WorldWideScience

Sample records for enhanced advanced manufacturing

  1. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  2. Advanced Manufacturing Office Clean Water Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-03-01

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  3. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  4. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  5. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  6. 2001 Industry Studies: Advanced Manufacturing

    Science.gov (United States)

    2001-05-28

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology

  7. The Environmental Impact of Advanced Manufacturing Technologies: Examples from Hungary

    OpenAIRE

    Andrea Szalavetz

    2017-01-01

    The purpose of the paper is to demonstrate the beneficial impact of advanced manufacturing technologies (AMT) on firms’ environmental performance. Drawing on interviews conducted with 16 Hungarian manufacturing subsidiaries on their experience with AMT, we find three functional areas, where industry 4.0 solutions can not only enhance operational excellence and cost-efficiency, but they can also improve eco-efficiency, but they can also improve eco-efficiency, namely in the f...

  8. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  9. Advanced manufacturing: Technology and international competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  10. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Science.gov (United States)

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  11. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Directory of Open Access Journals (Sweden)

    Alfred T. Sidambe

    2014-12-01

    Full Text Available Titanium (Ti and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  12. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    Science.gov (United States)

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  13. NASA's National Center for Advanced Manufacturing

    Science.gov (United States)

    Vickers, John

    2003-01-01

    NASA has designated the Principal Center Assignment to the Marshall Space Flight Center (MSFC) for implementation of the National Center for Advanced Manufacturing (NCAM). NCAM is NASA s leading resource for the aerospace manufacturing research, development, and innovation needs that are critical to the goals of the Agency. Through this initiative NCAM s people work together with government, industry, and academia to ensure the technology base and national infrastructure are available to develop innovative manufacturing technologies with broad application to NASA Enterprise programs, and U.S. industry. Educational enhancements are ever-present within the NCAM focus to promote research, to inspire participation and to support education and training in manufacturing. Many important accomplishments took place during 2002. Through NCAM, NASA was among five federal agencies involved in manufacturing research and development (R&D) to launch a major effort to exchange information and cooperate directly to enhance the payoffs from federal investments. The Government Agencies Technology Exchange in Manufacturing (GATE-M) is the only active effort to specifically and comprehensively address manufacturing R&D across the federal government. Participating agencies include the departments of Commerce (represented by the National Institute of Standards and Technology), Defense, and Energy, as well as the National Science Foundation and NASA. MSFC s ongoing partnership with the State of Louisiana, the University of New Orleans, and Lockheed Martin Corporation at the Michoud Assembly Facility (MAF) progressed significantly. Major capital investments were initiated for world-class equipment additions including a universal friction stir welding system, composite fiber placement machine, five-axis machining center, and ten-axis laser ultrasonic nondestructive test system. The NCAM consortium of five universities led by University of New Orleans with Mississippi State University

  14. Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing.

    Science.gov (United States)

    Geraci, C L; Tinkle, S S; Brenner, S A; Hodson, L L; Pomeroy-Carter, C A; Neu-Baker, N

    2018-06-01

    Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi

  15. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  16. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  17. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  18. Study on Measurement of Advanced Manufacturing: Case by China

    Directory of Open Access Journals (Sweden)

    She Jinghuai

    2017-01-01

    Full Text Available This article has built a system of China's Advanced Manufacturing measurement indicators. By applying the datum from 2004 to 2013, we estimate the level of development and current status of China’s Advanced Manufacturing (AM, and evaluate the measurement results by establishing Hierarchical Linear Model (HLM. We confirmed that China's Advanced Manufacturing is in the rapid development trend. And due to the difference of initial conditions in Advanced Manufacturing development there is a greater imbalance. In contrast, a region with poor initial condition of has a relatively fast development speed.

  19. Design for manufacturability with advanced lithography

    CERN Document Server

    Yu, Bei

    2016-01-01

    This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL).  The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography.  Unlike books that discuss DFM from the product level, or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms. Enables readers to tackle the challenge of layout decompositions for different patterning techniques; Presents a coherent framework, including standard cell compliance and detailed placement, to enable Triple Patterning Lithography (TPL) friendly design; Includes coverage of the design for manufacturability with E-Beam lithography.

