudioside are promising compounds which enhance the solubility of poorly water soluble compounds.

  3. New sol-gel bioactive glass and titania composites with enhanced physico-chemical and biological properties.

    Science.gov (United States)

    Pawlik, Justyna; Widziołek, Magdalena; Cholewa-Kowalska, Katarzyna; Łączka, Maria; Osyczka, Anna Maria

    2014-07-01

    We developed TiO2 matrix composites modified by sol-gel bioactive glasses (SBG) of either high CaO content (A2) or high SiO2 content (S2). The latter were mixed with titanium dioxide (TiO2) at 75:25, 50:50, and 25:75 weight ratios and sintered at 1250°C for 2 h. We examined the effects of various types (A2 or S2) and compositional TiO2 :SBG ratios on the mechanical properties of resulting composites, their bioactivity and human bone marrow mesenchymal stem cells (MSC) response. The chemistry of SBGs influenced the phase composition, mechanical and biological properties of the composites. Rutile and titanite prevailed in A2-TiO2 composites, and rutile and crystobalite in S2-TiO2 composites. Compressive strength increased significantly for 25A2-TiO2 composites (140 MPa) compared to matrix TiO2 (58 MPa). Composites containing 50-75 wt % of either SBG displayed bioactive properties as determined by simulated body fluid test. Compared to TiO2, human bone marrow stromal cell (BMSC) viability was enhanced on the composites containing 25 wt % of either SBG, whereas the composites modified by 25 wt % of S2 enhanced alkaline phosphatase activity and mineralization in cultures treated with osteogenic inducers-dexamethasone (Dex) or bone morphogenetic protein. Increasing amounts of A2 in TiO2 matrix decreased cell viability but increased collagen deposition and mineralized matrix production by BMSC. Considering the physico-chemical and biological properties of the presented composites, the modification of TiO2 with SBG may prove useful strategy in several bone tissue related regeneration strategies. © 2013 Wiley Periodicals, Inc.

  4. Biological and Pharmacological properties

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Biological and Pharmacological properties. NOEA inhibits Ceramidase. Anandamide inhibits gap junction conductance and reduces sperm fertilizing capacity. Endogenous ligands for Cannabinoid receptors (anandamide and NPEA). Antibacterial and antiviral ...

  5. Enhancing biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Danso, S.K.A.; Eskew, D.L. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))

    1984-06-01

    Several co-ordinated research programmes (CRPs) conducted by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division have concentrated on finding the most efficient way of applying nitrogen fertilizers to various crops, using nitrogen-15 (/sup 15/N) as a tracer. The findings of these studies have been adopted in many countries around the world, resulting in savings of nitrogen fertilizers worth many millions of dollars every year. More recently, the Section's CRPs have focused on enhancing the natural process of biological di-nitrogen fixation. The /sup 15/N isotope technique has proven to be very valuable in studies of the legume-Rhizobium symbiosis, allowing many more experiments than before to be done and yielding much new practical information. The Soils Section is now working to extend the use of the technique to other nitrogen-fixing symbioses.

  6. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties.

    Science.gov (United States)

    Han, Cheol-Min; Lee, Eun-Jung; Kim, Hyoun-Ee; Koh, Young-Hag; Kim, Keung N; Ha, Yoon; Kuh, Sung-Uk

    2010-05-01

    The surface of polyetheretherketone (PEEK) was coated with a pure titanium (Ti) layer using an electron beam (e-beam) deposition method in order to enhance its biocompatibility and adhesion to bone tissue. The e-beam deposition method was a low-temperature coating process that formed a dense, uniform and well crystallized Ti layer without deteriorating the characteristics of the PEEK implant. The Ti coating layer strongly adhered to the substrate and remarkably enhanced its wettability. The Ti-coated samples were evaluated in terms of their in vitro cellular behaviors and in vivo osteointegration, and the results were compared to a pure PEEK substrate. The level of proliferation of the cells (MC3T3-E1) was measured using a methoxyphenyl tetrazolium salt (MTS) assay and more than doubled after the Ti coating. The differentiation level of cells was measured using the alkaline phosphatase (ALP) assay and also doubled. Furthermore, the in vivo animal tests showed that the Ti-coated PEEK implants had a much higher bone-in-contact (BIC) ratio than the pure PEEK implants. These in vitro and in vivo results suggested that the e-beam deposited Ti coating significantly improved the potential of PEEK for hard tissue applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean. Species...

  8. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration.

    Science.gov (United States)

    Wu, Geng; Deng, Xuefeng; Song, Jinqi; Chen, Feiqiang

    2018-01-01

    The development of tailored nanofibrous scaffolds for tendon and ligament tissue engineering has been a goal of clinical research for current researchers. Here, we establish a formation of novel nanofibrous matrix with significant mechanical and biological properties by electro-spinning process. The fine fibrous morphology of the nanostructured hydroxyapatite (HAp) dispersed in the polycaprolactone/chitosan (HAp-PCL/CS) nanofibrous matrix was exhibited by microscopic (SEM and TEM) techniques. The favorable mechanical properties (load and modulus) were achieved. The load and modulus of the HAp-PCL/CS composite fibers was 250.1N and 215.5MPa, which is very similar to that of standard value of the human tendon and ligament tissues. The cellular responses and biocompatibility of HAp-PCL/CS nanofibrous scaffolds were investigated with human osteoblast (HOS) cells for tendon regeneration and examined the primary osteoblast mechanism by in vitro method. The morphological (FE-SEM and fluorescence) microscopic images clearly exhibited that HOS cells are well attached and flatted on the nanofibrous composites. The HAp dispersed PCL/CS nanofibrous scaffolds promoted higher adhesion and proliferation of HOS cells comparable to the nanofibrous scaffolds without HAp nanoparticles. The physic-chemical and biological properties of the synthesized nanofibrous scaffold were very close to that of normal ligament and tendon in human body. Over all, these studied results confirmed that the prepared nanofibrous scaffolds will be effective biomaterial of tendon ligament regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.

    Science.gov (United States)

    Ke, Dongxu; Bose, Susmita

    2017-09-01

    β-tricalcium phosphate (β-TCP) is a widely used biocompatible ceramic in orthopedic and dental applications. However, its osteoinductivity and mechanical properties still require improvements. In this study, porous β-TCP and MgO/ZnO-TCP scaffolds were prepared by the thermal decomposition of sucrose. Crack-free cylindrical scaffolds could only be prepared with the addition of MgO and ZnO due to their stabilization effects. Porous MgO/ZnO-TCP scaffolds with a density of 61.39±0.66%, an estimated pore size of 200μm and a compressive strength of 24.96±3.07MPa were prepared by using 25wt% sucrose after conventional sintering at 1250°C. Microwave sintering further increased the compressive strength to 37.94±6.70MPa, but it decreased the open interconnected porosity to 8.74±1.38%. In addition, the incorporation of polycaprolactone (PCL) increased 22.36±3.22% of toughness while maintaining its compressive strength at 25.45±2.21MPa. Human osteoblast cell line was seeded on scaffolds to evaluate the effects of MgO/ZnO and PCL on the biological property of β-TCP in vitro. Both MgO/ZnO and PCL improved osteoinductivity of β-TCP. PCL also decreased osteoblastic apoptosis due to its particular surface chemistry. This novel porous MgO/ZnO-TCP scaffold with PCL shows improved mechanical and biological properties, which has great potential in bone tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.

  10. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhen [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Renfeng [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Zhuo, Xianglong, E-mail: doctorzhuo@139.com [Department of Spinal Surgery, Liuzhou Worker' s Hospital, Liuzhou 545001 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Huang, Yongcan [Orthopedics Research Center, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Ma, Lili; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Liang, Yanqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde; Bao, Huijing; Li, Xue; Huo, Qianyu; Liu, Zhili [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Yang, Xianjin, E-mail: xjyang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-02-01

    Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification. - Highlights: • Ag- and Sr-substituted HA coating is deposited on titanium by hydrothermal method. • This coating shows a remarkable antibacterial activity and good biocompatibility. • The coating process is simple and suitable for large-scale fabrication. • The possible mechanism of Sr{sup 2+} is proposed.

  11. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  12. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  13. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  14. Structure, reactivity, and biological properties of hidantoines

    International Nuclear Information System (INIS)

    Oliveira, Silvania Maria de; Silva, Joao Bosco Paraiso da; Hernandes, Marcelo Zaldini; Lima, Maria do Carmo Alves de; Galdino, Suely Lins; Pitta, Ivan da Rocha

    2008-01-01

    Hydantoin (imidazolidine-2,4-dione) is a 2,4-diketotetrahydroimidazole discovered by Baeyer in 1861. Thiohydantoins and derivatives were prepared, having chemical properties similar to the corresponding carbonyl compounds. Some biological activities (antimicrobial, anticonvulsant, schistosomicidal) are attributed to the chemical reactivity and consequent affinity of hydantoinic rings towards biomacromolecules. Therefore, knowledge about the chemistry of hydantoins has increased enormously. In this review, we present important aspects such as reactivity of hydantoins, acidity of hydantoins, spectroscopy and crystallographic properties, and biological activities of hydantoin and its derivatives. (author)

  15. Biological and electrical properties of biosynthesized silver

    Indian Academy of Sciences (India)

    Biological and electrical properties of biosynthesized silver nanoparticles. Madhulika ... Abstract. In this work, silver nanoparticles (AgNPs) were synthesized biochemically at room temperature using aqueous extract of rhizome of Rheum australe plant. ... The obtained results may have potential applications as sensors.

  16. Enhanced Biological Phosphorus Removal : Metabolic Insights and Salinity Effects

    NARCIS (Netherlands)

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison

  17. PLANT ISOFLAVONES: BIOSYNHTESIS, DETECTION AND BIOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. D. Naumenko

    2013-10-01

    Full Text Available Biological properties, chemical structures and biosynthesis pathways of plant isoflavones, especially soybean isoflavones (daidzein, genistein and glycitein are reviewed. The structures of isoflavones, and their aglicone and glucosides (glycosides forms as well as isoflavone biosynthesis pathways are described. General information about the advanced methods for the detection of isoflavones and their conjugates are considered. The importance of the profiling of isoflavones, flavonoids and their conjugates by means of analytical tools and methods to dissolve some questions in biology and medicine is discussed. The review provides data on the major isoflavone content in some vegetable crops and in the tissues of different soybean varieties. Health benefits and treatment or preventive properties of isoflavones for cancer, cardiovascular, endocrine diseases and metabolic disorders are highlighted. The mechanisms that may explain their positive biological effects are considered. The information on the application of advanced technologies to create new plant forms producing isoflavonoids with a predicted level of isoflavones, which is the most favorable for the treatment is given. The possibilities to use the metabolic engineering for the increasing of accumulation and synthesis of isoflavones at the non-legume crops such as tobacco, Arabidopsis and maize are considered. The examples how the plant tissues, which are not naturally produced of the isoflavones, can obtain potential for the synthesis of biologically active compounds via inducing of the activity of the introduced enzyme isoflavon synthase, are given. Specific biochemical pathways for increasing the synthesis of isoflavone genistein in Arabidopsis thaliana tissues are discussed. It is concluded that plant genetic engineering which is focused on modification of the secondary metabolites contain in plant tissues, enables to create the new crop varieties with improved agronomic properties and

  18. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal.

    Science.gov (United States)

    Kim, Jeong Myeong; Lee, Hyo Jung; Lee, Dae Sung; Jeon, Che Ok

    2013-03-01

    To characterize the denitrifying phosphorus (P) uptake properties of "Candidatus Accumulibacter phosphatis," a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of "Ca. Accumulibacter" and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized "Ca. Accumulibacter" subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and "Candidatus Competibacter phosphatis" [from 16.4% to 20.0%]), while the overall "Ca. Accumulibacter" abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the "Ca. Accumulibacter" clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all "Ca. Accumulibacter" clades successfully took up phosphorus in the presence of nitrate. However, the "Ca. Accumulibacter" clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by "Ca. Accumulibacter" clades occurred when nitrite was added. These results suggest that the "Ca. Accumulibacter" cells lack nitrate reduction capabilities and that P uptake by "Ca. Accumulibacter" is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and "Ca. Competibacter."

  19. N-acetylcolchinol O-methyl ether and thiocolchicine, potent analogs of colchicine modified in the C ring. Evaluation of the mechanistic basis for their enhanced biological properties

    International Nuclear Information System (INIS)

    Kang, G.J.; Getahun, Z.; Muzaffar, A.; Brossi, A.; Hamel, E.

    1990-01-01

    Two colchicine analogs with modifications only in the C ring are better inhibitors than colchicine of cell growth and tubulin polymerization. Radiolabeled thiocolchicine (with a thiomethyl instead of a methoxy group at position C-10) and N-acetylcolchinol O-methyl ether (NCME) (with a methoxy-substituted benzenoid instead of the methoxy-substituted tropone C ring) were prepared for comparison with colchicine. Scatchard analysis indicated a single binding site with KD values of 1.0-2.3 microM. Thiocolchicine was bound 2-4 times as rapidly as colchicine, but the activation energies of the reactions were nearly identical (18 kcal/mol for colchicine, 20 kcal/mol for thiocolchicine). NCME bound to tubulin in a biphasic reaction. The faster phase was 60 times as fast as colchicine binding at 37 degrees C, and a substantial reaction occurred at 0 degrees C. The rate of the faster phase of NCME binding changed relatively little as a function of temperature, so the activation energy was only 7.0 kcal/mol. Dissociation reactions were also evaluated, and at 37 degrees C the half-lives of the tubulin-drug complexes were 11 min for NCME, 24 h for thiocolchicine, and 27 h for colchicine. Relative dissociation rates as a function of temperature varied little among the drug complexes. Activation energies for the dissociation reactions were 30 kcal/mol for thiocolchicine, 27 kcal/mol for NCME, and 24 kcal/mol for colchicine. Comparison of the activation energies of association and dissociation yielded free energies for the binding reactions of -20 kcal/mol for NCME, -10 kcal/mol for thiocolchicine, and -6 kcal/mol for colchicine. The greater effectiveness of NCME and thiocolchicine as compared with colchicine in biological assays probably derives from their more rapid binding to tubulin and the lower free energies of their binding reactions

  20. Arbutus unedo L.: chemical and biological properties.

    Science.gov (United States)

    Miguel, Maria G; Faleiro, Maria L; Guerreiro, Adriana C; Antunes, Maria D

    2014-09-30

    Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.

  1. Arbutus unedo L.: Chemical and Biological Properties

    Directory of Open Access Journals (Sweden)

    Maria G. Miguel

    2014-09-01

    Full Text Available Arbutus unedo L. (strawberry tree has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies, jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.

  2. Enhanced Biological Phosphorus Removal: Metabolic Insights and Salinity Effects

    OpenAIRE

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison to physical and chemical phosphorus removal processes, the biological process has several advantages such as high removal efficiency, low cost, and no chemical sludge production, but disturbances an...

  3. Mechanical properties of JPDR biological shield concrete

    International Nuclear Information System (INIS)

    Idei, Yoshio; Kamata, Hiroshi; Akutsu, Youichi; Onizawa, Kunio; Nakajima, Nobuya; Sukegawa, Takenori; Kakizaki, Masayoshi.

    1990-11-01

    Plant life of nuclear power plant will be determined by the aging degradation of main components and structures because of the difficulty and the cost of the replacement. These components are the reactor pressure vessel, concrete structures and cables. Authors have performed the investigation of JPDR biological shield which was the succeeded in first generating electricity in Japan and is now being decommissioned in JAERI. The test core samples were bored from the shield concrete and tested to obtain the mechanical properties. Test results are summarized as below, (1) Peak value of fast neutron dose was estimated as 1 x 10 18 n/cm 2 which is equivalent to the dose at the end of life for commercial power reactor. (2) Averaged compressive strength of all specimens had been increased about 20 % compared with initial design strength. (3) It was identified that the compressive strength had a little trend to increase with the increase of neutron dose within the dose range obtained in this study. (4) Tensile strength, Elastic modulus and Poisson's ratio showed little effect of neutron dose. (5) It was suggested that the inside and the mid-section liners were effective to keep the water in concrete and to avoid the reduction in strength. (author)

  4. Chapter 5:Biological Properties of Wood

    Science.gov (United States)

    Rebecca E. Ibach

    2013-01-01

    There are numerous biological degradations that wood is exposed to in various environments. Biological damage occurs when a log, sawn product, or final product is not stored, handled, or designed properly. Biological organisms such as bacteria, mold, stain, decay fungi, insects, and marine borers depend heavily on temperature and moisture conditions to grow. Figure 5.1...

  5. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  6. Systems biology: properties of reconstructed networks

    National Research Council Canada - National Science Library

    Palsson, Bernhard

    2006-01-01

    ... between the mathematical ideas and biological processes are made clear, the book reflects the irreversible trend of increasing mathematical content in biology education. Therefore to assist both teacher and student, Palsson provides problem sets, projects, and PowerPoint slides in an associated web site and keeps the presentation in the book concrete with illustrat...

  7. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  8. Prospective Teachers' Views about Video-Enhanced General Biology Instruction

    Science.gov (United States)

    Çetin, Gülcan

    2014-01-01

    The aim of the study is to determine the views of the prospective physics and chemistry teachers about the video-enhanced General Biology instruction. The participants included 19 second-year prospective teachers (10 in Physics and 9 in Chemistry Education) at Necatibey Faculty of Education, Balikesir University, Turkey in the 2011-2012 academic…

  9. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  10. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    Science.gov (United States)

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  11. AIE Polymers: Synthesis, Properties, and Biological Applications.

    Science.gov (United States)

    Zhan, Ruoyu; Pan, Yutong; Manghnani, Purnima Naresh; Liu, Bin

    2017-05-01

    Aggregation-caused quenching (ACQ) is a general phenomenon that is faced by traditional fluorescent polymers. Aggregation-induced emission (AIE) is exactly opposite to ACQ. AIE molecules are almost nonemissive in their molecularly dissolved state, but they can be induced to show high fluorescence in the aggregated or solid state. Incorporation of AIE phenomenon into polymer design has yielded various polymers with AIE characteristics. In this review, the recent progress of AIE polymers for biological applications is summarized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2013-01-01

    Full Text Available Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite.

  13. Thymomodulin: biological properties and clinical applications.

    Science.gov (United States)

    Kouttab, N M; Prada, M; Cazzola, P

    1989-01-01

    Thymomodulin (Ellem Industria Farmaceutica s.p.a., Milan, Italy) is a calf thymus acid lysate derivative, composed of several peptides with a molecular weight range of 1-10 kD. Thymomodulin did not exhibit any mutagenic effect. Furthermore, thymomodulin used in animal studies showed no toxicity even when used at high concentrations. Of major significance are the observations in murine and human systems that thymomodulin remains active when administered orally. In vitro and in vivo administered thymomodulin was able to induce the maturation of T-lymphocytes. Additionally, studies in vitro showed that this thymic derivative can enhance the functions of mature T-lymphocytes with cascading effects on B-cell and macrophage functions. Extensive human clinical trials with thymomodulin showed that this agent can improve the clinical symptoms observed with various disease processes, including infections, allergies and malignancies, and can improve immunological functions during ageing.

  14. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase.......Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets...

  15. Nanocrystalline permanent magnets with enhanced properties

    International Nuclear Information System (INIS)

    Leonowicz, M.

    2002-01-01

    Parameters of permanent magnets result from the combination of intrinsic properties such as saturation magnetization, magnetic exchange, and magnetocrystalline energy, as well as microstructural parameters such as phase structure, grain size, and orientation. Reduction of grain size into nanocrystalline regime (∼ 50 nm) leads to the enhanced remanence which derives from ferromagnetic exchange coupling between highly refined grains. In this study the fundamental phenomena, quantities, and structure parameters, which define nanophase permanent magnets are presented and discussed. The theoretical considerations are confronted with experimental data for nanocrystalline Sm-Fe-N type permanent magnets. (author)

  16. Biological properties of new viologen-phosphorus dendrimers.

    Science.gov (United States)

    Ciepluch, Karol; Katir, Nadia; El Kadib, Abdelkrim; Felczak, Aleksandra; Zawadzka, Katarzyna; Weber, Monika; Klajnert, Barbara; Lisowska, Katarzyna; Caminade, Anne-Marie; Bousmina, Mostapha; Bryszewska, Maria; Majoral, Jean Pierre

    2012-03-05

    Some biological properties of eight dendrimers incorporating both phosphorus linkages and viologen units within their cascade structure or at the periphery were investigated for the first time. In particular cytotoxicity, hemotoxicity, and antimicrobial and antifungal activity of these new macromolecules were examined. Even if for example all these species exhibited good antimicrobial properties, it was demonstrated that their behavior strongly depends on several parameters as their size and molecular weight, the number of viologen units and the nature of the terminal groups.

  17. Standards, Data Exchange and Intellectual Property Rights in Systems Biology

    DEFF Research Database (Denmark)

    van Zimmeren, Esther; Rutz, Berthold; Minssen, Timo

    2016-01-01

    ” of scientists. In 2015, Biotechnology Journal published a report from an expert meeting on “Synthetic Biology & Intellectual Property Rights” organized by the Danish Agency for Science, Technology and Innovation sponsored by the European Research Area Network (ERA-Net) in Synthetic Biology (ERASynBio), in which...... we provided a number of recommendations for a variety of stakeholders. The current article offers some deeper reflections about the interface between IPRs, standards and data exchange in Systems Biology resulting from an Expert Meeting funded by another ERA-Net, ERASysAPP. The meeting brought...... together experts and stakeholders (e.g. scientists, company representatives, officials from public funding organizations) in systems biology (SysBio) from different countries.  Despite the different profiles of the stakeholders at the meeting and the variety of interests, many concerns and opinions were...

  18. Some biological properties of human chorionic follicle stimulating hormone

    International Nuclear Information System (INIS)

    Tojo, Shimpei; Ashitaka, Yoshihiko; Maruo, Takeshi; Nishimoto, Hiroyuki

    1975-01-01

    The biological properties of human chorionic FSH (hCFSH) for rat ovaries were investigated. Highly purified hCFSH had similar response to the ovarian augmentation test as bovine FSH and significantly enhanced 3 H-thymidine uptake by granulosa cells and theca cells in the ovary of hypophysectomized rat. In contrast, highly purified hCG little responded to the ovarian augmentation test and had no effect on 3 H-thymidine uptake by the ovary. These results indicate that hCFSH may promote the follicular growth of ovary resulting from granulosa cell proliferation and its enlargement. In addition, freshly harvested porcine granulosa cells were employed in an in vitro system to investigate specific binding of hCFSH to ovarian receptor. Radioiodinated hCFSH ( 125 I-hCFSH) and hCG ( 125 I-hCG) were respectively incubated with cell suspensions. Binding of these hormone preparations was proportional to the cell number and increased with the time of incubation through 120 minutes. The binding ability of 125 I-hCFSH to the cells was greater than that of 125 I-hCG. Increasing concentrations of unlabeled hCFSH in the incubation mixture progressively inhibited the uptake of 125 I-hCFSH by granulosa cells. Unlabeled hCG was not able to compete with 125 I-hCFSH binding. The similar phenomenon to inhibit the binding of 125 I-hCG to the cells was also recognized in the presence of unlabeled hCG. These findings suggest that granulosa cell has at least two different types of receptor sites: one for hCFSH and the other for hCG. (auth.)

  19. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Directory of Open Access Journals (Sweden)

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  20. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  1. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  2. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Directory of Open Access Journals (Sweden)

    Daniel L Cook

    Full Text Available As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB, a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  3. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Science.gov (United States)

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. © 2011 Cook et al.

  4. Milk protein tailoring to improve functional and biological properties

    Directory of Open Access Journals (Sweden)

    JEAN-MARC CHOBERT

    2012-01-01

    Full Text Available Proteins are involved in every aspects of life: structure, motion, catalysis, recognition and regulation. Today's highly sophisticated science of the modifications of proteins has ancient roots. The tailoring of proteins for food and medical uses precedes the beginning of what is called biochemistry. Chemical modification of proteins was pursued early in the twentieth century as an analytical procedure for side-chain amino acids. Later, methods were developed for specific inactivation of biologically active proteins and titration of their essential groups. Enzymatic modifications were mainly developed in the seventies when many more enzymes became economically available. Protein engineering has become a valuable tool for creating or improving proteins for practical use and has provided new insights into protein structure and function. The actual and potential use of milk proteins as food ingredients has been a popular topic for research over the past 40 years. With today's sophisticated analytical, biochemical and biological research tools, the presence of compounds with biological activity has been demonstrated. Improvements in separation techniques and enzyme technology have enabled efficient and economic isolation and modification of milk proteins, which has made possible their use as functional foods, dietary supplements, nutraceuticals and medical foods. In this review, some chemical and enzymatic modifications of milk proteins are described, with particular focus on their functional and biological properties.

  5. Biological fabrication of cellulose fibers with tailored properties

    Science.gov (United States)

    Natalio, Filipe; Fuchs, Regina; Cohen, Sidney R.; Leitus, Gregory; Fritz-Popovski, Gerhard; Paris, Oskar; Kappl, Michael; Butt, Hans-Jürgen

    2017-09-01

    Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material’s functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.

  6. Effects of mussel shell addition on the chemical and biological properties of a Cambisol.

    Science.gov (United States)

    Paz-Ferreiro, J; Baez-Bernal, D; Castro Insúa, J; García Pomar, M I

    2012-03-01

    The use of a by-product of the fisheries industry (mussel shell) combined with cattle slurry was evaluated as soil amendment, with special attention to the biological component of soil. A wide number of properties related to soil quality were measured: microbial biomass, soil respiration, net N mineralization, dissolved organic carbon, dissolved organic nitrogen, dissolved inorganic nitrogen, dehydrogenase, β-glucosidase, urease and phosphomonoesterase activities. The amendments showed an enhancement of soil biological activity and a decrease of aluminium held in the cation exchange complex. No adverse effects were observed on soil properties. Given that mussel shells are produced in coastal areas as a by-product and have to be managed as a waste and the fertility constraints in the local soils due to their low pH, our research suggest that there is an opportunity for disposing a residue into the soil and improving soil fertility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Manipulation of nanoparticles and biological samples through enhanced optical forces

    Science.gov (United States)

    Wilson, Benjamin

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. We propose and demonstrate large scale nanoparticle assembly using opto-thermal force produced by conventional optical tweezers. This method is shown to allow precise concentration and assembly of particles including carbon-nanotubes, VO2 nanorods, and CdTe quantum dots. Assembled devices were shown to have good contact with patterned electrodes. In addition, we propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 microm down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 microW/microm 2. This approach can be extended to using 2-D photonic crystal nanostructures for full rotation control.

  8. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  9. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  10. [Analysis on property of meridian supramolecules by biological evolution path].

    Science.gov (United States)

    Deng, Kaiwen; Tao, Yeqin; Tang, Wenhan; He, Fuyuan; Liu, Wenlong; Shi, Jilian; Yang, Yantao; Zhou, Yiqun; Chang, Xiaorong

    2017-03-12

    With human placed in the whole nature, by following the biologic evolution path, the property of channel structure for "imprinting template" in meridian and zang-fu was explored with supramolecular chemistry. In the history of biologic evolution, each molecule in "molecule society" gradually developed into various highly-ordered supramolecular bodies based on self-identification, self-assembly, self-organization, self-replicating of"imprinting template", and thereby the original biochemical system was established, and finally evolved into human. In the forming process of supramolecular bodies, the channel structure of"imprinting template" in guest supramolecular bodies would be kept by host supramolecular bodies, and communicate with the outside to exchange materials, energy, information, otherwise life phenomenon could not continue, for which it was the chemical nature of biolo-gical supramolecular bodies for body to develop meridian. Therefore, the human was a gigantic and complicated supramolecules body in biological nature, and possessed the supramolecules "imprinting template" at each stage of evolution, for which the meridians were formed. When meridians converged, acupoints appeared; when acupointsconverged, zang-fu appeared. With the promotion of the blood from heart, according to"imprinting template", the guest supramolecular bodies and host meridian produced qi -analysis, which was the qi -phenomenon of guest in meridian. It presented as zang-fu image of physiology and pathology as well as action regularities of medication and acupuncture tolerance, by which current various meridian viewpoints could be explained and propose the hypothesis of meridian supramolecular bodies. The meridian and its phenomenon was decide by its "imprinting template" of supramolecular bodies and self-reaction regularities, which abided through the living nature. This was the substance for meridian biology.

  11. Enhanced thermophysical properties via PAO superstructure

    Science.gov (United States)

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-01-01

    For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have

  12. Enhanced thermophysical properties via PAO superstructure.

    Science.gov (United States)

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-12-01

    For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have

  13. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.

    Science.gov (United States)

    Monn, Michael A; Kesari, Haneesh

    2017-12-01

    The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  15. Immunological and biological properties of recombinant Lol p 1.

    Science.gov (United States)

    Boutin, Y; Lamontagne, P; Boulanger, J; Brunet, C; Hébert, J

    1997-03-01

    Current forms of allergy diagnosis and therapies are based on the use of natural allergenic extracts. Despite strong evidence that higher therapeutic efficacy may be achieved with purified allergens, the purification of multiple allergic components from extracts is a fastidious and sometimes an impossible task. However, the use of recombinant allergens may be an alternative to overcome this problem. In this study, we compared the immunological properties of recombinant (r) Lol p 1 with those of the natural protein. We cloned directly the gene encoding Lol p 1 from genomic DNA of ryegrass pollen. This gene was subcloned into the expression vector pMAL-c and expressed as fusion protein. Subsequently, rLol p 1 was cleaved from maltose-binding protein using factor Xa. Using binding inhibition and proliferative assays, we assessed the immunological properties of the recombinant allergens. The capacity of rLol p 1 to trigger basophil histamine release and to elicit a skin reaction was also assessed and compared to those of its natural counterpart. We found that the Lol p 1 gene has no introns since we amplified this gene directly from genomic DNA. We demonstrated that the binding sites of anti-Lol p 1 monoclonal antibody, specific human IgG and IgE antibody are well conserved on rLol p 1 as no difference in the binding inhibition profile was observed when using either natural or recombinant protein. At the T-cell level, rLol p 1 elicited a T-cell response in mice comparable to that observed with the natural protein. In addition, we demonstrated that the biological characteristics of rLol p 1 were comparable to those of the natural counterpart, in that rLol p 1 elicited a skin wheal reaction and induced basophil histamine release in grass-allergic patients only. The data indicate that natural Lol p 1 and rLol p 1 shared identical immunological and biological properties.

  16. Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs?

    Science.gov (United States)

    Dalpiaz, Alessandro; Pavan, Barbara; Ferretti, Valeria

    2017-08-01

    Poorly soluble and/or permeable molecules jeopardize the discovery and development of innovative medicines. Pharmaceutical co-crystals, formed by an active pharmaceutical substance (API) and a co-crystal former, can show enhanced dissolution and permeation values compared with those of the parent crystalline pure phases. It is currently assumed that co-crystallization with pharmaceutical excipients does not affect the pharmacological activity of an API or, indeed, might even improve physical properties such as solubility and permeability. However, as we highlight here, the biological behavior of co-crystals can differ drastically with respect to that of their parent physical mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Investigating the Effect of Biological Crusts on Some Biological Properties of Soil (Case Study: Qare Qir Rangelands of Golestan Province

    Directory of Open Access Journals (Sweden)

    J. Kakeh

    2016-09-01

    soils than uncrusted surface soils or BSC sub-surface soils. All Electrical conductivities were lower in surface soils covered with BSCs than sub-surface soils. The values for non-BSC covered soils were far higher than values for soils covered with BSCs. The values of soil biological properties such as microbial populations, soil respiration, microbial biomass carbon and nitrogen were higher at the surface under BSCs, followed by 5-15 cm soils under BSCs. The values for non-BSC covered soils were far lower than values for soils covered with BSCs at 0-5 cm depth but these properties in the uncrusted soils did not differ with BSCs covered surface at 5-15 cm depth. The amount of organic carbon was higher in BSC-covered surface soils at both measured depths, likely due to the ability of BSCs to fix atmospheric carbon. This leads to enhanced BSCs biomass and thus organic carbon especially in the soil surface layer (0-5 cm. An extensive cover of even a thin layer of photosynthetically active organisms can be an important basis for carbon input into the soil. BSCs also produce and secrete extracellular polysaccharides into surrounding soils, increasing the soil carbon and nitrogen pool. In general, there is a positive correlation between C and N fixation by BSCs. Also distribution of soil microbial population is positively correlated with the distribution of organic carbon and nitrogen. Microbial population is reduced following increase at depth, which is proportional to reduce of the concentration of nutrient and suitable conditions such as water content for growing them. Therefore proportionate to Microbial population, the properties such as soil respiration and microbial biomass carbon and nitrogen were reduced following increase at depth, because it did not provide the conditions for living organisms. These conditions were more inappropriate for non-BSC covered soils due to lower water content, organic carbon, total nitrogen and much higher electrical conductivity at both

  18. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties.

    Science.gov (United States)

    Pandiyan, Nithya; Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Mahalingam, Sundrarajan

    2018-01-01

    In this study, a typical green synthesis route has approached for CeO 2 /ZrO 2 core metal oxide nanoparticles using ionic liquid mediated Justicia adhatoda extract. This synthesis method is carried out at simple room temperature condition to obtain the core metal oxide nanoparticles. XRD, SEM and TEM studies employed to study the crystalline and surface morphological properties under nucleation, growth, and aggregation processes. CeO 2 /ZrO 2 core metal oxides display agglomerated nano stick-like structure with 20-45nm size. GC-MS spectroscopy confirms the presence of vasicinone and N,N-Dimethylglycine present in the plant extract, which are capable of converting the corresponding metal ion precursor to CeO 2 /ZrO 2 core metal oxide nanoparticles. In FTIR, the corresponding stretching for Ce-O and Zr-O bands indicated at 498 and 416cm -1 and Raman spectroscopy also supports typical stretching frequencies at 463 and 160cm -1 . Band gap energy of the CeO 2 /ZrO 2 core metal oxide is 3.37eV calculated from UV- DRS spectroscopy. The anti-bacterial studies performed against a set of bacterial strains the result showed that core metal oxide nanoparticles more susceptible to gram-positive (G+) bacteria than gram-negative (G-) bacteria. A unique feature of the antioxidant behaviors core metal oxides reduces the concentration of DPPH radical up to 89%. The CeO 2 /ZrO 2 core metal oxide nanoparticles control the S. marcescent bio-film formation and restrict the quorum sensing. The toxicology behavior of CeO 2 /ZrO 2 core metal oxide NPs is found due to the high oxygen site vacancies, ROS formation, smallest particle size and higher surface area. This type of green synthesis route may efficient and the core metal oxide nanoparticles will possess a good bio-medical agent in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Biological and therapeutic activities, and anticancer properties of curcumin.

    Science.gov (United States)

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  20. Uranium: properties and biological effects after internal contamination

    International Nuclear Information System (INIS)

    Souidi, M.; Tissandie, E.; Racine, R.; Ben Soussan, H.; Rouas, C.; Grignard, E.; Dublineau, I.; Gourmelon, P.; Lestaevel, P.; Gueguen, Y.

    2009-01-01

    Uranium is a radionuclide present in the environment since the origin of the Earth. In addition to natural uranium, recent deposits from industrial or military activities are acknowledged. Uranium's toxicity is due to a combination of its chemical (heavy metal) and radiological properties (emission of ionizing radiations). Acute toxicity induces an important weight loss and signs of renal and cerebral impairment. Alterations of bone growth, modifications of the reproductive system and carcinogenic effects are also often seen. On the contrary, the biological effects of a chronic exposure to low doses are unwell known. However, results from different recent studies suggest that a chronic contamination with low levels of uranium induces subtle but significant levels. Indeed, an internal contamination of rats for several weeks leads to detection of uranium in many cerebral structures, in association with an alteration of short-term memory and an increase of anxiety level. Biological effects of uranium on the metabolisms of xenobiotics, steroid hormones and vitamin D were described in the liver, testis and kidneys. These recent scientific data suggest that uranium could participate to increase of health risks linked to environmental pollution. (authors)

  1. Clustering: An Interactive Technique to Enhance Learning in Biology.

    Science.gov (United States)

    Ambron, Joanna

    1988-01-01

    Explains an interdisciplinary approach to biology and writing which increases students' mastery of vocabulary, scientific concepts, creativity, and expression. Describes modifications of the clustering technique used to summarize lectures, integrate reading and understand textbook material. (RT)

  2. Biological properties of mud extracts derived from various spa resorts.

    Science.gov (United States)

    Spilioti, Eliana; Vargiami, Margarita; Letsiou, Sophia; Gardikis, Konstantinos; Sygouni, Varvara; Koutsoukos, Petros; Chinou, Ioanna; Kassi, Eva; Moutsatsou, Paraskevi

    2017-08-01

    Spa resorts are known for thousands of years for their healing properties and have been empirically used for the treatment of many inflammatory conditions. Mud is one of the most often used natural materials for preventive, healing and cosmetic reasons and although it has been used since the antiquity, little light has been shed on its physical, chemical and biological properties. In this study we examined the effect of mud extracts on the expression of adhesion molecules (CAMs) by endothelial cells as well as their effects on monocyte adhesion to activated endothelial cells. Most of mud extracts inhibited the expression of VCAM-1 by endothelial cells and reduced monocyte adhesion to activated endothelial cells, indicating a potent anti-inflammatory activity. Furthermore, the mud extracts were tested for their antimicrobial activity; however, most of them appeared inactive against S. aureus and S. epidermidis. One of the mud extracts (showing the best stabilization features) increased significantly the expression of genes involved in cell protection, longevity and hydration of human keratinocytes, such as, collagen 6A1, forkhead box O3, sirtuin-1, superoxide dismutase 1 and aquaporin-3. The present study reveals that mud exerts important beneficial effects including anti-inflammatory and anti-aging activity as well as moisturizing effects, implicating important cosmeceutical applications.

  3. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  4. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  5. Variation in biological properties of cauliflower mosaic virus clones.

    Science.gov (United States)

    al-Kaff, N; Covey, S N

    1994-11-01

    Infectious clones were prepared from virion DNA of three cauliflower mosaic virus (CaMV) isolates, 11/3, Xinjiang (XJ), and Aust, to investigate pathogenic variation in virus populations. Of 10 infectious clones obtained for isolate 11/3, four pathotypes were identified, each producing symptoms in turnip that differed from those of the 11/3 wild-type. Virus from two clonal groups of 11/3 was transmissible by aphids whereas that from two others was not. Of the five infectious clones obtained from isolate XJ, two groups were identified, one of which differed symptomatically from the wild-type. Only one infectious clone was obtained from isolate Aust and this had properties similar to the wild-type. Restriction enzyme polymorphisms were found in some clonal groups and these correlated with symptoms. Other groups with different pathogenic properties could not be distinguished apart by restriction site polymorphisms. Further variation was observed in the nucleotide sequences of gene II (coding for aphid transmission factor) from these viruses as compared with other CaMV isolates. In the aphid non-transmissible clones of isolate 11/3, one had a Gly to Arg mutation in gene II similar to that of other non-deleted non-transmissible CaMV isolates. The second had a 322 bp deletion at the site of a small direct repeat similar to that of isolate CM4-184 although occurring in a different position. The gene II deletion of isolate 11/3 produced a frame-shift that separated genes II and III by 60 bp. Most CaMV clones studied remained biologically stable producing similar symptoms during subsequent passages. However, one clone (11/3-7) produced two new biotypes during its first passage suggesting that it was relatively unstable. Our results show that wild-type populations of CaMV contain a range of infectious genome variants with contrasting biological properties and differing stability. We suggest that a variety of significant viral phenotypic changes can occur during each

  6. Enhancing Scientific Communication Through an Undergraduate Biology and Journalism Partnership.

    Science.gov (United States)

    Schwingel, Johanna M

    2018-01-01

    Scientific terminology presents an obstacle to effective communication with nonscientific audiences. To overcome this obstacle, biology majors in a general microbiology elective completed a project involving two different audiences: a scientific audience of their peers and a general, nonscientific audience. First, students presented an overview of a primary research paper and the significance of its findings to a general, nonscientific audience in an elevator-type talk. This was followed by a peer interview with a student in a journalism course, in which the biology students needed to comprehend the article to effectively communicate it to the journalism students, and the journalism students needed to ask questions about an unfamiliar, technical topic. Next, the biology students wrote a summary of their article for a scientific audience. Finally, the students presented a figure from the article to their peers in a scientific, Bio-Minute format. The biology-journalism partnership allowed biology students to develop their ability to communicate scientific information and journalism students their ability to ask appropriate questions and establish a base of knowledge from which to write.

