WorldWideScience

Sample records for enhanced antibacterial activity

  1. Design of New Antibacterial Enhancers Based on AcrB’s Structure and the Evaluation of Their Antibacterial Enhancement Activity

    Directory of Open Access Journals (Sweden)

    Yi Song

    2016-11-01

    Full Text Available Previously, artesunate (AS and dihydroartemisinine 7 (DHA7 were found to have antibacterial enhancement activity against Escherichia coli via inhibition of the efflux pump AcrB. However, they were only effective against E. coli standard strains. This study aimed to develop effective antibacterial enhancers based on the previous work. Our results demonstrate that 86 new antibacterial enhancers were designed via 3D-SAR and molecular docking. Among them, DHA27 had the best antibacterial enhancement activity. It could potentiate the antibacterial effects of ampicillin against not only E. coli standard strain but also clinical strains, and of β-lactam antibiotics, not non-β-lactamantibiotics. DHA27 could increase the accumulation of daunomycin and nile red within E. coli ATCC 35218, but did not increase the bacterial membrane permeability. DHA27 reduced acrB’s mRNA expression of E. coli ATCC 35218 in a dose-dependent manner, and its antibacterial enhancement activity is related to the degree of acrB mRNA expression in E. coli clinical strains. The polypeptides from AcrB were obtained via molecular docking assay; the pre-incubated polypeptides could inhibit the activity of DHA27. Importantly, DHA27 had no cytotoxicity on cell proliferation. In conclusion, among newly designed antibacterial enhancers, DHA27 had favorable physical and pharmacological properties with no significant cytotoxicity at effective concentrations, and might serve as a potential efflux pump inhibitor in the future.

  2. Gramicidin D enhances the antibacterial activity of fluoride

    OpenAIRE

    Nelson, James W.; Zhou, Zhiyuan; Breaker, Ronald R.

    2014-01-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in B. subtilis and that the antibacterial activity of this compound...

  3. Gramicidin D enhances the antibacterial activity of fluoride.

    Science.gov (United States)

    Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R

    2014-07-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enhancement of Antibacterial activity of Chitosan by gamma irradiation

    International Nuclear Information System (INIS)

    Bashandy, A.S.; Ibrahim, H.M.M.

    2006-01-01

    The antibacterial activity of irradiated and non-irradiated chitosan against E.coli, S.aureus, Salmonella, Strep. fecalis,Closteridium and P. aerugenosa was studied. Up to 1.25 mg/l, chitosan hardly suppressed the growth of all the strains while 3 mg/l of chitosan clearly inhibited the growth of all the studied strains. Therefore, the concentration of 3 mg/l of chitosan in the medium was adopted in this study. Irradiation at 100 KGy under dry conditions was effective in increasing the activity of chitosan and the growth of bacterial strains which was completely inhibited. It was also found that the addition of chitosan to dressing membranes present good barrier properties against microbes especially that irradiated at 100 KGy

  5. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.

    Science.gov (United States)

    Sarhan, Wessam A; Azzazy, Hassan Me

    2017-09-01

    Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects. Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity. Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility. The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.

  6. Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate

    Directory of Open Access Journals (Sweden)

    Uduma E. Osonwa

    2017-12-01

    Full Text Available Ciprofloxacin is a broad spectrum bactericidal anti-infective agent of the fluoroquinolones class used in treatment of many bacterial infections. In recent times, there has been increasing resistance to the antibiotic. In this work, we investigated the effect of making an ion- pair complex of Ciprofloxacin – hydrochloride with Sodium cholate on bacterial activity. The optimal ratio of the reactants and pH were determined using UV spectrometry. The complex was characterized by octanol-water partitioning, melting point, and IR spectrometry. The antibacterial activity of the complex was determined against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Streptococcus pneumoniae by the agar-well diffusion method. The complex was whitish to off-white in color and crystalline, with a melting point of 238 °C. The stoichiometry of the complex shows a molar ratio of 1:1 of sodium cholate to ciprofloxacin. The best pH for complexation was pH 9. The complex partitioned 3.38 times into octanol than in water. The FTIR revealed interaction between the 4-nitrogen atom in the 7-piperazinyl group of ciprofloxacin and the carbonyl of the cholate. The drug in complex form gave double the antibacterial activity of the uncomplexed drug. This study showed that development of hydrophobic ion pair complex enhances antibacterial activity of ciprofloxacin hydrochloride. Keywords: Ciprofloxacin, Sodium cholate, Ion-pair complex, Antibacterial activity, Enhanced activity

  7. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Zhan Shu

    2017-02-01

    Full Text Available Abstract Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs and silver (Ag into zinc oxide (ZnO nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs and Ag nanoparticles (Ag NPs with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  8. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Science.gov (United States)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  9. Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer.

    Science.gov (United States)

    Chong, Yu; Ge, Cuicui; Fang, Ge; Wu, Renfei; Zhang, He; Chai, Zhifang; Chen, Chunying; Yin, Jun-Jie

    2017-09-05

    Before graphene derivatives can be exploited as next-generation antimicrobials, we must understand their behavior under environmental conditions. Here, we demonstrate how exposure to simulated sunlight significantly enhances the antibacterial activity of graphene oxide (GO) and reveal the underlying mechanism. Our measurements of reactive oxygen species (ROS) showed that only singlet oxygen ( 1 O 2 ) is generated by GO exposed to simulated sunlight, which contributes only slightly to the oxidation of antioxidant biomolecules. Unexpectedly, we find the main cause of oxidation is light-induced electron-hole pairs generated on the surface of GO. These light-induced electrons promote the reduction of GO, introducing additional carbon-centered free radicals that may also enhance the antibacterial activities of GO. We conclude that GO-mediated oxidative stress mainly is ROS-independent; simulated sunlight accelerates the transfer of electrons from antioxidant biomolecules to GO, thereby destroying bacterial antioxidant systems and causing the reduction of GO. Our insights will help support the development of graphene for antibacterial applications.

  10. Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, George R.S., E-mail: grsandrade@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Nascimento, Cristiane C. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Federal Institute of Education, Science and Technology of Sergipe, Glória Campus, Nossa Senhora da Glória, SE (Brazil); Lima, Zenon M. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); Teixeira-Neto, Erico [LNNano − Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP (Brazil); Costa, Luiz P. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); ITPS − Technological and Research Institute of Sergipe, Aracaju, SE (Brazil); Gimenez, Iara F. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil)

    2017-03-31

    Highlights: • A new and simple one-pot method for preparing star-shaped ZnO particles was reported. • ZnO particles were decorated with Ag nanoparticles (SNPs) by a photodeposition method. • The presence of SNC{sup −} ions on ZnO surface prevented uncontrollable growth of SNPs. • ZnO/Ag particles showed plasmon-enhanced photocatalytic activity toward an AZO dye. • SNP improved 16 times the antibacterial activity of ZnO toward 4 bacterial strains. - Abstract: Zinc oxide (ZnO) particles with a star-shaped morphology have been synthesized by a novel and simple room-temperature method and decorated with silver nanoparticles (SNPs) for enhanced photocatalysis and bactericide applications. The presence of thiourea during the precipitation of ZnO in alkaline conditions allowed the control of morphological features (e.g. average size and shape) and the surface functionalization with thiocyanate ions (SCN{sup −}). SNPs were deposited into the ZnO surface by a photoreduction method and their sizes could be easily controlled by changing the ZnO/AgNO{sub 3} ratio. The presence of SCN{sup −} on the semiconductor surface prevents uncontrollable growth of Ag nanoparticles into different morphologies and high degrees of polydispersity. XRD, SEM, TEM, FTIR, UV-vis-NIR and PL were employed for characterizing the structure, morphology and optical properties of the as-obtained pure and hybrid nanostructures. Finally, the hybrid ZnO/Ag particles have shown plasmon-enhanced performance for applications in photocatalysis and antibacterial activity compared to the pure ZnO counterpart. In this work, evaluation of the photodegradation of an aqueous methylene blue solution under UV-A irradiation and the antibacterial activity toward 4 bacterial strains, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300, ATCC 25923 and ATCC 33591) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853).

  11. Enhancement of antibacterial activity in nanofillers incorporated PSF/PVP membranes

    Science.gov (United States)

    Pramila, P.; Gopalakrishnan, N.

    2018-04-01

    An attempt has been made to investigate the nanofillers incorporated polysulfone (PSF) and polyvinylpyrrolidone (PVP) polymer membranes prepared by phase inversion method. Initially, the nanofillers, viz, Zinc Oxide (ZnO) nanoparticle, Graphene Oxide-Zinc Oxide (GO-ZnO) nanocomposite were synthesized and then directly incorporated into PSF/PVP blend during the preparation of membranes. The prepared membranes have been subjected to FE-SEM, AFM, BET, contact angle, tensile test and anti-bacterial studies. Significant membrane morphologies and nanoporous properties have been observed by FE-SEM and BET, respectively. It has been observed that hydrophilicity, mechanical strength and water permeability of the ZnO and GO-ZnO incorporated membranes were enhanced than bare membrane. Antibacterial activity was assessed by measuring the inhibition zones formed around the membrane by disc-diffusion method using Escherichia coli (gram-negative) as a model bacterium. Again, it has been observed that nanofillers incorporated membrane exhibits high antibacterial performance compared to bare membrane.

  12. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shantrokha AN

    2009-01-01

    Full Text Available Abstract The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles onEscherichia coliK12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs. Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin–gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  13. Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kunal [Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); De, Debashis, E-mail: dr.debashis.de@ieee.org [Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); Bandyopadhyay, Jaya [Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata-64 (India); Dutta, Nabanita; Rana, Subhasis; Sen, Pintu [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata, 700 064 (India); Bandyopadhyay, Sujit Kumar, E-mail: drsujitkumar@gmail.com [Meghnad Saha Institute of Technology, Nazirabad Rd, Uchhepota, Kolkata, West Bengal, 700150 (India); Chakraborty, P.K. [Department of Physics, Burdwan University, Burdwan, 713104 (India)

    2017-07-01

    The present work reports on the physical and biophysical characterization of bismuth ferrite (BFO) nanorods fabricated on porous anodized alumina (AAO) templates. The diameter of the nanorods was quite large, which vary in the range of 20–100 nm. The BFO nanorods exhibited enhanced polarization and significant magnetic susceptibility. Moreover, an enhanced magnetoelectric coupling was evident from magnetocapacitance measurements, which exhibited a power law. Upon analyzing through optical, petri-plate and electron microscopy imaging, we observed that, the asymmetric structure of the nanorods gave rise to augmented antibacterial response against the chosen bacteria (Staphylococcus aureus). The x-ray photoelectron spectra (XPS) data have exhibited significant peak shifts upon interaction with bacterial cells owing to a change of Bi oxidation state from one to another. Thus potential redox reaction, which might take place at the material-bio interface, is ascertained for bacterial death. Apart from physical insights, understanding the interaction between the bacteria and the nanorods of BFO could pave the way in exploring the antibacterial potentiality of such anisotropic nanoscale systems. - Highlights: • AAO supported BiFeO3 (BFO) nanorods have been investigated. • The polarization of BFO nanorods was observed to be remarkably high (∼0.04 μC/cm{sup 2}). • Strong antibacterial activity of nanorods was witnessed against Staphylococcus aureus. • The deskinned area on cytoskeletal parts as revealed through TEM imaging, suggest strong cidal activity of the nanorods. • XPS data justifies shifting of the peak due to biophysical interaction at the interface releasing reactive oxygen species.

  14. Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods

    International Nuclear Information System (INIS)

    Biswas, Kunal; De, Debashis; Bandyopadhyay, Jaya; Dutta, Nabanita; Rana, Subhasis; Sen, Pintu; Bandyopadhyay, Sujit Kumar; Chakraborty, P.K.

    2017-01-01

    The present work reports on the physical and biophysical characterization of bismuth ferrite (BFO) nanorods fabricated on porous anodized alumina (AAO) templates. The diameter of the nanorods was quite large, which vary in the range of 20–100 nm. The BFO nanorods exhibited enhanced polarization and significant magnetic susceptibility. Moreover, an enhanced magnetoelectric coupling was evident from magnetocapacitance measurements, which exhibited a power law. Upon analyzing through optical, petri-plate and electron microscopy imaging, we observed that, the asymmetric structure of the nanorods gave rise to augmented antibacterial response against the chosen bacteria (Staphylococcus aureus). The x-ray photoelectron spectra (XPS) data have exhibited significant peak shifts upon interaction with bacterial cells owing to a change of Bi oxidation state from one to another. Thus potential redox reaction, which might take place at the material-bio interface, is ascertained for bacterial death. Apart from physical insights, understanding the interaction between the bacteria and the nanorods of BFO could pave the way in exploring the antibacterial potentiality of such anisotropic nanoscale systems. - Highlights: • AAO supported BiFeO3 (BFO) nanorods have been investigated. • The polarization of BFO nanorods was observed to be remarkably high (∼0.04 μC/cm 2 ). • Strong antibacterial activity of nanorods was witnessed against Staphylococcus aureus. • The deskinned area on cytoskeletal parts as revealed through TEM imaging, suggest strong cidal activity of the nanorods. • XPS data justifies shifting of the peak due to biophysical interaction at the interface releasing reactive oxygen species.

  15. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity.

    Science.gov (United States)

    Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho

    2017-08-08

    Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.

  16. Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect

    Science.gov (United States)

    Liu, Rong; Wang, Xuandong; Ye, Jun; Xue, Ximei; Zhang, Fangrong; Zhang, Huicong; Hou, Xuemei; Liu, Xiaolong; Zhang, Yun

    2018-03-01

    Drug resistance of bacteria has become a global health problem, as it makes conventional antibiotics less efficient. It is urgently needed to explore novel antibacterial materials and develop effective treatment strategies to overcome the drug resistance of antibiotics. Herein, we successfully synthesized silver decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets (rGO/MSN/Ag) as a novel antibacterial material through facile method. The rGO and Ag nanoparticles can be reduced in the reaction system without adding any other reductants. In addition, the rGO/MSN/Ag showed higher photothermal conversion capacity due to the modification of silver nanoparticles and exhibited excellent antibacterial activities against Pseudomonas putida, Escherichia coli and Rhodococcus at relatively low dosages, which was confirmed by the minimum inhibitory concentration (MIC) test. Meanwhile, the E. coli with a high concentration was selected for exposure using an 808 nm laser, and the antibacterial effect was obviously enhanced by the near-infrared irradiation induced photothermal effect. Moreover, the hepatocyte LO2 were used for the cytotoxicity evaluation, and the rGO/MSN/Ag showed low toxicity and were without detectable cytotoxicity at the antimicrobial dose. As the prepared rGO/MSN/Ag nanosheets have the advantages of low-cost and high antibacterial activity, they might be of promising and useful antibacterial agents for different applications.

  17. Possible involvement of ROS generation in vorinostat pretreatment induced enhancement of the antibacterial activity of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Masadeh MM

    2017-10-01

    Full Text Available Majed M Masadeh,1 Karem H Alzoubi,2 Sayer I Al-azzam,2 Ahlam M Al-buhairan3 1Department of Pharmaceutical Technology, 2Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 3Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia Abstract: The mechanism underlying ciprofloxacin action involves interference with transcription and replication of bacterial DNA and, thus, the induction of double-strand breaks in DNA. It also involves elevated oxidative stress, which might contribute to bacterial cell death. Vorinostat was shown to induce oxidative DNA damage. The current work investigated a possible interactive effect of vorinostat on ciprofloxacin-induced cytotoxicity against a number of reference bacteria. Standard bacterial strains were Escherichia coli ATCC 35218, Staphylococcus aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA (ATCC 43300, and Streptococcus pneumoniae (ATCC 25923. The antibacterial activity of ciprofloxacin, with or without pretreatment of bacterial cells by vorinostat, was examined using the disc diffusion procedure and determination of the minimum inhibitory concentration (MIC and zones of inhibition of bacterial growth. All tested bacterial strains showed sensitivity to ciprofloxacin. When pretreated with vorinostat, significantly larger zones of inhibition and smaller MIC values were observed in all bacterial strains compared to those treated with ciprofloxacin alone. In correlation, generation of reactive oxygen species (ROS induced by the antibacterial action of ciprofloxacin was enhanced by treatment of bacterial cells with vorinostat. Results showed the possible agonistic properties of vorinostat when used together with ciprofloxacin. This could be related to the

  18. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    International Nuclear Information System (INIS)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge; Huang Jinfeng; Chen Yuxin; Lan Shi

    2011-01-01

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  19. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Alideertu; Wang Tao; Xiao Linghan; Wang Weiwei; Zhao Tianyi; Zheng Xin; Liu Fengqi; Gao Ge [College of Chemistry, Jilin University and MacDiarmid Laboratory, Changchun 130021 (China); Huang Jinfeng; Chen Yuxin [Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012 (China); Lan Shi, E-mail: gaoge@jlu.edu.cn [College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao 028000 (China)

    2011-07-22

    N-halamine-functionalized silica-polymer core-shell nanoparticles with enhanced antibacterial activity were synthesized through the encapsulation of silica nanoparticles as support with polymeric N-halamine. The as-synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR). These N-halamine-functionalized silica-polymer core-shell nanoparticles displayed powerful antibacterial performance against both Gram-positive bacteria and Gram-negative bacteria, and their antibacterial activities have been greatly improved compared with their bulk counterparts. Therefore, these N-halamine-functionalized silica-polymer core-shell nanoparticles have the potential for various significant applications such as in medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc.

  20. Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents

    NARCIS (Netherlands)

    Molhoek, E.M.; Dijk, A. van; Veldhuizen, E.J.A.; Dijk-Knijnenburg, H.; Mars-Groenendijk, R.H.; Boele, L.C.L.; Kaman-van Zanten, W.E.; Haagsman, H.P.; Bikker, F.J.

    2010-01-01

    Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards

  1. Antibacterial Activity and Antibiotic-Enhancing Effects of Honeybee Venom against Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Sang Mi Han

    2016-01-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA, along with other antibiotic resistant bacteria, has become a significant social and clinical problem. There is thus an urgent need to develop naturally bioactive compounds as alternatives to the few antibiotics that remain effective. Here we assessed the in vitro activities of bee venom (BV, alone or in combination with ampicillin, penicillin, gentamicin or vancomycin, on growth of MRSA strains. The antimicrobial activity of BV against MRSA strains was investigated using minimum inhibitory concentrations (MIC, minimum bactericidal concentrations (MBC and a time-kill assay. Expression of atl which encodes murein hydrolase, a peptidoglycan-degrading enzyme involved in cell separation, was measured by reverse transcription-polymerase chain reaction. The MICs of BV were 0.085 µg/mL and 0.11 µg/mL against MRSA CCARM 3366 and MRSA CCARM 3708, respectively. The MBC of BV against MRSA 3366 was 0.106 µg/mL and that against MRSA 3708 was 0.14 µg/mL. The bactericidal activity of BV corresponded to a decrease of at least 3 log CFU/g cells. The combination of BV with ampicillin or penicillin yielded an inhibitory concentration index ranging from 0.631 to 1.002, indicating a partial and indifferent synergistic effect. Compared to ampicillin or penicillin, both MRSA strains were more susceptible to the combination of BV with gentamicin or vancomycin. The expression of atl gene was increased in MRSA 3366 treated with BV. These results suggest that BV exhibited antibacterial activity and antibiotic-enhancing effects against MRSA strains. The atl gene was increased in MRSA exposed to BV, suggesting that cell division was interrupted. BV warrants further investigation as a natural antimicrobial agent and synergist of antibiotic activity.

  2. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Cao, Shiyi; Wang, Chen [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-07-15

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.

  3. use of gamma irradiation for enhancing antibacterial activity of chitosan against pathogenic bacteria

    International Nuclear Information System (INIS)

    Taha, S.M.A.; Swailam, H.M.H.

    2009-01-01

    the effect of chitosan on growth of food poisoning bacteria including gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium) and gram-positive bacteria (Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus) was investigated at ph 6.0 and 7.0 also, the effect of irradiation on the antibacterial activity of chitosan was studied . it was found that chitosan was more effective on the growth of gram-negative bacteria at ph 6 than ph 7 . addition of chitosan affected the growth of the tested pathogens in varying degrees compared to the control. as the concentration of chitosan increased, its effectiveness against these pathogens also increased. the growth for gram-positive and gram-negative bacterial isolates was completely inhibited at 0.6% chitosan after 72 hours of incubation. inactivation of these pathogens needs only 24 hour with 1.0% of chitosan. irradiation of chitosan at 50 kGy slightly increased the antimicrobial activity whereas at 100 kGy increased the antimicrobial activity and at 150 kGy the growth of these pathogens was completely inhibited . irradiation of chitosan at 50 kGy increased the flow index, whereas consistency index markedly decreased by increasing dose. the minimum inhibitory concentration (MIC) of unirradiated chitosan ranged from 0.35% to 0.50%, whereas the MIC of irradiated chitosan ranged from 0.1% to 0.45% depending on the bacteria and the irradiation dose used. these results demonstrate that irradiated chitosan was more effective to decontaminate pathogenic bacteria and can be easily used in different foods for enhancing health quality and ensuring safety

  4. Antibacterial activity of antileukoprotease.

    Science.gov (United States)

    Hiemstra, P S; Maassen, R J; Stolk, J; Heinzel-Wieland, R; Steffens, G J; Dijkman, J H

    1996-01-01

    Antileukoprotease (ALP), or secretory leukocyte proteinase inhibitor, is an endogenous inhibitor of serine proteinases that is present in various external secretions. ALP, one of the major inhibitors of serine proteinases present in the human lung, is a potent reversible inhibitor of elastase and, to a lesser extent, of cathepsin G. In equine neutrophils, an antimicrobial polypeptide that has some of the characteristics of ALP has been identified (M. A. Couto, S. S. L. Harwig, J. S. Cullor, J. P. Hughes, and R. I. Lehrer, Infect. Immun. 60:5042-5047, 1992). This report, together with the cationic nature of ALP, led us to investigate the antimicrobial activity of ALP. ALP was shown to display marked in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. On a molar basis, the activity of ALP was lower than that of two other cationic antimicrobial polypeptides, lysozyme and defensin. ALP comprises two homologous domains: its proteinase-inhibitory activities are known to be located in the second COOH-terminal domain, and the function of its first NH2-terminal domain is largely unknown. Incubation of intact ALP or its isolated first domain with E. coli or S. aureus resulted in killing of these bacteria, whereas its second domain displayed very little antibacterial activity. Together these data suggest a putative antimicrobial role for the first domain of ALP and indicate that its antimicrobial activity may equip ALP to contribute to host defense against infection. PMID:8890201

  5. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania); Vodnar, Dan Cristian [University of Agricultural Sciences and Veterinary Medicine, Department of Food Science and Technology, 3-5 Manastur Street, 400372 Cluj-Napoca (Romania); Katona, Gabriel [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania)

    2015-12-23

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  6. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    International Nuclear Information System (INIS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-01-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn 2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs

  7. Enhancing the antibacterial activity of the gold standard intracanal medicament with incorporation of silver zeolite: An in vitro study.

    Science.gov (United States)

    Ghatole, Kiran; Gowdra, Ramesh Halebathi Giriyappa; Azher, Samer; Sabharwal, Sumit; Singh, Veerandar T; Sundararajan, Bharath Vardhana

    2016-01-01

    Enterococcus faecalis is a persistent organism that plays a major role in the etiology of persistent periradicular lesions after root canal treatment has been associated with different forms of periradicular disease including primary endodontic infections and persistent infections. The present study compares the antibacterial activities of calcium hydroxide, calcium hydroxide mixed with silver zeolite, and calcium hydroxide mixed with 2% chlorhexidine against E. faecalis using direct contact test. The test materials of the in vitro experimental study were grouped as group 1-calcium hydroxide mixed with sterile water, group 2-2% silver zeolite added in calcium hydroxide mixed with sterile water, and group 3-calcium hydroxide mixed with 2% chlorhexidine. The bottom of microtiter plate were coated with freshly mixed tested material and a 10 μL of bacterial suspension was placed. After 1 h of incubation at 37°C, brain-heart infusion (BHI) broth (245 μL) was added and mixed for 2 min. These were designated as "subgroup 1" wells. A volume of 15 μL of broth then transferred from subgroup 1 wells to an adjacent set of four wells containing fresh BHI medium (215 μL); these wells were designated as "subgroup 2"' wells. The optical density was measured by a spectrophotometer after the first day, third day, and seventh day. One-way analysis of variance (ANOVA) and Tukey tests were performed for the analysis. Calcium hydroxide mixed with silver zeolite showed maximum antibacterial activity. Silver zeolite can be added in calcium hydroxide to enhance the latter's antibacterial activity against E. faecalis.

  8. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure.

    Science.gov (United States)

    Yu, Liang; Zhang, Yatao; Zhang, Bing; Liu, Jindun

    2014-04-11

    A sandwich-like antibacterial reagent (Ag/HNTs/rGO) was constructed through the direct growth of silver nanoparticles on the surface graphene-based HNTs nanosheets. Herein, various nanomaterials were combined by adhesion effect of DOPA after self-polymerization. Ag/HNTs/rGO possess enhanced antibacterial ability against E. coli and S. aureus compared with individual silver nanoparticles, rGO nanosheets or their nanocomposites.

  9. Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro

    Directory of Open Access Journals (Sweden)

    Robert D. Wojtyczka

    2014-05-01

    Full Text Available Synergistic interactions between commonly used antibiotics and natural bioactive compounds may exhibit therapeutic benefits in a clinical setting. Berberine, an isoquinoline-type alkaloid isolated from many kinds of medicinal plants, has proven efficacy against a broad spectrum of microorganisms. The aim of the presented work was to assess the antibacterial activity of berberine chloride in light of the effect exerted by common antibiotics on fourteen reference strains of Staphylococccus spp., and to evaluate the magnitude of interactions of berberine with these antistaphylococcal antibiotics. In our study minimum inhibitory concentrations (MIC of berberine chloride against CoNS ranged from 16 to 512 µg/mL. The most noticeable effects were observed for S. haemolyticus ATCC 29970, S. epidermidis ATCC 12228, S. capitis subsp. capitis ATCC 35661, S. galinarium ATCC 700401, S. hominis subsp. hominis ATCC 27844, S. intermedius ATCC 29663 and S. lugdunensis ATCC 49576. The most significant synergistic effect was noticed for berberine in combination with linezolid, cefoxitin and erythromycin. The synergy between berberine and antibiotics demonstrates the potential application of compound combinations as an efficient, novel therapeutic tool for antibiotic-resistant bacterial infections.

  10. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro.

    Science.gov (United States)

    Wojtyczka, Robert D; Dziedzic, Arkadiusz; Kępa, Małgorzata; Kubina, Robert; Kabała-Dzik, Agata; Mularz, Tomasz; Idzik, Danuta

    2014-05-22

    Synergistic interactions between commonly used antibiotics and natural bioactive compounds may exhibit therapeutic benefits in a clinical setting. Berberine, an isoquinoline-type alkaloid isolated from many kinds of medicinal plants, has proven efficacy against a broad spectrum of microorganisms. The aim of the presented work was to assess the antibacterial activity of berberine chloride in light of the effect exerted by common antibiotics on fourteen reference strains of Staphylococccus spp., and to evaluate the magnitude of interactions of berberine with these antistaphylococcal antibiotics. In our study minimum inhibitory concentrations (MIC) of berberine chloride against CoNS ranged from 16 to 512 µg/mL. The most noticeable effects were observed for S. haemolyticus ATCC 29970, S. epidermidis ATCC 12228, S. capitis subsp. capitis ATCC 35661, S. galinarium ATCC 700401, S. hominis subsp. hominis ATCC 27844, S. intermedius ATCC 29663 and S. lugdunensis ATCC 49576. The most significant synergistic effect was noticed for berberine in combination with linezolid, cefoxitin and erythromycin. The synergy between berberine and antibiotics demonstrates the potential application of compound combinations as an efficient, novel therapeutic tool for antibiotic-resistant bacterial infections.

  11. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Science.gov (United States)

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S.; Nath, Gopal; Srivastava, Sunil K.; Giri, Rajiv; Srivastava, Anchal

    2011-10-01

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag + by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag + has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  12. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Upendra Kumar; Srivastava, Sunil K; Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Kumar, Vinod; Saxena, Preeti S [Department of Zoology, Banaras Hindu University, Varanasi 22005 (India); Bera, Tanmay [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Nath, Gopal [Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 22005 (India); Giri, Rajiv, E-mail: anchalbhu@gmail.com [Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2011-10-14

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag{sup +} by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag{sup +} has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  13. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis of Silver Nanoparticles from the Aqueous Extract of Leaves of Ocimum sanctum for Enhanced Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Charusheela Ramteke

    2013-01-01

    Full Text Available The field of nanotechnology is the most active area of research in modern materials science. Though there are many chemical as well as physical methods, green synthesis of nanomaterials is the most emerging method of synthesis. We report the synthesis of antibacterial silver nanoparticles (AgNPs using leaf broth of medicinal herb, Ocimum sanctum (Tulsi. The synthesized AgNPs have been characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM, and X-ray diffractometry. The mean particle of synthesized NPs was found to be 18 nm, as confirmed by TEM. The qualitative assessment of reducing potential of leaf extract has also been carried out which indicated presence of significant amount of reducing entities. FTIR analysis revealed that the AgNPs were stabilized by eugenols, terpenes, and other aromatic compounds present in the extract. Such AgNPs stabilized by Tulsi leaf extract were found to have enhanced antimicrobial activity against well-known pathogenic strains, namely Staphylococcus aureus and E. coli.

  15. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    Science.gov (United States)

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Enhancing the antibacterial activity of the gold standard intracanal medicament with incorporation of silver zeolite: An in vitro study

    OpenAIRE

    Ghatole, Kiran; Gowdra, Ramesh Halebathi Giriyappa; Azher, Samer; Sabharwal, Sumit; Singh, Veerandar T.; Sundararajan, Bharath Vardhana

    2016-01-01

    Background: Enterococcus faecalis is a persistent organism that plays a major role in the etiology of persistent periradicular lesions after root canal treatment has been associated with different forms of periradicular disease including primary endodontic infections and persistent infections. The present study compares the antibacterial activities of calcium hydroxide, calcium hydroxide mixed with silver zeolite, and calcium hydroxide mixed with 2% chlorhexidine against E. faecalis using dir...

  17. Antibacterial activity of Artocarpus heterophyllus.

    Science.gov (United States)

    Khan, M R; Omoloso, A D; Kihara, M

    2003-07-01

    The crude methanolic extracts of the stem and root barks, stem and root heart-wood, leaves, fruits and seeds of Artocarpus heterophyllus and their subsequent partitioning with petrol, dichloromethane, ethyl acetate and butanol gave fractions that exhibited a broad spectrum of antibacterial activity. The butanol fractions of the root bark and fruits were found to be the most active. None of the fractions were active against the fungi tested.

  18. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    Science.gov (United States)

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment.

    Science.gov (United States)

    Chang, Ranran; Lu, Hao; Li, Man; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie

    2018-04-15

    Nisin is applied broadly in the food industry as an antimicrobial peptide. The objective of this study is to prepare nisin nanoparticles using free nisin by a facile nanoprecipitation technique and to investigate their antimicrobial activity after high-temperature processing. Transmission electron microscopic images showed that the size of extra-small nisin nanoparticles with different initial concentrations of nisin (0.1%, 0.3% and 0.5%) was 5, 10 and 15 nm, respectively. The nisin nanoparticles were stable at pH 5.0 with the smallest size. Moreover, nisin nanoparticles exhibited a higher antimicrobial activity than free nisin at a concentration below 2.0 mg/ml after autoclave treatment. These results suggested that nisin nanoparticles could serve as a potential food preservative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Light-activated polymethylmethacrylate nanofibers with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Elashnikov, Roman [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague (Czech Republic); Lyutakov, Oleksiy, E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague (Czech Republic)

    2016-07-01

    The creation of an antibacterial material with triggerable properties enables us to avoid the overuse or misuse of antibacterial substances and, thus, prevent the emergence of resistant bacterial strains. As a potential light-activated antibacterial material, polymethylmethacrylate (PMMA) nanofibers doped with silver nanoparticles (AgNPs) and meso-tetraphenylporphyrin (TPP) were prepared by electrospinning. TPP was chosen as an effectively reactive oxygen species (ROS) producer. Antibacterial tests on Staphylococcus epidermidis (S. epidermidis) and Enterococcus faecalis (E. faecalis) showed the excellent light-triggerable antibacterial activity of the doped materials. Upon light irradiation at the wavelength corresponding to the TPP absorption peak (405 nm), antibacterial activity dramatically increased, mostly due to the release of AgNPs from the polymer matrix. Furthermore, under prolonged light irradiation, the AgNPs/TPP/PMMA nanofibers, displayed enhanced longevity and photothermal stability. Thus, our results suggest that the proposed material is a promising option for the photodynamic inactivation of bacteria. - Highlights: • The novelty of proposed work can be summared as follow: • Silver nanoparticles/meso-tetraphenylporphyrin embedded polymethylmethacrylate nanofibers were obtained for the first time. • Light triggering of PMMA fibers leads to sufficient release of AgNPs or their agglomeration, depending on the light source. • Release of AgNPs leads to appearance of pronounced antimicrobial activity, which can be switched on/off by the illumination.

  1. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijie; Wu, Yunping [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Wang, Zhihua, E-mail: zhwang@henu.edu.cn [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Zou, Xueyan; Zhao, Yanbao [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China); Sun, Lei, E-mail: sunlei@hneu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004 (China)

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  2. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities

    International Nuclear Information System (INIS)

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-01-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8 nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. - Highlights: • Ag NPs embedded in the PVA electropun nanofibrous films were synthesized successfully. • The as-synthesized nanofibrous film mats exhibit excellent antibacterial properties and SERS activates. • The mechanism of antibacterial and SERS effects were proposed.

  3. Antibacterial activity of baking soda.

    Science.gov (United States)

    Drake, D

    1997-01-01

    The antibacterial activity of baking soda (sodium bicarbonate) was assessed using three different experimental approaches. Standard minimum inhibitory concentration analyses revealed substantial inhibitory activity against Streptococcus mutans that was not due to ionic strength or high osmolarity. Short-term exposure assays showed significant killing of bacterial suspensions when baking soda was combined with the detergent sodium dodecylsulfate. Multiple, brief exposures of sucrose-colonized S mutans to baking soda and sodium dodecylsulfate caused statistically significant decreases in numbers of viable cells. Use of oral health care products with high concentrations of baking soda could conceivably result in decreased levels of cariogenic S mutans in saliva and plaque.

  4. Optical control of antibacterial activity

    Science.gov (United States)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  5. Electroless Ni–B Coating of Pure Titanium Surface for Enhanced Tribocorrosion Performance in Artificial Saliva and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    F. Mindivan

    2017-05-01

    Full Text Available In the present study, the surface of commercial pure (Grade 2 titanium was coated with electroless Ni–B. The surface morphology, microstructure and phase identification were analysed by X-Ray Diffraction (XRD and Field Emission Gun Scanning Electron Microscope (FEG-SEM equipped with Energy Dispersive X-ray Spectroscopy (EDS. The tribocorrosion performance in a laboratory simulated artificial saliva was investigated using a reciprocating ball-on-plate tribometer coupled to an electrochemical cell. The antibacterial property of the electroless Ni–B film coated on pure titanium was basically investigated. From this study, it may be concluded that this electroless Ni–B coating process cannot only improve the hardness and tribocorrosion performance of the pure titanium, but can also provide antimicrobial activity.

  6. Antibacterial activity of selected Myanmar medicinal plants

    International Nuclear Information System (INIS)

    Nwe Yee Win; Nyunt Wynn; Mar Mar Nyein; Win Myint; Saw Hla Myint; Myint Khine

    2001-01-01

    Thirteen plants which are traditionally used for the treatment of dysentery and diarrhoea in Myanmar were selected and tested for antibacterial activity by using agar disc diffusion technique. Polar and nonpolar solvents were employed for extraction of plants. The minimum inhibitory concentration (MIC) of the extracts with the most significant predominant activity were evaluated by plate dilution method. The plants Eugenia jambolana, Quisqualis indica, Leucaena glauca and Euphorbia splendens var. 1 were found to show significant antibacterial activity. It was also observed that extracts using nonpolar solvents did not show any antibacterial activity and extracts using polar solvents showed antibacterial activity on tested bacteria, indicating that the active chemical compound responsible for the antibacterial action must be a polar soluble compound. (author)

  7. Antibacterial Activity of Silicate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang

    2011-01-01

    Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

  8. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    Science.gov (United States)

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J

    2016-01-01

    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Antibacterial activity of Ficus capensis

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    Allium sativum) is used to reduce cholesterol levels and to boost immune system; it lowers high blood pressure and its oil has been seen to have antibacterial properties (Juurlink, 2001). Milk thistle. Silybum marianum has also ...

  10. Antibacterial and haematological activity of Moringa oleifera ...

    African Journals Online (AJOL)

    The phytochemical, antibacterial and haematologic activity of aqueous seed extract of Moringa oleifera (Moringaceae) were evaluated. Phytochemicals such as tannins, carbohydrates, alkaloids, cardiac glycosides, anthraquinones and flavonoids in low, moderate and high concentrations were present in the seeds.

  11. Fabrication of TiO{sub 2}/Ag{sub 2}O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bingkun, E-mail: liubk2015@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Mu, Lilong; Han, Bing [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Shi, Hengzhen, E-mail: shihz@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2017-02-28

    Highlights: • TiO{sub 2}/Ag{sub 2}O composite photocatalyst was synthesized successfully. • The composites show better photocatalytic activity for MB under visible light. • The composites also possess good antibacterial properties. • The mechanism of enhanced photocatalytic activities was investigated. - Abstract: TiO{sub 2}/Ag{sub 2}O heterostructure prepared by a facile in situ precipitation route was used as an effective visible light-driven photocatalyst for degradation of methylene blue (MB) and inactivation of E. coli. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed that Ag{sub 2}O nanoparticles were well distributed on the surface of TiO{sub 2} microspheres. The TiO{sub 2}/Ag{sub 2}O composite with optimal mass ratio of TiO{sub 2} and Ag{sub 2}O displayed extremely good photodegradation ability and antibacterial capability under visible light irradiation, which was mainly ascribed to the synergistic effect between Ag{sub 2}O and TiO{sub 2,} including highly dispersed smaller Ag{sub 2}O particles, increased visible light absorption and efficient separation of photo-induced charge carriers. Meanwhile, the roles of the radical species in the photocatalysis process were investigated. Our results showed that the TiO{sub 2}/Ag{sub 2}O could be used as a dual functional material in water treatment of removing the organic pollutant and killing the bacterium at the same time.

  12. Synthesis, Antibacterial and Antifungal Activities of s Derivatives

    Directory of Open Access Journals (Sweden)

    B. B. Baldaniya

    2009-01-01

    Full Text Available Several Nʹ-{4-[(3-chloro-4-fluorophenyl amino]-6-[(-aryl amino] -1, 3, 5-triazin-2-yl} isonicotinohydrazides (6a-r and N2-(Aryl-N4, N6-dipyrimidin-2-yl-1,3,5-triazine-2,4,6-triamines (4a-o were prepared. All newly synthesized compounds have been tested for their antibacterial activity against gram (+ve and gram (-ve bacteria and also on different strains of fungi. Introduction of -OH, -OCH3, -NO2, -Cl and -Br groups to the heterocyclic frame work enhanced antibacterial and antifungal activities.

  13. Synthesis and characterization of nanoparticles conjugated tannase and using it for enhancement of antibacterial activity of tannase produced by Serratia marcescens.

    Science.gov (United States)

    Nsayef Muslim, D Sahira; Abbas Dham, Ziyad; J Mohammed, D Nadheer

    2017-09-01

    Fourteen isolates of Serratia marcescens were collected from patients suffering from septicemia. All theseisolates revealed different levels in tannase production. Tannase was partially purified from Serratia marcescens b9 by precipitation method at 70% saturation of ammonium sulfate. Au, Pt, SnO 2 and SiO 2 nanoparticles were prepared by laser ablation and examined by transmission electron microscopy (TEM), X-ray diffraction pattern and UV-Visible absorption spectroscopy. Conjugation of SiO 2 nanoparticles to tannase by feeding and pulses methods were prepared and characterized by TEM, X-ray diffraction pattern and UV-Visible spectrum. SiO 2 nanoparticles conjugated partially purified tannase by feeding showed the higher effectiveness and higher significant level against all tested UTI causing in comparison with ciprofloxacin antibiotic, SiO 2 nanoparticles alone, partially purified tannase alone and partially purified tannase by pulses. So that we can conclude that feeding method was the best method for enhancement partially purified tannase activity to maximum level thus SiO 2 nanoparticles conjugated partially purified tannase may be a useful antibacterial agent for the treatment of urinary tract infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Phytochemical Screening and Antibacterial Activity of Cybopogon ...

    African Journals Online (AJOL)

    Similarly, the results of antibacterial activity testing of the extracts at equal disc concentration of 30@g/disc showed that E. coli was sensitive to all extracts with inhibition zone diameters of 7mm, Klebsiella spp. and Proteus spp. were sensitive to acetone extract of the plant with inhibition zone diameters of 7mm each while ...

  15. Precursor Dependent Structural Properties and Antibacterial Activity ...

    Indian Academy of Sciences (India)

    71

    10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30 ... absorption spectroscopy, Scanning electron microscopy (SEM) and Zeta ... The antibacterial activity of the synthesized CuO were studied against human .... Sample d : Copper oxide synthesized with cupric sulphate as precursor ...... Chem.4 86.

  16. Phytochemical Screening, Antibacterial and Toxicological Activities ...

    African Journals Online (AJOL)

    The phytochemical screening, antibacterial and toxicological activities of extracts of the stem bark of Acacia senegal were investigated. The phytochemical analyses according to standard screening tests using conventional protocols revealed the presence of tannins, saponins and sterols in the stem bark of the plant.

  17. ANTIBACTERIAL ACTIVITIES, DFT AND QSAR STUDIES OF ...

    African Journals Online (AJOL)

    Latif Hesham4. 1Department of ... [5] and characterized, see Figure 1. In the present study, our aim is to investigate the antibacterial activity of 1 and 2. Moreover, ..... in Figure 3. The pink color parts embody the regions of negative electrostatic.

  18. Phytochemical screening and antibacterial activity of Azadiracta ...

    African Journals Online (AJOL)

    Preliminary phytochemical analysis showed that both stem bark and leaf extracts contain alkaloid, tannin, anthraquinone, flavonoid, phenols and terpenoid. The extracts of the plant demonstrated antibacterial activity due to presence of phytochemical constituents hence, the application of the decoction of leaf and stem bark ...

  19. Antiproliferative and antibacterial activity evaluation of red ...

    African Journals Online (AJOL)

    Antibacterial activity of these extracts was also tested against Salmonella choleraesuis, Listeria monocytogenes and Staphylococcus aureus. All extracts were obtained from lyophilized biomass of red microalgae. Extract A was obtained using 40% ammonium sulfate precipitation and gel filtration chromatography with G-25 ...

  20. Loop Replacement Enhances the Ancestral Antibacterial Function of a Bifunctional Scorpion Toxin

    Directory of Open Access Journals (Sweden)

    Shangfei Zhang

    2018-06-01

    Full Text Available On the basis of the evolutionary relationship between scorpion toxins targeting K+ channels (KTxs and antibacterial defensins (Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546–559, we performed protein engineering experiments to modify a bifunctional KTx (i.e., weak inhibitory activities on both K+ channels and bacteria via substituting its carboxyl loop with the structurally equivalent loop of contemporary defensins. As expected, the engineered peptide (named MeuTXKα3-KFGGI remarkably improved the antibacterial activity, particularly on some Gram-positive bacteria, including several antibiotic-resistant opportunistic pathogens. Compared with the unmodified toxin, its antibacterial spectrum also enlarged. Our work provides a new method to enhance the antibacterial activity of bifunctional scorpion venom peptides, which might be useful in engineering other proteins with an ancestral activity.

  1. Antibacterial activity of indium curcumin and indium diacetylcurcumin

    African Journals Online (AJOL)

    Studies on curcumin, the principal element of turmeric powder, have demonstrated several biological actions such as antibacterial activity. Evaluation of new analogs or new compounds of curcumin for their antibacterial effect is interesting for researchers. In this in vitro study, we attempted to test the antibacterial activity of ...

  2. Antibacterial activity of some selected plants traditionally used as ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... K. Womens'College, Kongkhampat,Nambol-795134, Manipur, India. 2Department of Life Science and Bioinformatics, Assam University, Silchar, ... antibacterial activity. The study revealed that all extracts show varied degree of antibacterial activity against the tested bacterial pathogens. The antibacterial ...

  3. [Antibacterial activity of rare Streptomyces species against clinical resistant bacteria].

    Science.gov (United States)

    Boughachiche, Faiza; Reghioua, Sihem; Zerizer, Habiba; Boulahrouf, Abderrahmane

    2012-01-01

    In the search for new antibiotics from Steptomyces, investigating extremes habitats enhances the probability of isolating novel producers. In this context, the antibacterial activity of four Streptomyces strains isolated from Ezzmoul saltpans was studied. Two of them showed antibacterial activity against antibiotic's resistant bacteria (Bacillus cereus: β-lactamines and sulfamides resistant, Streptococcus faecalis: penicillin, tetracycline and cotrimoxazole resistant, and Staphylococcus aureus Mu 50: vancomycine resistant). The most active Streptomyces strain produces one type of polar bioactive molecules that resists to temperature variation and light exposition. Its activity appears in the first culture day and reaches its maximal value in the fourth day. The second strain presents themoresistant activity that reaches its maximal value in the first culture day. It produces two types of bioactive molecules, one is polar and the second is non polar (according to thin layer chromatography technique results).

  4. MgO nanoparticles as antibacterial agent: preparation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Xing, E-mail: tangzhenxing@126.com [Department of Food Science, Anqing, Vocational and Technical College, Anqing, Anhui (China); Lv, Bin-Feng [Date Palm Research Center, King Faisal University, (Saudi Arabia)

    2014-07-15

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  5. MgO nanoparticles as antibacterial agent: preparation and activity

    International Nuclear Information System (INIS)

    Tang, Zhen-Xing; Lv, Bin-Feng

    2014-01-01

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  6. Antibacterial and Antifungal Activities of Spices

    Science.gov (United States)

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-01-01

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716

  7. Butterfly extracts show antibacterial activity

    Science.gov (United States)

    Extracts of several British butterfly species were tested and shown to possess powerful bactericidal activity against the gram-positive bacteria Staphylococcus aureus (S. aureus). The active compounds were identified as hydroxylated pyrrolizidine alkaloids (PAs) related to loline with nitrogen at C-...

  8. Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach.

    Science.gov (United States)

    Manjumeena, R; Duraibabu, D; Sudha, J; Kalaichelvan, P T

    2014-01-01

    Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles(AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

  9. Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: Enhanced antibacterial, permeable and mechanical properties

    International Nuclear Information System (INIS)

    Duan, Linlin; Wang, Yuanming; Zhang, Yatao; Liu, Jindun

    2015-01-01

    Graphical abstract: - Highlights: • Lysozyme was immobilized on the surface of graphene oxide (GO) and reduced GO (RGO). • The novel hybrid membranes based on lysozyme and graphene were fabricated firstly. • These membranes showed good antibacterial and mechanical performance. - Abstract: Enzyme immobilization has been developed to address lots of issues of free enzyme, such as instability, low activity and difficult to retain. In this study, graphene was used as an ideal carrier for lysozyme immobilization, including graphene oxide (GO) immobilized lysozyme (GO-Ly) and chemically reduced graphene oxide (CRGO) immobilized lysozyme (CRGO-Ly). Herein, lysozyme as a bio-antibacterial agent has excellent antibacterial performance and the products of its catalysis are safety and nontoxic. Then the immobilized lysozyme materials were blended into polyethersulfone (PES) casting solution to prepare PES ultrafiltration membrane via phase inversion method. GO and CRGO were characterized by Fourier transform infrared spectroscopy (FTIR), Ultraviolet–visible spectrum (UV), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and the immobilized lysozyme composites were observed by fluorescent microscopy. The results revealed that GO and CRGO were successfully synthesized and lysozyme was immobilized on their surfaces. The morphology, hydrophilicity, mechanical properties, separation properties and antibacterial activity of the hybrid membranes were characterized in detail. The hydrophilicity, water flux and mechanical strength of the hybrid membranes were significantly enhanced after adding the immobilized lysozyme. In the antibacterial experiment, the hybrid membranes exhibited an effective antibacterial performance against Escherichia coli (E. coli).