  20. Research Staff | Advanced Manufacturing Research | NREL

    Science.gov (United States)

    manages wind turbine rotor blade composite manufacturing projects at the National Wind Technology Center postdoctoral researcher working to develop and validate advanced composite manufacturing processes using novel materials for wind and marine and hydrokinetic (MHK) turbines. This includes hands-on composite

  1. The Environmental Impact of Advanced Manufacturing Technologies: Examples from Hungary

    Directory of Open Access Journals (Sweden)

    Andrea Szalavetz

    2017-06-01

    Full Text Available The purpose of the paper is to demonstrate the beneficial impact of advanced manufacturing technologies (AMT on firms’ environmental performance. Drawing on interviews conducted with 16 Hungarian manufacturing subsidiaries on their experience with AMT, we find three functional areas, where industry 4.0 solutions can not only enhance operational excellence and cost-efficiency, but they can also improve eco-efficiency, but they can also improve eco-efficiency, namely in the field of quality management (through smart production control, data analytics and predictive modelling solutions; process optimization (through capacity planning and production scheduling solutions; and product and process engineering (through advanced virtual technologies. We also find that AMT adoption facilitated subsidiary upgrading along various dimensions. The main managerial implication is that subsidiaries need to be proactive, and emphasize also the benefits stemming from energy and resource efficiency improvement when lobbying for investment in AMT.

  2. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  3. Advanced Manufacturing Technologies (AMT): Modular Rapidly Manufactured SmallSat

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize advanced manufacturing processes to design and fabricate a fully functional prototype flight model, with the goal of demonstrating rapid on-orbit assembly of...

  4. Analyzing the Drivers of Advanced Sustainable Manufacturing System Using AHP Approach

    Directory of Open Access Journals (Sweden)

    K. Madan Shankar

    2016-08-01

    Full Text Available A number of current manufacturing sectors are striving hard to introduce innovative long-term strategies into their operations. As a result, many scholarly studies have found it fruitful to investigate advanced manufacturing strategies such as agile, computer-integrated, and cellular manufacturing. Through the example of downstream cases, manufacturing sectors have learned that financial benefits garnered through automated technologies cannot be counted on as a sole measure to ensure their success in today’s competitive and fluctuating marketplaces. The objective of this study is to integrate those advanced techniques with sustainable operations, to promote advanced sustainable manufacturing so those manufacturing sectors can thrive even in uncertain markets. To establish this connection, this study analyzes the drivers of advanced sustainable manufacturing through a proposed framework validated through a case study in India. Common drivers are collected from the literature, calibrated with opinions from experts, and analyzed through an analytical hierarchy process (AHP, which is a multi-criteria decision making (MCDM approach. This study reveals that quality is the primary driver that pressures manufacturing sectors to adopt advanced sustainable manufacturing. Manufacturers can easily note the top ranked driver and adopt it to soundly implement advanced sustainable manufacturing. In addition, some key future scopes are explored along with possible recommendations for effective implementation of advanced sustainable manufacturing systems.

  5. Research overview: Advanced Manufacturing in Switzerland

    OpenAIRE

    Schärer, Claudia

    2016-01-01

    SATW is convinced that industrial production methods will see fundamental changes over the coming years. Mastering new production technologies (advanced manufacturing) such as additive manufacturing and industry 4.0 will be vital to keep Swiss production at a competitive level. New additive manufacturing processes such as 3D printing offer revolutionary opportunities and have the potential to replace traditional production methods. Industry 4.0 has seen the definition of a new concept for...

  6. Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review).

    Science.gov (United States)

    Harrison, Richard P; Chauhan, Veeren M

    2017-12-15

    Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.

  7. Measure of manufacturing performance in advanced manufacturing systems

    NARCIS (Netherlands)

    Ron, de A.J.

    1995-01-01

    Because of the financial risks as a result of the high investments, decisions concerning investing in advanced manufacturing systems are difficult. The difficulty to decide is gained by the lack of a well-defined measure to support decisions and alarming messages from the industry concerning inverse

  8. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  9. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  10. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Jinke Chang

    2018-01-01

    Full Text Available Additive manufacturing (AM has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  11. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  12. Advanced Manufacturing Technologies (AMT): Advanced Near Net Shape Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Advanced Near Net Shape Technology (ANNST) project is to radically improve near net shape manufacturing methods from the current...

  13. Recent Advances in Precision Machinery and Manufacturing Technology

    DEFF Research Database (Denmark)

    Liu, Chien-Hung; Hsieh, Wen-Hsiang; Chang, Zong-Yu

    2014-01-01

    Precision machinery and manufacturing technology are be- coming more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end, the special issue aims to disseminate...... the latest advancements of relevant fundamental and applied research works of high quality to the inter- national community. The topics of the accepted articles in the special issue include precision manufacturing pro- cesses, measurements and control, robotics and automation, machine tools, advanced...