  7. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosic biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy

  8. Can Climate Change Enhance Biology Lessons? A Quasi-Experiment

    Science.gov (United States)

    Monroe, Martha C.; Hall, Stephanie; Li, Christine Jie

    2016-01-01

    Climate change is a highly charged topic that some adults prefer to ignore. If the same holds true for secondary students, teachers could be challenged to teach about climate change. We structured one activity about the biological concepts of carbon cycle and carbon sequestration in two ways: with and without mention of climate change. Results…

  9. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    Science.gov (United States)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  10. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  11. Chemical, mechanical and biological properties of contemporary composite surface sealers.

    Science.gov (United States)

    Anagnostou, Maria; Mountouris, George; Silikas, Nick; Kletsas, Dimitris; Eliades, George

    2015-12-01

    To evaluate the chemical, mechanical, and biological properties of modern composite surface sealers (CSS) having different compositions. The CSS products tested were Biscover LV (BC), Durafinish (DF), G-Coat Plus (GC), and Permaseal (PS). The tests performed were: (A): degree of conversion (DC%) by ATR-FTIR spectroscopy; (B): thickness of O2-inhibition layer by transmission optical microscopy; (C): surface hardness, 10 min after irradiation and following 1 week water storage, employing a Vickers indenter (VHN); (D): color (ΔE*) and gloss changes (ΔGU) after toothbrush abrasion, using L*a*b* colorimetry and glossimetry; (E): accelerated wear (GC,PS only) by an OHSU wear simulator plus 3D profilometric analysis, and (F): cytotoxicity testing of aqueous CSS eluents on human gingival fibroblast cultures employing the methyl-(3)H thymidine DNA labeling method. Statistical analyses included 1-way (A, B, ΔE*, ΔGU) and 2-way (C, F) ANOVAs, plus Tukey post hoc tests. Student's t-test was used to evaluate the results of the accelerated wear test (α=0.05 for all). The rankings of the statistical significant differences were: (A) PS (64.9)>DF,BC,GC (56.1-53.9) DC%; (B) DF,PS (12.3,9.8)>GC,BC (5.2,4.8) μm; (C): GC (37.6)>BC,DF (32.6,31.1)>PS (26.6) VHN (10 min/dry) and BC,DF (29.3,28.7)>GC(26.5)>PS(21.6) VHN (1w/water), with no significant material/storage condition interaction; (D): no differences were found among GC,DF,BC,PS (0.67-1.11) ΔE*, with all values within the visually acceptable range and PS,BC (32.8,29.4)>GC,DF (19.4,12.9) ΔGU; (E): no differences were found between GC and PS in volume loss (0.10,0.11 mm(3)), maximum (113.9,130.5 μm) and mean wear depths (30.3,27.5 μm); (F): at 1% v/v concentration, DF showed toxicity (23% vital cells vs 95-102% for others). However, at 5% v/v concentration DF (0%) and BC (9%) were the most toxic, whereas GC (58%) and PS (56%) showed moderate toxicity. Important chemical, mechanical, and biological properties exist among

  12. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biological properties of nitro-fatty acids in plants.

    Science.gov (United States)

    Mata-Pérez, Capilla; Padilla, María N; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B

    2018-03-27

    Nitro-fatty acids (NO 2 -FAs) are formed from the reaction between nitrogen dioxide (NO 2 ) and mono and polyunsaturated fatty acids. Knowledge concerning NO 2 -FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO 2 -FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO 2 -Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO 2 -Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO 2 -FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Impact of temperature on the biological properties of soil

    Science.gov (United States)

    Borowik, Agata; Wyszkowska, Jadwiga

    2016-01-01

    The aim of the study was to determine the response of soil microorganisms and enzymes to the temperature of soil. The effect of the temperatures: 5, 10, 15, 20, and 25°C on the biological properties of soil was investigated under laboratory conditions. The study was performed using four different soils differing in their granulometric composition. It was found that 15°C was the optimal temperature for the development of microorganisms in soil. Typically, in the soil, the highest activity of dehydrogenases was observed at 10-15°C, catalase and acid phosphatase - at 15°C, alkaline phosphatase at 20°C, urease and β-glucosidase at 25°C. The highest colony development index for heterotrophic bacteria was recorded in soils incubated at 25°C, while for actinomycetes and fungi at 15°C. The incubation temperature of soil only slightly changed the ecophysiological variety of the investigated groups of microorganisms. Therefore, the observed climate changes might have a limited impact on the soil microbiological activity, because of the high ability of microorganisms to adopt. The response of soil microorganisms and enzymes was more dependent on the soil granulometric composition, organic carbon, and total nitrogen than on its temperature.

  15. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghitalab, Fatemeh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Farokhi, Mehdi [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh [Department of Pharmaceutical Nanoechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Omidvar, Ramin [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Sadeghizadeh, Majid, E-mail: sadeghma@modares.ac.ir [Department Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2015-06-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT.

  16. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    International Nuclear Information System (INIS)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Atyabi, Fatemeh; Omidvar, Ramin; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2015-01-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT

  17. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher…

  18. Enhancing the biological nitrogen fixation of leguminous crops ...

    African Journals Online (AJOL)

    Legumes have the ability to establish a symbiotic interaction with soil bacteria, collectively termed as rhizobia. These bacteria can enhance growth and development of associated crops by transferring atmospheric nitrogen into a form that is available for plant growth or by improving nutrient uptake through modulation of ...

  19. A theranostic dental pulp capping agent with improved MRI and CT contrast and biological properties.

    Science.gov (United States)

    Mastrogiacomo, S; Güvener, N; Dou, W; Alghamdi, H S; Camargo, W A; Cremers, J G O; Borm, P J A; Heerschap, A; Oosterwijk, E; Jansen, J A; Walboomers, X F

    2017-10-15

    Different materials have been used for vital dental pulp treatment. Preferably a pulp capping agent should show appropriate biological performance, excellent handling properties, and a good imaging contrast. These features can be delivered into a single material through the combination of therapeutic and diagnostic agents (i.e. theranostic). Calcium phosphate based composites (CPCs) are potentially ideal candidate for pulp treatment, although poor imaging contrast and poor dentino-inductive properties are limiting their clinical use. In this study, a theranostic dental pulp capping agent was developed. First, imaging properties of the CPC were improved by using a core-shell structured dual contrast agent (csDCA) consisting of superparamagnetic iron oxide (SPIO) and colloidal gold, as MRI and CT contrast agent respectively. Second, biological properties were implemented by using a dentinogenic factor (i.e. bone morphogenetic protein 2, BMP-2). The obtained CPC/csDCA/BMP-2 composite was tested in vivo, as direct pulp capping agent, in a male Habsi goat incisor model. Our outcomes showed no relevant alteration of the handling and mechanical properties (e.g. setting time, injectability, and compressive strength) by the incorporation of csDCA particles. In vivo results proved MRI contrast enhancement up to 7weeks. Incisors treated with BMP-2 showed improved tertiary dentin deposition as well as faster cement degradation as measured by µCT assessment. In conclusion, the presented theranostic agent matches the imaging and regenerative requirements for pulp capping applications. In this study, we combined diagnostic and therapeutic agents in order to developed a theranostic pulp capping agent with enhanced MRI and CT contrast and improved dentin regeneration ability. In our study we cover all the steps from material preparation, mechanical and in vitro characterization, to in vivo study in a goat dental model. To the best of our knowledge, this is the first time that a

  20. Enhancement of nonlinear optical properties of compounds of silica ...

    Indian Academy of Sciences (India)

    Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle. A GHARAATI1,∗ and A KAMALDAR1,2. 1Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. 2Department of Education 1, Shiraz, Iran. ∗. Corresponding author. E-mail: agharaati@pnu.ac.

  1. A comparative study of the flow enhancing properties of bentonite ...

    African Journals Online (AJOL)

    A comparative study of granule flow enhancing property of bentonite, magnesium stearate, talc and microcrystalline cellulose (MCC) was undertaken. Bentonite was processed into fine powder. A 10 %w/w of starch granules was prepared and separated into different sizes (˂180, 180-500, 500-710 and 710-850 μm).

  2. Enhanced photocatalytic properties in well-ordered mesoporous WO3

    KAUST Repository

    Li, Li; Krissanasaeranee, Methira; Pattinson, Sebastian W.; Stefik, Morgan; Wiesner, Ulrich; Steiner, Ullrich; Eder, Dominik

    2010-01-01

    We used polyisoprene-block-ethyleneoxide copolymers as structure-directing agents to synthesise well-ordered and highly-crystalline mesoporous WO 3 architectures that possess improved photocatalytic properties due to enhanced dye-adsorption in absence of diffusion limitation. © 2010 The Royal Society of Chemistry.

  3. Enhancement of nonlinear optical properties of compounds of silica

    Indian Academy of Sciences (India)

    The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric ...

  4. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianlong; Xie, Dan, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Zeng, Min; Gao, Xingsen [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Zhao, Yonggang [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  5. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  6. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  7. Biological methods to enhance bone healing and fracture repair.

    Science.gov (United States)

    Verdonk, René; Goubau, Yannick; Almqvist, Fredrik K; Verdonk, Peter

    2015-04-01

    This article looks into normal physiological fracture healing with special emphasis on the diamond concept. A precise definition of nonunion of long bones is described. Most often inadequate fixation (too rigid or too loose) is the reason for nonunion in long bone fractures. Because a critical bone defect cannot be bridged, it may lead directly or indirectly (lack of fixation) to nonunion. Individual inadequate local biological characteristics are also often found to be the cause; poor soft tissue coverage as well as a lack of periosteum and muscle or fascia or skin defects can lead to compromised vascularity in situ. Systemic factors are now much more recognized, e.g., smoking, diabetes, and cachexia, as well as the limited impact of some medications, e.g., nonsteroidal anti-inflammatory drugs and steroids. Today's mode of treatment for nonunion is approached in this article, and suggestions for appropriate treatment of long bone nonunion is presented. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  8. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  9. Control of BTEX migration using a biologically enhanced permeable barrier

    International Nuclear Information System (INIS)

    Borden, R.C.; Goin, R.T.; Kao, C.M.

    1997-01-01

    A permeable barrier system, consisting of a line of closely spaced wells, was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarbon plume. The wells were charged with concrete briquets that release oxygen and nitrate at a controlled rate, enhancing aerobic biodegradation in the downgradient aquifer. Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygen over an extended time period. A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation, total BTEX decreased from 17 to 3.4 mg/L and dissolved oxygen increased from 0.4 to 1.8 mg/L during transport through the barrier. Over time, BTEX treatment efficiencies declined, indicating the barrier system had become less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals

  10. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Science.gov (United States)

    Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool

    2014-01-01

    Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485

  11. Effect of Gamma Irradiation on Structural and Biological Properties of a PLGA-PEG-Hydroxyapatite Composite

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2014-01-01

    Full Text Available Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC, thermal behavior (DSC, wettability (contact angle, cell viability (MTT assay, and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial.

  12. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  13. Correlation between the dielectric properties and biological activities of human ex vivo hepatic tissue

    International Nuclear Information System (INIS)

    Wang, Hang; You, Fusheng; Fu, Feng; Dong, Xiuzhen; Shi, Xuetao; He, Yong; Yang, Min; Yan, Qingguo

    2015-01-01

    Dielectric properties are vital biophysical features of biological tissues, and biological activity is an index to ascertain the active state of tissues. This study investigated the potential correlation between the dielectric properties and biological activities of human hepatic tissue with prolonged ex vivo time through correlation and regression analyses. The dielectric properties of 26 cases of normal human hepatic tissue at 10 Hz to 100 MHz were measured from 15 min after isolation to 24 h at 37 °C with 90% humidity. Cell morphologies, including nucleus area (NA) and alteration rate of intercellular area (ICAR), were analyzed as indicators of biological activities. Conductivity, complex resistivity, and NA exhibited opposing changes 1 h after isolation. Relative permittivity and ex vivo time were not closely correlated (p > 0.05). The dielectric properties measured at low frequencies (i.e. <1 MHz) were more sensitive than those measured at high frequencies in reflecting the biological activity of ex vivo tissue. Highly significant correlations were found between conductivity, resistivity and the ex vivo time (p < 0.05) as well as conductivity and the cell morphology (p < 0.05). The findings indicated that establishing the correlation between the dielectric properties and biological activities of human hepatic tissue is of great significance for promoting the role of dielectric properties in biological science, particularly in human biology. (paper)

  14. Enhanced biological activities of gamma-irradiated persimmon leaf extract.

    Science.gov (United States)

    Cho, Byoung-Ok; Nchang Che, Denis; Yin, Hong-Hua; Jang, Seon-Il

    2017-09-01

    The aim of this study was to compare the anti-oxidative and anti-inflammatory activities of gamma-irradiated persimmon leaf extract (GPLE) with those of non-irradiated persimmon leaf extract (PLE). Ethanolic extract of persimmon leaf was exposed to gamma irradiation at a dose of 10 kGy. After gamma irradiation, the color of the extract changed from dark brown to light brown. The anti-oxidative and anti-inflammatory activities of GPLE and PLE were assessed from: total polyphenol and total flavonoid contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay, and levels of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The total polyphenol contents of GPLE and PLE were determined to be 224.44 ± 1.54 and 197.33 ± 5.81 mg gallic acid equivalents (GAE)/g, respectively, and the total flavonoid contents of GPLE and PLE were 206.27 ± 1.15 and 167.60 ± 2.00 mg quercetin equivalents (QUE)/g, respectively. The anti-oxidant activities of GPLE and PLE as measured by DPPH assays were 338.33 ± 30.19 μg/ml (IC50) and 388.68 ± 8.45 μg/ml (IC50), respectively, and those measured by ABTS assays were 510.49 ± 15.12 μg/ml (IC50) and 731.30 ± 10.63 μg/ml (IC50), respectively. IC50 is the inhibitor concentration that reduces the response by 50%. GPLE strongly inhibited the production of NO, PGE2 and IL-6 compared with PLE in lipopolysaccharide-stimulated RAW264.7 macrophages. Furthermore, GPLE significantly inhibited the production of TNF-α and IL-6 cytokines compared with PLE in phorbol 12-myristate 13-acetate (PMA) plus A23187-stimulated HMC-1 human mast cells. These results indicate that gamma irradiation of PLE can enhance its anti-oxidative and anti-inflammatory activities through elevation of the phenolic contents. Therefore, gamma-irradiated PLE has potential for use in the food and cosmetic

  15. 2014 Enhanced LAW Glass Property-Composition Models, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Isabelle [The Catholic Univ. of America, Washington, DC (United States); Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States); Joseph, Innocent [Energy Solutions, Salt Lake City, UT (United States); Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States)

    2015-10-28

    This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.

  16. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    COMMUNICATIONS CURRENT SCIENCE, VOL. 82, NO. 12, 25 JUNE 2002 *For correspondence. (e - mail: madhu@niokochi.org) Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa) N. V. Madhu*, P. A. Maheswaran, R... in the world?s oceans typically have duration of only a few days, but the physical and biological effects due to this perturbation can last up to several weeks 1 ? 4 . The integrated effect from these storm events has the potential to account for a...

  17. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enhancement of porous silicon photoluminescence property by lithium chloride treatment

    Science.gov (United States)

    Azaiez, Khawla; Zaghouani, Rabia Benabderrahmane; Khamlich, Saleh; Meddeb, Hosny; Dimassi, Wissem

    2018-05-01

    Porous silicon (PS) decorated by several nanostructured metal elements has still aroused interests as promising composites in many industrial applications. With the focus mainly on the synthesis, the aspect of stability against optical irradiation of such materials has so far not been thoroughly addressed. This work focuses primarily on the influence of lithium chloride solution (LiCl) treatment on the physical properties of PS. Variations in the structural and optoelectronic properties of PS were observed after immersion in (LiCl), as revealed by the obtained analyses. Moreover, enhanced photoluminescence (PL) property of the PS after passivation by lithium particles was clearly shown, and their presence on the surface of the microporous silicon was confirmed by FTIR spectroscopy and atomic force microscopy. An improvement of the minority carrier lifetime was also obtained, which was attributed to the decrease of the surface recombination velocity after LiCl treatment.

  19. Enhancing Higher Order Thinking Skills In A Marine Biology Class Through Problem-Based Learning

    Directory of Open Access Journals (Sweden)

    Richard M. Magsino

    2014-10-01

    Full Text Available The purpose of this research was to examine students' perspectives of their learning in marine biology in the collaborative group context of Problem-based Learning (PBL. Students’ higher order thinking skills (HOTS using PBL involves the development of their logical thinking and reasoning abilities which stimulates their curiosity and associative thinking. This study aimed to investigate how critical thinking skills, particularly analysis, synthesis and evaluation were enhanced in a marine biology class through PBL. Qualitative research approach was used to examine student responses in a questionnaire involving 10 open-ended questions that target students’ HOTS on a problem presented in a marine biology class for BS Biology students. Using axial coding as a qualitative data analysis technique by which grounded theory can be performed, the study was able to determine how students manifest their higher reasoning abilities when confronted with a marine biology situation. Results show student responses yielding affirmative remarks on the 10 questions intended to know their level of analysis (e.g., analyzing, classifying, inferring, discriminating and relating or connecting, synthesis (e.g., synthesizing and collaborating, and evaluation (e.g., comparing, criticizing, and convincing of information from the presented marine biology problem. Consequently, students were able to effectively design experiments to address the presented issue through problem-based learning. Results of the study show that PBL is an efficient instructional strategy embedded within a conventional curriculum used to develop or enhance critical thinking in marine biology.

  20. An ontology on property for physical, chemical, and biological systems.

    Science.gov (United States)

    Dybkaer, René

    2004-01-01

    Current metrological literature, including the International vocabulary of basic and general terms in metrology (VIM 1993), presents a special language slowly evolved without consistent use of the procedures of terminological work; furthermore, nominal properties are excluded by definition. Both deficiencies create problems in fields, such as laboratory medicine, which have to report results of all types of property, preferably in a unified systematic format. The present text aims at forming a domain ontology around "property", with intensional definitions and systematic terms, mainly using the terminological tools--with some additions--provided by the International Standards ISO 704, 1087-1, and 10241. "System" and "component" are defined, "quantity" is discussed, and the generic concept "property" is given as 'inherent state- or process-descriptive feature of a system including any pertinent components'. Previously, the term 'kind-of-quantity' and quasi-synonyms have been used as primitives; the proposed definition of "kind-of-property" is 'common defining aspect of mutually comparable properties'. "Examination procedure", "examination method", "examination principle", and "examination" are defined, avoiding the term 'test'. The need to distinguish between instances of "characteristic", "property", "type of characteristic", "kind-of-property", and "property value" is emphasized; the latter is defined together with "property value scale". These fundamental concepts are presented in a diagram, and the effect of adding essential characteristics to give expanded definitions is exemplified. Substitution usually leads to unwieldy definitions, but reveals circularity as does exhaustive consecutive listing of defining concepts. The top concept may be generically divided according to many terminological dimensions, especially regarding which operators are allowed among the four sets =, not equal to; ; +, -; and x, :. The coordinate concepts defined are termed by the

  1. Developmental Origins of Biological Explanations: The case of infants' internal property bias.

    Science.gov (United States)

    Taborda-Osorio, Hernando; Cheries, Erik W

    2017-10-01

    People's explanations about the biological world are heavily biased toward internal, non-obvious properties. Adults and children as young as 5 years of age find internal properties more causally central than external features for explaining general biological processes and category membership. In this paper, we describe how this 'internal property bias' may be grounded in two different developmental precursors observed in studies with infants: (1) an early understanding of biological agency that is apparent in infants' reasoning about animals, and (2) the acquisition of kind-based representations that distinguish between essential and accidental properties, spanning from animals to artifacts. We argue that these precursors may support the progressive construction of the notion of biological kinds and explanations during childhood. Shortly after their first year of life, infants seem to represent the internal properties of animates as more central and identity-determining that external properties. Over time, this skeletal notion of biological kinds is integrated into diverse explanations about kind membership and biological processes, with an increasingly better understanding of the causal role of internal properties.

  2. Fundamental Investigations of the Tribological Properties of Biological Interfaces

    National Research Council Canada - National Science Library

    Perry, Scott S

    2007-01-01

    .... Success has been realized through the control of polymer architecture via synthetic routes and has provided the means for systematic and fundamental studies of polymer properties in aqueous media...

  3. Biological influences on the quality properties of wool

    African Journals Online (AJOL)

    feeding and management) and the relationship between certain physical and chemical fleece and fibre properties and their ... clean yield, appearance. Presented at ..... Tender wool can be prevented by maintaining a good level of nutrition.

  4. Predictive Models of Nanotoxicity: Relationship of Physicochemical Properties to Particle Movement Through Biological Barriers

    Science.gov (United States)

    Understanding the linkage between the physicochemical (PC) properties of nanoparticles (NP) and their activation of biological systems is poorly understood, yet fundamental to predicting nanotoxicity, idenitifying mode of actions and developing appropriate and effective regul...

  5. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    Science.gov (United States)

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  6. Biological activities and medicinal properties of Cajanus cajan (L Millsp.

    Directory of Open Access Journals (Sweden)

    Dilipkumar Pal

    2011-01-01

    Full Text Available Cajanus cajan (L Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur (family: Fabaceae is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  7. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    Science.gov (United States)

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.

  8. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal

    NARCIS (Netherlands)

    Kortstee, GJJ; Appeldoorn, KJ; Bonting, CFC; van Niel, EWJ; van Veen, HW

    Most of the genes encoding the enzymes involved in polyP synthesis and degradation and in phosphate transport have been studied in various Gram-negative bacteria. Progress has also been made in studying the biochemical mechanisms underlying the process of enhanced biological phosphorus removal

  9. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal

    NARCIS (Netherlands)

    Kortstee, G.J.J.; Appeldoorn, K.J.; Bonting, C.F.C.; Niel, van E.W.J.; Veen, van H.W.

    2000-01-01

    Most of the genes encoding the enzymes involved in polyP synthesis and degradation and in phosphate transport have been studied in various Gram-negative bacteria. Progress has also been made in studying the biochemical mechanisms underlying the process of enhanced biological phosphorus removal

  10. Physicochemical and biological properties of new steroid metal complexes

    International Nuclear Information System (INIS)

    Huber, R.

    1980-04-01

    The aim of this investigation was to prepare stable steroid metal chelates by chemical conversion of the natural steroid hormones testerone, 5α-dihydrotestosterone (5α-DHT) and estradiol and to characterize these by means of their spectroscopic and other physico-chemical properties. In addition, various measuring techniques for the qualitative and quantitative study of complex stabilities and hydrolytic properties were employed. The distribution of some tritiated steroid metal complexes in the tissues of rats was tested using whole animal autoradiography, mainly with a view to identifying whether selective concentration occurs in certain organs. (orig.) [de

  11. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells

    International Nuclear Information System (INIS)

    Zhang Chun-Lei; Du Hui-Jing; Zhu Jian-Zhuo; Xu Tian-Fu; Fang Xiao-Yong

    2012-01-01

    An optimum design of a-Si:H(n)/a-Si:H(i)/c-Si(p) heterojunction solar cell is realized with 24.27% conversion efficiency by gradient doping of the a-Si:H(n) layer. The photovoltaic properties are simulated by the AFORSHET software. Besides the additional electric field caused by the gradient doping, the enhanced and widen spectral response also improves the solar cell performance compared with the uniform-doping mode. The simulation shows that the gradient doping is efficient to improve the photovoltaic performance of the solar cells. The study is valuable for the solar cell design with excellent performances

  12. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    Science.gov (United States)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  13. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  14. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  15. Six recommendations on “Synthetic Biology & Intellectual Property Rights”

    DEFF Research Database (Denmark)

    Minssen, Timo; Rutz, Berthold; van Zimmeren, Esther

    2015-01-01

    In September 2014 the European Commission’s Scientific Committees published a Final Opinion, which defines synthetic biology (SB) as follows: “SynBio is the application of science, technology and engineering to facilitate and accelerate the design, manufacture and/or modification of genetic...... materials in living organisms”. This operational definition offered by the Scientific Committees is derived from a working understanding of SynBio as a collection of conceptual and technological advances. It is sufficiently broad to include new developments in the field and also addresses the need...... for a definition that enables risk assessment.In order to promote an adequate development of SB that will secure innovation and cooperation and prevent fragmentation, it is important to identify and assess new risks and other issues early on to enable scientists, industry, funding agencies and other stakeholders...

  16. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties.

    Science.gov (United States)

    Somturk, Burcu; Yilmaz, Ismail; Altinkaynak, Cevahir; Karatepe, Aslıhan; Özdemir, Nalan; Ocsoy, Ismail

    2016-05-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to enhance catalytic activity and stability. Although stability of enzyme was accomplished with immobilization approaches, activity of the most of the enzymes was declined after immobilization. Herein, we synthesize the flower shaped-hybrid nanomaterials called hybrid nanoflower (HNF) consisting of urease enzyme and copper ions (Cu(2+)) and report a mechanistic elucidation of enhancement in both activity and stability of the HNF. We demonstrated how experimental factors influence morphology of the HNF. We proved that the HNF (synthesized from 0.02mgmL(-1) urease in 10mM PBS (pH 7.4) at +4°C) exhibited the highest catalytic activity of ∼2000% and ∼4000% when stored at +4°C and RT, respectively compared to free urease. The highest stability was also achieved by this HNF by maintaining 96.3% and 90.28% of its initial activity within storage of 30 days at +4°C and RT, respectively. This dramatically enhanced activity is attributed to high surface area, nanoscale-entrapped urease and favorable urease conformation of the HNF. The exceptional catalytic activity and stability properties of HNF can be taken advantage of to use it in fields of biomedicine and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Enhancement in thermal and mechanical properties of bricks

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2013-01-01

    Full Text Available A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive stress has been observed with increased porosity, this property has still been larger than that of the common used hollow brick. Data obtained by this work lead to a new type of effective brick having a good performance with no possibility that mortar enters inside the holes which is the case with the common used hollow bricks. The mortar has a determent effect on thermal properties of the wall since it has some higher thermal conductivity and density than that of brick which increases the wall overall density and thermal conductivity of the wall.

  18. Experimental study of the biological properties of 188Re-Hepama-1 biologic superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Sun Jing; Wen Guanghua; Wu Xiaolian; Liang Sheng; Xia Jiaoyun

    2007-01-01

    Objective: To investigate a new biologic-superparamagnetic nanoparticles's characteristics of immunological activity, biological distributing in vivo, targeting and inhibiting tumor effect. Methods: The experimental group 188 Re-Hepama-l-superparamagnetic nanoparticles, and control groups, including 188 ReO 4 - , 188 Re-Hepama-1, and 188 Re-superparamagnetic nanoparticles, were set up. The distributions were measured after injection 4 h and 24 h by caudal vein of Kuming mice. The magnetic targeting experiments in vivo were clone with and without magnetic field in liver after injection in New Zealand rabbit. The inhibiting tumor effect on hepatic cancer cell lines SMMC-7721 of the above four 188 Re labeled products were measured by mono nuclear cell direct cytotoxicity assay method. Results: After injection 4 h and 24 h by vein, the liver taking was highest in group 188 Re-Hepama-l-superparamagnetic nanoparticles. The radiative activity in liver in magnetism zoo was higher than in non magnetism zoo in 188 Re- Hepama-1-superparamagnetic nanoparticles after applying magnetic field in left lobe of liver, and the ratio of in magnetism zoo to non magnetism zoo was 1.87. And the half effective inhibition radioactive concentrations (IC 50 ) in 188 Re-Hepama-l-superparamagnetic nanoparticles was one forth of 188 ReO 4 - . Conclusion: 188 Re- Hepama-l-superparamagnetic nanoparticles showed its fine stability in intro, good immunological activity and significant liver target. (authors)

  19. Synthesis, physicochemical and biological properties of ethynyl piperidol derivatives

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The book presents the results of studies on the reactivity of some derivatives of ethynyl-piperidol in reactions of homo-and copolymerization, the numerical values of the constants of the initiation reaction, growth and chain termination, the parameters of molecular weight, molecular weight distribution and flexibility of polymer chins, triple-radical copolymerization results of ethynyl-piperidol derivatives with hydrophilic monomers and polyfunctional cross-linked polymers and high swelling hydrogels, as well as developed by the author the radiation-chemical grafting technique termed monomers on the surface of cellulose in a continuous manner. The experimental data on ethynyl-piperidol polymers involves with various low-, medium-and high substrates from model solutions and in biological fluids are given. On the example of three iodide ion sorption, bilirubin and serum albumin showed that for the thermodynamically favorable process make a significant contribution to the free energy terms due to the hypothetical ion exchange, the change in resonates concentration and cooperative interaction. The role of hydrophobic interaction in realization of this process is reviled. The data obtained were formulated and validated a number of scientific statements in the chemistry of biomedical polymers. The results of the practical implementation of a number of developments in medical practice are demonstrated. The hydrogel homo-and sorbent, dressings, which have shown high efficacy in the treatment of diseases complicated by endogenous and bacterial endotoxemia in acute radiation and combined radiation-thermal lesions, as well as kidney and live failure. (author)

  20. EOSINOPHILS: MULTIFACETED BIOLOGIC PROPERTIES AND ROLES IN HEALTH AND DISEASE

    Science.gov (United States)

    Kita, Hirohito

    2011-01-01

    Summary Eosinophils are leukocytes resident in mucosal tissues. During Th2-type inflammation, eosinophils are recruited from bone marrow and blood to the sites of immune response. While eosinophils have been considered end-stage cells involved in host protection against parasite infection and immunopathology in hypersensitivity disease, recent studies changed this perspective. Eosinophils are now considered multifunctional leukocytes involved in tissue homeostasis, modulation of adaptive immune responses, and innate immunity to certain microbes. Eosinophils are capable of producing immunoregulatory cytokines and are actively involved in regulation of Th2-type immune responses. However, such new information does not preclude earlier observations showing that eosinophils, in particular human eosinophils, are also effector cells with pro-inflammatory and destructive capabilities. Eosinophils with activation phenotypes are observed in biological specimens from patients with disease, and deposition of eosinophil products is readily seen in the affected tissues from these patients. Therefore, it would be reasonable to consider the eosinophil a multifaceted leukocyte that contributes to various physiological and pathological processes depending on their location and activation status. This review summarizes the emerging concept of the multifaceted immunobiology of eosinophils and discusses the roles of eosinophils in health and disease and the challenges and perspectives in the field. PMID:21682744

  1. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts.

    Directory of Open Access Journals (Sweden)

    Guang-Lei Gao

    Full Text Available BACKGROUND: Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. METHODOLOGY/PRINCIPAL FINDINGS: To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust, as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05; and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R(2 = 0.494∼0.955, P<0.01. CONCLUSIONS/SIGNIFICANCE: Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions.

  2. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  3. Chemical and biological properties of phosphorus-fertilized soil under legume and grass cover (Cerrado region, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fernando Pereira Souza

    2013-12-01

    Full Text Available The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil, in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5. In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient. After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

  4. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  5. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal

    DEFF Research Database (Denmark)

    Kristiansen, Rikke; Nguyen, Hien Thi Thu; Saunders, Aaron Marc

    2013-01-01

    Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to ‘Candidatus Accumuliba......Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to ‘Candidatus....... japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaerarelated PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate...... by ‘Candidatus Accumulibacter phosphatis’, and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation....

  6. Magnetic nanofluid properties as the heat transfer enhancement agent

    Directory of Open Access Journals (Sweden)

    Roszko Aleksandra

    2016-01-01

    Full Text Available The main purpose of this paper was to investigate an influence of various parameters on the heat transfer processes with strong magnetic field utilization. Two positions of experimental enclosure in magnetic environment, two methods of preparation and three different concentrations of nanoparticles (0.0112, 0.056 and 0.112 vol.% were taken into account together with the magnetic field strength. Analysed nanofluids consisted of distilled water (diamagnetic and Cu/CuO particles (paramagnetic of 40–60 nm size. The nanofluids components had different magnetic properties what caused complex interaction of forces’ system. The heat transfer data and fluid flow structure demonstrated the influence of magnetic field on the convective phenomena. The most visible consequence of magnetic field application was the heat transfer enhancement and flow reorganization under applied conditions.

  7. Chemical composition and biological properties of Satureja avromanica Maroofi.

    Science.gov (United States)

    Abdali, Elham; Javadi, Shima; Akhgari, Maryam; Hosseini, Seyran; Dastan, Dara

    2017-03-01

    Satureja avromanica is an indigenous plant which is frequently used as a spice in Avraman-Kurdistan region of Iran. The present study aimed to investigate the chemical composition, antimicrobial and antioxidant properties of the S. avromanica . In addition, rosmarinic acid and total phenolic content of S. avromanica was assessed by spectrophotometric method and HPTLC. The essential oil and methanolic extract were isolated by hydrodistillation and maceration methods, respectively. A total of 32 compounds representing 98.6% of the essential oil were identified by GC-MS and GC-FID. The main constituents were n -pentacosane (23.8%), spathulenol (11.5%), β-bourbonen (11.3%) and n -docosane (11.0%). The antibacterial activity of samples were carried out by disc diffusion method and evaluate the minimal inhibitory concentration (MIC) essential oil and methanolic extract were found to be effective against Staphylococcus aureus , Bacillus cereus and Bacillus pumilus . The highest scavenging activity was found for methanolic extract of S. avromanica (21.58 µg/mL) and the total phenolics of methanolic extract of S. avromanica was 95.3 mg GAE/g. The rosmarinic acid content of S. avromanica methanolic extract was 0.83 mg/g plant. Antioxidant activity and rosmarininc acid content of S. avromanica suggests that the essential oil and methanolic extract of S. avromanica has great potential for application as a natural antimicrobial and antioxidant agent to preserve food.

  8. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review

    Science.gov (United States)

    Radha, Maharjan H.; Laxmipriya, Nampoothiri P.

    2014-01-01

    Aloe vera (蘆薈 lú huì) is well known for its considerable medicinal properties. This plant is one of the richest natural sources of health for human beings coming. The chemistry of the plant has revealed the presence of more than 200 different biologically active substances. Many biological properties associated with Aloe species are contributed by inner gel of the leaves. Most research has been centralized on the biological activities of the various species of Aloe, which include antibacterial and antimicrobial activities of the nonvolatile constituents of the leaf gel. Aloe species are widely distributed in the African and the eastern European continents, and are spread almost throughout the world. The genus Aloe has more than 400 species but few, such as A. vera, Aloe ferox, and Aloe arborescens, are globally used for trade. A. vera has various medicinal properties such as antitumor, antiarthritic, antirheumatoid, anticancer, and antidiabetic properties. In addition, A. vera has also been promoted for constipation, gastrointestinal disorders, and for immune system deficiencies. However, not much convincing information is available on properties of the gel. The present review focuses on the detailed composition of Aloe gel, its various phytocomponents having various biological properties that help to improve health and prevent disease conditions. PMID:26151005

  10. Pyrimidine homoribonucleosides: synthesis, solution conformation, and some biological properties.

    Science.gov (United States)

    Lassota, P; Kuśmierek, J T; Stolarski, R; Shugar, D

    1987-05-01

    Conversion of uridine and cytidine to their 5'-O-tosyl derivatives, followed by cyanation with tetraethylammonium cyanide, reduction and deamination, led to isolation of the hitherto unknown homouridine (1-(5'-deoxy-beta-D-allofuranosyl)uracil) and homocytidine (1-(5'-deoxy-beta-D-allofuranosyl)cytosine), analogues of uridine and cytidine in which the exocyclic 5'-CH2OH chain is extended by one carbon to CH2CH2OH. Homocytidine was also phosphorylated to its 6'-phosphate and 6'-pyrophosphate analogues. In addition, it was converted, via its 2,2'-anhydro derivative, to arahomocytidine, an analogue of the chemotherapeutically active araC. The structures of all the foregoing were established by various criteria, including 1H and 13C NMR spectroscopy, both of which were also applied to analyses of the solution conformations of the various compounds, particularly as regards the conformations of the exocyclic chains. The behaviour of the homo analogues was examined in several enzymatic systems. Homocytidine was a feeble substrate, without inhibitory properties, of E. coli cytidine deaminase. Homocytidine was an excellent substrate for wheat shoot nucleoside phosphotransferase; while homouridine was a good substrate for E. coli uridine phosphorylase. Although homoCMP was neither a substrate, nor an inhibitor, of snake venom 5'-nucleotidase, homoCDP was a potent inhibitor of this enzyme (Ki approximately 6 microM). HomoCDP was not a substrate for M. luteus polynucleotide phosphorylase. None of the compounds exhibited significant activity vs herpes simplex virus type 1, or cytotoxic activity in several mammalian cell lines.

  11. Glutarimides: Biological activity, general synthetic methods and physicochemical properties

    Directory of Open Access Journals (Sweden)

    Popović-Đorđević Jelena B.

    2015-01-01

    Full Text Available Glutarimides, 2,6-dioxopiperidines are compounds that rarely occur in natural sources, but so far isolated ones exert widespread pharmacological activities, which makes them valuable as potential pharmacotherapeutics. Glutarimides act as androgen receptor antagonists, anti-inflammatory, anxiolytics, antibacterials, and tumor suppressing agents. Some synthetic glutarimide derivatives are already in use as immunosuppressive and sedative (e.g., thalidomide or anxiolytics (buspirone drugs. The wide applicability of this class of compounds, justify the interest of scientists to explore new pathways for its syntheses. General methods for synthesis of six-membered imide ring, are presented in this paper. These methods include: a reaction of dicarboxylic acids with ammonia or primary amine, b reactions of cyclization: amido-acids, diamides, dinitriles, nitrilo-acids, amido-nitriles, amido-esters, amidoacyl-chlorides or diacyl-chlorides, c adition of carbon-monoxide on a,b-unsaturated amides, d oxidation reactions, e Michael adition of active methylen compounds on methacrylamide or conjugated amides. Some of the described methods are used for closing glutarimide ring in syntheses of farmacological active compounds sesbanimide and aldose reductase inhibitors (ARI. Analyses of the geometry, as well as, the spectroscopic analyses (NMR and FT-IR of some glutarimides are presented because of their broad spectrum of pharmacological activity. To elucidate structures of glutarimides, geometrical parameters of newly synthesized tert-pentyl-1-benzyl-4-methyl-glutarimide-3-carboxylate (PBMG are analyzed and compared with the experimental data from X-ray analysis for glutarimide. Moreover, molecular electrostatic potential (MEP surface which is plotted over the optimized geometry to elucidate the reactivity of PBMG molecule is analyzed. The electronic properties of glutarimide derivatives are explained on the example of thalidomide. The Frontier Molecular Orbital

  12. Enhancing the engineering properties of expansive soil using bagasse ash

    Science.gov (United States)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  13. Chromium carbide-CNT nanocomposites with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Singh, Virendra; Diaz, Rene; Balani, Kantesh; Agarwal, Arvind; Seal, Sudipta

    2009-01-01

    Chromium carbide is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Herein, an attempt has been made to further enhance the mechanical and wear properties of chromium carbide coatings by reinforcing carbon nanotubes (CNTs) as a potential replacement of soft binder matrix using plasma spraying. The microstructures of the sprayed CNT-reinforced Cr 3 C 2 coatings were characterized using transmission electron microscopy and scanning electron microscopy. The mechanical properties were assessed using micro-Vickers hardness, nanoindentation and wear measurements. CNT reinforcement improved the hardness of the coating by 40% and decreased the wear rate of the coating by almost 45-50%. Cr 3 C 2 reinforced with 2 wt.% CNT had an elastic modulus 304.5 ± 29.2 GPa, hardness of 1175 ± 60 VH 0.300 and a coefficient of friction of 0.654. It was concluded that the CNT reinforcement increased the wear resistance by forming intersplat bridges while the improvement in the hardness was attributed to the deformation resistance of CNTs under indentation

  14. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Hu, Huanhuan; Asif, Muhammad; Hussain, Shahid; She, Jia

    2015-01-01

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area

  15. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Hu, Huanhuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Hussain, Shahid [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); She, Jia [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-04-10

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area.

  16. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    Directory of Open Access Journals (Sweden)

    Lutz Kockel

    2016-10-01

    Full Text Available Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals.

  17. Short-Term Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape Mobility

    Science.gov (United States)

    Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.

    2017-11-01

    Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.

  18. Structure, reactivity, and biological properties of hidantoines; Estrutura, reatividade e propriedades biologicas de hidantoinas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Silvania Maria de; Silva, Joao Bosco Paraiso da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica Fundamental]. E-mail: paraiso@ufpe.br; Hernandes, Marcelo Zaldini [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Ciencias Farmaceuticas; Lima, Maria do Carmo Alves de; Galdino, Suely Lins; Pitta, Ivan da Rocha [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos

    2008-07-01

    Hydantoin (imidazolidine-2,4-dione) is a 2,4-diketotetrahydroimidazole discovered by Baeyer in 1861. Thiohydantoins and derivatives were prepared, having chemical properties similar to the corresponding carbonyl compounds. Some biological activities (antimicrobial, anticonvulsant, schistosomicidal) are attributed to the chemical reactivity and consequent affinity of hydantoinic rings towards biomacromolecules. Therefore, knowledge about the chemistry of hydantoins has increased enormously. In this review, we present important aspects such as reactivity of hydantoins, acidity of hydantoins, spectroscopy and crystallographic properties, and biological activities of hydantoin and its derivatives. (author)

  19. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  20. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  1. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.