  10. Antibacterial activity of nitric oxide releasing silver nanoparticles

    Science.gov (United States)

    Seabra, Amedea B.; Manosalva, Nixson; de Araujo Lima, Bruna; Pelegrino, Milena T.; Brocchi, Marcelo; Rubilar, Olga; Duran, Nelson

    2017-06-01

    Silver nanoparticles (AgNPs) are well known potent antimicrobial agents. Similarly, the free radical nitric oxide (NO) has important antibacterial activity, and due to its instability, the combination of NO and nanomaterials has been applied in several biomedical applications. The aim of this work was to synthesize, characterize and evaluate the antibacterial activity of a new NO-releasing AgNPs. Herein, AgNPs were synthesized by the reduction of silver ions (Ag+) by catechin, a natural polyphenol and potent antioxidant agent, derived from green tea extract. Catechin acts as a reducing agent and as a capping molecule on the surface of AgNPs, minimizing particle agglomeration. The as-synthesized nanoparticles were characterized by different techniques. The results showed the formation of AgNPs with average hydrodynamic size of 44 nm, polydispersity index of 0.21, and zeta potential of -35.9 mV. X-ray diffraction and Fourier transform infrared spectroscopy revealed the presence of the AgNP core and cathecin as capping agent. The low molecular weight mercaptosuccinic acid (MSA), which contain free thiol group, was added on the surface of catechin-AgNPs, leading to the formation of MSA-catechin-AgNPs (the NO precursor nanoparticle). Free thiol groups of MSA-catechin-AgNPs were nitrosated leading to the formation of S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), the NO donor. The amount of 342 ± 16 µmol of NO was released per gram of S-nitroso-MSA-catechin-AgNPs. The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs, and S-nitroso-MSA-catechin-AgNPs were evaluated towards different resistant bacterial strains. The results demonstrated an enhanced antibacterial activity of the NO-releasing AgNP. For instance, the minimal inhibitory concentration values for Pseudomonas aeruginosa (ATCC 27853) incubated with AgNPs-catechin, AgNPs-catechin-MSA, and AgNPs-catechin-S-nitroso-MSA were found to be 62, 125 and 3 µg/mL, respectively. While in the case of

  11. Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity

    Science.gov (United States)

    Bharathi, Devaraj; Vasantharaj, Seerangaraj; Bhuvaneshwari, V.

    2018-05-01

    The present study describes the antibacterial, anti-biofilm and photo catalytic activity of silver nanoparticles synthesized using Cordia dichotoma fruits (Cd-AgNPs) for the first time. The phyto-synthesized Cd-AgNPs were characterized by UV-Visible spectroscopy, Field emission-scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Energy dispersive x-ray spectrometer (EDX), Fourier transform infrared spectroscopy (FT-IR), and x-ray diffraction (XRD). FE-SEM and TEM observation showed that the average size of 2–60 nm with spherical shape of Cd-AgNPs and the presence of phyto-compounds which are responsible for capping and reduction were studied by FT-IR. XRD studies revealed the face-centered cubic structure of Cd-AgNPs. The synthesized Cd-AgNPs showed significant antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, assayed using agar well diffusion method. Phyto-synthesized Cd-AgNPs exhibited more than 90% inhibition of biofilm activity formed by S. aureus and E. coli. Furthermore, photocatalytic degradation of crystal violet (CV) under UV light irradiation using Cd-AgNPs was performed. Synthesized Cd-AgNPs exhibited ∼85% degradation activity for CV. Collectively, our findings suggest that C.dichotoma is a green source for the eco-friendly synthesis of Cd-AgNPs, which further can be used as a novel biocidal agent against bacterial pathogens and a potent photo catalytic agent.

  12. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity Ira

    International Nuclear Information System (INIS)

    Farber, Y.; Domb, A.G.; Golenser, J.; Beyth, N.; Weiss, E.I.

    2010-01-01

    Quaternary ammonium polyethyleneimine- (QA-PEI-) based nanoparticles were synthesized using two synthetic methods, reductive amination and N-alkylation. According to the first method, QA-PEI nanoparticles were synthesized by cross-linking with glutaraldehyde followed by reductive amination with octanal and further N-methylation with methyl iodide. The second method is based on crosslinking with dialkyl halide followed by N-alkylation with octyl halide and further N-methylation with methyl iodide. QA-PEI nanoparticles completely inhibited bacterial growth (>106 bacteria), including both Gram-positive, that is, Staphylococcus aureus at 80 μ/mL, and Gram-negative, that is, Escherichia coli at 320 μ/mL. Activity analysis revealed that the degree of alkylation and N-methylation of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl alkylated QA-PEI alkylated at 1 : 1 mole ratio (primary amine of PEI monomer units/alkylating agent). Also, cytotoxicity studies on MAT-LyLu and MBT cell lines were performed with QA-PEI nanoparticles. These findings confirm previous reports that poly cations bearing quaternary ammonium moieties inhibit bacterial growth in vitro and have a potential use as additives in medical devices which need antibacterial properties.

  13. The phytochemical, antibacterial and antioxidant activity of five ...

    African Journals Online (AJOL)

    The phytochemical, antibacterial and antioxidant activity of five medicinal plants against the wound infecting bacteria. ... Phytochemical analyses of the extracts were performed using thin layer chromatography (TLC). ... Antibacterial activity of the plants was evaluated using micro-dilution and bioautography methods.

  14. Antibacterial activity of the crude extract of Chinese green tea ...

    African Journals Online (AJOL)

    Antibacterial activity of the crude extract of Chinese green tea (Camellia sinensis) on Listeria monocytogenes. TI Mbata, LU Debiao, A Saikia. Abstract. The antibacterial activity of the methanol and aqueous extract of Camellia sinensis on Listeria monocytogenes were investigated using agar-gel diffusion, paper disk ...

  15. Antibacterial activity of Mangifera indica L. seeds against some ...

    African Journals Online (AJOL)

    Antibacterial activity of methanol extract of Mangifera indica L. seeds was done against 41 clinically isolated and 20 standard bacterial strains. Clinical bacterial strains were isolated from different specimens like blood, urine, catheter, stool and pus. Antibacterial activity was done by agar disc diffusion method at two different ...

  16. Antibacterial activity and probiotic properties of some lactic acid ...

    African Journals Online (AJOL)

    Several lactic acid bacteria strains were screened for the production of antibacterial substances active against some pathogenic bacteria. The inhibitory mechanism was investigated and was shown to be dependant of bacteriocin production. The objective was to isolate LAB with antibacterial activity from raib and to select ...

  17. Trace elements and antibacterial activity in amniotic fluid.

    Science.gov (United States)

    Honkonen, E; Näntö, V; Hyörä, H; Vuorinen, K; Erkkola, R

    1986-01-01

    Antibacterial activity and trace element concentrations in amniotic fluid (AF) were determined in a population of 39 pregnant women in the second half of gestation. Antibacterial activity in each AF was measured by a spectrophotometric micromethod after 18 h incubation at 37 degrees C using Escherichia coli K 12 as a reference bacterium. Concentrations of zinc, iron, copper, calcium, potassium and bromine were measured by particle-induced X-ray emission method and the zinc concentration was also measured by atomic absorption spectrophotometry. Phosphate concentration was determined by direct albumin adding method. In AFs with good antibacterial activity significantly lower concentrations of potassium and bromine were found when compared to AFs with lower antibacterial activity. Concentrations of zinc, iron, copper, calcium or phosphate did not correlate with antibacterial activity in AF.

  18. In Vitro Antibacterial Activity of Essential Oils against Streptococcus pyogenes

    Directory of Open Access Journals (Sweden)

    Julien Sfeir

    2013-01-01

    Full Text Available Streptococcus pyogenes plays an important role in the pathogenesis of tonsillitis. The present study was conducted to evaluate the in vitro antibacterial activities of 18 essential oils chemotypes from aromatic medicinal plants against S. pyogenes. Antibacterial activity of essential oils was investigated using disc diffusion method. Minimum Inhibitory Concentration of essential oils showing an important antibacterial activity was measured using broth dilution method. Out of 18 essential oils tested, 14 showed antibacterial activity against S. pyogenes. Among them Cinnamomum verum, Cymbopogon citratus, Thymus vulgaris CT thymol, Origanum compactum, and Satureja montana essential oils exhibited significant antibacterial activity. The in vitro results reported here suggest that, for patients suffering from bacterial throat infections, if aromatherapy is used, these essential oils, considered as potential antimicrobial agents, should be preferred.

  19. Research Note: Comparative antibacterial activities of oil-palm ...

    African Journals Online (AJOL)

    Research Note: Comparative antibacterial activities of oil-palm Elaeis ... The antimicrobial activities liquid pyrolysates (obtained by destructive distillation), their ... respective chloroform fractions which showed higher activities than the crude ...

  20. Anti-bacterial activities and phytochemical screening of extracts of ...

    African Journals Online (AJOL)

    Anti-bacterial activity tests were carried out using disc diffusion assay and tube dilution technique, and phytochemical screening was carried out through Thin Layer Chromatography. The crude extracts showed antibacterial effects on M. vaccae, P. aeruginosa and B. subtilis. M. vaccae was most sensitive, particularly to the ...

  1. Antibacterial Activity and Mode of Action of Mentha arvensis Ethanol ...

    African Journals Online (AJOL)

    Antibacterial Activity and Mode of Action of Mentha arvensis Ethanol Extract against ... the antibacterial effect of ethanol extract of Mentha arvensis against multi-drug ... Reactive oxygen species (ROS) generation and protein leakage from the ... A. baumannii and acts by inducing lethal cellular damage to the bacterium.

  2. Evaluation of Antibacterial Activity of Prosopis Juliflora (Sw.) Dc ...

    African Journals Online (AJOL)

    Background: The ethnobotanical importance of Prosopis juliflora is well-known in the folkloric system of medicine for the treatment of various ailments. Although, the study related to the antibacterial potential of this plant, from Central India is scanty. Material and methods: The in vitro antibacterial activity of Prosopis juliflora ...

  3. Antifungal and antibacterial activities of the ethanolic and aqueous ...

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... psoriasis and eczema, through to the more serious disease like leprosy, syphilis and skin cancer (Burkill,. 1985). Previous studies of the fruits of K. africana showed some antibacterial activity (Grace et al., 2002). However there is no report on the antibacterial and antifungal properties of the stem bark of this ...

  4. Antibacterial activity of some selected plants traditionally used as ...

    African Journals Online (AJOL)

    Antibacterial activity of some selected plants traditionally used as medicine in Manipur. ... Hence these plants can be used to discover bioactive natural products that may serve as leads in the development of the new pharmaceuticals. Keywords: Antibacterial, human pathogens, methanolic extract, traditional medicine

  5. Antibacterial Activity of Garlic Extract Against some Pathogenic Animal Bacteria

    Directory of Open Access Journals (Sweden)

    M. Safithri

    2011-12-01

    Full Text Available The antimicrobial activity of garlic extract against Gram-positive and Gram-negative bacterial isolates was well studied. However, reports on antibacterial activity of garlic extract against some pathogenic bacteria in animals in Indonesia, are still limited. Therefore, the aim of this study was to evaluate the antibacterial activity of water and ethanol extracts of garlic against Salmonella typhimurium in chickens, and Streptococcus agalactie, Escherichia coli, and Staphylococcus aureus causing mastitis in dairy cows in Indonesia. A filtrate of fresh garlic was used to determine the antibacterial activity against S. typhimurium at concentrations of 5%, 10%, 20%, 30%, and 40% w/v, whereas, the antibacterial activity of water and ethanol extracts was determined against S. agalactie, E. coli, and S. aureus at concentrations of 5%, 10%, 15%, 20%, and 25% w/v. Results showed that antibacterial activity of 30% garlic filtrate was equivalent to 10% tetracycline. Meanwhile, antibacterial activity of garlic aqueous extract on mastitis bacteria was better than that of the garlic ethanol extract. Aqueous extract of garlic at 20% had the same antibacterial activity as 0.01% ampicillin on mastitis bacteria. Filtrates of fresh garlic can be used to inhibit growth of S. typhimurium and mastitis bacteria.

  6. Antibacterial activity and medicinal properties of ginger ( Zingiber ...

    African Journals Online (AJOL)

    . Ginger extracts were obtained using solvents, n-hexane, ethyl acetate, ethanolic soxhlet and water. The extracts were assayed for antibacterial activity and bacterial growth inhibition activity. The results showed that all the extracts except the ...

  7. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    Directory of Open Access Journals (Sweden)

    Faiza H. Waghu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide.

  8. Antiseptic mouthwashes: in vitro antibacterial activity.

    Science.gov (United States)

    Watanabe, Evandro; Nascimento, Andresa P; Guerreiro-Tanomaru, Juliane M; Razaboni, Ana M; de Andrade, Denise; Tanomaru-Filho, Mário

    2015-01-01

    Mouthwashes are used as an adjunct to tooth brushing for improving breath and preventing oral diseases. The aim of this study was to compare the in vitro Maximum Inhibitory Dilution (MID) of 3 mouthwashes with different active ingredients against mutans streptococci (MS). The products analyzed were Periogard®, Cepacol® and Plax® Fresh Mint. Their antibacterial activity was assessed in duplicate in 96-well microtiter plates against 36 clinical isolates of MS. Each mouthwash was submitted to a serial two-fold dilution (1/2.5 to 1/5120) using double concentration of Tryptose Soy Broth with 1.0% yeast extract. The final volume in each well was 100 mL plus 5 mL of a bacterial suspension, equivalent to 107 CFU/mL. They were incubated microaerobically at 37 °C for 48 hours and the MIDs determined. MID was 1/320 for Periogard® and Cepacol®, and 1/20 for PlaxR® Statistical analysis revealed that the MID of Periogard® MID did not differ from that of Cepacol® (p>0.05), and was higher than that of Plax® (pantiseptic mouthwashes containing chlorhexidine (Periogard®) and cetylpyridinium chloride (Cepacol®) had higher in vitroantibacterial activity (MID) against MS than the antiseptic mouthwash containing triclosan (Plax®), according to microbiological method employed.

  9. Enhanced antibacterial effects of clove essential oil by nanoemulsion.

    Science.gov (United States)

    Anwer, Md Khalid; Jamil, Shahid; Ibnouf, Elmutasim Osman; Shakeel, Faiyaz

    2014-01-01

    The aim of present study was to develop and evaluate nanoemulsion formulations of clove essential oil (CEO) for its antibacterial effects in comparison with pure CEO and standard amikacin antibiotic (positive control). Different nanoemulsions of CEO were developed by aqueous phase titration method via construction of pseudo-ternary phase diagrams and investigated for thermodynamic stability and self-nanoemulsification tests. Selected formulations (F1-F5) were characterized for droplet size distribution, viscosity, zeta potential, transmittance and surface morphology. Based on lowest droplet size (29.1 nm), lowest PI (0.026), lowest viscosity (34.6 cp), optimal zeta potential (-31.4 mV), highest transmittance (99.4 %) and lowest concentration of Triacetin (8 % w/w), CEO nanoemulsion F1 (containing 1 % w/w of CEO, 8 % w/w of Triacetin, 15 % w/w of Tween-80, 15 % w/w of Labrasol and 61 % w/w of water) was subjected to antibacterial studies in comparison with pure oil and standard amikacin. The antibacterial effects of F1 were found to be superior over pure oil against all bacterial strains investigated. However, the antibacterial effects of F1 were highly comparable with standard amikacin against all bacterial strains. The minimum inhibitory concentrations (MICs) of F1 were observed in the range of 0.075-0.300 % w/w as compared to pure oil (MICs 0.130-0.500 % w/w) and standard amikacin (MICs 2-16 μg/ml). These results indicated the potential of nanoemulsions for enhancing the therapeutic efficacy of natural bioactive ingredients such as CEO.

  10. Antibacterial activity of Mangifera indica L

    African Journals Online (AJOL)

    Dr Steve Ogbonnia

    2011-11-09

    Nov 9, 2011 ... specimens like blood, urine, catheter, stool and pus. Antibacterial ... In addition to this problem, antibiotics ... number of multi-drug resistant microbial strains and the appearance of ... to fine powder and stored in airtight bottles.

  11. Antibacterial and haematological activity of Moringa oleifera ...

    African Journals Online (AJOL)

    ADEYEYE

    6Department of Human Anatomy, College of Medical Sciences, University of Maiduguri, Borno ... Keywords: Antibacterial effect, Haematology, Moringa olifera, Phytochemical analysis, Wistar albino rats. ..... Moringa oleifera: A food plant with.

  12. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    International Nuclear Information System (INIS)

    Beyth, N.; Weiss, E.I.; Pilo, R.

    2012-01-01

    Glass ionomer cements (GICs) are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial micro leakage may occur, resulting in secondary caries. As micro leakage cannot be completely prevented, GCS possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (Qp) nanoparticles incorporated at 1% w/w in two clinically available GCS were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (Dct) and the agar diffusion test (Ad). Using the direct contact test, antibacterial activity (P<0.05) was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  13. Antibacterial Activity of Dental Cements Containing Quaternary Ammonium Polyethylenimine Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2012-01-01

    Full Text Available Glass ionomer cements (GICs are commonly used for cementing full cast crown restorations. Regrettably, although the dental cements fill the gap between the tooth and the crown, bacterial microleakage may occur, resulting in secondary caries. As microleakage cannot be completely prevented, GICs possessing antibacterial properties are in demand. In the present study the antibacterial activity of insoluble, cross-linked quaternary ammonium polyethylenimine (QPEI nanoparticles incorporated at 1% w/w in two clinically available GICs were studied. The antibacterial activity was tested against Streptococcus mutans and Lactobacillus casei using the direct contact test (DCT and the agar diffusion test (ADT. Using the direct contact test, antibacterial activity (<0.05 was found in both tested GICs with incorporated QPEI nanoparticles, the effect lasting for at least one month. However, the ADT showed no inhibition halo in the test bacteria, indicating that the antimicrobial nanoparticles do not diffuse into the agar. The results show that the incorporation of QPEI nanoparticles in glass ionomer cements has a long-lasting antibacterial effect against Streptococcus mutans and Lactobacillus casei. Changing the antibacterial properties of glass ionomer cements by incorporating QPEI antibacterial nanoparticles may prolong the clinical performance of dental crowns.

  14. Green synthesis, characterization and antibacterial activity of copper ...

    African Journals Online (AJOL)

    Green synthesis, characterization and antibacterial activity of copper nanoparticles using L -ascorbic ... Journal Home > Vol 10, No 3 (2017) > ... In this study, simple, economical, convenient and environmentally-friendly chemical reduction ...

  15. Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives

    Czech Academy of Sciences Publication Activity Database

    Přichystalová, H.; Almonasy, N.; Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M. G.; Vojtova, L.; Kobera, Libor; Spotz, Z.; Burgert, L.; Jancar, J.

    2014-01-01

    Roč. 65, April (2014), s. 234-240 ISSN 0141-8130 Institutional support: RVO:61389013 Keywords : chitosan derivatives * fluorescence * antibacterial activity Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.858, year: 2014

  16. Antibacterial activity and phytochemical analysis of leaf extracts of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-05

    Jan 5, 2009 ... medicinal plant Lasienthera africanum (“Editan”) and their antibacterial activities against clinical isolates ... parts of Nigeria and many of the herbal remedies have ... drugs abound in various markets today, there is need for.

  17. Antibacterial activity of eight medicinal plants against Diarrhoea ...

    African Journals Online (AJOL)

    The studies involve the phytochemical screening and antibacterial activity of leaf extracts eight medicinal plants. The selected plants were Timarindus indica, Guiera senegalensis, Prosopis africana, Deterium microcarpum, Citrus aurantifolia, Psidium guajava, Acacia nilotica and Momordica charantia. Methanolics and ...

  18. Antibacterial activity of some selected plants traditionally used as ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... The antibacterial activity was determined using agar well diffusion ... antimicrobial chemotherapeutic agents, but the cost of production of .... Hamilton ex D Don. in the traditional system of medicine ... Based on this, further.

  19. Synthesis, characterization and in vitro antibacterial activity of novel ...

    Indian Academy of Sciences (India)

    MARZIEH ABBASI

    The prepared compounds were screened for antibacterial activity against. Escherichia coli (E. ..... HCl in the presence of phenol phthalein as an indicator. The number of H. + ... correspond to the symmetric and asymmetric SO2 and also C-S ...

  20. Design, Synthesis, and Antibacterial Activities of Novel Heterocyclic Arylsulphonamide Derivatives.

    Science.gov (United States)

    Singh, Anuradha; Srivastava, Ritika; Singh, Ramendra K

    2017-02-13

    Design, synthesis, and antibacterial activities of a series of arylsulphonamide derivatives as probable peptide deformylase (PDF) inhibitors have been discussed. Compounds have been designed following Lipinski's rule and after docking into the active site of PDF protein (PDB code: 1G2A) synthesized later on. Furthermore, to assess their antibacterial activity, screening of the compound was done in vitro conditions against Gram-positive and Gram-negative bacterial strains. In silico, studies revealed these compounds as potential antibacterial agents and this fact was also supported by their prominent scoring functions. Antibacterial results indicated that these molecules possessed a significant activity against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli with MIC values ranging from 0.06 to 0.29 μM. TOPKAT results showed that high LD 50 values and the compounds were assumed non-carcinogenic when various animal models were studied computationally.

  1. Antibacterial activity of watermelon (Citrullus lanatus) seed against ...

    African Journals Online (AJOL)

    Engr Akande

    2015-04-08

    Apr 8, 2015 ... Also, saponins which have been implicated in antimicrobial activity were found to be ... Key words: Watermelon seed, antibacterial, Soxhlet extraction, cold ..... International Centre for Science and High Technology, Trieste, pp.

  2. Antibacterial activities of the crude ethanol extracts of medicinal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-05

    Jul 5, 2010 ... extract. On the other hand, the antimicrobial activity was mainly a function of their chemical ... determine antibacterial properties of these plants extracts .... vancomycin (30 µg); PEN= penicillin G (10 unit); AMP = ampicillin (5.

  3. Antibacterial activity of seed extracts of Argemone mexicana L. on ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... Chloroform extract of seeds exhibited varying level of antibacterial activity, with minimum ... et al., 1999; Scheck et al.,. 2006). The glycoside and saponins from Quillaja saponaria and Acacia auriculoformis were found to be.

  4. Antioxidant and antibacterial activities of ethanolic extracts of ...

    African Journals Online (AJOL)

    Antioxidant and antibacterial activities of ethanolic extracts of Asparagus officinalis cv. Mary Washington: Comparison of in vivo and in vitro grown plant bioactivities. Arash Khorasani, Wirakarnain Sani, Koshy Philip, Rosna Mat Taha, Arash Rafat ...

  5. Antibacterial activity of six indigenous Indian plants: Acacia nilotica ...

    African Journals Online (AJOL)

    sunny t

    2016-04-20

    Apr 20, 2016 ... The antibacterial activity of extracts (water, acetone and methanol) from six indigenous Indian plants: Acacia ... attention to traditional methods, looking for novel ... Five grams powder of each plant was equally divided into.

  6. Comparison of antibacterial activity of parent plant of Tylophora ...

    African Journals Online (AJOL)

    Valued Acer Customer

    2013-07-31

    Jul 31, 2013 ... raised plant and its callus. Key words: Tylophora indica, in vitro raised plant and callus, antibacterial activity. .... Callusing was initiated from the cut ends of the explants after 25 days of ..... Glossary of Indian Medicinal. Plants,.

  7. Phytochemical screening and antibacterial activity of Garcinia kola ...

    African Journals Online (AJOL)

    , Tannin, Saponin, and Cardiac glycoside, Flavonoid, Terpenoid, Phenols, Anthraquinone and Steroid. However, reducing sugar is absent. The antibacterial activity of the extracts against the isolates showed that ethanol extract is more ...

  8. An evaluation of antibacterial activities of Seidenfia rheedii (Sw ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... Key words: Seidenfia rheedii, drug resistance, antibacterial activity. INTRODUCTION ... The plant materials (leaves) were shade dried at 31°C for 10 days. ... purchased from Microbial Type Culture Collection (MTCC), Institute.

  9. The significant adhesion enhancement of Ag–polytetrafluoroethylene antibacterial coatings by using of molecular bridge

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ruijie, E-mail: guoruijie@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024 (China); Yin, Guangda; Sha, Xiaojuan [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024 (China); Zhao, Qi [Division of Mechanical Engineering and Mechatronics, University of Dundee, Dundee, DD1 4HN (United Kingdom); Wei, Liqiao; Wang, Huifang [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, 030024 (China)

    2015-06-30

    Highlights: • The more effective coupling agent is employed to modify surface. • S–Ag displays more intensive bond strength than that of N–Ag. • The coatings possess the highest level of adhesion. - Abstract: Weak adhesion between the metal-based antibacterial coatings and polymer substrates limits their clinical applications; surface modification is an effective way to solve this intrinsic problem. In this study, UV irradiation was employed to activate the inert silicon rubber substrates, and the grafting of coupling agent (3-mercaptopropyl) trimethoxy silane into the UV-irradiated substrates generated reactive surface containing −SH groups. During electroless plating S which has lone pair electrons anchored Ag{sup +} and produced antibacterial coatings with improved adhesion. The grafting of (3-mercaptopropyl) trimethoxy silane into silicon rubber was verified by X-ray photoelectron spectroscopy (XPS). The adhesion was tested by American Society of Testing Materials (ASTM D 3359-02). Surface elements content and distribution were observed and analyzed by X-ray energy disperse spectroscopy (EDS). The antibacterial performance was characterized by inhibition halo test and shake flash method. The results showed that the as-prepared composite Ag–polytetrafluoroethylene coatings possessed remarkably enhanced adhesion and superior antibacterial activity.

  10. Comparison of the antibacterial activity and synergistic activity towards antibiotics of different mammalian sera.

    Science.gov (United States)

    Miglioli, P A; Pea, F; Mazzo, M; Berti, T

    1993-02-01

    The antibacterial activity against Escherichia coli ATCC 10798 and Staphylococcus aureus Mag 90 of normal sera from nine species of mammals was investigated by Avantage (Abbott). Human and rat sera showed the highest antibacterial activity against E. coli ATCC 10798, while all investigated sera did not exhibit, till the maximum concentration tested (20%), spontaneous antibacterial activity against S. aureus Mag 90. Heat inactivated sera (56 degrees C for 30 min) of all investigated species lost their antibacterial activity, but maintained their synergistic effect with sub-MICs of some antibacterial drugs, principally against E. coli ATCC 10798.

  11. Antibacterial activity of propolins from Taiwanese green propolis

    Directory of Open Access Journals (Sweden)

    Yue-Wen Chen

    2018-04-01

    Full Text Available Taiwanese green propolis is a prenylated flavonoid rich honeybee product and propolins isolated from Taiwanese green propolis exert a broad spectrum of biological activities, such as anti-cancer and anti-oxidant. However, the anti-bacterial effects of Taiwanese green propolis or propolins are still poorly understood. In the current study, the antibacterial effects of Taiwanese green propolis and propolins were evaluated. Results show that the maximum dry matter yields of Taiwanese green propolis were observed in the 95% and 99.5% ethanol extracts compared to other extraction methods. Consistently, the highest concentration of propolins C, D, F and G from Taiwanese green propolis was obtained in 95% and 99.5% ethanol extracts. Propolins inhibited the growth of gram-positive bacterial strains (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Paenibacillus larvae. The average minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC of propolins from ethanol extracts were 20 μg/ml. Among the propolins, propolin C had the highest antibacterial activity. Furthermore, Taiwanese green propolis also showed antibacterial activity against methicillin-resistant S. aureus (MRSA. In conclusion, these results demonstrate that Taiwanese green propolis and propolins have significant antibacterial activity, particularly against gram-positive bacterial strains. Keywords: Antibacterial activity, Propolins, Taiwan, Green propolis

  12. Evaluation of antibacterial activity of Prosopis juliflora (SW.) DC. leaves.

    Science.gov (United States)

    Thakur, Rupesh; Singh, Rupal; Saxena, Pooja; Mani, Abin

    2014-01-01

    The ethnobotanical importance of Prosopis juliflora is well-known in the folkloric system of medicine for the treatment of various ailments. Although, the study related to the antibacterial potential of this plant, from Central India is scanty. The in vitro antibacterial activity of Prosopis juliflora leaves collected from the local area was evaluated against ten bacterial type cultures by agar well diffusion assay. The crude extracts prepared by two methods separately with three different solvents were examined for the preliminary antibacterial activity and phytochemical screening, the results of which were used for the choice of solvent and mass extraction of crude extract. Solvent fractionation of crude extract was done employing two sets of solvents namely Set-PCE and Set-HDB which resulted in total, six organic and two aqueous fractions, which were finally subjected to antibacterial activities. Varying degrees of growth inhibition was shown by all the fractions against tested microorganisms. The highest antibacterial activity was observed in aqueous fractions as compared to solvent fractions. Isolation and characterization of the bioactive components can be further done by systematic screening of the most active solvent fraction which could lead to the possible source of new antibacterial agents.

  13. Effect of ionizing radiation on antioxidants and antibacterial activities of Inula Viscasa

    International Nuclear Information System (INIS)

    Rhimi, W.; Issam, B; Saidi, M; Abdennacer, B; Maroua, J

    2015-01-01

    In the present study, the irradiation processing of Tunisian Inula Viscosa samples was carried out at dose of 5 kGy. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity, the azinobis ethylbenzothiazoline 6-sulphonic acid (ABTS) Ferric reducing antioxidant power (FRAP) assay and the antibacterial activities of both control and irradiated samples extracted in methanol and ethanol were evaluated. The results showed that the irr Tunisian Inula Viscosa extracts had strong antioxidant ability. The scavenger DPPH, ABTS and FRAP values of all extracts decreased significantly after irradiation. In addition, all extracts were effective against all the gram positive and gram negative pathogens. Gamma irradiation preserved the antibacterial activities of extracts and enhanced significantly (p≺0.05) the activity of extracts against E.coli. These data indicated the potential use of gamma-irradiation as a safe technique for preservation of Inula Viscosa as a medicinal plant with effective antioxidant and antibacterial activities

  14. Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants.

    Science.gov (United States)

    Sehmi, Sandeep K; Noimark, Sacha; Pike, Sebastian D; Bear, Joseph C; Peveler, William J; Williams, Charlotte K; Shaffer, Milo S P; Allan, Elaine; Parkin, Ivan P; MacRobert, Alexander J

    2016-09-30

    Healthcare-associated infections pose a serious risk for patients, staff, and visitors and are a severe burden on the National Health Service, costing at least £1 billion annually. Antimicrobial surfaces significantly contribute toward reducing the incidence of infections as they prevent bacterial adhesion and cause bacterial cell death. Using a simple, easily upscalable swell-encapsulation-shrink method, novel antimicrobial surfaces have been developed by incorporating metal oxide nanoparticles (NPs) and crystal violet (CV) dye into medical-grade polyurethane sheets. This study compares the bactericidal effects of polyurethane incorporating ZnO, Mg-doped ZnO, and MgO. All metal oxide NPs are well defined, with average diameters ranging from 2 to 18 nm. These materials demonstrate potent bactericidal activity when tested against clinically relevant bacteria such as Escherichia coli and Staphylococcus aureus . Additionally, these composites are tested against an epidemic strain of methicillin-resistant Staphylococcus aureus (MRSA) that is rife in hospitals throughout the UK. Furthermore, we have tested these materials using a low light intensity (∼500 lx), similar to that present in many clinical environments. The highest activity is achieved from polymer composites incorporating CV and ∼3 nm ZnO NPs, and the different performances of the metal oxides have been discussed.

  15. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control

    Directory of Open Access Journals (Sweden)

    Lambadi PR

    2015-03-01

    Full Text Available Paramesh Ramulu Lambadi,1,* Tarun Kumar Sharma,1,* Piyush Kumar,1 Priyanka Vasnani,2 Sitaramanjaneya Mouli Thalluri,2 Neha Bisht,1 Ranjana Pathania,1,2 Naveen Kumar Navani1,21Department of Biotechnology, 2Centre of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India*These authors contributed equally to this workAbstract: Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host’s immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs. Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial

  16. Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction.

    Science.gov (United States)

    Echeverría, Javier; Urzúa, Alejandro; Sanhueza, Loreto; Wilkens, Marcela

    2017-06-23

    In the present study, the antibacterial activity of several ent -labdane derivatives of salvic acid (7α-hydroxy-8(17)- ent -labden-15-oic acid) was evaluated in vitro against the Gram-negative bacterium Escherichia coli and the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus . For all of the compounds, the antibacterial activity was expressed as the minimum inhibitory concentration (MIC) in liquid media and minimum inhibitory amount (MIA) in solid media. Structure activity relationships (SAR) were employed to correlate the effect of the calculated lipophilicity parameters (logP ow ) on the inhibitory activity. Employing a phospholipidic bilayer (POPG) as a bacterial membrane model, ent -labdane-membrane interactions were simulated utilizing docking studies. The results indicate that (i) the presence of a carboxylic acid in the C-15 position, which acted as a hydrogen-bond donor (HBD), was essential for the antibacterial activity of the ent -labdanes; (ii) an increase in the length of the acylated chain at the C-7 position improved the antibacterial activity until an optimum length of five carbon atoms was reached; (iii) an increase in the length of the acylated chain by more than five carbon atoms resulted in a dramatic decrease in activity, which completely disappeared in acyl chains of more than nine carbon atoms; and (iv) the structural factors described above, including one HBD at C-15 and a hexanoyloxi moiety at C-7, had a good fit to a specific lipophilic range and antibacterial activity. The lipophilicity parameter has a predictive characteristic feature on the antibacterial activity of this class of compounds, to be considered in the design of new biologically active molecules.

  17. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  18. Studies on the antibacterial activity of dodecylglycerol

    International Nuclear Information System (INIS)

    Brissette, J.L.

    1985-01-01

    The antimicrobial activity of lipids has been known for many years, with dodecanoylglycerol (dodecanoic acid esterified to glycerol) being one of the most potential. However, the antibacterial potency of dodecylglycerol (DDG), the corresponding 1-O-alkyl glycerol ether, is considerably greater. The superior efficacy of DDG can be attributed, at least in part, to the greater chemical and metabolic stability of the ether bond as compared to esters. In an attempt towards elucidating the mode of action of DDG, the effect of DDG on bacterial lipid metabolism was examined using Streptococcus mutans BHT, a tolerant bacterium. The metabolic fate of the ether was also determined with the use of three radioactive tracers, 14 C-glycerol, 32 Pi, and 14 C-DDG. Treatment of exponentially growing cultures of S. mutans BHI with growth inhibitory concentrations of DDG (10 and 20 μg/ml) inhibited the incorporation of 14 C-glycerol into lipid. In vivo studies using 14 C-DDG showed that the 14 C-ether was readily incorporated almost exclusively into phosphatidic (PA) and lysophosphatidic (LPA) acids. When cells prelabelled with either 14 C-glycerol or 32 Pi were exposed to 10 and 20 + g/ml DDG for 2 h, the accumulation of PA and diphosphatidylglycerol (diPG) was greatly stimulated. However, diPG accumulated at the expense of its precursor, glycerol, which greatly decreased. These data suggest that the ether-containing PA inhibits the synthesis of CDP-diglyceride. Moreover, these results clearly demonstrate that DDG functions as a metabolic rather than physical effector, disputing the conventional notion that bactericidal lipids act as detergents, physically dissolving the cellular envelope

  19. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan.

    Science.gov (United States)

    Xu, Tao; Xin, Meihua; Li, Mingchun; Huang, Huili; Zhou, Shengquan; Liu, Juezhao

    2011-11-08

    N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by (1)H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba(2+) and Ca(2+)) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na(+) slightly reduced the antibacterial activity of both chitosan and its derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. ANTIBACTERIAL ACTIVITY OF GINGER OIL AGAINST FOOD BORN PATHOGENS

    International Nuclear Information System (INIS)

    TAHA, S.M.A.

    2008-01-01

    This study was carried out to investigate the antibacterial activity of ginger oil against Food Born pathogens and the effect of heating, microwave heating and gamma irradiation on microbiological quality and antibacterial activity of ginger oil. Growth and survival of A. hydrophila and L. monocytogenes in broth media and carrot juice with different concentrations of ginger oil was also studied. Gram-negative bacteria were more resistant than gram-positive bacteria. Heating at 80 0 C for 10 min did not change the antibacterial activity of ginger oil, whereas heating at 100 0 C for 5 min and autoclaving at 121 0 C for 15 min caused slight reduction in antibacterial activity in most microorganisms tested. Heating by microwave of ginger oil destroyed its antibacterial activity against B. cereus although it still works against other microorganisms tested. The dose 6 kGy caused slight reduction in antibacterial activity of ginger oil, whereas the dose 10 kGy caused markedly reduction in antibacterial activity of ginger oil against most microorganisms tested. Ginger oil was more effective on L. monocytogenes as compared with its effect on A. hydrophila in tryptone soya broth at 4 0 C or 25 0 C. Supplementation of ginger oil with carrot juice was more effective on A. hydrophila and L. monocytogenes than in tryptone soya broth and this effect was increased with increasing the time of incubation and the concentration of ginger oil. These results support the notion that plant essential oils may have an important role as pharmaceuticals and food preservatives

  1. Phytochemical Screening and Antibacterial Activities of Hibiscus ...

    African Journals Online (AJOL)

    The phytochemical properties and the antibacterial potency of rosselle (Hibiscus sabdariffa L) leaf extracts were evaluated using the cold maceration method, agar diffusion method and qualitative phytochemical analysis respectively. The methanolic extract was tested against Salmonella typhi, Escherichia coli and ...

  2. Synthesis and antibacterial activity screening of quaternary ...

    Indian Academy of Sciences (India)

    A series of quaternary ammonium derivatives of triazolyl pyranochromen-2-ones have been synthesized and characterized; their antibacterial potential were investigated against two gram negative (Pseudomonas aeruginosa and Escherichia coli) and two gram positive bacterial strains (Bacillus cereus and Staphylococcus ...

  3. Antibacterial activity of ethanolic extracts of some moss species

    Directory of Open Access Journals (Sweden)

    Karpiński Tomasz M.

    2017-09-01

    Full Text Available Introduction: For centuries, mosses have been used in traditional medicine due to their antibacterial, antifungal, and antiviral activities. Objective: The present study was designed to evaluate the antibacterial activity of ethanolic extracts obtained from 12 moss species: Brachythecium albicans, Bryum argenteum, Ceratodon purpureus, Dicranum scoparium, Dryptodon pulvinatus, Orthotrichum anomalum, Oxyrrhynchium hians, Plagiomnium undulatum, Polytrichum juniperinum, P. piliferum, Schistidium crassipilum, and Syntrichia ruralis. Methods: The antimicrobial activity of extracts was investigated against three Gram(+ bacteria (Enterococcus faecalis, Staphylococcus aureus, and Streptococcus pyogenes and two Gram(- bacteria (Escherichia coli and Klebsiella pneumoniae, using the agar disc-diffusion method. Results: The high activity against all investigated bacteria was determined for extracts of D. pulvinatus, P. undulatum, B. argenteum, S. crassipilum, O. anomalum (mean inhibition zone: 11.3-13.1 mm and to a lesser extent in the case of D. scoparium (8.3 mm. Extracts from P. juniperinum and P. piliferum showed activity only against Gram-positive bacteria, with an inhibition zone from 7.3 to 9.7 mm. Four species: B. albicans, C. purpureus, O. hians, and S. ruralis had not antibacterial properties. Conclusions: The obtained results indicate that mosses could be a significant source of antibacterial agents. For the first time, we presented antibacterial activity of ethanolic extracts from S. crassipilum and O. anomalum.

  4. Five Ochna species have high antibacterial activity and more than ten antibacterial compounds

    Directory of Open Access Journals (Sweden)

    Jacobus N. Eloff

    2012-01-01

    Full Text Available New measures to control infections in humans and other animals are continuously being sought because of the increasing resistance of bacteria to antibiotics. In a wide tree screening survey of the antimicrobial activity of extracts of tree leaves (www.up.ac.za/phyto, Ochna pulchra, a small tree found widely in southern Africa, had good antibacterial activity. We therefore investigated the antibacterial activity of acetone leaf extracts of some other available Ochna spp. Antibacterial activity and the number of antibacterial compounds in acetone leaf extracts of Ochna natalitia, Ochna pretoriensis, O. pulchra, Ochna gamostigmata and Ochna serullata were determined with a tetrazolium violet serial microplate dilution assay and bioautography against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa, bacteria commonly associated with nosocomial infections. The percentage yields of the extracts varied from 2.5% to 8%. The minimum inhibitory concentrations of the five species ranged from 40 µg/mL to 1250 µg/mL. E. coli was sensitive to all the extracts. The O. pretoriensis extract was the most active with minimum inhibitory concentrations of 0.065 mg/mL and 0.039 mg/mL against E. coli and E. faecalis, respectively. The O. pretoriensis extract also had the highest total activities of 923 mL/g and 1538 mL/g, indicating that the acetone extract from 1 g of dried plant material could be diluted to 923 mL or 1538 mL and would still kill these bacteria. Based on the bioautography results, the two most active species, O. pretoriensis and O. pulchra, contained at least 10 antibacterial compounds with similar Rf values. Some of these antibacterial compounds were polar and others were non-polar. Variation in the chemical composition of the species

  5. Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization

    International Nuclear Information System (INIS)

    Kara, Filiz; Aksoy, E. Ayse; Yuksekdag, Zehranur; Aksoy, Serpil; Hasirci, Nesrin

    2015-01-01

    Graphical abstract: - Highlights: • Polyurethane elastomer was synthesized in medical purity. • Chitosan (CH) and heparin (Hep) were immobilized on polyurethane films. • Modification with CH and Hep increased hydrophilicity and surface free energy. • Immobilized films had high antibacterial activity against four bacteria. • Bacterial adhesion significantly decreased on the modified surfaces. - Abstract: Being antibacterial is a required property for the materials used in medical devices and instruments. Polyurethanes (PUs) are one class of polymers widely used in the production of devices that especially come in contact with blood (e.g. heart valves, blood vessels, vascular grafts and catheters). In this study, hexamethylene diisocyanate based polyurethanes (PUh) were synthesized and antibacterial and anti-adhesive properties were added by immobilizing chitosan (CH) and heparin (Hep) on the samples of PUh via a stepwise process. Chemistry and topography of the modified film samples (PUh-CH and PUh-CH-Hep) were examined by Fourier Transform Infrared Spectrophotometry-Attenuated Total Reflectance (FTIR-ATR), Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM), and surface free energy (SFE) values after each step were determined by goniometer. PUh-CH and PUh-CH-Hep samples were found to be antibacterial against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) (both Gram positive) and Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) (both Gram negative) bacteria, and bacterial adhesion results showed a significant decrease in the number of viable bacteria on both modified samples where PUh-CH-Hep was the most effective. The findings of this study show that polymeric surfaces can be effectively modified and converted to be antibacterial by chitosan and heparin immobilization, and presence of both chemicals enhance efficacy against bacteria.

  6. Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Filiz [Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara (Turkey); Aksoy, E. Ayse [Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100 Ankara (Turkey); Yuksekdag, Zehranur [Biotechnology Laboratory, Department of Biology, Faculty of Science, Gazi University, 06500 Ankara (Turkey); Aksoy, Serpil [Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara (Turkey); Hasirci, Nesrin, E-mail: nhasirci@metu.edu.tr [BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, 06800 Ankara (Turkey); Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, 06800 Ankara (Turkey)

    2015-12-01

    Graphical abstract: - Highlights: • Polyurethane elastomer was synthesized in medical purity. • Chitosan (CH) and heparin (Hep) were immobilized on polyurethane films. • Modification with CH and Hep increased hydrophilicity and surface free energy. • Immobilized films had high antibacterial activity against four bacteria. • Bacterial adhesion significantly decreased on the modified surfaces. - Abstract: Being antibacterial is a required property for the materials used in medical devices and instruments. Polyurethanes (PUs) are one class of polymers widely used in the production of devices that especially come in contact with blood (e.g. heart valves, blood vessels, vascular grafts and catheters). In this study, hexamethylene diisocyanate based polyurethanes (PUh) were synthesized and antibacterial and anti-adhesive properties were added by immobilizing chitosan (CH) and heparin (Hep) on the samples of PUh via a stepwise process. Chemistry and topography of the modified film samples (PUh-CH and PUh-CH-Hep) were examined by Fourier Transform Infrared Spectrophotometry-Attenuated Total Reflectance (FTIR-ATR), Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM), and surface free energy (SFE) values after each step were determined by goniometer. PUh-CH and PUh-CH-Hep samples were found to be antibacterial against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) (both Gram positive) and Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) (both Gram negative) bacteria, and bacterial adhesion results showed a significant decrease in the number of viable bacteria on both modified samples where PUh-CH-Hep was the most effective. The findings of this study show that polymeric surfaces can be effectively modified and converted to be antibacterial by chitosan and heparin immobilization, and presence of both chemicals enhance efficacy against bacteria.

  7. Antibacterial Activity of Germacrane Type Sesquiterpenes from Curcuma heyneana Rhizomes

    Directory of Open Access Journals (Sweden)

    Hartiwi Diastuti

    2014-03-01

    Full Text Available The isolation of terpenoids from C. heyneana rhizomes and their antibacterial activity have been conducted. The terpenoids were isolated by using vacuum liquid chromatography and radial chromatography. The structures of the compounds were determined based on spectroscopic data (1H-NMR, 13C-NMR (1D and 2D. The antibacterial activity was carried out by using microdilution method and evaluated against eight bacteria. Three germacrane type sesquiterpenes have been isolated from C. heyneana rhizhomes and were identified as germacrone, dehydrocurdione, and 1(10,4(5-diepoxygermacrone. Germacrone showed highest antibacterial activity against P. aeruginosa with MIC values of 15.6 µg/mL and MBC values 31.2 µg/mL. Dehydrocurdione showed highest antibacterial activity against B. subtilis with MIC values of 31.2 µg/mL and MBC values of 31.2 µg/mL. However, 1(10,4(5-diepoxygermacrone showed a weak antibacterial activity.

  8. Antifungal and antibacterial activities of an alcoholic extract of ...

    African Journals Online (AJOL)

    Methanolic, ethanolic and petroleum ether extracts of Senna alata leaves were screened for phytochemicals, antibacterial and antifungal activities. Out of the three crude extracts, the methanolic extract showed the highest activity than the ethanolic and petroleum ether extracts. The unidentified active components purified ...

  9. antibacterial activities of the volatile oil and aqueous extract of ...

    African Journals Online (AJOL)

    The volatile oil of Murraya keonigii was active against Staphylococcus epidemidis, S. aureus, and Streptococcus specie while the aqueous extract was not active. Key Words: Murraya koenigii, Rutaceae, antibacterial activity. Nig. J. Nat. Prod. And Med. Vol.2 1998: 44-45 ...

  10. Antibacterial nanofiber materials activated by light

    Czech Academy of Sciences Publication Activity Database

    Jesenská, S.; Plištil, L.; Kubát, Pavel; Lang, Kamil; Brožová, Libuše; Popelka, Štěpán; Szatmáry, Lórant; Mosinger, Jiří

    99A, č. 4 (2011), s. 676-683 ISSN 1549-3296 R&D Projects: GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : antibacterial nanofiber materials * photoactive * singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.625, year: 2011

  11. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2013-12-01

    Full Text Available Objective: To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum . Methods: Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenolic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx, metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion method against seven strains of bacteria. Results: Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone at 10 mg/ disc. The IC 50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions: These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  12. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    Science.gov (United States)

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum). Methods Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenoic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and the prevention of oxidative DNA damage. Antibacterial activity was determined by using disc diffusion for seven strains of bacteria. Results Results found that V. corymbosum leaf extract had significant antibacterial activity. The tested extract displayed the highest activity (about 23.18 mm inhibition zone) against Salmonella typhymurium and the lowest antibacterial activity was observed against Enterococcus faecalis (about 14.08 mm inhibition zone) at 10 mg/ disc. The IC50 values for DPPH, ABTS and radical scavenging activity were 0.120, 0.049 and 1.160 mg/mL, respectively. V. corymbosum leaf extract also showed dose dependent reduction power, lipid peroxidation, DNA damage prevention and significant antioxidant enzymatic activity. Conclusions These findings demonstrate that leaf extract of V. corymbosum could be used as an alternative therapy for antibiotic-resistant bacteria and help prevent various free radical related diseases.

  13. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7.

    Science.gov (United States)

    Burt, S A; Reinders, R D

    2003-01-01

    To quantify the antibacterial properties of five essential oils (EO) on a non-toxigenic strain of Escherichia coli O157:H7 in the presence and absence of a stabilizer and an emulsifier and at three different temperatures. Five EOs known to exhibit antibacterial properties were screened by disc diffusion assay and the most active were selected for further study in microdilution colorimetric assays. Oregano (Origanum vulgare) and thyme (Thymus vulgaris; light and red varieties) EO had the strongest bacteriostatic and bactericidal properties, followed by bay (Pimenta racemosa) and clove bud (Eugenia caryophyllata synonym: Syzygium aromaticum) EO. Oregano oil was colicidal at 625 microl l(-1) at 10, 20 and 37 degrees C. The addition of 0.05% (w/v) agar as stabilizer reinforced the antibacterial properties, particularly at 10 degrees C, whereas 0.25% (w/v) lecithin reduced antibacterial activity. Scanning electron micrographs showed extensive morphological changes to treated cells. Oregano and thyme EO possess significant in vitro colicidal and colistatic properties, which are exhibited in a broad temperature range and substantially improved by the addition of agar as stabilizer. Bay and clove bud EO are less active. Lecithin diminished antibacterial properties. The bactericidal concentration of oregano EO irreversibly damaged E. coli O157:H7 cells within 1 min. Oregano and light thyme EO, particularly when enhanced by agar stabilizer, may be effective in reducing the number or preventing the growth of E. coli O157:H7 in foods.

  14. Antibacterial and antioxidant activities of Licania tomentosa (Benth. fritsch (crhysobalanaceae

    Directory of Open Access Journals (Sweden)

    Silva J.B.N.F.

    2012-01-01

    Full Text Available This work describes the chemical composition, and evaluates the antimicrobial and antioxidant activities of a hydroalcoholic extract from the leaves of the Licania tomentosa. Gram positive and negative bacterial strains were used in this work. Examination of the phytochemical composition of L. tomentosa revealed the presence of secondary metabolites such as tannins, flavonoids, saponins, alkaloids, steroids and triterpenoids. An antibacterial assay pointed out that the extract had a lower minimal inhibitory concentration (MIC - 32 μg/mL towards Staphylococcus aureus (ATCC12692. The extract also presented antibacterial activity against other assayed bacteria, with the MIC varying between 64 and 512 μg/ mL. Our findings reveal that the extract presented an antioxidative capacity lower than that of BHT at the same concentration, used as positive control. Our results suggest that the levels and combinations between the secondary metabolites of this plant should be investigated to explain the demonstrated antibacterial activity.

  15. A technology for developing synbodies with antibacterial activity.

    Directory of Open Access Journals (Sweden)

    Valeriy Domenyuk

    Full Text Available The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of using the synbody system to discover new antibacterial candidate agents.

  16. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.

    Science.gov (United States)

    Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan

    2012-08-21

    Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.

  17. Assessment of antibacterial activity of three plants used in Pakistan ...

    African Journals Online (AJOL)

    The in vitro antimicrobial activity of Justicia adhatoda, Glycyrrhiza glabra and Hyssopus officinalis extracts were studied against selected bacteria by using agar well diffusion assay. Methanol, ethanol, chloroform, diethyl-ether and aqueous extracts were tested in crude form for antibacterial activity against Bacillus subtillus, ...

  18. Preliminary studies of the antibacterial activities of processed ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-06

    Oct 6, 2006 ... Toda M, Okubo S, Ikigai H, Suzuki T, Shimamura T (1991). The protective activity of the tea against infection by Vibrio cholerae J. Appl. Bacterial 70: 109 – 112. Toda M, Okubo S, Hiyoshi R, Shimamura T(1989) Antibacterial and bactericidal activities of Japanese green tea. Jpn. J. Bacteriol 44(4):. 669-672.

  19. Synthesis and antibacterial activity of sulfonamide derivatives at C-8 ...

    Indian Academy of Sciences (India)

    showed higher antibacterial activity compared with standard drug ampicillin. Keywords. Synthesis ... factor-kB regulated gene products leading to potenti- ation of ... constituent of CNSL natural source to evaluate their biological activity by ... Analytical thin layer ..... cially available CNSL by a reported method.26 Accord-.

  20. Preliminary studies of the antibacterial activities of processed ...

    African Journals Online (AJOL)

    The antibacterial activities of extracts in Kenyan and Nigerian tea bags were tested for activity against six organisms; Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerea, Salmonella sp., Proteus sp. and Escherichia coli using the agar-gel diffusion method. The result obtained showed that 20% extract of both ...

  1. Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin.

    Science.gov (United States)

    Antoszczak, Michał; Maj, Ewa; Stefańska, Joanna; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-04-01

    A series of 11 novel amides of salinomycin were synthesized for the first time. All the obtained compounds were found to show potent antiproliferative activity against human cancer cell lines including the drug-resistant cancer cells. Four new salinomycin derivatives revealed good antibacterial activity against clinical isolates of methicillin-resistant Staphylococcus epidermidis (MRSE). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Zhirong, E-mail: xinzhirong2012@126.com [School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005 (China); Du, Shanshan; Zhao, Chunyu; Chen, Hao; Sun, Miao [School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005 (China); Yan, Shunjie [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Luan, Shifang, E-mail: sfluan@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-03-01

    Graphical abstract: - Highlights: • PNVP and PHMG components were covalently immobilized on PP{sub NWF} surface. • PP{sub NWF}-g-PNVP-PHMG possessed bacterial adhesion-resistant and bactericidal capabilities. • PP{sub NWF}-g-PNVP-PHMG obviously suppressed platelet and red blood cell adhesion. - Abstract: A growing number of wound dressing-related nosocomial infections necessitate the development of novel antibacterial strategies. Herein, polypropylene non-woven fabric (PP{sub NWF}) was facilely modified with passive and active antibacterial components, namely photografting polymerization both N-Vinyl-2-pyrrolidone (NVP) and glycidyl methacrylate (GMA) monomers, and the introduction of guanidine polymer through the reaction between active amino groups and epoxy groups. The modified samples were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), respectively. Water contact angle measurement, antibacterial test, platelet and red blood cell adhesion were used to evaluate the hydrophilicity, antibacterial properties and hemocompatibility of the samples. It was found that the antibacterial properties were obviously enhanced, meanwhile significantly suppressing platelet and red blood cell adhesion after the above modification. This PP{sub NWF} samples that possess antifouling and antimicrobial properties, have great potential in wound dressing applications.

  3. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components

    International Nuclear Information System (INIS)

    Xin, Zhirong; Du, Shanshan; Zhao, Chunyu; Chen, Hao; Sun, Miao; Yan, Shunjie; Luan, Shifang; Yin, Jinghua

    2016-01-01

    Graphical abstract: - Highlights: • PNVP and PHMG components were covalently immobilized on PP_N_W_F surface. • PP_N_W_F-g-PNVP-PHMG possessed bacterial adhesion-resistant and bactericidal capabilities. • PP_N_W_F-g-PNVP-PHMG obviously suppressed platelet and red blood cell adhesion. - Abstract: A growing number of wound dressing-related nosocomial infections necessitate the development of novel antibacterial strategies. Herein, polypropylene non-woven fabric (PP_N_W_F) was facilely modified with passive and active antibacterial components, namely photografting polymerization both N-Vinyl-2-pyrrolidone (NVP) and glycidyl methacrylate (GMA) monomers, and the introduction of guanidine polymer through the reaction between active amino groups and epoxy groups. The modified samples were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), respectively. Water contact angle measurement, antibacterial test, platelet and red blood cell adhesion were used to evaluate the hydrophilicity, antibacterial properties and hemocompatibility of the samples. It was found that the antibacterial properties were obviously enhanced, meanwhile significantly suppressing platelet and red blood cell adhesion after the above modification. This PP_N_W_F samples that possess antifouling and antimicrobial properties, have great potential in wound dressing applications.

  4. Comparative analysis of antibacterial activity of povidone iodine and homoeopathic mother tinctures as antiseptics

    Directory of Open Access Journals (Sweden)

    Muhammad Mohsin Zaman

    2016-01-01

    Conclusion: This study confirms the antibacterial activity and more effectiveness of Thuja occidentalis and Rhus glabra mother tinctures than povidone iodine. The other tested mother tinctures also have antibacterial activity against tested bacteria, except Echinacea.

  5. In vitro antibacterial activity of some plant essential oils

    Directory of Open Access Journals (Sweden)

    Ignacimuthu Savarimuthu

    2006-11-01

    Full Text Available Abstract Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20 using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents.

  6. Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract.

    Science.gov (United States)

    Al-Abd, Nazeh M; Mohamed Nor, Zurainee; Mansor, Marzida; Azhar, Fadzly; Hasan, M S; Kassim, Mustafa

    2015-10-24

    The threat posed by drug-resistant pathogens has resulted in the increasing momentum in research and development for effective alternative medications. The antioxidant and antibacterial properties of phytochemical extracts makes them attractive alternative complementary medicines. Therefore, this study evaluated the phytochemical constituents of Melaleuca cajuputi flower and leaf (GF and GL, respectively) extracts and their antioxidant and antibacterial activities. Radical scavenging capacity of the extracts was estimated using 2,2-diphenyl-2-picrylhydrazyl and Fe(2+)-chelating activity. Total antioxidant activity was determined using ferric reducing antioxidant power assay. Well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration assays were used to determine antibacterial activity against eight pathogens, namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, Staphylococcus epidermidis, Salmonella typhimurium, Klebsiella pneumonia, Streptococcus pneumoniae, and Pasteurella multocida. We identified and quantified the phytochemical constituents in methanol extracts using liquid chromatography/mass spectrometry (LC/MS) and gas chromatography (GC)/MS. This study reports the antioxidant and radical scavenging activity of M. cajuputi methanolic extracts. The GF extract showed better efficacy than that of the GL extract. The total phenolic contents were higher in the flower extract than they were in the leaf extract (0.55 ± 0.05 and 0.37 ± 0.05 gallic acid equivalent per mg extract dry weight, respectively). As expected, the percentage radical inhibition by GF was higher than that by the GL extract (81 and 75 %, respectively). A similar trend was observed in Fe(2+)-chelating activity and β-carotene bleaching tests. The antibacterial assay of the extracts revealed no inhibition zones with the Gram-negative bacteria tested. However, the extracts demonstrated activity against B. cereus, S. aureus, and S. epidermidis. In

  7. Antibacterial activity of the latex of Argemone ochroleuca Sweet

    International Nuclear Information System (INIS)

    Saad A. Alamri; Mahmoud F. Moustafa

    2010-01-01

    To investigate the antibacterial effect of the crude latex of Argemone ochroleuca (A. ochroleuca) as antibacterial potential against a range of human pathogenic bacteria. This study was carried out at King Khalid University, Abha, Kingdom of Saudi Arabia from January to March 2010. Seventeen ml of fresh latex from A. ochroleuca Sweet was collected, and the antibacterial activity of crude and diluted latex were examined using one ml of standardized inoculum suspension, and using the agar diffusion method test against Bacillus subtilis, Enterobacter aerogenes, Micrococcus luteus, Escherichia coli, and Staphylococcus aureus. All inoculated plates were incubated aerobically at 290C for 48 hours. The diameter of the zones of inhibition was measured to the nearest mm. The crude latex of A. ochroleuca exhibited a potent antibacterial effect on all bacterial strains examined. The zones of inhibition against the tested bacteria were found in the range of 9.30 - 40.3 mm along with their respective minimum inhibitory concentration values 100 ul/ml. The observable inhibition on selected bacteria by latex of A. ochroleuca makes it a promising alternative as a potential source of natural antibacterial (Author).

  8. Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract

    OpenAIRE

    Pervin, Mehnaz; Hasnat, Md Abul; Lim, Beong Ou

    2013-01-01

    Objective: To investigate antibacterial and antioxidant activity of the leaf extract of tropical medicinal herb and food plant Vaccinium corymbosum L. (V. corymbosum) . Methods: Free radical scavenging activity on DPPH, ABTS, and nitrites were used to analyse phenolic and flavonoid contents of leaf extract. Other focuses included the determination of antioxidant enzymatic activity (SOD, CAT and GPx), metal chelating activity, reduction power, lipid peroxidation inhibition and t...

  9. In Vitro antibacterial activity of rumex nervosus, plantago lanceolata ...

    African Journals Online (AJOL)

    The finding indicated that Rumex nervosus showed have the highest zone of inhibition (20mm) against the genus Salmonella followed by Plantago lanceolata with the zone of inhibition (16mm) against L. monocytogenes. On the other hand, Lepidium sativum and Solanum incanum did not have any antibacterial activity ...

  10. Antibacterial activity of Eucalpytus citriodora Hk. oil on few clinically ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... The antibacterial activity of Eucalyptus citriodora oil was evaluated. The volatile oil was extracted by steam distillation method. The tested bacterial strains were Escherichia coli ATCC 25922,. Staphylococcus aureus, Proteus mirabilis NCIM2241, Pseudomonas aeruginosa ATCC27853, Proteus vulgaris ...

  11. Phytochemical Screening and Antibacterial Activity of Cucurbita pepo

    African Journals Online (AJOL)

    Phytochemical screening and antibacterial activity of the extracts of Cucurbita pepo (backpeel and seeds) against Staphylococcus aureus and Salmonella typhi were carried out using standard procedures. The extraction was achieved using percolation method with ethanol and methanol as solvents. Higher yield of the ...

  12. Evaluation of anti-leishmanial and antibacterial activity of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-leishmanial and antibacterial activities of a relatively unexplored whole plant of Waldheimia tomentosa (Asteraceae) and the chemical profiling of its most bioactive fraction. Methods: The whole plant material was extracted with methanol - water (9 : 1) and fractionated into nhexane (C6H14 or ...

  13. Antibacterial activity of soaps against daily encountered bacteria ...

    African Journals Online (AJOL)

    This study aims to check the antibacterial activity of various branded soaps against bacteria that are normally present in the environment. The proposed study includes selection of most common bacterial strains from the environment. Identification of bacterial strains was done by standard microbiological techniques, which ...

  14. Antibacterial activity of watermelon ( Citrullus lanatus ) seed against ...

    African Journals Online (AJOL)

    This study was aimed at evaluating the effect of extraction methods on the antibacterial activity of Citrullus lanatus seed extract. C. lanatus (watermelon) is a popular fruit consumed all over the world. Three solvents were used for the extraction process: chloroform, methanol and distilled water while two extraction conditions- ...

  15. In vitro antibacterial activity of crude methanol extracts of various ...

    African Journals Online (AJOL)

    Parthenium hysterophorus is an aggressive and exotic weed plant traditionally reported to be used as remedy for various diseases. In the present study in vitro antibacterial activities of P. hysterophorus leaf, flower, bark and root crude methanol extracts were evaluated against five reference strains of pathogenic bacterial ...

  16. Antibacterial activity of Sargassum polycystum C. Agardh and ...

    African Journals Online (AJOL)

    In this study, the antibacterial activity of n-hexane, dichloromethane and methanolic extracts of brown seaweeds (Phaeophyceae), Sargassum polycystum C. Agardh and Padina australis Hauck, was examined using the disc diffusion and broth microdilution methods. The bioactivity of the seaweed extracts was expressed as ...

  17. Synthesis and antibacterial activity of novel enolphosphate derivatives.

    Science.gov (United States)

    Grison, Claude; Barthes, Nicolas; Finance, Chantal; Duval, Raphael E

    2010-10-01

    A new class of enolphosphates derivatives, the 1-alkenyldiphosphates, was designed and a rapid and efficient synthesis for these compounds was developed. These new molecules showed interesting in vitro antibacterial activities (MIC) against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative pathogens including Pseudomonas aeruginosa and Escherichia coli. 2010 Elsevier Inc. All rights reserved.

  18. In-Vitro Antibacterial Activities And Preliminary Phytochemical ...

    African Journals Online (AJOL)

    Studies on the in-vitro antibacterial activities and phytochemical screening of the aqueous and ethanolic extracts of Zingiber officinale (ginger) against some clinical bacterial isolates (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa) obtained from ear and urine samples were carried out using ...

  19. Phytochemical study and antibacterial activity of different extracts of ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the phytochemical proprieties, antioxidant and antibacterial activities of different extracts of Pistacia lentiscus on two pathogenic bacteria. The concentration of total phenols was analyzed using Folin-Ciocalteu's method. Exracts of plant were evaluated for their antimicrobial ...

  20. Antibacterial activity of chrysophanol isolated from Aloe excelsa ...

    African Journals Online (AJOL)

    Extraction of the yellow colour compounds of leaves of Aloe excelsa were performed and 1,8-dihydroxy-3-methylanthracenedione (chrysophanol) was isolated and tested for antibacterial activities against four gram negative and five gram positive bacterial strains. The structures of chrysophanol was determined by chemical ...

  1. Antibacterial and antioxidant activities of the essential oils and ...

    African Journals Online (AJOL)

    The present study deals with the evaluation of the in vitro antioxidant and antibacterial activity of phenolic extracts and essential oils of two medicinal and aromatic plants Zygophyllum album and Myrtus communis by using the 2,2- diphenyl-2-picrylhydrazyl radical, total antioxidant power and agar diffusion methods and ...

  2. Antibacterial activities of the crude ethanol extracts of medicinal ...

    African Journals Online (AJOL)

    Antibacterial activities of the crude ethanol extracts of medicinal plants against Listeria monocytogenes and some other pathogenic strains. ... The major components of extracts tested were identified by gas chromatography coupled with mass spectrometry (GC/MS) analysis. The obtained results revealed in vitro anti-Listeria ...

  3. In-vitro antibacterial activity of selected medicinal plants from ...

    African Journals Online (AJOL)

    Background: Current strategies to overcome the global problem of antimicrobial resistance include research in finding new and innovative antimicrobials from plants. This study was carried out to determine the antibacterial activity of plant extracts of Olea africana stem-bark, Psidium guajava leaves, Vernonia amygdalina ...

  4. Antibacterial activity of papain hydrolysed camel whey and its fractions

    DEFF Research Database (Denmark)

    Abdel-Hamid, Mahmoud; Goda, Hanan A.; De Gobba, Cristian

    2016-01-01

    Camel whey (ON) was hydrolysed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial activity of the CW, camel whey hydrolysate (CWH) and the obtained SEC-fractions was assessed using the disc-diffusion method. The CWH exhibited significantly...

  5. Antibacterial activity of essential oils: potential applications in food

    NARCIS (Netherlands)

    Burt, S.A.

    2007-01-01

    Due to its antibacterial activity, oregano oil has lately become interesting as a potential 'natural' food preservative. Oregano oil was found to be a fast acting and effective inhibitor of a strain of Escherichia coli O157:H7, the causative agent of a serious gastro-enteritis, and was lethal to

  6. Comparative Study of Antibacterial Activities of the Fresh and Dried ...

    African Journals Online (AJOL)

    The fresh and dried fruit extracts of Capsicum species were screened for antibacterial activities against Staph. aureus, S. typhi and B. subtilis using two assay methods. The filter disk and agar plate diffusion were the assay methods employed in the study. The results of the study revealed that the extracts obtained from the ...

  7. Evaluation of the antibacterial activity of Syzygium cordatum fruit ...

    African Journals Online (AJOL)

    This study aimed at evaluating the antibacterial activity of S. cordatum fruits and seeds against bacteria causing GIT infections. The harvested fruits were separated into fruit-pulp and seeds, dried and extracted with methanol using Soxhlet extraction. The extracts were phytochemically screened and micro dilution assay was ...

  8. Antibacterial and Anti-Inflammatory Activities of Anacardium ...

    African Journals Online (AJOL)

    ABSTRACT: Anacardium occidentale is a local medicinal plant used in ethno medicine for the treatment of diarrhea, constipation,pain and inflammation. The aqueous and ethanolic extracts of this plant parts were assessed for anti- inflammatory and antibacterial activities using experimental animal model and agar disc ...

  9. The antibacterial activity of Clausena anisata hook, a South African ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines ... Background: Clausena anisata Hook also known as Iperepesi in Xhosa language is a medicinal plant used traditionally for the treatment of various ailments and ... Key words: Clausena anisata; tuberculosis; antibacterial activity; herbal medicine.

  10. Antibacterial activity of honey and medicinal plant extracts against ...

    African Journals Online (AJOL)

    Using a broth dilution method, the antibacterial activity extracts of six South African honeys and medicinal plants against six enteric microorganisms viz- Enterobacter cloacae, Escheriachia coli, Klebsiella pneumoniae, Citrobacter freundii isolated from geophagia samples and Aeromonas hydrophila and plesiomonas ...

  11. Antibacterial activity of whole plant extract of Marrubium vulgare

    African Journals Online (AJOL)

    SERVER

    2007-11-26

    Nov 26, 2007 ... Key words: Disc diffusion, antibacterial activity, Marrubium vulgare. INTRODUCTION .... Glossary of Indian Medicinal. Plants, CSIR, V ed. ... 22. E. coli MTCC 443. 0. 0. 0. 10. 15. 400. 25. P. vulgaris MTCC 426. 0. 0. 0. 11. 16.

  12. In vitro Antibacterial Activity of Alchornea cordifolia Bark Extract ...

    African Journals Online (AJOL)

    Four extracts of Alchornea cordifolia (Schumach.) Müll. Arg. (Euphorbiaceae) bark, including aqueous, methanol, acetone and hexane extracts, were tested for their antibacterial activities against Salmonella typhi, Salmonella paratyphi A and Salmonella paratyphi B, using both agar diffusion and broth dilution methods.

  13. Antibacterial activity of oxytetracycline photoproducts in marine aquaculture's water.

    Science.gov (United States)

    Leal, J F; Henriques, I S; Correia, A; Santos, E B H; Esteves, V I

    2017-01-01

    Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. The main concern related to its use is the bacterial resistance, when ineffective treatments are applied for its removal or inactivation. OTC photo-degradation has been suggested as an efficient complementary process to conventional methods used in intensive fish production (e.g.: ozonation). Despite this, and knowing that the complete mineralization of OTC is difficult, few studies have examined the antibacterial activity of OTC photoproducts. Thus, the main aim of this work is to assess whether the OTC photoproducts retain the antibacterial activity of its parent compound (OTC) after its irradiation, using simulated sunlight. For that, three Gram-negative bacteria (Escherichia coli, Vibrio sp. and Aeromonas sp.) and different synthetic and natural aqueous matrices (phosphate buffered solutions at different salinities, 0 and 21‰, and three different samples from marine aquaculture industries) were tested. The microbiological assays were made using the well-diffusion method before and after OTC has been exposed to sunlight. The results revealed a clear effect of simulated sunlight, resulting on the decrease or elimination of the antibacterial activity for all strains and in all aqueous matrices due to OTC photo-degradation. For E. coli, it was also observed that the antibacterial activity of OTC is lower in the presence of sea-salts, as demonstrated by comparison of halos in aqueous matrices containing or not sea-salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Quantification and antibacterial activity of flavonoids in coffee samples

    African Journals Online (AJOL)

    Background: Flavonoids are the phenolic substances widely found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and coffee. Methodology: In the current study quantity of flavonoids and antibacterial activities were determined in different coffee samples namely Nescafe classic, Nescafe gold, Nescafe martina, ...

  15. Antibacterial activities and toxicological potentials of crude ethanolic ...

    African Journals Online (AJOL)

    Leaves of Euphorbia hirta used in traditional medicine for the treatments of boils, wounds and control of diarrhoea and dysentery were extracted by maceration in ethanol. The agar diffusion method was used to determine the antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, ...

  16. In vitro antibacterial activity of Anogeissus leiocarpus leaf extracts on ...

    African Journals Online (AJOL)

    In vitro antibacterial activity of aqueous and ethanol extracts of the leaf of Anogeissus leiocarpus was tested on some bacteria associated with diarrhea which included Escherichia coli,Salmonella typhi,Salmonella typhimurium, Klebsiella aerogens and Yersinia enterocolitica using agar well diffusion method. There was ...

  17. METAL OXIDE DOPED ANTIBACTERIAL POLYMERIC COATED TEXTILE MATERIALS AND ASSESSEMENT OF ANTIBACTERIAL ACTIVITY WITH ELECTRON SPIN RESONANCE

    Directory of Open Access Journals (Sweden)

    GEDIK Gorkem

    2017-05-01

    Full Text Available Antibacterial activity of a food conveyor belt is an essential property in some cases. However, every antibacterial chemical is not suitable to contact with food materials. Many metal oxides are suitable option for this purpose. The aim of this study was to investigate antibacterial properties of zinc oxide doped PVC polymer coated with electron spin resonance technique. Therefore, optimum zinc oxide containing PVC paste was prepared and applied to textile surface. Coating construction was designed as double layered, first layer did not contain antibacterial agent, thin second layer contained zinc oxide at 10-35% concentration. Oxygen radicals released from zinc oxide containing polymeric coated surface were spin trapped with DMPO (dimethylpyrroline-N-oxide spin trap and measured with Electron Spin Resonance (ESR. Besides conveyor belt samples, oxygen radical release from zinc oxide surface was measured with ESR under UV light and dark conditions. Oxygen radical release was determined even at dark conditions. Antibacterial properties were tested with ISO 22196 standard using Listeria innocua species. Measured antibacterial properties were related with ESR results. Higher concentration of zinc oxide resulted in higher antibacterial efficiency. DCFH-DA flourometric assay was carried out to determine oxidative stress insidebacteria. It is tought that, this technique will lead to decrease on the labour and time needed for conventional antibacterial tests.

  18. Antibacterial activities of medicinal plants used in Mexican traditional medicine.

    Science.gov (United States)

    Sharma, Ashutosh; Flores-Vallejo, Rosario Del Carmen; Cardoso-Taketa, Alexandre; Villarreal, María Luisa

    2017-08-17

    We provide an extensive summary of the in vitro antibacterial properties of medicinal plants popularly used in Mexico to treat infections, and we discuss the ethnomedical information that has been published for these species. We carried out a bibliographic investigation by analyzing local and international peer-reviewed papers selected by consulting internationally accepted scientific databases from 1995 to 2014. We provide specific information about the evaluated plant parts, the type of extracts, the tested bacterial strains, and the inhibitory concentrations for each one of the species. We recorded the ethnomedical information for the active species, as well as their popular names and local distribution. Information about the plant compounds that has been identified is included in the manuscript. This review also incorporates an extensive summary of the available toxicological reports on the recorded species, as well as the worldwide registries of plant patents used for treating bacterial infections. In addition, we provide a list with the top plant species with antibacterial activities in this review RESULTS: We documented the in vitro antibacterial activities of 343 plant species pertaining to 92 botanical families against 72 bacterial species, focusing particularly on Staphylococcus aureus, Mycobacterium tuberculosis, Escherichia coli and Pseudomonas aeruginosa. The plant families Asteraceae, Fabaceae, Lamiaceae and Euphorbiaceae included the largest number of active species. Information related to popular uses reveals that the majority of the plants, in addition to treating infections, are used to treat other conditions. The distribution of Mexican plants extended from those that were reported to grow in just one state to those that grow in all 32 Mexican states. From 75 plant species, 225 compounds were identified. Out of the total plant species, only 140 (40.57%) had at least one report about their toxic effects. From 1994 to July 2014 a total of 11

  19. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7).

    Science.gov (United States)

    Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P

    2017-04-01

    This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC 50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    International Nuclear Information System (INIS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.

    2010-01-01

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO 3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichiacoli, Proteusvulgaris and Shigellasonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  1. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@gmail.co [Thapar University, School of Physics and Materials Science (India); Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2010-06-15

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO{sub 3} using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 {+-} 1.5 nm ({sigma} = 18.3%) and 31.1 {+-} 4.5 nm ({sigma} = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichiacoli, Proteusvulgaris and Shigellasonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  2. Potential antibacterial activity of some Saudi Arabia honey

    Directory of Open Access Journals (Sweden)

    Ahmed G. Hegazi

    2017-02-01

    Full Text Available Aim: The aim of this study was to investigate the potential antibacterial activity of some Saudi Arabia honey against selected bacterial strains of medical importance. Materials and Methods: A total of 10 Saudi Arabia honey used to evaluate their antimicrobial activity against some antibiotic-resistant pathogenic bacterial strains. The bacterial strains were Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. Results: The antibacterial activity of Saudi honey against five bacterial strains showed different levels of inhibition according to the type of honey. The overall results showed that the potential activity was differing according to the pathogen and honey type. Conclusion: It could be concluded that the Saudi honey inhibit the growth of bacterial strains and that honey can be used as complementary antimicrobial agent against selected pathogenic bacteria.

  3. Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves

    OpenAIRE

    Tan, Joash Ban Lee; Lim, Yau Yan; Lee, Sui Mae

    2013-01-01

    The decoction and infusion of Rhoeo spathacea (Swartz) Stearn leaves have been recognized as a functional food particularly in South America, but has not yet gained international popularity as a beverage. The primary aim of this study was to establish the viability of R. spathacea aqueous leaf extracts as a beverage, in terms of its antioxidant activity and antibacterial activity. The antioxidant contents of aqueous and methanol leaf extracts were evaluated by the total phenolic content (TPC)...

  4. Phytochemical study, antioxidant and antibacterial activities of Stemodia maritima

    Directory of Open Access Journals (Sweden)

    Francisca R. L. da Silva

    2014-01-01

    Full Text Available Stemodinol, a new natural compound, together with known compounds including jaceidin, stemodin, stemodinoside B, isocrenatoside, verbascoside, crenatoside, and isoverbascoside, were isolated from Stemodia maritima Linn. The antioxidant (DPPH method and antimicrobial activities of stemodin, stemodinoside B, and crenatoside were investigated. Among the components tested, only crenatoside isolated from the roots showed a high antioxidant power. Stemodin and stemodinoside B exhibited antibacterial activities.

  5. Evaluation of antibacterial activity of "Mangabarana" Austroplenckia populnea Reissek (Celastraceae

    Directory of Open Access Journals (Sweden)

    Roqueline R. S. de Miranda

    Full Text Available Austroplenckia populnea (Mangabarana is popularly used by people from Minas Gerais, Brazil for dysenteries diseases treatment. Antitumor and antiulcer activities were also attributed to this plant. Extracts obtained using solvents of different polarities and pentacyclic triterpenes (PCTTs isolated from these extracts through phytochemical methods were submitted to antibacterial assays. The results showed the existence of this activity and open perspectives for news studies with other organic compounds isolated from this plant.

  6. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  7. Preparation and antibacterial activity of Ag–TiO 2 composite film by ...

    Indian Academy of Sciences (India)

    From these analyses, it was found that silver ions were trapped in TiO2 matrix and their reduction could be achieved at 600°C annealing temperature. The antibacterial activity against S. aureus and . coli has been studied applying the so called antibacterial-drop test. The Ag–TiO2 thin films exhibited a high antibacterial ...

  8. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Manuel N Melo

    Full Text Available Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM, which conciliates the two types of observations.

  9. Activity of endodontic antibacterial agents against selected anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Ferreira Cláudio Maniglia

    2002-01-01

    Full Text Available The antimicrobial activity of substances used as antibacterial agents (solutions of 10% calcium hydroxide, camphorated paramonochlorophenol - PMCC, 2% chlorhexidine digluconate and 10% castor oil plant detergent on anaerobic bacteria (Fusobacterium nucleatum ATCC 25586, Prevotella nigrescens ATCC 33563, Clostridium perfringens ATCC 13124 and Bacteroides fragilis ATCC 25285, using a broth dilution technique, was evaluated in vitro. For determination of minimum inhibitory and minimum bactericide concentrations (MIC and MBC, two culture broths, Reinforced Clostridial Medium (RCM and supplemented Brucella, standardized inoculum and serially diluted solutions were used. All antibacterial agents presented antimicrobial activity that varied for different bacteria. There were no differences in the performance of the two broths. Chlorhexidine digluconate was the most effective, with the lowest MICs, followed by castor oil detergent, PMCC and calcium hydroxide. C. perfringens and B. fragilis were the most resistant bacteria to all agents.

  10. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    International Nuclear Information System (INIS)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2017-01-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO 2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO 2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu 2+ . The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO 2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  11. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn; Tang, Bin

    2017-02-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO{sub 2} nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO{sub 2} NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu{sup 2+}. The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO{sub 2} NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  12. Antibacterial activities of serum from the Komodo Dragon (Varanus komodoensis)

    OpenAIRE

    Mark Merchant; Danyell Henry; Rodolfo Falconi; Bekky Muscher; Judith Bryja

    2013-01-01

    Komodo dragons (Varanus komodoensis) are able to feed on large prey items by injecting a dose of toxic bacteria with their bite that, over time, kills the prey by systemic infection. Dragons also suffer bites from other members of their own species during territorial disputes and feeding frenzies. However, they do not suffer the same fate as their prey, suggesting that they have developed a strong immunity to bacterial infections. This study was undertaken to determine the antibacterial activ...

  13. Antibacterial Activity of Melanin from Cuttlefish and Squid Ink

    OpenAIRE

    Yuspihana Fitrial; Iin Khusnul Khotimah

    2017-01-01

    Marine environment comprises of many organism which are known to posses bioactive compound as a common means of self-defense or for the protection of eggs and embryos. Class Cephalopods (such as squidand cuttlefish) are notable for their defences, such as jetting escape movements, changes in colouration, toxic venom and inking.This study aims to compare the antibacterial activity of melanin from cuttlefish ink (Sepia sp.) with squid ink (Loligo sp.) against E. coli. Extraction and purificatio...

  14. IN VITRO ANTIBACTERIAL ACTIVITIES STUDY OF POLYMERIC CIPROFLOXACIN SUSPENSIONS

    OpenAIRE

    Sahoo Subhashree; Chakraborti Chandra Kanti; Behera Pradipta Kumar

    2012-01-01

    To study the in vitro antibacterial activities of mucoadhesive suspensions containing Ciprofloxacin, three different formulations were prepared by using three polymers, such as Hydroxypropyl methylcellulose (HPMC) (S1), Carbapol934 (S2) and Carbapol940 (S3), along with some common ingredients (bases). For the investigation, agar well diffusion method was performed taking Staphylococcus aureus (ATCC 25923), Bacillus subtilis and Escherichia coli (ATCC 25922). Apart from S. aureus, S1 and Cipro...

  15. Antibacterial and antidermatophyte activities of some essential Oils from spices

    OpenAIRE

    El Kady, I. A. [اسماعيل عبد الرزاق القاضي; El-Maraghy, S. S. Mohamed; Eman Mostafa M.

    1993-01-01

    The inhibitory effects of ten essential oil from different spices against the growth of various isolates of bacteria representing Gram-positive (seven isolates) and Gram-negative (four isolates) were studied. Eight antibacterial agents were included for comparative purposes. Results show that essential oils of thyme (Thymus vulgaris L.), cinnamon (Cinnamomum verum Presl (Syn. C. zylanicum Blume) and cardamom (Elettaria cardamum White and Maton) were highly active against both Gram-negative an...

  16. Study on antibacterial activity of hydrogel from irradiated silk protein

    International Nuclear Information System (INIS)

    Bunnak, J.; Chaisupakitsin, M.

    2001-01-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N 2 atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  17. Study on antibacterial activity of hydrogel from irradiated silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Bunnak, J; Chaisupakitsin, M [King Mongkut' s Institute of Technology Lardkrabang, Bangkok (Thailand)

    2001-03-01

    Hydrogels for biomedical application were prepared from solution blends of 3% silk protein and 3%, 10% poly (vinyl alcohol) (PVA) and followed with irradiation. Mixture of hydrogels were gamma irradiated at 10, 20, 30, 40 and 50 kGy under N{sub 2} atmosphere. To clarify anti-bacterial activity of hydrogels, modified of the Agar disk diffusion method and American Association of Textile Chemists and Colorists, AATCC Test Method 90-1977, were carried out. The four kinds of bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis, were used. It was found that a 1:3 volume ratio of 3% silk protein and 3% PVA respectively, at 50 kGy irradiation, is suitable conditions for preparation hydrogels and trend to indicate the highest of an antibacterial activity against E. coli, B. subtilis and S. aureus. However the antibacterial activity of hydrogels against S. epidermidis was not clearly. These results are very useful to expand the application of hydrogel from irradiated silk protein to the medical products. (author)

  18. The antibacterial activity of honey derived from Australian flora.

    Directory of Open Access Journals (Sweden)

    Julie Irish

    Full Text Available Chronic wound infections and antibiotic resistance are driving interest in antimicrobial treatments that have generally been considered complementary, including antimicrobially active honey. Australia has unique native flora and produces honey with a wide range of different physicochemical properties. In this study we surveyed 477 honey samples, derived from native and exotic plants from various regions of Australia, for their antibacterial activity using an established screening protocol. A level of activity considered potentially therapeutically useful was found in 274 (57% of the honey samples, with exceptional activity seen in samples derived from marri (Corymbia calophylla, jarrah (Eucalyptus marginata and jellybush (Leptospermum polygalifolium. In most cases the antibacterial activity was attributable to hydrogen peroxide produced by the bee-derived enzyme glucose oxidase. Non-hydrogen peroxide activity was detected in 80 (16.8% samples, and was most consistently seen in honey produced from Leptospermum spp. Testing over time found the hydrogen peroxide-dependent activity in honey decreased, in some cases by 100%, and this activity was more stable at 4 °C than at 25 °C. In contrast, the non-hydrogen peroxide activity of Leptospermum honey samples increased, and this was greatest in samples stored at 25 °C. The stability of non-peroxide activity from other honeys was more variable, suggesting this activity may have a different cause. We conclude that many Australian honeys have clinical potential, and that further studies into the composition and stability of their active constituents are warranted.

  19. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    Science.gov (United States)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  20. Preparation, characterization and antibacterial activity of oxidized κ-carrageenan.

    Science.gov (United States)

    Zhu, Mingjin; Ge, Liming; Lyu, Yongbo; Zi, Yaxin; Li, Xinying; Li, Defu; Mu, Changdao

    2017-10-15

    The oxidized κ-carrageenans with different oxidation levels were prepared through the hydrogen peroxide and copper sulfate redox system. The oxidation level of oxidized κ-carrageenan was successfully controlled by adjusting the dosage of hydrogen peroxide. The results showed that the microtopography of oxidized κ-carrageenan changed from rough granules to smooth flakes, mainly resulting from the easily melting property of oxidized κ-carrageenan induced by introduced carboxyl and aldehyde groups. Especially, the antibacterial activity of oxidized κ-carrageenans against Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) was systematically investigated. The results showed that the oxidized κ-carrageenan could damage the bacterial cell wall and cytoplasmic membrane and suppress the growth of both Gram-positive and Gram-negative bacteria. The oxidized κ-carrageenan possessed broad-spectrum antibacterial activity, which may be used as a new antibacterial agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  2. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  3. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  4. Antibacterial activity of Thai herbal extracts on acne involved microorganism.

    Science.gov (United States)

    Niyomkam, P; Kaewbumrung, S; Kaewnpparat, S; Panichayupakaranant, P

    2010-04-01

    Ethyl acetate and methanol extracts of 18 Thai medicinal plants were investigated for their antibacterial activity against Propionibacterium acnes, Stapylococcus aureus, and S. epidermidis. Thirteen plant extracts were capable of inhibiting the growth of P. acnes and S. epidermidis, while 14 plant extracts exhibited an inhibitory effect on S. aureus. Based on the broth dilution method, the ethyl acetate extract of Alpinia galanga (L.) Wild. (Zingiberaceae) rhizome showed the strongest antibacterial effect against P. acnes, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 156.0 and 312.0 microg/mL, respectively. On the basis of bioassay-guided purification, the ethyl acetate extract was isolated to afford the antibacterial active compound, which was identified as 1'-acetoxychavicol acetate (1'-ACA). 1'-ACA had a strong inhibitory effect on P. acnes with MIC and MBC values of 62.0 and 250.0 microg/mL, respectively. Thus, 1'-ACA was used as an indicative marker for standardization of A. galanga extract using high performance liquid chromatography. These results suggest that A. galanga extract could be an interesting agent for further studies on an alternative treatment of acne.

  5. STUDY ON ANTIBACTERIAL ACTIVITY OF BEE VENOM.

    OpenAIRE

    Yeon Jo Ha; Chi Won Noh; Woo Young Bang; Sam Woong Kim; Sang Wan Gal.

    2018-01-01

    The purpose of this study was to investigate the antimicrobial activity against Salmonella infection which causes intestinal diseases from bee venom which is one of the social insects, and to find a way which use ghost vaccine. The minimum inhibitory concentration (MIC) of bee venom against Salmonella Typhimurium χ3339 was 101.81 ug/ml. Based on the result of MIC, the antimicrobial activity according to amount of the cells showed strong activities below 106 CFU/ml, but exhibited no and low ac...

  6. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity.

    Science.gov (United States)

    Naeem, Abdul; Badshah, Syed Lal; Muska, Mairman; Ahmad, Nasir; Khan, Khalid

    2016-03-28

    Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites--the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1) mutation in the target site (gyrase and/or topoisomerase IV) of quinolones; (2) plasmid-mediated resistance; and (3) chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV). In the case of chromosome

  7. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Abdul Naeem

    2016-03-01

    Full Text Available Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites—the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1 mutation in the target site (gyrase and/or topoisomerase IV of quinolones; (2 plasmid-mediated resistance; and (3 chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV. In the case of

  8. Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications

    Science.gov (United States)

    Vega-Jiménez, A. L.; Almaguer-Flores, A.; Flores-Castañeda, M.; Camps, E.; Uribe-Ramírez, M.; Aztatzi-Aguilar, O. G.; De Vizcaya-Ruiz, A.

    2017-10-01

    In recent years, nanomaterials have been used in the medical-dental field as new alternative antimicrobial agents. Bismuth subsalicylate (BSS) has been used as an antimicrobial agent, but the effect of BSS in the form of nanoparticles (BSS-nano) as a potential antimicrobial agent has not been tested, in specific against bacteria responsible for periodontal disease. The aim of this study was to evaluate the antibacterial effect of BSS-nano against oral anaerobic bacteria and to assess the safety of BSS-nano by evaluating their cytotoxicity in human gingival fibroblast (HGF-1) cells. BSS-nano were synthesized by laser ablation and were previously physico-chemically characterized using in vitro assays. The antibacterial activity was measured using the tetrazolium-based XTT assay, and cytotoxicity was determined using lactate dehydrogenase (LDH) and MTS assays in HGF-1 cells. Transmission electron microscopy of HGF-1 exposed to BSS-nano was also performed. BSS-nano was shown to have a primary size of 4-22 nm and a polygonal shape. Among the tested bacterial strains, those with a greater sensitivity to BSS-nano (highest concentration of 21.7 μg ml-1) were A. actinomycetemcomitans, C. gingivalis, and P. gingivalis. BSS-nano at a concentration of 60 μg ml-1 showed low cytotoxicity (6%) in HFG-1 cells and was mainly localized intracellularly in acidic vesicles. Our results indicate that the concentration of BSS-nano used as an effective antibacterial agent does not induce cytotoxicity in mammalian cells; thus, BSS-nano can be applied as an antibacterial agent in dental materials or antiseptic solutions.

  9. Parasiticidal, antifungal and antibacterial activities of Onosma ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... B. Ahmad1*, N. Ali2, 4, S. Bashir2, M. I. Choudhary3, S. Azam and I. Khan1. 1Centre for ... Table 1. Antileishmanial activities of crude methanolic extract and fractions of Onosma griffithii against the ..... Naphthoquinones from.

  10. Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves.

    Science.gov (United States)

    Tan, Joash Ban Lee; Lim, Yau Yan; Lee, Sui Mae

    2015-04-01

    The decoction and infusion of Rhoeo spathacea (Swartz) Stearn leaves have been recognized as a functional food particularly in South America, but has not yet gained international popularity as a beverage. The primary aim of this study was to establish the viability of R. spathacea aqueous leaf extracts as a beverage, in terms of its antioxidant activity and antibacterial activity. The antioxidant contents of aqueous and methanol leaf extracts were evaluated by the total phenolic content (TPC) and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH radical scavenging activity (FRS), ferric reducing power (FRP) and ferrous ion chelating (FIC) activity. The aqueous leaf extracts in the forms of decoction and infusion, were found to have comparable TPC and antioxidant activity with other herbal teas previously reported by our research group. Both decoction and infusion also exhibited antibacterial activity against six species of Gram positive and four species of Gram negative bacteria, notably methicillin-resistant Staphylococcus aureus and Neisseria gonorrhoeae. A total of four different known phenolic compounds were identified by HPLC and MS, three of which have not been previously reported to be found in this plant. Both the decoction and infusion of the leaves R. spathacea have potential to be popularized into a common beverage.

  11. Flavonoids of Helichrysum compactum and their antioxidant and antibacterial activity.

    Science.gov (United States)

    Süzgeç, Sevda; Meriçli, Ali H; Houghton, Peter J; Cubukçu, Bayhan

    2005-03-01

    From the capitula of Helichrysum compactum, the flavonoids apigenin, kaempferol, luteolin, naringenin, 3,5-dihydroxy-6,7,8-trimethoxyflavone, kaempferol-3-O-glucoside, luteolin-7-O-glucoside and luteolin-4',7-di-O-glucoside and from the leafy stems apigenin, kaempferol, luteolin, quercetin, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and quercetin-3-O-glucoside were isolated. Extracts of the capitula of H. compactum show antioxidant activity by inhibition of lipid peroxidation and also show antibacterial activity.

  12. Piper betle LEAVES EXTRACT PATCH: EVALUATION OF ANTIBACTERIAL ACTIVITY, RELEASE PROFILE OF EUGENOL, AND LOCAL TOLERANCE

    Directory of Open Access Journals (Sweden)

    Mufrod Mufrod

    2016-08-01

    Full Text Available Piper betle leaf in extract form is more effective than crude drug. Eugenol is a component in the extract that has antibacterial activity but irritate. Patch of piper betle leaf extract was used on the mucosa to make oral cavity hygiene. Antibacterial activity was influenced by the release of eugenol from the patch. Release enhancer substances (RES such as glycerin, propylen glicol and tween 80 were added in patch formulation to increase the release of active substances. The aim of the research was to investigate the physicochemical properties, eugenol release profiles, and local tolerance test of the patch. Extract of piper betle leaf was made using infundation method. Patch was made according to the variation concentration of extract (1, 2 and 4% and RES (glycerine, propylen glycol and tween 80 using chitosan as vehicle. Patch produced solvent casting method. Patch obtained was tested for swelling index, folding endurance, surface pH, antibacterial activity, release of eugenol, and local tolerance. Data obtained were analyzed descriptively. The result showed that the addition of RES did not affect the surface pH but increase the water absorption with in inconsistent way except patch with tween 80. The flexibility (folding endurance value increased, and the highest amount of eugenol released was achieved by patch using propylen glicol. Patch with tween 80 and glycerin for all extract concentration and patch with 1% extract concentration using propylen glycol showed medium sensation (local tolerance, and patch with 2 and 4% extract using propylen glycol showed severe sensation.

  13. Antibacterial activity of the essential oils extracted from cassia bark, bay fruits and cloves against Vibrio parahaemolyticus and Listeria spp

    Science.gov (United States)

    Spices are added into foods mainly for enhancing the organoleptic quality of the food. The application of spices and their derivatives in foods as preservatives has been investigated for years. In this study, we determined the antibacterial activity of the essential oils of three spices, cassia bark...

  14. Antibacterial Activity of Melanin from Cuttlefish and Squid Ink

    Directory of Open Access Journals (Sweden)

    Yuspihana Fitrial

    2017-08-01

    Full Text Available Marine environment comprises of many organism which are known to posses bioactive compound as a common means of self-defense or for the protection of eggs and embryos. Class Cephalopods (such as squidand cuttlefish are notable for their defences, such as jetting escape movements, changes in colouration, toxic venom and inking.This study aims to compare the antibacterial activity of melanin from cuttlefish ink (Sepia sp. with squid ink (Loligo sp. against E. coli. Extraction and purification studies were carried out on Sepia and Loligo melanin using a hydrochloric acid 0,5M treatment under mechanical.The melanins were obtained and further evaluated their activity by direct contact methods between melanin and E. coli in nutrient broth.Total microbes was counted by total plate count.Both inks also was tested their activity against E. coli. The results showed that melanin from cuttlefish and squid inks had inhibitory activity at concentrations of 10 mg / ml and 20 mg / mL, respectively reaching 99.99% against E. coli.The inks of both Cephalopods at the same concentration as melanin, did not show any inhibitory activity against E. coli.  The melanin of Sepia sp. have a higher antibacterial activity than the melanin of Loligo sp.

  15. Antibacterial activity of different honeys against pathogenic bacteria.

    Science.gov (United States)

    Voidarou, C; Alexopoulos, A; Plessas, S; Karapanou, A; Mantzourani, I; Stavropoulou, E; Fotou, K; Tzora, A; Skoufos, I; Bezirtzoglou, E

    2011-12-01

    To study the antimicrobial activity of honey, 60 samples of various botanical origin were evaluated for their antimicrobial activities against 16 clinical pathogens and their respective reference strains. The microbiological quality of honeys and the antibiotic susceptibility of the various isolates were also examined. The bioassay applied for determining the antimicrobial effect employs the well-agar diffusion method and the estimation of minimum active dilution which produces a 1mm diameter inhibition zone. All honey samples, despite their origin (coniferous, citrus, thyme or polyfloral), showed antibacterial activity against the pathogenic and their respective reference strains at variable levels. Coniferous and thyme honeys showed the highest activity with an average minimum dilution of 17.4 and 19.2% (w/v) followed by citrus and polyfloral honeys with 20.8 and 23.8% respectively. Clinical isolates of Staphylococcus aureus subsp. aureus, Escherichia coli, Salmonella enterica subsp. Enterica, Streptococcus pyogenes, Bacillus cereus and Bacillus subtilis were proven to be up to 60% more resistant than their equal reference strains thus emphasizing the variability in the antibacterial effect of honey and the need for further research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin.

    Science.gov (United States)

    Peng, Feng-Jiao; Zhou, Li-Jun; Ying, Guang-Guo; Liu, You-Sheng; Zhao, Jian-Liang

    2014-04-01

    Soil contamination of antimicrobials has become an increasing concern because of the potential risks to the soil microbial ecosystem and human health. The present study investigated sorption and desorption behaviors of oxytetracycline (OTC) and ofloxacin (OFL) in 3 typical soils (A, B, and C), and evaluated the antibacterial activity of soil-adsorbed compounds to a pure sensitive strain Escherichia coli ATCC 25922. The results showed different sorption and desorption behaviors of OTC and OFL in the 3 soils, behaviors that were mainly influenced by soil organic matter content and cation exchange capacity (CEC) as well as pH value. In addition, complexation and cation-exchange reactions were shown to be the main sorption mechanisms. Strong adsorption was found in soil B (with a high organic matter content) and in soil C (with high CEC), whereas enhanced desorption was observed in soil A (with low organic matter content). The results also demonstrated that soil-bound antimicrobials retained antibacterial activity toward E. coli. Opposite patterns of antibacterial activity were found for the 2 antimicrobials in the 3 soils: A>B>C for OFL; and C>B>A for OTC. This finding suggests that soil-bound antimicrobials could still exert selective pressure on soil bacteria although less effectively in comparison with the dissolved forms. © 2014 SETAC.