    Science.gov (United States)

    Zhao, Ying; Jamesh, Mohammed Ibrahim; Li, Wing Kan; Wu, Guosong; Wang, Chenxi; Zheng, Yufeng; Yeung, Kelvin W K; Chu, Paul K

    2014-01-01

    Magnesium alloys are potential biodegradable materials and have received increasing attention due to their outstanding biological performance and mechanical properties. However, rapid degradation in the physiological environment and potential toxicity limit clinical applications. Recently, special magnesium-calcium (Mg-Ca) and magnesium-strontium (Mg-Sr) alloys with biocompatible chemical compositions have been reported, but the rapid degradation still does not meet clinical requirements. In order to improve the corrosion resistance, a rough, hydrophobic and ZrO(2)-containing surface film is fabricated on Mg-Ca and Mg-Sr alloys by dual zirconium and oxygen ion implantation. Weight loss measurements and electrochemical corrosion tests show that the corrosion rate of the Mg-Ca and Mg-Sr alloys is reduced appreciably after surface treatment. A systematic investigation of the in vitro cellular response and antibacterial capability of the modified binary magnesium alloys is performed. The amounts of adherent bacteria on the Zr-O-implanted and Zr-implanted samples diminish remarkably compared to the unimplanted control. In addition, significantly enhanced cell adhesion and proliferation are observed from the Zr-O-implanted sample. The results suggest that dual zirconium and oxygen ion implantation, which effectively enhances the corrosion resistance, in vitro biocompatibility and antimicrobial properties of Mg-Ca and Mg-Sr alloys, provides a simple and practical means to expedite clinical acceptance of biodegradable magnesium alloys. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    Science.gov (United States)

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  3. Dielectric Property Enhancement in Polymer Composites with Engineered Interfaces

    Science.gov (United States)

    Krentz, Timothy Michael

    This thesis reports studies into the dielectric behavior of polymer composites filled with silica nanoparticles. The permittivity and dielectric breakdown strength (DBS) of these materials are critical to their performance in insulating applications such as high voltage power transmission. Until now, the mechanisms which lead to improvements in DBS in these systems have been poorly understood, in part because the effects of dispersion of the filler and the filler's surface electronic characteristics have been confused. The new surface modifications created in this thesis permit these two parameters to be addressed independently, leading to the hypothesis that nanocomposite dielectric materials exhibit DBS enhancement when electron avalanches are prevented from proceeding to reach a critical size capable of causing failure. The same control of dispersion and surface properties also lead to changes in the permittivity of the composite based upon the polarizability and trapping behavior of the filler. In this work, the dispersion and surface states of silica nanoparticles were independently controlled with two separate populations of surface molecules. Two matrix materials were studied, and in each system, a different, matrix-compatible long chain polymer is required to control dispersion. Conversely, a second population of short molecules is shown to be capable of creating electronic traps associated with the silica nanoparticle surface which lead to DBS enhancements largely independent of the matrix, indicating that the same failure mechanism is operating in both epoxy and polypropylene. Progressive variation in dispersion quality is attained with this surface modification scheme. This creates progressively smaller volumes of matrix polymer unaffected by the filler. This work shows that when these volumes approach and become smaller than the same scale as predicted for electron avalanches, the greatest changes in DBS are seen. Likewise, the plateau behavior of this

  4. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students’ outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from “knowledge transmitters” to “role model scientists.” PMID:23222836

  5. Peer learning and support of technology in an undergraduate biology course to enhance deep learning.

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students' outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from "knowledge transmitters" to "role model scientists."

  6. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance

    Science.gov (United States)

    Zhao, Xiaobing; Peng, Chao; You, Jing

    2017-08-01

    Surface chemical composition and topography are two key factors in the biological performance of implants. The aim of this work is to deposit ZnO/TiO2 composite coatings on the surface of titanium substrates by plasma spraying technique. The effects of the amount of ZnO doping on the microstructure, surface roughness, corrosion resistance, and biological performance of the TiO2 coatings were investigated. The results indicated that the phase composition of the as-sprayed TiO2 coating was mainly rutile. Addition of 10% ZnO into TiO2 coating led to a slight shift of the diffraction peaks to lower angle. Anatase phase and Zn2TiO4 were formed in 20%ZnO/TiO2 and 30%ZnO/TiO2 coatings, respectively. Doping with ZnO changed the topography of the TiO2 coatings, which may be beneficial to enhance their biological performance. All coatings exhibited microsized surface roughness, and the corrosion resistance of ZnO/TiO2 coatings was improved compared with pure TiO2 coating. The ZnO/TiO2 coatings could induce apatite formation on their surface and inhibit growth of Staphylococcus aureus, but these effects were dose dependent. The 20%ZnO/TiO2 coating showed better biological performance than the other coatings, suggesting potential application for bone implants.

  7. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.J.; Goede, de R.G.M.

    2016-01-01

    Though soil physical and soil biological properties are intrinsically linked in the soil environment they are often studied separately. This work adds value to analyses of soil biophysical quality of tillage systems under organic and conventional farming systems by correlating physical and

  8. Soil formation and soil biological properties post mining sites after coal mining in central Europe

    Czech Academy of Sciences Publication Activity Database

    Kaneda, Satoshi; Frouz, Jan; Krištůfek, Václav; Elhottová, Dana; Pižl, Václav; Starý, Josef; Háněl, Ladislav; Tajovský, Karel; Chroňáková, Alica

    2007-01-01

    Roč. 53, - (2007), s. 13 ISSN 0288-5840. [Annual Meeting Japanese Society of Soil Science and Plant Nutrition . 22.08.2007, Setagaya city] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil formation * soil biological properties * post mining sites Subject RIV: EH - Ecology, Behaviour

  9. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues

    NARCIS (Netherlands)

    Hosseini, S.M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted.

  10. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives.

    Science.gov (United States)

    Shrestha, Shilva; Fonoll, Xavier; Khanal, Samir Kumar; Raskin, Lutgarde

    2017-12-01

    Lignocellulosic biomass is the most abundant renewable bioresource on earth. In lignocellulosic biomass, the cellulose and hemicellulose are bound with lignin and other molecules to form a complex structure not easily accessible to microbial degradation. Anaerobic digestion (AD) of lignocellulosic biomass with a focus on improving hydrolysis, the rate limiting step in AD of lignocellulosic feedstocks, has received considerable attention. This review highlights challenges with AD of lignocellulosic biomass, factors contributing to its recalcitrance, and natural microbial ecosystems, such as the gastrointestinal tracts of herbivorous animals, capable of performing hydrolysis efficiently. Biological strategies that have been evaluated to enhance hydrolysis of lignocellulosic biomass include biological pretreatment, co-digestion, and inoculum selection. Strategies to further improve these approaches along with future research directions are outlined with a focus on linking studies of microbial communities involved in hydrolysis of lignocellulosics to process engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  12. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Science.gov (United States)

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  13. Enhanced dielectric and electrical properties of annealed PVDF thin film

    Science.gov (United States)

    Arshad, A. N.; Rozana, M. D.; Wahid, M. H. M.; Mahmood, M. K. A.; Sarip, M. N.; Habibah, Z.; Rusop, M.

    2018-05-01

    Poly (vinylideneflouride) (PVDF) thin films were annealed at various annealing temperatures ranging from 70°C to 170°C. This study demonstrates that PVDF thin films annealed at temperature of 70°C (AN70) showed significant enhancement in their dielectric constant (14) at frequency of 1 kHz in comparison to un-annealed PVDF (UN-PVDF), dielectric constant (10) at the same measured frequency. As the annealing temperature was increased from 90°C (AN90) to 150°C (AN150), the dielectric constant value of PVDF thin films was observed to decrease gradually to 11. AN70 also revealed low tangent loss (tan δ) value at similar frequency. With respect to its resistivity properties, the values were found to increase from 1.98×104 Ω.cm to 3.24×104 Ω.cm for AN70 and UN-PVDF films respectively. The improved in dielectric constant, with low tangent loss and high resistivity value suggests that 70°C is the favorable annealing temperature for PVDF thin films. Hence, AN70 is a promising film to be utilized for application in electronic devices such as low frequency capacitor.

  14. Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2015-01-01

    Computational micromechanical studies of the effect of nanostructuring and nanoengineering of interfaces, phase and grain boundaries of materials on the mechanical properties and strength of materials and the potential of interface nanostructuring to enhance the materials properties are reviewed....

  15. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

    2015-02-01

    Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride

    Science.gov (United States)

    Qiao, Wei; Liu, Quan; Li, Zhipeng; Zhang, Hanqing; Chen, Zhuofan

    2017-12-01

    As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.

  17. Enhanced ferrihydrite dissolution by a unicellular, planktonic cyanobacterium: a biological contribution to particulate iron bioavailability.

    Science.gov (United States)

    Kranzler, Chana; Kessler, Nivi; Keren, Nir; Shaked, Yeala

    2016-12-01

    Iron (Fe) bioavailability, as determined by its sources, sinks, solubility and speciation, places severe environmental constraints on microorganisms in aquatic environments. Cyanobacteria are a widespread group of aquatic, photosynthetic microorganisms with especially high iron requirements. While iron exists predominantly in particulate form, little is known about its bioavailability to cyanobacteria. Some cyanobacteria secrete iron solubilizing ligands called siderophores, yet many environmentally relevant strains do not have this ability. This work explores the bioavailability of amorphous synthetic Fe-oxides (ferrihydrite) to the non-siderophore producing, unicellular cyanobacterium, Synechocystis sp PCC 6803. Iron uptake assays with 55 ferrihydrite established dissolution as a critical prerequisite for iron transport. Dissolution assays with the iron binding ligand, desferrioxamine B, demonstrated that Synechocystis 6803 enhances ferrihydrite dissolution, exerting siderophore-independent biological influence on ferrihydrite bioavailability. Dissolution mechanisms were studied using a range of experimental conditions; both cell-particle physical proximity and cellular electron flow were shown to be important determinants of bio-dissolution by Synechocystis 6803. Finally, the effects of ferrihydrite stability on bio-dissolution rates and cell physiology were measured, integrating biological and chemical aspects of ferrihydrite bioavailability. Collectively, these findings demonstrate that Synechocystis 6803 actively dissolves ferrihydrite, highlighting a significant biological component to mineral phase iron bioavailability in aquatic environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  19. Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype.

    Science.gov (United States)

    Grace Chao, Pen-hsiu; Hsu, Hsiang-Yi; Tseng, Hsiao-Yun

    2014-09-01

    Fiber structure and order greatly impact the mechanical behavior of fibrous materials. In biological tissues, the nonlinear mechanics of fibrous scaffolds contribute to the functionality of the material. The nonlinear mechanical properties of the wavy structure (crimp) in collagen allow tissue flexibility while preventing over-extension. A number of approaches have tried to recreate this complex mechanical functionality. We generated microcrimped fibers by briefly heating electrospun parallel fibers over the glass transition temperature or by ethanol treatment. The crimp structure is similar to those of collagen fibers found in native aorta, intestines, or ligaments. Using poly-L-lactic acid fibers, we demonstrated that the bulk materials exhibit changed stress-strain behaviors with a significant increase in the toe region in correlation to the degree of crimp, similar to those observed in collagenous tissues. In addition to mimicking the stress-strain behavior of biological tissues, the microcrimped fibers are instructive in cell morphology and promote ligament phenotypic gene expression. This effect can be further enhanced by dynamic tensile loading, a physiological perturbation in vivo. This rapid and economical approach for microcrimped fiber production provides an accessible platform to study structure-function relationships and a novel functional scaffold for tissue engineering and cell mechanobiology studies.

  20. Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype

    International Nuclear Information System (INIS)

    Grace Chao, Pen-hsiu; Hsu, Hsiang-Yi; Tseng, Hsiao-Yun

    2014-01-01

    Fiber structure and order greatly impact the mechanical behavior of fibrous materials. In biological tissues, the nonlinear mechanics of fibrous scaffolds contribute to the functionality of the material. The nonlinear mechanical properties of the wavy structure (crimp) in collagen allow tissue flexibility while preventing over-extension. A number of approaches have tried to recreate this complex mechanical functionality. We generated microcrimped fibers by briefly heating electrospun parallel fibers over the glass transition temperature or by ethanol treatment. The crimp structure is similar to those of collagen fibers found in native aorta, intestines, or ligaments. Using poly-L-lactic acid fibers, we demonstrated that the bulk materials exhibit changed stress–strain behaviors with a significant increase in the toe region in correlation to the degree of crimp, similar to those observed in collagenous tissues. In addition to mimicking the stress–strain behavior of biological tissues, the microcrimped fibers are instructive in cell morphology and promote ligament phenotypic gene expression. This effect can be further enhanced by dynamic tensile loading, a physiological perturbation in vivo. This rapid and economical approach for microcrimped fiber production provides an accessible platform to study structure–function relationships and a novel functional scaffold for tissue engineering and cell mechanobiology studies. (papers)

  1. The Method of Coating Fe₃O₄ with Carbon Nanoparticles to Modify Biological Properties of Oxide Measured in Vitro.

    Science.gov (United States)

    Niemiec, Tomasz; Dudek, Mariusz; Dziekan, Natalia; Jaworski, Sławomir; Przewozik, Aleksandra; Soszka, Emilia; Koperkiewicz, Anna; Koczoń, Piotr

    2017-07-01

    The coating of nanoparticles on materials for medical application [e.g., the coating of Fe3O4 nanopowder (IONP) with a carbon nanolayer] serves to protect and modify the selected biological, physical, and chemical properties of the coated material. Increases in chemical stability, changes in biocompatibility, and a modified surface structure are examples of the effects caused by the formation of carbon coatings. In the current study, Fe3O4 nanoparticles were coated with a carbon nanolayer (IONP@C) in a plasmochemical reactor (using radio-frequency plasma-enhanced chemical vapor deposition methods) under various experimental conditions. Based on data from X-ray diffraction, Raman, and IR spectroscopy, the best processing parameters were determined in order to produce a carbon coating that would not change the structure of the IONP. The materials with the best cover, i.e., a uniform carbon nanolayer, were used in cytotoxic tests to investigate their biological properties using the human HepG2 hepatocarcinoma cell line and chicken embryo red blood cells as an in vitro model. The obtained results proved the low cytotoxicity of Fe3O4 micropowder and IONP in contrast to IONP@C, which reduced cell viability, increased hemolysis, and generally was more toxic than bare Fe3O4.

  2. Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes.

    Science.gov (United States)

    Torres, E; Fombuena, V; Vallés-Lluch, A; Ellingham, T

    2017-06-01

    Hydroxyapatite (HA) and Halloysite nanotubes (HNTs) percentages have been optimized in Polycaprolactone (PCL) polymeric matrices to improve mechanical, thermal and biological properties of the composites, thus, to be applied in bone tissue engineering or as fixation plates. Addition of HA guarantees a proper compatibility with human bone due to its osteoconductive and osteoinductive properties, facilitating bone regeneration in tissue engineering applications. Addition of HNTs ensures the presence of tubular structures for subsequent drug loading in their lumen, of molecules such as curcumin, acting as controlled drug delivery systems. The addition of 20% of HA and different amounts of HNTs leads to a substantial improvement in mechanical properties with values of flexural strength up to 40% over raw PCL, with an increase in degradation temperature. DMA analyses showed stability in mechanical and thermal properties, having as a result a potential composite to be used as tissue engineering scaffold or resorbable fixation plate. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Surface enhanced imaging and IR spectroscopy of the biological cells on the nanostructured gold film

    Directory of Open Access Journals (Sweden)

    G.I. Dovbeshko

    2017-07-01

    Full Text Available New approach for optical imaging, structural study and cell cultivation based on the effect of the enhancement of optical signals from biomolecules and biological cells near nanostructured rough gold surface is proposed. The surface enhanced IR absorption (SEIRA spectroscopy and confocal microscopy experiments were made using the culture of SPEV (porcine embryonic kidney epithelium transplantable line and fibroblast cells, cultivated and/or adsorbed on the gold substrate. The SEIRA spectra registered from monolayer of the SPEV cells cultivated on the rough gold showed a low frequency shift of about 2 to 7 cm 1 for the most characteristic IR vibrations, compared with those adsorbed from suspension on the same substrate. An enhancement factor of 15…30 was obtained for different molecular vibrations. The confocal microscopy contrast images of the SPEV cells on rough gold substrate were obtained in laser fluorescence mode. This approach opens new possibilities for visualization of the living cells in vivo without staining. The fluorescence of the rough gold surfaces and effects responsible for our findings have been discussed.

  4. Changes in diffusion properties of biological tissues associated with mechanical strain

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Imae, T.; Mima, Kazuo; Sekino, Masaki; Ohsaki, Hiroyuki; Ueno, Shogo

    2007-01-01

    Mechanical strain in biological tissues causes a change in the diffusion properties of water molecules. This paper proposes a method of estimating mechanical strain in biological tissues using diffusion magnetic resonance imaging (MRI). Measurements were carried out on uncompressed and compressed chicken skeletal muscles. A theoretical model of the diffusion of water molecules in muscle fibers was derived based on Tanner's equation. Diameter of the muscle fibers was estimated by fitting the model equation to the measured signals. Changes in the mean diffusivity (MD), the fractional anisotropy (FA), and diameter of the muscle fiber did not have any statistical significance. The intracellular diffusion coefficient (D int ) was changed by mechanical strain (p<.05). This method has potential applications in the quantitative evaluation of strain in biological tissues, a though it poses several technical challenges. (author)

  5. Effect of ionizing radiation on chemical and biological properties of Salmonella minnesota R595 lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    El Sabbagh, M; Galanos, C; Luederitz, O [Max-Planck-Institut fuer Immunbiologie, Freiburg (Germany, F.R.); Bertok, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszseguegyi Kutato Intezet, Budapest (Hungary); Fuest, Gy [Orszagos Haema--tologiai es Vertranszfuzios Intezet, Budapest (Hungary)

    1982-01-01

    The effects of /sup 60/Co irradiation performed with various doses on the biological and chemical properties of the endotoxin of the Salmonella minnesota R595 were compared with those of unirradiated ones. The biological activity was measured using the lethal toxicity test, the local Schwartzman reaction and by activating the complementary system. Increasing the irradiation dose from 50 to 200 kGy the preparation became less active in the biological tests but the protective activity against the lethal action of the endotoxin remained uneffected. The irradiation resulted in a dose-dependent decrease of the amounts of 2-keto-3-deoxy-octonate, glucosamine, fatty acids, but did not affect all the degradation products identified. Therefore, no correlation between the chemical composition and the absence of endotoxin activity was found.

  6. Selenium-Doped Hydroxyapatite Nanocrystals–Synthesis, Physicochemical Properties and Biological Significance

    Directory of Open Access Journals (Sweden)

    Kamil Pajor

    2018-04-01

    Full Text Available Hydroxyapatites (HAs, as materials with a similar structure to bone minerals, play a key role in biomaterials engineering. They have been applied as bone substitute materials and as coatings for metallic implants, which facilitates their osseointegration. One of the beneficial characteristics of HA, when used to create biocompatible materials with improved physicochemical or biological properties, is its capacity for ionic substitution. The aim of the study was to present the current state of knowledge about HAs containing selenate ions IV or VI. The enrichment of HAs with selenium aims to create a material with advantageous effects on bone tissue metabolism, as well as having anticancer and antibacterial activity. The work is devoted to both methods of obtaining Se-HA and an evaluation of its chemical structure and physicochemical properties. In addition, the biological activity of such materials in vitro and in vivo is discussed.

  7. Estimating biological elementary flux modes that decompose a flux distribution by the minimal branching property

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua; Solem, Christian; Jensen, Peter Ruhdal

    2014-01-01

    biologically feasible EFMs by considering their graphical properties. A previous study on the transcriptional regulation of metabolic genes found that distinct branches at a branch point metabolite usually belong to distinct metabolic pathways. This suggests an intuitive property of biologically feasible EFMs......, i.e. minimal branching. RESULTS: We developed the concept of minimal branching EFM and derived the minimal branching decomposition (MBD) to decompose flux distributions. Testing in the core Escherichia coli metabolic network indicated that MBD can distinguish branches at branch points and greatly...... knowledge, which facilitates interpretation. Comparison of the methods applied to a complex flux distribution in Lactococcus lactis similarly showed the advantages of MBD. The minimal branching EFM concept underlying MBD should be useful in other applications....

  8. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  9. Predicting spiral wave patterns from cell properties in a model of biological self-organization.

    Science.gov (United States)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  10. Phytochemistry and Biological Properties of Burnet Weed (Sanguisorba spp.: A Review

    Directory of Open Access Journals (Sweden)

    Anestis KARKANIS

    2014-12-01

    Full Text Available Great burnet (Sanguisorba officinalis L. and small burnet (Sansguisorba minor Scop. are edible, perennial weeds widely distributed in the world. These are the most widespread Sanguisorba species. The bioactive components of Sanguisorba plants include phenolics (phenolic acids, flavonoids and neolignans and terpenoids. Large potential exists to use burnets as medicinal plants. Sanguisorba species are known to show anticancer properties, antioxidative, antimicrobial and antiviral activities. Also, Sanguisorba extracts show anti-Alzheimer and anti-inflammatory properties. Small burnet extracts could also be a useful alternative to synthetic fungicides for crop production. This review focuses on biological activities of Sanguisorba extracts and emphasizing their potential applications in pharmaceutical areas.

  11. Phytochemistry and Biological Properties of Burnet Weed (Sanguisorba spp.: A Review

    Directory of Open Access Journals (Sweden)

    Anestis KARKANIS

    2014-12-01

    Full Text Available Great burnet (Sanguisorba officinalis L. and small burnet (Sansguisorba minor Scop. are edible, perennial weeds widely distributed in the world. These are the most widespread Sanguisorba species. The bioactive components of Sanguisorba plants include phenolics (phenolic acids, flavonoids and neolignans and terpenoids. Large potential exists to use burnets as medicinal plants. Sanguisorba species are known to show anticancer properties, antioxidative, antimicrobial and antiviral activities. Also, Sanguisorba extracts show anti-Alzheimer and anti-inflammatory properties. Small burnet extracts could also be a useful alternative to synthetic fungicides for crop production. This review focuses on biological activities of Sanguisorba extracts and emphasizing their potential applications in pharmaceutical areas.

  12. Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis

    Science.gov (United States)

    Kim, Juhyun; Salvador, Manuel; Saunders, Elizabeth; González, Jaime; Avignone-Rossa, Claudio

    2016-01-01

    The chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase. Consequently, the circuits are transferred to model organisms commonly used in the laboratory, such as Escherichia coli, that may be suboptimal for a required function. In this review, we discuss some of the properties desirable in a versatile chassis and summarize some examples of alternative hosts for synthetic biology amenable for engineering. These properties include a suitable life style, a robust cell wall, good knowledge of its regulatory network as well as of the interplay of the host components with the exogenous circuits, and the possibility of developing whole-cell models and tuneable metabolic fluxes that could allow a better distribution of cellular resources (metabolites, ATP, nucleotides, amino acids, transcriptional and translational machinery). We highlight Pseudomonas putida, widely used in many different biotechnological applications as a prominent organism for synthetic biology due to its metabolic diversity, robustness and ease of manipulation. PMID:27903818

  13. Complexation of transuranic elements: a look at factors which may enhance their biological availability

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1983-01-01

    Nuclear fuel cycles produce long-lived α-emitting isotopes of the actinides. Many of these are isotopes of man-made elements for which there are no data on their long-term environmental behaviour. Their radio-toxic properties are sufficient to warrant concern about their behaviour in the environment. It is possible from the migration of some of the naturally occurring actinides to make some predictions as to the behaviour of the man-made actinides in the environment. Identified are complexing agents which may facilitate enhanced transport of actinides from soil into plants and also across the mammalian gut wall. (author)

  14. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    Science.gov (United States)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  15. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huiyuan [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Xing, Baoshan, E-mail: bx@umass.edu [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Hamlet, Leigh C.; Chica, Andrea [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); He, Lili, E-mail: lilihe@foodsci.umass.edu [Department of Food Science, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-06-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1 mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. - Graphical abstract: SERS signal intensity of ferbam indicates the concentration of AgNPs. - Highlights: • Ferbam was found to be the best indicator for SERS detection of AgNPs. • SERS was able to detect AgNPs in both environmental and biological samples. • Major components in the two matrices had limited effect on AgNP detection.

  16. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples

    International Nuclear Information System (INIS)

    Guo, Huiyuan; Xing, Baoshan; Hamlet, Leigh C.; Chica, Andrea; He, Lili

    2016-01-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1 mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. - Graphical abstract: SERS signal intensity of ferbam indicates the concentration of AgNPs. - Highlights: • Ferbam was found to be the best indicator for SERS detection of AgNPs. • SERS was able to detect AgNPs in both environmental and biological samples. • Major components in the two matrices had limited effect on AgNP detection.

  17. Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass.

    Science.gov (United States)

    Shah, Asma Tufail; Batool, Madeeha; Chaudhry, Aqif Anwar; Iqbal, Farasat; Javaid, Ayesha; Zahid, Saba; Ilyas, Kanwal; Bin Qasim, Saad; Khan, Ather Farooq; Khan, Abdul Samad; Ur Rehman, Ihtesham

    2016-08-01

    In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    Science.gov (United States)

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  19. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.

  20. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  1. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  2. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  3. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    Science.gov (United States)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  4. The functional and biological properties of whey proteins: prospects for the development of functional foods

    Directory of Open Access Journals (Sweden)

    H. J. T. KORHONEN

    2008-12-01

    Full Text Available Advances in processing technologies and the accumulation of scientific data on the functional and biological properties of whey components have contributed to the growing commercial valuation of cheese whey over the last decade. New membrane separation and chromatographic techniques have made it possible to fractionate and enrich various components of whey more efficiently than before. The specific properties of these components can now be examined in greater detail and new applications developed accordingly. The utilisation of cheese whey is evolving into a new industry producing a multitude of purified ingredients for numerous purposes. The most significant areas of R&D related to whey proteins include functional foods, the rheological properties of foodstuffs, and biopharmaceuticals.

  5. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  6. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models

    Science.gov (United States)

    Siner, Joshua I.; Samelson-Jones, Benjamin J.; Crudele, Julie M.; French, Robert A.; Lee, Benjamin J.; Zhou, Shanzhen; Merricks, Elizabeth; Raymer, Robin; Camire, Rodney M.; Arruda, Valder R.

    2016-01-01

    Processing by the proprotein convertase furin is believed to be critical for the biological activity of multiple proteins involved in hemostasis, including coagulation factor VIII (FVIII). This belief prompted the retention of the furin recognition motif (amino acids 1645–1648) in the design of B-domain–deleted FVIII (FVIII-BDD) products in current clinical use and in the drug development pipeline, as well as in experimental FVIII gene therapy strategies. Here, we report that processing by furin is in fact deleterious to FVIII-BDD secretion and procoagulant activity. Inhibition of furin increases the secretion and decreases the intracellular retention of FVIII-BDD protein in mammalian cells. Our new variant (FVIII-ΔF), in which this recognition motif is removed, efficiently circumvents furin. FVIII-ΔF demonstrates increased recombinant protein yields, enhanced clotting activity, and higher circulating FVIII levels after adeno-associated viral vector–based liver gene therapy in a murine model of severe hemophilia A (HA) compared with FVIII-BDD. Moreover, we observed an amelioration of the bleeding phenotype in severe HA dogs with sustained therapeutic FVIII levels after FVIII-ΔF gene therapy at a lower vector dose than previously employed in this model. The immunogenicity of FVIII-ΔF did not differ from that of FVIII-BDD as a protein or a gene therapeutic. Thus, contrary to previous suppositions, FVIII variants that can avoid furin processing are likely to have enhanced translational potential for HA therapy. PMID:27734034

  7. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    Science.gov (United States)

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Designing of Bulk Nano-Structures with Enhanced Thermoelectric Properties

    National Research Council Canada - National Science Library

    Kanatzidis, Mercouri; Hogan, Timothy; Murray, Chris

    2007-01-01

    .... K2Bi8Se13 is a member of this series and was found to be a promising thermoelectric. The charge transport properties were studied under pressure, where a significant increase in the power factor was observed...

  10. Designing of Bulk Nano-Structures With Enhanced Thermoelectric Properties

    National Research Council Canada - National Science Library

    Kanatzidis, Mercouri G

    2007-01-01

    .... K2Bi8Se13 is a member of this series and was found to be a promising thermoelectric. The charge transport properties were studied under pressure, where a significant increase in the power factor was observed...

  11. Magnetosheath dynamic pressure enhancements: occurrence and typical properties

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2013-02-01

    Full Text Available The first comprehensive statistical study of large-amplitude (> 100% transient enhancements of the magnetosheath dynamic pressure reveals events of up to ~ 15 times the ambient dynamic pressure with durations up to 3 min and an average duration of around 30 s, predominantly downstream of the quasi-parallel shock. The dynamic pressure transients are most often dominated by velocity increases along with a small fractional increase in the density, though the velocity is generally only deflected by a few degrees. Superposed wavelet transforms of the magnetic field show that, whilst most enhancements exhibit changes in the magnetosheath magnetic field, the majority are not associated with changes in the Interplanetary Magnetic Field (IMF. However, there is a minority of enhancements that do appear to be associated with solar wind discontinuities which cannot be explained simply by random events. In general, it is found that during periods of magnetosheath dynamic pressure enhancements the IMF is steadier than usual. This suggests that a stable foreshock and hence foreshock structures or processes may be important in the generation of the majority of magnetosheath dynamic pressure enhancements.

  12. Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil.

    Science.gov (United States)

    de Almeida, Roseli R P; Souto, Raimundo N P; Bastos, Cleber N; da Silva, Milton H L; Maia, José G S

    2009-09-01

    The essential oils of the specimens of Piper aduncum that occur in deforested areas of Brazilian Amazon, North Brazil, are rich in dillapiole (35-90%), a derivative of phenylpropene, to which are attributed biological properties. On the other hand, the oils of the specimens with occurrence in the Atlantic Forest, and Northeastern and Southeastern Brazil, do not contain dillapiole, but only terpene compounds such as (E)-nerolidol and linalool. One specimen existing in the Amazon was hydrodistilled. The obtained oil was fractioned on a silica chromatographic column, resulting in fractions rich in dillapiole (95.0-98.9%) utilized for analyses by GC and GC/MS, structural characterization by NMR, confirmation of their biological properties, and to obtain the isomer isodillapiole. Dillapiole showed a fungicide action against the fungus Clinipellis perniciosa (witches' broom) by inhibition of its basidiospores, in concentrations ranging from 0.6 to 1.0 ppm. The larvicide and insecticide actions of dillapiole were tested against the larvae and the adult insects of Anopheles marajoara and Aedes aegypti (malaria and dengue mosquitoes), resulting in mortality of the larvae (48 h, 100%) at a concentration of 100 ppm, and mortality of the insects (30 min, 100%) at a concentration of 600 ppm. The isomeric isodillapiole showed no significant activity in the same biological tests.

  13. BK polyomavirus genotypes Ia and Ib1 exhibit different biological properties in renal transplant recipients.

    Science.gov (United States)

    Varella, Rafael B; Zalona, Ana Carolina J; Diaz, Nuria C; Zalis, Mariano G; Santoro-Lopes, Guilherme

    2018-01-02

    BK polyomavirus (BKV) is an opportunist agent associated with nephropathy (BKVAN) in 1-10% of kidney transplant recipients. BKV is classified into genotypes or subgroups according to minor nucleotidic variations with unknown biological implications. Studies assessing the possible association between genotypes and the risk of BKVAN in kidney transplant patients have presented conflicting results. In these studies, genotype Ia, which is highly prevalent in Brazil, was less frequently found and, thus, comparative data on the biological properties of this genotype are lacking. In this study, BKV Ia and Ib1 genotypes were compared according to their viral load, genetic evolution (VP1 and NCCR) - in a cohort of renal transplant recipients. The patients infected with Ia (13/23; 56.5%) genotype exhibited higher viral loads in urine [>1.4 log over Ib1 (10/23; 43.5%); p=0.025]. In addition, genotype Ia was associated with diverse mutations at VP1 loops and sites under positive selection outside loops, which were totally absent in Ib1. Although the number of viremic patients was similar, the three patients who had BK nephropathy (BKVAN) were infected with Ia genotype. NCCR architecture (ww or rr) were not distinctive between Ia and Ib1 genotypes. Ia genotype, which is rare in other published BKV cohorts, presented some diverse biological properties in transplanted recipients in comparison to Ib1. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration

    Science.gov (United States)

    Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang

    2017-02-01

    The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.

  15. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review.

    Science.gov (United States)

    Ryu, Ji Hyeon; Kang, Dawon

    2017-06-01

    Garlic (Allium sativum) has been used as a medicinal food since ancient times. However, some people are reluctant to ingest raw garlic due to its unpleasant odor and taste. Therefore, many types of garlic preparations have been developed to reduce these attributes without losing biological functions. Aged black garlic (ABG) is a garlic preparation with a sweet and sour taste and no strong odor. It has recently been introduced to Asian markets as a functional food. Extensive in vitro and in vivo studies have demonstrated that ABG has a variety of biological functions such as antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-allergic, cardioprotective, and hepatoprotective effects. Recent studies have compared the biological activity and function of ABG to those of raw garlic. ABG shows lower anti-inflammatory, anti-coagulation, immunomodulatory, and anti-allergic effects compared to raw garlic. This paper reviews the physicochemical properties, biological activity, health benefits, adverse effects, and general limitations of ABG.

  16. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review

    Directory of Open Access Journals (Sweden)

    Ji Hyeon Ryu

    2017-06-01

    Full Text Available Garlic (Allium sativum has been used as a medicinal food since ancient times. However, some people are reluctant to ingest raw garlic due to its unpleasant odor and taste. Therefore, many types of garlic preparations have been developed to reduce these attributes without losing biological functions. Aged black garlic (ABG is a garlic preparation with a sweet and sour taste and no strong odor. It has recently been introduced to Asian markets as a functional food. Extensive in vitro and in vivo studies have demonstrated that ABG has a variety of biological functions such as antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-allergic, cardioprotective, and hepatoprotective effects. Recent studies have compared the biological activity and function of ABG to those of raw garlic. ABG shows lower anti-inflammatory, anti-coagulation, immunomodulatory, and anti-allergic effects compared to raw garlic. This paper reviews the physicochemical properties, biological activity, health benefits, adverse effects, and general limitations of ABG.

  17. Superfocusing properties of disorder-enhanced plasmonic nanolenses

    KAUST Repository

    Gongora, J. S. Totero; Coluccio, Maria Laura; Proietti Zaccaria, Remo; Di Fabrizio, Enzo M.; Fratalocchi, Andrea

    2014-01-01

    We investigated a disordered plasmonic nanolens using an extensive campaign of FDTD simulations. Our results show that surface roughness plays a crucial role in the enhancement of the electromagnetic energy with respect to regular structures. © 2014 Optical Society of America.

  18. Nitrogen doped germania glasses with enhanced optical and mechanical properties

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Poulsen, Christian; Leistiko, Otto

    1997-01-01

    A new type of ultraviolet photosensitive germanium doped glass has been developed for use in the fabrication of optical waveguide structures. By adding ammonia to the source gases during a plasma enhanced chemical vapor deposition of these glasses, ultraviolet induced refractive index changes of ...

  19. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ul Haq, Ihsan [Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Zia, Muhammad, E-mail: ziachaudhary@gmail.com [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2017-05-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  20. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    International Nuclear Information System (INIS)

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira; Ul Haq, Ihsan; Zia, Muhammad

    2017-01-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  1. Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties.

    Science.gov (United States)

    No, Young Jung; Roohaniesfahani, Seyediman; Lu, Zufu; Shi, Jeffrey; Zreiqat, Hala

    2017-06-05

    Gehlenite (GLN, Ca 2 SiAl 2 O 7 ) is a bioceramic that has been recently shown to possess excellent mechanical strength and in vitro osteogenic properties for bone regeneration. Substitutional incorporation of strontium in place of calcium is an effective way to further enhance biological properties of calcium-based bioceramics and glasses. However, such strategy has the potential to affect other important physicochemical parameters such as strength and degradation due to differences in the ionic radius of strontium and calcium. This study is the first to investigate the effect of a range of concentrations of strontium substitution of calcium at 1, 2, 5, 10 mol% (S1-GLN, S2-GLN, S5-GLN and S10-GLN) on the physicochemical and biological properties of GLN. We showed that up to 2 mol% strontium ion substitution retains the monophasic GLN structure when sintered at 1450 °C, whereas higher concentrations resulted in presence of calcium silicate impurities. Increased strontium incorporation resulted in changes in grain morphology and reduced densification when the ceramics were sintered at 1450 °C. Porous GLN, S1-GLN and S2-GLN scaffolds (∼80% porosity) showed compressive strengths of 2.05 ± 0.46 MPa, 1.76 ± 0.79 MPa and 1.57 ± 0.52 MPa respectively. S1-GLN and S2-GLN immersed in simulated body fluid showed increased strontium ion release but reduced calcium and silicon ion release compared to GLN without affecting overall weight loss and pH over a 21 d period. The bioactivity of the S2-GLN ceramics was significantly improved as reflected in the significant upregulation of HOB proliferation and differentiation compared to GLN. Overall, these results suggest that increased incorporation of strontium presents a trade-off between bioactivity and mechanical strength for GLN bioceramics. This is an important consideration in the development of strontium-doped bioceramics.

  2. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  3. A case study of technology-enhanced active learning in introductory cellular biology

    Science.gov (United States)

    Chacon Diaz, Lucia Bernardette

    Science teaching and learning in higher education has been evolving over the years to encourage student retention in STEM fields and reduce student attrition. As novel pedagogical practices emerge in the college science classroom, research on the effectiveness of such approaches must be undertaken. The following research applied a case study research design in order to evaluate the experiences of college students in a TEAL classroom. This case study was conducted during the 2017 Summer Cellular and Organismal Biology course at a four-year Hispanic Serving Institution located in the Southwest region of the United States. The main components evaluated were students' exam performance, self-efficacy beliefs, and behaviors and interactions in the Technology-Enhanced Active Learning (TEAL) classroom. The findings suggest that students enrolled in a TEAL classroom are equally capable of answering high and low order thinking questions. Additionally, students are equally confident in answering high and low order thinking items related to cellular biology. In the TEAL classroom, student-student interactions are encouraged and collaborative behaviors are exhibited. Gender and ethnicity do not influence self-efficacy beliefs in students in the TEAL room, and the overall class average of self-efficacy beliefs tended to be higher compared to exam performance. Based on the findings of this case study, TEAL classrooms are greatly encouraged in science higher education in order to facilitate learning and class engagement for all students. Providing students with the opportunity to expand their academic talents in the science classroom accomplishes a crucial goal in STEM higher education.

  4. Two approaches for enhancing the hydrogenation properties of ...

    Indian Academy of Sciences (India)

    Wintec

    ties of Pd. In the first approach, metal thin film (Cu, Ag) has been deposited over Pd and hydrogenation properties of ... Firstly, the critical temperature of miscibility gap for the α to β phase ... diffraction (GAXRD) studies have been done. 18. The.

  5. Enhanced properties of UPE/ESOA partially bio-nanocomposites ...

    Indian Academy of Sciences (India)

    59

    Epoxidized Soybean Oil Acrylate (ESOA) to recuperate its performance. .... Tensile properties were evaluated by using the universal testing machine (Model 3369) in .... carboxyl band at 1670cm-1 which are essential for making reaction with ..... increased hours of NaCl treatment, very small weight was gained in all the ...

  6. The chemical composition and biological properties of coconut (Cocos nucifera L.) water.

    Science.gov (United States)

    Yong, Jean W H; Ge, Liya; Ng, Yan Fei; Tan, Swee Ngin

    2009-12-09

    Coconut water (coconut liquid endosperm), with its many applications, is one of the world's most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  7. Diversity of Pyrrolizidine Alkaloids in the Boraginaceae Structures, Distribution, and Biological Properties

    Directory of Open Access Journals (Sweden)

    Assem El-Shazly

    2014-04-01

    Full Text Available Among the diversity of secondary metabolites which are produced by plants as means of defence against herbivores and microbes, pyrrolizidine alkaloids (PAs are common in Boraginaceae, Asteraceae and some other plant families. Pyrrolizidine alkaloids are infamous as toxic compounds which can alkylate DNA und thus cause mutations and even cancer in herbivores and humans. Almost all genera of the family Boraginaceae synthesize and store this type of alkaloids. This review reports the available information on the present status (literature up to early 2014 of the pyrrolizidine alkaloids in the Boraginaceae and summarizes the topics structure, distribution, chemistry, chemotaxonomic significance, and biological properties.

  8. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    International Nuclear Information System (INIS)

    Zhang Xu; Liu Xiaoli; Sun Jialun; He Shuojie; Lee, Imshik; Pak, Hyuk Kyu

    2008-01-01

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E * . The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E * -values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus

  9. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.