  17. ZnO quantum dots–decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    International Nuclear Information System (INIS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-01-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3–5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O–H bond and Zn"2"+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn"2"+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions. (paper)

  18. Antibacterial activity of head-to-head bis-benzimidazoles.

    Science.gov (United States)

    Moreira, Joao B; Mann, John; Neidle, Stephen; McHugh, Timothy D; Taylor, Peter W

    2013-10-01

    Symmetric bis-benzimidazole (BBZ) conjugates were profiled for activity against a range of Gram-positive and Gram-negative bacteria. para-Substituted ethoxy, amino and methoxy derivatives displayed potent bacteriostatic activity against meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, streptococci and Listeria monocytogenes. Moderate to good activity was also found against mycobacteria; two compounds were strongly active against logarithmic phase and hypoxia-induced latent Mycobacterium tuberculosis. No compound displayed significant activity towards Gram-negative bacteria. Only high concentrations of antibacterial BBZs showed cytotoxic effects towards fibroblasts, and the most active compound was well tolerated by zebrafish embryos. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Effect of temperature on antibacterial activity of lidocaine to Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Taki, Y; Seki, K; Ikigai, H; Nishihara, S; Ueno, H; Murota, K; Masuda, S

    1988-01-01

    The effect of temperature on the antibacterial activity of lidocaine to Staphylococcus aureus and Pseudomonas aeruginosa was investigated in vitro. At 10 C at which S. aureus organisms do not grow and might be metabolically inactive, the antibacterial activity of lidocaine to S. aureus was not observed in a concentration of 1%, which was quite antibacterial to S. aureus at 37 C. On the other hand, at 40 C a conspicuously increased antibacterial activity to S. aureus of lidocaine was observed in a concentration of 0.25% which was not antibacterial to S. aureus organisms at 37 C. Similar results were obtained when P. aeruginosa organisms were examined in place of S. aureus, although P. aeruginosa was found to be less susceptible to lidocaine than S. aureus. The clinical significance of the thermal effect on the antibacterial activity of lidocaine was discussed in brief.

  20. A Novel Chimeric Endolysin with Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Haddad Kashani, Hamed; Fahimi, Hossein; Dasteh Goli, Yasaman; Moniri, Rezvan

    2017-01-01

    Cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) and amidase are known as catalytic domains of the bacteriophage-derived endolysin LysK and were previously reported to show lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). In the current study, the in silico design and analysis of chimeric CHAP-amidase model was applied to enhance the stability and solubility of protein, which was achieved through improving the properties of primary, secondary and tertiary structures. The coding gene sequence of the chimeric CHAP-amidase was synthesized and subcloned into the pET-22(+) expression vector, and the recombinant protein was expressed in E. coli BL21 (DE3) strain. Subsequent affinity-based purification yielded ~12 mg soluble protein per liter of E. coli culture. Statistical analysis indicated that concentrations of ≥1 μg/mL of the purified protein have significant antibacterial activity against S. aureus MRSA 252 cells. The engineered chimeric CHAP-amidase exhibited 3.2 log reduction of MRSA 252 cell counts at the concentration of 10 μg/mL. A synergistic interaction between CHAP-amidase and vancomycin was detected by using checkerboard assay and calculating the fractional inhibitory concentration (FIC) index. This synergistic effect was shown by 8-fold reduction in the minimum inhibitory concentration of vancomycin. The chimeric CHAP-amidase displayed strong antibacterial activity against S. aureus, S. epidermidis , and enterococcus . However, it did not indicate any significant antibacterial activity against E. coli and Lactococcus lactis . Taken together, these findings suggest that our chimeric CHAP-amidase might represent potential to be used for the development of efficient antibacterial therapies targeting MRSA and certain Gram-positive bacteria.

  1. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ashtari, Khadijeh [Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Fasihi, Javad [Department of Analytical Chemistry, Faculty of Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mollania, Nasrin [Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Khajeh, Khosro, E-mail: khajeh@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2014-02-01

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  2. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Abdullah Ijaz Hussain

    2010-12-01

    Full Text Available The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%, camphor (17.1%, α-pinene (12.3%, limonene (6.23%, camphene (6.00% and linalool (5.70%. The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP and one fibroblast cell line (NIH-3T3 using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ and minimum inhibitory concentration (MIC of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities.

  3. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    Science.gov (United States)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  4. Bio-active nanocomposite films based on nanocrystalline cellulose reinforced styrylquinoxalin-grafted-chitosan: Antibacterial and mechanical properties.

    Science.gov (United States)

    Fardioui, Meriem; Meftah Kadmiri, Issam; Qaiss, Abou El Kacem; Bouhfid, Rachid

    2018-07-15

    In this study, active nanocomposite films based on cellulose nanocrystalline (NCC) reinforced styrylquinoxalin-grafted-chitosan are prepared by solvent-casting process. The structures of the two styrylquinoxaline derivatives were confirmed by FT-IR, 1 H, 13 C NMR spectral data and the study of the antibacterial activity against Escherichia coli (EC), Staphylococcus aureus (SA), Bacillus subtilis (BS) and Pseudomonas Aeruginosa (PA) exhibits that they have a good antibacterial activity against (PA). On their side, the styrylquinoxalin-g-chitosan films are able to inhibit the growth of (PA) through their contact area without being damaged by the antibacterial test conditions. The addition of 5wt% of NCCs as nano-reinforcements revealed no change at the level of antibacterial activity but led to an important improvement of the mechanical properties (more than 60% and 90% improvement in Young's modulus and tensile strength, respectively) of the modified-chitosan films. Thereby, the present nanocomposite films are prepared by a simple way and featured by good mechanical and antibacterial properties which enhance the possibility to use them as bio-based products for biomedical and food packaging. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Synergistic Antibacterial Activity of the Essential Oil of Aguaribay (Schinus molle L.)

    OpenAIRE

    Rocha, Pedro; Rodilla, Jesus; Díez, David; Elder, Heriberto; Guala, Maria; Silva, Lúcia; Pombo, Eunice

    2012-01-01

    Schinus molle L. (aguaribay, aroeira-falsa, “molle”, family Anacardiaceae), a native of South America, produces an active antibacterial essential oil extracted from the leaves and fruits. This work reports a complete study of its chemical composition and determines the antibacterial activity of Schinus molle L. essential oil and its main components. The results showed that the crude extract essential oil has a potent antibacterial effect on Staphylococcus aureus ATCC 25923...

  6. Evaluation of the Antidiabetic and Antibacterial Activity of Cissus sicyoides

    Directory of Open Access Journals (Sweden)

    Flavio Luis Beltrame

    2002-03-01

    Full Text Available In this work we investigated the antidiabetic and antibacterial effect of Cissus sicyoides (CS from Brazil. Diabetic rats that received water (A group or extracts from the aerial parts of the plant (Cs group during four weeks were employed. After this period, serum levels of glucose, cholesterol and triglycerides were measured. Glycemia was not affected by treatment with CS. However, there was an increased cholesterol and triglyceride level in Cs group. In addition, bioassay-guided fractionation of methanolic extract from aerial parts of CS was performed for isolation of antibacterial compounds.beta-Sitosterol and sitosterol-beta-D-glucopyranoside isolated showed antibacterial activity against Bacillus subtilis with minimal inhibitory concentrations (MICs of 50 mug/ml and 100 mug/ml, respectively. In spite of popular belief, CS did not show antidiabetic activity. However, two compounds isolated from aerial parts of the plant (beta-sitosterol and sitosterol-beta-D-glucopyranoside showed antibacterial activity.No presente trabalho foram investigados os efeitos antibacteriano e antidiabético da planta Cissus sicyoides (CS coletada no Brasil. Ratos diabéticos receberam água (grupo A ou extratos da parte aérea da planta (grupo CS durante 4 semanas. Após este período, os níveis séricos de glicose, colesterol e triglicerídeos dos ratos foram determinados. A glicemia não foi afetada pelo tratamento com CS. Entretanto, houve aumento nos níveis de colesterol e triglicerídeos nos ratos do grupo CS. Em adição, fracionamento bio-monitorado foi realizado para o isolamento de compostos com atividade antibacteriana. beta-Sitosterol e sitosterol-beta-D-glucopiranosídeo isolados mostram atividade antibacteriana contra Bacillus subtilis com concentrações mínimas inibitórias (MICs de 50 mig/ml e 100 mig/ml, respectivamente. Apesar da crença popular, CS não mostrou atividade antidiabética. Entretanto, dois compostos isolados da parte aérea da

  7. Synthesis and Antibacterial Activities of Some Schiff Bases

    Directory of Open Access Journals (Sweden)

    Mohamed N. Ibrahim

    2011-01-01

    Full Text Available Schiff bases p-hydroxybenzylidene-2-carboxyaniline, p-nitrobenz-ylidene-2-carboxyaniline, p-(N, N-dimethylaminobenzylidene-2-carboxyaniline, N-(4-hydroxybezylidene-benzene-1,2-diamine, N--(4-nitrobezylidenebenzene-1,2-diamine, N-(4-(N, N-dimethylaminobezylidenebenzene-1,2-diamine, N-(4-(N,N-dimethylaminobenzylidenenaphthalen-1-amine,N-(4-nitrobenzylidenenaphthalen-1-amine,N--(4-chlorobenzylidenenaphthalen-1-amine,sodium-4-(4-(N,N-dimethyl aminobenzylideneaminonaphthalene-1-sulfonate,sodium -4-(4-nitrobenzylidene-aminonaphthalene-1-sulfonate and sodium-4-(4-chlorobenzylideneamino naphthalene-1-sulfonate obtained by condensation of aniline and naphthyl-amine derivatives with some aromatic aldehydes were characterized by physical and spectral methods. The biological activity of these products were as antibacterial agents against three species of human pathogenic bacteria such as Escherichia coli, Staphylococcus aureus and Klebsiella sp. Nearly 50% of these compounds showed reasonable activity against the bacterial species investigated and we found that the antibacterial activity is dependent on the molecular structure of the compounds.

  8. Antinociceptive, cytotoxic and antibacterial activities of Cleome viscosa leaves

    Directory of Open Access Journals (Sweden)

    Utpal Bose

    2011-02-01

    Full Text Available The methanol extract of the dried leaves of Cleome viscosa L., Cleomaceae, was investigated for its possible antinociceptive, cytotoxic and antibacterial activities in animal models. The extract produced significant writhing inhibition in acetic acid-induced writhing in mice at the oral doses of 250 and 500 mg/kg body weight (p<0.001 comparable to the standard drug diclofenac sodium at the dose of 25 mg/kg of body weight (p<0.001. The crude extract produced the most prominent cytotoxic activity against brine shrimp Artemia salina (LC50 28.18 μg/mL and LC90 112.20 μg/mL. The extract of C. viscosa L. exhibited significant in vitro antibacterial activity against Staphylococcus saprophyticus, Shigella sonnie, Salmonella typhi, Vibrio cholera, Streptococcus epidermidis, Shigella flexneri and Staphylococcus aureus with the zones of inhibition ranging from 10.76 to 16.34 mm. The obtained results provide a support for the use of this plant in traditional medicine and its further investigation.

  9. Synergic antibacterial activity of some essential oils from Lamiaceae

    Directory of Open Access Journals (Sweden)

    Sh. Fahimi

    2015-05-01

    Full Text Available Background and objectives: Despite the vast production of new antibiotics in the last three decades, resistance to these drugs by microorganisms has increased and essential oils (EOs have been recognized to possess antimicrobial properties. Methods:  In the present study, EOs obtained from aerial parts of Thymus vulgaris L., Lavandula angustifolia Mill., Rosmarinus officinalis L. and Mentha piperita L., were evaluated for their single and binary combined antibacterial activities against four Gram-positive and Gram-negative pathogenic bacteria: Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Results: The results exhibited that some of the tested essential oils revealed antibacterial activities against the examined pathogens using broth microdilution method. Maximum activity of the testedessential oils was obtained from the combination of T. vulgaris and M. piperita essential oils against Staphylococcus aureus (MIC= 0.625 mg/mL. Conclusion: Combinations of the essential oils in this study showed synergic action against some pathogenic microorganisms which could be considered in medical and food industries as preservatives.

  10. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    Science.gov (United States)

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  11. [Preparation and characterization of polyhydroxyalkanoate bioplastics with antibacterial activity].

    Science.gov (United States)

    Lou, Qiuli; Ma, Yiming; Che, Xuemei; Zhong, Jin; Sun, Xiaoxia; Zhang, Haoqian

    2016-08-25

    Polyhydroxyalkanoates (PHAs), as a novel class of biopolymer, are attracting more attention due to their diverse material properties and environment-independent biodegradability. Here we report the preparation of PHA exhibiting efficient antibacterial activity by embedding Nisin, a food additive generally recognized as safe, into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), a type of PHA with high biocompatibility. We first prepared Nisin-containing PHBHHx films using solvent casting method. Confocal laser scanning microscopy analysis showed that a well-mixed integrated structure of the films with an even distribution of the Nisin particles in the PHBHHx matrices. Then the antimicrobial activity of PHBHHx/Nisin films against Micrococcus luteus was quantified on agar plate by measuring the size of inhibition zone. Cultivation in liquid media further confirmed the releasing of Nisin from the films and the long-time antibacterial activity. Results showed that the threshold of Nisin concentration for long-time and effective inhibition against bacteria growth is 25 μg/g. These results altogether establish a technological foundation for the application of PHA in biomedicine and food industry.

  12. Effect of an Antibacterial Monomer on the Antibacterial Activity of a Pit-and-Fissure Sealant.

    Directory of Open Access Journals (Sweden)

    Fan Yu

    Full Text Available Resin-based pit-and-fissure sealants are often used to form a barrier on the occlusal surface of molars to treat caries lesions; however, bacteria can remain in the pit and fissures without detection, increasing the risk of secondary caries. Sealants with antimicrobial properties or microbial repellent actions might be advantageous. The aim of this study was to assess the inhibitory effect of a 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB-incorporated sealant against Streptococcus mutans. MAE-DB (4% wt was incorporated into a commercially available sealant, Eco-S resin-based pit-and-fissure sealant (Vericom Co., Ltd., Korea; a sealant without MAE-DB served as a negative control, and Clinpro™ Sealant (3M™ ESPE™, a fluoride-releasing resin, was used as a commercial control. The effects of the cured sealants and their eluents on the growth of S. mutans were determined according to colony-forming unit counts and metabolic tests. The effects of the cured sealants on the adherence and membrane integrity of S. mutans were investigated using confocal laser-scanning microscopy (CLSM in conjunction with fluorescent indicators. Compared with the negative control and commercial control, the cured MAE-DB-incorporated pit-and-fissure sealant exhibited a significant inhibitory effect on the growth of S. mutans (P < 0.05, whereas the eluents did not show any detectable antibacterial activity. The commercial control also showed no detectable bactericidal activity. Moreover, the aged experimental material retained its property of contact inhibition of biofilm formation. The fluorescence analysis of CLSM images demonstrated that the cured MAE-DB-incorporated sealant could hamper the adherence of S. mutans and exert a detrimental effect on bacterial membrane integrity. The incorporation of MAE-DB can render a pit-and-fissure sealant with contact antibacterial activity after polymerization via influencing the growth, adherence, and membrane

  13. A synergistic effect of artocarpanone from Artocarpus heterophyllus L. (Moraceae) on the antibacterial activity of selected antibiotics and cell membrane permeability.

    Science.gov (United States)

    Septama, Abdi Wira; Xiao, Jianbo; Panichayupakaranant, Pharkphoom

    2017-01-01

    Artocarpanone isolated from Artocarpus heterophyllus L. (Moraceae) exhibits antibacterial activity. The present study investigated synergistic activity between artocarpanone and tetracycline, ampicillin, and norfloxacin, respectively, against methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa , and Escherichia coli . A broth microdilution method was used for evaluating antibacterial susceptibility. Synergistic effects were identified using a checkerboard method, and a bacterial cell membrane disruption was investigated by assay of released 260 nm absorbing materials following bacteriolysis. Artocarpanone exhibited weak antibacterial activity against MRSA and P. aeruginosa with minimum inhibitory concentrations values of 125 and 500 μg/mL, respectively. However, the compound showed strong antibacterial activity against E. coli (7.8 μg/mL). The interaction between artocarpanone and all tested antibiotics revealed indifference and additive effects against P. aeruginosa and E. coli (fractional inhibitory concentration index [FICI] values of 0.75-1.25). The combination of artocarpanone (31.2 μg/mL) and norfloxacin (3.9 μg/mL) resulted in synergistic antibacterial activity against MRSA, with an FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time-kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, the combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. These findings suggest that artocarpanone may be used to enhance the antibacterial activity of norfloxacin against MRSA.

  14. Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films : Antibacterial application

    NARCIS (Netherlands)

    Calderon, S.; Ferreri, I.; Henriques, M.; De Hosson, J. T. M.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The antibacterial properties of materials developed for medical devices with embedded silver nanoparticles are enhanced by controlling the release of silver ions. In this study, a simple experimental procedure for the augmentation of the silver ion release from ZrCN-Ag coatings is described. The

  15. Synthesis and in vitro antibacterial activity of oxazolidine LBM-415 analogs as peptide deformylase inhibitors.

    Science.gov (United States)

    Yu, Linliang; Zhou, Weicheng; Wang, Zhenyu

    2011-03-01

    The drug resistant bacteria pose a severe threat to human health. The increasing resistance of those pathogens to traditional antibacterial therapy renders the identification of new antibacterial agents with novel antibacterial mechanisms an urgent need. In this study, a series of (2S)-N-substituted-1-[(formyhydroxyamino)methyl]-1-oxohexyl]-2-oxazolidinecarboxamides were designed, synthesized and evaluated for in vitro antibacterial activity. Most of these compounds displayed good activities against Gram-positive organisms comparable to reference agent LBM-415. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  16. Biofunctionalization of Titanium Granules with Simvastatin for Improving Osteogenic Activity and Antibacterial Properties (Ex Vivo Study).

    Science.gov (United States)

    Karaji, Zahra Gorgin; Houshmand, Behzad; Abbasi, Shahsanam; Shafiei, Sara; Faghihi, Shahab

    Titanium-based biomaterials present good biocompatibility, while their osseointegration and antibacterial properties need to be improved. This study aimed to enhance the bone-bonding ability of titanium-based granules, which are intended to be used as bone graft. The titanium granules were anodized in ethylene glycol-based electrolyte and subsequently annealed to be loaded separately with simvastatin. The samples were then inspected with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for drug loading. The release of simvastatin from titanium granule samples was measured after soaking samples in phosphate-buffered saline (PBS) for 30 days using ultraviolet-visible (UV/Vis) spectroscopy. The alkaline phosphatase (ALP) activity of MG63 osteosarcoma-loaded samples was measured, and microbroth dilution assay was performed to evaluate the antibacterial potential of drug-loaded and nonloaded titanium granule samples for bacterial growth. The results expressed the gradual and constant release of simvastatin within the duration of the examination. ALP of the samples showed improved activity of anodized and annealed granules, while the antibacterial test illustrated no significant improvement in their bactericidal effects. However, the simvastatin-loaded samples showed an improved antibacterial effect compared with nonloaded samples. It is assumed that anodizing, annealing, and subsequent simvastatin loading of titanium granules could be used as surface modification to improve osseointegration and restrain bacterial growth and adhesion. It is fair to believe that the results of this study could be used to treat titanium granules as bone graft substitute materials for dental and orthopedic applications.

  17. Antibacterial activity of chemical constituents isolated from Asparagus racemosus

    Directory of Open Access Journals (Sweden)

    Muhammad Abdullah Shah

    2014-03-01

    Full Text Available Asparagus racemosus is a medical extensively used in traditional medicine for various disorders including its use in infectious. So far work has been done to identify its active constituents responsible for antiseptic folk use of this plant. In the current investigation, we have made an effort to identify its chemical constituents that might be partly responsible for antimicrobial properties. Extraction and isolation of plant extract lead to isolation of two nor-lignans and two steroidal triterpenes (compound 1 to 4. All compound showed considerable antibacterial activities against E. coli and S. aureus while no significant activity was observed against S. typhi. This study highlighted the potential of A. racemosus to be further explored as a source of bioactive natural products.

  18. Antibacterial activity of extracts of marine algae from the Red Sea of ...

    African Journals Online (AJOL)

    Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. ... African Journal of Biotechnology ... The antibacterial activities of petroleum ether, diethyl ether, ethyl acetate and methanol extracts of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta were studied.

  19. Antibacterial activity of caffeine against plant pathogenic bacteria.

    Science.gov (United States)

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  20. Antibacterial activity of nicotine and its copper complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cu(II)-nicotine was isolated from leaves of Nicotiana tabacum using metal ions following the method of Munir et al., 1994. Their antibacterial activity against ten different species of gram positive and gram negative bacteria were studied. For comparative study, pure sample of nicotine and metal salts used for complexation; Copper(II) chloride were also subjected to antibacterial tests with the same species of bacteria under similar conditions. Results indicated that nicotine had no effect on all the bacteria tested except Escherichia coli, Pseudomonas aeroginosa and Enterococcus faecalis, which showed 14 mm zone of inhibition at 200 mu g l00 mul/sup -1/ Copper(II) chloride was found to be effective against seven species and ineffective against three species of selected bacteria. On the other hand, Cu(II)-nicotine complex was ineffective against five species of bacteria at lower level while at higher level, only one species of bacteria showed resistance against this complex. The complex was compared with three standard antibiotics. Thus, this complex can be used against a variety of microorganisms at higher level. (author)

  1. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    International Nuclear Information System (INIS)

    Fu Jianxi; Wang Huajie; Zhou Yanqing; Wang Jinye

    2009-01-01

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 μm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  2. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.

    Science.gov (United States)

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.

  3. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  4. Complexation of trichlorosalicylic acids by alkaline and first row transition metals as a switch for their antibacterial activity

    KAUST Repository

    Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Basit Wani, Abdul; Manhas, Anu; Kaur, Sukhmanpreet; Poater, Albert; Chadar, Hemlata; NirajUpadhyay

    2017-01-01

    3,5,6-trichlorosalicylic acid (TCSA) does not show a good antibacterial activity. In contrast, here metal complexes with TCSA have shown better antibacterial activity for selected bacterial strains with a good degree of selectivity. Amongst

  5. Antibacterial activity of 3-methylbenzo[d]thiazol-methylquinolinium derivatives and study of their action mechanism.

    Science.gov (United States)

    Sun, Ning; Du, Ruo-Lan; Zheng, Yuan-Yuan; Guo, Qi; Cai, Sen-Yuan; Liu, Zhi-Hua; Fang, Zhi-Yuan; Yuan, Wen-Chang; Liu, Ting; Li, Xiao-Mei; Lu, Yu-Jing; Wong, Kwok-Yin

    2018-12-01

    The increasing incidence of multidrug resistant bacterial infection renders an urgent need for the development of new antibiotics. To develop small molecules disturbing FtsZ activity has been recognized as promising approach to search for antibacterial of high potency systematically. Herein, a series of novel quinolinium derivatives were synthesized and their antibacterial activities were investigated. The compounds show strong antibacterial activities against different bacteria strains including MRSA, VRE and NDM-1 Escherichia coli. Among these derivatives, a compound bearing a 4-fluorophenyl group (A2) exhibited a superior antibacterial activity and its MICs to the drug-resistant strains are found lower than those of methicillin and vancomycin. The biological results suggest that these quinolinium derivatives can disrupt the GTPase activity and dynamic assembly of FtsZ, and thus inhibit bacterial cell division and then cause bacterial cell death. These compounds deserve further evaluation for the development of new antibacterial agents targeting FtsZ.

  6. Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.S.S.; Lima, S.G. de; Lopes, J.A.D.; Chaves, M.H.; Cito, A.M.G.L. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Quimica]. E-mail: gracito@ufpi.br; Oliveira, E.H. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Microbiologia e Parasitologia; Reis, F.A.M. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Quimica

    2008-07-01

    Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by {sup 1}H and {sup 13}C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), mono ene anacardic acid (3), alpha-amirine (4), beta-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp. (author)

  7. Synthesis and antibacterial activity of of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Sadowski, Z

    2009-01-01

    Silver nanoparticles have been known to have inhibitory and bactericidal effects but the antimicrobial mechanism have not been clearly revealed. Here, we report on the synthesis of metallic nanoparticles of silver using wild strains of Penicillium isolated from environment. Kinetics of the formation of nanosilver was monitored using the UV-Vis. TEM micrographs showed the formation of silver nanoparticles in the range 10-100 nm. Obtained Ag nanoparticles were evaluated for their antimicrobial activity against the gram-positive and gram-negative bacteria. As results, Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were effectively inhibited. Nanosilver is a promising candidate for development of future antibacterial therapies because of its wide spectrum of activity.

  8. Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

    International Nuclear Information System (INIS)

    Silva, M.S.S.; Lima, S.G. de; Lopes, J.A.D.; Chaves, M.H.; Cito, A.M.G.L.; Oliveira, E.H.; Reis, F.A.M.

    2008-01-01

    Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by 1 H and 13 C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), mono ene anacardic acid (3), alpha-amirine (4), beta-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp. (author)

  9. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid

    International Nuclear Information System (INIS)

    Ngo Vo Ke Thanh; Nguyen Thi Phuong Phong

    2009-01-01

    In this work, silver nanoparticles were prepared by polyol process with microwave heating and incorporated on cotton fabric surfaces. The antibacterial performance of the antibacterial cotton fabric was tested for different concentration of nano-sized silver colloid, contact time germs, and washing times. It was found that antibacterial activity increased with the increasing concentration of nano-sized silver colloid. The antibacterial fabric with 758 mg/kg of silver nanoparticles on surface cotton was highly effective in killing test bacteria and had excellent water resisting property.

  10. Antibacterial activity in bovine lactoferrin-derived peptides.

    Science.gov (United States)

    Hoek, K S; Milne, J M; Grieve, P A; Dionysius, D A; Smith, R

    1997-01-01

    Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified, one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf, one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond. These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ion-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC). They were characterized by N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination. Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques. This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 microM or less. Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC. Subfragment 1 (residues 1 to 10) was active against most of the test microorganisms at concentrations of 10 to 50 microM. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 microM. These antibacterial studies indicate that the activity of lactoferricin is mainly, but not wholly, due to its N-terminal region. PMID:8980754

  11. Antibacterial activity of hemocyanin from red swamp crayfish (Procambarus clarkii).

    Science.gov (United States)

    Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Muhammad, Asim; Li, Jun; Lan, Jiangfeng; Lin, Li

    2018-04-01

    Hemocyanins (HMC): the copper-containing respiratory proteins present in invertebrate hemolymph, which plays many essential roles in the immune system. Currently, little is known about the HMC domains of Procambarus clarkii (P. clarkii) and their function in antimicrobial immune response. In this present study, we comparatively studied the expression pattern of native PcHMC with the three recombinant proteins of variable domains of crayfish hemocyanin (PcHMC-N, N-terminal domain of hemocyanin; PcHMC-T, tyrosinase domain of hemocyanin; PcHMC-C, C-terminal domain of hemocyanin). The results showed that three purified recombinant proteins had a strong binding to various bacteria and lipopolysaccharides that further highly agglutinated. The HMCs recombinant proteins showed strong antibacterial activity against V. parahaemolyticus and S. aureus by bacterial growth inhibition, phenoloxidase (PO) and phagocytosis assays. Specifically, rPcHMC1-T and rPcHMC1-C inhibited both the bacteria efficiently, rPcHMC1-T was highly upregulated the PO activity than the other recombinant proteins. Whereas, recombinant proteins pretreated crayfish hemocytes participated in phagocytosis activity, rPcHMC1-N and rPcHMC1-C proteins had a profound effect than the rPcHMC1-T on S. aureus and V. parahaemolyticus phagocytosis. The crayfish hemocyanin domains clearly exhibited antibacterial and phagocytic activities against both the bacteria, suggesting that its variable domains of hemocyanin have the different function on specific pathogen during the assault of pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhen [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Renfeng [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Zhuo, Xianglong, E-mail: doctorzhuo@139.com [Department of Spinal Surgery, Liuzhou Worker' s Hospital, Liuzhou 545001 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Huang, Yongcan [Orthopedics Research Center, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Ma, Lili; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Liang, Yanqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde; Bao, Huijing; Li, Xue; Huo, Qianyu; Liu, Zhili [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Yang, Xianjin, E-mail: xjyang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-02-01

    Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification. - Highlights: • Ag- and Sr-substituted HA coating is deposited on titanium by hydrothermal method. • This coating shows a remarkable antibacterial activity and good biocompatibility. • The coating process is simple and suitable for large-scale fabrication. • The possible mechanism of Sr{sup 2+} is proposed.

  13. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections

    Directory of Open Access Journals (Sweden)

    Sampath Kumar eT.S.

    2015-05-01

    Full Text Available Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant (MDR bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA nanoparticles has been developed. Antibacterial ions such as zinc, silver and strontium have been incorporated into CDHA at concentrations of 6 at. %, 0.25-0.75 at. % and 2.5-7.5 at. % respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for five days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on S.aureus and E.coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria while SrCDHA was weakly active against S.aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  14. In vitro antibacterial and free radical scavenging activity of green hull of Juglans regia

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2013-08-01

    Full Text Available Antioxidant supplements from plants are vital to count the oxidative damage in cells. We assessed the antioxidants and antibacterial activity of green hull of Juglans regia in this study. According to our results the maximum antibacterial activity was observed in ethanolic extract when compared to other extract. So, the ethanolic extract was studied for antioxidant activity which exhibited high antiradical activity against DPPH, hydroxyl, and nitric oxide radicals. In conclusion, green hull of J. regia showed strong reducing power activity and total antioxidant capacity. The results justify the therapeutic application of plant in the indigenous system of medicine. Keywords: Juglans regia, Ethanolic extract, Antioxidants, DPPH, Antibacterial activity

  15. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    International Nuclear Information System (INIS)

    Joh, Eunha; Park, Jang Guen

    2014-01-01

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future

  16. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  17. Antibacterial activity of Ocimum gratissimum L. essential oil

    Directory of Open Access Journals (Sweden)

    Celso Vataru Nakamura

    1999-09-01

    Full Text Available The essential oil (EO of Ocimum gratissimum inhibited Staphylococcus aureus at a concentration of 0.75 mg/ml. The minimal inhibitory concentrations (MICs for Shigella flexineri, Salmonella enteritidis, Escherichia coli, Klebsiella sp., and Proteus mirabilis were at concentrations ranging from 3 to 12 mg/ml. The endpoint was not reached for Pseudomonas aeruginosa (>=24 mg/ml. The MICs of the reference drugs used in this study were similar to those presented in other reports. The minimum bactericidal concentration of EO was within a twofold dilution of the MIC for this organism. The compound that showed antibacterial activity in the EO of O. gratissimum was identified as eugenol and structural findings were further supported by gas chromatography/mass spectra retention time data. The structure was supported by spectroscopic methods.

  18. Antibacterial Activity of Pollen Extracts on Pathogenic Microflora from Milk

    Directory of Open Access Journals (Sweden)

    Liviu Alexandru Marghitas

    2016-11-01

    Full Text Available Bee-pollen was used for thousands of years as functional food and medicinal plant product. Various beneficial effects were attributed to it and its consumption was increased over the years. The tests have been made on 16 pollen samples of the following families: Rosaceae, Salicaceae, Fabaceae, Tiliaceae, Asteraceae, Brassicaceae and two polifloral pollen assortment, using difuzimetric method. Among the tested bacteria, the Onobrychis viciifolia pollen has the highest sensitivity 11.86±1.79 mm while the low antibacterial activity was registered for Brassica sp. pollen  8.65±2.65 mm. As the use of antibiotic substances over a long period of time resulted in larger doses of residues in milk and representing a potential biohazard, the use of ethanol extracts from beepollen is a real alternative in the treatment of cows with various diseases.

  19. Antibacterial Activity of Anthraquinone from Aloe on Spiced Pig Head

    Science.gov (United States)

    Xu, Lingyi; Li, Xiao; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua

    2017-12-01

    [Objective] To optimize the extraction of anthraquinone from Aloe by ultrasonic extraction and its antibacterialactivity. [Method]The influences of different extraction time and ethanol concentration, on anthraquinone contentwere evaluated by asingle factor experiment. And anthraquinone content was determined by ultraviolet spectrophotometry. The bacteriostasis of anthraquinone on spiced pig head’s common putrefying bacteria: Staphylococcus, Serratieae, Bacillus, Proteus and the minimal inhibitory concentration (MIC) were studied by oxford plate assay system. [Result]The best extraction time was 30 minutes and the best ethanol concentration was 80%. The antibacterial activity of the Aloe anthraquinone on Staphylococcus Aureus, Bacillus Proteus is obviously, the minimum inhibitory concentrations were 0.0625 g/mL, 0.05 g/mL, 0.125 g/mL respectively and no inhibitory effect on Serratieae. [Conclusions] The anthraquinones from Aloe can inhibit a part Of spoilage bacteria inspiced pig heads.

  20. Hydroxyapatite-ciprofloxacin delivery system: Synthesis, characterisation and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Ciocilteu Maria-Viorica

    2018-06-01

    Full Text Available The main objective of this study was to synthesize hydroxyapatite-ciprofloxacin composites using a chemical precipitation method and to evaluate the properties and in vitro release profile of the drug from the hydroxyapatite-ciprofloxacin composites. Composite characterization was achieved by FT-IR, XRD and DLS. Ciprofloxacin determination was accomplished by HPLC, resulting in good incorporation efficiency of the drug (18.13 %. The in vitro release study (Higuchi model C = K t1/2 and Ritger-Peppas model, C = K t0.6 showed a diffusion-controlled mechanism. The antibacterial activity showed that the bacterial growth inhibition zones were approximately equal for the synthesis composites and for the mechanical mixture on the Staphylococcus aureus germ.

  1. Antibacterial and laxative activities of strictinin isolated from Pu'er tea (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Sheng-Kuo Hsieh

    2016-10-01

    Full Text Available Strictinin, the major phenolic compound in Pu'er teas produced from young leaves and buds of wild trees, was isolated to evaluate its antibacterial and laxative activities. The minimum inhibitory concentrations of strictinin against Propionibacterium acnes and Staphylococcus epidermidis were determined as 250 μM and 2000 μM, respectively, apparently higher than those of several antibiotics commonly used for bacterial infections. The additive and synergistic effects on the inhibitory activities of strictinin combined with other commercial antibiotics were observed in two bacteria tested in this study via the analysis of fractional inhibitory concentrations. Laxative activity was observed on defecation of the rats fed with strictinin. Further analysis showed that the laxative effect of strictinin was presumably caused by accelerating small intestinal transit, instead of enhancing gastric emptying, increasing food intake, or inducing diarrhea in the rats. Taken together with the antiviral activities demonstrated previously, it is suggested that strictinin is one of the active ingredients responsible for the antiviral, antibacterial, and laxative effects of wild Pu'er tea, and has the potential to be developed as a mild natural substitute for antibiotics and laxatives.

  2. Antiproliferative and Antibacterial Activities of Cirsium scabrum from Tunisia

    Directory of Open Access Journals (Sweden)

    Ramla Sahli

    2017-01-01

    Full Text Available Several Cirsium species are known for their uses in traditional medicine and consequently are studied for their phytochemical content and their biological activities. In the framework of a previous study conducted on eight extremophile plants from Tunisia, we highlighted that the crude methanolic extract of C. scabrum, a not investigated thistle, showed moderate but quite selective cytotoxic activity against the cancerous cell line J774 compared to the noncancerous cell line WI38 (IC50 = 11.53 μg/ml on J774, IC50 = 29.89 µg/ml on WI38, and selectivity index = 2.6. In the current study, the partitions of the leaves of C. scabrum were analyzed for their antiproliferative activity on the same cell lines. From the most active petroleum ether partition, we isolated four triterpenoids including lupeol, taraxasterol acetate, and a (1 : 1 mixture of 25-hydroperoxycycloart-23-en-3β-ol and 24-hydroperoxycycloart-25-en-3β-ol. These two cycloartane-type triterpenoids are mostly responsible for this cytotoxic activity. On the other hand, the antimicrobial potential of this plant was also evaluated against 36 microorganisms. The moderate antibacterial activity against 6 Staphylococcus aureus and 2 Dermabacter hominis strains is mainly attributed to the butanol partition whose major compounds are glycosides of flavones.

  3. Antiproliferative and Antibacterial Activities of Cirsium scabrum from Tunisia.

    Science.gov (United States)

    Sahli, Ramla; Rivière, Céline; Dufloer, Cédric; Beaufay, Claire; Neut, Christel; Bero, Joanne; Hennebelle, Thierry; Roumy, Vincent; Ksouri, Riadh; Quetin-Leclercq, Joelle; Sahpaz, Sevser

    2017-01-01

    Several Cirsium species are known for their uses in traditional medicine and consequently are studied for their phytochemical content and their biological activities. In the framework of a previous study conducted on eight extremophile plants from Tunisia, we highlighted that the crude methanolic extract of C. scabrum , a not investigated thistle, showed moderate but quite selective cytotoxic activity against the cancerous cell line J774 compared to the noncancerous cell line WI38 (IC 50 = 11.53  μ g/ml on J774, IC 50 = 29.89  µ g/ml on WI38, and selectivity index = 2.6). In the current study, the partitions of the leaves of C. scabrum were analyzed for their antiproliferative activity on the same cell lines. From the most active petroleum ether partition, we isolated four triterpenoids including lupeol, taraxasterol acetate, and a (1 : 1) mixture of 25-hydroperoxycycloart-23-en-3 β -ol and 24-hydroperoxycycloart-25-en-3 β -ol. These two cycloartane-type triterpenoids are mostly responsible for this cytotoxic activity. On the other hand, the antimicrobial potential of this plant was also evaluated against 36 microorganisms. The moderate antibacterial activity against 6 Staphylococcus aureus and 2 Dermabacter hominis strains is mainly attributed to the butanol partition whose major compounds are glycosides of flavones.

  4. Antibacterial and antifungal activities of some Mexican medicinal plants.

    Science.gov (United States)

    Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E

    2009-12-01

    In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.

  5. Antifungal and antibacterial activities of Petroselinum crispum essential oil.

    Science.gov (United States)

    Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B

    2016-07-29

    Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent.

  6. Antibacterial activities of PHU - AgNO3 nanocomposite

    International Nuclear Information System (INIS)

    Panzaru, Carmen; Danciu, M; Mihailovici, Maria-Sultana; Ciobanu, C

    2009-01-01

    Objective was to characterize the antibacterial action for six combination of PHU-AgNO 3 synthesized in 'Petru Poni' Institute of Macromolecular Chemistry, Iasi, Romania. The advantages of Ag nanoparticles are durability, heat resistant, low toxicity. Silver is known for its antibacterial qualities for a long time and has been used in medicine in topical treatment.

  7. Antioxidant and antibacterial activities of acetonitrile and hexane extracts of Lentinus tigrinus and Pleurotus djamour

    Science.gov (United States)

    This paper highlighted the antioxidant and antibacterial activities of Lentinus tigrinus and Pleurotus djamour. Extracts of mushroom fruiting bodies were obtained using hexane and acetonitrile solvents. Acetonitrile extracts of both mushrooms exhibited higher biological activities than hexane extrac...

  8. Antioxidant and antibacterial activity of Thai medicinal plant (Capparis micracantha)

    Science.gov (United States)

    Laoprom, Nonglak; Sangprom, Araya; Chaisri, Patcharaporn

    2018-04-01

    This work aims to study the antioxidants capacity, Total phenolic content and antibacterial activity of Thai medicinal plant for the treatment of dermatitis-related inflammations, Capparis micracantha. Crude extract from stem of Thai medicinal plant was extracted with hexane, ethyl acetate, methanol and water. The antioxidant activities (IC50) was evaluated with 1,1-diphenyl-1-princylhydrazyl (DPPH) radical scavenging assay. Total phenolic content (TPC) was determined by using Folin-Ciocalteu method. Bacterial activities was tested with four human pathogenic bacteria; Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Stapylococcus epidermidis by using agar diffusion assay. Minimum Inhibition Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were also determined by broth dilution method. For antioxidant activity, the methanol fraction from stem extract showed the highest activity with an IC50 of 2.4 mg/ml. Water extraction was the high TPC with 10,136.9 mg GAE/g dry weight. Methanol and water extraction showed the remarkable inhibition of bacterial growth was shown against L. monocytogenes and S. aureus. In addition, ethyl acetate, methanol and water fraction from stem extract against S. epidermidis. The present finding suggests that the extract of C. micracantha could be used to discover bioactive natural products that may serve as pharmaceutical products.

  9. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.

    2017-01-01

    to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared...... for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial...... properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live...

  10. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms

    OpenAIRE

    Teanpaisan, Rawee; Kawsud, Pajaree; Pahumunto, Nuntiya; Puripattanavong, Jindaporn

    2016-01-01

    To evaluate the antibacterial activity of 12 ethanol extracts of Thai traditional herb against oral pathogens. The antibacterial activities were assessed by agar well diffusion, broth microdilution, and time-kill methods. Antibiofilm activity was investigated using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium-bromide (MTT) assay. High performance liquid chromatography (HPLC), thin layer chromatography (TLC) fingerprinting, and TLC-bioautography were used to determine the active ...

  11. Antibacterial Activity of Long-Chain Fatty Alcohols against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Yoshihiro Inoue

    2007-02-01

    Full Text Available The antibacterial activity against Staphylococcus aureus of long-chain fatty alcohols was investigated, with a focus on normal alcohols. The antibacterial activity varied with the length of the aliphatic carbon chain and not with the water/octanol partition coefficient. 1-Nonanol, 1-decanol and 1-undecanol had bactericidal activity and membrane-damaging activity. 1-Dodecanol and 1-tridecanol had the highest antibacterial activity among the long-chain fatty alcohols tested, but had no membrane-damaging activity. Consequently, it appears that not only the antibacterial activity but also the mode of action of long-chain fatty alcohols might be determined by the length of the aliphatic carbon chain.

  12. ZnO/graphite composites and its antibacterial activity at different conditions.

    Science.gov (United States)

    Dědková, Kateřina; Janíková, Barbora; Matějová, Kateřina; Čabanová, Kristina; Váňa, Rostislav; Kalup, Aleš; Hundáková, Marianna; Kukutschová, Jana

    2015-10-01

    The paper reports laboratory preparation, characterization and in vitro evaluation of antibacterial activity of ZnO/graphite nanocomposites. Zinc chloride and sodium carbonate served as precursors for synthesis of zinc oxide, while micromilled and natural graphite were used as the matrix for ZnO nanoparticles anchoring. During the reaction of ZnCl2 with saturated aqueous solution of Na2CO3a new compound is created. During the calcination at the temperature of 500 °C this new precursors decomposes and ZnO nanoparticles are formed. Composites ZnO/graphite with 50 wt.% of ZnO particles were prepared. X-ray powder diffraction and Raman microspectroscopy served as phase-analytical methods. Scanning electron microscopy technique was used for morphology characterization of the prepared samples and EDS mapping for visualization of elemental distribution. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity and antibacterial activity at dark conditions. Common human pathogens served as microorganism for antibacterial assay. Antibacterial activity of ZnO/graphite composites could be based on photocatalytic reaction; however there is a role of Zn(2+) ions on the resulting antibacterial activity which proved the experiments in dark condition. There is synergistic effect between Zn(2+) caused and reactive oxygen species caused antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis, antioxidant and antibacterial activities of 3-nitrophenyl ferrocene

    Science.gov (United States)

    Benabdesselam, S.; Izza, H.; Lanez, T.; Guechi, E. K.

    2018-03-01

    The current work aims in its first part to synthesize 3-nitrophenylferrocene after diazotizing nitroaniline in the meta position by the sodium nitrite and the formation of the corresponding diazonium salt: 3-nitrobenzendiazonium sulfate, then the salt in solution was added to the ferrocene for the purpose of introducing the nitrophenyl moiety thereon (arylation) and the formation of 3-nitrophenylferrocene. The second part is devoted to the study of the antioxidant activity of 3-NPF by applying the trapping test of superoxide radical using cyclic voltammetry, the free radical DPPH trapping test by spectrophotometry. The results showed that 3-nitrophenylferrocene has a scavenging effect of DPPH radical with IC50 = 1.44mg/ml, superoxide radical with IC50=5.38mg/ml. The third part is devoted to the study of antibacterial activity of the synthesized compound tested on four strains of bacteria: Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Klebsiella pneumoniae. The obtained results clearly showed that 3-nitrophenylferrocene has low activities on the four bacterial strains with diameters of inhibition zones do not exceeding 17 mm at concentrations of 25mg/ml.

  14. Screening for antibacterial and antibiofilm activities in Astragalus angulosus

    Directory of Open Access Journals (Sweden)

    Hussein Kanaan

    2017-03-01

    Methods: the plant was collected in April of 2013 and it was divided into several different portions, then its extracts were obtained by maceration using two different solvents. Extract analysis followed directly, where microtiter broth dilution method was employed to assess antibacterial activity, while antibiofilm potential was tested using colorimetric method. Results: whole plant ethanolic extract showed the highest bacteriostatic effect at a concentration of 12.78 mg ml-1 and also was the most versatile exerting its effect against 3 different strains. Other extracts also exhibited an effect but at higher concentrations and each against a single strain. Regarding antibiofilm activity, the majority of the extracts were able to eradicate >50% of Staphylococcus epidermidis preformed biofilm, where the highest activity was obtained with flower fraction extracted in water, achieving 67.7% biofilm eradication at 0.2 mg ml-1. Conclusions: This plant possesses a promising potential in regard to eradicating bacteria and their biofilms, and it is the first contributing step of establishing a library for the endemic Lebanese plants in this domain. [J Complement Med Res 2017; 6(1.000: 50-57

  15. Antibacterial, antifungal, and antiviral activities of some flavonoids.

    Science.gov (United States)

    Orhan, Didem Deliorman; Ozçelik, Berrin; Ozgen, Selda; Ergun, Fatma

    2010-08-20

    Antibacterial and antifungal activities of six plant-derived flavonoids representing two different structural groups were evaluated against standard strains of Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and their drug-resistant isolates, as well as fungi (Candida albicans, C. krusei) using the microdilution broth method. Herpes simplex virus Type-1 and Parainfluenza-3 virus were employed for antiviral assessment of the flavonoids using Madin-Darby bovine kidney and Vero cell lines. Ampicillin, gentamycin, ofloxacin, levofloxacin, fluconazole, ketoconazole, acyclovir, and oseltamivir were used as the control agents. All tested compounds (32-128 microg/ml) showed strong antimicrobial and antifungal activities against isolated strains of P. aeruginosa, A. baumanni, S. aureus, and C. krusei. Rutin, 5,7-dimethoxyflavanone-4'-O-beta-D-glucopyranoside and 5,7,3'-trihydroxy-flavanone-4'-O-beta-D-glucopyranoside (0.2-0.05 microg/ml) were active against PI-3, while 5,7-dimethoxyflavanone-4'-O-[2''-O-(5'''-O-trans-cinnamoyl)-beta-D-apiofuranosyl]-beta-D-glucopyranoside (0.16-0.2 microg/ml) inhibited potently HSV-1. Copyright 2009 Elsevier GmbH. All rights reserved.

  16. Antibacterial activity of essential oils from Australian native plants.

    Science.gov (United States)

    Wilkinson, Jenny M; Cavanagh, Heather M A

    2005-07-01

    To date, of the Australian essential oils, only tea tree (Melaleuca alternifolia) and Eucalyptus spp. have undergone extensive investigation. In this study a range of Australian essential oils, including those from Anethole anisata, Callistris glaucophyllia, Melaleuca spp. and Thyptomine calycina, were assayed for in vitro antibacterial activity. M. alternifolia was also included for comparison purposes. Activity was determined using standard disc diffusion assays with each oil assayed at 100%, 10% and 1% against five bacteria (Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Alcaligenes faecalis) and the yeast, Candida albicans. All bacteria, with the exception of Ps. aeruginosa, were susceptible to one or more of the essential oils at 100%, with only Eremophilia mitchelli inhibiting the growth of any bacteria at 1% (inhibition of Sal. typhimurium). Where multiple samples of a single oil variety were tested variability in activity profiles were noted. This suggests that different methods of preparation of essential oils, together with variability in plant chemical profiles has an impact on whether or not the essential oil is of use as an antimicrobial agent. These results show that essential oils from Australian plants may be valuable antimicrobial agents for use alone or incorporated into cosmetics, cleaning agents and pharmaceutical products.

  17. Antibacterial Activity of Oenothera rosea (L 'Her) Leaf Extracts

    OpenAIRE

    Gomez-Flores, Ricardo; Reyna-Martínez, Raúl; Tamez-Guerra, Patricia; Quintanilla-Licea, Ramiro

    2012-01-01

    Aims: To determine the antibacterial effect of Oenothera rosea against Escherichia coli, Salmonella enteritidis and Vibrio cholerae. Study Design: In vitro antibacterial study. Place and Duration of Study: Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología and Departamento de Química, San Nicolás de los Garza, NL. México, from June 2010 to June 2011. Methodology: The antibacterial in vitro effect of methanol and aqueous extracts of...

  18. Brine shrimp lethality and antibacterial activity of extracts from the bark of Schleichera oleosa

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-08-01

    Full Text Available Objective: To determine the antibacterial efficacy and brine shrimp toxicity of extracts (hexane, dichloromethane, ethyl acetate, methanol and water obtained from the bark of Schleichera oleosa. Methods: The powdered bark sample was Soxhlet extracted sequentially in hexanes, dichloromethane, ethyl acetate, methanol and water. Antibacterial evaluation was carried out by following the agar diffusion method and amoxicillin disc was used as a reference. Slightly modified Meyer’s method was used to determine the toxicity of the extracts in brine shrimps. Results: Among the nine bacterial strains tested, the methanolic and aqueous extracts showed promising antibacterial efficacy against Serratia marcescens, Escherarichia coli, Bacillus subtilis and Micrococcus luteus. None of the extracts were found significantly toxic to brine shrimps. Conclusions: Strong antibacterial activity and low brine shrimp toxicity of methanolic and aqueous extracts can provide new antibacterial compounds.

  19. Antibacterial Activities of Aqueous and Alcoholic Extracts of 34 Indian Medicinal Plants against some Staphylococcus species

    OpenAIRE

    PAREKH, Jigna; CHANDA, Sumitra V.

    2008-01-01

    Thirty-four Indian medicinal plants belonging to 28 different families were screened for potential antibacterial activity against 3 Staphylococcus species, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus subflava. Antibacterial activity of aqueous and alcoholic extracts was performed by agar disc diffusion method and agar well diffusion method. The alcoholic extracts were more active than aqueous extracts for all the plants studied. The most susceptible bacterium ...

  20. Antibacterial Activities of Aqueous and Alcoholic Extracts of 34 Indian Medicinal Plants against some Staphylococcus species

    OpenAIRE

    PAREKH, Jigna; CHANDA, Sumitra V.

    2014-01-01

    Thirty-four Indian medicinal plants belonging to 28 different families were screened for potential antibacterial activity against 3 Staphylococcus species, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus subflava. Antibacterial activity of aqueous and alcoholic extracts was performed by agar disc diffusion method and agar well diffusion method. The alcoholic extracts were more active than aqueous extracts for all the plants studied. The most susceptible bacterium ...

  1. Antibacterial activity of the sponge Ircinia ramosa: Importance of its surface-associated bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Anil, A.C.

    , and concentrated under reduced pressure in a rotary evap- orator. A flow chart of extraction of sponge and its associated bacteria and anti- bacterial bioassays is given in Figure 1. Fractionation of Crude Extracts. The crude methanol extracts collected during... activity, and (3) whether there is a role for sponge surface-associated bacteria in antibacterial activity of the host? ANTIBACTERIAL ACTIVITY OF SPONGE 59 METHODS AND MATERIALS Specimen Collection and Preparation of Crude Extracts. Specimens of Ircinia...

  2. Antibacterial activity of 2-alkynoic fatty acids against multidrug resistant bacteria

    Science.gov (United States)

    Sanabria-Ríos, David J.; Rivera-Torres, Yaritza; Maldonado-Domínguez, Gamalier; Domínguez, Idializ; Ríos, Camille; Díaz, Damarith; Rodríguez, José W.; Altieri-Rivera, Joanne S.; Ríos-Olivares, Eddy; Cintrón, Gabriel; Montano, Nashbly; Carballeira, Néstor M.

    2014-01-01

    The first study aimed at determining the structural characteristics needed to prepare antibacterial 2-alkynoic fatty acids (2-AFAs) was accomplished by synthesizing several 2-AFAs and other analogues in 18-76% overall yields. Among all the compounds tested, the 2-hexadecynoic acid (2-HDA) displayed the best overall antibacterial activity against Gram-positive Staphylococcus aureus (MIC = 15.6 μg/mL), Staphylococcus saprophyticus (MIC = 15.5 μg/mL), and Bacillus cereus (MIC = 31.3 μg/mL), as well as against the Gram-negative Klebsiella pneumoniae (7.8 μg/mL) and Pseudomonas aeruginosa (MIC = 125 μg/mL). In addition, 2-HDA displayed significant antibacterial activity against methicillin-resistant S. aureus (MRSA) ATCC 43300 (MIC = 15.6 μg/mL) and clinical isolates of MRSA (MIC = 3.9 μg/mL). No direct relationship was found between the antibacterial activity of 2-AFAs and their critical micelle concentration (CMC) suggesting that the antibacterial properties of these fatty acids are not mediated by micelle formation. It was demonstrated that the presence of a triple bond at C-2 as well as the carboxylic acid moiety in 2-AFAs are important for their antibacterial activity. 2-HDA has the potential to be further evaluated for use in antibacterial formulations. PMID:24365283

  3. Antibacterial activity of 2-alkynoic fatty acids against multidrug-resistant bacteria.

    Science.gov (United States)

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Maldonado-Domínguez, Gamalier; Domínguez, Idializ; Ríos, Camille; Díaz, Damarith; Rodríguez, José W; Altieri-Rivera, Joanne S; Ríos-Olivares, Eddy; Cintrón, Gabriel; Montano, Nashbly; Carballeira, Néstor M

    2014-02-01

    The first study aimed at determining the structural characteristics needed to prepare antibacterial 2-alkynoic fatty acids (2-AFAs) was accomplished by synthesizing several 2-AFAs and other analogs in 18-76% overall yields. Among all the compounds tested, the 2-hexadecynoic acid (2-HDA) displayed the best overall antibacterial activity against Gram-positive Staphylococcus aureus (MIC=15.6 μg/mL), Staphylococcus saprophyticus (MIC=15.5 μg/mL), and Bacillus cereus (MIC=31.3 μg/mL), as well as against the Gram-negative Klebsiella pneumoniae (7.8 μg/mL) and Pseudomonas aeruginosa (MIC=125 μg/mL). In addition, 2-HDA displayed significant antibacterial activity against methicillin-resistant S. aureus (MRSA) ATCC 43300 (MIC=15.6 μg/mL) and clinical isolates of MRSA (MIC=3.9 μg/mL). No direct relationship was found between the antibacterial activity of 2-AFAs and their critical micelle concentration (CMC) suggesting that the antibacterial properties of these fatty acids are not mediated by micelle formation. It was demonstrated that the presence of a triple bond at C-2 and the carboxylic acid moiety in 2-AFAs are important for their antibacterial activity. 2-HDA has the potential to be further evaluated for use in antibacterial formulations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Antibacterial activity of Ulva reticulata from southwest coast of Kanyakumari, India

    Directory of Open Access Journals (Sweden)

    Sundaram Ravikumar

    2016-03-01

    Full Text Available Objective: To evaluate the antibacterial activity of Ulva reticulata species collected from the Kanyakumari coast of India to determine their potential for bioactivity. Methods: The algal extract was prepared using n-butanol for evaluating the antibacterial activity of Salmonella typhi, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, Vibrio parahaemolyticus, Bacillus cereus and Listeria monocytogenes. Results: It was observed that the n-butanolic extract of the seaweed powder of Ulva reticulata (25–100 mg/mL exerted notable antibacterial activity against tested bacterial strains. The maximum antibacterial activity was exhibited against Escherichia coli and Bacillus cereus in all concentrations. Conclusions: The results obtained in the present investigation supported the traditional use of the seaweeds against various infections. However, further investigation has been carried out to elucidate the exact mechanism and isolation of active principle.

  5. 3.2. Antibacterial activity of ethynyl-piperidol polymers and their three-iodides

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The antibacterial activity of ethynyl-piperidol polymers and their three-iodides was studied. The antibacterial films based on iodine with copolymer N-vinyl pyrrolidone, methylmethacrylate and butyl acrylate were obtained. It was found that samples containing 9-10% of iodine in copolymer have the antiseptic properties. The antibacterial properties of three-iodides grafted nitrogen containing polymers with cellulose fibrous materials were considered. The membrane-active properties of homo- and copolymers of ethynyl piperidol derivatives were considered as well.

  6. Synergistic antibacterial activity of the essential oil of aguaribay (Schinus molle L.).

    Science.gov (United States)

    de Mendonça Rocha, Pedro M; Rodilla, Jesus M; Díez, David; Elder, Heriberto; Guala, Maria Silvia; Silva, Lúcia A; Pombo, Eunice Baltazar

    2012-10-12

    Schinus molle L. (aguaribay, aroeira-falsa, "molle", family Anacardiaceae), a native of South America, produces an active antibacterial essential oil extracted from the leaves and fruits. This work reports a complete study of its chemical composition and determines the antibacterial activity of Schinus molle L. essential oil and its main components. The results showed that the crude extract essential oil has a potent antibacterial effect on Staphylococcus aureus ATCC 25923, a strong/moderate effect on Escherichia coli ATCC 25922 and moderate/weak one on Pseudomonas aeruginosa ATCC 27853.

  7. Synergistic Antibacterial Activity of the Essential Oil of Aguaribay (Schinus molle L.

    Directory of Open Access Journals (Sweden)

    Lúcia A. Silva

    2012-10-01

    Full Text Available Schinus molle L. (aguaribay, aroeira-falsa, “molle”, family Anacardiaceae, a native of South America, produces an active antibacterial essential oil extracted from the leaves and fruits. This work reports a complete study of its chemical composition and determines the antibacterial activity of Schinus molle L. essential oil and its main components. The results showed that the crude extract essential oil has a potent antibacterial effect on Staphylococcus aureus ATCC 25923, a strong/moderate effect on Escherichia coli ATCC 25922 and moderate/weak one on Pseudomonas aeruginosa ATCC 27853.

  8. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires

    International Nuclear Information System (INIS)

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-01-01

    Graphical abstract: - Highlights: • Ag/AgVO 3 and pure AgVO 3 nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO 3 within 45 min. • Antibacterial activity of Ag/AgVO 3 demonstrated. - Abstract: Ag/AgVO 3 nanowires and AgVO 3 nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO 3 nanowires. The photocatalytic studies revealed that the Ag/AgVO 3 nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO 3 nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO 3 nanorods prove that in case of the Ag dispersed Ag/AgVO 3 nanowires, the enhanced antibacterial action is also due to contribution from the AgVO 3 support

  9. Nanostructured titanium–silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Long [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Gao, Ang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhang, Xiangyu; Huang, Xiaobo; Wang, Yueyue; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan (China); Zhao, Lingzhou, E-mail: zhaolingzhou1983@hotmail.com [State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-11-15

    Graphical abstract: - Highlights: • We fabricate Ti–Ag coatings with different Ag contents and surface morphologies. • The Ti–Ag coatings possess long-term antibacterial ability. • Increased Ag contents in the coatings leads to enhanced osteoblast functions. - Abstract: Bacterial infection and loosing are serious complications for biomedical implants in the orthopedic, dental, and other biomedical fields and the ideal implants should combine good antibacterial ability and bioactivity. In this study, nanostructured titanium–silver (Ti–Ag) coatings with different Ag contents (1.2 to 21.6 at%) are prepared on Ti substrates by magnetron sputtering. As the Ag concentration is increased, the coatings change from having dense columnar crystals to sparse ones and eventually no columnar structure. The Ti–Ag coatings can effectively kill Staphylococcus aureus during the first few days and remain moderately antibacterial after immersion for 75 days. Compared to pure Ti, the Ti–Ag coatings show good cytocompatibility as indicated by good osteoblast adhesion, proliferation, intracellular total protein synthesis, and alkaline phosphatase (ALP) activity. In addition, cell spreading, collagen secretion, and extracellular matrix mineralization are promoted on the coatings with the proper Ag contents due to the nanostructured morphological features. Our results indicate that favorable antibacterial activity and osseointegration ability can be simultaneously achieved by regulating the Ag contents in Ti–Ag coatings.

  10. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Hoang-Linh Nguyen

    2016-03-01

    Full Text Available Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.

  11. Chemical composition and antibacterial activity of the essential oil of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... essential oil of Pinus caribaea from Nigeria. O. Oluwadayo ... Key words: Pinus caribbea, Pinaceae, essential oil, β-phellandrene, β-caryophyllene, antibacterial. .... cones of Pinus. Pinea, P. halepensis, P. pinaster and P. nigra.

  12. Antibacterial activities of three medicinal plants against some gastro ...

    African Journals Online (AJOL)

    ... Klebsiella pneumoniae, Proteus mirabilis, Salmonella typhi, and Shigella ... The antibacterial assay showed that the three plants significantly inhibited all the test ... Bambusa vulgaris, Erigeron floribundus, Fluerya aestuans, medicinal plants ...

  13. Screening for antibacterial and antiprotozoal activities of crude ...

    African Journals Online (AJOL)

    The antibacterial properties of organic and aqueous extracts of these plants were determined by the microdilution method and the microplate alamar blue assay against Stenotrophomonas maltophilia, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter cloacae, ...

  14. Antibacterial and Cytotoxic Activities of Acacia nilotica Lam ...

    African Journals Online (AJOL)

    Erah

    Keywords: Acacia nilotica, ESBLs, MRSA, E. coli, Klebsiella, Antibacterial resistance, Cytotoxicity. Received: ... infectious diseases, is an age-long practice, especially ... used in a variety of infections. ... E. coli K1 [14] and MRSA [15] were used.

  15. Oxidative and antibacterial activity of Mn3O4

    International Nuclear Information System (INIS)

    Chowdhury, Al-Nakib; Azam, Md. Shafiul; Aktaruzzaman, Md.; Rahim, Abdur

    2009-01-01

    Mn 3 O 4 nanoparticles with diameter ca. 10 nm were synthesized by the forced hydrolysis of Mn(II) acetate at 80 deg. C. The X-ray diffraction (XRD), Fourier transform infra red (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques were employed to study structural features and chemical composition of the nanoparticles. The unique oxidative activity of the Mn 3 O 4 nanoparticles was demonstrated in the polymerization and dye degradation reactions. On adding Mn 3 O 4 suspension to an acidic solution of aniline, yielded immediately green sediment of polyaniline (PANI). The organic dyes, viz., methylene blue (MB) and procion red (PR) were found to be completely decolorized from their aqueous solution on treating the dyes with Mn 3 O 4 suspension in acidic media. The Mn 3 O 4 nanoparticles also showed a clear antibacterial activity against the Vibrio cholerae, Shigella sp., Salmonella sp., and Escherichi coli bacteria that cause cholera, dysentery, typhoid, and diarrhea diseases, respectively.

  16. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  17. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined.

  18. Antibacterial activity of extracts of marine algae from the Red Sea of ...

    African Journals Online (AJOL)

    hanan

    2012-09-04

    Sep 4, 2012 ... bacteria (Bacillus subtilis, Methicillin-Resistant Staphylococcus aureus (MRSA) and Staphylococcus aureu) and ... algae have been shown to have antibacterial activity ..... of Sargassum Ilicifolium and Kappaphycus alvarezii.

  19. 3D printed constructs with antibacterial or antitumor activity for surgical treatment of bone defects in cancer patients

    Science.gov (United States)

    Sergeeva, N. S.; Sviridova, I. K.; Komlev, V. S.; Karalkin, P. A.; Kirsanova, V. A.; Akhmedova, S. A.; Shanskij, Ya. D.; Kuvshinova, E. A.; Fedotov, A. Yu.; Teterina, A. Yu.; Barinov, S. M.

    2017-09-01

    The concept of functionalization with bioactive molecules and drugs is one of the most advanced areas of modern bone tissue biomaterial science in terms of enhancement of their osteoconductive and therapeutic properties. The purpose of this study was to develop the approaches for 3D printing of sodium alginate /gelatin /octacalcium phosphate-based constructs with antibacterial and antitumor activity intended for bone defects replacement in the patients with malignant diseases. In this work, we evaluated the drug release kinetic and physicochemical characteristics of the constructs, as well as their specific activity, biocompatibility and osteoplastic properties in in vitro and in vivo tests. The experimental results proved the principal possibility of creating the biocompatible bone substitutes with antibacterial/antitumor activity and maintaining osteoconductive properties by means of 3D printing method.

  20. CHITOSAN: ANTIBACTERIAL ACTIVITY AND PERSPECTIVES OF THE BIOMEDICAL APPLICATION

    Directory of Open Access Journals (Sweden)

    Sukhodub L.B.

    2014-10-01

    Full Text Available In the last decades, serious attention is attracted by the use of natural antimicrobial drugs instead of the usual ones because of pathogens resistance to antibiotics. Chitosan (CS is widely used as an antimicrobial agent owing to its high biodegradability, nontoxicity and antimicrobial properties. CS is a cationic polysaccharide obtained by partial deacetylation of chitin, the major component of crustacean shells. In last time cultivation of fungi provides an alternative source of the CS obtaining: Chitin makes up 45 % of the A. niger and M. rouxii cell wall content and up to 20 % of the P. notatum cell wall content In contrast to other polymers, chitosan is a hydrophilic polymer with positive charge and has three types of functional groups: amino group at position C-2 in each deacetylated structural unit, as well as primary and secondary hydroxyl groups at C-6 and C-3 positions respectively. This causes its ability to form new hydrofilic medicals on the basis of known drugs, as well as the formation of drug release systems. CS is unique adsorbent and it is possible to combine it with another drugs. The natural ability of CS for gelation is used in the preparation of the hemostatic agent "Celox", that is effective for preventing fatalities when arterial bleeding occurs on the battlefield. The clotting of "Celox" occurs much faster than other hemostatic agents. Antimicrobial activity of chitosan against many Gram-positive and Gram-negative bacteria, filamentous fungi and yeasts has been widely demonstrated in the scientific literature.There are some reported mechanisms for antibacterial activity: positively charged due to NH3+ groups Chitosan interact with negatively charged functional groups at the cell surface and compromise the cell wall or outer membrane. In the case of Gram-positive bacteria, lipoteichoic acid could provide a molecular linkage for chitosan at the cell surface, allowing it to disturb membrane functions. Lipopolysaccharides

  1. Evaluation of antibacterial, antifungal and modulatory activity of ...

    African Journals Online (AJOL)

    2014-06-02

    Jun 2, 2014 ... adverse effects of conventional drugs and the increase of microbial resistance ... species of bacteria, enhancing the activity of a specific antibiotic, reversing the .... Cordia verbenaceae, and others10,22. The results in Table 1 ...

  2. Antibacterial activity of essential oil of Minthostachys mollis Griseb “RUYAQ MUÑA”

    OpenAIRE

    Carhuapoma Y., Mario; López G., Sofía; Roque A., Mirtha; Velapatiño, Billie; Bell C., Carlos; Whu W., Delia

    2014-01-01

    The aim of this study was to determine the antibacterial activity of essential oil Minthostachys mollis “ruyaq muña”, against Helicobacter pylori, Shigella dysenteriae, Salmonella typhi and Pseudomonas aeruginosa. The leaves of M. mollis were collected in the district of Huamanguilla (3000-3200 m.s.n.m), Huanta province, Ayacucho region. The essential oil obtained by distillation with water vapor drag. The antibacterial activity was determined by plate cultive excavation method, resulting in ...

  3. Antioxidant and antibacterial activities of various extracts of Inula cuspidata C.B. Clarke stem

    Directory of Open Access Journals (Sweden)

    Sarvesh Kumar Paliwal

    2017-06-01

    All the extracts showed significant antibacterial activities against Gram positive bacterial strains with minimum inhibitory concentration (MIC values ranging from 187.5 to 750 µg/mL and moderate to weak inhibition against Gram negative bacteria with MIC values ranging from 750 to 3000 µg/mL. The present study proves the in vitro anti-oxidant and antibacterial activities of different extracts of I. cuspidata stem.

  4. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    OpenAIRE

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van, L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Antibacterial activity of these oils and their components; i.e. linalyl acetate, linalool, limonene, pinene, ß-pinene, 1,8-cineole, camphor, carvacrol, thymol and menthol were assayed against a variety...

  5. In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives

    Energy Technology Data Exchange (ETDEWEB)

    Stanojeic, D.; Comic, L.; Stefanovic, O.; Solujic Sukdolak, S.

    2010-07-01

    The aim of this study was to investigate the antibacterial activity of aqueous, ethanol and ethyl acetate extracts of the species Melissa officinalis L. and their in vitro synergistic action with preservatives, namely: sodium nitrite, sodium benzoate and potassium sorbate against selected food spoiling bacteria, for a potential use in food industry. Synergistic action was noticed in almost every combination between plant extracts and preservatives. This work showed that the active compounds from ethanol, ethyl acetate and aqueous extracts of Melissa officinalis L. significantly enhanced the effectiveness of tested preservatives. Synergism was established at plant extract and preservative concentrations corresponding to 1/4 and 1/8 minimal inhibitory concentration values, which indicated the possibility of avoiding the use of higher concentrations of tested preservatives. (Author) 25 refs.

  6. Antibacterial and Anticandidal Activities of Common Essential Oil Constituents

    Directory of Open Access Journals (Sweden)

    Gökalp İşcan

    2017-07-01

    Full Text Available Essential oils and some of their oxygenated constituents are known to possess antimicrobial activity. In the last 30 years, there is a dramatic increase in the number of resistant microorganisms against available antimicrobials and a tendency towards natural products; consequently, scientists have been forced to discover new bioactive agents preferably from nature. As a result of this, so many antimicrobial screening works have been published on plant essential oils including miscellaneous screening methods and several microorganism strains. The aim of this study was to determine the MIC values of 65 monoterpenoids and 3 phenyl propanoids commonly found in essential oils, against 24 pathogenic bacteria and Candida strains, by using standard reference broth dilution methods (CLSI M7-A7 and M27-A2. According to broth microdilution test results, when compared with standard agents, monoterpene hydrocarbons generally showed weak antibacterial effects (>16 to 4 mg/mL where the oxygenated monoterpenes inhibited the microbial growth between the concentrations of 16 to 0,03 mg/mL. Generally, tested compounds demonstrated better inhibitory effects on Candida strains then the bacteria panel. The most effective microbial growth inhibitor constituents were determined as carvacrol, thymol, cumin alcohol, terpinen-4-ol, α-terpineol, lavandulol, estragol and thymoquinone.

  7. Synthesis and Antibacterial Activity of Some New Phenothiazine Derivatives

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Swarnkar

    2007-01-01

    Full Text Available A series of some new phenothiazine derivatives were synthesized with the objective for evaluation as antimicrobials. The title compounds were prepared by a five step synthesis scheme. 2-Amino-6-substituted benzothiazoles (1 on diazotization afford 6-substituted benzothiazolyl-2-diazonium chlorides (2. Reaction of 2 with cold solution of β-naphthol in dilute NaOH furnishes α-(2-diazo-6-substituted benzothiazolyl- β-sodionaphthoxides (3 which on acidification with concentrated HCl gives α-(2-diazo-6-substituted benzothiazolyl-β-naphthols (4. Reaction of 4 with p-substituted anilines gives α-(2-diazo-6-substituted benzothiazolyl-β-(p-substituted anilino naphthalenes (5. This synthesis besides by using conventional methods was also attempted using microwave. Fusion of 5 with sulphur in presence of iodine results in α-(2-diazo-6-substituted benzothiazolyl-6- substituted [2, 3-b] benzophenothiazines(6. The structures of all these compounds have been supported by elemental analysis and their spectral studies. All synthesized compounds were tested for their antibacterial activity using standard drugs.

  8. Phytochemical analysis and antibacterial activity of eruca sativa seed

    International Nuclear Information System (INIS)

    Gulfraz, M.; Sadiq, A.; Tariq, H.; Imran, M.; Qureshi, R.; Zeenat, A.

    2011-01-01

    Antibacterial activity of various solvent extracts of Eruca sativa seed as well as seed oil was investigated against Gram+ve and Gram-ve bacterial strains. Maximum zone of inhibition was observed from seed oil followed by methanolic seed extracts from all bacterial strains compared with broad spectrum antibiotics gentamicine. MIC values of seed oil were within the ranges of 52-72 mu g/ml as compared to 56-70 mu g/ml standard antibiotic Gentamicine). Proximate and Phytochemical analysis of seed of E. sativa showed presence of all essential phyto constituents required for promising traditional medicine. Analysis of seed oil by gas chromatography revealed that there was high concentration of Erucic acid (51.2%) followed by oleic acid (15.1%) and cis-11-eicosenoic acid (12.5%). In addition, minor quantities of other essential and non essential fatty acids were also present. Therefore the present study supports effectiveness of E. sativa seeds for it use in traditional medicine used in various human disorders. (author)

  9. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    Science.gov (United States)

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  10. Screening of medicinal natural extracts for their antibacterial activity against salmonella species

    International Nuclear Information System (INIS)

    Yousaf, A.; Latif, Z.

    2014-01-01

    The present study was aimed to screen out natural crude extracts exhibiting antibacterial activity against Salmonella causing gastrointestinal problems in humans. Fifteen Salmonella species were isolated from uncooked chicken, polluted water, rotten potatoes, beef, rotten eggs etc. Aqueous plant extracts of Allium sativum (garlic), Nigella sativa (kalvanji), Azadirachta indica (neem), Ficus carica (anjeer), and Trigonella foenum-graecum (methi) were checked against Salmonella species by well plate method. In addition to plant extract, Honey was also used for antibacterial activity. Inhibition zones ranging from 2mm to 20mm were obtained with different concentration of plant extracts and honey. The antibacterial sensitivity pattern was in the order of kalvanji > garlic > honey > anjeer > methi > neem. The standard antibiotics such as Ceftriaxone and Ciprofloxacin were also used for comparison with natural extract for antibacterial activity. The extracts of Allium sativum, Nigella sativa and Honey were found to be more effective against Salmonella species for which even Ceftriaxone was found ineffective. (author)

  11. Screening of medicinal natural extracts for their antibacterial activity against salmonella species

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, A.; Latif, Z. [University of the Punjab, Lahore (Pakistan). Dept. of Microbiology

    2014-12-15

    The present study was aimed to screen out natural crude extracts exhibiting antibacterial activity against Salmonella causing gastrointestinal problems in humans. Fifteen Salmonella species were isolated from uncooked chicken, polluted water, rotten potatoes, beef, rotten eggs etc. Aqueous plant extracts of Allium sativum (garlic), Nigella sativa (kalvanji), Azadirachta indica (neem), Ficus carica (anjeer), and Trigonella foenum-graecum (methi) were checked against Salmonella species by well plate method. In addition to plant extract, Honey was also used for antibacterial activity. Inhibition zones ranging from 2mm to 20mm were obtained with different concentration of plant extracts and honey. The antibacterial sensitivity pattern was in the order of kalvanji > garlic > honey > anjeer > methi > neem. The standard antibiotics such as Ceftriaxone and Ciprofloxacin were also used for comparison with natural extract for antibacterial activity. The extracts of Allium sativum, Nigella sativa and Honey were found to be more effective against Salmonella species for which even Ceftriaxone was found ineffective. (author)

  12. Antibacterial Activities and Mechanism of Action of Acetone Extracts from Rabdosia rubescens

    Directory of Open Access Journals (Sweden)

    Li Ping Cheng

    2014-12-01

    Full Text Available The antibacterial activities and mechanism of action of acetone extracts from R. rubescens were reported in this paper. The results showed that 80% acetone extracts had both the highest contents of total phenolics and flavonoids. Acetone extracts showed better antibacterial activities against Gram-positive bacterial strains and there were no inhibitory effects found on tested Gram-negative bacteria. In addition, 80% acetone extracts from R. rubescens had relatively higher antibacterial activities with the lowest values of MIC and MBC at 2.5 mg/mL and 5 mg/mL against B. subtilis. The antibacterial mechanism of 80% acetone extracts against Bacillus subtilis might be described as disrupting cell wall, increasing cell membrane permeability, and finally leading to the leakage of cell constituents

  13. Report: Studies on antibacterial activity of some traditional medicinal plants used in folk medicine.

    Science.gov (United States)

    Israr, Fozia; Hassan, Fouzia; Naqvi, Baqir Shyum; Azhar, Iqbal; Jabeen, Sabahat; Hasan, S M Farid

    2012-07-01

    Ethanolic extracts of eight medicinal plants commonly used in folk medicine were tested for their antibacterial activity against four Gram positive strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis and, Streptococcus pneumoniae) and six Gram negative strains (Escherichia coli, Proteus vulgaris, Proteus mirabilis. Salmonella typhi para A, Salmonella typhi para B and Shigella dysenteriae) that were obtained from different pathological laboratories located in Karachi, Pakistan. Disc diffusion method was used to analyze antibacterial activity. Out of eight, five medicinal plants showed antibacterial activity against two or more than two microbial species. The most effective antimicrobial plant found to be Punica granatum followed by Curcuma zedoaria Rosc, Grewia asiatica L and Carissa carandas L, Curcuma caesia Roxb respectively. From these results, it is evident that medicinal plants could be used as a potential source of new antibacterial agents.

  14. Antibacterial activity of different formulations of cheese and whey produced with kefir grains

    Directory of Open Access Journals (Sweden)

    Simone Weschenfelder

    Full Text Available ABSTRACT The development of different products that confer health benefits on the population is a challenge for those who work with food. The aim of this study was to elaborate two formulations of kefir cheese (C1 and C2 and whey (W1, W2, and to evaluate their in situ antibacterial activity against microorganisms of interest in food. Pasteurized milk, powdered milk and kefir grains were used in preparing the products and their percentage composition was determined. C1, C2, W1 and W2 were contaminated with five different logarithmic fractions (A = 8log to E = 4log CFU/ml of Staphylococcus aureus (ATCC 25923 and Escherichia coli (ATCC 11229, with antibacterial activity assessed over 0, 24, 48 and 72 hours of exposure. The results demonstrated the antibacterial activity of kefir cheese and whey, especially after 24 hours. Escherichia coli was the most sensitive of the bacteria, with maximum antibacterial activity seen in the cheese at population densities D and E, and in the whey at densities B, C, D and E after 48 and 72 h, showing that the in situ antibacterial activity of foods produced with kefir grains tends to be lower when compared with studies in vitro. The greater the nutrient content of the food, the lower the antibacterial activity seen, probably due to the protective action that the nutrients confer on the microorganisms against bacteriocins and the metabolites from fermentation.

  15. Cytotoxic and antibacterial activity of the mixture of olive oil and lime cream in vitro conditions.

    Science.gov (United States)

    Sumer, Zeynep; Yildirim, Gulay; Sumer, Haldun; Yildirim, Sahin

    2013-01-01

    The mixture of olive oil and lime cream has been traditionally used to treat external burns in the region of Hatay/Antakya and middle Anatolia. Olive oil and lime cream have been employed by many physicians to treat many ailments in the past. A limited number of studies have shown the antibacterial effect of olive oil and that it does not have any toxic effect on the skin. But we did not find any reported studies on the mixture of olive oil and lime cream. The aim of this paper is to investigate the cytotoxic and antibacterial activity of olive oil and lime cream individually or/and in combination in vitro conditions, by using disk-diffusion method and in cell culture. The main purpose in using this mixture is usually to clear burns without a trace. Agar overlay, MTT (Cytotoxicity assay) and antibacterial susceptibility tests were used to investigate the cytotoxic and antibacterial activity of olive oil and lime cream. We found that lime cream has an antibacterial activity but also cytotoxic on the fibroblasts. On the other hand olive oil has limited or no antibacterial effect and it has little or no cytotoxic on the fibroblasts. When we combined lime cream and olive oil, olive oil reduced its cytotoxic impact. These results suggest that mixture of olive oil and lime cream is not cytotoxic and has antimicrobial activity.

  16. Antibacterial activity of peritoneal exudate in patients treated with 2 g cefotiam for surgical anti-microbial prophylaxis.

    Science.gov (United States)

    Miglioli, P A; Schoeffel, U; Gabroska, E; Allerberger, F

    1998-01-01

    The objective of this study was to investigate the presence of antibacterial activity in peritoneal exudate (PE) of patients treated with cefotiam (CFT). CFT (2 g) was administered as a 'single-shot' antimicrobial prophylaxis to 6 patients at the beginning of colorectal resection. Samples of PE were collected from each patient on days 1, 2 and 3 after surgery. CFT was detectable in the samples of day 1 for 5 of the 6 patients. The influence of PE on antibacterial activity of the antimicrobial drug was evaluated carrying out the MICs of CFT against Escherichia coli K-12, E. coli (ATCC 10798), Klebsiella pneumoniae (ATCC 1003), Proteus rettgeri (Sanelli) and Staphylococcus aureus (ATCC 29213) with and without the addition of PE. The presence of PE enhanced the antimicrobial activity of CFT against gram-negative strains, but not against S. aureus (ATCC 29213). These results suggest the presence of substances in PE that possess endogenous antibacterial activity. Thus, antimicrobial activity in PE cannot be predicted by evaluating pathogen sensitivity in vitro only.

  17. Complexation of trichlorosalicylic acids by alkaline and first row transition metals as a switch for their antibacterial activity

    KAUST Repository

    Kumar, Vijay

    2017-09-14

    3,5,6-trichlorosalicylic acid (TCSA) does not show a good antibacterial activity. In contrast, here metal complexes with TCSA have shown better antibacterial activity for selected bacterial strains with a good degree of selectivity. Amongst the eight synthesized essential metal complexes complexed with TCSA, Mn(II)-TCSA and Ni(II)-TCSA have been found to be more effective with MIC range 20-50 µg/L as compared to control (chloramphenicol). The activity of an individual complex against different microbes was not found to be identical, indicating the usage of an individual metal chelate against a targeted bacterial strain. Further, the protein (BSA) binding constant of TCSA and its metal complexes were determined and ordered as Ca(II)-TCSA > Cu(II)-TCSA > Mg(II)-TCSA >> Mn(II)-TCSA >> Zn(II)-TCSA >>> Ni(II)-TCSA >>> Co(II)-TCSA > Fe(II)-TCSA > TCSA. The present study has confirmed enhanced antibacterial activities and binding constants for metal chelates of TCSA as compared to free TCSA, which seems directly related with the antioxidant activities of these complexes. Further, bearing the ambiguity related to the structural characterization of the metal complexed with TCSA ligands, DFT calculations have been used as the tool to unravel the right environment around the metals, studying basically the relative stability of square planar and octahedral metal complexes with TCSA.

  18. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity.

    Directory of Open Access Journals (Sweden)

    Hassan Nehme

    Full Text Available Bacterial antibiotic resistance is an emerging public health problem worldwide; therefore, new therapeutic strategies are needed. Many studies have described antipsychotic compounds that present antibacterial activity. Hence, the aims of this study were to evaluate the in vitro antibacterial activity of antipsychotics belonging to different chemical families, to assess the influence of their association with lipid nanocapsules (LNCs on their antimicrobial activity as well as drug release and to study the uptake of LNCs by bacterial cells. Antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii by minimum inhibitory concentration (MIC assay, and the capability of killing tested microorganisms was evaluated by time kill assay. LNCs were prepared by phase inversion method, and the antipsychotic agents were incorporated using pre-loading and post-loading strategies. Only phenothiazines and thioxanthenes showed antibacterial activity, which was independent of antibiotic-resistance patterns. Loading the nanocarriers with the drugs affected the properties of the former, particularly their zeta potential. The release rate depended on the drug and its concentration-a maximum of released drug of less than 40% over 24 hours was observed for promazine. The influence of the drug associations on the antibacterial properties was concentration-dependent since, at low concentrations (high nanocarrier/drug ratio, the activity was lost, probably due to the high affinity of the drug to nanocarriers and slow release rate, whereas at higher concentrations, the activity was well maintained for the majority of the drugs. Chlorpromazine and thioridazine increased the uptake of the LNCs by bacteria compared with blank LNCs, even below the minimum inhibitory concentration.

  19. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  20. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    Science.gov (United States)

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  1. Antibacterial activity of cobalt(II complexes with some benzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    2008-12-01

    Full Text Available The antibacterial activities of cobalt(II complexes with two series of benzimidazoles were evaluated in vitro against three Gram-positive bacterial strains (Bacillus cereus, Staphylococcus aureus, and Sarcina lutea and one Gram-negative isolate (Pseudomonas aeruginosa. The minimum inhibitory concentration was determined for all the complexes. The majority of the investtigated complexes displayed in vitro inhibitory activity against very persistent bacteria. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antibacterial activity of the compounds is related to the cell wall structure of the tested bacteria. Comparing the inhibitory activities of the tested complexes, it was found that the 1-substituted-2-aminobenzimidazole derivatives were more active than complexes of 1-substituted-2-amino-5,6-dimethylbenzimidazoles. The effect of chemical structure on the antibacterial activity is discussed.

  2. 'Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity.

    Science.gov (United States)

    Chowdhury, Neelika Roy; MacGregor-Ramiasa, Melanie; Zilm, Peter; Majewski, Peter; Vasilev, Krasimir

    2016-11-15

    Silver nanoparticles (AgNPs) have emerged as a powerful weapon against antibiotic resistant microorganisms. However, most conventional AgNPs syntheses require the use of hazardous chemicals and generate toxic organic waste. Hence, in recent year's, plant derived and biomolecule based synthetics have has gained much attention. Cacao has been used for years for its medicinal benefits and contains a powerful reducing agent - oxalic acid. We hypothesized that, due to the presence of oxalic acid, cacao extract is capable of reducing silver nitrate (AgNO3) to produce AgNPs. In this study, AgNPs were synthesized by using natural cacao extract as a reducing and stabilizing agent. The reaction temperature, time and reactant molarity were varied to optimize the synthesis yield. UV-visible spectroscopy (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization demonstrated that the synthesized AgNPs were spherical particles ranging in size from 35 to 42.5nm. The synthesized AgNPs showed significant antibacterial activity against clinically relevant pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. Importantly, these green AgNPs are not cytotoxic to human dermal fibroblasts (HDFs) at concentrations below 32μg/ml. We conclude that cacao-based synthesis is a reproducible and sustainable method for the generation of stable antimicrobial silver nanoparticles with low cytotoxicity to human cells. The AgNPs synthesized in this work have promising properties for applications in the biomedical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of antibacterial, antioxidant and nootropic activities of Tiliacora racemosa Colebr. leaves: In vitro and in vivo approach.

    Science.gov (United States)

    T, Vivek Kumar; M, Vishalakshi; M, Gangaraju; Das, Parijat; Roy, Pratiti; Banerjee, Anindita; Dutta Gupta, Sayan

    2017-02-01

    The antibacterial and antioxidant potential of Tiliacora racemosa leaf extracts in various solvents (methanolic, hexane, chloroform and ethyl acetate) was determined. Additionally, the presence of bisbenzylisoquinoline alkaloids in the plant prompted us to evaluate the nootropic activity of the methanolic extract in mice. Further, we seek to verify the nootropic effect by examining the anticholinesterase inhibition potential of the methanolic extract. The leaf extracts in various solvents were evaluated for their antibacterial and antioxidant activity by agar diffusion technique and α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method, respectively. The ex vivo acetylcholine esterase inhibitory activity of the methanolic extract was carried out by Ellman's method in male Wistar rats. The nootropic capacity of the methanolic extract was examined in Swiss albino mice by utilizing the diazepam induced acute amnesic model. The chloroform/n-hexane and ethyl acetate fraction showed promising antioxidant and antibacterial (Gram positive and Gram negative bacteria) property, respectively. The methanolic extract was able to diminish the amnesic effect induced by diazepam (1mg/kg i.p.) in mice. The extract also showed significant acetyl cholinesterase inhibition in rats. The findings prove that the memory enhancing capability is due to increased acetyl choline level at the nerve endings. The strong antioxidant nature and potential nootropic activity shown by the extract suggests its future usage in the treatment of neurodegenerative disorders such as dementia and Alzheimer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Antibacterial activity of combined medicinal plants extract against multiple drug resistant strains

    Directory of Open Access Journals (Sweden)

    Rafiqul Islam

    2015-06-01

    Full Text Available Objective: To find out the combined antibacterial efficacy of Aegle marmelos, Aphanamixis polystachya, Cuscuta reflexa and Aesclynomene indica against bacterial pathogens. Methods: Antibacterial potency of combined plant extracts has been tested against Bacillus subtilis IFO 3026, Sarcina lutea IFO 3232, Xanthomonas campestris IAM 1671, Escherichia coli IFO 3007, Klebsiella pneumoniae ATTC 10031, Proteus vulgaris MTCC 321 and Pseudomonas denitrificans KACC 32026 by disc diffusion assay. Commercially available standard antibiotic discs were also used to find out antibiotic resistance pattern of test organisms. Results: Among the test organisms, Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae and Proteus denitrificans showed resistance against multiple commercially available antibiotics. On the other hand, these multiple drug resistant organisms showed susceptibility against combined plant extracts. Conclusions: These combined plants extracts showed synergistic antibacterial activity and could lead to new antibacterial drug designing.

  5. Antibacterial, antioxidant and cytotoxic activities of extracts from the ...

    African Journals Online (AJOL)

    Unicellular green algal strains, identified as Cosmarium (Chlorophyta), were isolated from Ain-Echeffa hot spring in north Tunisia. Different extracts (methanol, hexane, acetone, acetone: methanol and water) obtained from both biomass and extracellular polysaccharides (EPS) were evaluated for their antibacterial, ...

  6. antibacterial and antioxidant activities of the essential oils

    African Journals Online (AJOL)

    Belmimoun A, Meddah B, Meddah A.T.T and Sonnet P

    2016-05-01

    May 1, 2016 ... been used historically in the pharmaceutical, food and perfume industries because of their antibacterial properties, culinary and fragrance, respectively. Antioxidants have been widely used as additives to avoid the degradation of foods. Also, are compounds that react with free radicals, neualizing them and ...

  7. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis–Flow Cytometry Study

    Directory of Open Access Journals (Sweden)

    Monika Lukomska-Szymanska

    2017-04-01

    Full Text Available Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS. Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape, and functional parameters (viability, cell cycle. The LIVE/DEAD® BacLightTM bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE, four self-etching (SE and two selective enamel etching (SEE were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells followed by Clearfil S3 Bond Plus (88.02% and Panavia F 2.0 ED Primer II (86.67% showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control. In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.

  8. Is the use of Gunnera perpensa extracts in endometritis related to antibacterial activ

    Directory of Open Access Journals (Sweden)

    L.J. McGaw

    2005-09-01

    Full Text Available Rhizome extracts of Gunnera perpensa are used in traditional remedies in South Africa to treat endometritis both in humans and animals. An investigation was undertaken to determine whether this plant possesses antibacterial activity, which may explain its efficacy. Gunnera perpensa rhizome extracts were prepared serially with solvents of increasing polarity and tested for antibacterial activity. Test bacteria included the Gram-positive Enterococcus faecalis and Staphylococcus aureus and the Gram-negative Escherichia coli and Pseudomonas aeruginosa. A moderate to weak level of antibacterial activity in most of the extracts resulted, with the best minimal inhibitory concentration (MIC value of 2.61 mg ml-1 shown by the acetone extract against S. aureus. The extracts were also submitted to the brine shrimp assay to detect possible toxic or pharmacological effects. All the extracts were lethal to the brine shrimp larvae at a concentration of 5 mg ml-1. The acetone extract was extremely toxic at 1 mg ml-1, with some toxicity evident at 0.1 mg ml-1. The remainder of the extracts generally displayed little activity at concentrations lower than 5 mg ml-1. In summary, the results indicate that although the extracts demonstrated a level of pharmacological activity, the relatively weak antibacterial activity is unlikely to justify the use of G. perpensa rhizomes in the traditional treatment of endometritis. Rather, the slightly antibacterial nature of the rhizomes may contribute to an additive effect, along with their known uterotonic activity, to the overall efficacy of the preparation.

  9. Antibacterial activity of vacuum liquid chromatography (VLC) isolated fractions of chloroform extracts of seeds of achyranthes aspera

    International Nuclear Information System (INIS)

    Noor-ul-Amin; Qadir, M.I.; Khan, T.J.; Abbas, G.; Ahmad, B.; Janbaz, K.H.; Ali, M.

    2012-01-01

    Antibacterial activities of locally occurring weed Achyranthes aspera were studied. Three solvents (Hexane, Chloroform, and Ethanol) were used successively for the extraction of active principles from the seeds of this plant. The extracts were concentrated on vacuum rotary evaporator. The concentrated extracts were tested for their antibacterial activities after making their solution in gum acacia. The six bacterial strains used in the antibacterial studies were Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeuroginosa, and Salmonella chloerasuis. Antibacterial activities of the extracts were compared with streptomycin and ampicillin in terms of zones of inhibition. Chloroform and ethanol extracts demonstrated antibacterial activity. Hexane extract did not demonstrate antibacterial activity. Chloroform extract was more potent than alcohol extract in terms of antibacterial activity. An attempt was made to identify the nature of compound by isolation through vacuum liquid chromatography (VLC). The fractions isolated by VLC were subjected to thin layer chromatography (TLC). TLC showed the presence of alkaloids and terpenoids. The active fractions were tested for their antibacterial activity. One of the fractions exhibited antibacterial activity. (author)

  10. In vitro and in vivo antibacterial activities of E1077, a novel parenteral cephalosporin with a broad antibacterial spectrum.

    Science.gov (United States)

    Hata, K; Otsuki, M; Nishino, T

    1992-01-01

    E1077 is a new injectable cephalosporin with a broad spectrum of antibacterial activity against gram-positive and gram-negative bacteria, including staphylococci and Pseudomonas aeruginosa. The in vitro activities of E1077 against clinical isolates of methicillin-susceptible Staphylococcus aureus (MIC of E1077 for 90% of the strains tested [MIC90], 0.78 microgram/ml) and methicillin-resistant S. aureus (MIC90, 50 micrograms/ml) were similar to those of cefpirome and flomoxef. Against Enterococcus faecalis (MIC90, 6.25 micrograms/ml), E1077 was the most active of the drugs tested and four times more active than cefpirome. The MIC90S of E1077 for streptococci, Haemophilus influenzae, and Neisseria gonorrhoeae ranged from 0.05 to 0.78 microgram/ml; E1077 was similar in activity to cefpirome. E1077 inhibited 90% of most species of the family Enterobacteriaceae at concentrations of less than or equal to 1.56 micrograms/ml, with the exception of Serratia marcescens and Proteus vulgaris (12.5 micrograms/ml). The activity of E1077 against P. aeruginosa (MIC90, 6.25 micrograms/ml) was comparable to that of ceftazidime. In vivo activity was evaluated with systemic infections in mice. E1077 showed a protective effect against systemic infections by gram-positive or gram-negative bacteria, as reflected by its in vitro activity. The protective effects of E1077 were higher than those of cefpirome against S. aureus and P. aeruginosa infections and similar to those of cefpirome against other bacterial infections. Morphological studies using differential interference and phase-contrast microscopy showed that low concentrations of E1077 caused swelling of S. aureus and spheroplast and bulge formation in P. aeruginosa. In general, the antibacterial profile of E1077 is similar to that of cefpirome. Images PMID:1416879

  11. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    OpenAIRE

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agen...

  12. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    Science.gov (United States)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan

    2017-05-01

    Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.

  13. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.

    Science.gov (United States)

    Wang, Siyu; Li, Yumei; Zhao, Rui; Jin, Toufeng; Zhang, Li; Li, Xiang

    2017-11-01

    The surface modification is one of the most effective methods to improve the bioactivity and cell affinity effect of electrospun poly(ε-caprolactone) (PCL) fibers. In the present study, chitosan (CS), a cationic polysaccharide, was used to modify the surface of electrospun PCL fibers. To obtain strong interaction between CS and PCL fibers, negatively charged PCL fibers were prepared by the incorporation of acid-treated carbon nanotubes (CNTs) into the fibers. In this way, the positively charged chitosan could be immobilized onto the surface of PCL fibers tightly by the electrostatic attraction. Besides, the incorporation of CNTs could significantly improve the mechanical strength of electrospun PCL fibers even after the CS modification, which guaranteed their usability in practical applications. The CS modification could effectively improve the wettability and bioactivity of electrospun PCL fibers. Cultivation of L929 fibroblast cells on the obtained fibers and the antibacterial activity were both evaluated to discuss the influence of chitosan modification. The results indicated that this modification could enhance the cell proliferation and antibacterial ability in comparison to the non-modified groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Antibacterial activity of ethanolic extracts of some Vietnamese medicinal plants against Helicobacter pylori

    Science.gov (United States)

    Ngan, Luong Thi My; Dung, Pham Phuong; Nhi, Nguyen Vang Thi Yen; Hoang, Nguyen van Minh; Hieu, Tran Trung

    2017-09-01

    Helicobacter pylori is one of the most common human infectious bacteria. The infection is highly associated with a number of the most important disease of the upper gastrointestinal tract, including gastritis, duodenitis, peptic ulceration, and gastric cancer. In addition, widespread use of antimicrobial agents has resulted in the development of antibiotic resistance. Metabolites of plants, particularly higher plants, have been suggested as alternative potential sources for antibacterial products due to their safe. This study aimed to evaluate antibacterial activities of crude ethanolic extracts of seventeen Vietnamese medicinal plants toward one reference strain and three clinical isolates of Helicobacter pylori using broth micro-dilution bioassay. The antibacterial activities of these extracts were also compared with those of seven antibiotics, amoxicillin, clarithromycin, erythromycin, levofloxacin, azithromycin, tetracycline, and metronidazole. The extracts of Ampelopsis cantoniensis and Cleistocalyx operculatus showed highest antibacterial activity with MIC (MBC) values of 0.31 - 0.97 (2.5 - 5) mg/mL, followed by the extracts of Hedyotis diffusa and Ardisia silvestris with MIC (MBC) values of 1.04 - 1.94 (7.5 - 10) mg/mL. The remaining plant extracts exhibited moderate, low and very low or no active to the H. pylori strains. Further studies are needed to determine the active compounds from the extracts that showed high antibacterial activity against H. pylori.

  15. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Mohammadipanah, Fatemeh; Hamedi, Javad [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14155-6455 (Iran, Islamic Republic of); University of Tehran Biocompound Collection (UTBC), Microbial Technology and Products Research Center, University of Tehran, Tehran (Iran, Islamic Republic of); Tahermansouri, Hasan [Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of); Amini, Mostafa M. [Department of Chemistry, Shahid Behshti University, 1983963113, Tehran (Iran, Islamic Republic of)

    2015-06-30

    Graphical abstract: In an antibacterial test, grafted copper(II) macrocyclic complex on the surface of MWCNT showed higher antibacterial activity against Bacillus subtilis compared to the individual MWCNT-COOH and the complex. - Highlights: • Copper(II) tetraaza macrocyclic complex covalently bonded to modified MWCNT. • Grafting of the complex carried out via an interaction between −C(=O)Cl group and NH of the ligand. • The samples were subjected in an antibacterial assessment to compare their activity. • Immobilized complex showed higher antibacterial activity against Bacillus subtilis ATCC 6633 compared to separately MWCNT-C(C=O)-OH and CuTAM. - Abstract: In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the I{sub D}/I{sub G} ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  16. In vitro screening of methanol plant extracts for their antibacterial activity

    International Nuclear Information System (INIS)

    Hussain, T.; Arshad, M.; Khan, S.; Sattar, H.