    Science.gov (United States)

    Oyama, Hideko T; Tanishima, Daisuke; Ogawa, Ryohei

    2017-04-10

    Although poly(l-lactic acid) (PLLA) is reputed to be biodegradable in the human body, its hydrophobic nature lets it persist for ca. 5.5 years. This study demonstrates that biologically safe lactide copolymers, poly(aspartic acid-co-l-lactide) (PAL) and poly(malic acid-co-l-lactide) (PML), dispersed in the PLLA function as detonators (triggers) for its hydrolytic degradation under physiological conditions. The copolymers significantly enhance hydrolysis, and consequently, the degradation rate of PLLA becomes easily tunable by controlling the amounts of PAL and PML. The present study elucidates the effects of uniaxial drawing on the structural development, mechanical properties, and hydrolytic degradation under physiological conditions of PLLA blend films. At initial degradation stages, the mass loss was not affected by uniaxial drawing; however, at late degradation stages, less developed crystals as well as amorphous chains were degradable at low draw ratio (DR), whereas not only highly developed crystals but also the oriented amorphous chains became insensitive to hydrolysis at high DR. Our work provides important molecular level results that demonstrate that biodegradable materials can have superb mechanical properties and also disappear in a required time under physiological conditions.

  10. A few nascent methods for measuring mechanical properties of the biological cell.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  11. Regeneration of Achilles' tendon: the role of dynamic stimulation for enhanced cell proliferation and mechanical properties.

    Science.gov (United States)

    Lee, Jongman; Guarino, Vincenzo; Gloria, Antonio; Ambrosio, Luigi; Tae, Giyoong; Kim, Young Ha; Jung, Youngmee; Kim, Sang-Heon; Kim, Soo Hyun

    2010-01-01

    The tissue engineering of tendon was studied using highly elastic poly(L-lactide-co-epsilon-caprolactone) (PLCL) scaffolds and focusing on the effect of dynamic tensile stimulation. Tenocytes from rabbit Achilles tendon were seeded (1.0 x 10(6) cells/scaffold) onto porous PLCL scaffolds and cultured for periods of 2 weeks and 4 weeks. This was performed in a static system and also in a bioreactor equipped with tensile modulation which mimicked the environmental surroundings of tendons with respect to tensile extension. The degradation of the polymeric scaffolds during the culture was relatively slow. However, there was an indication that cells accelerated the degradation of PLCL scaffolds. The scaffold/cell adducts from the static culture exhibited inferior strength (at 2 weeks 350 kPa, 4 weeks 300 kPa) compared to the control without cells (at 2 weeks 460 kPa, 4 weeks 340 kPa), indicating that the cells contributed to the enhanced degradation. On the contrary, the corresponding values of the adducts from the dynamic culture (at 2 weeks 430 kPa, 4 weeks 370 kPa) were similar to, or higher than, those from the control. This could be explained by the increased quantity of cells and neo-tissues in the case of dynamic culture compensating for the loss in tensile strength. Compared with static and dynamic culture conditions, mechanical stimulation played a crucial role in the regeneration of tendon tissue. In the case of the dynamic culture system, cell proliferation was enhanced and secretion of collagen type I was increased, as evidenced by DNA assay and histological and immunofluorescence analysis. Thus, tendon regeneration, indicated by improved mechanical and biological properties, was demonstrated, confirming the effect of mechanical stimulation. It could be concluded that the dynamic tensile stimulation appeared to be an essential factor in tendon/ligament tissue engineering, and that elastic PLCL co-polymers could be very beneficial in this process.

  12. Enhanced properties of graphene/fly ash geopolymeric composite cement

    Energy Technology Data Exchange (ETDEWEB)

    Saafi, Mohamed, E-mail: m.bensalem.saafi@strath.ac.uk [Department of Civil and Environmental Engineering, University of Strathclyde, G4 0NG (United Kingdom); Tang, Leung [Agilent Technologies, EH12 9DJ (United Kingdom); Fung, Jason; Rahman, Mahbubur [Department of Civil and Environmental Engineering, University of Strathclyde, G4 0NG (United Kingdom); Liggat, John [Department of Pure and Applied Chemistry, University of Strathclyde, G4 0NG (United Kingdom)

    2015-01-15

    This paper reports for the first time the incorporation of in-situ reduced graphene oxide (rGO) into geopolymers. The resulting rGO–geopolymeric composites are easy to manufacture and exhibit excellent mechanical properties. Geopolymers with graphene oxide (GO) concentrations of 0.00, 0.10, 0.35 and 0.50% by weight were fabricated. The functional groups, morphology, void filling mechanisms and mechanical properties of the composites were determined. The Fourier transform infrared (FTIR) spectra revealed that the alkaline solution reduced the hydroxyl/carbonyl groups of GO by deoxygenation and/or dehydration. Concomitantly, the spectral absorbance related to silica type cross-linking increased in the spectra. The scanning electron microscope (SEM) micrographs indicated that rGO altered the morphology of geopolymers from a porous nature to a substantially pore filled morphology with increased mechanical properties. The flexural tests showed that 0.35-wt.% rGO produced the highest flexural strength, Young's modulus and flexural toughness and they were increased by 134%, 376% and 56%, respectively.

  13. NATO Advanced Research Workshop on Fluorescence and other Optical Properties of Biological Particles for Biological Warfare Agent Sensors

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden; Optics of Biological Particles

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  14. Unravelling the biology of human papillomavirus (HPV) related tumours to enhance their radiosensitivity

    International Nuclear Information System (INIS)

    Vozenin, M.C.; Lord, H.K.; Deutsch, E.; Vozenin, M.C.; Hartl, D.

    2010-01-01

    HPV infection is associated with most squamous cell carcinomas (SCC) of the uterine cervix and many head and neck SCC. While recent understanding of the mechanisms of HPV-induced carcinogenesis has lead to the development of prophylactic vaccines, the principal modality of treatment is radiotherapy and despite concurrent chemotherapy, outcomes remain suboptimal. Improving the radiotherapeutic index thus remains an important challenge as well as defining predictive assays for treatment outcome of HPV-related tumours. Therefore elucidating the influence of the HPV virus on tumour radiosensitivity is of major interest due to the prevalence of HPV-related tumours worldwide and due to evidence that head and neck HPV-tumours have markedly different clinical outcomes compared to non-HPV-related tumours. This difference may allow for different treatment strategies to be developed. The present review aims to summarize the current understanding of radiosensitivity and HPV-related tumour biology in order to subsequently develop new approaches to enhance the therapeutic index. This review also emphasizes the relevance of E6 and E7 onco-proteins to tumour cell response to radiotherapy suggesting that specific targeted approaches such as concomitant modulation of additional pathways using targeted therapies should offer new therapeutic avenues. (authors)

  15. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR in domestic wastewater

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2014-04-01

    Full Text Available The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of enhancing biological phosphorous removal (EBPR by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in Quhafa waste water treatment plant (WWTP that included contact, final sedimentation, stabilization and thickening tanks, respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Then observation of the uptake and release of total phosphorus by achievement through two batch test using sludge samples from thickener and final sedimentations. Results showed the removal efficiencies of COD, BOD and TP for this pilot plant with the range of 94%, 85.44% and 80.54%, respectively. On the other hand the results of batch tests showed that the reason of high ability of phosphorus removal for this pilot plant related to the high performance of microorganisms for phosphorus accumulating. Finally the mechanism of this pilot plant depends on the removal of the phosphorus from the domestic waste water as a concentrated TP solution from the supernatant above the thickening zone not through waste sludge like traditional systems.

  16. The microbial community in a high-temperature enhanced biological phosphorus removal (EBPR process

    Directory of Open Access Journals (Sweden)

    Ying Hui Ong

    2016-01-01

    Full Text Available An enhanced biological phosphorus removal (EBPR process operated at a relatively high temperature, 28 °C, removed 85% carbon and 99% phosphorus from wastewater over a period of two years. This study investigated its microbial community through fluorescent in situ hybridization (FISH and clone library generation. Through FISH, considerably more Candidatus “Accumulibacter phosphatis” (Accumulibacter-polyphosphate accumulating organisms (PAOs than Candidatus ‘Competibacter phosphatis’ (Competibacter-glycogen accumulating organisms were detected in the reactor, at 36 and 7% of total bacterial population, respectively. A low ratio of Glycogen/Volatile Fatty Acid of 0.69 further indicated the dominance of PAOs in the reactor. From clone library generated, 26 operational taxonomy units were retrieved from the sludge and a diverse population was shown, comprising Proteobacteria (69.6%, Actinobacteria (13.7%, Bacteroidetes (9.8%, Firmicutes (2.94%, Planctomycetes (1.96%, and Acidobacteria (1.47%. Accumulibacter are the only recognized PAOs revealed by the clone library. Both the clone library and FISH results strongly suggest that Accumulibacter are the major PAOs responsible for the phosphorus removal in this long-term EBPR at relatively high temperature.

  17. Top layer enhances biological ontrol of thrips in ornamentals :"Predatory mites survive better on rich soil cover

    NARCIS (Netherlands)

    Hoogstraten, van K.; Grosman, A.H.

    2014-01-01

    An organic top layer over the soil or substrate can enhance the biological control of thrips in roses and alstroemerias. The top layer contains food for prey mites, which in turn serve as food for predatory mites. In this way the predators survive longer. Thus, as the thrips population increases, an

  18. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsun Su, Yen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Hsu, Chia-Yun; Chang, Chung-Chien [Science and Technology of Accelerator Light Source, Hsinchu 300, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Tu, Sheng-Lung; Shen, Yun-Hwei [Department of Resource Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  19. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  20. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties.

    Science.gov (United States)

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Rahman, M Aminur; Islam, Mohamad Tofazzal

    2017-10-17

    Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.

  1. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review.

    Science.gov (United States)

    Damasceno, Sarah S; Dantas, Bruna B; Ribeiro-Filho, Jaime; Antônio M Araújo, Demetrius; Galberto M da Costa, José

    2017-01-01

    The antioxidant properties of caffeic and ferulic acids in biological systems have been extensively demonstrated. As antioxidants, these compounds prevent the production of reactive oxygen species (ROS), which cause cell lesions that are associated with the development of several diseases, including cancer. Recent findings suggest that the chemoprotective action of these phenolic acids occurs through the following mechanisms: regulation of gene expression, chelation and / or reduction of transition metals, formation of covalent adducts and direct toxicity. The biological efficacy of these promising chemoprotective agents is strongly related with their chemical structure. Therefore, in this study, we discuss the structural characteristics of ferulic and caffeic acids that are responsible for their biological activities, as well as the mechanisms of action involved with the anti-cancer activity. Several reports indicated that the antioxidant effect of these phenylpropanoids results from reactions with free radicals with formation of stable products in the cells. The chelating effect of these compounds was also reported as an important protective mechanism against oxidative. Finally, the lipophilicity of these agents facilitates their entry into the cells, and thus, contributes to the anticancer activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Influence of gamma-irradiation upon the chemical and biological properties of insulin

    Energy Technology Data Exchange (ETDEWEB)

    Salemink, P J.M.; Kolkman-Roodbeen, J C; Gribnau, T C.J.; Janssen, P S.L.; Veen, A.J. van der

    1987-06-19

    Partially purified insulin preparations of bovine and porcine origin, were subjected to gamma-irradiation with doses ranging from 1.0 up to 25 kGy at 0/sup 0/C or ambient temperature. The susceptibility of insulin to the irradiation was determined by chromatography, electrophoresis and assay of the biological activity. The sterilizing effect of the gamma-irradiation was investigated for Bacillus pumilus as well as for artificial mixtures of lactose and several bacilli. It is concluded that the sterilizing dose for the investigated insulins was greater than or equal to 2.2 kGy. At doses up to 25 kGy at 0/sup 0/C no specific radiolytic products were detectable, whereas the biological activity was fully retained. The content of dimers and the content of related peptides appeared to increase gradually with the irradiation dose absorbed. No effects of long-term storage could be demonstrated on biological and chemical properties of insulin after 2.2, 4.5 and 7.5 kGy. 21 refs.; 4 figs.; 5 tabs.

  3. Membranolytic Activity of Bile Salts: Influence of Biological Membrane Properties and Composition

    Directory of Open Access Journals (Sweden)

    Alfred Blume

    2007-10-01

    Full Text Available The two main steps of the membranolytic activity of detergents: 1 the partitioning of detergent molecules in the membrane and 2 the solubilisation of the membrane are systematically investigated. The interactions of two bile salt molecules, sodium cholate (NaC and sodium deoxycholate (NaDC with biological phospholipid model membranes are considered. The membranolytic activity is analysed as a function of the hydrophobicity of the bile salt, ionic strength, temperature, membrane phase properties, membrane surface charge and composition of the acyl chains of the lipids. The results are derived from calorimetric measurements (ITC, isothermal titration calorimetry. A thermodynamic model is described, taking into consideration electrostatic interactions, which is used for the calculation of the partition coefficient as well as to derive the complete thermodynamic parameters describing the interaction of detergents with biological membranes (change in enthalpy, change in free energy, change in entropy etc. The solubilisation properties are described in a so-called vesicle-to-micelle phase transition diagram. The obtained results are supplemented and confirmed by data obtained from other biophysical techniques (DSC differential scanning calorimetry, DLS dynamic light scattering, SANS small angle neutron scattering.

  4. Biocorrosion properties of antibacterial Ti-10Cu sintered alloy in several simulated biological solutions.

    Science.gov (United States)

    Liu, Cong; Zhang, Erlin

    2015-03-01

    Ti-10Cu sintered alloy has shown strong antibacterial properties against S. aureus and E. coli and good cell biocompatibility, which displays potential application in dental application. The corrosion behaviors of the alloy in five different simulated biological solutions have been investigated by electrochemical technology, surface observation, roughness measurement and immersion test. Five different simulated solutions were chosen to simulate oral condition, oral condition with F(-) ion, human body fluids with different pH values and blood system. It has been shown that Ti-10Cu alloy exhibits high corrosion rate in Saliva pH 3.5 solution and Saliva pH 6.8 + 0.2F solution but low corrosion rate in Hank's, Tyrode's and Saliva pH 6.8 solutions. The corrosion rate of Ti-10Cu alloy was in a order of Hank's, Tyrode's, Saliva pH 6.8, Saliva-pH 3.5 and Saliva pH 6.8 + 0.2F from slow to fast. All results indicated acid and F(-) containing conditions prompt the corrosion reaction of Ti-Cu alloy. It was suggested that the Cu ion release in the biological environments, especially in the acid and F(-) containing condition would lead to high antibacterial properties without any cell toxicity, displaying wide potential application of this alloy.

  5. Enhancement of Unequal Error Protection Properties of LDPC Codes

    Directory of Open Access Journals (Sweden)

    Poulliat Charly

    2007-01-01

    Full Text Available It has been widely recognized in the literature that irregular low-density parity-check (LDPC codes exhibit naturally an unequal error protection (UEP behavior. In this paper, we propose a general method to emphasize and control the UEP properties of LDPC codes. The method is based on a hierarchical optimization of the bit node irregularity profile for each sensitivity class within the codeword by maximizing the average bit node degree while guaranteeing a minimum degree as high as possible. We show that this optimization strategy is efficient, since the codes that we optimize show better UEP capabilities than the codes optimized for the additive white Gaussian noise channel.

  6. Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Ge, Lin; Xuan, Shouhu; Liao, Guojiang; Yin, Tiantian; Gong, Xinglong

    2015-01-01

    A stretchable magnetorheological material (SMRM) consisting of micro-meter carbonyl iron (CI) particles, low cross-linking polyurethane (PU) polymer and porous PU sponge has been developed. Due to the presence of the PU sponge, the high-performance MR material can be reversibly stretched or bent, just as MR elastomers. When the CI content increases to 80 wt%, the magnetic induced modulus of the MR material can reach as high as 7.34 MPa and the corresponding relative MR effect increases to 820%. A possible strengthening mechanism of the SMRM was proposed. The attractive mechanical properties make the SMRM a promising candidate for future high-performance devices. (technical note)

  7. Substantiation of Biological Assets Classification Indexes for Enhancing Their Accounting Efficiency

    OpenAIRE

    Rayisa Tsyhan; Olha Chubka

    2013-01-01

    Present day national agricultural companies sell their products in both domestic and foreign markets which has a significant impact on specifics of biological assets accounting. The article offers biological assets classification provided in the Practical Guide to Accounting for Biological Assets and, besides, specifications proposed by various scientists. Based on the analysis, biological assets classification has been supplemented with new classification factors and their appropriateness ha...

  8. Physico-chemical properties and biological effects of diesel and biomass particles

    KAUST Repository

    Longhin, Eleonora

    2016-05-15

    © 2016 Elsevier Ltd. Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects.Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones.Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure.These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.

  9. Enhancing mechanical properties of chitosan films via modification with vanillin.

    Science.gov (United States)

    Zhang, Zhi-Hong; Han, Zhong; Zeng, Xin-An; Xiong, Xia-Yu; Liu, Yu-Jia

    2015-11-01

    The vanillin/chitosan composite films were prepared using the solvent evaporation method. The properties of the films including optical property, water vapor permeability (WVP), tensile strength (TS) and elongation at break (%E) were studied to investigate the effect of cross-linking agent of vanillin on chitosan films by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). Results showed that the TS of composite films increased by 53.3% and the WVP decreased by 36.5% compared with pure chitosan film that were due to the formation of the dense network structure by FT-IR spectra. There were almost no changes of the thermal stability of the composite films compared with the pure chitosan film by TGA analysis. In addition, from the SEM images, it could be seen that the film with addition of vanillin with 0.5-10% concentration exhibited good compatibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Crumb Rubber Recycling in Enhancing Damping Properties of Concrete

    Science.gov (United States)

    Sugapriya, P.; Ramkrishnan, R.

    2018-02-01

    Damping plays a major role in the design of roadside structures that gets affected due to vibrations transmitted from moving traffic. In this study, fine aggregates were partially replaced with crumb rubber in concrete, at varying percentages of 5, 10, 15 and 20% by weight. Three different sets of concrete, mixed with crumb rubber were prepared using raw rubber, treated rubber and treated rubber with partial replacement of cement. Cement was partially replaced with Ultra-Fine Ground Granulated Blast furnace Slag (UFGGBS) for this study. Samples were cast, cured and tested for various properties on the 7th and 28th day. The damping ratio and frequency of the peak value from a number of waves in rubber incorporated beams were found out using a FFT Analyser along with its Strength, Damping and Sorptivity characteristics. SEM analysis was conducted to analyse the micro structural bonding between rubber and concrete. The mode shapes of pavement slabs were modelled and analysed using a FEM tool, ANSYS. From the results, the behaviour of the three sets of rubberized concrete were compared and analysed, and an optimum percentage for crumb rubber and UFGGBS was proposed to achieve best possible damping without compromising the strength properties.

  11. Enhancement of properties of recycled coarse aggregate concrete using bacteria

    Science.gov (United States)

    Sahoo; Arakha; Sarkar; P; Jha

    2016-01-01

    Due to rapid construction, necessity for raw materials of concrete, especially coarse aggregate, tends to increase the danger of early exhaustion of the natural resources. An alternative source of raw materials would perhaps delay the advent of this early exhaustion. Recycled coarse aggregate (RCA) plays a great role as an alternative raw material that can replace the natural coarse aggregate (NCA) for concrete. Previous studies show that the properties of RCA concrete are inferior in quality compared to NCA concrete. This article attempts to study the improvement of properties of RCA concrete with the addition of bacteria named as Bacillus subtilis. The experimental investigation was carried out to evaluate the improvement of the compressive strength, capillary water absorption, and drying shrinkage of RCA concrete incorporating bacteria. The compressive strength of RCA concrete is found to be increased by about 20% when the cell concentration of B. subtilis is 106 cells/ml. The capillary water absorption as well as drying shrinkage of RCA are reduced when bacteria is incorporated. The improvement of RCA concrete is confirmed to be due to the calcium carbonate precipitation as observed from the microstructure studies carried out on it such as EDX, SEM, and XRD.

  12. Specific biological properties of Listeria innocua spp. isolated in Primorye Territory

    Directory of Open Access Journals (Sweden)

    E. A. Zaitseva

    2017-01-01

    Full Text Available Rationale: Most cases of listeriosis are caused by the pathogenic Listeria monocytogenes. Some cases of isolation of L.  innocua with pathogenicity factors from foods have been published, as well as on the cases of the disease in humans caused by this species. Aim: To assess biological properties including potential pathogenicity of L.  innocua, isolated from food and environmental objects. Materials and methods: We performed microbiological study of L. innocua cultures isolated from foods (n = 35 and environmental objects (n = 15 on the territory of Primorye Territory (Russian Federation, as well as assessment of their sensitivity to antibiotics. Results: The studied L.  innocua cultures showed stable phenotypic features of their biological properties, such as morphology, typical colony growth on the medium with characteristic odor of fermented milk, blue or blue-green luminescence induced by inclined light, presence of catalase activity and absence of the oxidase activity. Only 38 ± 6.9% of L.  innocua demonstrated movements at T 22 °С. L.  innocua cultures did not ferment mannitol (100% of cultures; they degraded ramnose to its acid without gas (70 ± 6.5% and degraded xylose (42.8 ± 7%. Listeria isolated from vegetables and environmental objects could ferment ramnose (92.8 ± 7.2% of the studied cultures and xylose (28.5 ± 12.5% more frequently than L. innocua isolated from meat and fish foods. L.  innocua demonstrated variable biochemical activities towards mannose (92 ± 3.8%, saccharose (85.7 ± 7.8% and melesitose (76.2 ± 9.5%. L. innocua cultures with hemolytic activity (34 ± 6.7% (α or β  type were isolated, more commonly from fish products. All Listeria irrespective of their isolation source showed lipase activity. L.  innocua cultures from foods and environmental objects were highly sensitive to antimicrobials from the following classes: penicillins (ampicillin, carbenicillin, combined amoxicillin and clavulanic

  13. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.

    Science.gov (United States)

    Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali

    2017-04-27

    A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.

  14. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  15. White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

    Directory of Open Access Journals (Sweden)

    Hany Mohamed Aly Ahmed

    2017-04-01

    Full Text Available Objectives This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA, which was WMTA combined with calcium chloride dihydrate (CaCl2·2H2O, compared to that of WMTA. Materials and Methods Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM, energy dispersive X-ray microanalysis (EDX, and X-ray diffraction (XRD, respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs using methyl-thiazol-diphenyltetrazolium (MTT assay and under SEM after 24 and 72 hours, respectively. Results Results showed that the addition of CaCl2·2H2O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05. HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions The addition of CaCl2·2H2O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.

  16. Photoreactivity of biologically active compounds. XVII. Influence of solvent interactions on spectroscopic properties and photostability of primaquine.

    Science.gov (United States)

    Kristensen, S

    2005-06-01

    The influence of solvent interactions on absorption properties, fluorescence properties (emission spectra and quantum yields) and relative photochemical degradation rates of primaquine has been investigated, in order to evaluate photochemical reaction mechanisms and chemical properties of the compound. The first absorption band (n - pi*) of primaquine is only slightly dependent on properties of the solvent, which can be ascribed to a strong, intramolecular hydrogen bond between the quinoline N and amine group in the ground state (S0). Amphiprotic solvents with predominant acidic properties (water and methanol) will to some extent stabilize the molecule and initiate hypsochromic shifts of the absorption band by protic interactions, while the other solvents (amphiprotic, basic and neutral) influence the absorption spectrum by general solvent effects only. The excited singlet (S1*) state of primaquine interacts more efficiently with the surrounding solvents than the S0 state, as evaluated by the Stokes shifts. The pKa value of the quinoline N is likely to increase in the S1* state, which is important for the observed protic interactions with amphiprotic solvents of predominant acidity. Specific solvent effects are highly important for the efficiency of the fluorescence (fluorescence quantum yields; phi f). The fluorescence is quenched by amphiprotic solvents, likely due to a rupture of the intramolecular bond and protonation of the quinolone N, and enhanced by polar, non-protic (basic) solvents, probably by stabilization of the delta intramolecular hydrogen bond. The observed photochemical degradation rates of primaquine in amphiprotic media are positively correlated with phi f, indicating that the photochemical degradation of primaquine is dependent on intramolecular hydrogen bonding and non protonated lone-pair electrons at the quinoline N. The intramolecular ring-formation with a subsequent increased lipophilic character and (lack of) interactions with the

  17. Enhancement of strength properties of hot rolled 10KHSND steel

    International Nuclear Information System (INIS)

    Nasibov, A.G.; Popova, L.V.; Pikulin, S.A.; Globa, N.I.

    1989-01-01

    To find out the reasons of low hot rolling yield for 10KhSND steel sheets in mechanical properties, titanium effect in the range of 0.008-0.03% concentrations is studied. It is established that the titanium content in a solid solution is conserved within 0.003-0.005%, the rest of titanium is bound to carbonitrides Ti(C, N). It is shown that alloys with 0.025-0.03% titanium content possess the increased values of ultimate and yield strength the necessary level of impact strength and good wealdability. The good steel yield, when the titanium content is sustained at the given level, increases from 40 to 85%

  18. Enhancing the combustible properties of bamboo by torrefaction.

    Science.gov (United States)

    Rousset, Patrick; Aguiar, Clarissa; Labbé, Nicole; Commandré, Jean-Michel

    2011-09-01

    Bamboo has wide range of moisture content, low bulk energy density and is difficult to transport, handle, store and feed into existing combustion and gasification systems. Because of its important fuel characteristics such as low ash content, alkali index and heating value, bamboo is a promising energy crop for the future. The aim of this study was to evaluate the effects of torrefaction on the main energy properties of Bambusa vulgaris. Three different torrefaction temperatures were employed: 220, 250 and 280°C. The elemental characteristics of lignite and coal were compared to the torrefied bamboo. The characteristics of the biomass fuels tend toward those of low rank coals. Principal component analysis of FTIR data showed a clear separation between the samples by thermal treatment. The loadings plot indicated that the bamboo samples underwent chemical changes related to carbonyl groups, mostly present in hemicelluloses, and to aromatic groups present in lignin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties.

    Science.gov (United States)

    Stavarache, Ionel; Maraloiu, Valentin Adrian; Prepelita, Petronela; Iordache, Gheorghe

    2016-01-01

    Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 %) into SiO 2 . Crystalline Ge nanoparticles were directly formed during co-deposition of SiO 2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge-Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO 2 /ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW -1 ), fast response time (0.5 µs at 4 kHz) and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO 2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO 2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si

  20. Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

    Directory of Open Access Journals (Sweden)

    Ionel Stavarache

    2016-10-01

    Full Text Available Obtaining high-quality materials, based on nanocrystals, at low temperatures is one of the current challenges for opening new paths in improving and developing functional devices in nanoscale electronics and optoelectronics. Here we report a detailed investigation of the optimization of parameters for the in situ synthesis of thin films with high Ge content (50 % into SiO2. Crystalline Ge nanoparticles were directly formed during co-deposition of SiO2 and Ge on substrates at 300, 400 and 500 °C. Using this approach, effects related to Ge–Ge spacing are emphasized through a significant improvement of the spatial distribution of the Ge nanoparticles and by avoiding multi-step fabrication processes or Ge loss. The influence of the preparation conditions on structural, electrical and optical properties of the fabricated nanostructures was studied by X-ray diffraction, transmission electron microscopy, electrical measurements in dark or under illumination and response time investigations. Finally, we demonstrate the feasibility of the procedure by the means of an Al/n-Si/Ge:SiO2/ITO photodetector test structure. The structures, investigated at room temperature, show superior performance, high photoresponse gain, high responsivity (about 7 AW−1, fast response time (0.5 µs at 4 kHz and great optoelectronic conversion efficiency of 900% in a wide operation bandwidth, from 450 to 1300 nm. The obtained photoresponse gain and the spectral width are attributed mainly to the high Ge content packed into a SiO2 matrix showing the direct connection between synthesis and optical properties of the tested nanostructures. Our deposition approach put in evidence the great potential of Ge nanoparticles embedded in a SiO2 matrix for hybrid integration, as they may be employed in structures and devices individually or with other materials, hence the possibility of fabricating various heterojunctions on Si, glass or flexible substrates for future development of Si

  1. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Simon, Paul; Schulze, Renate; Doert, Thomas; Luo, Yongxiang; Cuniberti, Gianaurelio

    2011-04-01

    For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO(2) glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO(2) in an effort to develop a bioactive mesoporous SrO-SiO(2) (Sr-Si) glass with the capacity to deliver Sr(2+) ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr(2+) on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr-Si glass were investigated. The prepared mesoporous Sr-Si glass was found to have an excellent release profile of bioactive Sr(2+) ions and dexamethasone, and the incorporation of Sr(2+) improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr-Si glass had no cytotoxic effects and its release of Sr(2+) and SiO(4)(4-) ions enhanced alkaline phosphatase activity - a marker of osteogenic cell differentiation - in human bone mesenchymal stem cells. Mesoporous Sr-Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr(2+) into mesoporous SiO(2) glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films

    International Nuclear Information System (INIS)

    Saravanan, A.; Huang, B. R.; Sankaran, K. J.; Tai, N. H.; Dong, C. L.; Lin, I. N.

    2015-01-01

    The electron field emission (EFE) properties of ultrananocrystalline diamond films were markedly improved via the bias-enhanced plasma post-treatment (bep) process. The bep-process induced the formation of hybrid-granular structure of the diamond (bep-HiD) films with abundant nano-graphitic phase along the grain boundaries that increased the conductivity of the films. Moreover, the utilization of Au-interlayer can effectively suppress the formation of resistive amorphous-carbon (a-C) layer, thereby enhancing the transport of electrons crossing the diamond-to-Si interface. Therefore, bep-HiD/Au/Si films exhibit superior EFE properties with low turn-on field of E 0  = 2.6 V/μm and large EFE current density of J e  = 3.2 mA/cm 2 (at 5.3 V/μm)

  3. Enhancement of Ultrahigh Performance Concrete Material Properties with Carbon Nanofiber

    Directory of Open Access Journals (Sweden)

    Libya Ahmed Sbia

    2014-01-01

    Full Text Available Ultrahigh performance concrete (UHPC realized distinctly high mechanical, impermeability, and durability characteristics by reducing the size and content of capillary pore, refining the microstructure of cement hydrates, and effectively using fiber reinforcement. The dense and fine microstructure of UHPC favor its potential to effectively disperse and interact with nanomaterials, which could complement the reinforcing action of fibers in UHPC. An optimization experimental program was implemented in order to identify the optimum combination of steel fiber and relatively low-cost carbon nanofiber in UHPC. The optimum volume fractions of steel fiber and carbon nanofiber identified for balanced improvement of flexural strength, ductility, energy sorption capacity, impact, and abrasion resistance of UHPC were 1.1% and 0.04%, respectively. Desired complementary/synergistic actions of nanofibers and steel fibers in UHPC were detected, which were attributed to their reinforcing effects at different scales, and the potential benefits of nanofibers to interfacial bonding and pull-out behavior of fibers in UHPC. Modification techniques which enhanced the hydrophilicity and bonding potential of nanofibers to cement hydrates benefited their reinforcement efficiency in UHPC.

  4. The biological properties of the silver- and copper-doped ceramic biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, Oleksandr, E-mail: dr.alex.lysenko@gmail.com [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Dubok, Oleksii [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine); Borysenko, Anatolii [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Shinkaruk, Oleksandr [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine)

    2015-04-15

    The biological properties of nanostructured bioactive ceramic composite (BCC) granules doped with 0.1–10 at.% silver and 0.05–5 at.% copper have been investigated both in vitro and in vivo to develop effective alloplastic material for infected bone defect substitute. It is assumed that the granules consisting of biphasic calcium phosphate and bioactive glass ceramics due to their nanoscale (15–40 nm) and multiphase structure, bioelement placement in different ceramic phases as well as antimicrobial effect should improve osteogenic properties and biocompatibility. Tests in vitro have been conducted with multipotent mesenchymal stromal cells (MSCs) and test strains of microorganisms. The same biocomposite has been used in vivo to study the repair of bone defects in animal model. The findings indicate that doped BCC leads to antimicrobial activity. Inhibition of MSCs growth has been observed for granules doped with ions of more than 1 at.% silver and 0.5 at.% copper. The results of the in vivo study reveal that BCC implantation significantly improves bone reparation. Differences between bone repair with undoped and doped, with 1 at.% silver and 0.5 at.% copper, ceramic samples were not observed. The BCC doped within 0.5–1 at.% silver and 0.25–0.5 at.% copper stimulates bone tissue repair and has satisfactory biocompatibility and antimicrobial properties.

  5. The biological properties of the silver- and copper-doped ceramic biomaterial

    International Nuclear Information System (INIS)

    Lysenko, Oleksandr; Dubok, Oleksii; Borysenko, Anatolii; Shinkaruk, Oleksandr

    2015-01-01

    The biological properties of nanostructured bioactive ceramic composite (BCC) granules doped with 0.1–10 at.% silver and 0.05–5 at.% copper have been investigated both in vitro and in vivo to develop effective alloplastic material for infected bone defect substitute. It is assumed that the granules consisting of biphasic calcium phosphate and bioactive glass ceramics due to their nanoscale (15–40 nm) and multiphase structure, bioelement placement in different ceramic phases as well as antimicrobial effect should improve osteogenic properties and biocompatibility. Tests in vitro have been conducted with multipotent mesenchymal stromal cells (MSCs) and test strains of microorganisms. The same biocomposite has been used in vivo to study the repair of bone defects in animal model. The findings indicate that doped BCC leads to antimicrobial activity. Inhibition of MSCs growth has been observed for granules doped with ions of more than 1 at.% silver and 0.5 at.% copper. The results of the in vivo study reveal that BCC implantation significantly improves bone reparation. Differences between bone repair with undoped and doped, with 1 at.% silver and 0.5 at.% copper, ceramic samples were not observed. The BCC doped within 0.5–1 at.% silver and 0.25–0.5 at.% copper stimulates bone tissue repair and has satisfactory biocompatibility and antimicrobial properties

  6. Insights on the Optical Properties of Estuarine DOM - Hydrological and Biological Influences.

    Directory of Open Access Journals (Sweden)

    Luísa Santos

    Full Text Available Dissolved organic matter (DOM in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal, the seasonality and the sources of the fraction of DOM that absorbs light (CDOM were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems.

  7. Insights on the Optical Properties of Estuarine DOM – Hydrological and Biological Influences

    Science.gov (United States)

    Santos, Luísa; Pinto, António; Filipe, Olga; Cunha, Ângela; Santos, Eduarda B. H.

    2016-01-01

    Dissolved organic matter (DOM) in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal), the seasonality and the sources of the fraction of DOM that absorbs light (CDOM) were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems. PMID:27195702

  8. Insights on the Optical Properties of Estuarine DOM - Hydrological and Biological Influences.

    Science.gov (United States)

    Santos, Luísa; Pinto, António; Filipe, Olga; Cunha, Ângela; Santos, Eduarda B H; Almeida, Adelaide

    2016-01-01

    Dissolved organic matter (DOM) in estuaries derives from a diverse array of both allochthonous and autochthonous sources. In the estuarine system Ria de Aveiro (Portugal), the seasonality and the sources of the fraction of DOM that absorbs light (CDOM) were inferred using its optical and fluorescence properties. CDOM parameters known to be affected by aromaticity and molecular weight were correlated with physical, chemical and meteorological parameters. Two sites, representative of the marine and brackish water zones of the estuary, and with different hydrological characteristics, were regularly surveyed along two years, in order to determine the major influences on CDOM properties. Terrestrial-derived compounds are the predominant source of CDOM in the estuary during almost all the year and the two estuarine zones presented distinct amounts, as well as absorbance and fluorescence characteristics. Freshwater inputs have major influence on the dynamics of CDOM in the estuary, in particular at the brackish water zone, where accounted for approximately 60% of CDOM variability. With a lower magnitude, the biological productivity also impacted the optical properties of CDOM, explaining about 15% of its variability. Therefore, climate changes related to seasonal and inter-annual variations of the precipitation amounts might impact the dynamics of CDOM significantly, influencing its photochemistry and the microbiological activities in estuarine systems.

  9. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    Science.gov (United States)

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  10. Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties.

    Science.gov (United States)

    Khodabakhsh, Farnaz; Norouzian, Dariush; Vaziri, Behrouz; Ahangari Cohan, Reza; Sardari, Soroush; Mahboudi, Fereidoun; Behdani, Mahdi; Mansouri, Kamran; Mehdizadeh, Ardavan

    2017-08-25

    Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD analysis revealed an increment in random coil structure of the PASylated protein in comparison to native one without any change in charge state or binding kinetic parameters of nanobody assessed by isoelectric focusing and surface plasmon resonance measurements, respectively. In vitro biological activities of nanobody were not affected by coupling of the PAS sequence. In contrast, the terminal half-life was significantly increased by a factor of 14 for the nanobody-PAS after single dose IV injection to the mice. Our study demonstrated that the control of size in the design of small therapeutic proteins has a promising effect on the stability and solubility, in addition to their physiochemical and pharmacokinetic properties. The designed new anti-VEGFA nanobody could promise a better therapeutic agent with a long administration intervals and lower dose, which in turn leads to a better patient compliance. Size adjustment of an anti-VEGF nanobody at the nanoscale by the attachment of a natural PAS polymer remarkably improves physicochemical properties, as well as a pharmacokinetic profile without any change in biological activity of the miniaturized antibody.

  11. Optimization of enhanced biological phosphorus removal after periods of low loading.

    Science.gov (United States)

    Miyake, Haruo; Morgenroth, Eberhard

    2005-01-01

    Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.

  12. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus)

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A. Keith; Stott, Jeffrey L.; Waters, Shannon C.; Atwood, Todd C.

    2015-01-01

    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans.

  13. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus).

    Science.gov (United States)

    Bowen, Lizabeth; Miles, A Keith; Stott, Jeffrey; Waters, Shannon; Atwood, Todd

    2015-10-01

    Populations of wildlife species worldwide experience incidents of mass morbidity and mortality. Primary or secondary drivers of these events may escape classical detection methods for identifying microbial insults, toxin exposure, or additional stressors. In 2012, 28% of polar bears sampled in a study in the southern Beaufort Sea region of Alaska had varying degrees of alopecia that was concomitant with reduced body condition. Concurrently, elevated numbers of sick or dead ringed seals were detected in the southern Beaufort, Chukchi, and Bering seas in 2012, resulting in the declaration of an unusual mortality event (UME) by the National Oceanic and Atmospheric Administration (NOAA). The primary and possible ancillary causative stressors of these events are unknown, and related physiological changes within individual animals have been undetectable using classical diagnostic methods. Here we present an emerging technology as a potentially guiding investigative approach aimed at elucidating the circumstances responsible for the susceptibility of certain polar bears to observed conditions. Using transcriptomic analysis we identified enhanced biological processes including immune response, viral defense, and response to stress in polar bears with alopecia. Our results support an alternative mechanism of investigation into the causative agents that, when used proactively, could serve as an early indicator for populations and species at risk. We suggest that current or classical methods for investigation into events of unusual morbidity and mortality can be costly, sometimes unfocused, and often inconclusive. Advances in technology allow for implementation of a holistic system of surveillance and investigation that could provide early warning of health concerns in wildlife species important to humans. Published by Elsevier B.V.

  15. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.

    Science.gov (United States)

    Pijuan, M; Saunders, A M; Guisasola, A; Baeza, J A; Casas, C; Blackall, L L

    2004-01-05

    An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. Copyright 2003 Wiley Periodicals, Inc.

  16. Measurements of Relative Biological Effectiveness and Oxygen Enhancement Ratio of Fast Neutrons of Different Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barendsen, G. W.; Broerse, J. J. [Radiobiological Institute of the Health Research Council TNO, Rijswijk (ZH) (Netherlands)

    1968-03-15

    Impairment of the reproductive capacity of cultured cells of human kidney origin (T-l{sub g} cells) has been measured by the Puck cloning technique. From the dose-survival curves obtained in these experiments by irradiation of cells in equilibrium with air and nitrogen, respectively, the relative biological effectiveness (RBE) and the oxygen enhancement ratios (OER) were determined for different beams of fast neutrons. Monoenergetic neutrons of 3 and 15 MeV energy, fission spectrum fast neutrons (mean energy about 1.5 MeV), neutrons produced by bombarding Be with cyclotron-accelerated 16 MeV deuterons (mean energy about 6 MeV) and neutrons produced by bombarding Be with cyclotron- accelerated 20 MeV {sup 3}He ions (mean energy about 10 MeV) have been compared with 250 kVp X-rays as a standard reference. The RBE for 50% cell survival varies from 4.7 for fission-spectrum fast neutrons to 2.7 for 15 MeV monoenergetic neutrons. The OER is not strongly dependent on the neutron energy for the various beams investigated. For the neutrons with the highest and lowest energies used OER values of 1.6 {+-} 0.2 and 1.5 {+-} 0.1 were measured. An interpretation of these data on the basis of the shapes of the LET spectra is proposed and an approximate verification of this hypothesis is provided from measurements in which secondary particle equilibrium was either provided for or deliberately eliminated. (author)

  17. TRISO coated fuel particles with enhanced SiC properties

    International Nuclear Information System (INIS)

    Lopez-Honorato, E.; Tan, J.; Meadows, P.J.; Marsh, G.; Xiao, P.

    2009-01-01

    The silicon carbide (SiC) layer used for the formation of TRISO coated fuel particles is normally produced at 1500-1650 deg. C via fluidized bed chemical vapor deposition from methyltrichlorosilane in a hydrogen environment. In this work, we show the deposition of SiC coatings with uniform grain size throughout the coating thickness, as opposed to standard coatings which have larger grain sizes in the outer sections of the coating. Furthermore, the use of argon as the fluidizing gas and propylene as a carbon precursor, in addition to hydrogen and methyltrichlorosilane, allowed the deposition of stoichiometric SiC coatings with refined microstructure at 1400 and 1300 deg. C. The deposition of SiC at lower deposition temperatures was also advantageous since the reduced heat treatment was not detrimental to the properties of the inner pyrolytic carbon which generally occurs when SiC is deposited at 1500 deg. C. The use of a chemical vapor deposition coater with four spouts allowed the deposition of uniform and spherical coatings.

  18. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, B.Y.; Song, S.Y. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  19. Enhanced electrical properties in bilayered ferroelectric thin films

    Science.gov (United States)

    Zhang, Hao; Long, WeiJie; Chen, YaQing; Guo, DongJie

    2013-03-01

    Sr2Bi4Ti5O18 (SBTi) single layered and Sr2Bi4Ti5O18/Pb(Zr0.53Ti0.47)O3 (SBTi/PZT) bilayered thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD). The related structural characterizations and electrical properties have been comparatively investigated. X-ray diffraction reveals that both films have crystallized into perovskite phases and scanning electron microscopy shows the sharp interfaces. Both films show well-saturated ferroelectric hysteresis loops, however, compared with the single layered SBTi films, the SBTi/PZT bilayered films have significantly increased remnant polarization ( P r) and decreased coercive field ( E c), with the applied field of 260 kV/cm. The measured P r and E c of SBTi and SBTi/PZT films were 7.9 μC/cm2, 88.1 kV/cm and 13.0 μC/cm2, 51.2 kV/cm, respectively. In addition, both films showed good fatigue-free characteristics, the switchable polarization decreased by 9% and 11% of the initial values after 2.2×109 switching cycles for the SBTi single layered films and the SBTi/PZT bilayered films, respectively. Our results may provide some guidelines for further optimization of multilayered ferroelectric thin films.

  20. Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties

    International Nuclear Information System (INIS)

    Shalini, Jayakumar; Lin, Yi-Chieh; Chang, Ting-Hsun; Sankaran, Kamatchi Jothiramalingam; Chen, Huang-Chin; Lin, I.-Nan; Lee, Chi-Young; Tai, Nyan-Hwa

    2013-01-01

    The effects of N 2 incorporation in Ar/CH 4 plasma on the electrochemical properties and microstructure of ultra-nanocrystalline diamond (UNCD) films are reported. While the electrical conductivity of the films increased monotonously with increasing N 2 content (up to 25%) in the plasma, the electrochemical behavior was optimized for UNCD films grown in (Ar–10% N 2 )/CH 4 plasma. Transmission electron microscopy showed that the main factor resulting in high conductivity in the films was the formation of needle-like nanodiamond grains and the induction graphite layer encapsulating these grains. The electrochemical process for N 2 -incorporated UNCD films can readily be activated due to the presence of nanographite along the grain boundaries of the films. The formation of needle-like diamond grains was presumably due to the presence of CN species that adhered to the existing nanodiamond clusters, which suppressed radial growth of the nanodiamond crystals, promoting anisotropic growth and the formation of needle-like nanodiamond. The N 2 -incorporated UNCD films outperformed other electrochemical electrode materials, such as boron-doped diamond and glassy carbon, in that the UNCD electrodes could sense dopamine, urea, and ascorbic acid simultaneously in the same mixture with clear resolution

  1. Nanoconfinement: an effective way to enhance PVDF piezoelectric properties.

    Science.gov (United States)

    Cauda, Valentina; Stassi, Stefano; Bejtka, Katarzyna; Canavese, Giancarlo

    2013-07-10

    The dimensional confinement and oriented crystallization are both key factors in determining the piezoelectric properties of a polymeric nanostructured material. Here we prepare arrays of one-dimensional polymeric nanowires showing piezoelectric features by template-wetting two distinct polymers into anodic porous alumina (APA) membranes. In particular, poly(vinylidene fluoride), PVDF, and its copolymer poly(vinylidene fluoride-trifluoroethylene), PVTF, are obtained in commercially available APA, showing a final diameter of about 200 nm and several micrometers in length, reflecting the templating matrix features. We show that the crystallization of both polymers into a ferroelectric phase is directed by the nanotemplate confinement. Interestingly, the PVDF nanowires mainly crystallize into the β-phase in the nanoporous matrix, whereas the reference thin film of PVDF crystallizes in the α nonpolar phase. In the case of the PVTF nanowires, needle-like crystals oriented perpendicularly to the APA channel walls are observed, giving insight on the molecular orientation of the polymer within the nanowire structure. A remarkable piezoelectric behavior of both 1-D polymeric nanowires is observed, upon recording ferroelectric polarization, hysteresis, and displacement loops. In particular, an outstanding piezoelectric effect is observed for the PVDF nanowires with respect to the polymeric thin film, considering that no poling was carried out. Current versus voltage (I-V) characteristics showed a consistent switching behavior of the ferroelectric polar domains, thus revealing the importance of the confined and oriented crystallization of the polymer in monodimensional nanoarchitectures.

  2. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A [ORNL; Lindahl, John M [ORNL; JohnsonPhD, DR Joseph E. [Nanocomp Technologies, Inc.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  3. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance.

    Science.gov (United States)

    Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

    2014-04-16

    Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19 MPa and 1.94 ± 0.10 MPa · m(1/2) with graphene content of 0.5 wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications.

  4. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  5. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  6. STRUCTURE AND SOME BIOLOGICAL PROPERTIES OF Fe(III COMPLEXES WITH NITROGEN-CONTAINING LIGANDS

    Directory of Open Access Journals (Sweden)

    Ion Bulhac

    2016-06-01

    Full Text Available Four coordination compounds of iron(III with ligands based on hydrazine and sulfadiazine: FeCl3·digsemi·2H2O (I (digsemi-semicarbazide diacetic acid dihydrazide, [Fe(HLSO4] (II (НL - sulfadiazine, [Fe(H2L1(H2O2](NO33·5H2O (III (H2L1-2,6-diacetylpyridine bis(nicotinoylhydrazone and [Fe(H2L2(H2O2](NO33•1.5H2O (IV (H2L2 - 2,6-diacetylpyridine bis(isonicotinoylhydrazone were synthesized. The spectroscopic and structural characterisation as well as their biological, properties are presented.

  7. Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties on induced temperature variation.

    Science.gov (United States)

    de Oliveira, Marilia M; Wen, Paul; Ahfock, Tony

    2016-08-01

    A realistic human head model consisting of six tissue layers was modelled to investigate the behavior of temperature profile and magnitude when applying electroconvulsive therapy stimulation and different biological properties. The thermo-electrical model was constructed with the use of bio-heat transfer equation and Laplace equation. Three different electrode montages were analyzed as well as the influence of blood perfusion, metabolic heat and electric and thermal conductivity in the scalp. Also, the effect of including the fat layer was investigated. The results showed that temperature increase is inversely proportional to electrical and thermal conductivity increase. Furthermore, the inclusion of blood perfusion slightly drops the peak temperature. Finally, the inclusion of fat is highly recommended in order to acquire more realistic results from the thermo-electrical models.

  8. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis.

    Science.gov (United States)

    Oliveira, Fabiana da Rocha; Noronha, Maria das Dores Nogueira; Lozano, Jorge Luis Lopez

    2017-01-01

    The coral snake Micrurus surinamensis, which is widely distributed throughout Amazonia, has a neurotoxic venom. It is important to characterize the biological and molecular properties of this venom in order to develop effective antitoxins. Toxins from the venom of M. surinamensis were analyzed by two-dimensional polyacrylamide gel electrophoresis and their neurotoxic effects in vivo were evaluated. Most proteins in the venom had masses < 14kDa, low phospholipase A2 activity, and no proteolytic activity. The toxins inhibited the coagulation cascade. The venom had neurotoxic effects in mice, with a median lethal dose upon intravenous administration of 700 µg/kg. Immunogenic studies revealed abundant cross-reactivity of antielapidic serum with 14kDa toxins and limited cross-reactivity with toxins < 10kDa. These results indicate that antielapidic serum against M. surinamensis venom has weak potency (0.35mg/ml) in mice.

  9. SYNTHESIS AND BIOLOGIC PROPERTIES OF SOME 1-(ALCHYLPHENYL-3-(4-(3-(PYRIDIN-2-ILACRYLOYLPHENYLTHIOUREA

    Directory of Open Access Journals (Sweden)

    A. Popusoi

    2013-06-01

    Full Text Available This paper describe the synthesis of some 1-(alchylaril-3-(4-(3-pyridin-2-il acryloylphenylthiourea obtained by condensation of 2-pyridincarboxaldehide with some derivatives of 4-acetylphenilthioureas in basic medium or by addition of aliphatic and aromatic amines to the correspondingisothiocyanatopropenones. 12 new compounds were obtained and their biological properties were analysed. The substituted thioureas by pyridine radicals, morpholine and phenol show a maximum bacteriostatic activity for Gram positive microorganisms like: Staphylococcus Aureus and Enterococcus Faecalis at the minimum inhibitory concentration 9.37-37.5 μM. Antifungal activity for Candida Albicans, Aspergillus Niger, AspergillusFumigatus, Penicillium is weak, in minimum inhibitory concentration 600->600 μM. The leukemia activity like inhibitor (HL-60, is 84-96.9% at the concentration 10-5mol/l and 15- 20% and at the concentrations 10-6, 10-7mol/l.

  10. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  11. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    Science.gov (United States)

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  12. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia.

    Science.gov (United States)

    Zhang, Fan; Lin, Lihua; Xie, Jianhua

    2016-11-01

    Recently, isolation and characterization of bioactive polysaccharides from natural resources have attracted increasing interest. Momordica charantia L. (M. charantia), belongs to the Curcubitaceae family, which is widely distributed in the tropical and subtropical regions of the world, and has been used as herbal medicine and a vegetable for thousands of years. M. charantia polysaccharides, as major active ingredients of M. charantia, have attracted a great deal of attention because of their various biological activities, such as antitumor, immunomodulation, antioxidant, anti-diabetes, radioprotection, and hepatoprotection. The present review provides the most complete summary of the research progress on the polysaccharides isolated from M. charantia, including the extraction, separation, physical-chemical properties, structural characteristics, and bioactivities during the last ten years. This review also provides a foundation for the further development and application in the field of M. charantia polysaccharides. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2016-01-01

    Nanotechnology is gaining tremendous attention in the present century due to its expected impact on many important areas such as medicine, energy, electronics, and space industries. In this context, actinobacterial biosynthesis of nanoparticles is a reliable, eco-friendly, and important aspect of green chemistry approach that interconnects microbial biotechnology and nanobiotechnology. Antibiotics produced by actinobacteria are popular in almost all the therapeutic measures and it is known that these microbes are also helpful in the biosynthesis of nanoparticles with good surface and size characteristics. In fact, actinobacteria are efficient producers of nanoparticles that show a range of biological properties, namely, antibacterial, antifungal, anticancer, anti-biofouling, anti-malarial, anti-parasitic, antioxidant, etc. This review describes the potential use of the actinobacteria as the novel sources for the biosynthesis of nanoparticles with improved biomedical applications.

  14. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction

    Directory of Open Access Journals (Sweden)

    Saravana Periaswamy Sivagnanam

    2015-05-01

    Full Text Available The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri was extracted by using environmentally friendly supercritical CO2 (SC-CO2 with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v. The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

  15. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction.

    Science.gov (United States)

    Sivagnanam, Saravana Periaswamy; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo

    2015-05-29

    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

  16. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  17. Physical properties and biological effects of mineral trioxide aggregate mixed with methylcellulose and calcium chloride.

    Science.gov (United States)

    Lee, Bin-Na; Chun, Soo-Ji; Chang, Hoon-Sang; Hwang, Yun-Chan; Hwang, In-Nam; Oh, Won-Mann

    2017-01-01

    Methylcellulose (MC) is a chemical compound derived from cellulose. MTA mixed with MC reduces setting time and increases plasticity. This study assessed the influence of MC as an anti-washout ingredient and CaCl2 as a setting time accelerator on the physical and biological properties of MTA. Test materials were divided into 3 groups; Group 1(control): distilled water; Group 2: 1% MC/CaCl2; Group 3: 2% MC/CaCl2. Compressive strength, pH, flowability and cell viability were tested. The gene expression of bone sialoprotein (BSP) was detected by RT-PCR and real- time PCR. The expression of alkaline phosphatase (ALP) and mineralization behavior were evaluated using an ALP staining and an alizarin red staining. Compressive strength, pH, and cell viability of MTA mixed with MC/CaCl2 were not significantly different compared to the control group. The flowability of MTA with MC/CaCI2 has decreased significantly when compared to the control (pphysical and biological effect of MTA. It suggests that these cements may be useful as a root-end filling material.

  18. Chemical and Biological Properties of S-1-Propenyl-l-Cysteine in Aged Garlic Extract.

    Science.gov (United States)

    Kodera, Yukihioro; Ushijima, Mitsuyasu; Amano, Hirotaka; Suzuki, Jun-Ichiro; Matsutomo, Toshiaki

    2017-03-31

    S-1-Propenyl-l-cysteine (S1PC) is a stereoisomer of S-1-Propenyl-l-cysteine (SAC), an important sulfur-containing amino acid that plays a role for the beneficial pharmacological effects of aged garlic extract (AGE). The existence of S1PC in garlic preparations has been known since the 1960's. However, there was no report regarding the biological and/or pharmacological activity of S1PC until 2016. Recently, we performed a series of studies to examine the chemical, biological, pharmacological and pharmacokinetic properties of S1PC, and obtained some interesting results. S1PC existed only in trace amounts in raw garlic, but its concentration increased almost up to the level similar of SAC through aging process of AGE. S1PC showed immunomodulatory effects in vitro and in vivo, and reduced blood pressure in a hypertensive animal model. A pharmacokinetic study revealed that S1PC was readily absorbed after oral administration in rats and dogs with bioavailability of 88-100%. Additionally, S1PC had little inhibitory influence on human cytochrome P450 activities, even at a concentration of 1 mM. Based on these findings, S1PC was suggested to be another important, pharmacologically active and safe component of AGE similar to SAC. In this review, we highlight some results from recent studies on S1PC and discuss the potential medicinal value of S1PC.

  19. Modelling effective dielectric properties of materials containing diverse types of biological cells

    International Nuclear Information System (INIS)

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  20. Chemical and Biological Properties of S-1-Propenyl-ʟ-Cysteine in Aged Garlic Extract

    Directory of Open Access Journals (Sweden)

    Yukihioro Kodera

    2017-03-01

    Full Text Available S-1-Propenyl-ʟ-cysteine (S1PC is a stereoisomer of S-1-Propenyl-ʟ-cysteine (SAC, an important sulfur-containing amino acid that plays a role for the beneficial pharmacological effects of aged garlic extract (AGE. The existence of S1PC in garlic preparations has been known since the 1960’s. However, there was no report regarding the biological and/or pharmacological activity of S1PC until 2016. Recently, we performed a series of studies to examine the chemical, biological, pharmacological and pharmacokinetic properties of S1PC, and obtained some interesting results. S1PC existed only in trace amounts in raw garlic, but its concentration increased almost up to the level similar of SAC through aging process of AGE. S1PC showed immunomodulatory effects in vitro and in vivo, and reduced blood pressure in a hypertensive animal model. A pharmacokinetic study revealed that S1PC was readily absorbed after oral administration in rats and dogs with bioavailability of 88–100%. Additionally, S1PC had little inhibitory influence on human cytochrome P450 activities, even at a concentration of 1 mM. Based on these findings, S1PC was suggested to be another important, pharmacologically active and safe component of AGE similar to SAC. In this review, we highlight some results from recent studies on S1PC and discuss the potential medicinal value of S1PC.

  1. Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus

    Directory of Open Access Journals (Sweden)

    Renato B. Pereira

    2016-02-01

    Full Text Available The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs. Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.

  2. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    Science.gov (United States)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  3. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aldehyde dehydrogenase (ALDH activity does not select for cells with enhanced aggressive properties in malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Lina Prasmickaite

    Full Text Available BACKGROUND: Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC, exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties. METHODS AND FINDINGS: In several other cancer forms, Aldehyde Dehydrogenase (ALDH, which plays a role in stem cell biology and resistance, is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore, the presence of ALDH(+ cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures, xenografts and patient biopsies, we showed that aggressive melanoma harboured a large, distinguishable ALDH(+ subpopulation. In vivo, ALDH(+ cells gave rise to ALDH(- cells, while the opposite conversion was rare, indicating a higher abilities of ALDH(+ cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However, both ALDH(+ and ALDH(- cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab. CONCLUSIONS: These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a "universal" marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not

  5. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  6. Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs.

    Science.gov (United States)

    Kumar, Suresh; Jitendra, Kumar; Singh, Kusum; Kapoor, Vaishali; Sinha, Mou; Xess, Immaculata; Das, Satya N; Sharma, Sujata; Singh, Tej P; Dey, Sharmistha

    2015-08-01

    Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments.

  7. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure

    Directory of Open Access Journals (Sweden)

    Cristina Besleaga

    2017-11-01

    Full Text Available Aluminum Nitride (AlN has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors. AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate, corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C on Si (100 substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films for the realization of various type of sensors (with emphasis on bio-sensors is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  8. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure.

    Science.gov (United States)

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E

    2017-11-17

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  9. Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading

    International Nuclear Information System (INIS)

    Rafiee, Mohammad A.; Yavari, Fazel; Rafiee, Javad; Koratkar, Nikhil

    2011-01-01

    In this study, we characterized the mechanical properties of fullerence (C 60 ) epoxy nanocomposites at various weight fractions of fullerene additives in the epoxy matrix. The mechanical properties measured were the Young’s modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material’s resistance to fatigue crack propagation. All of the above properties of the epoxy polymer were significantly enhanced by the fullerene additives at relatively low nanofiller loading fractions (∼0.1 to 1% of the epoxy matrix weight). By contrast, other forms of nanoparticle fillers such as silica, alumina, and titania nanoparticles require up to an order of magnitude higher weight fraction to achieve comparable enhancement in properties.

  10. Enhanced biological phosphorus removal. Carbon sources, nitrate as electron acceptor, and characterization of the sludge community

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, M

    1997-10-01

    Enhanced biological phosphorus removal (EBPR) was studied in laboratory scale experiments as well as in a full scale EBPR process. The studies were focused on carbon source transformations, the use of nitrate as an electron acceptor and characterisation of the microflora. A continuous anaerobic/aerobic laboratory system was operated on synthetic wastewater with acetate as sole carbon source. An efficient EBPR was obtained and mass balances over the anaerobic reactor showed a production of 1.45 g poly-{beta}-hydroxyalcanoic acids (PHA), measured as chemical oxygen demand (COD), per g of acetic acid (as COD) taken up. Furthermore, phosphate was released in the anaerobic reactor in a ratio of 0.33 g phosphorus (P) per g PHA (COD) formed and 0.64 g of glycogen (COD) was consumed per g of acetic acid (COD) taken up. Microscopic investigations revealed a high amount of polyphosphate accumulating organisms (PAO) in the sludge. Isolation and characterisation of bacteria indicated Acinetobacter spp. to be abundant in the sludge, while sequencing of clones obtained in a 16S rDNA clone library showed a large part of the bacteria to be related to the high mole % G+C Gram-positive bacteria and only a minor fraction to be related to the gamma-subclass of proteobacteria to which Acinetobacter belongs. Operation of a similar anaerobic/aerobic laboratory system with ethanol as sole carbon source showed that a high EBPR can be achieved with this compound as carbon source. However, a prolonged detention time in the anaerobic reactor was required. PHA were produced in the anaerobic reactor in an amount of 1.24 g COD per g of soluble DOC taken up, phosphate was released in an amount of 0.4-0.6 g P per g PHA (COD) produced and 0.46 g glycogen (COD) was consumed per g of soluble COD taken up. Studies of the EBPR in the UCT process at the sewage treatment plant in Helsingborg, Sweden, showed the amount of volatile fatty acids (VFA) available to the PAO in the anaerobic stage to be

  11. Biological Reclaiming of Recycled Rubber and Its Effect on Mechanical Properties of New Rubber Vulcanizates

    Directory of Open Access Journals (Sweden)

    Maryam Mansourirad

    2014-12-01

    Full Text Available Nowadays, due to environmental concerns, there has been great attention to recycling and reclaiming of tires. Different methods have been used for reclaiming or desulfurization of rubber. One of these methods, in which desulfurization of rubber happens with no damage to the polymer structure, is desulfurization by biological microorganisms. In this research the application and performance of thermophilic and sulfur oxidizing bacteria, Acidianus brierleyi for this purpose was investigated. Ground tire rubber was detoxified with organic solvents, and the optimum conditions for growing microorganisms in the existence of rubber powder in the shaker flasks were determined. In order to accelerate the process, the suitable conditions for growth of bacteria and desulfurization in the bioreactor were adopted. Fourier transfer infrared spectroscopy and scanning electron microscopy were employed to characterize desulfurization of bio-treated powder from bioreactor. The results indicated that morphological changes on powder surface and reduction of sulfur bonds have occurred. Samples from bioreactors, with and without bacteria and also untreated rubber powder were compounded with virgin styrene butadiene rubber. Tensile and dynamic properties were investigated using uni-direction tensile test and dynamic-mechanical-thermal analysis, respectively. Although some differences in dynamic-mechanical-thermal properties of samples pointed to stronger interaction between rubber matrix and treated rubber powder, no significant improvements in the mechanical properties of vulcanizates containing A.brierleyi-treated powder were observed. Low concentration of sulfur in rubber vulcanizates, chemical bonds of sulfur, and low efficiency of A. brierleyi in breaking sulfur bonds and reclaiming rubber were considered as the reasons for low efficiency of this treatment process.

  12. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  13. Parallel metaheuristics in computational biology: an asynchronous cooperative enhanced scatter search method

    OpenAIRE

    Penas, David R.; González, Patricia; Egea, José A.; Banga, Julio R.; Doallo, Ramón

    2015-01-01

    Metaheuristics are gaining increased attention as efficient solvers for hard global optimization problems arising in bioinformatics and computational systems biology. Scatter Search (SS) is one of the recent outstanding algorithms in that class. However, its application to very hard problems, like those considering parameter estimation in dynamic models of systems biology, still results in excessive computation times. In order to reduce the computational cost of the SS and improve its success...

  14. Biological properties of dissociative L- and other forms of Mycobacterium bovis

    Directory of Open Access Journals (Sweden)

    A. A. Tkachenko

    2016-08-01

    Full Text Available A race of modified forms of mycobacteria with special properties that can be promising for the construction of TB vaccines was selected It was found that the persistence of the researched microorganisms (27th subculture of acid-fast bacillus and the L-form persisted for nine months (the period of research and longer in the bodies of guinea pigs. However, from the suspension prepared from macroscopically unchanged organs of the experimental animals we found acid-proof elementary bodies (grains and bacilli of typical morphological forms, which formed an orange culture on the nutrient medium on the third day after suspension seeding. The inoculation of guinea pigs with isolated acid-proof mycobacteria (culture-revertant (1 mg/cm3 was not accompanied by the development of allergic condition (allergic reaction to the tuberculin and AAM was negative at 30, 60 and 90 days; however, acid-proof bacilli, which formed an orange culture,were isolated on the the third day from experimental animals which had been subjected to euthanasia. Multiple passages through the artificial culture medium (dense, prolonged exposure (20 months at low plus temperature changed the genetic balance, ensuring their survival as a result of the loss of some (specific to the pathogen and the acquisition of new properties (especially atypical which are partly inherent in other mycobacteria. At the same time, the persistence in the body of guinea pigs of typical morphological acid-proof forms (bacilli that reverse from L-forms was not accompanied by the development of the disease. They are chromogenic and retain the ability to form colonies (culture-revertant on dense nutrient medium from the first generation (from biological material of the guinea pigs on the second day of cultivation. The loss of sensitization ability of Mycobacterium bovis which werepassaged many times and persistent in the body of guinea pigs can probably testify to the loss of immunogenic capacity, since the

  15. Comparative Study of the Physical, Topographical and Biological Properties of Electrospinning PCL, PLLA, their Blend and Copolymer Scaffolds

    Science.gov (United States)

    Bolbasov, E.; Goreninskii, S.; Tverdokhlebov, S.; Mishanin, A.; Viknianshchuk, A.; Bezuidenhout, D.; Golovkin, A.

    2018-05-01

    Biodegradable polymers (blends, copolymers) could be the ideal materials for manufacturing of scaffolds for small diameter vascular graft. Such material characteristics as mechanical properties, chemical structure, nano- and micro topography, surface charge, porosity, wettability etc. are becoming the most important aspects for effectiveness of prosthesis biofunctionalization because of their great impact on cell adhesion, spreading, cell proliferation, differentiation and cell function. The aim of the study is to compare physical, topographical and biological properties of polycaprolactone (PCL), poly-L-lactic acid (PLLA), polycaprolactone + poly-L-lactic acid blend (PCL PLLA), L-lactide/Caprolactone copolymer (PLC7015) scaffolds fabricated with the same fiber thickness using electrospun technology. PCL PLLA scaffolds had the highest average pore area (pactive phase of adhesion process. We propose that physical and topographical properties of PCL, PLLA, their blend and copolymer are of a great dependence of chemical structure but could be changed during the manufacturing process that will lead to changes in biological properties.

  16. Biological Resistance and Application Properties of Particleboards Containing Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ladislav Reinprecht

    2018-01-01

    Full Text Available Special particleboards (PBs proposed for kitchens, bathrooms, hospitals, and some other specific products for interiors should have a sufficient resistance against bacteria, molds, and decaying fungi. This work deals about effects of zinc oxide nanoparticles (nano-ZnO added into melamine-urea-formaldehyde (MUF glue in the amounts of 0, 2, 6, 12, or 24% wt. on selected biological, moisture, and strength properties of laboratory-produced one-layer PBs. The nano-ZnO-treated PBs had a higher biological resistance: (1 against the Gram-positive bacterium Staphylococcus aureus by up to ca. 70% and the Gram-negative bacterium Escherichia coli by up to 50%, since their bacterial activities at using 1.0 McFarland bacterial inoculum decreased from 0.38–0.40 by up to 0.12–0.19  ×  108 CFU/ml; (2 against the molds Penicillium brevicompactum and Aspergillus niger by up to ca. 50–63%, since their growth intensities (0–4 on the top surfaces of treated PBs decreased according to a modified EN 15457 from 2.33–2.67 by up to 1.17–1.0; (3 against the brown-rot fungus Coniophora puteana by up to 85.7%, since their weight losses reduced according to a modified ENV 12038 from 17.4% by up to 2.5%. The presence of nano-ZnO in PBs uninfluenced their swelling, water absorption, and bending strength; however, it decreased their internal bond strength by up to 38.8%.

  17. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties.

    Science.gov (United States)

    Ding, Shujiang; Luan, Deyan; Boey, Freddy Yin Chiang; Chen, Jun Song; Lou, Xiong Wen David

    2011-07-07

    We demonstrate a new hydrothermal method to directly grow SnO(2) nanosheets on a graphene oxide support that is subsequently reduced to graphene. This unique SnO(2)/graphene hybrid structure exhibits enhanced lithium storage properties with high reversible capacities and good cycling performance. This journal is © The Royal Society of Chemistry 2011

  18. A theranostic agent to enhance osteogenic and magnetic resonance imaging properties of calcium phosphate cements

    NARCIS (Netherlands)

    Ventura, M.; Sun, Y.; Cremers, S.; Borm, P.; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Heerschap, A.; van der Kraan, P.M.; Jansen, J.A.; Walboomers, X.F.

    2014-01-01

    With biomimetic biomaterials, like calcium phosphate cements (CPCs), non-invasive assessment of tissue regeneration is challenging. This study describes a theranostic agent (TA) to simultaneously enhance both imaging and osteogenic properties of such a bone substitute material. For this purpose,

  19. Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures.

    Science.gov (United States)

    Hu, Tao; Hong, Jisang

    2015-10-28

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.

  20. Biological properties of soils of former forest fires in Samosir Regency of North Sumatera

    Directory of Open Access Journals (Sweden)

    D. Elfiati

    2016-04-01

    Full Text Available A study that was aimed to identify the impact of forest fires on the biological properties of soils was carried out at former forest fire areas in Samosir Regency of North Sumatera. Soil samples were collected from former forest fire areas of 2014, 2013, 2012, 2011, 2010. The composite soil samples were collected systematically using diagonal method as much as 5 points in each period of fire. The soil samples were taken at three plots measuring 20 x 20 m 0-20 cm depth. Soil biological properties observed were soil organic C content, total number of microbes, abundance of arbuscular mycorrhizal fungi, phosphate solubilizing microbes, and soil microbial activity. The results showed that organic C content ranged from 0.75 to 2.47% which included criteria for very low to moderate. Arbuscular mycorrhizal fungi spores were found belonging to the genus of Glomus and Acaulospora. Spore number increased with the fire period ranging from 45 spores (forest fire in 2014 to 152 spores (forest fire in 2010. The total number of microbes obtained ranged from 53.78 x 107 cfu/mL (forest fire in 2010 to 89.70 x107 cfu/mL (forest fire in 2013. It was found 29 isolates of phosphate solubilizing microbes that consisted of 14 bacterial isolates and 15 fungi isolates with densities ranging from 27.642 x105 cfu/mL (forest fires in 2014 to 97.776 x 105 cfu/ mL (forest fires in 2011. The isolates of phosphate solubilizing bacteria identified consisted of Pseudomonas, Flavobacterium, Staphylococcus, and Mycobacterium genus, whereas the isolates of phosphate solubilizing fungi obtained consisted of Aspergillus and Penicillium genus. Soil respiration ranged from 2.14 kg / day (forest fire in 2010 up to 3.71 kg / day (forest fire in 2013. The varied results were greatly influenced by the type or form of the fires and intensity of fires. In the study area the type or form of the fires were canopy fires with low intensity.

  1. BIOLOGICAL PROPERTIES, PREPARATION AND USE OF THE COMPONENTS OF POSTHUMOUS BLOOD

    Directory of Open Access Journals (Sweden)

    V. B. Khvatov

    2013-01-01

    Full Text Available ABSTRACT. The historical analysis of development of the doctrine of V.N. Shamov and S.S. Judin on posthumous blood is presented: formation of laboratories of cadaveric blood and tissues in the country; ways of preparation from the suddenly deceased from a myocardial infarction or a stroke (the donor of tissues; efficiency of clinical use of fibrinolysis blood and its components. Plasma of such blood shows growth-enhancement effect at healing of wounds and is a specific raw material to obtain thrombolytic agents. For the first time the way of preparation and a fractionating of blood from the system of the lower cava during operation of multiorgan fence of organs with brain death (the donor of organs is developed and introduced in practice. The new transfusion medium containing 1,7–5,4 standard doses of erythrocytes and 0,2–0,6 standard medical doses of thrombocytes is obtained. Biological full value and functional activity of blood cells of the donor of organs is shown. Such cellular transfusion medium provides effective increase of oxygen-transport function of blood at an acute anemia, moderate indemnification of a thrombocytopenia at liver transplantation. 

  2. Fab-based bispecific antibody formats with robust biophysical properties and biological activity.

    Science.gov (United States)

    Wu, Xiufeng; Sereno, Arlene J; Huang, Flora; Lewis, Steven M; Lieu, Ricky L; Weldon, Caroline; Torres, Carina; Fine, Cody; Batt, Micheal A; Fitchett, Jonathan R; Glasebrook, Andrew L; Kuhlman, Brian; Demarest, Stephen J

    2015-01-01

    A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.

  3. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    Science.gov (United States)

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO 2 -nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO 2 -nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO 2 -nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO 2 -nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Connecting Structure-Property and Structure-Function Relationships across the Disciplines of Chemistry and Biology: Exploring Student Perceptions

    Science.gov (United States)

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    While many university students take science courses in multiple disciplines, little is known about how they perceive common concepts from different disciplinary perspectives. Structure-property and structure-function relationships have long been considered important explanatory concepts in the disciplines of chemistry and biology, respectively.…

  5. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    Science.gov (United States)

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  6. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure

    International Nuclear Information System (INIS)

    Liu, Hongyan; Guo, Yiping; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di

    2013-01-01

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe 2 O 4 replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g −1 at 10 mV s −1 in comparison with ZFO powder of 137.3 F g −1 , attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors

  7. Bauhinia forficata Link authenticity using flavonoids profile: relation with their biological properties.

    Science.gov (United States)

    Ferreres, Federico; Gil-Izquierdo, Angel; Vinholes, Juliana; Silva, Sara T; Valentão, Patrícia; Andrade, Paula B

    2012-09-15

    HPLC-DAD-ESI/MS(n) was used to ascertain the authenticity of two certified and two commercial Bauhinia forficata Link samples. Different flavonoids profiles were obtained, involving 39 compounds. Just kaempferol-3-O-(2-rhamnosyl)rutinoside was found in all analysed samples. Five compounds were common to the certified samples of B. forficata Link and B. forficata Link subsp. pruinosa (Vogel) Fortunato & Wunderlin, being kaempferol derivatives the most representative ones. The phenolic composition of B. forficata Link subsp. pruinosa (Vogel) Fortunato & Wunderlin is described herein for the first time, accounting for eight compounds, while 10 new compounds were identified in B. forficata Link. Commercial B. forficata Link showed higher contents of quercetin derivatives, in addition to the presence of myricetin derivatives and flavonoids-(galloyl)glycosides, for which the MS fragmentation pattern is reported for the first time. B. forficata Link and the two commercial samples were able to inhibit α-glucosidase, with EC(50) values lower than that found for acarbose. Mild effects on cholinesterases were observed with the certified samples, while commercial ones were more effective. The same behaviour was observed concerning the scavenging of DPPH, nitric oxide and superoxide radicals. The presence of high contents of quercetin derivatives in commercial samples seems to directly influence their biological properties. The differences between phenolic profiles and their relation with the authenticity of commercial samples are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  9. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    International Nuclear Information System (INIS)

    Asami, Koji

    2007-01-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities P j , the low-frequency (LF) relaxation curve became broader, especially at P j of 0.2-0.5, and its intensity was proportional to P j up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues

  10. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    Science.gov (United States)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  11. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  12. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    Science.gov (United States)

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. The impact of antibiotics (benzylpenicillin, and nystatin) on the biological properties of ordinary chernozems

    Science.gov (United States)

    Akimenko, Yu. V.; Kazeev, K. Sh.; Kolesnikov, S. I.

    2014-09-01

    In recent years, the input of antibiotics into soils has sharply increased. We studied the impact antibiotics (benzylpenicillin, pharmasin, and nystatin) at different concentrations (100 and 600 mg/kg) on population densities of microorganisms and enzymatic activity of ordinary chernozems in model experiments. The applied doses of antibiotics had definite suppressing effects on population densities of microorganisms (up to 30-70% of the control) and on the soil enzymatic activity (20-70% of the control). Correlation analysis showed close correlation between the concentrations of antibiotics and the population densities of soil microorganisms ( r = -0.68-0.86). Amylolytic bacteria had the highest resistance to the antibiotics, whereas ammonifying bacteria had the lowest resistance. Among the studied enzymes belonging to oxidoreductases and hydrolases, catalase and phosphatase had the highest and the lowest resistance to the antibiotics, respectively. The effect of antibiotics on the biological properties of the chernozem lasted for a long time. The studied parameters were not completely recovered in 120 days.

  14. Isolation, Characterization and Biological Properties of Membrane Vesicles Produced by the Swine Pathogen Streptococcus suis.

    Directory of Open Access Journals (Sweden)

    Bruno Haas

    Full Text Available Streptococcus suis, more particularly serotype 2, is a major swine pathogen and an emerging zoonotic agent worldwide that mainly causes meningitis, septicemia, endocarditis, and pneumonia. Although several potential virulence factors produced by S. suis have been identified in the last decade, the pathogenesis of S. suis infections is still not fully understood. In the present study, we showed that S. suis produces membrane vesicles (MVs that range in diameter from 13 to 130 nm and that appear to be coated by capsular material. A proteomic analysis of the MVs revealed that they contain 46 proteins, 9 of which are considered as proven or suspected virulence factors. Biological assays confirmed that S. suis MVs possess active subtilisin-like protease (SspA and DNase (SsnA. S. suis MVs degraded neutrophil extracellular traps, a property that may contribute to the ability of the bacterium to escape the host defense response. MVs also activated the nuclear factor-kappa B (NF-κB signaling pathway in both monocytes and macrophages, inducing the secretion of pro-inflammatory cytokines, which may in turn contribute to increase the permeability of the blood brain barrier. The present study brought evidence that S. suis MVs may play a role as a virulence factor in the pathogenesis of S. suis infections, and given their composition be an excellent candidate for vaccine development.

  15. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    Science.gov (United States)

    Asami, Koji

    2007-06-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  16. Composition and Biological Properties of Agaricus bisporus Fruiting Bodies – a Review

    Directory of Open Access Journals (Sweden)

    Muszyńska Bożena

    2017-09-01

    Full Text Available White Agaricus bisporus is both the most popular and the most commonly eaten edible mushroom species in the world. It is popular not only because of its taste, but also due to its high level of nutrients: dietary fiber (chitin, essential, semi-essential amino acids, unsaturated fatty acids including linoleic and linolenic acids, easily digestible proteins, sterols, phenolic and indole compounds, and vitamins − especially provitamin D2 and B1, B2, B6, B7, and C. Fruiting bodies of A. bisporus have antioxidant, antibacterial, anti-inflammatory, antitumor, and immunomodulatory activity. The presence of antioxidant ergothioneine (which also displays the antimutagenic, chemo- and radioprotective activity is also noteworthy. A. bisporus also contains derivatives of benzoquinone, a substance which belongs to the group of antibiotics. Studies of tyrosinase isolated from this species show its very high similarity to human tyrosinase. This points directly to the fact that this species could be a rich source of tyrosinase used for medicinal and cosmetics purposes. A. bisporus is also a rich source of selenium, zinc and other elements such as magnesium, copper, iron, potassium, sodium, calcium, phosphorus, sulfur or manganese. In conclusion, the presence of these compounds and elements with biological activity in fruiting bodies of A. bisporus confirms their nutraceutical and medicinal properties.

  17. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube

    International Nuclear Information System (INIS)

    Li, Min; Chen, Meirong; Wu, Zhishen

    2014-01-01

    Highlights: • Carbon nanotubes was grafted and used to enhance the thermal conductivities of the microcapsules. • The average particle size of the prepared MicroPCMs/CNTs-SA is 0.1 μm. • The thermal conductivity of MicroPCMs/CNTs-SA with 4% of CNTs increased by 79.2% compared with MicroPCMs. • MicroPCMs/CNTs-SA has better durability and thermal stability compared to the original MicroPCMs. - Abstract: Carbon nanotubes grafted with stearyl alcohol (CNTs-SA) was used in synthesizing phase change microcapsules (MicroPCMs) in order to enhance the thermal conductivities of the microcapsules. Urea–formaldehyde resin (UFR) was used as wall material. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC) are employed to characterize the prepared MicroPCMs containing the grafted CNTs (MicroPCMs/CNTs-SA). The results indicated that CNTs improved the performance of microcapsules. The average particle diameter of MicroPCMs/CNTs-SA is much smaller than that of MicroPCMs. There was no chemical reaction among paraffin, CNTs and UFR. The phase change temperature and latent heat of MicroPCMs/CNTs-SA was 26.2 °C and 47.7 J/g, respectively. The thermal conductivity of MicroPCMs/CNTs-SA with 4% of CNTs increased by 79.2% compared with MicroPCMs. The initial decomposition temperature of MicroPCMs/CNTs-SA is 38 °C higher than that of MicroPCMs. After 100 heating and cooling cycles, MicroPCMs/CNTs-SA still has good durability and thermal stability

  19. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  20. Integr8: enhanced inter-operability of European molecular biology databases.