    2011-01-01

    The purpose of this study was to observe the antibacterial activity of aqueous methanolic extracts of 10 plants against 2-gram negative bacteria (Pasteurella multocida, Escherichia coli) and 3-gram positive bacteria (Bacillus cereus, Staphylococcus aureus, Corynebacterium bovis) by using disc diffusion method. The minimum inhibitory concentration (MIC) was determined by agar well diffusion method and agar dilution method. All the bacteria were susceptible to different plant extracts. Lawsonia inermis, Embellia ribes and Santalum album showed antibacterial activity against all the tested bacteria. The extract of Santalum album showed maximum antibacterial activity of the 10 plant extracts used. Bacillus cereus and Pasteurella multocida were the most sensitive bacteria against most of the plant extracts. It is clear from the results of the present studies that the plant extracts have great potential as antimicrobial compounds against bacteria. However, there is a need of further research to isolate the active ingredients for further pharmacological evaluation. (author)

  17. Enumeration of Antibacterial Activity of Few Medicinal Plants by Bioassay Method

    Directory of Open Access Journals (Sweden)

    B. Uma Reddy

    2010-01-01

    Full Text Available The present study was aimed to investigate the antibacterial activity of some common locally available plants, in order to estimate the biological potential of these herbs. The alcoholic extract of Tagetes erecta L (Asteraceae, Argemone mexicana L (Papavaraceae, Datura stramonium L. (Solanaceae and Tylophora indica (Burm.f. Merr. (Asclepiadaceae were evaluated for antibacterial activity using broth dilution bioassay method. It is clear from the results that, the extracts of these plants acts as a good source of antibiotics against various bacterial pathogens tested and exhibited broad spectrum of antibacterial activity. These plant extracts were shown to be moderate to maximum inhibitory effect against different bacterial forms such as Salmonella typhii, Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli, where as, mild to moderate activity against Klebsiella pneumoniae and Staphylococcus aureus. The results of these studies revealed most valuable information and also support the continued sustainable use of these plants in traditional systems of medicine.

  18. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  19. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.

    Science.gov (United States)

    Sana, Santanu; Datta, Sriparna; Biswas, Dipa; Sengupta, Dipanjan

    2018-02-01

    Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. In vitro antibacterial activity of adhesive systems on Streptococcus mutans.

    Science.gov (United States)

    Paradella, Thaís Cachuté; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2009-04-01

    To evaluate the antibacterial activity of three adhesive systems -- Prime & Bond 2.1 (PB), Clearfil SE Bond (CS) and One Up Bond F (OU) -- on Streptococcus mutans in vitro. Adherence and agar disk-diffusion tests were performed. For the adherence testing, 40 human enamel specimens (4 mm2) were sterilized and the adhesive sytems were applied (n = 10). The control group did not receive the application of any adhesive system. Specimens were immersed in brain heart infusion broth (BHI) inoculated with S. mutans standardized suspension (10(6) cells/ml) for 48 h at 37 degrees C and 5% CO2. The number of S. mutans cells adhered to each specimen was evaluated by the plating method on BHI agar. For agar disk-diffusion testing, adhesive disks and disks soaked in distilled water (negative control) or 0.2% chlorexidine (positive control) were incubated with S. mutans for 48 h. The diameters of the zones of bacterial inhibition were measured. Adherence data were transformed in logarithms of base 10 (log10). Data were submitted to Kruskal-Wallis and Student-Neuman-Keuls tests at the 5% level of significance. The results of the adherence test showed that One Up Bond F (OU) and Clearfil SE Bond (CS) did not differ significantly from one another, but allowed significantly less adherence than Prime & Bond 2.1 (PB) and control [mean log10 (standard deviation) values: PB 6.10 (0.19); CS primer 4.55 (0.98); OU 4.65 (0.54); control group 6.34 (0.27)]. The disk-diffusion test showed no significant difference between OU (diameter in mm: 3.02 +/- 0.13) and CS (3.0 +/- 0.12), but both were significantly more effective in inhibiting bacterial growth than PB (1.0 +/- 0.10). The self-etching systems Clearfil SE Bond and One Up Bond F presented a greater inhibitory effect against S. mutans, also in terms of adherence, than did the conventional system, Prime & Bond 2.1.

  1. Effect of gamma irradiation on fluoride release and antibacterial activity of resin dental materials

    International Nuclear Information System (INIS)

    Carvalho, Fabiola Galbiatti de; Fucio, Suzana Beatriz Portugal de; Correr-Sobrinho, Lourenco; Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Puppin-Rontani, Regina Maria

    2009-01-01

    This study evaluated the effect of gamma irradiation on fluoride release and antibacterial activity of FluroShield (FS) and Clearfil Protect Bond (CPB). Four groups were formed: G1-FS + gamma; G2-FS without gamma; G3-CPB + gamma; G4-CPB without gamma. For fluoride release analysis, 12 disks of each material were prepared and covered with nail polish, except for one side (50.4 mm 2 area). G1 and G3 were sterilized with a 14.5 KGy dose at 27 deg C for 24 h, while G2 and G4 (controls) were not sterilized and were maintained under the same time and temperature conditions. Fluoride release measurements were made in duplicate (n=6) by an ion specific electrode. The antibacterial activity of the CPB and FS against Streptococcus mutans after gamma sterilization was evaluated by the agar-disc diffusion method. The diameter of the zones of microbial growth inhibition was recorded after 48 h. Data were analyzed statistically by ANOVA and Tukey's test (alpha=5%). Gamma sterilization decreased the fluoride release of FS by approximately 50%, while CPB was not affected. There was no statistically significant difference (p>0.05) in the antibacterial effect of CPB between gamma and non-gamma sterilization groups. FS presented no antibacterial activity. Gamma irradiation decreased the fluoride release of FS, but did not affect the antibacterial activity of the studied materials. (author)

  2. Effect of gamma irradiation on fluoride release and antibacterial activity of resin dental materials

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fabiola Galbiatti de; Fucio, Suzana Beatriz Portugal de; Correr-Sobrinho, Lourenco [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Dental Materials; Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Puppin-Rontani, Regina Maria [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Pedriatric Dentistry], e-mail: rmpuppin@fop.unicamp.br

    2009-07-01

    This study evaluated the effect of gamma irradiation on fluoride release and antibacterial activity of FluroShield (FS) and Clearfil Protect Bond (CPB). Four groups were formed: G1-FS + gamma; G2-FS without gamma; G3-CPB + gamma; G4-CPB without gamma. For fluoride release analysis, 12 disks of each material were prepared and covered with nail polish, except for one side (50.4 mm{sup 2} area). G1 and G3 were sterilized with a 14.5 KGy dose at 27 deg C for 24 h, while G2 and G4 (controls) were not sterilized and were maintained under the same time and temperature conditions. Fluoride release measurements were made in duplicate (n=6) by an ion specific electrode. The antibacterial activity of the CPB and FS against Streptococcus mutans after gamma sterilization was evaluated by the agar-disc diffusion method. The diameter of the zones of microbial growth inhibition was recorded after 48 h. Data were analyzed statistically by ANOVA and Tukey's test (alpha=5%). Gamma sterilization decreased the fluoride release of FS by approximately 50%, while CPB was not affected. There was no statistically significant difference (p>0.05) in the antibacterial effect of CPB between gamma and non-gamma sterilization groups. FS presented no antibacterial activity. Gamma irradiation decreased the fluoride release of FS, but did not affect the antibacterial activity of the studied materials. (author)

  3. Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens.

    Science.gov (United States)

    Yang, Jyh-Ferng; Yang, Cheng-Hong; Chang, Hsueh-Wei; Yang, Cheng-San; Wang, Shao-Ming; Hsieh, Ming-Che; Chuang, Li-Yeh

    2010-10-01

    In recent years, human pathogenic microorganisms have developed multiple drug resistance and caused serious nosocomial infections. In this study, we identified four new antimicrobial compounds from the Chinese herbal medicine Illicium verum and assessed their antibacterial efficacies. The supercritical CO₂ and ethanol extracts of Illicium verum showed substantial antibacterial activity against 67 clinical drug-resistant isolates, including 27 Acinetobacter baumannii, 20 Pseudomonas aeruginosa, and 20 methicillin-resistant Staphylococcus aureus. The diethyl ether (EE) fraction obtained from partition extraction and supercritical CO₂ extracts revealed an antibacterial activity with a minimum inhibitory concentration value of 0.15-0.70 mg/mL and 0.11 mg/mL, respectively. The EE fraction of I. verum showed synergetic effects with some commercial antibiotics. The antimicrobial mechanism was investigated with killing curves and scanning electron microscopy observation. The chemical components of the extracts were analyzed by spectrophotometry; (E)-anethole, anisyl acetone, anisyl alcohol, and anisyl aldehyde exhibited antibacterial activity against different clinical isolates. These extracts from I. verum can be further developed into antibiotic medicines due to their proven antibacterial activity.

  4. Hydrogels based on polysaccharide-calcium phosphate with antibacterial / antitumor activity for 3D printing

    Science.gov (United States)

    Teterina, A. Yu; Fedotov, A. Yu; Zobkov, Yu V.; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Karalkin, P. A.; Komlev, V. S.

    2018-04-01

    The purpose of this study was to develop hydrogels for 3D printing of sodium alginate/gelatin/octacalcium phosphate-based constructs with antibacterial and antitumor activity intended for bone defects replacement in patients with malignant diseases. In this work, we evaluated the drug release kinetic and physico-chemical characteristics of constructs, as well as their specific activity, biocompatibility and osteoplastic properties by means of in vitro and in vivo tests. The principal possibility of creating the biocompatible bone substitutes with antibacterial/antitumor activity and osteoconductive-retaining properties of 3D printing method was demonstrated.

  5. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.

    Science.gov (United States)

    Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio

    2011-02-01

    The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.

  6. Evaluation of antibacterial and anthelmintic activities with total phenolic contents of Piper betel leaves

    Directory of Open Access Journals (Sweden)

    Kazi Akter

    2014-09-01

    Full Text Available Objective: The study was conducted to investigate the antibacterial and anthelmintic activities and to determine total phenolic contents of methanolic extract of Piper betel leaves. Materials and Methods: The extract was subjected to assay for antibacterial activity using both gram positive and gram negative bacterial strains through disc diffusion method; anthelmintic activity with the determination of paralysis and death time using earthworm (Pheritima posthuma at five different concentrations and the determination of total phenolic contents using the Folin-ciocalteau method. Results: The extract showed significant (p

  7. Evaluation of antibacterial and anthelmintic activities with total phenolic contents of Piper betel leaves

    Science.gov (United States)

    Akter, Kazi Nahid; Karmakar, Palash; Das, Abhijit; Anonna, Shamima Nasrin; Shoma, Sharmin Akter; Sattar, Mohammad Mafruhi

    2014-01-01

    Objective: The study was conducted to investigate the antibacterial and anthelmintic activities and to determine total phenolic contents of methanolic extract of Piper betel leaves. Materials and Methods: The extract was subjected to assay for antibacterial activity using both gram positive and gram negative bacterial strains through disc diffusion method; anthelmintic activity with the determination of paralysis and death time using earthworm (Pheritima posthuma) at five different concentrations and the determination of total phenolic contents using the Folin-ciocalteau method. Results: The extract showed significant (pbetel leaves extract, therefore it may be processed for further drug research. PMID:25386394

  8. [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa].

    Science.gov (United States)

    Sienkiewicz, Monika; Wasiela, Małgorzata; Głowacka, Anna

    2012-01-01

    The aim of this study was to investigate the antibacterial properties of oregano (Origanum heracleoticum L.) essential oil against clinical strains of Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of oregano essential oil was investigate against 2 tested and 20 clinical bacterial strains of Escherichia coli and 20 clinical strains o Pseudomonas aeruginosa come from patients with different clinical conditions. The agar dilution method was used for microbial growth inhibition at various concentrations ofoil. Susceptibility testing to antibiotics was carried out using disc-diffusion method. The results of experiments showed that the tested oil was active against all of the clinical strains from both genus of bacteria, but strains of Escherichia coli were more sensitive to tested oil. Essential oil from Origanum heracleoticum L. inhibited the growth of Escherichia coli and Pseudomonas aeruginosa clinical strains with different patters of resistance. The obtained outcomes will enable further investigations using oregano essential oil obtained from Origanum heracleoticum L. as alternative antibacterial remedies enhancing healing process in bacterial infections and as an effective means for the prevention of antibiotic-resistant strain development.

  9. Anthrarobin and its derivatives: evaluation of antibacterial and lipoxygenase inhibition activities

    International Nuclear Information System (INIS)

    Lateef, M.; Iqbal, S.

    2013-01-01

    The antibacterial activity of anthrarobin and its synthesized derivatives 1, 10-dihydoxyanthracen-2-0-acetate (1) and anthracen-1, 2-10-tri-O-acetate (2) is determined against two Gram-negative bacteria (Escherichia coli, Pseudomonas aerogenosa) and two Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) along with the lipoxygenase inhibition activity. Gentamycin (0.3 %) was used as standard antibiotic for antibacterial assay. The minimum inhibitory concentration (MIC) was determined by agar well diffusion method. Anthrarobin showed highest antibacterial activity against all the tested bacteria while anthracen-1, 2-10-tri-0-acetate (2) exhibited 97 % activity against Gram-positive bacteria, Staphylococcus aureus, and; 36 % activity against Gram-negative bacteria Escherichia coli. On the other hand, 1, 10-dihydoxyanthracen-2-0-acetate (1) remained non-significant against all the bacteria tested. When anthrarobin and its derivatives were analyzed for lipoxygenase inhibition studies, only anthrarobin showed weak inhibition activity with IC 5 0 value of 65.2 μM. It is concluded that anthrarobin has significant potential for antibacterial activity as compared to its synthesized derivatives. Structure-activity relationship suggests that numbers of hydroxyl group in anthrarobin may be responsible for antimicrobial activity and the activity decreases with the substitution of acyl groups in synthesized derivatives. (author)

  10. PHYTOCHEMICAL SCREENING AND ANTIBACTERIAL ACTIVITY OF TWO COMMON TERRESTERIAL MEDICINAL PLANTS RUTA CHALEPENSIS AND RUMEX NERVOSUS

    Directory of Open Access Journals (Sweden)

    M Babu-Kasimala

    2014-09-01

    Full Text Available Background: Ruta chalapensis and Rumex nervosus are used as an extensive household remedy for various diseases in Eritrea. The components of these plants are of great interest in medicinal chemistry. Leaves and young stems of Ruta and Rumex have been reported to contain alkaloids, flavonoids, phenols, amino acids, furanocoumarins and saponins. Various solvents like ethanol, acetone and aqueous extracts of the two plants were screened for the presence of bioactive compounds. Methods: The antibacterial activities of these extracts were investigated against Staphylococcus aureus, a gram positive bacteria and Escherichia coli, gram negative bacteria. The antibacterial activity was tested using Muller Hinton Agar medium by disc diffusion method and minimum inhibitory concentration assays. Results: After incubation, zone of inhibition was measured in mm, a good inhibition (>5mm was observed indicating the effective antibacterial activity of the bioactive compounds in both the plant extracts.

  11. Intracellular Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Sankaran MIRUNALINI

    2012-11-01

    Full Text Available The process of biosynthesis of silver nanoparticles is a simple, cost effective and eco-friendly approach. Biosynthesis of silver nanoparticles using some commonly available edible mushroom extracts and their antimicrobial activity was demonstrated in the current study. The formation of silver nanoparticles was confirmed by UV, FTIR and SEM and antibacterial activity was tested using disc diffusion method. From the results it is confirmed the successful formation of silver nanoparticles using mushroom extracts; they performed their role as a reducing and capping agent and also exhibited a potent antibacterial activity against S. aureus (gram positive bacteria. Thus the biosynthesis of silver nanoparticles using edible mushroom extract will deserve to be a good candidate as an antibacterial agent.

  12. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    Science.gov (United States)

    Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti

    2013-09-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.

  13. Antibacterial activity of domestic Balkan donkey milk toward Listeria monocytogenes and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Šarić Ljubiša Ć.

    2014-01-01

    Full Text Available The aim of this study was to investigate the antibacterial activity of raw milk from Domestic Balkan donkey breed toward Listeria monocytogenes and Staphylococcus aureus. Examination of antibacterial activity was performed in artificially contaminated milk samples by monitoring the changes of count of viable cells of tested bacteria during 8 hours of incubation at 38°C. Lysozyme and fatty acids contents were also determined in donkey milk. The obtained results indicated inhibitory effect of donkey milk toward both tested bacteria. The lysozyme content in the analyzed milk samples was ranged from 0.67 to 3.54 g/L. The most abundant fatty acids with known antibacterial activity toward Gram positive bacteria were linoleic, lauric and oleic acid.

  14. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity

    Science.gov (United States)

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-01

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  15. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    International Nuclear Information System (INIS)

    Tripathi, R M; Shrivastav, Archana; Gupta, Rohit Kumar; Singh, M P; Shrivastav, B R; Singh, Priti

    2013-01-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV–Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV–Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8–24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity. (paper)

  16. Phytochemical screening and antibacterial activity of Cyclamen persicum Mill tuber extracts.

    Science.gov (United States)

    Alkowni, Raed; Jodeh, Shehdeh; Hussein, Fatima; Jaradat, Nidal

    2018-01-01

    The emerging drug resistance bacteria increased the demand on the discovery of antibiotics from natural sources. This research was aimed to study the antibacterial reactivity; as well as the phytochemicals, of the wild type of Cyclamen persicum, using nine different extraction methods where four solvents (Methanol, Ethanol, Hexane; and Water) were involved with varied extraction periods ranged from 2 up to 10 hours. The antibacterial activity of crude methanol extract (CME) was found as the best method of extraction, with particular emphasis on the method with prolonged extraction time of (10 hrs). The antibacterial activities of produced CME were determined by using agar diffusion method against two of gram-positive bacteria and two gram-negative ones. The CME treated Mueller-Hinton-Agar plates, were exhibited antibacterial effects against the gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) by showing of inhibition zone after overnight incubation, while nothing was noticed on those of gram negative ones (Pseudomonas aeruginosa and Escherichia coli). These results that proved the antibacterial activity of the Cyclamen persicum tubers were positively tested the Saponin glycosides from plant. In addition to that, methanol solvent could be the useful method for extractions of Cyclamen and can be used in any developing drugs against pathogenic gram positive bacteria.

  17. ANTIBACTERIAL COMPOUNDS ACTIVITY OF MANGROVE LEAF EXTRACT RHIZOPHORA MUCRONATA ON AEROMONAS HYDROPHYLA

    Directory of Open Access Journals (Sweden)

    Panjaitan M.A.P.

    2018-01-01

    Full Text Available Pathogenic bacterial infections such as A.hydrophyla in fish cultivation are common problems. A.hydrophyla belongs to a group of bacteria resistant to more than one type of antibiotic. This study aims to determine the antibacterial activity of R.mucronata mangrove leaf extract and to identify potential antibacterial compounds. The research procedure includes extraction, compound refinement, phytochemical test, antibacterial activity test, and KBM-KHM Test. The results show that the antibacterial ability possessed by R.mucronata leaves crude extract increased after the extract was purified utilizing separating funnel. The lowest concentration of methanol fraction extract capable of inhibiting A.hydrophyla (KHM growth was at 8.25±0.39 ppm, while the lowest concentration of A.hydrophyla was 32.99±1.56 ppm. Bioactive compounds contained in methanol R.mucronata leaves extract are alkaloid compounds, flavonoids, and tannins. Out of the three compounds detected, antibacterial activity is thought to be derived from flavonoid and tannin compounds.

  18. Demonstration of in vitro antibacterial activity of the popular cosmetics items used by the Dhaka locality

    Directory of Open Access Journals (Sweden)

    Tanzia Akon

    2015-06-01

    Full Text Available Objective: To demonstrate the antibacterial activity of cosmetic products commonly used by the community of Dhaka metropolis. Methods: A total of 10 categories of cosmetic samples (with a subtotal of 30 brands were subjected to microbiological analysis through conventional culture and biochemical tests. Agar well diffusion method was used to determine the antibacterial trait in the tested samples which was further confirmed by the minimum inhibitory concentration method. Results: All samples were found to be populated with bacteria and fungi up to 105 CFU/ g and 103 CFU/g, respectively. Growth of Staphylococcus spp., Pseudomonas spp. and Klebsiella spp. was recorded as well. Conversely, 7 out of 30 items were found to exhibit the in vitro antibacterial activity against an array of laboratory test bacterial species including Staphylococcus spp., E. coli, Bacillus spp., Pseudomonas spp., Klebsiella spp. and Listeria spp. Consequently, all the samples showed antibacterial activity below the concentration of 0.46 mg/mL as found in the minimum inhibitory concentration test. Conclusions: Overall, the presence of huge microbial population in cosmetic products is not acceptable from the point microbiological contamination level. The antibacterial trait of these items, in contrary, may draw an overall public health impact.

  19. Antibacterial activity of some commonly used food commodities against escherichia coli, salmonella typhi and staphylococcus aureus

    International Nuclear Information System (INIS)

    Siddiqui, A.; Ansari, A.

    2009-01-01

    The activity of commonly used spices and salt, sugar and pickles against Escherichia coli, Salmonella typhi and staphlococcus aureus was tested. The antibacterial activity was found to be in descending order like coriander>pickles>salt and sugar>clove>black pepper>red chilli against S. typhi and garlic>clove>onion>ginger against S. aureus. (author)

  20. In vivo and in vitro antibacterial activity of conglutinin, a mammalian plasma lectin

    DEFF Research Database (Denmark)

    Friis-Christiansen, P; Thiel, S; Svehag, S E

    1990-01-01

    of BALB/c mice with Salmonella typhimurium is mediated by conglutinin. Conglutinin also demonstrated antibacterial activity against E. coli and S. typhimurium in vitro. The expression of this activity required the presence of heat-labile serum factors and peritoneal exudate or spleen cells...

  1. Antioxidant and antibacterial activities of turkish endemic Sideritis extracts

    Directory of Open Access Journals (Sweden)

    Ünver, Ahmet

    2005-03-01

    Full Text Available Sideritis species are traditionally used as teas, flavoring agents and for medicinal purposes in Turkey . In this study, the antioxidant and antimicrobial activities of Sideritis condensata Boiss. & Heldr. (SC and Sideritis eryhrantha v ar. erythrantha Boiss. & Heldr. (SE endemic species' extracts of Lamiaceae were determined. These extracts were investigated for antibacterial activity by using the agar diffusion method against 15 species of bacteria: Aeromonas hydrophila, Bacillus cereus, Enterobacter aerogenes, Enterococcus feacalis, Escherichia coli, Escherichia coli O157:H7, Klebsiella pneumoniae, Mycobacterium smegmatis, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella enteritidis, Salmonella typhimurium, Staphylococcus aureus and Yersinia enterocolitica. Statistical differences within bacteria were significant at pLas especies de Sideritis de usan tradicionalmente para la elaboración del té, como flavorizantes y con fines médicos en Turquía. En este estudio, se han determinado las actividades antimicrobiana y antioxidante de extractos de especies endémicas de la Familia Lamiaceae , como son Sideritis condensata Boiss. & Heldr. (SC y Sideritis erythrantha v ar. erythrantha Boiss. & Heldr. (SE. La actividad antibacteriana fue determinada mediante el método de difusión en agar con 15 especies de bacterias: Aeromonas hydrophila, Bacillus cereus , Enterobacter aerogenes, Enterococcus feacalis, Escherichia coli , Escherichia coli O157:H7, Klebsiella pneumoniae, Mycobacterium smegmatis, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella enteritidis, Salmonella typhimurium, Staphylococcus aureus y Yersinia enterocolitica. Se consideraron diferencias estadísticamente significativas cuando p<0,05. El extracto de SC tuvo mayor actividad antimicrobiana que el extracto de SE. La bacteria más sensible fue P. aeruginosa , mientras que las más resistentes fueron E. feacalis para el extracto

  2. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group.

    Science.gov (United States)

    Samosorn, Siritron; Tanwirat, Bongkot; Muhamad, Nussara; Casadei, Gabriele; Tomkiewicz, Danuta; Lewis, Kim; Suksamrarn, Apichart; Prammananan, Therdsak; Gornall, Karina C; Beck, Jennifer L; Bremner, John B

    2009-06-01

    Conjugation of the NorA substrate berberine and the NorA inhibitor 5-nitro-2-phenyl-1H-indole via a methylene ether linking group gave the 13-substituted berberine-NorA inhibitor hybrid, 3. A series of simpler arylmethyl ether hybrid structures were also synthesized. The hybrid 3 showed excellent antibacterial activity (MIC Staphylococcus aureus, 1.7 microM), which was over 382-fold more active than the parent antibacterial berberine, against this bacterium. This compound was also shown to block the NorA efflux pump in S. aureus.

  3. Antibacterial activity of the parotid glands secretions of sudanese indigenous african toad (Bufo spp.)

    International Nuclear Information System (INIS)

    Abugabr, H. E.; Elhussein, S. A.; Mahmoud, Z. N.

    2009-01-01

    The study revealed a well-built first line innate immunity system in Bufo Spp., the skin extracts illustrated a very active antibiotic attitude which inhibited the growth of human pathogenic bacteria species, Escherichia coli (ATCC 19615), staphylococcus aureus(ATCC29213) and streptococcus pyogenes (ATCC25922). Heat treatment of secretion supported the fact that the antibacterial components possess an enzymatic attitude. Gel filtration chromatography accompanied with sensitivity tests against S.aureus showed the existence of four groups responsible for antibacterial activity in the parotoid glands secretions.(Author)

  4. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria José dos S. Soares

    2013-03-01

    Full Text Available The present study describes the development of a green synthesis of silver nanoparticles reduced and stabilized by exuded gum from Anacardium occidentale L. and evaluates in vitro their antibacterial and cytotoxic activities. Characterization of cashew gum-based silver nanoparticles (AgNPs was carried out based on UV–Vis spectroscopy, transmission electron microscopy and dynamic light scattering analysis which revealed that the synthesized silver nanoparticles were spherical in shape, measuring about 4 nm in size with a uniform dispersal. AgNPs presented antibacterial activity, especially against Gram-negative bacteria, in concentrations where no significant cytotoxicity was observed.

  5. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel Leaves, Piper betle Methanolic Extract.

    Science.gov (United States)

    Syahidah, A; Saad, C R; Hassan, M D; Rukayadi, Y; Norazian, M H; Kamarudin, M S

    2017-01-01

    The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle . Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method. The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1. Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

  6. Antibacterial activity and optimisation of bacteriocin producing lactic acid bacteria isolated from beef (red meat) samples

    International Nuclear Information System (INIS)

    Ali, N.M.; Mazhar, B.; Khadija, I.; Kalim, B.

    2016-01-01

    Bacteriocin producing bacteria are commonly found in meat products to enhance their shelf-life. In the present study, bacterial species were isolated from meat samples (beef) from different localities of Lahore, Pakistan. MRS agar medium was used to isolate lactic acid bacteria (LAB) through spread and streak methods (incubated for 72 h at 37 degree C). Identification of bacteriocinogenic LAB strains was done by using staining techniques, morphology based characteristics and biochemical tests. These strains were BSH 1b, BSH 3a, BIP 4a, BIP 3a, BIP 1b and BRR 3a. Antibacterial activity of LAB was performed against food borne pathogens viz., Escherichia coli and Staphylococcus aureus through paper disc diffusion method. Three bacterial strains showed maximum inhibition and characterised by ribotyping viz., BIP 4a was identified as Lactobacillus curvatures, BIP 3a was Staphylococcus warneri and BIP 1b was Lactobacillus graminis . Optimum pH 5-6.5 and 30-37 degree C temperature for isolated bacterial strains was recorded. Protein concentration measured was 0.07 mg/mL for BSH 1b, 0.065 mg/mL for BSH 3a, 0.057 mg/mL for BIP 4a, 0.062 mg/mL for BIP 1b, 0.065 mg/mL for BIP 3a and for BRR 3a 0.078 mg/mL, respectively. Bacteriocin of all isolates except BIP 3a was found to be sensitive towards pepsin and resistant towards Rnase. Bacteriocin production was stable at between pH 5.0 and 6.0 and resistant temperature was 40 degree C. It was concluded that lactic acid bacteria (LAB) from meat can be helpful as antibacterial agents against food-borne bacterial pathogens because of thermostable producing bacteriocin. (author)

  7. Separation and Identification of Four New Compounds with Antibacterial Activity from Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2015-09-01

    Full Text Available The Portulaca oleracea L. (P. oleracea has been used to treat bacillary dysentery for thousands of years in China. Pharmacology studies on P. oleracea have also showed its significant antibacterial effects on the enteropathogenic bacteria, which might reveal the treatment of P. oleracea in cases of bacillary dysentery to some extent. To date, however, the therapeutic basis of P. oleracea treating on bacillary dysentery remains unknown. We determined the antibacterial effective fraction of P. oleracea in a previous study. The current study, which is based on our previous study, was first designed to isolate, identify and screen antibacterial active constituents from P. oleracea. As a result, four new compounds (1–4, portulacerebroside B (1, portulacerebroside C (2, portulacerebroside D (3 and portulaceramide A (4 along with five known compounds (5–9 were isolated, and structures were established by their physico-chemical constants and spectroscopic analysis. The antibacterial activities against common enteropathogenic bacteria were evaluated for all compounds and the new compounds 1–4 showed significant antibacterial effect on enteropathogenic bacteria in vitro, which might contribute to revealing the treatment of P. oleracea in cases of bacillary dysentery.

  8. Separation and Identification of Four New Compounds with Antibacterial Activity from Portulaca oleracea L.

    Science.gov (United States)

    Lei, Xia; Li, Jianmin; Liu, Bin; Zhang, Ning; Liu, Haiyang

    2015-09-10

    The Portulaca oleracea L. (P. oleracea) has been used to treat bacillary dysentery for thousands of years in China. Pharmacology studies on P. oleracea have also showed its significant antibacterial effects on the enteropathogenic bacteria, which might reveal the treatment of P. oleracea in cases of bacillary dysentery to some extent. To date, however, the therapeutic basis of P. oleracea treating on bacillary dysentery remains unknown. We determined the antibacterial effective fraction of P. oleracea in a previous study. The current study, which is based on our previous study, was first designed to isolate, identify and screen antibacterial active constituents from P. oleracea. As a result, four new compounds (1-4), portulacerebroside B (1), portulacerebroside C (2), portulacerebroside D (3) and portulaceramide A (4) along with five known compounds (5-9) were isolated, and structures were established by their physico-chemical constants and spectroscopic analysis. The antibacterial activities against common enteropathogenic bacteria were evaluated for all compounds and the new compounds 1-4 showed significant antibacterial effect on enteropathogenic bacteria in vitro, which might contribute to revealing the treatment of P. oleracea in cases of bacillary dysentery.

  9. Antibacterial activity of ethanol extract and fractions obtained from Taraxacum mongolicum flower

    Directory of Open Access Journals (Sweden)

    H. Qiao

    2014-10-01

    Full Text Available Background and objectives: Resistance towards reveling antibiotics has captured great interest in evaluating the antimicrobial properties of the natural plants. Taraxacum mongolicum is widely used as a folklore medicinal plant for its diuretic, antirheumatic and anti-inflammatory properties. Though there are some reports on antimicrobial properties of Taraxacum mongolicum, studies on antibacterial abilities of its flower are limited and it was decided to evaluate the antibacterial properties of the flowers in the present study. Methods: The antibacterial properties of ethanol extract of Taraxacum mongolicum flower, and its fractions (petroleum ether, ethyl acetate (ET, and aqueous fractions were examined through agar disc diffusion method, and the minimum inhibitory concentration (MIC was determined. Four Gram-negative and two Gram-positive bacteria were used in the study. Results: The antibacterial test results showed that the ET fraction strongly inhibited the growth of all of the microorganisms, especially Pseudomonas aeruginosa and Bacillus subtilis (with MIC values of 125 μg/mL and 62.5 μg/mL, respectively, whereas the ethanol extract and the other two fractions demonstrated moderate and weak activities, respectively. Conclusion: The ET fraction obtained from Taraxacum mongolicum flowers presented high antibacterial activity and might be suggested for use as a natural preservative ingredient in pharmaceutical industries.

  10. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Cory A. Leonard

    2013-01-01

    Full Text Available Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS. Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.

  11. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity

    Science.gov (United States)

    Leonard, Cory A.; Brown, Stacy D.; Hayman, J. Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system. PMID:23983696

  12. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity.

    Science.gov (United States)

    Leonard, Cory A; Brown, Stacy D; Hayman, J Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.

  13. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity

    International Nuclear Information System (INIS)

    Ma, Bo; Huang, Yang; Zhu, Chunlin; Chen, Chuntao; Chen, Xiao; Fan, Mengmeng; Sun, Dongping

    2016-01-01

    The antibacterial composite based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of SiO 2 coated Cu nanoparticles (Cu@SiO 2 /BC) and its properties were characterized. Its chemical structures and morphologies were evaluated by Fourier transformation infrared spectrum (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the SiO 2 coated Cu particles were well homogeneously precipitated on the surface of BC. The Cu@SiO 2 /BC was more resistant to oxidation than the Cu nanoparticles impregnated into BC (Cu/BC) and then Cu@SiO 2 /BC could prolong the antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). - Graphical abstract: Schematic illustration of the preparation of Cu@SiO 2 /BC. Due to its unique structure, the Cu@SiO 2 /BC membrane shows excellent antibacterial effects and can be used for a long time. - Highlights: • This work paves the novel way to fabricate antibacterial nanomaterial with good efficiency. • We prepare the antibacterial membrane based on bacterial cellulose by in-situ synthesis of SiO 2 -coated Cu nanoparticles. • The antibacterial membrane is more resistant to oxidation and can prolong the antimicrobial activity.

  14. Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves.

    Science.gov (United States)

    Chen, Zhifen; He, Daohang; Deng, Jingdan; Zhu, Jiaying; Mao, Qiuping

    2015-01-01

    The essential oil of fresh leaves from Agathis dammara (Lamb.) Rich was extracted using hydro-distillation, and GC-FID and GC-MS were used to analyse the essential oil. Nineteen compounds were identified, among which the major components were limonene (36.81%), β-bisabolene (33.43%) and β-myrcene (25.48%). In the antibacterial test, disc diffusion method and micro-well dilution assay proved that the essential oil had significant antibacterial activities. The inhibition zones against Staphylococcus aureus and Pseudomonas aeruginosa were 23.7 and 23 mm, respectively, which demonstrated that the inhibition effects were greater than positive control (10 μg/disc streptomycin). And the lowest MIC value of the essential oil was found against S. aureus (1.25 mg/mL) and Bacillus subtilis (1.25 mg/mL). This is the first report on the antibacterial activities of A. dammara essential oil.

  15. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Science.gov (United States)

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  16. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2014-01-01

    Full Text Available Curcuma longa L. (Zingiberaceae family and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.

  17. The effect of lipophilicity on the antibacterial activity of some 1-benzylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    D. J. BARNA

    2008-10-01

    Full Text Available In the present paper, the antibacterial activity of some 1-benzylbenzimidazole derivatives were evaluated against the Gram-negative bacteria Escherichia coli. The minimum inhibitory concentration was determined for all the compounds. Quantitative structure–activity relationship (QSAR was employed to study the effect of the lipophilicity parameters (log P on the inhibitory activity. Log P values for the target compounds were experimentally determined by the “shake-flask” method and calculated by using eight different software products. Multiple linear regression was used to correlate the log P values and antibacterial activity of the studied benzimidazole derivatives. The results are discussed based on statistical data. The most acceptable QSAR models for the prediction of the antibacterial activity of the investigated series of benzimidazoles were developed. High agreement between the experimental and predicted inhibitory values was obtained. The results of this study indicate that the lipophilicity parameter has a significant effect on the antibacterial activity of this class of compounds, which simplifies the design of new biologically active molecules.

  18. A Synergistic effect of artocarpanone from Artocarpus heterophyllus Lam. (Moraceae on the antibacterial activity of some antibiotics and their effect on membrane permeability

    Directory of Open Access Journals (Sweden)

    Abdi Wira Septama

    2017-06-01

    Full Text Available Aim/backgrounds: Artocarpanone isolated from Artocarpus heterophyllus Lam. (Moraceae possesses antibacterial activity. The present study investigated any interaction between artocarpanone and some antibiotics including tetracycline, ampicillin and norfloxacin against Methicillin-resistant Staphylococcus aureus (MRSA, Pseudomonas aeruginosa and Escherichia coli, as well as determining any disruptive effect on bacterial membranes. Materials and methods: A broth microdilution method was used for the susceptibility assay. Any synergistic effect was determined using a checerboard method, and any membrane disruption effect was investigated using a bacteriolysis assay and a measurement of the released 260 nm absorbing materials. Results and discussion: Artocarpanone exhibited weak antibacterial activities against MRSA and P. aeruginosa with MIC values of 125 and 500 µg/mL, respectively. However, it showed the strong antibacterial activity against E. coli (7.8 µg/mL. The interaction between artcarpanone with all tested antibiotics against P. aeruginosa and E. coli only revealed indifference and additive effects (FICI values of 0.75-1.25. The interaction between artocarpanone (31.2 µg/mL and norfloxacin (3.9 µg/mL exhibited a synergistic antibacterial activity against MRSA, with a fractional inhibitory concentration index (FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, a combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. Conclusion: These findings suggested that artocarpanone may be considered as an adjuvant to enhance the antibacterial activity of norfloxacin against MRSA. [J Complement Med Res 2017; 6(2.000: 186-191

  19. Antibacterial activity of propolis-based toothpastes for endodontic treatment

    Directory of Open Access Journals (Sweden)

    Fausto Rodrigo Victorino

    2009-12-01

    Full Text Available This study evaluated the antibacterial activity of propolis-based toothpastes used as intracanal medication in endodontic treatment. The propolis-based toothpastes were prepared using an extract established in previous studies (identified as A70D and D70D. Calcium hydroxide paste was used as a control. The bacteria employed were Streptococcus mutans (ATCC 25175, Staphylococcus aureus (ATCC 6538, Staphylococcus aureus (ATCC 25923, Kocuria rhizophila (ATCC 9341, Escherichia coli (ATCC 10538, Pseudomonas aeruginosa (ATCC 27853, Enterococcus hirae (ATCC 10541, Streptococcus mutans (ATCC 25175. Five field strains isolated from saliva were used: Staphylococcus spp. (23.1 - coagulase positive, Staphylococcus spp. (23.5 - coagulase negative, Staphylococcus spp. (26.1 - coagulase positive, Staphylococcus spp. (26.5 - coagulase negative and Staphylococcus epidermidis (6epi. The diffusion-well method on double-layer agar was used in a culture medium of Tryptic Soy Agar. The plates were kept at room temperature for two hours to allow the diffusion of pastes in the culture medium, and then incubated at 35º C for twenty-four hours in aerobiosis and in microaerophilia (S. mutans. After this period, the total diameter of the inhibition halo was measured. The results were analyzed by ANOVA analysis of variance, followed by the Tukey test at pO objetivo deste estudo foi avaliar a atividade antibacteriana de formas farmacêuticas a base de própolis para uso no tratamento endodôntico como medicação intracanal. As formulações de própolis, em forma de pastas, foram preparadas a partir de um extrato pré-estabelecido em estudos anteriores e identificadas como A70D e D70D. Como controle, foi utilizado pasta de hidróxido de cálcio. As bactérias utilizadas foram: Streptococcus mutans (ATCC 25175, Staphylococcus aureus (ATCC 6538, Staphylococcus aureus (ATCC 25923, Kocuria rhizophila (ATCC 9341, Escherichia coli (ATCC 10538, Pseudomonas aeruginosa (ATCC 27853

  20. Membrane curvature stress and antibacterial activity of lactoferricin derivatives.

    Science.gov (United States)

    Zweytick, Dagmar; Tumer, Sabine; Blondelle, Sylvie E; Lohner, Karl

    2008-05-02

    We have studied correlation of non-lamellar phase formation and antimicrobial activity of two cationic amphipathic peptides, termed VS1-13 and VS1-24 derived from a fragment (LF11) of human lactoferricin on Escherichia coli total lipid extracts. Compared to LF11, VS1-13 exhibits minor, but VS1-24 significantly higher antimicrobial activity. X-ray experiments demonstrated that only VS1-24 decreased the onset of cubic phase formation of dispersions of E. coli lipid extracts, significantly, down to physiological relevant temperatures. Cubic structures were identified to belong to the space groups Pn3m and Im3m. Formation of latter is enhanced in the presence of VS1-24. Additionally, the presence of this peptide caused membrane thinning in the fluid phase, which may promote cubic phase formation. VS1-24 containing a larger hydrophobic volume at the N-terminus than its less active counterpart VS1-13 seems to increase curvature stress in the bilayer and alter the behaviour of the membrane significantly enhancing disruption.

  1. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity.

    Science.gov (United States)

    Cai, Xiang; Zhang, Bin; Liang, Yuanyuan; Zhang, Jinglin; Yan, Yinghui; Chen, Xiaoyin; Wu, Zhimin; Liu, Hongxi; Wen, Shuiping; Tan, Shaozao; Wu, Ting

    2015-08-01

    To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. TOTAL PHENOLIC CONTENT, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF THE EXTRACT OF EPHEDRA PROCERA FISCH. ET MEY.

    Science.gov (United States)

    Dehkordi, Naser Vahed; Kachouie, Mehrdad Ataie; Pirbalouti, Abdollah Ghasemi; Malekpoor, Fatemeh; Rabei, Mohammad

    2015-01-01

    Ephedra prcera belonging to the family Ephedraceae is a poison and medicinal plant. The main aim of present study was to determine total phenolic content and antioxidant and antibacterial activities of ethanolic extract from the aerial parts of E. procera collected from a natural habitat in Chaharmahal va Bakhtiari province, Southwestern Iran. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the extract were evaluated against five bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Enteobacter aeogenes, Bacillus ceirus and Staphylococcus aureus. Total phenolic content in the extract of E. procera was 0.718 mg tannic acid/g dry weight extract. The results indicated that the ethanolic extract of E. piocera exhibited radical scavenging activity. In addition, the results of this study confirmed that the ethanolic extract of E. procera exhibited antibacterial activity. In conclusion, the extract of E. piocera could be an important source of phenolic components with antioxidant capacity and antibacterial activity.

  3. Selective antibacterial activity of patchouli alcohol against Helicobacter pylori based on inhibition of urease.

    Science.gov (United States)

    Yu, Xiao-Dan; Xie, Jian-Hui; Wang, Yong-Hong; Li, Yu-Cui; Mo, Zhi-Zhun; Zheng, Yi-Feng; Su, Ji-Yan; Liang, Ye-er; Liang, Jin-Zhi; Su, Zi-Ren; Huang, Ping

    2015-01-01

    The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Antibacterial and antioxidant activities and acute toxicity of Bumelia sartorum Mart., Sapotaceae, a Brazilian medicinal plant

    Directory of Open Access Journals (Sweden)

    Halliny S. Ruela

    2011-03-01

    Full Text Available In order to validate the Bumelia sartorum Mart., Sapotaceae, traditional use for infection diseases, this study evaluates the antibacterial activity of the stem bark fractions against methicillin-sensitive (MSSA and methicillin-resistant (MRSA Staphylococcus aureus strains by using the agar dilution method and reported as MIC (minimal inhibitory concentration. In addition, the DPPH scavenging activity of these fractions was measured and the chemical composition and acute toxicity of the active fraction were also determined. The ethyl acetate (EtOAc extract was chemically analyzed by LC/MS, direct ionization APCI/MS, ¹H NMR and 13C-NMR. All fractions, except butanol extract, presented high antioxidant activity, especially the methanol and the EtOAc extracts, which showed EC50 values (5.67 and 5.30 µg/mL, respectively considerably lower than the Gingko-standard EGb 761® (38.58 µg/mL. The antibacterial activity against S. aureus strains was observed in EtOAc (MIC 256-512 µg/mL, which showed a very low toxicity. The chemical study of this fraction revealed the abundant presence of polyphenolic compounds. The antibacterial and antioxidant activities reported in this paper for EtOAc extract from B. sartorum and the low toxicity of this fraction opens the possibility that it could be helpful for the developing of new antibacterial agents for treating S. aureus infections.

  5. Antibacterial and antifungal activity of endodontic intracanal medications

    Science.gov (United States)

    TONEA, ANDRADA; BADEA, MANDRA; OANA, LIVIU; SAVA, SORINA; VODNAR, DAN

    2017-01-01

    Background and aims The sterilization of the entire root canal system represents the main goal of every endodontist, given the fact that the control of the microbial flora is the key point of every root canal treatment. The diversity of microorganisms found inside the root canal and also the resistance of some bacterial species to intracanal medications led to a continuous development of new endodontic products. The present study focuses on the comparison of the antibacterial and antifungal properties of different endodontic products, two commercially available, one experimental plant based extract, and two control substances. Methods The disc diffusion assay was used to determine the antibacterial and antifungal properties of chlorhexidine, calcium hydroxide, a mix extract between Arctium lappa root powder and Aloe barbadensis Miller gel, Amoxicillin with clavulanic acid and Fluconazole (as control substances). Two of the most common microorganisms found in endodontic infections were chosen: Enterococcus faecalis (ATCC 29212) and Candida albicans ATCC(10231). Results All tested substances showed inhibition zones around the discs, for Enterococcus faecalis and Candida albicans, including the experimental mix extract of Arctium lappa root powder with Aloe vera gel. Conclusion The experimental mix extract of Arctium lappa root powder and Aloe vera gel is able to inhibit very resistant microorganisms, like Enterococcus faecalis and Candida albicans. PMID:28781531

  6. Irradiation with visible light enhances the antibacterial toxicity of silver nanoparticles produced by laser ablation

    Science.gov (United States)

    Ratti, Matthew; Naddeo, J. J.; Tan, Yuying; Griepenburg, Julianne C.; Tomko, John; Trout, Cory; O'Malley, Sean M.; Bubb, Daniel M.; Klein, Eric A.

    2016-04-01

    The rise of antibiotic-resistant bacteria is a rapidly growing global health concern. According to the Center for Disease Control, approximately 2 million illnesses and 23,000 deaths per year occur in the USA due to antibiotic resistance. In recent years, there has been a surge in the use of metal nanoparticles as coatings for orthopedic implants, wound dressings, and food packaging, due to their antimicrobial properties. In this report, we demonstrate that the antibacterial efficacy of silver nanoparticles (AgNPs) is enhanced with exposure to light from the visible spectrum. We find that the increased toxicity is due to augmented silver ion release and bacterial uptake. Interestingly, silver ion toxicity does not appear to depend on the formation of reactive oxygen species. Our findings provide a novel paradigm for using light to regulate the toxicity of AgNPs which may have a significant impact in the development of new antimicrobial therapeutics.

  7. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

    Science.gov (United States)

    Dutta, R K; Nenavathu, Bhavani P; Gangishetty, Mahesh K; Reddy, A V R

    2012-06-01

    Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my; Ibrahim, Zaharah

    2016-01-01

    Graphical abstract: - Highlights: • Functionalization of Ag-exchanged zeolite NaY with 3-aminopropyltriethoxysilane APTES (ZSA) as antibacterial agent. • Antibacterial assay of ZSA was performed against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538. • Functionalization of Ag-exchanged zeolite NaY with APTES significantly increased the antibacterial agent. • Different mechanisms of bacterial death were suggested for each bacteria type by the functionalized Ag-exchanged zeolite NaY. - Abstract: Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver

  9. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  10. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  11. Effect of metal salts on antibacterial activity of zingiber officinale roscoe extract

    International Nuclear Information System (INIS)

    Sohail, T.; Yaqeen, Z.; Imran, H.; Rehman, Z.; Fatima, N.

    2013-01-01

    The antibacterial activity of ethanol extract of Zingiber Officinale Roscoe (ginger) and its combination with different salts like CuSO/sub 4/, ZnSO/sub 4/ and MnCl/sub 2/ was investigated. Both Gram positive and Gram negative bacteria were tested by agar diffusion method. The results showed that ethanol extract of Zingiber Officinale gave the maximum zone of inhibition at 50 mg/ml concentrations against Escherichia coli among Gram negative bacteria and against Staphylococcus aureus in Gram positive bacteria. However antibacterial activity of the ginger and metal salts combination was greater than activity of ethanol extract. These investigations indicate that though ethanol extract has antibacterial activity against Gram positive and Gram negative bacteria, ginger and metal salts complex has more inhibitory effect on microorganisms. Antibacterial activity was also compared with standard drug ampicillin. The minimum inhibitory concentration (MIC) of ginger extract and metal salts complexes against all test organisms ranged from 0.3125 to 2.5 mg/ml. (author)

  12. Phytochemicals Screening and In Vitro Antibacterial Activity of Elaeis guineensis Leaves Extracts Against Human Pathogenic Bacteria

    International Nuclear Information System (INIS)

    Noorshilawati Abdul Aziz; Umi Nadhirah Halim; Nur Suraya Abdullah

    2015-01-01

    Chloroform and methanol extracts of Elaeis guineensis leaves were investigated for in vitro antibacterial activity against the human pathogenic bacteria Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Four different concentrations of both extracts consists of 50, 100, 200 and 300 mg/ ml were prepared for antibacterial activity using disc diffusion method. The results revealed that chloroform and methonal extract showed high toxicity against all bacterial strain tested. However, both extracts is more effective and exhibit better inhibiting activity against gram positive bacteria, S. aureus compared to gram negative bacteria (E. coli and P. aeruginosa). Methanol extract of Elaeis guineensis leaves shows greater inhibition zone compared to chloroform extract as phyto chemical screening revealed that this extracts contain terpenoids, tannins and saponin. The highest antibacterial activity was exhibited by 300 mg/ ml methanolic extracts against S. aureus which inhibited 10.67 ± 0.33 mm of the diameter zone. Followed by 200 mg/ ml methanolic extracts and 300 mg/ ml chloroform extracts against S. aureus which inhibited 9.17 ± 0.17 mm and 8.33 ± 1.67 mm respectively. This result revealed the potentials of Elaeis guineensis as antibacterial agent in combating infections from human pathogenic bacteria. However, further studies, including identification and purification of the active compounds, will need to be pursued. (author)

  13. Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads.