    Science.gov (United States)

    Kersey, P J; Morris, L; Hermjakob, H; Apweiler, R

    2003-01-01

    The increasing production of molecular biology data in the post-genomic era, and the proliferation of databases that store it, require the development of an integrative layer in database services to facilitate the synthesis of related information. The solution of this problem is made more difficult by the absence of universal identifiers for biological entities, and the breadth and variety of available data. Integr8 was modelled using UML (Universal Modelling Language). Integr8 is being implemented as an n-tier system using a modern object-oriented programming language (Java). An object-relational mapping tool, OJB, is being used to specify the interface between the upper layers and an underlying relational database. The European Bioinformatics Institute is launching the Integr8 project. Integr8 will be an automatically populated database in which we will maintain stable identifiers for biological entities, describe their relationships with each other (in accordance with the central dogma of biology), and store equivalences between identified entities in the source databases. Only core data will be stored in Integr8, with web links to the source databases providing further information. Integr8 will provide the integrative layer of the next generation of bioinformatics services from the EBI. Web-based interfaces will be developed to offer gene-centric views of the integrated data, presenting (where known) the links between genome, proteome and phenotype.

  1. The Student Writing Toolkit: Enhancing Undergraduate Teaching of Scientific Writing in the Biological Sciences

    Science.gov (United States)

    Dirrigl, Frank J., Jr.; Noe, Mark

    2014-01-01

    Teaching scientific writing in biology classes is challenging for both students and instructors. This article offers and reviews several useful "toolkit" items that improve student writing. These include sentence and paper-length templates, funnelling and compartmentalisation, and preparing compendiums of corrections. In addition,…

  2. Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines

    Science.gov (United States)

    Tra, Yolande V.; Evans, Irene M.

    2010-01-01

    "BIO2010" put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on…

  3. Self-expression assignment as a teaching approach to enhance the interest of Kuwaiti women in biological sciences.

    Science.gov (United States)

    El-Sabban, Farouk

    2008-06-01

    Stimulating the interest of students in biological sciences necessitates the use of new teaching methods and motivating approaches. The idea of the self-expression assignment (SEA) has evolved from the prevalent environment at the College for Women of Kuwait University (Safat, State of Kuwait), a newly established college where the number of students is low and where students have varied backgrounds and interests and are being instructed biological sciences in English for the first time. This SEA requires each student to choose a topic among a long list of topics and interact with it in any way to produce a finished product without the interference of the course instructor. Students are told that the SEA will be graded based on their commitment, creative thinking, innovation in developing the idea, and finishing up of the chosen assignment. The SEA has been implemented in three introductory courses, namely, Biology, Introduction to Human Nutrition and Food Science, and The Human Body. Many interesting projects resulted from the SEA, and, based on an administered survey, students assessed this assignment very favorably. Students expressed their pleasure of experiencing freedom in choosing their own topics, interacting with such topics, learning more about them, and finishing up their projects. Students appreciated this type of exposure to biological sciences and expressed that such an experience enhanced their interest in such sciences.

  4. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  5. Enhancement in transport properties of seeded melt-textured YBCO by Cu-site doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yu X. [Department of Physics, Hong Kong Baptist University, Kowloon (China); Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Lo, W.; Salama, Kamel [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Tang, Tong B. [Department of Physics, Hong Kong Baptist University, Kowloon (China)

    2002-05-01

    A significant research effort has been made worldwide to introduce nanometre-scale weak superconducting regions into seeded melt-textured superconductors to enhance their critical current density, trapped magnetic field and levitation force. The enhancement in these properties is dependent on the pinning forces exerted on the magnetic flux lines. In this paper we present a substantial improvement in the transport properties of these materials by optimizing the fabrication conditions, controlling the oxygen deficiency, as well as adjusting the doping level of Zn in YBa{sub 2}(Cu{sub 1-x}Zn{sub x}){sub 3}O{sub 7-}{delta} large grains. The enhancement is found to be as much as 30% by doping between about x=0.001 25 and 0.002 53. The results strongly indicate that the introduction of local nanometre-scale weak superconducting regions by Zn substitution for Cu in the CuO{sub 2} plane enhances the transport properties. Due to the simplicity of the processing conditions, these doping techniques can have a significant potential for a variety of engineering applications. (author)

  6. Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain

    Science.gov (United States)

    Müller, Mischa R.; Saunders, Kenneth; Grace, Christopher; Jin, Macy; Piche-Nicholas, Nicole; Steven, John; O’Dwyer, Ronan; Wu, Leeying; Khetemenee, Lam; Vugmeyster, Yulia; Hickling, Timothy P.; Tchistiakova, Lioudmila; Olland, Stephane; Gill, Davinder; Jensen, Allan; Barelle, Caroline J.

    2012-01-01

    Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies. PMID:23676205

  7. Control Structure Design of an Innovative Enhanced Biological Nutrient Recovery Activated Sludge System Coupled with a Photobioreactor

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Fuentes-Martínez, José Manuel; Flores Alsina, Xavier

    2015-01-01

    The TRENS system is a train of biological units designed for resource recovery from wastewater. It is a sequence of a modified enhanced biological phosphorus removal and recovery system (EBP2R) coupled with a photobioreactor (PBR). The bacteria-based system constructs an optimal culture media...... for the downstream algae cultivation. In this work, we present a control strategy to ensure an optimal nutrient balance to feed to the PBR, so the grown algal suspension is suitable for fertigation (irrigation and fertilization of agricultural crops). The system is able to recover up to 75% of the influent load......, while keeping an optimal N-to-P ratio of 16 in the influent to the PBR. The system is tested under different scenarios, where the influent quality is disturbed following a step change. The control system is able to reject most of the disturbances. However, when the P-recovery is limited by the bacteria...

  8. Enhanced field emission properties of carbon nanotube bundles confined in SiO2 pits

    Science.gov (United States)

    Lim, Yu Dian; Grapov, Dmitry; Hu, Liangxing; Kong, Qinyu; Tay, Beng Kang; Labunov, Vladimir; Miao, Jianmin; Coquet, Philippe; Aditya, Sheel

    2018-02-01

    It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 μm diameter and 2 μm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.

  9. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  10. Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline

    Energy Technology Data Exchange (ETDEWEB)

    Deepankumar, Kanagavel; Nadarajan, Saravanan Prabhu; Ayyadurai, Niraikulam; Yun, Hyungdon, E-mail: hyungdon@ynu.ac.kr

    2013-11-01

    Graphical abstract: Enhancing the biophysical properties of mRFP1 through incorporation of (2S, 4R)-4-fluoroproline at proline residues after mutating non-permissive site Pro63 into Ala. -- Highlights: •We incorporate (4S)-FP into mRFP1 led to insoluble protein. •Whereas, incorporation of (4R)-FP resulted in soluble but lost its fluorescence. •mRFP1-P63A mutant accommodate (4R)-FP and gave soluble protein with fluorescence. •Moreover mRFP1-P63A[(4R)-FP] showed enhanced biophysical properties of protein. -- Abstract: Here we enhanced the stability and biophysical properties of mRFP1 through a combination of canonical and non-canonical amino acid mutagenesis. The global replacement of proline residue with (2S, 4R)-4-fluoroproline [(4R)-FP] into mRFP1 led to soluble protein but lost its fluorescence, whereas (2S, 4S)-4-fluoroproline [(4S)-FP] incorporation resulted in insoluble protein. The bioinformatics analysis revealed that (4R)-FP incorporation at Pro63 caused fluorescence loss due to the steric hindrance of fluorine atom of (4R)-FP with the chromophore. Therefore, Pro63 residue was mutated with the smallest amino acid Ala to maintain non coplanar conformation of the chromophore and helps to retain its fluorescence with (4R)-FP incorporation. The incorporation of (4R)-FP into mRFP1-P63A showed about 2–3-fold enhancement in thermal and chemical stability. The rate of maturation is also greatly accelerated over the presence of (4R)-FP into mRFP1-P63A. Our study showed that a successful enhancement in the biophysical property of mRFP1-P63A[(4R)-FP] using non-canonical amino acid mutagenesis after mutating non-permissive site Pro63 into Ala.

  11. Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline

    International Nuclear Information System (INIS)

    Deepankumar, Kanagavel; Nadarajan, Saravanan Prabhu; Ayyadurai, Niraikulam; Yun, Hyungdon

    2013-01-01

    Graphical abstract: Enhancing the biophysical properties of mRFP1 through incorporation of (2S, 4R)-4-fluoroproline at proline residues after mutating non-permissive site Pro63 into Ala. -- Highlights: •We incorporate (4S)-FP into mRFP1 led to insoluble protein. •Whereas, incorporation of (4R)-FP resulted in soluble but lost its fluorescence. •mRFP1-P63A mutant accommodate (4R)-FP and gave soluble protein with fluorescence. •Moreover mRFP1-P63A[(4R)-FP] showed enhanced biophysical properties of protein. -- Abstract: Here we enhanced the stability and biophysical properties of mRFP1 through a combination of canonical and non-canonical amino acid mutagenesis. The global replacement of proline residue with (2S, 4R)-4-fluoroproline [(4R)-FP] into mRFP1 led to soluble protein but lost its fluorescence, whereas (2S, 4S)-4-fluoroproline [(4S)-FP] incorporation resulted in insoluble protein. The bioinformatics analysis revealed that (4R)-FP incorporation at Pro63 caused fluorescence loss due to the steric hindrance of fluorine atom of (4R)-FP with the chromophore. Therefore, Pro63 residue was mutated with the smallest amino acid Ala to maintain non coplanar conformation of the chromophore and helps to retain its fluorescence with (4R)-FP incorporation. The incorporation of (4R)-FP into mRFP1-P63A showed about 2–3-fold enhancement in thermal and chemical stability. The rate of maturation is also greatly accelerated over the presence of (4R)-FP into mRFP1-P63A. Our study showed that a successful enhancement in the biophysical property of mRFP1-P63A[(4R)-FP] using non-canonical amino acid mutagenesis after mutating non-permissive site Pro63 into Ala

  12. Enhanced catalytic properties of mesoporous mordenite for benzylation of benzene with benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Sandeep K.; Viswanadham, Nagabhatla, E-mail: nagabhatla.viswanadham@gmail.com

    2017-01-15

    Graphical abstract: The nano size pores (∼10 nm) created in the microporous mordenite zeolite facilitated enhanced catalytic activity to produce as high as 97 wt.% yield of di-phenyl methane in the benzylation of benzene with benzyl alcohol at solvent-free liquid phase reaction conditions. - Highlights: • Nano pores of ∼10 nm size have been created in microporous mordenite. • Dealumination at optimized conditions resulted in enhanced properties of mordenite. • Hierarchically porous mordenite enhanced bulky catalytic reactions. • As high as 97% selectivity to Di-phenyl methane obtained. • Solvent-free, liquid phase alkylation catalyst with stable activity for reusability. - Abstract: Zeolite mordenite has been treated with nitric acid at different severities so as to facilitate the framework dealumination and optimization of the textural properties such as acidity and porosity. The samples obtained have been characterized by X-ray diffraction, FTIR, SEM, TEM, surface area, porosity by N{sub 2} adsorption and ammonia TPD. The resultant samples have been evaluated towards the bulky alkylation reaction of benzylation of benzene with benzyl alcohol. The studies indicated the improvement in the textural properties such as surface area, pore volume and acidity of the samples after the acid treatment. While, the phenomenon of enhancement in properties was exhibited by all the acid treated mordenite samples, the highest improvement in properties was observed at a particular condition of acid treatment (SM-2 sample). This particular sample also exhibited highest acidity and the presence of ∼10 nm size pores that resulted in the effective catalytic activity towards the bulky alkylation reaction of benzene with benzyl alcohol to produce high yields of di-phenyl methane.

  13. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets.

    Science.gov (United States)

    Bayan, Sayan; Gogurla, Narendar; Midya, Anupam; Singha, Achintya; Ray, Samit K

    2017-12-01

    We demonstrate surface plasmon induced enhancement and tunablilty in optical emission properties of two dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets through the attachment of gold (Au) nanoparticles. Raman spectroscopy has revealed surface enhanced Raman scattering that arises due to the combined effect of the charge transfer process and localized surface plasmon induced enhancement in electromagnetic field, both occurring at the nanoparticle-nanosheet interface. Photoluminescence studies suggest that at an optimal concentration of nanoparticles, the emission intensity can be enhanced, which is maximum within the 500-525 nm region. Further, the fabricated electroluminescent devices reveal that the emission feature can be tuned from bluish-green to red (∼160 nm shift) upon attaching Au nanoparticles. We propose that the π*→π transition in g-C 3 N 4 can trigger surface plasmon oscillation in Au, which subsequently increases the excitation process in the nanosheets and results in enhanced emission in the green region of the photoluminescence spectrum. On the other hand, electroluminescence of g-C 3 N 4 can induce plasmon oscillation more efficiently and thus can lead to red emission from Au nanoparticles through the radiative damping of particle plasmons. The influence of nanoparticle size and coverage on the emission properties of two dimensional g-C 3 N 4 , nanosheets has also been studied in detail.

  14. Enhanced magnetodielectric and multiferroic properties of Er-doped bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.; Banerjee, M. [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Basu, S., E-mail: soumen.basu@phy.nitdgp.ac.in [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pal, M. [CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032 (India)

    2015-07-15

    An enhancement in multiferroic properties has been achieved for chemically prepared BFO nanoparticles by doping with erbium (Er). XRD along with electron microscopy study reveals the phase purity and nanocrystalline nature of BFO. Enhancement of both the magnetic moment and resistivity is observed by virtue of Er doping. The observed enhanced magnetic moment is considered to be associated with smaller crystallite whereas increase of resistivity may be attributed to a decrease of oxygen vacancies. Doping also display an improvement of leakage behaviour and dielectric constant in nanocrystalline BFO, reflected in well-developed P-E loop. In addition, large enhancement in magnetodielectric coefficient is observed because of Er doping. Therefore, the results provide interesting approaches to improve the multiferroic properties of BFO, which has great implication towards its applications. - Highlights: • Synthesis of pure Er-doped BFO nanoparticles by chemical route. • Large increase in magnetic moment and resistivity due to Er doping. • Er doping produce well developed P-E loop and enhance polarization. • Drastic increase in dielectric constant as well as magnetodielectric coefficient observes because of Er doping.

  15. Enhancement of heat transfer coefficient multi-metallic nanofluid with ANFIS modeling for thermophysical properties

    Directory of Open Access Journals (Sweden)

    Balla Hyder H.

    2015-01-01

    Full Text Available Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.

  16. Synthesis, physical-chemical and biological properties of 7-benzyl-3-methyl-8-thioxanthine derivatives

    Directory of Open Access Journals (Sweden)

    D. H. Ivanchenko

    2017-12-01

    Full Text Available Introduction . Interest to the problem of creating new effective antimicrobial agents among xanthine derivatives does not decrease. Primarily, this is due to the increasing of microbial resistance to conventional antimicrobial agents and the emergence of their new strains. In recent years interest to the therapeutic use of antioxidants in the treatment of diseases associated with oxidative stress has increased. The aim of this work is to elaborate simple laboratory methods of 7-benzyl-3-methyl-8-thioxanthine derivatives synthesis, unspecified in scientific papers earlier, and to study their physical, chemical and biological properties. Materials and methods. The melting point has been determined with the help of an open capillary method with PTP-M device. Elemental analysis has been performed with the help of the instrument Elementar Vario L cube, NMR-spectra have been taken on a spectrometer Bruker SF-400 (operating frequency of 400 MHz, solvent DMSO, internal standard – TMS. Study of antimicrobial and antifungal activity of synthesized compounds has been performed by two-fold serial dilution method. Standard test strains have been used for the study: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 885-653. Dimethylsulfoxide was used as the solvent of the compounds. Results. Under short-time heating up of the initial 7-benzyl-3-methyl-8-thioxanthine with alkyl, alkenyl, benzyl halides or heteroalkylchlorides in a water-propanol-2 mixture in the presence of an equimolar amount of sodium hydroxide leads to the formation of 8-S-substituted of 7-benzyl-3-methylxanthines. Structure of synthesized compounds was definitely proved by NMR-spectroscopy. We conducted primary screening research of antimicrobial activity of 7-benzyl-3-methyl-8-thioxanthine derivatives, which revealed moderate and weak activity in concentrations 50-100 mcg/ml. Most of the obtained compounds showed a

  17. Enhancement of Nutritional and Antioxidant Properties of Peanut Meal by Bio-modification with Bacillus licheniformis.

    Science.gov (United States)

    Yang, Xinjian; Teng, Da; Wang, Xiumin; Guan, Qingfeng; Mao, Ruoyu; Hao, Ya; Wang, Jianhua

    2016-11-01

    Peanut meal (PM) is limited in practical use (feed or food) from imbalance of amino acid profile and denaturation of protein. Fermentation was used to promote its nutritional and functional properties by single-factor experiments and orthogonal experiments. Results showed that the nutritional properties of fermented peanut meal (crude protein content, dry matter content, ash content, acid soluble oligopeptides content, in vitro digestibility, and content of organic acids) had a significant increase (P implied that the nutritional and antioxidant properties of peanut meal were improved effectively by biological modification, which could be valuable in terms of nutrition and protein resources. It is great of importance to meet requirement of raw materials for husbandry in China when facing a huge lacking of feedstuff, especially for protein feed with an over 80 % import amount depending from other countries yearly.

  18. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    Science.gov (United States)

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Enhanced Bone Formation in Segmental Defects with BMP2 in a Biologically Relevant Molecular Context

    Science.gov (United States)

    2016-10-16

    interfere with the biological activity of the BMP2, and because radioisotope detection methods are highly sensitive and remain quantitative across a large...PRINCIPAL INVESTIGATOR: Dominik R. Haudenschild CONTRACTING ORGANIZATION: University of California, Davis Davis, CA 95618 REPORT DATE : October 2016...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2015

  20. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    International Nuclear Information System (INIS)

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  1. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    Science.gov (United States)

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%–20% for those cells containing internalized gold nanoparticles. PMID:21915155

  2. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models

    OpenAIRE

    Siner, Joshua I.; Samelson-Jones, Benjamin J.; Crudele, Julie M.; French, Robert A.; Lee, Benjamin J.; Zhou, Shanzhen; Merricks, Elizabeth; Raymer, Robin; Nichols, Timothy C.; Camire, Rodney M.; Arruda, Valder R.

    2016-01-01

    Processing by the proprotein convertase furin is believed to be critical for the biological activity of multiple proteins involved in hemostasis, including coagulation factor VIII (FVIII). This belief prompted the retention of the furin recognition motif (amino acids 1645–1648) in the design of B-domain–deleted FVIII (FVIII-BDD) products in current clinical use and in the drug development pipeline, as well as in experimental FVIII gene therapy strategies. Here, we report that processing by fu...

  3. Suppression and enhancement of non-native molecules within biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.A. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: e.jones@postgrad.manchester.ac.uk; Lockyer, N.P. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Vickerman, J.C. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-30

    With the aim of evaluating the potential of SIMS to provide molecular information from small molecules within biological systems, here we investigate the effect of different biological compounds as they act as matrices. The results highlight the fact that the chemical environment of a molecule can have a significant effect on its limit of detection. This has implications for the imaging of drugs and xenobiotics in tissue sections and other biological matrices. A 1:1 mixture of the organic acid 2,4,6-trihydroxyacetophenone and the dipeptide valine-valine demonstrates that almost complete suppression of the [M + H]{sup +} ion of one compound can be caused by the presence of a compound of higher proton affinity. The significance of this is highlighted when two similar drug molecules, atropine (a neutral molecule) and ipratropium bromide (a quaternary nitrogen containing salt) are mixed with brain homogenate. The atropine [M + H]{sup +} ion shows significant suppression whilst the [M - Br]{sup +} of ipratopium bromide is detected at an intensity that can be rationalised by its decreased surface concentration. By investigating the effect of two abundant tissue lipids, cholesterol and dipalmitoylphosphatidyl choline (DPPC), on the atropine [M + H]{sup +} signal detected in mixtures with these lipids we see that the DPPC has a strong suppressing effect, which may be attributed to gas phase proton transfer.

  4. Enhanced Mechanical Properties of Poplar Wood by a Combined-Hydro-Thermo-Mechanical (CHTM) Modification

    OpenAIRE

    Houri Sharifnia; Behbood Mohebbi

    2011-01-01

    The current research explains an innovated technique to enhanced mechanice properties of poplar wood by combination of two modification techniques, hydrothermal and mechanical. Blocks of 50×55×500mm3 were cut from poplar wood and treated in a reactor at 120, 150 and 180°C for 30 min. Afterwards, the blocks were pressed at 180°C for 20 min at a pressure of 80 bar to achieve a compression set of 60% in radial direction. Density and bending properties (moduli of elasticity and rupture) as well a...

  5. Non-toxic poly(ethylene terephthalate)/clay nanocomposites with enhanced barrier properties

    KAUST Repository

    Hayrapetyan, Suren

    2012-01-01

    Motivated by the technological need for poly(ethylene terephthalate) materials with improved barrier properties together with the requirement for sustainability this study focuses on an eco-friendly sulfonated polyester as clay compatibilizer to facilitate polymer mixing during melt compounding. We demonstrate that the nanocomposites based on sulfonated polyester are a reliable alternative to their imidazolium counterparts, exhibiting enhanced properties (water vapor and UV transmission), without sacrificing the excellent transparency, clarity and mechanical strength of the matrix. © 2011 Elsevier Ltd. All rights reserved.

  6. Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites

    International Nuclear Information System (INIS)

    Rana, Sravendra; Karak, Niranjan; Cho, Jae Whan; Kim, Young Ho

    2008-01-01

    Hyperbranched polyurethane (HBPU) nanocomposites with multi-walled carbon nanotubes (MWNTs) were prepared by in situ polymerization on the basis of poly(ε-caprolactone)diol as the soft segment, 4,4'-methylene bis(phenylisocyanate) as the hard segment, and castor oil as the multifunctional group for the hyperbranched structure. A dominant improvement in the dispersion of MWNTs in the HBPU matrix was found, and good solubility of HBPU-MWNT nanocomposites in organic solvents was shown. Due to the well-dispersed MWNTs, the nanocomposites resulted in achieving excellent shape memory properties as well as enhanced mechanical properties compared to pure HBPU.

  7. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    Science.gov (United States)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the

  8. Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties.

    Science.gov (United States)

    Barathikannan, Kaliyan; Venkatadri, Babu; Khusro, Ameer; Al-Dhabi, Naif Abdullah; Agastian, Paul; Arasu, Mariadhas Valan; Choi, Han Sung; Kim, Young Ock

    2016-07-30

    The medical application of pomegranate fruits and its peel is attracted human beings. The aim of the present study was to evaluate the in vitro α-Glucosidase inhibition, antimicrobial, antioxidant property and in vivo anti-hyperglycemic activity of Punica granatum (pomegranate) fruit peel extract using Caenorhabditis elegans. Various invitro antioxidant activity of fruit peel extracts was determined by standard protocol. Antibacterial and antifungal activities were determined using disc diffusion and microdilution method respectively. Anti-hyperglycemic activity of fruit peel was observed using fluorescence microscope for in vivo study. The ethyl acetate extract of P. granatum fruit peel (PGPEa) showed α-Glucosidase inhibition upto 50 % at the concentration of IC50 285.21 ± 1.9 μg/ml compared to hexane and methanol extracts. The total phenolic content was highest (218.152 ± 1.73 mg of catechol equivalents/g) in ethyl acetate extract. PGPEa showed more scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) with IC50 value 302.43 ± 1.9 μg/ml and total antioxidant activity with IC50 294.35 ± 1.68 μg/ml. PGPEa also showed a significant effecton lipid peroxidation IC50 208.62 ± 1.68 μg/ml, as well as high reducing power. Among the solvents extracts tested, ethyl acetate extract of fruit peel showed broad spectrum of antimicrobial activity. Ethyl acetate extract supplemented C.elegans worms showed inhibition of lipid accumulation similar to acarbose indicating good hypoglycemic activity. The normal worms compared to test (ethyl acetate extract supplemented) showed the highest hypoglycaemic activity by increasing the lifespan of the worms. GC-MS analysis of PGPEa showed maximum amount of 5-hydroxymethylfurfural and 4-fluorobenzyl alcohol (48.59 %). In the present investigation we observed various biological properties of pomegranate fruit peel. The results clearly indicated that pomegranate peel extract could be used in preventing

  9. Caesium 137: Properties and biological effects resulting of an internal contamination

    International Nuclear Information System (INIS)

    Lestaevel, P.; Racine, R.; Bensoussan, H.; Rouas, C.; Gueguen, Y.; Dublineau, I.; Bertho, J.M.; Gourmelon, P.; Jourdain, J.R.; Souidi, M.

    2010-01-01

    Caesium-137 ( 137 Cs) is a radionuclide present in the environment mainly as the result of the atmospheric nuclear weapons testing and accidents arising in nuclear power plants like the Chernobyl accident in 1986. Nowadays, the health consequences resulting from a chronic exposure to this radionuclide remain unknown. After absorption, the caesium is distributed relatively homogeneously within the body, with a more important load in children than in adults. The toxicity of 137 Cs is mainly due to its radiological properties. A high dose of 137 Cs is responsible for a medullar dystrophy, disorders of the reproductive function, and effects on liver and renal functions. Disorders of bone mineralization and brain damages were also described in human beings. At lowest dose, 137 Cs induces disturbances of wakefulness-sleep cycle, but not accompanied with behavioural disorders. The cardiovascular system was also perturbed. Biological effects of 137 Cs on the metabolisms of the vitamin D, cholesterol and steroid hormones were described, but do not lead to clinical symptoms. In human beings, 137 Cs leads to an immune deficiency, congenital and foetal deformations, an increased of thyroid cancer, as well as neurological disorders. It seems that children are more sensitive to the toxic effects of caesium than the adults. At present, the only effective treatment for the decorporation of the ingested 137 Cs is the Prussian Blue (Radiogardase). The use of pectin to de-corporate the ingested 137 Cs, in children notably, is sometimes proposed, but its administration still remains an open question. To conclude, the available scientific data suggest that 137 Cs could affect a number of physiological and metabolic functions and consequently, could participate in the health risks associated to the presence of other contaminants in the environment. (authors)

  10. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae).

    Science.gov (United States)

    Kumar, Dinesh; Kumar, Sunil; Gupta, Jyoti; Arya, Renu; Gupta, Ankit

    2011-07-01

    Cayratia trifolia Linn. Domin Syn. Vitis trifolia (Family: Vitaceae) is commonly known as Fox grape in English; Amlabel, Ramchana in Hindi and Amlavetash in Sanskrit. It is native to India, Asia and Australia. It is a perennial climber having trifoliated leaves with 2-3 cm long petioles and ovate to oblong-ovate leaflets. Flowers are small greenish white and brown in color. Fruits are fleshy, juicy, dark purple or black, nearly spherical, about 1 cm in diameter. It is found throughout the hills in India. This perennial climber is also found in the hotter part of India from Jammu and Rajasthan to Assam extending into the peninusular India upto 600 m height. Whole plant of Cayratia trifolia has been reported to contain yellow waxy oil, steroids/terpenoids, flavonoids, tannins upon preliminary phytochemical screening. Leaves contain stilbenes (piceid, reveratrol, viniferin, ampelopsin). Stem, leaves, roots are reported to possess hydrocyanic acid, delphinidin and several flavonoids such as cyanidin is reported in the leaves. This plant also contains kaempferol, myricetin, quercetin, triterpenes and epifriedelanol. Infusion of seeds along with extract of tubers is traditionally given orally to diabetic patients to check sugar level of blood. Paste of tuberous is applied on the affected part in the treatment of snake bite. Whole plant is used as diuretic, in tumors, neuralgia and splenopathy. Its climbers wrapped around the neck of frantic bullock and poultice of leaves are used to yoke sores of bullock. The bark extract shows the antiviral, antibacterial, antiprotozoal, hypoglycemic, anticancer and diuretic activity. This article focuses on the upgraded review on chemical and biological properties of Cayratia trifolia Linn. and triggers further investigation on this plant.

  11. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.; Rossetti, Carlos A.; Lewin, Harris A.; Lipton, Mary S.; Turse, Joshua E.; Wylie, Dennis C.; Bai, Yu; Drake, Kenneth L.

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  12. Enhanced Electromagnetic and Chemical/Biological Sensing. Properties of Atomic Cluster-Derived Materials

    National Research Council Canada - National Science Library

    Schatz, George

    2003-01-01

    The Center for Atomic Clusters-derived Materials performed a broad range of research concerned with synthesizing, characterizing and utilizing atomic and molecular clusters, nanoparticles and nanomaterial...

  13. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    Science.gov (United States)

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  14. Earthworms enhance soil health and may also assist in improving biological insect pest suppression in pecans

    Science.gov (United States)

    Prior research indicated that earthworms may serve as phoretic hosts to entomopathogenic nematodes. Therefore, we hypothesized that biocontrol efficacy of entomopathogenic nematodes could be enhanced in the presence of earthworms based on increased nematode dispersal through the soil. We also hypo...

  15. Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bassiana: Implications for enhanced biological control

    Science.gov (United States)

    Prior research indicated that earthworms may serve as phoretic hosts to entomopathogenic nematodes. Therefore, we hypothesized that biocontrol efficacy of nematodes could be enhanced in the presence of earthworms based on increased nematode dispersal through the soil. We also hypothesized that ear...

  16. Influence of the biological conditions in the surface magnetic properties of nanocrystalline CoFeCrSiB ribbons

    International Nuclear Information System (INIS)

    Fal-Miyar, V.; Cerdeira, M.A.; Garcia, J.A.; Tejedor, M.; Potatov, A.P.; Pierna, A.R.; Marzo, F.F.; Vara, G.

    2007-01-01

    In this paper the result of a study of the influence of the biological conditions on the surface magnetic properties of nanocrystalline Co 64.5 Fe 2.5 Cr 3 B 15 Si 15 ribbons are presented and discussed. After the biological treatment the results show that, in the longitudinal direction, there is a hardening of the magnetic behavior and in the transverse direction the magnetization takes place in two steps. The surface saturation magnetization decreases in the treated samples. These results are explained considering the presence of magnetic oxides and non-conducting oxides on the surface of the treated samples

  17. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Lavareda, G.; Fortunato, E.; Alves, H.; Goncalves, A.; Varela, J.; Nascimento, R.; Amaral, A.

    2005-01-01

    Indium tin oxide (ITO) films were deposited by radio frequency (rf)-plasma enhanced reactive thermal evaporation (rf-PERTE) at room temperature on intrinsic ZnO/polymer substrates to enhance their electrical and structural properties. The polymer substrate used is polyethylene terephthalate (PET). The thickness of the ZnO films varied in the range 50-150 nm. The average thickness of the ITO films is of about 170 nm. Results show that ITO deposited on bare PET substrates exhibit: an average visible transmittance of about 85% and an electrical resistivity of 5.6 x 10 -2 Ω cm. ITO on ZnO/PET substrates show the optical quality practically preserved and the resistivity decreased to a minimum value of 1.9x10 -3 Ω cm for ZnO layers 125 nm thick. The electrical properties of ITO on ZnO/PET are largely improved by the increase in carrier mobility

  18. Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties

    Science.gov (United States)

    Jang, Hyeyoung; Yoon, Hyungsuk; Ko, Youngpyo; Choi, Jaeyoo; Lee, Sang-Soo; Jeon, Insu; Kim, Jong-Ho; Kim, Heesuk

    2016-03-01

    Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased dielectric properties of elastomers and simple sensor structure. We rationally design dielectric elastomers based on alkylamine modified-multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) composites, which have a higher dielectric constant than pure PDMS. The alkylamine-MWCNTs show excellent dispersion in a PDMS matrix, thus leading to enhanced and reliable dielectric properties of the composites. A force sensor array fabricated with alkylamine-MWCNT/PDMS composites presents an enhanced response due to the higher dielectric constant of the composites than that of pure PDMS. This study is the first to report enhanced performance of capacitive force sensors by modulating the dielectric properties of elastomers. We believe that the disclosed strategy to improve the sensor performance by increasing the dielectric properties of elastomers has great potential in the development of capacitive force sensor arrays that respond to various input forces.Force sensors have attracted tremendous attention owing to their applications in various fields such as touch screens, robots, smart scales, and wearable devices. The force sensors reported so far have been mainly focused on high sensitivity based on delicate microstructured materials, resulting in low reproducibility and high fabrication cost that are limitations for wide applications. As an alternative, we demonstrate a novel capacitive-type force sensor with enhanced performance owing to the increased

  19. Magnetorheological technology for fabricating tunable solid electrolyte with enhanced conductivity and mechanical property

    Science.gov (United States)

    Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua

    2018-03-01

    Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.

  20. Enhancement of optical properties of InAs quantum dots grown by using periodic arsine interruption

    International Nuclear Information System (INIS)

    Kim, Jungsub; Yang, Changjae; Sim, Uk; Lee, Jaeyel; Yoon, Euijoon; Lee, Youngsoo

    2009-01-01

    We investigated the morphological and optical properties of InAs quantum dots (QDs) grown by using periodic arsine interruption (PAI) and compared them with QDs grown conventionally. In the conventional growth, the formation of large islands was observed, which suppresses the nucleation and growth of QDs. Furthermore, the growth of capping layers was significantly degraded by these large islands. On the other hand, in the PAI growth, the formation of large islands was completely suppressed, resulting in the increase of the density and aspect ratio of QDs and the uniform growth of capping layers. As a result of photoluminescence (PL) measurements, we found that the emission efficiency was enhanced and the full-width-half-maximum was reduced to 32 meV. The temperature dependence of these optical properties also revealed the enhancement of the uniformity of QDs grown by the PAI method.

  1. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yindong [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Bao, Chongyun, E-mail: cybao9933@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Wismeijer, Daniel [Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam and University of Amsterdam, Amsterdam (Netherlands); Wu, Gang, E-mail: g.wu@acta.nl [Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam and University of Amsterdam, Amsterdam (Netherlands)

    2015-04-01

    More rapid restoration and more rigid functionality have been pursued for decades in the field of dental implantology. Under such motivation, porous tantalum has been recently introduced to design a novel type of dental implant. Porous tantalum bears interconnected porous structure with pore size ranging from 300 to 600 μm and a porosity of 75–85%. Its elastic modulus (1.3–10 GPa) more closely approximates that of natural cortical (12–18 GPa) and cancellous bone (0.1–0.5 GPa) in comparison with the most commonly used dental materials, such as titanium and titanium alloy (106–115 GPa). Porous tantalum is highly corrosion-resistant and biocompatible. It can significantly enhance the proliferation and differentiation of primary osteoblasts derived from elderly people than titanium. Porous tantalum can allow bone ingrowth and establish not only osseointegration but also osseoincorporation, which will significantly enhance the secondary stability of implants in bone tissue. In this review, we summarize the physicochemical, mechanical and biological properties of porous tantalum. We further discuss the performance of current tantalum dental implants and present the methodologies of surface modifications in order to improve their biological performance.

  2. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology

    International Nuclear Information System (INIS)

    Liu, Yindong; Bao, Chongyun; Wismeijer, Daniel; Wu, Gang

    2015-01-01

    More rapid restoration and more rigid functionality have been pursued for decades in the field of dental implantology. Under such motivation, porous tantalum has been recently introduced to design a novel type of dental implant. Porous tantalum bears interconnected porous structure with pore size ranging from 300 to 600 μm and a porosity of 75–85%. Its elastic modulus (1.3–10 GPa) more closely approximates that of natural cortical (12–18 GPa) and cancellous bone (0.1–0.5 GPa) in comparison with the most commonly used dental materials, such as titanium and titanium alloy (106–115 GPa). Porous tantalum is highly corrosion-resistant and biocompatible. It can significantly enhance the proliferation and differentiation of primary osteoblasts derived from elderly people than titanium. Porous tantalum can allow bone ingrowth and establish not only osseointegration but also osseoincorporation, which will significantly enhance the secondary stability of implants in bone tissue. In this review, we summarize the physicochemical, mechanical and biological properties of porous tantalum. We further discuss the performance of current tantalum dental implants and present the methodologies of surface modifications in order to improve their biological performance

  3. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

    OpenAIRE

    Naveh, Naum; Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called “stacked” graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, ...

  4. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil.

    Science.gov (United States)

    Arévalo, Fabian; Uscategui, Yomaira L; Diaz, Luis; Cobo, Martha; Valero, Manuel F

    2016-11-01

    In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues. © The Author(s) 2016.

  5. Biologically enhanced mineral weathering: what does it look like, can we model it?

    Science.gov (United States)

    Schulz, M. S.; Lawrence, C. R.; Harden, J. W.; White, A. F.

    2011-12-01

    The interaction between plants and minerals in soils is hugely important and poorly understood as it relates to the fate of soil carbon. Plant roots, fungi and bacteria inhabit the mineral soil and work symbiotically to extract nutrients, generally through low molecular weight exudates (organic acids, extracelluar polysachrides (EPS), siderophores, etc.). Up to 60% of photosynthetic carbon is allocated below ground as roots and exudates, both being important carbon sources in soils. Some exudates accelerate mineral weathering. To test whether plant exudates are incorporated into poorly crystalline secondary mineral phases during precipitation, we are investigating the biologic-mineral interface. We sampled 5 marine terraces along a soil chronosequence (60 to 225 ka), near Santa Cruz, CA. The effects of the biologic interactions with mineral surfaces were characterized through the use of Scanning Electron Microscopy (SEM). Morphologically, mycorrhizal fungi were observed fully surrounding minerals, fungal hyphae were shown to tunnel into primary silicate minerals and we have observed direct hyphal attachment to mineral surfaces. Fungal tunneling was seen in all 5 soils by SEM. Additionally, specific surface area (using a nitrogen BET method) of primary minerals was measured to determine if the effects of mineral tunneling are quantifiable in older soils. Results suggest that fungal tunneling is more extensive in the primary minerals of older soils. We have also examined the influence of organic acids on primary mineral weathering during soil development using a geochemical reactive transport model (CrunchFlow). Addition of organic acids in our models of soil development at Santa Cruz result in decreased activity of Fe and Al in soil pore water, which subsequently alters the spatial extent of primary mineral weathering and kaolinite precipitation. Overall, our preliminary modeling results suggest biological processes may be an important but underrepresented aspect of

  6. Enhanced biological degradation of crude oil in a Spitsbergen tundra site

    International Nuclear Information System (INIS)

    Sveum, P.; Faksness, L.-G.

    1993-01-01

    A series of oil-contaminated tundra plots on Spitsbergen was treated with combinations of five different fertilizer additives. Both organic and mineral nutrient sources were used, alone or in combination. Biological degradation of oil was recorded in all of the plots. The extent of degradation depended on the type of fertilizer added. The local conditions influence oil degradation significantly, as well as the effect of the fertilizer. Urea, SkogAN (a slow releasing fertilizer), and a blend of fish meals all give high degrees of oil degradation. Both the microbial parameters and the total heterotrophic respiration are influenced by the addition of fertilizers. 6 refs., 13 figs., 3 tabs

  7. Tip-Enhanced Raman Scattering Microscopy: A Step toward Nanoscale Control of Intrinsic Molecular Properties

    Science.gov (United States)

    Yano, Taka-aki; Hara, Masahiko

    2018-06-01

    Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.

  8. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    Science.gov (United States)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  9. Biological Motion Preference in Humans at Birth: Role of Dynamic and Configural Properties

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2011-01-01

    The present study addresses the hypothesis that detection of biological motion is an intrinsic capacity of the visual system guided by a non-species-specific predisposition for the pattern of vertebrate movement and investigates the role of global vs. local information in biological motion detection. Two-day-old babies exposed to a biological…

  10. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates

    Institute of Scientific and Technical Information of China (English)

    JIANG Lin-lin; HAN Guang-ming; LAN Yu; LIU Sai-nan; GAO Ji-ping; YANG Xu; MENG Jun; CHEN Wen-fu

    2017-01-01

    Biochar has been shown to influence soil microbial communities in terms of their abundance and diversity.However,the relationship among microbial abundance,structure and C metabolic traits is not well studied under biochar application.Here it was hypothesized that the addition of biochar with intrinsic properties (i.e.,porous structure) could affect the proliferation of culturable microbes and the genetic structure of soil bacterial communities.In the meantime,the presence of available organic carbon in biochar may influence the C utilization capacities of microbial community in Biolog Eco-plates.A pot experiment was conducted with differenct biochar application (BC) rates:control (0 t ha-1),BC1 (20 t ha-1) and BC2 (40 t ha-1).Culturable microorganisms were enumerated via the plate counting method.Bacterial diversity was examined using denaturing gradient gel electrophoresis (DGGE).Microbial capacity in using C sources was assessed using Biolog Eco-plates.The addition of biochar stimulated the growth of actinomyces and bacteria,especially the ammonifying bacteria and azotobacteria,but had no significant effect on fungi proliferation.The phylogenetic distribution of the operational taxonomic units could be divided into the following groups with the biochar addition:Firmicutes,Acidobacteria,Gemmatimonadetes,Actinobacteria,Cyanobacteria and α-,β-,γ-and δ-Proteobacteria (average similarity >95%).Biochar application had a higher capacity utilization for L-asparagine,Tween 80,D-mannitol,L-serine,γ-hydroxybutyric acid,N-acetyI-D-glucosamine,glycogen,itaconic acid,glycyl-L-glutamic acid,α-ketobutyricacid and putrescine,whereas it had received decreased capacities in using the other 20 carbon sources in Biolog Eco-plates.Redundancy analysis (RDA) revealed that the physico-chemical properties,indices of bacterial diversity,and C metabolic traits were positively correlated with the appearance of novel sequences under BC2 treatment.Our study indicates that the

  11. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Baratéla, Fernando José Costa; Zazuco Higa, Olga [Biotechnology Center, Institute of Energy and Nuclear Research (IPEN), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Duarte dos Passos, Esdras [PostGraduate Program in Materials for Engineering, Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); Alencar de Queiroz, Alvaro Antonio, E-mail: alencar@unifei.edu.br [Physics and Chemistry Institute (IFQ), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil); High Voltage Laboratory (LAT-EFEI), Federal University of Itajubá (UNIFEI), Av. BPS 1303, 37500-903 Itajubá, MG (Brazil)

    2017-04-01

    Electrospinning is a suitable method to produce scaffolds composed of nanoscale to microscale fibers, which are comparable to the extracellular matrix (ECM). Hyperbranched polyglycerol (HPGL) is a highly biocompatible polyether polyol potentially useful for the design of fibrous scaffolds mimicking the ECM architecture. However, scaffolds developed from HPGL have poor mechanical properties and morphological stability in the aqueous environments required for tissue engineering applications. This work reports the production of stable electrospun HPGL scaffolds (EHPGLS) using glycidyl methacrylate (GMA) as cross-linker to enhance the water stability and mechanical property of electrospun HPGL. The diameter and morphology of the produced EHPGLS were analyzed by scanning electron microscopy (SEM). It was observed that electrical fields in the range of 0.2 kV·cm{sup −1} to 1.0 kV·cm{sup −1} decrease the average fiber diameter of EHPGLS. The increase in porosity of EHPGLS with GMA concentration indicates the in situ formation of a heterogeneous structure resultant from the phase separation during crosslinking of HPGL by GMA. EHPGLS containing 20% (w/w) GMA concentration possessed highest tensile strength (295.4 ± 11.32 kPa), which is approximately 58 times higher than that of non-crosslinked EHPGLS (5.1 ± 2.12 kPa). The MTS cell viability results showed that the EHPGLS have no significant cytotoxicity effect on Chinese hamster ovary (CHO-K1) cells. Scanning electron microscopy (SEM) indicates that the cultured BALB/3T3 fibroblasts cells were able to keep contact each other's, thus forming a homogeneous monolayer on the internal surface of the EHPGLS. - Highlights: • A hyperbranched polyglycerol (HPGL) scaffold with elastic modulus of 295.4 ± 11.32 kPa was developed for soft tissue repair. • HPGL scaffold was prepared by electrospinning method. • The porosity of HPGL scaffolds can be tuned by selecting the degree of GMA in HPGL. • Electrospun HPGL

  12. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Controlled biomineralization of electrospun poly(ε-caprolactone) fibers to enhance their mechanical properties.

    Science.gov (United States)

    Xie, Jingwei; Zhong, Shaoping; Ma, Bing; Shuler, Franklin D; Lim, Chwee Teck

    2013-03-01

    Electrospun polymeric fibers have been investigated as scaffolding materials for bone tissue engineering. However, their mechanical properties, and in particular stiffness and ultimate tensile strength, cannot match those of natural bones. The objective of the study was to develop novel composite nanofiber scaffolds by attaching minerals to polymeric fibers using an adhesive material - the mussel-inspired protein polydopamine - as a "superglue". Herein, we report for the first time the use of dopamine to regulate mineralization of electrospun poly(ε-caprolactone) (PCL) fibers to enhance their mechanical properties. We examined the mineralization of the PCL fibers by adjusting the concentration of HCO(3)(-) and dopamine in the mineralized solution, the reaction time and the surface composition of the fibers. We also examined mineralization on the surface of polydopamine-coated PCL fibers. We demonstrated the control of morphology, grain size and thickness of minerals deposited on the surface of electrospun fibers. The obtained mineral coatings render electrospun fibers with much higher stiffness, ultimate tensile strength and toughness, which could be closer to the mechanical properties of natural bone. Such great enhancement of mechanical properties for electrospun fibers through mussel protein-mediated mineralization has not been seen previously. This study could also be extended to the fabrication of other composite materials to better bridge the interfaces between organic and inorganic phases. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    Science.gov (United States)

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2018-03-01

    The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO) substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111) while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells.

  16. Preparation of Basalt Incorporated Polyethylene Composite with Enhanced Mechanical Properties for Various Applications

    Directory of Open Access Journals (Sweden)

    Bredikhin Pavel

    2017-01-01

    Full Text Available The present article showed the possibility of increasing the complex of mechanical properties of polyolefins with dispersed mineral fillers obtained by fine grinding of basalt rocks via ball mill processing. The composites based on dispersed basalt, which were derived from Samara rock mass (Russia with rare earth elements containing, were obtained by extrusion combining the binder and filler, followed by preparation injection-molded test samples. The study of mechanical properties of materials developed showed the possibility of a significant increase in strength characteristics of different types of polyethylene: the breaking stress at static bending for HDPE can be increasing more than 60% and the impact strength by more than 4 times. In addition the incorporation of the dispersed basalt also enhanced the thermal properties of the composites (the oxygen index of HDPE increases from 19 to 25%.

  17. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry.

    Science.gov (United States)

    Wang, Y-Y; Chatzistavrou, X; Faulk, D; Badylak, S; Zheng, L; Papagerakis, S; Ge, L; Liu, H; Papagerakis, P

    2015-06-20

    The aim of this study was the fabrication and evaluation of a novel bioactive and bactericidal material, which could have applications in dentistry by supporting tissue regeneration and killing oral bacteria. Our hypothesis was that a new scaffold for pulp-dentin tissue engineering with enhanced antibacterial activity could be obtained by associating extracellular matrix derived from porcine bladder with an antibacterial bioactive glass. Our study combines in vitro approaches and ectopic implantation in scid mice. The novel material was fabricated by incorporating a sol-gel derived silver (Ag)-doped bioactive glass (BG) in a natural extracellular matrix (ECM) hydrogel in ratio 1:1 in weight % (Ag-BG/ECM). The biological properties of the Ag-BG/ECM were evaluated in culture with dental pulp stem cells (DPSCs). In particular, cell proliferation, cell apoptosis, stem cells markers profile, and cell differentiation potential were studied. Furthermore, the antibacterial activity against Streptococcus mutans and Lactobacillus casei was measured. Moreover, the capability of the material to enhance pulp/dentin regeneration in vivo was also evaluated. Our data show that Ag-BG/ECM significantly enhances DPSCs' proliferation, it does not affect cell morphology and stem cells markers profile, protects cells from apoptosis, and enhances in vitro cell differentiation and mineralisation potential as well as in vivo dentin formation. Furthermore, Ag-BG/ECM strongly inhibits S. mutans and L. casei growth suggesting that the new material has also anti-bacterial properties. This study provides foundation for future clinical applications in dentistry. It could potentially advance the currently available options of dental regenerative materials.

  18. Mechanical properties of crossed-lamellar structures in biological shells: A review.

    Science.gov (United States)

    Li, X W; Ji, H M; Yang, W; Zhang, G P; Chen, D L

    2017-10-01

    The self-fabrication of materials in nature offers an alternate and powerful solution towards the grand challenge of designing advanced structural materials, where strength and toughness are always mutually exclusive. Crossed-lamellar structures are the most common microstructures in mollusks that are composed of aragonites and a small amount of organic materials. Such a distinctive composite structure has a fracture toughness being much higher than that of pure carbonate mineral. These structures exhibiting complex hierarchical microarchitectures that span several sub-level lamellae from microscale down to nanoscale, can be grouped into two types, i.e., platelet-like and fiber-like crossed-lamellar structures based on the shapes of basic building blocks. It has been demonstrated that these structures have a great potential to strengthen themselves during deformation. The observed underlying toughening mechanisms include microcracking, channel cracking, interlocking, uncracked-ligament bridging, aragonite fiber bridging, crack deflection and zig-zag, etc., which play vital roles in enhancing the fracture resistance of shells with the crossed-lamellar structures. The exploration and utilization of these important toughening mechanisms have attracted keen interests of materials scientists since they pave the way for the development of bio-inspired advanced composite materials for load-bearing structural applications. This article is aimed to review the characteristics of hierarchical structures and the mechanical properties of two kinds of crossed-lamellar structures, and further summarize the latest advances and biomimetic applications based on the unique crossed-lamellar structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Contribution to the study of the biological properties of compounds labeled with radio-chromium 51Cr

    International Nuclear Information System (INIS)

    Ingrand, J.

    1964-07-01

    Among the radioisotopes commonly used in biology and medicine which are controlled Individually in the Radioelement Departement of the Saclay Nuclear Research Centre before being sent to the users, the author has chosen chromium 51 incorporated in inorganic salts or in organic substrates for a study of the biological properties of the compounds. In the first part, he has compared the pathways followed by the radioactive sodium chromate and chromic chloride mixed with blood or given to the whole animal, the object being to determine whether a reduction of hexavalent chromium occurs, both in vitro and in vivo. In the second part, the author has tried to show the validity of using, various substrates labeled with chromium 51, red cells, haemoglobin, plasma proteins and cytochrome c. The results obtained have contributed to underline the interest of using such compounds for biological applications. (author) [fr

  20. THE STUDY OF THE BIOLOGICAL PROPERTIES OF PROBIOTIC LACTOBACILLUS SPP. STRAINS UNDER AEROBIC AND MICROAEROPHILIC CULTIVATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Babych E.M.

    2014-01-01

    Full Text Available The biological properties (growth characteristics, adhesive activity and sensitivity to antimicrobial of probiotic Lactobacillus strains were studied under different gas composition of incubation atmosphere. It was found that the number of viable lactobacilli cells in the one dose of investigated probiotic preparations was lower than it was claimed by the manufacturer. Gas composition of incubation atmosphere affects cell viability of probiotic strains. The number of colony forming units of lactobacilli under microaerophilic conditions increased in 1,19-1,33 times as compared with aerobic conditions. It was proved that adhesive activity of probiotic Lactobacillus strains and sensitivity to 2th, 3th, 4th generations of cephalosporins (cefuroxime, cefotaxime, cefepime and tetracyclines (doxycycline also increased under microaerophilic conditions. The changes of the biological properties of lactobacilli under different cultivation conditions require further study for optimization of correction of dysbiotic disorders.

  1. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  2. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  3. [RESAOLAB: West African network of laboratories to enhance the quality of clinical biology].

    Science.gov (United States)

    Delorme, L; Machuron, J L; Sow, I; Diagne, R; Sakandé, J; Nikiéma, A; Bougoudogo, F; Keita, A; Longuet, C

    2015-02-01

    The Fondation Mérieux, in partnership with the Ministries of Health of Burkina Faso, Mali and Senegal, implemented for four years a project to reinforce the laboratory sector in the three participating countries: the RESAOLAB project (West African Network of Biomedical Analysis Laboratories).The objective of RESAOLAB project, in partnership with the WHO Office for West Africa and the West African Health Organization, was to strengthen the systems of biomedical laboratories to improve diagnostic services, access, monitoring and management of infectious diseases. Following the successful results achieved under the RESAOLAB project and due to the demand of the neighbour countries ministries, the RESAOLAB project is now extended to four other countries of the West African region: Benin, Guinea-Conakry, Niger and Togo. The RESAOLAB project has become the RESAOLAB programme, its purpose is to strengthen the quality of the medical biology services thanks to a regional and transversal approach.

  4. Model predictions and analysis of enhanced biological effectiveness at low dose rates

    International Nuclear Information System (INIS)

    Watt, D.E.; Sykes, C.E.; Younis, A.-R.S.

    1988-01-01

    A severe challenge to all models purporting to describe the biological effects of ionizing radiation has arisen with the discovery of two phenomena: the anomalous trend with dose rate of the frequency of neoplastic transformation of mammalian cells and the apparent excessive damaging power of electron-capture radionuclides when incorporated into cell nuclei. A new model is proposed which predicts and enables interpretation of these phenomena. Radiation effectiveness is found to be expressible absolutely in terms of the geometrical cross-sectional area of the radiosensitive sites. The duration of the irradiation, the mean free path for ionization, the influence of particles in the slowing-down spectrum perrtaining in the medium and two collective time factors determining the mean repair rate and the mean lifetime of unidentified reactive chemical species [pt

  5. Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective.

    Science.gov (United States)

    Hatt, Séverin; Boeraeve, Fanny; Artru, Sidonie; Dufrêne, Marc; Francis, Frédéric

    2018-04-15

    Spatial diversification of crop and non-crop habitats in farming systems is promising for enhancing natural regulation of insect pests. Nevertheless, results from recent syntheses show variable effects. One explanation is that the abundance and diversity of pests and natural enemies are affected by the composition, design and management of crop and non-crop habitats. Moreover, interactions between both local and landscape elements and practices carried out at different spatial scales may affect the regulation of insect pests. Hence, research is being conducted to understand these interdependencies. However, insects are not the only pests and pests are not the only elements to regulate in agroecosystems. Broadening the scope could allow addressing multiple issues simultaneously, but also solving them together by enhancing synergies. Indeed, spatial diversification of crop and non-crop habitats can allow addressing the issues of weeds and pathogens, along with being beneficial to several other regulating services like pollination, soil conservation and nutrient cycling. Although calls rise to develop multifunctional landscapes that optimize the delivery of multiple ecosystem services, it still represents a scientific challenge today. Enhancing interdisciplinarity in research institutions and building interrelations between scientists and stakeholders may help reach this goal. Despite obstacles, positive results from research based on such innovative approaches are encouraging for engaging science in this path. Hence, the aim of the present paper is to offer an update on these issues by exploring the most recent findings and discussing these results to highlight needs for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Tapan Kumar; Emeny, Rebecca T.; Gao, Donghong; Ault, Jeffrey G.; Kasten-Jolly, Jane; Lawrence, David A., E-mail: david.lawrence@health.ny.gov

    2015-12-01

    The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2 h, host defenses against bacterial growth are suppressed 2–3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidation (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes. - Highlights: • Cold-restraint (physical/psychological stress) induces early oxidative stress. • The oxidative stress relates to catecholamine signaling beta-adrenoceptors. • Physical/psychological stress combines infection enhancing inflammation. • Endoplasmic reticulum

  7. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.

    Science.gov (United States)

    Jabari, P; Yuan, Q; Oleszkiewicz, J A

    2016-11-01

    The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graudate School of the Chinese Academy of Sciences, 100864 Beijing (China); Liu Bo [Capital University of Medical Sciences (China); Zhu, Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)]. E-mail: zhupp@ihep.ac.cn; Gao Xin [Capital University of Medical Sciences (China); Yin Hongxia [Capital University of Medical Sciences (China); Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graudate School of the Chinese Academy of Sciences, 100864 Beijing (China); Huang Wanxia [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Gao Xiulai [Capital University of Medical Sciences (China); Luo Shuqian [Capital University of Medical Sciences (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China) and National Center for NanoScience and Technology (China)]. E-mail: wuzy@mail.ihep.ac.cn; Fang Shouxian [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)

    2006-11-15

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 {mu}m. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization.

  9. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    International Nuclear Information System (INIS)

    Shu Hang; Liu Bo; Zhu, Peiping; Gao Xin; Yin Hongxia; Yuan Qingxi; Wang Junyue; Huang Wanxia; Gao Xiulai; Luo Shuqian; Wu Ziyu; Fang Shouxian

    2006-01-01

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 μm. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization

  10. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    Science.gov (United States)

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-07

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., β-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of β-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin.

  11. Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene

    Science.gov (United States)

    Jackson, Nathan; Mathewson, Alan

    2017-04-01

    Flexible piezoelectric materials are desired for numerous applications including biomedical, wearable, and flexible electronics. However, most flexible piezoelectric materials are not compatible with CMOS fabrication technology, which is desired for most MEMS applications. This paper reports on the development of a hybrid flexible piezoelectric material consisting of aluminium nitride (AlN) and a semi-crystalline polymer substrate. Various types of semi-crystalline parylene and polyimide materials were investigated as the polymer substrate. The crystallinity and surfaces of the polymer substrates were modified by micro-roughening and annealing in order to determine the effects on the AlN quality. The AlN crystallinity and piezoelectric properties decreased when the polymer surfaces were treated with O2 plasma. However, increasing the crystallinity of the parylene substrate prior to deposition of AlN caused enhanced c-axis (002) AlN crystallinity and piezoelectric response of the AlN. Piezoelectric properties of 200 °C annealed parylene-N substrate resulted in an AlN d 33 value of 4.87 pm V-1 compared to 2.17 pm V-1 for AlN on polyimide and 4.0 pm V-1 for unannealed AlN/parylene-N. The electrical response measurements to an applied force demonstrated that the parylene/AlN hybrid material had higher V pp (0.918 V) than commercial flexible piezoelectric material (PVDF) (V pp 0.36 V). The results in this paper demonstrate that the piezoelectric properties of a flexible AlN hybrid material can be enhanced by increasing the crystallinity of the polymer substrate, and the enhanced properties can function better than previous flexible piezoelectrics.

  12. Usefulness and biological background of dynamic contrast-enhanced MR images in patients with primary breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Yutaka; Kurebayashi, Junichi; Sonoo, Hiroshi

    2002-01-01

    Dynamic contrast-enhanced MR images were obtained between September 1998 and May 2000 from 44 primary breast cancer patients who were scheduled to undergo breast-conserving surgery. The MR images and clinico-pathological findings were analyzed to investigate the risk factors for histologically positive margins and histologically positive lymph node metastases. We elucidated the relationship between MR images and the biological background of breast cancer. The following interesting findings were made from these analyses. An irregular shape and unclear border of the tumor mass and the coexistence of daughter nodule(s) were significant risk factors for positive-surgical margins; an irregularly shaped tumor mass and spiculated tumor mass were significant risk factors for positive lymph node metastases; breast tumors with a strand-like appearance had a significantly lower histological grade; breast tumors with high contrast enhancement ratios had a significantly higher nuclear grade and progesterone receptor negativity; and breast tumors showing a ring-like enhancement expressed a low level of VEGF. These findings suggest that preoperative MR images of primary breast cancer provide not only useful information on the extent of breast tumors and the possibility of lymph node metastasis but also on the malignant potency and hormone responsiveness of breast tumors. (author)

  13. Estimation of anisotropy factor spectrum for determination of optical properties in biological tissues

    Science.gov (United States)

    Iwamoto, Misako; Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2017-07-01

    Spectroscopic setup for measuring anisotropy factor g spectrum of biological tissues was constructed. g of chicken liver tissue was lower than chicken breast tissue. High absorption of hemoglobin can have an influence on g spectrum.

  14. Synthesis, chemical and biological properties of the new mono- and bis-derivatives of imidazoles

    Directory of Open Access Journals (Sweden)

    E. V. Welchinska

    2014-12-01

    Full Text Available The aim of research. The problem of finding effective antitumour medical preparation with low toxicity is an important issue of medical and pharmaceutical chemistry. Knowledge of cancer cell features and its metabolism enables to predict the direction of chemical and biological research, to conduct a targeted synthesis of potential drugs, and to assess their applicability in oncological practice as antitumor agents. The purpose of work is to explain preformed heterocycles as purines, its synthesis and investigation of chemical and biological properties. After construction of the potential active structures we proposed the new method of original derivatives synthesis which are received on the base of imidazole, from one side, and fluorocontaining common anesthetic halothane (2-bromo-1,1,1-trifluoro-2-chloroethane from other side. Molecular complex of more perspective biologically active bis-imidazole with antitumour bacterial lectine has been received. With the purpose to synthesize potential antitumour compounds on the base of halothane and imidazole, new convenient methods for the preparation of original heterocyclic derivatives of imidazole have been described. The structure and composition of synthesized compound has been confirmed by the methods of elemental analysis, IR- and NMRІН-spectra. Materials and methods. The majority of the absolute organic solvents (benzene, dimethylformamide, ethyl ester employed in the present studies were distilled before their use. Organic solvents were dried over anhydrous magnesium sulfate or metallic sodium. Gas-liquid chromatography was carried out by Perkin Elmer chromatograph with UV-detector ("Perkin", Germany. IR spectra were recorded in a UR-20 spectrometer ("Charles Ceise Hena", Germany. The 1HNMR spectra were recorded in DMSO-d6 on a 200 MHz BrakerWP-200 ("Braker", Switzerland or Varian T-60 spectrometer ("Varian", USA. Investigation of critical toxicity of new compounds was carried out at

  15. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration

    OpenAIRE

    Wang, B; Yang, W; McKittrick, J; Meyers, MA

    2016-01-01

    © 2015 Elsevier Ltd. A ubiquitous biological material, keratin represents a group of insoluble, usually high-sulfur content and filament-forming proteins, constituting the bulk of epidermal appendages such as hair, nails, claws, turtle scutes, horns, whale baleen, beaks, and feathers. These keratinous materials are formed by cells filled with keratin and are considered 'dead tissues'. Nevertheless, they are among the toughest biological materials, serving as a wide variety of interesting func...

  16. Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach

    Science.gov (United States)

    Velicu, Ioana-Laura; Tiron, Vasile; Porosnicu, Corneliu; Burducea, Ion; Lupu, Nicoleta; Stoian, George; Popa, Gheorghe; Munteanu, Daniel

    2017-12-01

    Despite the tremendous potential for industrial use of tungsten (W), very few studies have been reported so far on controlling and tailoring the properties of W thin films obtained by physical vapor deposition techniques and, even less, for those deposited by High Power Impulse Magnetron Sputtering (HiPIMS). This study presents results on the deposition process and properties characterization of nanocrystalline W thin films deposited on silicon and molybdenum substrates (100 W average sputtering power) by conventional dc magnetron sputtering (dcMS) and HiPIMS techniques. Topological, structural, mechanical and tribological properties of the deposited thin films were investigated. It was found that in HiPIMS, both deposition process and coatings properties may be optimized by using an appropriate magnetic field configuration and pulsing design. Compared to the other deposited samples, the W films grown in multi-pulse (5 × 3 μs) HiPIMS assisted by an additional magnetic field, created with a toroidal-shaped permanent magnet placed in front of the magnetron cathode, show significantly enhanced properties, such as: smoother surfaces, higher homogeneity and denser microstructure, higher hardness and Young's modulus values, better adhesion to the silicon substrate and lower coefficient of friction. Mechanical behaviour and structural changes are discussed based on plasma diagnostics results.

  17. Carbon-based sputtered coatings for enhanced chitosan-based films properties

    Science.gov (United States)

    Fernandes, C.; Calderon V., S.; Ballesteros, Lina F.; Cerqueira, Miguel A.; Pastrana, L. M.; Teixeira, José A.; Ferreira, P. J.; Carvalho, S.

    2018-03-01

    In order to make bio-based packaging materials competitive in comparison to petroleum-based one, some of their properties need to be improved, among which gas permeability is of crucial importance. Thus, in this work, carbon-based coatings were applied on chitosan-based films by radiofrequency reactive magnetron sputtering aiming to improve their barrier properties. Chemical and morphological properties were evaluated in order to determine the effect of the coatings on the chemical structure, surface hydrophobicity and barrier properties of the system. Chemical analysis, performed by electron energy loss spectroscopy and Fourier transform infrared spectroscopy, suggests similar chemical characteristics among all coatings although higher incorporation of hydrogen as the acetylene flux increases was observed. On the other hand, scanning transmission electron microscopy revealed that the porosity of the carbon layer can be tailored by the acetylene flux. More importantly, the chitosan oxygen permeability showed a monotonic reduction as a function of the acetylene flux. This study opens up new opportunities to apply nanostructured coatings on bio-based polymer for enhanced oxygen barrier properties.

  18. Manipulation of the membrane binding site of vitamin K-dependent proteins: Enhanced biological function of human factor VII

    OpenAIRE

    Shah, Amit M.; Kisiel, Walter; Foster, Donald C.; Nelsestuen, Gary L.

    1998-01-01

    Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold fast...

  19. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it; Incarnato, L., E-mail: lincarnato@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  20. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    International Nuclear Information System (INIS)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-01-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4% wt/wt ) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films

  1. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Science.gov (United States)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  2. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  3. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    International Nuclear Information System (INIS)

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2012-01-01

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  4. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  5. Creativity as a biological evolution enhancer and its relationship to language and consciousness

    Directory of Open Access Journals (Sweden)

    Sara Lumbreras Sancho

    2013-07-01

    Full Text Available The appearance of creativity in animal behavior and, as its peak expression, human inventiveness, presented a major breakthrough in the evolution of life. It enabled for much faster adaptation and enhanced survival potential in changing environments. In addition, it also brought improvements based on a society rather than an individual. More complex solutions based on teamwork could emerge and advances could be passed on to the whole population in the same generation. For this creative activity to be possible the ability to make new associations and hypothesis was needed, which seems to require some degree of conscious processing as detailed below. In addition, collaborative efforts depend upon a sufficiently sophisticated communication system, which could also require some conscious activity. Therefore, it seems plausible that creativity was a remarkable advantage that was selected for, taking with it language and consciousness

  6. Enhanced DNA repair of cyclobutane pyrimidine dimers changes the biological response to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yarosh, Daniel B

    2002-11-30

    The goal of DNA repair enzyme therapy is the same as that for gene therapy: to rescue a defective proteome/genome by introducing a substitute protein/DNA. The danger of inadequate DNA repair is highlighted in the genetic disease xeroderma pigmentosum. These patients are hypersensitive to sunlight and develop multiple cutaneous neoplasms very early in life. The bacterial DNA repair enzyme T4 endonuclease V was shown over 25 years ago to be capable of reversing the defective repair in xeroderma pigmentosum cells. This enzyme, packaged in an engineered delivery vehicle, has been shown to traverse the stratum corneum, reach the nuclei of living cells of the skin, and enhance the repair of UV-induced cyclobutane pyrimidine dimers (CPD). In such a system, changes in DNA repair, mutagenesis, and cell signaling can be studied without manipulation of the genome.

  7. Molecular biological enhancement of coal biodesulfurization. Seventh quarter report, May--July 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  8. Biological responses of two soybean cultivars exposed to enhanced UVB radiation

    International Nuclear Information System (INIS)

    D'Surney, S.J.; Tschaplinski, T.J.; Edwards, N.T.; Shugart, L.R.

    1993-01-01

    A UVB exposure and monitoring system has been established at the Oak Ridge National Laboratory's Global Climate Change Research Facility. The system consists of a power supply, and data acquisition and exposure equipment to accomplish controlled, elevated exposure of terrestrial plants to UVB. Plant biomass, selected compounds that absorb UV radiation, and DNA integrity/damage were measured for two soybean cultivars [Glycine max (L.) Merr.] Forrest and Essex exposed to elevated UVB (32% above ambient) in this system. The biomass of each major plant organ was observed to be less in soybean cultivar Forrest upon exposure to enhanced UVB with the greatest response in seed pods and stems. In contrast, soybean cultivar Essex showed no biomass response to elevated UVB. Enhanced UVB caused significant (P < 0.1) changes in concentrations of UV-absorbing compounds in both soybean cultivars. The Essex cultivar had an increase in UV-absorbing compounds, whereas a decline was observed for soybean Forrest. There was a decrease in the integrity of DNA, as measured by strand breaks, from both cultivars at 30 and 52 days to exposure. DNA pyrimidine dimers in isolated plant DNA were measured with Micrococcus luteus UV endonuclease. DNA from soybean Forrest exposed to UVB and sampled at 30 and 52 days of exposure had significantly greater (P<0.05) pyrimidine dimer concentration (dimer frequency ≈ 1 dimer per 28,000 DNA bases) than either cultivar exposed to UV treatment for 1 day or Essex at days 30–52 (dimer frequencies < /1 per 120,000 bases of DNA). Decrease in DNA integrity and biomass production in Forrest under elevated UVB may be related to the inability to maintain high concentrations of UV-absorbing compounds in leaves. The tolerant cultivar Essex increased the concentration of UV-absorbing compounds while maintaining biomass production and DNA integrity under elevated UVB

  9. Studies on auger enhancement of biological systems with the use of monochromatic synchrotron radiation

    International Nuclear Information System (INIS)

    Shinohara, K.

    1985-01-01

    HeLa cells were incubated either with BrdUrd (5 x 10 -5 M) and deoxycytidine (10 -5 M) for 18 hr (corresponding to one generation time) or with gallium citrate (10 -5 M) for 24 hr. The cells on the membrane filter were irradiated with monochromatic synchrotron radiation at 0.90 A, 1.00 A, or 1.14 A and cell survival was determined by colony-forming ability. The results show that the sensitivity of BrdUrd-labeled cells was higher when they were irradiated at 0.90 a than at 100 A, but cells without BrdUrd showed no difference in sensitivity when irradiated at these two wavelengths. The growth curve of HeLa cells in the presence of gallium citrate (10 -4 M). Shows that during the test period of 20-60 hr of colony-forming ability was not affected although the growth rate decreased slightly. Data show no increase in the sensitivity of gallium-labeled HeLa cells over that of controls to irradiation with monochromatic synchrotron radiation at 1.14 A, slightly shorter than the K absorption edge for the gallium (1.196 A). Since gallium has been shown to concentrate in lysosome, the present results, suggest that the range of Auger enhancement is not great enough for interaction with DNA in nucleus from lysosome in cytoplasm, although the possibility should be considered that the accumulated number of gallium atoms (∼ 5 x 10 7 /cell) may not be enough to produce detectable enhancement effects

  10. Effects of gelling bath on the physical properties of alginate gel beads and the biological characteristics of entrapped HepG2 cells.

    Science.gov (United States)

    Sun, Dongsheng; Liu, Yang; Wu, Hao; Ren, Ying; Ma, Xiaojun; Wu, Huijian; Sun, Guangwei

    2018-03-01

    Optimizing alginate gel beads is necessary to support the survival, proliferation, and function of entrapped hepatocytes. In this study, gelling bath was modified by decreasing calcium ion concentration and increasing sodium ion concentration. Alginate gel beads (using 36% G sodium alginate) prepared in the modified gelling bath had more homogeneous structure and better mass transfer properties compared with the traditional gelling bath that contains only calcium ions. Moreover, alginate gel beads generated in the modified gelling bath could significantly promote the HepG2 cell proliferation and the growth of cell spheroids, and maintain the albumin secretion ability similar to alginate gel beads prepared in the traditional gelling bath with only calcium ions. The mass transfer properties and cell proliferation were similar in ALG beads with different M/G ratio (36% G and 55% G) generated in the modified gelling bath, whereas they were significantly increased compared with alginate gel beads (55% G) in traditional gelling bath. These results indicated that adjusting the gelling bath was a simple and convenient method to enhance the mass transfer properties of alginate gel beads for 3D hepatocyte culture, which might provide more hepatocytes for the bioartificial liver support system. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  11. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel.

    Science.gov (United States)

    Shen, Liang; Jin, Ziheng; Wang, Dian; Wang, Yuanpeng; Lu, Yinghua

    2018-01-01

    The interaction between bacteria and graphene-family materials like pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) is such an elusive issue that its implication in environmental biotechnology is unclear. Herein, two kinds of self-assembled bio-rGO-hydrogels (BGHs) were prepared by cultivating specific Shewanella sp. strains with GO solution for the first time. The microscopic examination by SEM, TEM and CLSM indicated a porous 3D structure of BGHs, in which live bacteria firmly anchored and extracellular polymeric substances (EPS) abundantly distributed. Spectra of XRD, FTIR, XPS and Raman further proved that GO was reduced to rGO by bacteria along with the gelation process, which suggests a potential green technique to produce graphene. Based on the characterization results, four mechanisms for the BGH formation were proposed, i.e., stacking, bridging, rolling and cross-linking of rGO sheets, through the synergistic effect of activities and EPS from special bacteria. More importantly, the BGHs obtained in this study were found able to achieve unique cleanup performance that the counterpart free bacteria could not fulfill, as exemplified in Congo red decolorization and Cr(VI) bioreduction. These findings therefore enlighten a prospective application of graphene materials for the biological treatment of wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enhancing 'Whole-of-Government' Response to Biological Events in Korea: Able Response 2014.

    Science.gov (United States)

    Tak, Sangwoo; Jareb, Anton; Choi, Suon; Sikes, Marvin; Choi, Yeon Hwa; Boo, Hyeong-Wook

    2018-01-01

    Since 2011, the Republic of Korea (ROK) and United States (U.S.) have been collaborating to conduct inter- and intra-governmental exercises to jointly respond to biological events in Korea. These exercises highlight U.S. interest in increasing its global biosurveillance capability and the ROK's interest in improving cooperation among ministries to respond to crises. With Able Response (AR) exercises, the ROK and U.S. have improved coordination among US and ROK government and defense agencies responding to potential bio-threats and identified additional areas on which to apply refinements in policies and practices. In 2014, the AR exercise employed a Biosurveillance Portal (BSP) to facilitate more effective communication among participating agencies and countries including Australia. In the present paper, we seek to provide a comprehensive assessment of the AR 2014 (AR14) exercise and make recommendations for future improvements. Incorporating a more realistic response in future scenarios by integrating a tactical response episode in the exercise is recommended.

  13. Biological energy from the igneous rock enhances cell growth and enzyme activity

    International Nuclear Information System (INIS)

    Lin Y.-L.; Kuo, H.-S; Chen, C.-T.; Kuo, S.-C.

    2000-01-01

    Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio-organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT-15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation

  14. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    Science.gov (United States)

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  15. Halogenated salicylaldehyde azines: The heavy atom effect on aggregation-induced emission enhancement properties

    International Nuclear Information System (INIS)

    Chen, Xiao-tong; Tong, Ai-jun

    2014-01-01

    This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. For this purpose, a series of halogenated salicylaldehyde azine derivatives, namely, chloro-salicylaldehyde azine (1), bromo-salicylaldehyde azine (2) and iodo-salicylaldehyde azine (3) are synthesized. 1 and 2 display typical AIEE characteristics of salicylaldehyde azine compounds; whereas for the iodo-substituent in 3, is found to be effective “external” heavy atom quenchers to salicylaldehyde azine fluorescence in aggregated state. Based on its weak fluorescence in aggregated state and relative strong fluorescence in dispersed state, 3 can also be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction. -- Highlights: • This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. • Chloro- and bromo-salicylaldehyde display typical AIEE properties of salicylaldehyde azine, whereas the iodo-substitute quenches AIEE in aggregated state. • Iodo-salicylaldehyde can be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction

  16. Enhancing the functional properties and nutritional quality of ice cream with processed amla (Indian gooseberry).

    Science.gov (United States)

    Goraya, Rajpreet Kaur; Bajwa, Usha

    2015-12-01

    Amla (Indian gooseberry) and its processed products are rich source of vitamin C, phenols, dietary fibre and antioxidants. In contrast, ice cream is a poor source of these phytochemicals and antioxidants; therefore, the present investigation was undertaken to enhance the functional properties and nutritional quality of ice cream with the incorporation of processed amla. Ice cream was prepared using amla shreds, pulp, preserve and candy at 5 to 20 % and powder at 0.5 to 2.0 % levels in ice cream mix prior to freezing. Inclusion of amla products at augmented levels resulted in significant changes in physico-chemical properties and phytochemical content of ice cream. The total solids decreased on addition of shreds and pulp and increased with preserve, candy and powder in ice cream at increasing levels. The functional constituents i.e. fibre, total phenols, tannins, ascorbic acid and antioxidant activity increased with greater level of inclusion. Incorporation of processed amla raised the melting resistance of ice cream and decreased the overrun. The samples with 5 % shreds and pulp, 10 % preserve and candy and 0.5 % powder were found to have highest overall acceptability scores. Inclusion of amla in all the forms i.e. shreds, pulp, preserve, candy and powder enhanced the functional properties and nutritional value of ice cream.

  17. Cellulose Acetate/N-TiO2 Biocomposite Flexible Films with Enhanced Solar Photochromic Properties

    Science.gov (United States)

    Radhika, T.; Anju, K. R.; Silpa, M. S.; Ramalingam, R. Jothi; Al-Lohedan, Hamad A.

    2017-07-01

    Flexible cellulose acetate/N-TiO2 nanocomposite films containing various concentrations of nanosized N-TiO2 and an intelligent methylene blue ink have been prepared by solution casting. The hydrothermally prepared nitrogen-doped titania (N-TiO2) and the films were characterized in detail. The photochromic properties of the prepared films were investigated under ultraviolet (UV), visible light, and simulated solar irradiation by UV-Vis spectrophotometry. Upon irradiation, the films exhibited rapid photochromic response that was reversible at room temperature. Films with higher content of nano N-TiO2 showed enhanced decoloration/recoloration under all irradiation conditions, with fast decoloration/recoloration under simulated solar irradiation. These results suggest that the amount of nano N-TiO2 in the composite, the concentration of methylene blue, and the solvent greatly influence the photochromic properties of the films. Such flexible and transparent cellulose acetate/N-TiO2 films with enhanced decoloration/recoloration properties under solar irradiation are promising smart materials for use in photoreversible printed electronics applications.

  18. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Chengdong Xiong

    2009-07-01

    Full Text Available Abstract In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR, transmission electron microscope(TEM, scanning electron microscope(SEM, universal material testing machine and phosphate buffer solution (PBS soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material.

  19. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    Science.gov (United States)

    Liuyun, Jiang; Yubao, Li; Chengdong, Xiong

    2009-01-01

    In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material. PMID:19594953

  20. Autonomy and Fear of Synthetic Biology: How Can Patients' Autonomy Be Enhanced in the Field of Synthetic Biology? A Qualitative Study with Stable Patients.

    Science.gov (United States)

    Rakic, Milenko; Wienand, Isabelle; Shaw, David; Nast, Rebecca; Elger, Bernice S

    2017-04-01

    We analyzed stable patients' views regarding synthetic biology in general, the medical application of synthetic biology, and their potential participation in trials of synthetic biology in particular. The aim of the study was to find out whether patients' views and preferences change after receiving more detailed information about synthetic biology and its clinical applications. The qualitative study was carried out with a purposive sample of 36 stable patients, who suffered from diabetes or gout. Interviews were transcribed verbatim, translated and fully anonymized. Thematic analysis was applied in order to examine stable patients' attitudes towards synthetic biology, its medical application, and their participation in trials. When patients were asked about synthetic biology in general, most of them were anxious that something uncontrollable could be created. After a concrete example of possible future treatment options, patients started to see synthetic biology in a more positive way. Our study constitutes an important first empirical insight into stable patients' views on synthetic biology and into the kind of fears triggered by the term "synthetic biology." Our results show that clear and concrete information can change patients' initial negative feelings towards synthetic biology. Information should thus be transmitted with great accuracy and transparency in order to reduce irrational fears of patients and to minimize the risk that researchers present facts too positively for the purposes of persuading patients to participate in clinical trials. Potential participants need to be adequately informed in order to be able to autonomously decide whether to participate in human subject research involving synthetic biology.

  1. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    Science.gov (United States)

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  2. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    Science.gov (United States)

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enhancement of biological mass spectrometry by using separations based on changes in ion mobility (FAIMS and DMS).

    Science.gov (United States)

    Purves, Randy W

    2013-01-01

    Analysis of complex biological samples for low-level analytes by liquid chromatography-tandem mass spectrometry (LC-MS/MS) often requires additional selectivity. Differential mobility techniques (FAIMS and DMS) have been shown to enhance LC-MS/MS analyses by separating ions in the gas-phase on a millisecond timescale by use of a mechanism that is complementary to both liquid chromatography and mass spectrometry. In this overview, a simplified description of the operation of these devices is given and an example presented that illustrates the utility of FAIMS (DMS) for solving a challenging analytical assay. Important recent advances in the field, including work with gas modifiers, are presented, along with an outlook for the technology.

  5. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enhancing Cytogenetic Biological Dosimetry Capabilities of the Philippines for Nuclear Incident Preparedness.