    Science.gov (United States)

    Brachkova, Mariya I; Duarte, Maria A; Pinto, João F

    2010-12-23

    The objective of the study was to produce calcium alginate beads able to deliver Lactobacillus spp. (Lactobacillus plantarum, Lactobacillus rhamnosus GG, Lactobacillus bulgaricus and Lactobacillus lactis) with preserved viability and antibacterial activity. Four types of beads, containing entrapped (E), surface and entrapped (ES), surface (S) and concentrated surface and entrapped lactobacilli (C(ES)) were prepared and physically characterized. The antibacterial activity of lactobacilli cultures before and after immobilization, freeze-drying and throughout storage was studied in relationship to the viable number of lactobacilli. Multi-resistant clinical isolates (methicillin-resistant Staphylococcus aureus, vancomycine-resistant Enterococcus faecalis, VIM-2-metalo-β-lactamase producing Pseudomonas aeruginosa and CTX-M-15-β-lactamase producing strains: Escherichia coli and Klebsiella pneumoniae) were used as indicator strains. Alginate beads in which lactobacilli proliferated to the beads surface (ES and C(ES)) differed significantly from the other types of beads in their physicochemical properties, showing smoother surface morphology, more spherical shape, bigger weight, lower calcium content, density and crushing force. Lactobacilli cultures, at high cell concentrations (10(8)cfu/ml) were active against both Gram-positive and negative multi-resistant bacteria. Beads containing both entrapped and surface lactobacilli (ES) resulted in viability and antibacterial activity most similar to non-processed lactobacilli cultures. The viability and antibacterial activity of the immobilized lactobacilli remained stable after 6 months storage. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms.

    Science.gov (United States)

    Teanpaisan, Rawee; Kawsud, Pajaree; Pahumunto, Nuntiya; Puripattanavong, Jindaporn

    2017-04-01

    To evaluate the antibacterial activity of 12 ethanol extracts of Thai traditional herb against oral pathogens. The antibacterial activities were assessed by agar well diffusion, broth microdilution, and time-kill methods. Antibiofilm activity was investigated using a 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium-bromide (MTT) assay. High performance liquid chromatography (HPLC), thin layer chromatography (TLC) fingerprinting, and TLC-bioautography were used to determine the active antibacterial compounds. Piper betle showed the best antibacterial activities against all tested strains in the minimal inhibitory concentration and minimal bactericidal concentration, ranged from 1.04-5.21 mg/mL and 2.08-8.33 mg/mL, respectively. Killing ability depended on time and concentrations of the extract. P. betle extract acts as a potent antibiofilm agent with dual actions, preventing and eradicating the biofilm. The major constituent of P. betle extract was 4-chromanol, which responded for antibacteria and antibiofilm against oral pathogens. It suggests that the ethanol P. betle leaves extract may be used for preventing oral diseases.

  15. Phenolic content, antioxidant and antibacterial activity of selected natural sweeteners available on the Polish market.

    Science.gov (United States)

    Grabek-Lejko, Dorota; Tomczyk-Ulanowska, Kinga

    2013-01-01

    Seventeen natural sweeteners available on the Polish market were screened for total phenolic content, by the Folin-Ciocalteu method, and for antioxidant activity, using the ferric reducing antioxidant power (FRAP) assay and the 2,2'-Azinobis (3-ethylbenzthiazoline-6-sulphonic acid) radical cation decolorization assay (ABTS(·+)). In addition, we analyzed antibacterial activities against Staphylococcus aureus strains: both those susceptible and those resistant to methicillin (MRSA). The results of the study showed that total phenolic content, antioxidant activity and antibacterial activity differ widely among different samples of sweeteners. Phenolic content, expressed as a gallic acid equivalent, ranged from 0 mg kg(-1) in white, refined sugar, xylitol and wheat malt syrup to 11.4 g kg(-1) in sugarcane molasses. Antioxidant activity was lowest in refined white sugar, xylitol, brown beet sugar, liquid fructose, and rape honey; it was average in spelt syrup and corn syrup, and highest in sugar cane, beet molasses, date and barley syrups. Despite the great variety of sweeteners, a strong correlation was noted between the concentration of phenolics and antioxidant properties, as determined by the ABTS(·+) method (r = 0.97) and the FRAP assay (r = 0.77). The strongest antibacterial activity was observed in sugarcane molasses, which was lethal to S. aureus strains at 2 and 4% concentrations in medium for susceptible and MRSA strains respectively. Other sweeteners kill bacteria in 6-15% solutions, whereas some did not show any antibacterial activities against S. aureus strains, even at 20% concentrations. Due to their high antioxidant and antibacterial activities, some of the tested sweeteners have potential therapeutic value as supporting agents in antibiotic therapy.

  16. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey.

    Science.gov (United States)

    Yildirim, Arzu Birinci; Karakas, Fatma Pehlivan; Turker, Arzu Ucar

    2013-08-01

    To investigate antibacterial and antitumor activities of 51 different extracts prepared with 3 types of solvents (water, ethanol and methanol) of 16 different plant species (Ajuga reptans (A. reptans) L., Phlomis pungens (P. pungens) Willd., Marrubium astracanicum (M. astracanicum) Jacq., Nepeta nuda (N. nuda) L., Stachys annua (S. annua) L., Genista lydia (G. lydia) Boiss., Nuphar lutea (N. lutea) L., Nymphaea alba (N. alba) L., Vinca minor (V. minor) L., Stellaria media (S. media) L., Capsella bursa-pastoris (C. bursa-pastoris) L., Galium spurium (G. spurium) L., Onosma heterophyllum (O. heterophyllum) Griseb., Reseda luteola (R. luteola) L., Viburnum lantana (V. lantana) L. and Mercurialis annua (M. annua) L.) grown in Turkey was conducted. Antibacterial activity was evaluated with 10 bacteria including Streptococcus pyogenes (S. pyogenes), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), Escheria coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium (S. typhimurium), Serratia marcescens (S. marcescens), Proteus vulgaris (P. vulgaris), Enterobacter cloacae (E. cloacea), and Klebsiella pneumoniae (K. pneumoniae) by using disc diffusion method. Antitumor activity was evaluated with Agrobacterium tumefaciens (A. tumefaciens)-induced potato disc tumor assay. Best antibacterial activity was obtained with ethanolic extract of P. pungens against S. pyogenes. Ethanolic and methanolic extract of N. alba and ethanolic extract of G. lydia also showed strong antibacterial activities. Results indicated that alcoholic extracts especially ethanolic extracts exhibited strong antibacterial activity against both gram-positive and gram-negative bacteria. Best antitumor activity was obtained with methanolic extracts of N. alba and V. lantana (100% tumor inhibition). Ethanolic extract of N. alba, alcoholic extracts of N. lutea, A. reptans and V. minor flowers, methanolic extracts of G. lydia and O. heterophyllum and ethanolic

  17. Comparison of the Nutritive Value, Antioxidant and Antibacterial Activities of Sonchus asper and Sonchus oleraceus

    Directory of Open Access Journals (Sweden)

    Florence O. Jimoh

    2011-01-01

    Full Text Available Many local vegetable materials are under-exploited because of inadequate scientific knowledge of their nutritional potentials. For this reason, the nutritional, phytochemical, antioxidant and antibacterial activities of the acetone, methanol and water extracts of the leaves of Sonchus asper and Sonchus oleraceus were investigated. The proximate analysis showed that the plants contained appreciable percentage of moisture content, ash content, crude protein, crude lipid, crude fibre and carbohydrate. The plants are also rich in minerals, flavonoids, flavonols, proanthocyanidins, total phenols and low levels of saponins, phytate and alkaloids. The extracts of the 2 plants also showed strong antioxidant antibacterial properties.

  18. Photocatalytic antibacterial activity of copper-based nanoparticles under visible light illumination

    Science.gov (United States)

    Wu, Zong-Yan; Abdullah, Hairus; Kuo, Dong-Hau

    2018-04-01

    Copper oxide and sulfide nanoparticles after annealing treatment at 400 °Chave been characterized and tested for their bactericidal properties toward Staphylococcus aureus and Escherichia coli under the dark and LED light illuminated conditions. It was found that the nanoparticles with the formation of CuS/Cu2S/CuO nanoheterostructuresexhibited a great capability of killing Staphylococcus aureus and Escherichia coli with or without light illumination. The antibacterial activity of the nanoparticles was demonstrated and simply observed with colony counting method. A mechanism of the antibacterial behaviour had been proposed and elucidated in this work.

  19. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangmei; Man, H.C., E-mail: mfhcman@polyu.edu.hk

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200 μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability. - Highlights: • Silver-containing hydroxyapatite (Ag-HA) nanocomposite layer was fabricated on Ti6Al4V by laser technique. • Both bioactivity and antibacterial capability were significantly enhanced compared with bare Ti6Al4V. • Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability.

  20. High-antibacterial activity of Urtica spp. seed extracts on food and plant pathogenic bacteria.

    Science.gov (United States)

    Körpe, Didem Aksoy; İşerı, Özlem Darcansoy; Sahin, Feride Iffet; Cabi, Evren; Haberal, Mehmet

    2013-05-01

    The aim of this study was to comparatively evaluate antibacterial activities of methanol (MetOH) and aqueous (dw) leaf (L), root (R) and seed (S) extracts of Urtica dioica L. (Ud; stinging nettle) and Urtica pilulifera L. (Up; Roman nettle) on both food- and plant-borne pathogens, with total phenolic contents and DPPH radical scavenging activities (DRSA). MetOH extracts of leaves and roots of U. dioica had the highest DRSA. Extracts with high antibacterial activity were in the order Up-LMetOH (13/16) > Ud-SMetOH (11/16) > Up-SMetOH (9/16). Results obtained with Up-SMetOH against food spoiling Bacillus pumilus, Shigella spp. and Enterococcus gallinarum with minimum inhibitory concentrations (MICs) in 128-1024 μg/ml range seem to be promising. Up-SMetOH also exerted strong inhibition against Clavibacter michiganensis with a considerably low MIC (32 μg/ml). Ud-SMetOH and Up-LMetOH were also effective against C. michiganensis (MIC = 256 and 1024 μg/ml, respectively). Ud-SMetOH and Ud-RMetOH had also antimicrobial activity against Xanthomonas vesicatoria (MIC = 512 and 1024 μg/ml, respectively). Results presented here demonstrate high-antibacterial activity of U. pilulifera extracts and U. dioica seed extract against phytopathogens for the first time, and provide the most comprehensive data on the antibacterial activity screening of U. pilulifera against food-borne pathogens. Considering limitations in plant disease control, antibacterial activities of these extracts would be of agricultural importance.

  1. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    Science.gov (United States)

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (Pacids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences.

  2. Evaluation of the Antibacterial Activity of 14 Medicinal Plants in Côte ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antibacterial potentials of fourteen ethnobotanically selected plants traditionally used in different parts of Côte d'Ivoire for the treatment of typhoid fever and gastrointestinal disorders. Method: The antimicrobial activity of the extracts of the plant was tested against a collection strain of Salmonella ...

  3. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi - Metabolites, enzymes and residual antibacterial activity

    Czech Academy of Sciences Publication Activity Database

    Čvančarová, Monika; Moeder, M.; Filipová, Alena; Cajthaml, Tomáš

    2015-01-01

    Roč. 136, OCT 2015 (2015), s. 311-320 ISSN 0045-6535 R&D Projects: GA TA ČR TE01020218; GA ČR GA13-28283S Institutional support: RVO:61388971 Keywords : Fluoroquinolone antibiotics * White rot fungi * Residual antibacterial activity Subject RIV: EE - Microbiology, Virology Impact factor: 3.698, year: 2015

  4. In vitro antioxidant, antibacterial and anti-tumor activities of total ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro antioxidant, antibacterial and anti-tumor activities of total flavonoids from Elsholtzia densa Benth of Sichuan Province, China. Methods: The total flavonoids of Elsholtzia densa Bent were extracted utilizing the ultrasonic extraction method, and purified by D101 macroporous adsorption resin ...

  5. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing

    Czech Academy of Sciences Publication Activity Database

    Arenbergerová, M.; Arenberger, P.; Bednář, M.; Kubát, Pavel; Mosinger, Jiří

    2012-01-01

    Roč. 21, č. 8 (2012), s. 619-624 ISSN 0906-6705 R&D Projects: GA ČR GAP208/11/2222 Institutional support: RVO:61388955 ; RVO:61388980 Keywords : antibacterial * leg ulcer * light-activated nanofibres Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.578, year: 2012

  6. Chemical composition and anti-bacterial activity of essential oil from ...

    African Journals Online (AJOL)

    This work assesses the chemical compositions and in vitro anti-bacterial activities of seed essential oil from Cedrela sinesis (A. Juss.) Roem. seed. which has abundant mineral elements such as K, Ca, Fe. The fatty acid profiles of seed essential oil are characterized by considerable unsaturated fatty acids (90.39%) ...

  7. Efficacy of Aqueous and Methanol Extracts of Some Medicinal Plants for Potential Antibacterial Activity

    OpenAIRE

    PAREKH, Jigna; JADEJA, Darshana; CHANDA, Sumitra

    2014-01-01

    Twelve medicinal plants were screened, namely Abrus precatorius L., Caesalpinia pulcherrima Swartz., Cardiospermum halicacabum L., Casuarina equisetifolia L., Cynodon dactylon (L.) Pers., Delonix regia L., Euphorbia hirta L., Euphorbia tirucalli L., Ficus benghalensis L., Gmelina asiatica L., Santalum album L., and Tecomella undulata (Sm.) Seem, for potential antibacterial activity against 5 medically important bacterial strains, namely Bacillus subtilis ATCC6633, Staphylococcus epidermidis A...

  8. Evaluation of Antibacterial Activity of Some Traditionally Used Medicinal Plants against Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Bishnu P. Marasini

    2015-01-01

    Full Text Available The worldwide increase of multidrug resistance in both community- and health-care associated bacterial infections has impaired the current antimicrobial therapy, warranting the search for other alternatives. We aimed to find the in vitro antibacterial activity of ethanolic extracts of 16 different traditionally used medicinal plants of Nepal against 13 clinical and 2 reference bacterial species using microbroth dilution method. The evaluated plants species were found to exert a range of in vitro growth inhibitory action against the tested bacterial species, and Cynodon dactylon was found to exhibit moderate inhibitory action against 13 bacterial species including methicillin-resistant Staphylococcus aureus, imipenem-resistant Pseudomonas aeruginosa, multidrug-resistant Salmonella typhi, and S. typhimurium. The minimum inhibitory concentration (MIC values of tested ethanolic extracts were found from 31 to >25,000 μg/mL. Notably, ethanolic extracts of Cinnamomum camphora, Curculigo orchioides, and Curcuma longa exhibited the highest antibacterial activity against S. pyogenes with a MIC of 49, 49, and 195 μg/mL, respectively; whereas chloroform fraction of Cynodon dactylon exhibited best antibacterial activity against S. aureus with a MIC of 31 μg/mL. Among all, C. dactylon, C. camphora, C. orchioides, and C. longa plant extracts displayed a potential antibacterial activity of MIC < 100 μg/mL.

  9. Synthesis, characterization, crystal structures, QSAR study and antibacterial activities of organotin bisphosphoramidates

    Czech Academy of Sciences Publication Activity Database

    Gholivand, K.; Valmoozi, A.A.E.; Gholami, A.; Dušek, Michal; Eigner, Václav; Abolghasemi, S.

    2016-01-01

    Roč. 806, Mar (2016), s. 33-44 ISSN 0022-328X R&D Projects: GA ČR GA15-12653S Institutional support: RVO:68378271 Keywords : bisphosphoramidate * organotin compounds * crystal structure * antibacterial activity * QSAR Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.184, year: 2016

  10. Anti-bacterial activity of Extract of Crinum jagus bulb against Isolates ...

    African Journals Online (AJOL)

    Crinum jagus plant has been reportedly used for treatment of infectious diseases in Nigeria. In this study, the antibacterial activity of the crude extract and chromatographic fractions from the bulb of Crinium jagus against Mycobacterium tuberculosis isolates was investigated using Lowenstein-Jensen medium (LJ) and ...

  11. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    Science.gov (United States)

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  12. Invitro Antibacterial Activity of the Prosopis Juliflora Seed Pods on Some Common Pathogens.

    Science.gov (United States)

    Tajbakhsh, Saeed; Barmak, Alireza; Vakhshiteh, Faezeh; Gharibi, Marzieh

    2015-08-01

    Prosopis juliflora is probably the most widespread species of genus Prosopis and it is a good source of compounds that have been shown to be pharmacologically active. This plant has been used as a traditional treatment for several diseases. To investigate the in-vitro antibacterial activity of the P. juliflora seed pods from Bushehr, South West of Iran. In the present study, the antibacterial activity of P. juliflora seed pods extract was tested against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. The minimum inhibitory concentration (MIC) of the extract was determined for each test microorganism. P. juliflora seed pods extract exhibited antibacterial activity against all four test organisms. The MIC of the extract was 0.312 mg/ml and 0.078 mg/ml for S. aureus and S. epidermidis, respectively and 1.25 mg/ml for both E.coli and P.aeruginosa. P. juliflora seed pods from Bushehr, South West of Iran could be an appropriate source of antibacterial compounds that makes it a promising candidate for further studies.

  13. Preparation and antibacterial activity of Ag–TiO2 composite film by ...

    Indian Academy of Sciences (India)

    WINTEC

    The stability of the Ag–TiO2 films was tested in a weather chamber (Atlas ... test. The antibacterial activity of the film after weathering was then compared to the one before weathering. 3. Results .... form the electron-cavity, the cavities oxidize the OH. – and ... in pharmaceutical and medical device factories, where the bacteria ...

  14. Synthesis and Antibacterial Activity of 1,3,4-Oxadiazole and 1,2,4 ...

    African Journals Online (AJOL)

    NJD

    The antibacterial activities of the starting materials, the synthetic intermediates and the products were tested and are reported below. 2. Results and Discussion. 2.1. Synthesis. The final products 4, 6, 8 and 9 have been synthesized by a common pathway as summarized in Scheme 1. The methyl salicylate 2 was synthesized ...

  15. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    Science.gov (United States)

    Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...

  16. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus.

    Science.gov (United States)

    Lu, Zhongjing; Dockery, Christopher R; Crosby, Michael; Chavarria, Katherine; Patterson, Brett; Giedd, Matthew

    2016-01-01

    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural "green" foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E . coli O157:H7 and S . aureus . Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91 ± 0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 μg/ml. AITC at 500 μg/ml was bactericidal against both pathogens while AITC at 1000 μg/ml eliminated E. coli O157:H7 much faster than S. aureus . The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other

  17. Antibacterial activities of wasabi against Escherichia coli O157:H7 and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Zhongjing Lu

    2016-09-01

    Full Text Available Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural green foods. Allyl isothiocyanate (AITC is an antimicrobial compound naturally present in wasabi (Japanese horseradish and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E. coli O157:H7 and S. aureus. Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91±0.59 mg/g. The minimum inhibitory concentration (MIC of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml. Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 µg/ml. AITC at 500 µg/ml was bactericidal against both pathogens while AITC at 1000 µg/ml eliminated E. coli O157:H7 much faster than S. aureus. The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi

  18. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings

    Directory of Open Access Journals (Sweden)

    Huang D

    2017-10-01

    Full Text Available Dan Huang,1 Kena Ma,1,2 Xinjie Cai,1,2 Xu Yang,3 Yinghui Hu,1 Pin Huang,1 Fushi Wang,1 Tao Jiang,1,2 Yining Wang1,2 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 2Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China; 3Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Titanium (Ti and its alloys have been widely used in clinics for years. However, their bio-inert surface challenges application in patients with compromised surgical conditions. Numerous studies were conducted to modify the surface topography and chemical composition of Ti substrates, for the purpose of obtaining antibacterial, angiogenic, and osteogenic activities. In this study, using green electrophoretic deposition method, we fabricated gap-bridging chitosan-gelatin (CSG nanocomposite coatings incorporated with different amounts of copper (Cu; 0.01, 0.1, 1, and 10 mM for Cu I, II, III, and IV groups, respectively on the Ti substrates. Physicochemical characterization of these coatings confirmed that Cu ions were successfully deposited into the coatings in a metallic status. After rehydration, the coatings swelled by 850% in weight. Mechanical tests verified the excellent tensile bond strength between Ti substrates and deposited coatings. All Cu-containing CSG coatings showed antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antibacterial property was positively correlated with the Cu concentration. In vitro cytocompatibility evaluation demonstrated that activities of bone marrow stromal cells were not impaired on Cu-doped coatings except for the Cu IV group. Moreover, enhanced angiogenic and osteogenic activities were observed on Cu II and Cu III groups. Overall, our results

  19. Triazenos e atividade antibacteriana Triazenes and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Manfredo Hörner

    2008-09-01

    . saprophyticus, Corynebacterirum sp., E. cloacae, S. flenneri e S. sonnei. Os compostos 1-fenil-3-(4-acetilfeniltriazeno (6, 1,3-bis-(4-etoxicarbonilfenil triazeno (7 e 3-(4-carboxilatofenil-1-metiltriazeno 1-óxido de potássio tetraidratado (13 apresentaram CIMs iguais ou maiores que 128 µg/mL. Estes resultados demonstraram a potencial atividade biológica destes compostos contra bactérias Gram-positivas e Gram-negativas.Fifteen triazenes compounds were studied concerning their antibacterial activity by broth microdilution method. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC was determined with E. coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii, Acinetobacter lwoffii, Ralstonia pickettii, Bordetella bronchiseptica, Micrococcus sp., Enterococcus sp., Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Bacillus cereus, Corynebacterium sp., Rhodococcus sp., Salmonella sp., Serratia marcescens, Morganella morganii, Enterobacter cloacae, Shigella flexneri, Shigella sonnei, Shigella sp., Klebsiella pneumoniae, ESBL Klebsiella oxytoca 14, ESBL Klebsiella pneumoniae 23, ESBL Klebsiella pneumoniae 24, ESBL Klebsiella pneumoniae 25, ESBL Escherichia coli 26, ESBL Klebsiella pneumoniae 27, ESBL Klebsiella pneumoniae 31, ESBL Escherichia coli 32, ESBL Klebsiella pneumoniae 37 e ESBL Escherichia coli 38. The highest effect was evidenced by the compound 1-methyl-3-(p-carboxyphenyltriazene 1-oxide (2 against Streptococcus agalactiae (MIC = 16 µg/mL and MBC = 32 µg/mL. The compounds 1-phenyl-3-(4-nitrophenyltriazene-1-oxide (9, 1-(4-nitrophenyl-3-(4-carboxyphenyltriazene (10 e 1-(4-acethyl amine phenyl-3-(4-carboxyphenyltriazene (11 presented MIC between 32 and 64 µg/mL against S. edipermidis, S. saprophyticus, Rhodococcus sp. and E. cloacae. The compounds 1-methyl-3-phenyltriazene-1-oxide (1 , bis-1,3-(4-acethyl oximetriazene (3, bis-1,3 (4-acethyl

  20. Antibacterial activity and characterization of secondary metabolites isolated from mangrove plant Avicennia officinalis

    Institute of Scientific and Technical Information of China (English)

    Valentin Bhimba B; J Meenupriya; Elsa Lycias Joel; D Edaya Naveena; Suman kumar; M Thangaraj

    2010-01-01

    Objective:To explore antibacterial activity and characterization of secondary metabolites isolated from mangrove plant Avicennia officinalis (A. officinalis). Methods:In the present study the leaf extracts of A. officinalis were examined for its antibacterial potential using five different solvents against some reference strains of human pathogenic bacteria for the crude extract. Maximum activity was observed for ethyl acetate and hence different concentrations like 15μL, 25μL, and 50μL of ethyl extracts was checked for its antibacterial activity. Partial purification of crude extract was carried by column chromatography and fractions were analyzed using gas chromatography-mass spectrometry (GC-MS) to identify compounds. Results:The crude ethyl acetate extracts of A. officinalis showed remarkable antibacterial activity with zones of inhibition of 13 mm against Eschericia coli (E. coli) and 11 mm against Staphylococcus aureus (S. aureus). Fraction 13 (ethyl acetate÷methanol=8÷2) as the most potent one against with the minimal inhibitory concentration of 30 mm against E. coli and 25 mm against S. aureus. The GC-MS resultsof active column fraction (F13) revealed that the active principals were a mixture of hydroxy-4 methoxybenzoic acid, diethyl phthalate, oleic acid. Conclusions:The leaf extracts with proven antibacterial effects can clearly be directed towards cancer treatment as to inhibiting cancer cell growth. The limited number of test organisms owes to a constraint of resource. So, the effect of strong bursts of leaf extracts on human pathogenic bacteria should further be tested on a wide range of test organisms.

  1. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity.

    Science.gov (United States)

    Zhang, Yongliang; Zhai, Dong; Xu, Mengchi; Yao, Qingqiang; Zhu, Huiying; Chang, Jiang; Wu, Chengtie

    2017-06-20

    Bacterial infection poses a significant risk with the wide application of bone graft materials. Designing bone grafts with good antibacterial performance and excellent bone-forming activity is of particular significance for bone tissue engineering. In our study, a 3D printing method was used to prepare β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Silver (Ag) nanoparticles were uniformly dispersed on graphene oxide (GO) to form a homogeneous nanocomposite (named Ag@GO) with different Ag-to-graphene oxide mass ratios, with this being synthesized via the liquid chemical reduction approach. Ag@GO nanocomposites were successfully modified on the β-TCP scaffolds by a simple soaking method to achieve bifunctional biomaterials with antibacterial and osteogenic activity. The prepared scaffolds possessed a connected network with triangle pore morphology and the surfaces of the β-TCP scaffolds were uniformly modified by the Ag@GO nanocomposite layers. The Ag content in the scaffolds was controlled by changing the coating times and concentration of the Ag@GO nanocomposites. The antibacterial activity of the scaffolds was assessed with Gram-negative bacteria (Escherichia coli, E. coli). The results demonstrated that the scaffolds with Ag@GO nanocomposites presented excellent antibacterial activity. In addition, the scaffolds coated with Ag@GO nanocomposites conspicuously accelerated the osteogenic differentiation of rabbit bone marrow stromal cells by improving their alkaline phosphatase activity and bone-related gene expression (osteopontin, runt-related transcription factor 2, osteocalcin and bone sialoprotein). This study demonstrates that bifunctional scaffolds with a combination of antibacterial and osteogenic activity can be achieved for the reconstruction of large-bone defects while preventing or treating infections.

  2. GC-MS analysis, Antibacterial, Antioxidant and Anticancer activity of essential oil of Pinus roxburghii from Kashmir, India

    Directory of Open Access Journals (Sweden)

    Wajaht A. Shah

    2014-05-01

    Full Text Available This work was carried out to evaluate chemical composition, antibacterial, antioxidant and anticancer activity of Pinus roxburghii essential oil. The oil was extracted by hydro-distillation which was analysed through GC-MS. The antibacterial activity was evaluated by agar well diffusion method and antioxidant activity was evaluated through DPPH assay while as anticancer activity was evaluated through MTT method. Alpha-pinene and beta-pinene were the major constituents present in the oil. This oil showed significant antibacterial and anticancer activity

  3. New luminophor-activators based on (fluoro)quinolone antibacterials

    International Nuclear Information System (INIS)

    Polishchuk, A.V.; Karaseva, E.T.; Korpela, T.; Karasev, V.E.

    2008-01-01

    It was shown that (fluoro)quinolone antibiotics form strongly fluorescent solid-state complexes with Eu(III) and Tb(III) lanthanide ions, with a wavelength red-shift beneficial for applications to greenhouse-cover polymers. Complexes with optimal properties were prepared by the mechanical activation of fine-dispersed composite mixtures with the lanthanide salts. The spectral properties, photo-stability to UV-light, and compatibility with the polyethylene matrix were investigated. The formulation additives of the tablet forms of the antibiotic medicines did not quench the fluorescence from the lanthanide ions. Therefore, the outdated drug forms of the antibiotics can serve as cheap recyclable sources for the covering material of greenhouses. In addition, diphenylguanidine (DPG) was investigated as a coligand. DPG enhanced fluorescence of the fluoroquinolone complexes by decreasing the non-radiative energy loss through O-H vibration of H 2 O

  4. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Salvioni L

    2017-03-01

    Full Text Available Lucia Salvioni,1 Elisabetta Galbiati,1 Veronica Collico,1 Giulia Alessio,1 Svetlana Avvakumova,1 Fabio Corsi,2,3 Paolo Tortora,1 Davide Prosperi,1 Miriam Colombo1 1Nanobiolab, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 2Biological and Clinical Science Department, University of Milan, Milano, 3Surgery Department, Breast Unit, IRCCS S Maugeri Foundation, Pavia, Italy Background: The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases.Methods: Water-soluble, negatively charged silver nanoparticles (AgNPs were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs.Results: In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells.Conclusion: We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared

  5. [Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives].

    Science.gov (United States)

    Toda, M; Okubo, S; Ikigai, H; Shimamura, T

    1990-03-01

    Among catechins tested, (-)epigallocatechin (EGC), (-)epicatechin gallate (ECg), (-) epigallocatechin gallate (EGCg) inhibited the growth of Staphylococcus aureus, Vibrio cholerae O1 classical Inaba 569B and El Tor Inaba V86. S. aureus was more sensitive than V. cholerae O1 to these compounds. EGCg showed also a bactericidal activity against V. cholerae O1 569B. Pyrogallol showed a stronger antibacterial activity against S. aureus and V. cholerae O1 than tannic and gallic acid. Rutin or caffein had no effect on them. ECg and EGCg showed the most potent anti-hemolysin activity against S. aureus alpha-toxin, Vibrio parahaemolyticus thermostable direct hemolysin (Vp-TDH) and cholera hemolysin. Among catechin relatives, only tannic acid had a potent anti-hemolysin activity against alpha-toxin. These results suggest that the catechol and pyrogallol groups are responsible for the antibacterial and bactericidal activities, while the conformation of catechins might play an important role in the anti-hemolysin activity.

  6. Application of QSAR models in analysis of antibacterial activity of some benzimidazole derivatives against Sarcina lutea

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2013-01-01

    Full Text Available In the present paper, a quantitative structure activity relationship (QSAR has been carried out on a series of 2-methyl and 2-aminobenzimidazole derivatives to identify the lipophilicity requirements for their inhibitory activity against bacteria Sarcina lutea. The tested compounds displayed in vitro antibacterial activity and minimum inhibitory concentration (MIC was determined for all compounds. The partition coefficients of the studied compounds were measured by the shake flask method (log P and by theoretical calculation (Clog P. The relationships between lipophilicity descriptors and antibacterial activities were investigated and the mathematical models have been developed as a calibration models for predicting the inhibitory activity of this class of compounds. The models were validated by leave-one-out (LOO technique as well as by the calculation of statistical parameters for the established models. Therefore, QSAR analysis reveals that lipophilicity descriptor govern the inhibitory activity of benzimidazoles studied against Sarcina lutea.

  7. Synthesis and antibacterial activity of some Schiff bases derived from 4-aminobenzoic acid

    Directory of Open Access Journals (Sweden)

    JIGNA PAREKH

    2005-10-01

    Full Text Available The following Schiff bases have been synthesized: (1 4-[(2-chlorobenzylidene amino]benzoic acid [JP1], (2 4-[(furan-2-ylmethyleneamino]benzoic acid [JP2], (3 4-[(3-phenylallylideneamino]benzoic acid [JP3], (4 4-[(2-hydroxybenzylidene amino]benzoic acid [JP4], (5 4-[(4-hydroxy-3-methoxybenzylideneamino]benzoic acid [JP5] and (6 4-[(3-nitrobenzylideneamino]benzoic acid [JP6]. They were screened as potential antibacterial agents against a number of medically important bacterial strains. The antibacterial activity was studied against A. faecalis ATCC 8750, E. aerogenes ATCC 13048, E. coli ATCC 25922, K. pneumoniae NCIM 2719, S. aureus ATCC 25923, P. vulgaris NCIM 8313, P. aeruginosa ATCC 27853 and S. typhimurium ATCC 23564. The antibacterial activity was evaluated using the Agar Ditch method. The solvents used were 1,4-dioxane and dimethyl sulfoxide. Different effects of the compounds were found in the bacterial strains investigated and the solvents used, suggesting, once again, that the antibacterial activity is dependent on the molecular structure of the compound, the solvent used and the bacterial strain under consideration. In the present work, 1,4-dioxane proved to be a good solvent in inhibiting the above stated bacterial strains.

  8. Synthesis and Anti-Bacterial Activities of Some Novel Schiff Bases Derived from Aminophenazone

    Directory of Open Access Journals (Sweden)

    Salman A Khan

    2010-10-01

    Full Text Available A series of 1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one-containing Schiff bases were synthesized, characterized and screened for their antibacterial activities. The structures of the synthesized compounds were established by spectroscopic (FT-IR, 1H-NMR, 13C-NMR, MS and elemental analyses. The anti-bacterial activities (with MIC values of compounds were evaluated. The anti-bacterial screening results reveal that among the six compounds screened, four compounds showed moderate to good anti-bacterial activity. Among the tested compounds, the most effective compounds against four bacterial strains, viz. Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Streptococcus pyogenes, are [(2-Chlorobenzylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one (4 and [(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yliminomethyl]benzonitrile (5 with MIC values of 6.25 μg/mL.

  9. Evaluation of Antibacterial Activity and Total Phenol Compounds of Punica granatum Hydro-Alcoholic Extract

    Directory of Open Access Journals (Sweden)

    Elahe Ahmadi

    2016-12-01

    Full Text Available Background & Objectives: Punica granatum is a non-productive form of a plant and is used for the treatment of diseases in traditional medicine. In this study, we evaluate the antibacterial activity and the total phenol compounds of Punica granatum. Materials & Methods: Disk and well diffusion methods and MIC were used to evaluate the antibacterial activity of hydro-alcoholic extract on S. aureus and E. coli compared to standard commercial antibiotic disks. Measurement of phenol compounds were performed by Seevers and Daly colorimetric methods (Folin-ciocalteu indicator. Results: 35 and 29 mm inhibition zones in S. aureus and 22 and 17 mm inhibition zones in E. coli were shown by disk and well diffusion method, respectively. Also, 7.8 mg/ml concentration of extract showed the MIC points for two bacteria. Phenol compound of extract was 233.15±5.1 mg/g of extraction. Conclusion: Antibacterial effect of Punica granatum compared to antibiotics indicates the strong activity against examined bacteria. Extensive antibacterial study of Punica granatum is suggested.

  10. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

    Science.gov (United States)

    Desbois, Andrew P; Smith, Valerie J

    2010-02-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

  11. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Boomi, Pandi [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Prabu, Halliah Gurumallesh, E-mail: hgprabu2010@gmail.com [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Manisankar, Paramasivam [Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu (India); Ravikumar, Sundaram [Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Thondi Campus 623 409, Tamil Nadu (India)

    2014-05-01

    Graphical abstract: - Highlights: • New method of synthesizing PANI-Ag-Au nanocomposite. • Surface Plasmon resonance and formation of composite at nano level were analyzed. • HR-TEM study revealed uniform distribution of nanoparticles. • PANI-Ag-Au nanocomposite exhibited good antibacterial activity. - Abstract: Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  12. Screening for Antibacterial and Antioxidant Activities and Phytochemical Analysis of Oroxylum indicum Fruit Extracts.

    Science.gov (United States)

    Sithisarn, Patchima; Nantateerapong, Petcharat; Rojsanga, Piyanuch; Sithisarn, Pongtip

    2016-04-07

    Oroxylum indicum, which is called Pheka in Thai, is a traditional Thai plant in the Bignoniaceae family with various ethnomedical uses such as as an astringent, an anti-inflammatory agent, an anti-bronchitic agent, an anti-helminthic agent and an anti-microbial agent. The young fruits of this plant have also been consumed as vegetables. However, there has been no report concerning its antibacterial activities, especially activities related to clinically isolated pathogenic bacteria and the in vitro antioxidant effects of this plant. Therefore, the extracts from O. indicum fruits and seeds collected from different provinces in Thailand were prepared by decoction and maceration with ethanol and determined for their in vitro antibacterial effects on two clinically isolated bacteria, Streptococcus suis and Staphylococcus intermedius, using disc diffusion assay. Ethanol extracts from O. indicum fruits collected from Nakorn Pathom province at the concentration of 1000 mg/mL exhibited intermediate antibacterial activity against S. intermedius with an inhibition zone of 15.11 mm. Moreover, it promoted moderate inhibitory effects on S. suis with an inhibition zone of 14.39 mm. The extracts prepared by maceration with ethanol promoted higher antibacterial activities than those prepared with water. The ethanol extract from the seeds of this plant, purchased in Bangkok, showed stronger in vitro antioxidant activities than the other extracts, with an EC50 value of 26.33 µg/mL. Phytochemical analysis suggested that the seed ethanol extract contained the highest total phenolic and flavonoid contents (10.66 g% gallic acid equivalent and 7.16 g% quercetin equivalent, respectively) by a significant amount. Thin layer chromatographic analysis of the extracts showed the chromatographic band that could correspond to a flavonoid baicalein. From the results, extracts from O. indicum fruits have an in vitro antioxidant effect, with antibacterial potential, on clinically pathologic

  13. Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria.

    Science.gov (United States)

    Nguyen, Hoa Thi; Yu, Nan Hee; Park, Ae Ran; Park, Hae Woong; Kim, In Seon; Kim, Jin-Cheol

    2017-10-28

    This study aimed to isolate and characterize antibacterial metabolites from Pharbitis nil seeds and investigate their antibacterial activity against various plant pathogenic bacteria. The methanol extract of P. nil seeds showed the strongest activity against Xanthomonas arboricola pv. pruni (Xap) with a minimum inhibition concentration (MIC) value of 250 μg/ml. Among the three solvent layers obtained from the methanol extract of P. nil seeds, only the butanol layer displayed the activity with an MIC value of 125 μg/ml against Xap. An antibacterial fraction was obtained from P. nil seeds by repeated column chromatography and identified as pharbitin, a crude resin glycoside, by instrumental analysis. The antibacterial activity of pharbitin was tested in vitro against 14 phytopathogenic bacteria, and it was found to inhibit Ralstonia solanacearum and four Xanthomonas species. The minimum inhibitory concentration values against the five bacteria were 125-500 μg/ml for the n-butanol layer and 31.25-125 μg/ml for pharbitin. In a detached peach leaf assay, it effectively suppressed the development of bacterial leaf spot, with a control value of 87.5% at 500 μg/ml. In addition, pharbitin strongly reduced the development of bacterial wilt on tomato seedlings by 97.4% at 250 μg/ml, 7 days after inoculation. These findings suggest that the crude extract of P. nil seeds can be used as an alternative biopesticide for the control of plant diseases caused by R. solanacearum and Xanthomonas spp. This is the first report on the antibacterial activity of pharbitin against phytopathogenic bacteria.

  14. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm.

    Science.gov (United States)

    Pantaroto, Heloisa N; Ricomini-Filho, Antonio P; Bertolini, Martinna M; Dias da Silva, José Humberto; Azevedo Neto, Nilton F; Sukotjo, Cortino; Rangel, Elidiane C; Barão, Valentim A R

    2018-07-01

    Titanium dioxide (TiO 2 ) incorporation in biomaterials is a promising technology due to its photocatalytic and antibacterial activities. However, the antibacterial potential of different TiO 2 crystalline structures on a multispecies oral biofilm remains unknown. We hypothesized that the different crystalline TiO 2 phases present different photocatalytic and antibacterial activities. Three crystalline TiO 2 films were deposited by magnetron sputtering on commercially pure titanium (cpTi), in order to obtain four groups: (1) machined cpTi (control); (2) A-TiO 2 (anatase); (3) M-TiO 2 (mixture of anatase and rutile); (4) R-TiO 2 (rutile). The morphology, crystalline phase, chemical composition, hardness, elastic modulus and surface free energy of the surfaces were evaluated. The photocatalytic potential was assessed by methylene blue degradation assay. The antibacterial activity was evaluated on relevant oral bacteria, by using a multispecies biofilm (Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum) formed on the treated titanium surfaces (16.5h) followed by UV-A light exposure (1h) to generate reactive oxygen species production. All TiO 2 films presented around 300nm thickness and improved the hardness and elastic modulus of cpTi surfaces (p0.05 vs. control). This study brings new insights on the development of extra oral protocols for the photocatalytic activity of TiO 2 in oral biofilm-associated disease. Anatase and mixture-TiO 2 showed antibacterial activity on this oral bacterial biofilm, being promising surface coatings for dental implant components. Copyright © 2018 The Academy of Dental Materials. All rights reserved.

  15. Antibacterial activity of four Gracilaria species of red seaweeds collected from Mandapam Coast, Gulf of Mannar Marine Biosphere Reserve, India

    Directory of Open Access Journals (Sweden)

    Sethu Rameshkumar

    2016-09-01

    Full Text Available Objective: To study the antibacterial activities of diethyl ether, toluene, ethanol and methanol extracts of red seaweeds such as Gracilaria crassa (G. crassa, Gracilaria folifera (G. folifera, Gracilaria debilis (G. debilis and Gracilaria corticata. Methods: The crude extracts were tested against different types of Gram-positive and -negative bacterial strains and all the seaweed extracts were tested a broad spectrum of antibacterial activity. Antibacterial activity was made using paper disc diffusion method. Four organic solvents (diethyl ether, toluene, methanol and ethanol were used separately in a Soxhlet apparatus for seven bacterial strains. Antibacterial activity of the known antibiotics such as chloramphenicol, streptomycin, kanamycin and ampicillin was determined by testing them against different test organisms. Results: The high antibacterial activity was noted in the extracts of G. crassa, G. folifera and G. debilis. However, G. crassa and G. debilis have good antibacterial activity. Pathogens like Bacillus subtilis and Escherichia coli were less susceptible to the methanol and diethyl ether extracts of G. folifera. The comparative study on the antibacterial activity was also made by using 200 μg concentration of solvent extracts (diethyl ether, ethanol, toluene and methanoland different five antibiotics such as chloramphenicol, streptomycin, kanamycin, amoxicillin and ampicillin. The bacterial strains tested were more sensitive to chloramphenicol, streptomycin, kanamycin, and ampicillin when compared to algal extracts. Conclusions: The present study proved that the extracts of G. crassa, G. folifera and G. debilis have high antibacterial activity. Although G. crassa and G. debilis showed good antibacterial activity, many known antibiotics are active against a few organisms individually. Hence, the extracts of seaweeds were active against all test organisms used and the activities were comparable to that of antibiotics and the

  16. Antibacterial and Herbicidal Activity of Ring-Substituted 3-Hydroxynaphthalene-2-carboxanilides

    Czech Academy of Sciences Publication Activity Database

    Kos, J.; Zadražilová, I.; Pesko, M.; Keltosova, S.; Tengler, J.; Goněc, T.; Bobál, P.; Kauerová, T.; Oravec, Michal; Kolař, P.; Čížek, A.; Králová, K.; Jampílek, J.

    2013-01-01

    Roč. 18, č. 7 (2013), s. 7977-7997 ISSN 1420-3049 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : hydroxynaphthalene-2-carboxanilides * lipophilicity * photosynthetic electron transport inhibition * spinach chloroplasts * in vitro antibacterial activity * in vitro antimycobacterial activity * in vitro cytotoxicity * structure-activity relationships Subject RIV: EH - Ecology, Behaviour Impact factor: 2.095, year: 2013

  17. Antibacterial activities of methanolic extracts of aerial parts of delphinium uncinatum hook's and thoms

    International Nuclear Information System (INIS)

    Zahoor, M.; Khan, N.

    2014-01-01

    Methanolic extracts of aerial parts of Delphinium uncinatum Hook's and Thoms were analysed for its antibacterial activities aligned to two gram positive bacterial strains, Bacillus cereus and Staphylococcus aureus and two gram negative bacterial strains, Escherichia coli and Klebsilla pneumonia, using Agar Well Diffusion method. Bactericidal activity was observed against both gram negative and gram positive bacterial strains. Extracts used were more active against Bacillus cereus, Escherichia coli and Staphylococcus aureus at all prepared concentrations but lesser against Klebsilla pneumonia. (author)

  18. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  19. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  20. Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity

    KAUST Repository

    Duong, Phuoc H. H.

    2017-08-09

    Membranes containing a photosensitizer molecule as part of the selective layer are proposed with demonstrated anti-biofouling activity. For the membrane preparation, mixtures of an amine-functionalized photosensitizer molecule, (5,10,15,20-(tetra-4-aminophenyl)porphyrin) and m-phenylene diamine (MPD) reacted with trimesoyl chloride (TMC) by interfacial polymerization to form thin polyamide films on top of an asymmetric porous support. A highly permeable membrane (35.4 Lm−2h−1bar−1) with 99 % rejection of Brilliant Blue R (826 g/mol) was obtained using 0.25 wt% porphyrin and 0.75 wt% MPD as amine monomers. Under visible light exposure, singlet oxygen (1O2) is generated in the porphyrin containing-polyamide film, reaching the bacteria in the feed by diffusion and enhancing the biofouling resistance and anti-microbial activity. Anti-biofouling and anti-microbial photoactivity in solution are demonstrated on Staphylococcus aureus at different porphyrin concentrations and light exposure time.

  1. Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity

    KAUST Repository

    Duong, Phuoc H. H.; Hong, Pei-Ying; Musteata, Valentina-Elena; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2017-01-01

    Membranes containing a photosensitizer molecule as part of the selective layer are proposed with demonstrated anti-biofouling activity. For the membrane preparation, mixtures of an amine-functionalized photosensitizer molecule, (5,10,15,20-(tetra-4-aminophenyl)porphyrin) and m-phenylene diamine (MPD) reacted with trimesoyl chloride (TMC) by interfacial polymerization to form thin polyamide films on top of an asymmetric porous support. A highly permeable membrane (35.4 Lm−2h−1bar−1) with 99 % rejection of Brilliant Blue R (826 g/mol) was obtained using 0.25 wt% porphyrin and 0.75 wt% MPD as amine monomers. Under visible light exposure, singlet oxygen (1O2) is generated in the porphyrin containing-polyamide film, reaching the bacteria in the feed by diffusion and enhancing the biofouling resistance and anti-microbial activity. Anti-biofouling and anti-microbial photoactivity in solution are demonstrated on Staphylococcus aureus at different porphyrin concentrations and light exposure time.

  2. Antibacterial and Antioxidant Activities of Acid and Bile Resistant Strains of Lactobacillus fermentum Isolated from Miang

    Directory of Open Access Journals (Sweden)

    Srikanjana Klayraung

    2009-12-01

    Full Text Available Miang is a kind of traditional fermented tea leaves, widely consumed in northern Thailand as a snack. It contains several kinds of Lactobacilli spp. The aim of this study was to isolate strains of Lactobacillus fermentum from miang and to investigate their antibacterial and antioxidant activities. The agar spot and well assays were used for determination of antibacterial power. The antibacterial mechanism was investigated by cell morphologic change under scanning electron microscope (SEM. Antioxidant activity was studied by means of free radical scavenging and ferric reducing power assays. The acid and bile screening tests indicated that L. fermentum FTL2311 and L. fermentum FTL10BR presented antibacterial activity against several pathogenic bacteria: Listeria monocytogenes DMST 17303, Salmonella Typhi DMST 5784, Shigella sonnei DMST 561 (ATCC 11060and Staphylococcus aureus subsp. aureus DMST 6512 (ATCC 6538Ptm. The results from SEM suggested that the antibacterial action was due to the destruction of cell membrane which consequently caused the pathogenic cell shrinking or cracking. The antioxidant study suggested that both L. fermentum FTL2311 and L. fermentum FTL10BR strains could liberate certain substances that possessed antioxidant activity expressed as trolox equivalent antioxidant capacity (TEAC and equivalent concentration (EC values for free radical scavenging and reducing mechanisms, respectively. The supernatant of L. fermentum FTL2311 broth revealed TEAC and EC values of 22.54±0.12 and 20.63±0.17 µM.mg-1 respectively, whereas that of L. fermentum FTL10BR yielded TEAC and EC values of 24.09±0.12 and 21.26±0.17 µM.mg-1 respectively. These two strains isolated from miang present high potential as promising health-promoting probiotics.

  3. Chemical composition and antibacterial activity of essential oil of Launaea lanifera Pau grown in Algerian arid steppes

    Directory of Open Access Journals (Sweden)

    Tarek Benmeddour

    2015-11-01

    Conclusions: This is the first report on the volatile constituents and antibacterial activity of L. lanifera. The studied essential oil does not possess significant activity against the tested microorganisms.

  4. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity

    Directory of Open Access Journals (Sweden)

    RAKSHA PANDIT

    2015-05-01

    Full Text Available Pandit R. 2015. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusantara Bioscience 7: 15-19. We report the green synthesis of silver nanoparticles using seed extract of Brassica nigra. UV-visible spectroscopic analysis showed the absorbance peak at 432 nm which indicated the synthesis of silver nanoparticles. Nanoparticles Tracking and Analysis (NTA was used to determine the size of synthesized silver nanoparticles. Zeta potential analysis was carried out to study the stability of nanoparticles while FTIR analysis confirmed the presence of proteins as capping agents that provided stability to nanoparticles in colloid. Antibacterial activity of silver nanoparticles was evaluated against Propionibacterium acnes, Pseudomonas aeruginosa and Klebsiella pneumoniae. The activity of Vancomycin was significantly increased in combination with silver nanoparticles showing synergistic activity against all bacteria while the maximum activity was noted against P. acnes.

  5. Antibacterial Activity of Ethyl Acetate the Extract of Noni Fruit (Morinda citrifolia L.) Against Bacterial Spoilage in Fish

    Science.gov (United States)

    Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.

    2017-04-01

    Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.

  6. Antibacterial activity of Hibiscus sabdariffa L. calyces against hospital isolates of multidrug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Emad Mohamed Abdallah

    2016-11-01

    Full Text Available Objective: To evaluate the antibacterial activity of methanol extract of Hibiscus sabdariffa (H. sabdariffa calyces employed in Sudanese folk medicine against five hospital isolates of multidrug resistant Acinetobacter baumannii (MDR A. baumannii. Methods: The antibacterial activity of 80% methanol extract (v/v of H. sabdariffa calyces was evaluated by agar disc diffusion, minimum inhibitory concentration and minimum bactericidal concentration methods. Antibiotic susceptibility of selected A. baumannii strains was tested. Results: In the present investigation, the methanol extract from the calyces of H. sabdariffa exhibited significant antibacterial properties against the non-MDR A. baumannii as well as the MDR A. baumannii strains with a zone of inhibition ranging from (11.3 ± 0.3 to (13.6 ± 0.3 mm. The relative percentage inhibition of H. sabdariffa extract (10 mg/disc with respect to gentamicin (10 mg/disc had potent antibacterial properties and was much more effective than gentamicin. Values of minimum inhibitory concentration and minimum bactericidal concentration ranged from 25 to 50 and 50 to 100 mg/mL, respectively, revealing the potential bactericidal properties of the extract. Conclusions: According to the present study, the calyces of H. sabdariffa can be used as a substitute source of the current ineffective synthetic antibiotics used against MDR A. baumannii.

  7. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal.

    Science.gov (United States)

    Ramos, C; Teixeira, B; Batista, I; Matos, O; Serrano, C; Neng, N R; Nogueira, J M F; Nunes, M L; Marques, A

    2012-01-01

    Laurus nobilis L. is an aromatic plant frequently used as a spice in Mediterranean cookery and as a traditional medicine for the treatment of several infectious diseases. The aim of this study was to characterise the antibacterial and antioxidant activities of bay laurel essential oil (EO), ethanolic extract (EE) and hot/cold aqueous extract (AE). The major components detected in bay laurel EO were eucalyptol (27.2%), α-terpinenyl acetate (10.2%), linalool (8.4%), methyleugenol (5.4%), sabinene (4.0%) and carvacrol (3.2%). The EO exhibited strong antibacterial activity against all tested foodborne spoilage and pathogenic bacteria, whereas this activity was less pronounced or even nonexistent in the EE and AE. In contrast, EO exhibited low antioxidant activity compared to extracts (EX), and among the EX, the hot AE revealed the highest antioxidant ability. The results show that bay laurel EO and its EX have potential as natural alternatives to synthetic food preservatives, in order to enhance food safety and increase food shelf life.

  8. Reusable sunlight activated photocatalyst Ag3PO4 and its significant antibacterial activity

    International Nuclear Information System (INIS)

    Thiyagarajan, Shankar; Singh, Sarika; Bahadur, D.

    2016-01-01

    A simple and surfactant free soft chemical approach is adopted for the successful synthesis of Ag 3 PO 4 nanoparticles (NPs) at room temperature. The obtained Ag 3 PO 4 NPs are nearly spherical in shape with a size of 250 ± 50 nm. These NPs are highly efficient for the degradation of three organic dyes (methylene blue, rhodamine B and methyl orange) under four different types of light sources. In this case, the superior photocatalytic activity is mainly driven by singlet oxygen radicals and it is confirmed through the electron spin resonance (ESR) spin trapping technique, using several quenchers/sources. Notably, these NPs have the ability to absorb large portion of solar spectrum and therefore it displays higher efficiency under sunlight as compared to UV-C light and a 60 W household compact fluorescence lamp (CFL). Furthermore, these NPs exhibit excellent colloidal stability and recycling capability for the degradation of dyes. In addition, it possesses significant antibacterial activity with complete inhibition of bacterial pathogen, Escherichia coli at a very low concentration (0.01 mg/mL) after a mere 15 min of incubation time. The inhibition of bacterial growth is also suggested from the generation of intracellular reactive oxygen species (ROS) in E. coli by fluorescence microscopy. Thus, these NPs may provide a potential outcome for the environmental remediation. - Graphical abstract: Schematic representation of the mechanism involved in photodegradation of organic dyes and inhibition of bacterial growth using Ag 3 PO 4 nanoparticles. - Highlights: • Excellent catalytic activity for dyes degradation under different light sources. • Mechanism involving catalyst mediated ROS generation in photocatalysis suggested. • Good recycling capability of Ag 3 PO 4 even after the fifth cycles. • Extraordinary antibacterial activity of Ag 3 PO 4 after a very short incubation time. • Detection of intracellular ROS in bacterial cells by fluorescence

  9. GC-MS analysis, Antibacterial, Antioxidant and Anticancer activity of essential oil of Pinus roxburghii from Kashmir, India

    OpenAIRE

    Wajaht A. Shah; Mahpara Qadir; Javid A. Banday

    2014-01-01

    This work was carried out to evaluate chemical composition, antibacterial, antioxidant and anticancer activity of Pinus roxburghii essential oil. The oil was extracted by hydro-distillation which was analysed through GC-MS. The antibacterial activity was evaluated by agar well diffusion method and antioxidant activity was evaluated through DPPH assay while as anticancer activity was evaluated through MTT method. Alpha-pinene and beta-pinene were the major constituents present in the oil. This...

  10. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    Science.gov (United States)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  11. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  12. Antibacterial and Antioxidant Activities of Liquidambar Orientalis Mill. Various Extracts Against Bacterial Pathogens Causing Mastitis

    Directory of Open Access Journals (Sweden)

    Gülten Ökmen

    2017-08-01

    Full Text Available Antibiotic resistance is being constantly developed worldwide. Coagulase Negative Staphylococci (CNS and Staphylococcus aureus are common causes of bovine subclinical mastitis. Bioactive compound of medicinal plants shows anti-microbial, anti-mutagenic and anti-oxidant effects. The anti-bacterial and anti-oxidant activities of Liquidambar orientalis (L. orientalis extracts on subclinical mastitis causing bacteria in cows have not been reported to date. The aim of the present study was to examine anti-bacterial and anti-oxidant effects of L. orientalis leaf extracts on S. aureus and CNS isolated from cows with subclinical mastitis symptoms. In this study, 3.2 mg/mL minimum inhibitory concentration (MIC of ethanol extracts of L. orientalis has shown to be a most potent anti-bacterial and anti-oxidant for all isolated bacterial species from mastitis cows. In this study, it was investigated anti-bacterial and anti-oxidant potentials of acetone, methanol and ethanol extracts of the L. orientalis. The acetone extract showed maximum inhibition zone against S. aureus numbered 17 (12 mm. In addition to anti-bacterial properties, anti-oxidant activity of L. orientalis extract was examined by ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid] free radical assay. Trolox was used as a positive control anti-oxidant. Ethanol extract exhibited a strong anti-oxidant activity like Trolox anti-oxidant which was effective at 2.58 mM concentration. Bioactive compounds of sweet gum may be useful to screening mastitis causing bacteria for clinical applications.

  13. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    Science.gov (United States)

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  14. Antibacterial Activity of Hydrophobic Composite Materials Containing a Visible-Light-Sensitive Photocatalyst

    Directory of Open Access Journals (Sweden)

    Kentaro Yamauchi

    2011-01-01

    Full Text Available The conventional superhydrophobic surface offered by PTFE provides no sterilization performance and is not sufficiently repellent against organic liquids. These limit PTFE's application in the field of disinfection and result a lack of durability. N-doped TiO2 photocatalyst added PTFE composite material was developed to remedy these shortcomings. This paper reports the surface characteristics, and the bactericidal and self-cleaning performance of the newly-developed composite material. The material exhibited a contact angle exceeding 150 degrees consistent with its hydrophobicity despite the inclusion of the hydrophilic N-doped TiO2. The surface free energy obtained for this composite was 5.8 mN/m. Even when exposed to a weak fluorescent light intensity (100 lx for 24 hours, the viable cells of gram-negative E. coli on the 12% N-doped TiO2-PTFE film were reduced 5 logs. The higher bactericidal activity was also confirmed on the gram-positive MRSA. Compared with the N-doped TiO2 coating only, the inactivation rate of the composite material was significantly enhanced. Utilizing the N-doped TiO2 with the PTFE composite coating could successfully remove, by UV illumination, oleic acid adsorbed on its surface. These results demonstrate the potential applicability of the novel N-doped TiO2 photocatalyst hydrophobic composite material for both indoor antibacterial action and outdoor contamination prevention.

  15. Antibacterial Activity of Mother Tinctures of Cholistan Desert Plants in Pakistan

    Science.gov (United States)

    Ahmad, M.; Ghafoor, Nazia; Aamir, M. N.

    2012-01-01

    The mother tinctures of desert were screened for antibacterial activity against bacterial strains of Gram-positive and Gram-negative bacteria. Mother tinctures were prepared by maceration process and antibacterial activity of different plants was evaluated and compared by measuring their zones of inhibition. The results indicated that Boerrhavia diffusa mother tincture had excellent activity only against Escherichia coli. Mother tincture of Chorozophora plicata showed highly effective results against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa whereas Echinops echinatus mother tincture showed highly effectiveness only against Salmonella typhi. Heliotropium europaeum mother tincture exhibited highly effective results against Bacillus subtilis in all concentrations. Tamrix aphylla presented maximum activity only against Bacillus subtilis in all three concentrations. Among the selected species Heliotropium europaeum, Chorozophora plicata and Tamrix aphylla were more effective plants against many microorganisms. However, Boerrhavia diffusa and Echinops echinatus were less effective plants against tested pathogenic bacteria. PMID:23716878

  16. Oil Essential Mouthwashes Antibacterial Activity against Aggregatibacter actinomycetemcomitans: A Comparison between Antibiofilm and Antiplanktonic Effects

    Directory of Open Access Journals (Sweden)

    Matteo Erriu

    2013-01-01

    Full Text Available The aim of this work is to determine the antibacterial activity of three marketed mouthwashes on suspended and sessile states of Aggregatibacter actinomycetemcomitans. The efficacy of two commonly used products in clinical practice, containing essential oils as active ingredients (menthol, thymol, methyl salicylate, and eucalyptol in association with or without alcohol, has been evaluated in comparison with a chlorhexidine-based mouthwash. The microtiter plate assay, in order to obtain a spectrophotometric measurement of bacterial responses at growing dilutions of each antiseptic, was used for the study. The analysis revealed that a good antibacterial activity is reached when the abovementioned mouthwashes were used at concentration over a 1/24 dilution and after an exposure time of 30 seconds at least. In conclusion, the alcoholic mouthwash appears to have a better biofilm inhibition than its antiplanktonic activity while the nonalcoholic product demonstrates an opposite effect with a better antiplanktonic behavior.

  17. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae.

    Science.gov (United States)

    de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R

    2006-03-01

    C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.

  18. Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system.

    Science.gov (United States)

    Shaaban, Hamdy A; Sadek, Zainab; Edris, Amr E; Saad-Hussein, Amal

    2015-01-01

    The Essential oil (EO) of Nigella sativa (black cumin) was extracted from the crude oil and the volatile constituents were characterized using gas chromatographic analysis. The EO was formulated in water-based microemulsion system and its antibacterial activity against six pathogenic bacteria was evaluated using the agar well diffusion method. This activity was compared with two other well known biologically active natural and synthetic antimicrobials namely eugenol and Ceftriaxone(®). Results showed that N. sativa EO microemulsion was highly effective against S. aureus, B. cereus and S. typhimurium even at the lowest tested concentration of that EO in the microemulsion (100.0 μg/well). Interestingly, the EO microemulsion showed higher antibacterial activity than Ceftriaxone solution against S. typhimurium at 400.0 μg/well and almost comparable activity against E. coli at 500.0 μg/well. No activity was detected for the EO microemulsion against L. monocytogenes and P. aeruginosa. Eugenol which was also formulated in microemulsion was less effective than N. sativa EO microemulsion except against P. aeruginosa. The synthetic antibiotic (Ceftriaxone) was effective against most of the six tested bacterial strains. This work is the first report revealing the formulation of N. sativa EO in microemulsion system and investigating its antibacterial activity. The results may offer potential application of that water-based microemulsion in controlling the prevalence of some pathogenic bacteria.

  19. THE ANTIBACTERIAL ACTIVITY OF WATER APPLE LEAVES ACTIVE COMPOUND (Syzygium zeylanicum AGAINST Escherichia coli AND Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    - Hamidah

    2017-07-01

    Full Text Available Escherichia coli is one of the bacteria that cause infections in the human digestive tract such as diarrhea, while Staphylococcus aureus is one of the bacteria that cause infections in the skin injury such as boils and pimples. This study used Syzygium zeylanicum leaves because it has potential as a antibacterial because it contains active compounds. This study aimed was determine the antibacterial activity of the fraction and the active compound in Syzygium zeylanicum leaves against Escherichia coli and Staphylococcus aureus. Research conducted on November 2015 to January 2016. The method used in this research were extraction by maceration, fractionation by liquid fractionation, antibacterial activity test, and determination of minimum inhibitory concentration with the diffusion method and isolation of active compounds by column chromatography method. The bacteria used in this test are Escherichia coli and Staphylococcus aureus. Data are presented in tabular form based on the average value of the inhibition diameter and deviation standard. The results of this research showed the water methanol active fraction against the bacteria that used in this test. The methanol water fraction had obtained one antibacterial compound in bottle 1,3,5 which shows the value of tannin Rf 0,416. The minimum inhibitory concentration of water methanol of water apple leaves is 1000 µg/mL for Escherichia coli and 500 µg/mL for  Staphylococcus aureus. The minimum  inhibitory concentration of the active  compound  to  Escherichia  coli  and  Staphylococcus  aureus  in  500  µg/mL.  The fraction and the active compound of water apple leaves have an antibacterial activity with Escherichia coli and Staphylococcus aureus and the active compound is tannin.

  20. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat.

    Science.gov (United States)

    Dholakiya, Riddhi N; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15-C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria ( Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria ( Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H 2 O 2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria , isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  1. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Directory of Open Access Journals (Sweden)

    Riddhi N. Dholakiya

    2017-12-01

    Full Text Available Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655 similarity with Streptomyces variabilis (EU841661 and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development, heat-map and PCA (principal component analysis. The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM, and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96. Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II, an enzyme complex that produces polyketides, the encoding gene(s detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s. In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat, India showed promising

  2. Antibacterial and Antioxidant Activities of Novel Actinobacteria Strain Isolated from Gulf of Khambhat, Gujarat

    Science.gov (United States)

    Dholakiya, Riddhi N.; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H.; Jha, Bhavanath

    2017-01-01

    Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising

  3. In Vitro Antibacterial and Antifungal Activity of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’

    OpenAIRE

    Blazekovic, Biljana; Stanic, Gordana; Pepeljnjak, Stjepan; Vladimir-Knezevic, Sanda

    2011-01-01

    This study aimed to evaluate the in vitro antibacterial and antifungal activities of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’, an indigenous Croatian cultivar of lavandin. For that purpose the activity of ethanolic extracts of flowers, inflorescence stalks and leaves against thirty one strains of bacteria, yeasts, dermatophytes and moulds were studied using both the agar well diffusion and broth dilution assays. Among the investigated extracts found to be effective against a broad ...

  4. Antibacterial and anticancer activity of seaweeds and bacteria associated with their surface

    OpenAIRE

    Villarreal-Gómez, Luis J; Soria-Mercado, Irma E; Guerra-Rivas, Graciela; Ayala-Sánchez, Nahara E

    2010-01-01

    Marine algae and bacteria are an inexhaustible source of chemical compounds that produce a wide variety of biologically active secondary metabolites. Marine bacteria have become an important target for the biotechnology industry because of the large number of bioactive compounds recently discovered from them. The aim of this study was to evaluate the antibacterial and anticancer activities of extracts from the seaweeds Egregia menziesii, Codium fragile, Sargassum muticum, Endarachne binghamia...

  5. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    Science.gov (United States)

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  6. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    Directory of Open Access Journals (Sweden)

    María A. León-Calvijo

    2015-01-01

    Full Text Available Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i the incorporation of unnatural amino acids in the sequence, the (ii reduction or (iii elongation of the peptide chain length, and (iv synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR and I.4 ((RRWQWR4K2Ahx2C2 exhibit bigger or similar activity against E. coli (MIC 4–33 μM and E. faecalis (MIC 10–33 μM when they were compared with lactoferricin protein (LF and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE. It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  7. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane.

    Science.gov (United States)

    Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R

    2018-02-01

    The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.

  8. ANTIBACTERIAL ACTIVITY STUDY OF ACTIVE FRACTION FROM CHICK WEED PLANTS (Ageratum Conyzoides L. AGAINST Bacillus Subtilis AND Vibrio Cholerae

    Directory of Open Access Journals (Sweden)

    Ratih Anggara

    2017-07-01

    Full Text Available The purpose of this research to determine the fractions of Chick Weed which has strong antibacterial activity  against bacteria test categories of Bacillus subtilis and Vibriocholerae.determine the value of the minimum in hibitory concentration(MIC of the active fraction antibacterial Chick Weed.This research was carried out in August up to November 2016. The method used in this study  were extracted by maceration, fractionation by liquid-liquid fractionation, separation by column chromatography fractions, antibacterial activity test by theKirby-Bauermethod, while the determination of minimum in hibitory concentration by dilution broth,with test bacteria Bacillus subtilis and Vibriocholerae.The data presented in tabular form based on the average value and percent.The results of this study showed that the methanol extract Chick Weed active against test bacteria Bacillus subtilis and Vibrio cholerae. Fractionation which has strong category to standard antibiotics are methanol fraction by fraction column S4.The concentration MIC1000;500;250;125;62.5;31.2515.62; 7.81 ppm. The minimum in hibitory concentration column fractions S4 to test bacteria Vibrio cholerae of 62.5 ppm gives half the antibacterial activity of the antibacterial activity of standard antibiotics streptomycin and penicillin,tetracycline while giving a quarter activity. It can be concluded that the active fraction of methanol extractisa methanol fraction by fraction column S4 to test bacteria Vibrio cholerae. Keywords: Chick Weed, Minimum Inhibitory Concentration (MIC, active compound, Bacillus subtilis, Vibriocholera.

  9. Synthesis of visible light active Gd3+-substituted ZnFe2O4 nanoparticles for photocatalytic and antibacterial activities

    Science.gov (United States)

    Patil, S. B.; Bhojya Naik, H. S.; Nagaraju, G.; Viswanath, R.; Rashmi, S. K.

    2017-08-01

    In the present analysis, we study the assembly of a low-cost and visible light active ZnFe2-xGdxO4 ( x = 0 , 0.3, 0.5 and 0.7) nanoparticles (NPs) photocatalyst. The synthesized samples were characterized by several physicochemical techniques, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Visible absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The phase transition from cubic to orthorhombic was confirmed by XRD patterns. The increase in the concentration of Gd3+ substitution in ZnFe2O4 NPs enhances the redshift of absorption in the visible region of UV-Vis absorption spectra and reduces the band gap. In the photo-Fenton-type reaction, the gadolinium-substituted zinc ferrite (ZGF) NPs exhibit a significant catalytic activity for the degradation of methylene blue (99% in 90 minutes) under visible light (500W xenon lamp) with respect to bare samples (95% in 240 minutes) and they also show an excellent reusability nature. These materials were also screened for antibacterial activity against Gram-negative bacteria strains ( Pseudomonas aeruginosa and Escherichia coli).

  10. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata

    Directory of Open Access Journals (Sweden)

    Mahmuda Nasrin

    2015-02-01

    Full Text Available Objectives: Grewia paniculata (Family: Malvaceae has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. Materials and Methods: The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina lethality bioassay. Results: In disc diffusion method, all the natural products (400 μg/disc showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB and ethanol fraction of bark (EFB (400 μg/disc exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and  23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. Conclusions: The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.

  11. Pinostrobin Derivatives from PrenylationReaction and their Antibacterial Activity against Clinical Bacteria

    Science.gov (United States)

    Marliyana, S. D.; Mujahidin, D.; Syah, Y. M.

    2018-04-01

    Kaempferia pandurata (syn. Boesenbergia rotunda, B. pandurata (Roxb.)Schltr), locally known as "TemuKunci"in Indonesia, is one of the medicinal plants of the family Zingiberaceae. Phytochemical studies on the rhizome of K. pandurata showed the presence of flavonoid derivative, namely flavanones, which constitute as the main components of this plant. Bioactivity studies on this species exhibited various biological activities, such as antibacteria, anti-inflammatory, antitumor, antidiarrhea, antidisentri, anti-HIV, antioxidant, antipyretic, analgesic and insecticides. Among the biological activities, the antibacterial activity results are important as an attempt to answer the emergence of resistance of some bacteria against existing drugs, as well as the emergence of a number of outbreaks of disease caused by bacteria. Therefore, a search to find new compounds that are potential as an antibacterial is an urgent matter. The present study was aimed at the chemical transformation of pinostrobin (1) from K. pandurata rhizome and an antibacterial activity.The chemical transformation was performed through a prenylation reaction of pinostrobin (1) which is the main component of K. pandurata rhizome. The prenylation reaction was carried out by reacting pinostrobin (1) with prenyl bromide and potassium carbonat (K2CO3). The purification of product was done using the radial chromatography with mix solvent n-hexane and ethyl acetate (97.5:2.5; 9.5:0.5; 9.0:1.0.; 8.0:2.0). The purity test of isolated compound was analysedby TLC using different types of eluent. The identification of compounds was determined based on NMR data and mass spectra analysis. Five compounds were obtained from the prenylation reaction, i.e. monooxyprenylated pinostrobin (2), monooxyprenylated chalcone (3), diprenylated chalcone (4), triprenylated chalcone (5), and triprenylated cyclohexene chalcone (6). These compounds were tested for antibacterial activities against four clinical bacteria, namely

  12. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry.

    Science.gov (United States)

    Irshad, Rabia; Tahir, Kamran; Li, Baoshan; Ahmad, Aftab; R Siddiqui, Azka; Nazir, Sadia

    2017-05-01

    A green approach to fabricate nanoparticles has been evolved as a revolutionary discipline. Eco-compatible reaction set ups, use of non-toxic materials and production of highly active biological and photocatalytic products are few benefits of this greener approach. Here, we introduce a green method to synthesize Fe oxide NPs using Punica granatum peel extract. The formation of Fe oxide NPs was optimized using different concentrations of peel extract (20mL, 40mL and 60mL) to achieve small size and better morphology. The results indicate that the FeNPs, obtained using 40mL concentration of peel extract possess the smallest size. The morphology, size and crystallinity of NPs was confirmed by implementing various techniques i.e. UV-Vis spectroscopy, X-ray diffraction, Scanning Electron Microscopy and Electron Diffraction Spectroscopy. The bio-chemicals responsible for reduction and stabilization of FeNPs were confirmed by FT-IR analysis. The biogenic FeNPs were tested for their size dependent antibacterial activity. The biogenic FeNPs prepared in 40mL extract concentrations exhibited strongest antibacterial activity against Pseudomonas aeruginosa i.e. 22 (±0.5) mm than FeNPs with 20mL and 60mL extract concentrations i.e. 18 (±0.4) mm and 14 (±0.3) mm respectively. The optimized FeNPs with 40mL peel extract are not only highly active for ROS generation but also show no hemolytic activity. Thus, FeNPs synthesized using the greener approach are found to have high antibacterial activity along with biocompatibility. This high antibacterial activity can be referred to small size and large surface area. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  14. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  15. Antibacterial and anti-biofilm activity of ginger (Zingiber officinale (Roscoe ethanolic extract

    Directory of Open Access Journals (Sweden)

    Nikolić Miloš

    2014-01-01

    Full Text Available The antibacterial and anti-biofilm activity of ethanolic extract from the rhizome of Zingiber officinale were evaluated. In vitro antibacterial activity was investigated by microdilution method. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC have been determined. The values were in the range from 0.0024 to > 20 mg/ml. The most sensitive bacteria were Gram-positive bacteria: Staphylococcus aureus and Staphylococcus aureus ATCC 25923. Anti-biofilm activity was tested by crystal violet assay. Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis and Escherichia coli ATCC 25922 were used as the test organisms. Ethanolic extract showed the best result on Proteus mirabilis biofilm where biofilm inhibitory concentration (BIC50 was 19 mg/ml.

  16. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Science.gov (United States)

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  17. Investigation of some factors related to antibacterial activity of Saudi honey

    International Nuclear Information System (INIS)

    Al-Brahim, Jehan Saud Rashid

    2006-01-01

    Honey was found to have a curing effect on bacterial species known to cause wound infections. The aim of this research was to study some of the factors related to the antibacterial activity of a Saudi Honey. Honey samples from different floral sources, geographic locations and production season were used. The tested organisms presented both gram positive and gram negative bacteria causing wound infection. A zone of complete inhibition of all bacterial species was observed with honey types Samra (S-W), Samra (W-S), Saha (W-S), Samra (S-S), Sidir (S-W) and a larger zone of partial inhibition of growth was observed in all tested honey types. It can be concluded that osmolarity is involved in the antibacterial activity of the honey. Acidity might be regarded as being of primary importance. On the other hand, hydrogen peroxide was found to play a major role in the bacterial activity of honey. (author)

  18. Antibacterial activity of essential oils extracted from Satureja hortensis against selected clinical pathogens

    Science.gov (United States)

    Görmez, Arzu; Yanmiş, Derya; Bozari, Sedat; Gürkök, Sumeyra

    2017-04-01

    The antibiotic resistance of pathogenic microorganisms has become a worldwide concern to public health. To overcome the current resistance problem, new antimicrobial agents are extremely needed. The aim of the present study was to evaluate the antibacterial activity of Satureja hortensis essential oils against seven clinical pathogens. Chemical compositions of hydro distillated essential oils from S. hortensis were analyzed by GS-MS. The antibacterial activity was investigated against Corynebacterium diphtheria, Salmonella typhimurium, Serratia plymuthica Yersinia enterocolitica, Y. frederiksenii, Y. pseudotuberculosis and Vibrio cholerae by the use of disc diffusion method and broth micro dilution method. The minimum inhibitory concentration (MIC) values of essential oils were found as low as 7.81 µg/mL. Notably, essential oils of S. hortensis exhibited remarkable antimicrobial activities against the tested clinical pathogens. The results indicate that these essential oils can be used in treatment of different infectious diseases.

  19. New Benzophenones and Xanthones from Cratoxylum sumatranum ssp. neriifolium and Their Antibacterial and Antioxidant Activities.

    Science.gov (United States)

    Tantapakul, Cholpisut; Maneerat, Wisanu; Sripisut, Tawanun; Ritthiwigrom, Thunwadee; Andersen, Raymond J; Cheng, Ping; Cheenpracha, Sarot; Raksat, Achara; Laphookhieo, Surat

    2016-11-23

    Two new benzophenones (1 and 2) and four new xanthones (4-6 and 17) together with 24 known compounds (3, 7-16, and 18-30) were isolated from the roots and twigs of Cratoxylum sumatranum ssp. neriifolium. Their structures were elucidated by spectroscopic methods. Compounds 5 and 26 showed antibacterial activity against Micrococcus luteus, Bacillus cereus, and Staphylococcus epidermis with minimum inhibitory concentrations ranging from 4 to 8 μg/mL, whereas compounds 7, 20, and 26 displayed selective antibacterial activities against Staphylococcus aureus (8 μg/mL), Salmonella typhimurium (4 μg/mL), and Pseudomonas aeruginosa (4 μg/mL), respectively. The radical scavenging effects of some isolated compounds were investigated. Compounds 11 and 21 exhibited potent activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with IC 50 values of 7.0 ± 1.0 and 6.0 ± 0.2 μM, respectively.

  20. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity.

    Science.gov (United States)

    Chew, Yik Ling; Mahadi, Adlina Maisarah; Wong, Kak Ming; Goh, Joo Kheng

    2018-02-20

    Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.

  1. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Chang, Ying; Cheng, Ling; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: tinachen0628@163.com [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Zhang, Long; Zhong, Lina [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Dai, Lizong, E-mail: lzdai@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China)

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. - Highlights: • A new type of antibacterial agent (PSA/Ag-NPs nanocomposites) was synthesized. • The antibacterial activity against S. aureus and E. coli was studied. • Inhibition zone, MIC, MBC, and bactericidal kinetics were evaluated. • PSA/Ag-NPs nanocomposites showed excellent antibacterial activity.

  2. Synthesis and Structure-Activity Relationships of Novel Amino/Nitro Substituted 3-Arylcoumarins as Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Ysabel Santos

    2013-01-01

    Full Text Available A new series of amino/nitro-substituted 3-arylcoumarins were synthesized and their antibacterial activity against clinical isolates of Staphylococcus aureus (Gram-positive and Escherichia coli (Gram-negative was evaluated. Some of these molecules exhibited antibacterial activity against S. aureus comparable to the standards used (oxolinic acid and ampicillin. The preliminary structure-activity relationship (SAR study showed that the antibacterial activity against S. aureus depends on the position of the 3-arylcoumarin substitution pattern. With the aim of finding the structural features for the antibacterial activity and selectivity, in the present manuscript different positions of nitro, methyl, methoxy, amino and bromo substituents on the 3-arylcoumarin scaffold were reported.

  3. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and

  4. Antibacterial activity of plasma from crocodile (Crocodylus siamensis against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Kommanee Jintana

    2012-07-01

    Full Text Available Abstract Background The Siamese crocodile (Crocodylus siamensis is a critically endangered species of freshwater crocodiles. Crocodilians live with opportunistic bacterial infection but normally suffer no adverse effects. They are not totally immune to microbial infection, but their resistance thereto is remarkably effective. In this study, crude and purified plasma extracted from the Siamese crocodile were examined for antibacterial activity against clinically isolated, human pathogenic bacterial strains and the related reference strains. Methods Crude plasma was prepared from whole blood of the Siamese crocodile by differential sedimentation. The crude plasma was examined for antibacterial activity by the liquid growth inhibition assay. The scanning electron microscopy was performed to confirm the effect of crude crocodile plasma on the cells of Salmonella typhi ATCC 11778. Effect of crude crocodile plasma on cell viability was tested by MTT assay. In addition, the plasma was purified by anion exchange column chromatography with DEAE-Toyopearl 650 M and the purified plasma was tested for antibacterial activity. Results Crude plasma was prepared from whole blood of the Siamese crocodile and exhibited substantial antibacterial activities of more than 40% growth inhibition against the six reference strains of Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus epidermidis, and the four clinical isolates of Staphylococcus epidermidis, Pseudomonas aeruginosa, Salmonella typhi, and Vibrio cholerae. Especially, more than 80% growth inhibition was found in the reference strains of Salmonella typhi, Vibrio cholerae, and Staphylococcus epidermidis and in the clinical isolates of Salmonella typhi and Vibrio cholerae. The effect of the crude plasma on bacterial cells of Salmonella typhi, a certain antibacterial material probably penetrates progressively into the cytoplasmic space

  5. New aminoporphyrins bearing urea derivative substituents: synthesis, characterization, antibacterial and antifungal activity

    Directory of Open Access Journals (Sweden)

    Gholamreza Karimipour

    2015-06-01

    Full Text Available This work studied the synthesis of 5,10,15-tris(4-aminophenyl-20-(N,N-dialkyl/diaryl-N-phenylurea porphyrins (P1-P4 with alkyl or aryl groups of Ph, iPr, Et and Me, respectively and also the preparation of their manganese (III and cobalt (II complexes (MnP and CoP. The P1-P4 ligands were characterized by different spectroscopic techniques (1H NMR, FTIR, UV-Vis and elemental analysis, and metalated with Mn and Co acetate salts. The antibacterial and antifungal activities of these compounds in vitro were investigated by agar-disc diffusion method against Escherichia coli (-, Pseudomonas aeruginosa (-, Staphylococcus aureus(+, Bacillus subtilis (+ and Aspergillus oryzae and Candida albicans. Results showed that antibacterial and antifungal activity of the test samples increased with increase of their concentrations and the highest activity was obtained when the concentration of porphyrin compounds was 100 µg/mL. The activity for the porphyrin ligands depended on the nature of the urea derivative substituents and increased in the order P1 > P2 > P3 >P4, which was consistent with the order of their liposolubility. MnP and CoP complexes exhibited much higher antibacterial and antifungal activity than P1-P4ligands. Further, the growth inhibitory effects of these compounds was generally in the order CoP complexes > MnP complexes > P1-P4 ligands. Among these porphyrin compounds, CoP1displayed the highest antibacterial and antifungal activity, especially with a concentration of 100 µg/mL, against all the four tested bacteria and two fungi, and therefore it could be potential to be used as drug.

  6. ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF BIXIN PIGMENT FROM ANNATTO (Bixa orellana L. SEEDS

    Directory of Open Access Journals (Sweden)

    Pipin T. Kurniawati

    2010-06-01

    Full Text Available Research on Bixa orellana L. have been done to isolate, identify and determine bixin percentage, the antioxidant and antibacterial activities of bixin from B. orellana seed.  Isolation and identification of bixin was done by thin layer chromatography (TLC, column chromatography, chemical test of bixin and UV-Vis double beam spectroscopy. Percentage of bixin was calculated by JECFA method, the antioxidant activity was determined by DPPH (1-1 diphynilpicrylhidrazil method while antibacterial activity was analyzed by the use of agar diffusion method. Thin layer chromatography (TLC for the crude extract contained 5 spot, where spot 5th was bixin. Bixa orellana has 75±3% of bixin. Antioxidant activity of bixin had IC50 548.5±20.0 ppm. Whereas the antibacterial activity of bixin against the Escherichia coli and Staphylococus aureus could be classified as weak inhibition category at 500-750 μg and medium inhibition category at 1500 μg.   Keywords: Bixa orellana L., bixin, antioxidant, antibacteria

  7. Chemical constituents of the essential oil, antioxidant and antibacterial activities from Elettariopsis curtisii Baker.

    Directory of Open Access Journals (Sweden)

    Vanida Chairgulprasert

    2008-08-01

    Full Text Available Elettariopsis curtisii Baker, the culinary and medicinal herb, was investigated to elucidate its chemical constituents and determine antioxidant and antibacterial activities. The essential oil of E. curtisii was obtained by steam distillation of fresh rhizomes in a maximum yield of 0.63%. GC-MS data indicated the presence of six compounds, of which trans-2-decenal (78.03% was the principal constituent. The essential oils and also the hexane, dichloromethane and methanol extracts from the rhizomes and leaves were assessed for antioxidant and antibacterial activities. In an evaluation of antioxidant activity, the crude dichloromethane extract of the leaves exhibited the highest scavenging effect on the DPPH radicalwith an EC50 of 0.28+0.01 mg/mL. The leaf dichloromethane extract also had the highest total phenol concentration, (73.4+2.80 mg GA/g of extract whereas the crude methanol extract from the rhizomes had the highest reducing power with an EC50 of 2.07+0.06 mg/mL. In terms of antibacterial activity, the essential oil (distilled from either the leaves or the rhizomesdisplayed the highest inhibitory activity, with the same MID value of 1 mg/disc against 5 strains of bacteria, Bacillus subtilis,Escherichia coli, Staphylococcus aureus, Sarcina sp. and Pseudomonas aeruginosa.

  8. Antibacterial activity of Iranian medicinal plants against Streptococcus iniae isolated from rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Pirbalouti Ghasemi Abdollah

    2011-01-01

    Full Text Available Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems. Ten Iranian medicinal plants were assessed for their antimicrobial activity against Streptococcus iniae isolates obtained from diseased Oncorhynchus mykiss (Salmonidae; Walbaum, 1972 collected from fish farms in Iran. The antibacterial activity of ethanol extracts of Punica granatum, Quercus branti, Glycyrrhiza glabra and essential oils of Heracleum lasiopetalum, Satureja bachtiarica, Thymus daenensis, Myrtus communis, Echinophora platyloba, Kelussia odoratissima and Stachys lavandulifolia against Steptococcus iniae was evaluated by disc diffusion and serial dilution assays. Most of the extracts and essential oils showed a relatively high antibacterial activity against Streptococcus iniae. Of the plants studied, the most active extracts were those obtained from the essential oils of Satureja bachtiarica, Echinophora platyloba, Thymus daenensis and the ethanol extract of Quercus branti. Some of the extracts were active against Streptococcus iniae. Two essential oils showed lower MIC values; Heracleum lasiopetalum (78 μg/ml and Satureja bachtiarica (39 μg/ml. The essential oil of Satureja bachtiarica could be an important source of antibacterial compounds against the Streptococcus iniae isolated from rainbow trout.

  9. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam.

    Science.gov (United States)

    Duraipandiyan, V; Ignacimuthu, S

    2009-06-25

    The leaves and root of Toddalia asiatica (L.) Lam. (Rutaceae) are widely used as a folk medicine in India. Hexane, chloroform, ethyl acetate, methanol and water extracts of Toddalia asiatica leaves and isolated compound Flindersine were tested against bacteria and fungi. Antibacterial and antifungal activities were tested against bacteria and fungi using disc-diffusion method and minimum inhibitory concentrations (MICs). The compound was confirmed using X-ray crystallography technique. Antibacterial and antifungal activities were observed in ethyl acetate extract. One active principle Flindersine (2,6-dihydro-2,2-dimethyl-5H-pyrano [3,2-c] quinoline-5-one-9cl) was isolated from the ethyl acetate extract. The MIC values of the compound against bacteria Bacillus subtilis (31.25 microg/ml), Staphylococcus aureus (62.5 microg/ml), Staphylococcus epidermidis (62.5 microg/ml), Enterococcus faecalis (31.25 microg/ml), Pseudomonas aeruginosa (250 microg/ml), Acinetobacter baumannii (125 microg/ml) and fungi Trichophyton rubrum 57 (62.5 microg/ml), Trichophyton mentagrophytes (62.5 microg/ml), Trichophyton simii (62.5 microg/ml), Epidermophyton floccosum (62.5 microg/ml), Magnaporthe grisea (250 microg/ml) and Candida albicans (250 microg/ml) were determined. Ethyl acetate extract showed promising antibacterial and antifungal activity and isolated compound Flindersine showed moderate activity against bacteria and fungi.

  10. Study on improving antioxidant and antibacterial activities of silk fibroin by irradiation treatment

    International Nuclear Information System (INIS)

    Tran Bang Diep; Nguyen Van Binh; Hoang Phuong Thao; Hoang Dang Sang; Nguyen Thuy Huong Trang

    2014-01-01

    The silk fibroin solutions were prepared in solvent system of CaCl 2 . CH 3 CH 2 OH. H 2 O (mole ratio = 1:2:8) followed dialysis against deionized water. The 3% silk fibroin solutions were irradiated under gamma Co-60 source with dose ranging from 0 to 50 kGy at Hanoi Irradiation Centre and bioactivities of the irradiated silk fibroin solutions were investigated with different radiation doses. The results indicated that the antioxidant and antibacterial activities of fibroin were much improved by gamma irradiation. Maximum value of DPPH radical scavenging activity was 70.4% for the solution of silk fibroin irradiated at 10 kGy. Silk fibroin solutions irradiated at doses higher than 10 kGy also exhibited rather high antibacterial activity against E. coli and S. aureus. In order to estimate the applicability of our irradiated fibroin, the silk fibroin solutions were lyophilized to obtain a pure fibroin powder, then their bio-activities were compared with those of commercial silk fibroin (Proteines De Soie/ Zijdeproteine, Bioflore, Canada). Our fibroin powder revealed higher antioxidant and antibacterial activities. The amino acid compositions of our irradiated fibroin were also higher than that of the commercial product. Thus, the irradiated silk fibroin can be used for further application in cosmetic and other related fields. (author)

  11. The effects of Mg incorporation and annealing temperature on the physicochemical properties and antibacterial activity against Listeria monocytogenes of ZnO nanoparticles

    Science.gov (United States)

    Shadan, Nima; Ziabari, Ali Abdolahzadeh; Meraat, Rafieh; Jalali, Kamyar Mazloum

    2017-02-01

    In this paper, Mg-doped ZnO nanoparticles were synthesized by the facile sol-gel method. The crystalline structure, characteristic absorption bands and morphology of the obtained Mg-doped ZnO nanoparticles were studied by XRD, FTIR and TEM. The thermal degradation behaviour of the samples was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The effect of Mg concentrations and annealing temperatures on the antibacterial properties of the obtained nanoparticles was investigated in detail. The results indicated that doping Mg ions into ZnO lattice could enhance its antibacterial activity. Antibacterial assay demonstrated that Mg-doped ZnO with 7% Mg content annealed at 400 ∘C had the strongest antibacterial activity against Listeria monocytogenes (98.7%). This study indicated that the inhibition rate of ZnO nanoparticles increased with the formation of granular structure and the decrease of ZnO size due to the doping of Mg ions into the ZnO lattice.

  12. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities

    Science.gov (United States)

    Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria

    2017-12-01

    Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past.

  13. A simple fragment of cyclic acyldepsipeptides is necessary and sufficient for ClpP activation and antibacterial activity.

    Science.gov (United States)

    Carney, Daniel W; Compton, Corey L; Schmitz, Karl R; Stevens, Julia P; Sauer, Robert T; Sello, Jason K

    2014-10-13

    The development of new antibacterial agents, particularly those with unique biological targets, is essential to keep pace with the inevitable emergence of drug resistance in pathogenic bacteria. We identified the minimal structural component of the cyclic acyldepsipeptide (ADEP) antibiotics that exhibits antibacterial activity. We found that N-acyldifluorophenylalanine fragments function via the same mechanism of action as ADEPs, as evidenced by the requirement of ClpP for the fragments' antibacterial activity, the ability of fragments to activate Bacillus subtilis ClpP in vitro, and the capacity of an N-acyldifluorophenylalanine affinity matrix to capture ClpP from B. subtilis cell lysates. N-acyldifluorophenylalanine fragments are much simpler in structure than the full ADEPs and are also highly amenable to structural diversification. Thus, the stage has been set for the development of non-peptide activators of ClpP that can be used as antibacterial agents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Antibacterial activity of Nigella sativa seed essential oil and effect of different extraction methods on content its active principle, thymoquinone

    Czech Academy of Sciences Publication Activity Database

    Kokoška, L.; Havlík, J.; Valterová, Irena; Sovová, Helena; Sajfrtová, Marie; Maršík, Petr

    2006-01-01

    Roč. 72, č. 11 (2006), s. 1008 ISSN 0032-0943. [Annual Congress on Medicinal Plant Research. 29.08.2006-02.09.2006, Helsinki] R&D Projects: GA ČR GA104/06/1174 Institutional research plan: CEZ:AV0Z40550506 Keywords : antibacterial activity * Nigella * extraction * thymoquinone Subject RIV: CE - Biochemistry

  15. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    International Nuclear Information System (INIS)

    Rehman, F.U.; Khan, M.F.; Khan, G.M.; Khan, H.; Khan, I.U.

    2010-01-01

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  16. Antibacterial, antimalarial and leishmanicidal activities of Cu (II) and nickel (II) complexes of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, F U; Khan, M F; Khan, G M; Khan, H [Gomal University, D.I. Khan (Pakistan). Dept. of Faculty of Pharmacy; Khan, I U [University of Peshawar (Pakistan). Dept. of Faculty of Pharmacy

    2010-08-15

    Metal complexes are famous for a wide array of chemotherapeutic effects. The current study was designed to synthesize and evaluate unexplored chemotherapeutic effects of Cu (II) and Nickel (II) complexes of the non-steroidal anti-inflammatory drug diclofenac. Nickel complex exhibited significant leishmanicidal activity against Lieshmania major, while the copper complex was found to possess low activity against the same pathogen. Both of the complexes revealed low antibacterial activities and were interestingly failed to produce any considerable antimalarial activity against Plasmodium falciparum 3D7. Selective leishmanicidal activities of Nickel (II) complex of diclofenac needs further improvement to be developed as potential new metal-based leishmanicidal agent.(author)

  17. Antibacterial Activity of Probiotic Bacteria Isolated From Broiler Feces and Commercial Strains

    Directory of Open Access Journals (Sweden)

    Parisa Darabi

    2014-07-01

    Full Text Available Background: The extensive use of antibiotics in animal farms to promote the growth rate and prevent the enteric pathogen has led to the development of antibiotic-resistant bacteria and drug residues in the birds body. In the recent years, probiotics have been constantly studied for their inhibitory effects on pathogenic bacteria. Objectives: The current study aimed to assess the effect of magnesium oxide on controlling serum phosphorus levels and evaluate its side effects. Materials and Methods: Antibacterial activity of local and commercial probiotic bacteria was investigated using colony overlay assay. Then antibacterial activity of local and commercial probiotics against each pathogen, Salmonella typhimurium, Escherichia coli and Staphylococcus aureus were compared. Results: Local strain of lactic acid bacteria had significantly higher antibacterial activity compared to those of the commercial probiotics. Local probiotics showed a significantly stronger activity against Staphylococcus aureus, Salmonella typhimurium and Escherichia coli compared to all commercial probiotics. Conclusions: Administration of mono strain of Lactobacillus salivarius ES1, or co-administration of ES1 and L. salivarius ES6, is not only more effective than commercial probiotics against Salmonella spp., Staphylococcus spp. and E.coli, but also, will have no negative effects on micro flora balance of local birds.

  18. The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability

    Science.gov (United States)

    Huang, Ying; Zha, Guangyu; Luo, Qiaojie; Zhang, Jianxiang; Zhang, Feng; Li, Xiaohui; Zhao, Shifang; Zhu, Weipu; Li, Xiaodong

    2014-01-01

    The deficient osseointegration and implant-associated infections are pivotal issues for the long-term clinical success of endosteal Ti implants, while development of functional surfaces that can simultaneously overcome these problems remains highly challenging. This study aimed to fabricate sophisticated Ti implant surface with both osteogenic inducing activity and inherent antibacterial ability simply via tailoring surface topographical features. Micro/submciro/nano-scale structure was constructed on Ti by three cumulative subtractive methods, including sequentially conducted sandblasting as well as primary and secondary acid etching treatment. Topographical features of this hierarchical structure can be well tuned by the time of the secondary acid treatment. Ti substrate with mere micro/submicro-scale structure (MS0-Ti) served as a control to examine the influence of hierarchical structures on surface properties and biological activities. Surface analysis indicated that all hierarchically structured surfaces possessed exactly the same surface chemistry as that of MS0-Ti, and all of them showed super-amphiphilicity, high surface free energy, and high protein adsorption capability. Biological evaluations revealed surprisingly antibacterial ability and excellent osteogenic activity for samples with optimized hierarchical structure (MS30-Ti) when compared with MS0-Ti. Consequently, for the first time, a hierarchically structured Ti surface with topography-induced inherent antibacterial capability and excellent osteogenic activity was constructed. PMID:25146099

  19. Antioxidant and antibacterial activities of selected varieties of thai mango seed extract.

    Science.gov (United States)

    Khammuang, Saranyu; Sarnthima, Rakrudee

    2011-01-01

    This study reports the antioxidant and antibacterial activities of four fresh mango seed extracts from Thai varieties. Total phenol contents determined by the Folin-ciocalteu method revealed the highest values to be in MKE, Chok-a-nan variety (399.8 mgGAE/g extract) and MSE of Nam-dok-mai variety (377.2 mgGAE/g extract). Both extracts showed potent ABTS˙+ radical and DPPH˙ radical scavenging activities with the lower half inhibition concentration (IC50) values than those of the reference compounds; vitamin C, trolox and BHA, respectively. Their antioxidant property of MSE and MKE is strongly correlated with the total phenol contents (r=0.98 and 0.98, respectively). When combined the MSE and MKE of the Fah-lun variety showed the strongest antioxidant activity. All mango seed extracts showed interesting antibacterial activity against both gram positive and gram negative bacteria as determined by disc diffusion method. The most sensitive pathogenic strain inhibited by all extracts (especially Kaew variety) was Pseudomonas aeruginosa ATCC 27853. This work suggests potential applications for practical uses of mango seed extracts from Thai varieties, as sources of antioxidant and antibacterial agents.

  20. Antibacterial Activity of Silver Nanoparticles Synthesized by Using Extracts of Hedera helix

    Directory of Open Access Journals (Sweden)

    Ahmadreza Abbasifar

    2017-01-01

    Full Text Available Background Silver nanoparticles (AgNPs are one of the most widely applicable particles whose application is increasing in Nano world daily. Silver nanoparticles have expressed significant advances owing to wide range of applications in the field of bio-medical, sensors, antimicrobials, catalysts, electronics, optical fibers, agricultural, bio-labeling and the other areas. Green synthesis is the safe and easiest method of producing silver nanoparticles. Because of the production of the silver ions, silver nanoparticles are found to have the antibacterial activity. Objectives The aim of this study was to investigate antibacterial activity of silver nanoparticles synthesized by using extracts of Hedera helix against Bacillus subtilis and Klebsiella pneumoniae. Methods In this experimental study AgNPs were prepared by the reaction of 1mM silver nitrate and extracts of Hedera helix. Antibacterial activity of AgNPs was assessed by using disc diffusion method against Bacillus subtilis and Klebsiella pneumoniae. The AgNPs were characterized by UV-visible (vis spectrophotometer, particle size analyzer by dynamic light scattering (DLS method, transmission electron microscopy (TEM. Results AgNPs obtained showed significantly higher antimicrobial activities against B. subtilis and K. pneumonia in comparison to both AgNO3 and raw plant extracts. Conclusions Biological methods are a good competent for the chemical procedures, which are environment friendly and convenient.