    Science.gov (United States)

    Asaad, Celia O; Caraos, Gloriamaris L; Robles, Gerardo Jose M; Asa, Anie Day D C; Cobar, Maria Lucia C; Asaad, Al-Ahmadgaid

    2016-01-01

    The utility of a biological dosimeter based on the analysis of dicentrics is invaluable in the event of a radiological emergency wherein the estimated absorbed dose of an exposed individual is crucial in the proper medical management of patients. The technique is also used for routine monitoring of occupationally exposed workers to determine radiation exposure. An in vitro irradiation study of human peripheral blood lymphocytes was conducted to establish a dose-response curve for radiation-induced dicentric aberrations. Blood samples were collected from volunteer donors and together with optically stimulated luminescence (OSL) dosimeters and were irradiated at 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 4, and 6 Gy using a cobalt-60 radiotherapy unit. Blood samples were cultured for 48 h, and the metaphase chromosomes were prepared following the procedure of the International Atomic Energy Agency's Emergency Preparedness and Response - Biodosimetry 2011 manual. At least 100 metaphases were scored for dicentric aberrations at each dose point. The data were analyzed using R language program. The results indicated that the distribution of dicentric cells followed a Poisson distribution and the dose-response curve was established using the estimated model, Y dic = 0.0003 (±0.0003) +0.0336 (±0.0115) × D + 0.0236 (±0.0054) × D 2 . In this study, the reliability of the dose-response curve in estimating the absorbed dose was also validated for 2 and 4 Gy using OSL dosimeters. The data were fitted into the constructed curve. The result of the validation study showed that the obtained estimate for the absorbed exposure doses was close to the true exposure doses.

  7. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    Science.gov (United States)

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  8. Tube-like natural halloysite/poly(tetrafluoroethylene) nanocomposites: simultaneous enhancement in thermal and mechanical properties

    Science.gov (United States)

    Gamini, Suresh; Vasu, V.; Bose, Suryasarathi

    2017-04-01

    In the current study, PTFE (polytetrafluroethylene) matrix is reinforced with different wt% (2%-10%) of Halloysite nanotubes (HNTs). PTFE samples are fabricated with 2 wt% increment and are designated from ‘B’to ‘F’ and designation ‘A’ refers to neat PTFE. Thermal and mechanical characterization of the fabricated composites is studied. The calorimetric measurements showed enhanced degree of crystallinity of the nanocomposites, which is from 57.83% to 74.7%. The dynamic mechanical analysis results have shown enhanced storage modulus and loss modulus and reduced damping behaviour, without affecting glass transition temperature. Moreover, significant improvements in mechanical properties are observed from the experimental results. The results are discussed and validated with the existing literature. The phase and the fracture morphology of the nanocomposites is studied using scanning electron microscope and discussed herein.

  9. Preparation and physical properties of enhanced radiation induced crosslinking of ethylene-vinyl alcohol copolymer (EVOH)

    International Nuclear Information System (INIS)

    Deng Pengyang; Liu Meihua; Zhang Wanxi; Sun Jiazhen

    2007-01-01

    Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking

  10. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    Science.gov (United States)

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  11. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Science.gov (United States)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  12. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi.

    Science.gov (United States)

    Dadachova, Ekaterina; Bryan, Ruth A; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo

    2007-05-23

    Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.

  13. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Ashley I. Heinson

    2017-02-01

    Full Text Available Reverse vaccinology (RV is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML techniques to distinguish bacterial protective antigens (BPAs from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM classifier that could discriminate BPAs (n = 200 from non-BPAs (n = 200 with an area under the curve (AUC of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.

  14. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology

    KAUST Repository

    Heinson, Ashley

    2017-02-01

    Reverse vaccinology (RV) is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML) techniques to distinguish bacterial protective antigens (BPAs) from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM) classifier that could discriminate BPAs (n = 200) from non-BPAs (n = 200) with an area under the curve (AUC) of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.

  15. Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis.

    Science.gov (United States)

    Cheemalapati, Srikanth; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2014-09-01

    A simple and sensitive electrochemical method has been proposed for the determination of isoniazid (INZ). For the first time, rhodium (Rh) modified glassy carbon electrode (GCE) has been employed for the determination of INZ by linear sweep voltammetry technique (LSV). Compared with the unmodified electrode, the proposed Rh modified electrode provides strong electrocatalytic activity toward INZ with significant enhancement in the anodic peak current. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) results reveal the morphology of Rh particles. With the advantages of wide linearity (70-1300μM), good sensitivity (0.139μAμM(-1)cm(-2)) and low detection limit (13μM), this proposed sensor holds great potential for the determination of INZ in real samples. The practicality of the proposed electrode for the detection of INZ in human urine and blood plasma samples has been successfully demonstrated using LSV technique. Through the determination of INZ in commercially available pharmaceutical tablets, the practical applicability of the proposed method has been validated. The recovery results are found to be in good agreement with the labeled amounts of INZ in tablets, thus showing its great potential for use in clinical and pharmaceutical analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Giant larvaceans: biologically equivalent flapping flexible foils exhibit bending modes that enhance fluid transport

    Science.gov (United States)

    Katija, Kakani; Sherman, Alana; Robison, Bruce

    2016-11-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. A group of midwater organisms, known as giant larvaceans (genus Bathochordaeus), beat their tails to drive food and particle-laden water through complex, mucus filtering structures to feed. Giant larvaceans, whose motion and kinematics resemble flapping flexible foils, range in size from 1 to 10 cm in length, and can be found between the surface and 400 m. Using remotely-operated vehicles and DeepPIV, an instrument that enables in situ particle image velocimetry (PIV) measurements, the filtration rates and kinematics of giant larvaceans were investigated. These measurements yielded filtration rates for giant larvaceans as high as 80 L/hr, which exceeds expected filtration rates by a factor of 2 when compared with other larvacean groups. Comparing tail kinematics between Bathochordeaus and smaller larvaceans reveals differences in tail bending modes, where a hinge is present throughout the tail beat in giant larvaceans. Using laboratory PIV measurements with swimming animals and soft-bodied mechanical mimics, we reveal how these differences in tail kinematics can lead to enhanced fluid transport. This work has been supported by the Packard Foundation.

  17. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology

    KAUST Repository

    Heinson, Ashley; Gunawardana, Yawwani; Moesker, Bastiaan; Hume, Carmen; Vataga, Elena; Hall, Yper; Stylianou, Elena; McShane, Helen; Williams, Ann; Niranjan, Mahesan; Woelk, Christopher

    2017-01-01

    Reverse vaccinology (RV) is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML) techniques to distinguish bacterial protective antigens (BPAs) from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM) classifier that could discriminate BPAs (n = 200) from non-BPAs (n = 200) with an area under the curve (AUC) of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.

  18. Applying Semigroup Property of Enhanced Chebyshev Polynomials to Anonymous Authentication Protocol

    Directory of Open Access Journals (Sweden)

    Hong Lai

    2012-01-01

    Full Text Available We apply semigroup property of enhanced Chebyshev polynomials to present an anonymous authentication protocol. This paper aims at improving security and reducing computational and storage overhead. The proposed scheme not only has much lower computational complexity and cost in the initialization phase but also allows the users to choose their passwords freely. Moreover, it can provide revocation of lost or stolen smart card, which can resist man-in-the-middle attack and off-line dictionary attack together with various known attacks.

  19. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  20. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  1. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Periolatto, M.; Spena, P. Russo [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano (Italy); Sangermano, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2016-05-18

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  2. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    International Nuclear Information System (INIS)

    Periolatto, M.; Spena, P. Russo; Sangermano, M.

    2016-01-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  3. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    Science.gov (United States)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  4. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.

    Science.gov (United States)

    Safranski, David L; Weiss, Daiana; Clark, J Brian; Taylor, W Robert; Gall, Ken

    2014-08-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss of mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    J. Jayakumar

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs reinforced Mg alloy AZ31 nanocomposites were fabricated by mechanical alloying and powder metallurgy technique. The reinforcement material MWCNTs were blended in three weight fractions (0.33%, 0.66%, and 1% with the matrix material AZ31 (Al-3%, zinc-1% rest Mg and blended through mechanical alloying using a high energy planetary ball mill. Specimens of monolithic AZ31 and AZ31-MWCNT composites were fabricated through powder metallurgy technique. The microstructure, density, hardness, porosity, ductility, and tensile properties of monolithic AZ31 and AZ31-MWCNT nano composites were characterized and compared. The characterization reveals significant reduction in CNT (carbon nanoTube agglomeration and enhancement in microstructure and mechanical properties due to mechanical alloying through ball milling.

  6. Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils.

    Science.gov (United States)

    Li, Wei; Wu, Qiong; Zhao, Xin; Huang, Zhanhua; Cao, Jun; Li, Jian; Liu, Shouxin

    2014-11-26

    Long filamentous nanocellulose fibrils (NCFs) were prepared from chemical-thermomechanical pulps (CTMP) using ultrasonication. Their contribution to enhancements in thermal stability and mechanical properties of poly(vinyl alcohol) films were investigated. The unique chemical pretreatment and mechanical effects of CTMP loosen and unfold fibers during the pulping process, which enables further chemical purification and subsequent ultrasound treatment for formation of NCFs. The NCFs exhibited higher crystallinity (72.9%) compared with that of CTMP (61.5%), and had diameters ranging from 50 to 120 nm. A NCF content of 6 wt% was found to yield the best thermal stability, light transmittance, and mechanical properties in the PVA/NCF composites. The composites also exhibited a visible light transmittance of 73.7%, and the tensile strength and Young's modulus were significantly improved, with values 2.8 and 2.4 times larger, respectively, than that of neat PVA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Hybrid Organic/Inorganic Perovskite–Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties

    KAUST Repository

    Privitera, Alberto

    2017-11-30

    Hybrid organic/inorganic perovskite nanoparticles (NPs) have garnered remarkable research attention because of their promising photophysical properties. New and interesting properties emerge after combining perovskite NPs with semiconducting materials. Here, we report the synthesis and investigation of a composite material obtained by mixing CH3NH3PbBr3 nanocrystals with the semiconducting polymer poly(3-hexylthiophene) (P3HT). By the combination of structural techniques and optical and magnetic spectroscopies we observed multiple effects of the perovskite NPs on the P3HT: (i) an enlargement of P3HT crystalline domains, (ii) a strong p-doping of the P3HT, and (iii) an enhancement of interchain order typical of H-aggregates. These observations open a new avenue toward innovative perovskite NP-based applications.

  8. Enhancement of Electrical Properties of Nanostructured Polysilicon Layers Through Hydrogen Passivation.

    Science.gov (United States)

    Zhou, D; Xu, T; Lambert, Y; Cristini-Robbe; Stiévenard, D

    2015-12-01

    The light absorption of polysilicon planar junctions can be improved using nanostructured top surfaces due to their enhanced light harvesting properties. Nevertheless, associated with the higher surface, the roughness caused by plasma etching and defects located at the grain boundary in polysilicon, the concentration of the recombination centers increases, leading to electrical performance deterioration. In this work, we demonstrate that wet oxidation combined with hydrogen passivation using SiN(x):H are the key technological processes to significantly decrease the surface recombination and improve the electrical properties of nanostructured n(+)-i-p junctions. Nanostructured surface is fabricated by nanosphere lithography in a low-cost and controllable approach. Furthermore, it has been demonstrated that the successive annealing of silicon nitride films has significant effect on the passivation quality, resulting in some improvements on the efficiency of the Si nanostructure-based solar cell device.

  9. Hybrid Organic/Inorganic Perovskite–Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties

    KAUST Repository

    Privitera, Alberto; Righetto, Marcello; de Bastiani, Michele; Carraro, Francesco; Rancan, Marzio; Armelao, Lidia; Granozzi, Gaetano; Bozio, Renato; Franco, Lorenzo

    2017-01-01

    Hybrid organic/inorganic perovskite nanoparticles (NPs) have garnered remarkable research attention because of their promising photophysical properties. New and interesting properties emerge after combining perovskite NPs with semiconducting materials. Here, we report the synthesis and investigation of a composite material obtained by mixing CH3NH3PbBr3 nanocrystals with the semiconducting polymer poly(3-hexylthiophene) (P3HT). By the combination of structural techniques and optical and magnetic spectroscopies we observed multiple effects of the perovskite NPs on the P3HT: (i) an enlargement of P3HT crystalline domains, (ii) a strong p-doping of the P3HT, and (iii) an enhancement of interchain order typical of H-aggregates. These observations open a new avenue toward innovative perovskite NP-based applications.

  10. Enhancing the Properties of Coal Briquette Using Spear Grass (Imperata Cylindrica

    Directory of Open Access Journals (Sweden)

    Adaora Stellamaris OGBUAGU

    2010-12-01

    Full Text Available Studies have been carried out on utilizing agricultural wastes (spear grass to enhance the properties of coal briquette. The proximate analysis of the plant material was carried out alongside with a sample of coal (sub-bituminous coal. Briquettes of different compositions were produced by blending the plant material with the coal at various concentrations: 0%, 10%, 20%, 30%, 40%, 50% and 100%, using cassava starch as a binder and calcium hydroxide (Ca(OH2 as desulfurizing agent. The properties of the briquettes were compared. It was found that the ignition, burning rate and reduction in smoke emission showed improvement with increase in biomass concentration. Compressive strength and cooking efficiency (water boiling time and specific fuel consumption showed initial improvement and rendered to decrease with briquette containing 30% biomass.

  11. Enhancing Mechanical and Thermal Properties of Epoxy Nanocomposites via Alignment of Magnetized SiC Whiskers.

    Science.gov (United States)

    Townsend, James; Burtovyy, Ruslan; Aprelev, Pavel; Kornev, Konstantin G; Luzinov, Igor

    2017-07-12

    This research is focused on the fabrication and properties of epoxy nanocomposites containing magnetized SiC whiskers (MSiCWs). To this end, we report an original strategy for fabrication of magnetically active SiCWs by decorating the whiskers with magnetic (iron oxide) nanoparticles via polymer-polymer (poly(acrylic acid)/poly(2-vinyl pyridine)) complexation. The obtained whiskers demonstrated a substantial magnetic response in the polymerizing epoxy resin, with application of only a 20 mT (200 G) magnetic field. We also found that the whiskers chemically reacted with the epoxy resin, causing formation of an extended interphase near the boundary of the whiskers. The SiC whiskers oriented with the magnetic field demonstrated positive effects on the behavior of epoxy-based nanocomposites. Namely, the aligned MSiCWs enhanced the thermomechanical properties of the materials significantly above that of the neat epoxy and epoxy nanocomposite, with randomly oriented whiskers.

  12. Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties.

    Science.gov (United States)

    Luchese, Cláudia Leites; Uranga, Jone; Spada, Jordana Corralo; Tessaro, Isabel Cristina; de la Caba, Koro

    2018-08-01

    Blueberry waste from juice processing was valorised to develop starch films by compression moulding. The compression process resulted in hydrophobic films with water contact angles even higher than 100° for the films prepared with the highest blueberry waste content. Additionally, the film solubility was reduced by the incorporation of blueberry waste, regardless of the solution pH. These films also exhibited good barrier properties against UV light due to the aromatic compounds present in the blueberry waste. Furthermore, films showed a homogenous surface, although some pores appeared in the cross-section for the films with the highest blueberry waste content. Results highlighted the use of thermo-mechanical processes such as compression to manufacture sustainable films with enhanced properties through waste valorisation by the techniques actually employed at industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Interaction of silver nanoparticles with biological objects: antimicrobial properties and toxicity for the other living organisms

    Energy Technology Data Exchange (ETDEWEB)

    Egorova, E M, E-mail: emenano@mail.ru [Laboratory of Nanopathology, Institute of General Pathology and Patophysiology of RAMS, Baltijskaya st., 8, 125315 Moscow (Russian Federation); Science-technology Company ' Nanomet' , Moscow (Russian Federation)

    2011-04-01

    This paper presents several examples of the biological effects of small-sized silver nanoparticles (10.5{+-}3.5nm) observed in experiments on bacteria, slim mold, unicellular alga and plant seeds. The nanoparticles were prepared by the biochemical synthesis, based on the reduction of metal ions in reverse vicelles by biological reductants - natural plant pigments (flavonoids). It is found that, except for the plant seeds, silver nanoparticles (SNP) act as a strong toxic agent, both in water solution and as part of liquid-phase material. It is shown also that the biological action of silver nanoparticles can not be reduced to the toxic action of silver ions in equivalent concentrations or to that of the surfactant (the SNP stabilizer) present in the SNP water solution. Possible SNP applications are suggested.

  14. Interaction of silver nanoparticles with biological objects: antimicrobial properties and toxicity for the other living organisms

    International Nuclear Information System (INIS)

    Egorova, E M

    2011-01-01

    This paper presents several examples of the biological effects of small-sized silver nanoparticles (10.5±3.5nm) observed in experiments on bacteria, slim mold, unicellular alga and plant seeds. The nanoparticles were prepared by the biochemical synthesis, based on the reduction of metal ions in reverse vicelles by biological reductants - natural plant pigments (flavonoids). It is found that, except for the plant seeds, silver nanoparticles (SNP) act as a strong toxic agent, both in water solution and as part of liquid-phase material. It is shown also that the biological action of silver nanoparticles can not be reduced to the toxic action of silver ions in equivalent concentrations or to that of the surfactant (the SNP stabilizer) present in the SNP water solution. Possible SNP applications are suggested.

  15. Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes.

    Science.gov (United States)

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Chondral and osteochondral defects affect a large number of people in which treatment options are currently limited. Due to its ability to mimic the natural nanofibrous structure of cartilage, this current in vitro study aimed at introducing a new scaffold, called XanoMatrix™, for cartilage regeneration. In addition, this same scaffold is introduced here as a new substrate onto which to study chondrocyte functions. Current studies on chondrocyte functions are limited due to nonbiologically inspired cell culture substrates. With its polyethylene terephthalate and cellulose acetate composition, good mechanical properties and nanofibrous structure resembling an extracellular matrix, XanoMatrix offers an ideal surface for chondrocyte growth and proliferation. This current study demonstrated that the XanoMatrix scaffolds promote chondrocyte growth and proliferation as compared with the Corning and Falcon surfaces normally used for chondrocyte cell culture. The XanoMatrix scaffolds also have greater hydrophobicity, three-dimensional surface area, and greater tensile strength, making them ideal candidates for alternative treatment options for chondral and osteochondral defects as well as cell culture substrates to study chondrocyte functions.

  16. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef.hamada@suezuniv.edu.eg [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Box 43721, Suez (Egypt); Kisko, A.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Sahu, P. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Karjalainen, L.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland)

    2015-03-25

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing.

  17. Demasking biological oscillators : Properties and principles of entrainment exemplified by the Neurospora circadian clock

    NARCIS (Netherlands)

    Roenneberg, T; Dragovic, Z; Merrow, M; Takahashi, Joseph S.

    2005-01-01

    Oscillations are found throughout the physical and biological worlds. Their interactions can result in a systematic process of synchronization called entrainment, which is distinct from a simple stimulus-response pattern. Oscillators respond to stimuli at some times in their cycle and may not

  18. Biological Evaluation of Dipyrromethanes in Cancer Cell Lines: Antiproliferative and Pro-apoptotic Properties

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Lopes, S. M.M.; Řezníčková, Eva; Kryštof, Vladimír; Pinho e Melo, T. M.V.D.

    2017-01-01

    Roč. 12, č. 9 (2017), s. 701-711 ISSN 1860-7179 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : anticancer agents * apoptosis * cell cycle * cytotoxicity * dipyrromethanes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Oncology Impact factor: 3.225, year: 2016

  19. Synthetic biology and global health in the age of intellectual property

    NARCIS (Netherlands)

    Belt, van den H.

    2014-01-01

    Although synthetic biology (SB) conjures up a future cornucopia of new medicines and other health applications, the antimalarial drug artemisinin is still one of the few concrete illustrations to substantiate this promise. As SB’s favorite poster child, it is atypical because it exemplifies a rather

  20. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells.

    Science.gov (United States)

    Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta

    2016-05-01

    To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (Pcells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  2. Photo-physical properties enhancement of bare and core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  3. Enhanced functional connectivity properties of human brains during in-situ nature experience

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2016-07-01

    Full Text Available In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males to a 20 min in-situ sitting exposure in either a nature (n = 16 or urban environment (n = 16 and measured their Electroencephalography (EEG signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with “coherent” experience measured by Perceived Restorativeness Scale (PRS. Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  4. Enhanced functional connectivity properties of human brains during in-situ nature experience.

    Science.gov (United States)

    Chen, Zheng; He, Yujia; Yu, Yuguo

    2016-01-01

    In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males) to a 20 min in-situ sitting exposure in either a nature (n = 16) or urban environment (n = 16) and measured their Electroencephalography (EEG) signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with "coherent" experience measured by Perceived Restorativeness Scale (PRS). Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  5. Aluminum oxide barrier coating on polyethersulfone substrate by atomic layer deposition for barrier property enhancement

    International Nuclear Information System (INIS)

    Kim, Hyun Gi; Kim, Sung Soo

    2011-01-01

    Aluminum oxide layers were deposited on flexible polyethersulfone (PES) substrates via plasma enhanced atomic layer deposition (PEALD) process using trimethylaluminum (TMA) and oxygen as precursor and reactant materials. Several process parameters in PEALD process were investigated in terms of refractive index and layer thickness. Number of process cycle increased the thickness and refractive index of the layer to enhance the barrier properties. Non-physisorbed TMA and unreacted oxygen were purged before and after the plasma reaction, respectively. Identical purge time was applied to TMA and oxygen and it was optimized for 10 s. Thinner and denser layer was formed as substrate temperature increased. However, the PES substrate could be deformed above 120 o C. Aluminum oxide layer formed on PES at optimized conditions have 11.8 nm of thickness and reduced water vapor transmission rate and oxygen transmission rate to below 4 x 10 -3 g/m 2 day and 4 x 10 -3 cm 3 /m 2 day, respectively. Polycarbonate and polyethylene naphthalate films were also tested at optimized conditions, and they also showed quite appreciable barrier properties to be used as plastic substrates.

  6. Nest-like structures of Sr doped Bi2WO6: Synthesis and enhanced photocatalytic properties

    International Nuclear Information System (INIS)

    Liu Ying; Wang Weimin; Fu Zhengyi; Wang Hao; Wang Yucheng; Zhang Jinyong

    2011-01-01

    Highlights: → Bi 2 WO 6 with 3D nest-like structures was obtained without the presence of templates but after Sr-doping, which represents a marked improvement over previous reports. → The products showed enhanced photocatalytic properties over pure Bi 2 WO 6 . → Samples subsequently thermal treated at 500 deg. C show better photocatalytic activities. - Abstract: A series of Sr-doped Bi 2 WO 6 with three-dimensional (3D) nest-like structures were synthesized through simple hydrothermal route and characterized by XRD, FESEM, TEM, XPS, UV-vis DRS, etc. Morphology observation revealed that the as-synthesized Bi 2 WO 6 were self-assembled three-dimensional (3D) nest-like structures, which were constructed from nanoplates. UV-vis diffuse reflectance spectra indicated that the samples had absorption in both UV and visible light areas. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under UV and visible light irradiation (λ > 420 nm). The photocatalytic properties were enhanced after Sr doping. Samples subsequently thermal treated at 500 deg. C showed higher photocatalytic activities. The reasons for the differences in the photocatalytic activities of these nest-like Bi 2 WO 6 microstructures were further investigated.

  7. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    Science.gov (United States)

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties.

    Science.gov (United States)

    Akyuz, Lalehan; Kaya, Murat; Koc, Behlul; Mujtaba, Muhammad; Ilk, Sedef; Labidi, Jalel; Salaberria, Asier M; Cakmak, Yavuz Selim; Yildiz, Aysegul

    2017-12-01

    Practical applications of biopolymers in different industries are gaining considerable increase day by day. But still, these biopolymers lack important properties in order to meet the industrial demands. In the same regard, in the current study, chitosan composite films are produced by incorporating diatomite soil at two different concentrations. In order to obtain a homogeneous film, glutaraldehyde was supplemented to chitosan solution as a cross-linker. Compositing diatomaceous earth to chitosan film resulted in improvement of various important physicochemical properties compared to control such as; enhanced film wettability, increase elongation at break and improved thermal stability (264-277°C). The microstructure of the film was observed to haveconsisted of homogeneously distributed blister-shaped structures arised due to the incorporation of diatomite. The incorporation of diatomite did not influence the overall antioxidant activity of the composite films, which can be ascribe to the difficulty radicals formation. Chitosan film incorporated with increasing fraction of diatomite revealed a notable enhancement in the antimicrobial activity. Additionally with the present study, for the first time possible interactions between chitosan/diatomite were determined via quantum chemical calculations. Current study will be helpful in giving a new biotechnological perspective to diatom in terms of its successful application in hydrophobic composite film production. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Bita Pourbahari

    2017-04-01

    Full Text Available The effect of Gd/Al ratio on the properties of as-cast Mg-Gd-Al-Zn alloys was investigated by changing the chemical composition from that of AZ61 to GZ61. At the ratio of 1, the Al2Gd phase becomes predominant and Mg17Al12 is hardly seen in the microstructure. As a potent inoculant, the Al2Gd phase resulted in intense grain refinement and enhancement of strength, ductility and toughness. For instance, the tensile strength and elongation to failure of Mg-3Gd-3Al-1Zn alloy were enhanced by ~4% and 180% compared with those of AZ61 alloy, respectively. However, at high Gd/Al ratios, the Al2Gd phase was replaced by (Mg,Al3Gd and Mg5Gd phases and very large grain sizes were achieved, which led to poor tensile properties and the appearance of cleavage facets on the fracture surfaces. Therefore, it can be deduced that the presence of Gd and Al, in appropriate amounts to reach Gd/Al ratio of ~ 1, is required for the achievement of grain refinement, good ductility, high strength, and the appearance of ductile fracture surfaces in the Mg-Gd-Al-Zn system. Conclusively, the Mg-Gd-Al-Zn alloys can be considered as a new class of structural magnesium alloy and it is superior to both AZ (Mg-Al-Zn and GZ (Mg-Gd-Zn series of alloys.

  10. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.

    Science.gov (United States)

    Toalston, Jamie E; Deehan, Gerald A; Hauser, Sheketha R; Engleman, Eric A; Bell, Richard L; Murphy, James M; McBride, William J; Rodd, Zachary A

    2015-08-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood. Published by Elsevier Inc.

  11. The Reinforcing Properties of Ethanol are Quantitatively Enhanced in Adulthood by Peri-Adolescent Ethanol, but not Saccharin, Consumption in Female Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Toalston, Jamie E.; Deehan, Gerald A.; Hauser, Sheketha R.; Engleman, Eric A.; Bell, Richard L.; Murphy, James M.; McBride, William J.; Rodd, Zachary A.

    2015-01-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30–60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood. PMID:26074425

  12. Traditional Knowledge, Biological Resources and Intellectual Property Rights in Asia: The Example of the Philippines

    OpenAIRE

    Antons, Christoph

    2007-01-01

    The relationship between traditional knowledge and intellectual property rights has become a topic for intensive debates at the national level, in various international settings and within and among different UN agencies, including the World Intellectual Property Organisation (WIPO), the UN Food and Agriculture Organisation (FAO), UNESCO, UNCTAD and the United Nations Environment Programme (UNEP). However, a consensus on a definition of traditional knowledge has yet to emerge due to persisten...

  13. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Pei Feng

    Full Text Available A scaffold for bone tissue engineering should have highly interconnected porous structure, appropriate mechanical and biological properties. In this work, we fabricated well-interconnected porous β-tricalcium phosphate (β-TCP scaffolds via selective laser sintering (SLS. We found that the mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO. Our data showed that the fracture toughness increased from 1.09 to 1.40 MPam(1/2, and the compressive strength increased from 3.01 to 17.89 MPa when the content of ZnO increased from 0 to 2.5 wt%. It is hypothesized that the increase of ZnO would lead to a reduction in grain size and an increase in density of the strut. However, the fracture toughness and compressive strength decreased with further increasing of ZnO content, which may be due to the sharp increase in grain size. The biocompatibility of the scaffolds was investigated by analyzing the adhesion and the morphology of human osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The scaffolds exhibited better and better ability to support cell attachment and proliferation when the content of ZnO increased from 0 to 2.5 wt%. Moreover, a bone like apatite layer formed on the surfaces of the scaffolds after incubation in simulated body fluid (SBF, indicating an ability of osteoinduction and osteoconduction. In summary, interconnected porous β-TCP scaffolds doped with ZnO were successfully fabricated and revealed good mechanical and biological properties, which may be used for bone repair and replacement potentially.

  14. TH-A-19A-05: Modeling Physics Properties and Biologic Effects Induced by Proton and Helium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Taleei, R; Titt, U; Peeler, C; Guan, F; Mirkovic, D; Grosshans, D; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Currently, proton and carbon ions are used for cancer treatment. More recently, other light ions including helium ions have shown interesting physical and biological properties. The purpose of this work is to study the biological and physical properties of helium ions (He-3) in comparison to protons. Methods: Monte Carlo simulations with FLUKA, GEANT4 and MCNPX were used to calculate proton and He-3 dose distributions in water phantoms. The energy spectra of proton and He-3 beams were calculated with high resolution for use in biological models. The repair-misrepairfixation (RMF) model was subsequently used to calculate the RBE. Results: The proton Bragg curve calculations show good agreement between the three general purpose Monte Carlo codes. In contrast, the He-3 Bragg curve calculations show disagreement (for the magnitude of the Bragg peak) between FLUKA and the other two Monte Carlo codes. The differences in the magnitude of the Bragg peak are mainly due to the discrepancy in the secondary fragmentation cross sections used by the codes. The RBE for V79 cell lines is about 0.96 and 0.98 at the entrance of proton and He-3 ions depth dose respectively. The RBE increases to 1.06 and 1.59 at the Bragg peak of proton and He-3 ions. The results demonstrated that LET, microdosimetric parameters (such as dose-mean lineal energy) and RBE are nearly constant along the plateau region of Bragg curve, while all parameters increase within the Bragg peak and at the distal edge for both proton and He-3 ions. Conclusion: The Monte Carlo codes should revise the fragmentation cross sections to more accurately simulate the physical properties of He-3 ions. The increase in RBE for He-3 ions is higher than for proton beams at the Bragg peak.

  15. 76 FR 72046 - Enhanced-Use Lease (EUL) of Department of Veterans Affairs (VA) Real Property for the Development...

    Science.gov (United States)

    2011-11-21

    ... DEPARTMENT OF VETERANS AFFAIRS Enhanced-Use Lease (EUL) of Department of Veterans Affairs (VA) Real Property for the Development of Space for Community Services and Parking in Memphis, TN AGENCY... property is located. This project meets this requirement. Approved: November 14, 2011. Eric K. Shinseki...

  16. 76 FR 72048 - Enhanced-Use Lease (EUL) of Department of Veterans Affairs (VA) Real Property for the Development...

    Science.gov (United States)

    2011-11-21

    ... DEPARTMENT OF VETERANS AFFAIRS Enhanced-Use Lease (EUL) of Department of Veterans Affairs (VA) Real Property for the Development of Permanent Housing in Grand Island, NE AGENCY: Department of... property is located. This project meets this requirement. Approved: November 14, 2011. Eric K. Shinseki...

  17. Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements

    Science.gov (United States)

    Krishnan A. Iyer; Gregory T. Schueneman; John M. Torkelson

    2015-01-01

    Cellulose nanocrystals (CNCs), a class of renewable bionanomaterials with excellent mechanical properties, have gained major interest as filler for polymers. However, challenges associated with effective CNC dispersion have hindered the production of composites with desired property enhancements. Here, composites of polypropylene (PP) and low density polyethylene (LDPE...

  18. Evaluation of Anti-Wear Properties of Metalworking Fluids Enhanced with Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Laura Peña-Parás

    2017-10-01

    Full Text Available The study of nanoparticles as additives for metalworking fluids (MWFs with applications in the metal removal processes, or machining, has received increasing attention due to the possible enhancements on tribological properties. In this study, low-cost and environmentally friendly nanoparticle additives of halloysite clay nanotubes (HNTs were dispersed in metalworking fluids utilized for milling processes. Concentrations of 0.01, 0.05, 0.10 wt. % were incorporated into a mineral oil (MO and a semi-synthetic fluid (SF by ultrasonication. The anti-wear properties of metalworking nanofluids were characterized with a T-05 block-on-ring tribotester at a contact pressure of 0.5 GPa. Surface roughness of worn block materials was obtained with an optical 3D surface measurement system. Results showed that at a concentration of 0.10 wt. % HNTs block mass loss was lowered by 24% for the MO + HNTs nanofluids. For the SF + HNTs, a reduction of 63% and 32% in wear mass loss and coefficient of friction (COF, respectively, were found at the same concentration. The tribological enhancing mechanism for the applied contact pressure was proposed to be due to a reduction of the area of contact and nanoparticle sliding between surfaces with no HNT deposition, evidenced by energy dispersive spectrometry (EDS. Furthermore, surface roughness studies of worn blocks showed smoother surfaces with lower groove density with the addition of nanoparticle additives. The results of this study demonstrate that HNTs can improve the lubricity of metalworking cutting fluids used for machining processes, enhancing tool life and providing better surface finish of products.

  19. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  20. Enhanced electrical transport and thermoelectric properties in Ni doped Cu3SbSe4

    Science.gov (United States)

    Kumar, Aparabal; Dhama, P.; Das, Anish; Sarkar, Kalyan Jyoti; Banerji, P.

    2018-05-01

    In this study, we report the enhanced thermoelectric performance of Cu3SbSe4 by Ni doping at Cu site. Cu3-xNixSbSe4 (x = 0, 0.01, 0.03, 0.05) were prepared by melt growth, ball milling followed by spark plasma sintering. Structural characterization, phase analysis and surface morphology were carried out using X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrical and thermal properties of all the samples were investigated in the temperature range 300 - 650 K. Decrease in electrical resistivity with Ni doping due to increase in carrier concentration with enhanced Seebeck coefficient via increase in density of state near the Fermi level gives a remarkably high power factor. At the same time, thermal conductivity was found to decrease due to increased carrier-phonon scattering and acoustic phonon scattering. Consequently, a remarkable enhancement in the thermoelectric figure of merit (ZT˜ 0.65) of Cu3-xNixSbSe4 was achieved for x = 0.01 sample. Thus, Ni doping is an effective approach to improve the efficiency of Cu3SbSe4.

  1. Novel GQD-PVP-CdS composite with enhanced visible-light-driven photocatalytic properties

    International Nuclear Information System (INIS)

    Fan, Tao; Li, Yinle; Shen, Jianfeng; Ye, Mingxin

    2016-01-01

    Graphical abstract: - Highlights: • GQD-PVP-CdS composite was prepared for the first time through a facile hydrothermal route. • GQD-PVP-CdS demonstrated outstanding photoactivity under visible light illumination. • GQDs and polymeric material are compounded with CdS nanoparticles simultaneously for the first time. • The addition of GQDs plays pivotal roles in the enhancement of the photoactivity. - Abstract: A facile one-step hydrothermal method to synthesize graphene quantum dots (GQDs)-polyvinyl pyrrolidone (PVP)-CdS nanocomposite was reported. The nanocomposite was thoroughly characterized with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet–visible spectroscopy. The results confirmed the formation of GQD-PVP-CdS composite with a uniform size (5–10 nm) and a relatively low band gap (E_g = 2.23 eV). Moreover, the as-prepared composite exhibited enhanced photocatalytic activity toward the degradation of organic contaminants, with 92.3% of methyl orange (10 mg/L) removed after 3 hours of visible light illumination. This enhancement in photocatalytic activity was postulated to be attributed to the upconversion property of GQDs and a more efficient charge distribution between GQDs and CdS particles.

  2. Enhanced Photovoltaic Properties of the Solar Cells Based on Cosensitization of CdS and Hydrogenation

    Directory of Open Access Journals (Sweden)

    Hongcai He

    2015-01-01

    Full Text Available The hydrogenated TiO2 porous nanocrystalline film is modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR method to prepare the cosensitized TiO2 solar cells by CdS quantum dots and hydrogenation. The structure and topography of the composite photoanode film were confirmed by X-ray diffraction and scanning electron microscopy. With deposited CdS nanoparticles, UV absorption spectra of H:TiO2 photoanode film indicated a considerably enhanced absorption in the visible region. The cosensitized TiO2 solar cell by CdS quantum dots and hydrogenation presents much better photovoltaic properties than either CdS sensitized TiO2 solar cells or hydrogenated TiO2 solar cells, which displays enhanced photovoltaic performance with power conversion efficiency (η of 1.99% (Jsc=6.26 mA cm−2, Voc=0.65 V, and FF = 0.49 under full one-sun illumination. The reason for the enhanced photovoltaic performance of the novel cosensitized solar cell is primarily explained by studying the Nyquist spectrums, IPCE spectra, dark current, and photovoltaic performances.

  3. A Remarkably Simple Class of Imidazolium-Based Lipids and Their Biological Properties.

    Science.gov (United States)

    Wang, Da; Richter, Christian; Rühling, Andreas; Drücker, Patrick; Siegmund, Daniel; Metzler-Nolte, Nils; Glorius, Frank; Galla, Hans-Joachim

    2015-10-19

    A series of imidazolium salts bearing two alkyl chains in the backbone of the imidazolium core were synthesized, resembling the structure of lipids. Their antibacterial activity and cytotoxicity were evaluated using Gram-positive and Gram-negative bacteria and eukaryotic cell lines including tumor cells. It is shown that the length of alkyl chains in the backbone is vital for the antibiofilm activities of these lipid-mimicking components. In addition to their biological activity, their surface activity and their membrane interactions are shown by film balance and quartz crystal microbalance (QCM) measurements. The structure-activity relationship indicates that the distinctive chemical structure contributes considerably to the biological activities of this novel class of lipids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products.

    Science.gov (United States)

    Frevert, Jürgen

    2015-03-01

    Botulinum neurotoxin injections are a valuable treatment modality for many therapeutic indications and have revolutionized the field of aesthetic medicine so that they are the leading cosmetic procedure performed worldwide. Studies show that onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA are comparable in terms of clinical efficacy. Differences between the products relate to the botulinum neurotoxin complexes, specific biological potency, and their immunogenicity. Protein complex size and molecular weight have no effect on biological activity, stability, distribution, or side effect profile. Complexing proteins and inactive toxin (toxoid) content increase the risk of neutralizing antibody formation, which can cause secondary treatment failure, particularly in chronic disorders that require frequent injections and long-term treatment. These attributes could lead to differences in therapeutic outcomes, and, given the widespread aesthetic use of these three neurotoxin products, physicians should be aware of how they differ to ensure their safe and effective use.

  5. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Rabia [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Usman, Muhammad, E-mail: uk_phy@yahoo.com [Department of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54729 (Pakistan); Tabassum, Saira; Zia, Muhammad [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2016-11-15

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  6. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  7. Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion

    Czech Academy of Sciences Publication Activity Database

    Slavík, M.; Bruthans, J.; Filippi, Michal; Schweigstillová, Jana; Falteisek, L.; Řihošek, J.

    2017-01-01

    Roč. 278, FEB 1 (2017), s. 298-313 ISSN 0169-555X R&D Projects: GA ČR GA13-28040S; GA ČR(CZ) GA16-19459S Institutional support: RVO:67985831 ; RVO:67985891 Keywords : biofilm * biocrust * biologically-initiated rock crust * sandstone protection * case hardening Subject RIV: DB - Geology ; Mineralogy; DB - Geology ; Mineralogy (USMH-B) OBOR OECD: Geology; Geology (USMH-B) Impact factor: 2.958, year: 2016

  8. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  9. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-01-01

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  10. Synthesis, structural studies and biological properties of new TBA analogues containing an acyclic nucleotide.

    Science.gov (United States)

    Coppola, Teresa; Varra, Michela; Oliviero, Giorgia; Galeone, Aldo; D'Isa, Giuliana; Mayol, Luciano; Morelli, Elena; Bucci, Maria-Rosaria; Vellecco, Valentina; Cirino, Giuseppe; Borbone, Nicola

    2008-09-01

    A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA.

  11. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.

    Science.gov (United States)

    Saithong, Treenut; Painter, Kevin J; Millar, Andrew J

    2010-12-16

    A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.

  12. Facile synthesis of Cu/tetrapod-like ZnO whisker compounds with enhanced photocatalytic properties

    Science.gov (United States)

    Liu, Hong; Liu, Huarong; Fan, Ximei

    2017-09-01

    Cu/tetrapod-like ZnO whisker (T-ZnOw) compounds were successfully synthesized using N2H4 \\cdot H2O as a reducing agent by a simple reduction method without any insert gas at room temperature. The crystal phase composition and morphology of the as-prepared samples were investigated by XRD, SEM and FESEM tests. The photocatalytic property of the as-prepared samples was detected by the degradation of methyl orange (MO) aqueous solution under UV irradiation. It can be found that Cu nanoparticles (CuNPs) dispersed on the surface of T-ZnOw increased with the increasing of Cu/Zn molar ratios (Cu/Zn MRs), and an octahedral structure of CuNPs was obtained when the sample was prepared with less than and equal to 7.30% Cu/Zn MR, but tended to a spherical or nanorod structure of CuNPs densely arranged on the surface of T-ZnOw, which is prepared by Cu/Zn MRs up to 22.00%. All the compounds exhibited excellent photocatalytic activity in decomposing of MO than T-ZnOw, the photocatalytic property of the samples increased with the increasing of Cu/Zn MRs up to 7.30%, while it decreases when further increasing the Cu/Zn MRs. The Schottky barrier of the Cu/T-ZnOw compound can effectively capture photoinduced electro