  14. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  15. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  16. An Assessment of Advanced Manufacturing Technologies Implementation in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin Shaikh

    2011-04-01

    Full Text Available The implementation of AMTs (Advanced Manufacturing Technologies has always been the high interest and core issue for the manufacturing enterprises to get rapid production for global market place. The developed countries have achieved its competitive advantage by implementing this unique model of technologies with full range of systems. In developing countries, the implementation of such technologies is not much common due to so many reasons, (political, social, economical and technical but entrepreneurs of growing economies are contemplating to reshape long term strategy to adopt Computer systems oriented technologies in their manufacturing companies to meet the growing needs of their indigenous market on one hand and to make a place in the international market on the other. Although, very few manufacturing organization do meet the global market requirements. But there is still lot of efforts to be taken for world class competition. An attempt has been made in this paper to develop a conceptual model taking in to account the three parameters such as, Direct, Indirect and Administrative AMTs. This research work further attempts to present an empirical data analysis conducted in the manufacturing enterprises in province of Sindh, Pakistan. The overall indigenous progress of manufacturing enterprises as according to the data collected from 60 companies reveals that the AMTs systems are partially understood and practiced that is also one of the cause towards slow progress of national exchequer.

  17. Advances in 3D printing & additive manufacturing technologies

    CERN Document Server

    Pandey, Pulak; Kumar, L

    2017-01-01

    This edited volume comprises select chapters on advanced technologies for 3D printing and additive manufacturing and how these technologies have changed the face of direct, digital technologies for rapid production of models, prototypes and patterns. Because of its wide applications, 3D printing and additive manufacturing technology has become a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across industries such as consumer products, aerospace, medical devices and automotives. The objective of this book is to help designers, R&D personnel, and practicing engineers understand the state-of-the-art developments in the field of 3D Printing and Additive Manufacturing. .

  18. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  19. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  20. Aircrew helmet design and manufacturing enhancements through the use of advanced technologies

    Science.gov (United States)

    Cadogan, David P.; George, Alan E.; Winkler, Edward R.

    1993-12-01

    With the development of helmet mounted displays (HMD) and night vision systems (NVS) for use in military and civil aviation roles, new methods of helmet development need to be explored. The helmet must be designed to provide the user with the most lightweight, form fitting system, while meeting other system performance requirements. This can be achieved through a complete analysis of the system requirements. One such technique for systems analysis, a quality function deployment (QFD) matrix, is explored for this purpose. The advanced helmet development process for developing aircrew helmets includes the utilization of several emerging technologies such as laser scanning, computer aided design (CAD), computer generated patterns from 3-D surfaces, laser cutting of patterns and components, and rapid prototyping (stereolithography). Advanced anthropometry methods for helmet development are also available for use. Besides the application of advanced technologies to be used in the development of helmet assemblies, methods of mass reduction are also discussed. The use of these advanced technologies will minimize errors in the development cycle of the helmet and molds, and should enhance system performance while reducing development time and cost.

  1. Co-Extrusion: Advanced Manufacturing for Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Corie Lynn [PARC, Palo Alto, CA (United States)

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  2. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  3. Decade of PV Industry R and D Advances in Silicon Module Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R.[U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

    2001-01-18

    The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

  4. The Vulcan Advanced Hybrid Manufacturing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Made In Space is developing the The Vulcan Advanced Hybrid Manufacturing System (VULCAN) to address NASA's requirement to produce high-strength, high-precision...

  5. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  6. Advanced Shape Memory Technology to Reshape Product Design, Manufacturing and Recycling

    Directory of Open Access Journals (Sweden)

    Wen Guang Yang

    2014-08-01

    Full Text Available This paper provides a brief review on the advanced shape memory technology (ASMT with a focus on polymeric materials. In addition to introducing the concept and fundamentals of the ASMT, the potential applications of the ASMT either alone or integrated with an existing mature technique (such as, 3D printing, quick response (QR code, lenticular lens and phenomena (e.g., wrinkling and stress-enhanced swelling effect in product design, manufacturing, and recycling are demonstrated. It is concluded that the ASMT is indeed able to provide a range of powerful approaches to reshape part of the life cycle or the whole life cycle of products.

  7. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    Science.gov (United States)

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  8. Exploring the evolution of investment pattern on advanced manufacturing technology

    DEFF Research Database (Denmark)

    Yang, Cheng; Matthiesen, Rikke Vestergaard; Johansen, John

    2014-01-01

    This paper explores the evolution of investment pattern on advanced manufacturing technology in a manner that builds on a longitudinal perspective. Based on the data of investments in AMTs from 567 manufacturing companies this paper develops a longitudinal taxonomy defined by the evolution of inv...... of technology management, which is comprised primarily of cross-sectional studies that do not address the dynamic nature of investments in AMTs.......This paper explores the evolution of investment pattern on advanced manufacturing technology in a manner that builds on a longitudinal perspective. Based on the data of investments in AMTs from 567 manufacturing companies this paper develops a longitudinal taxonomy defined by the evolution...... of investment patterns on AMT followed by companies over time; identifies the possible evolutionary features of different groups of companies; and suggests the possible explanatory and outcome factors on the evolution of investment pattern on AMTs. By doing so, this study seeks to fill a void in the area...

  9. Forecasting the Success of Implementing Sensors Advanced Manufacturing Technology

    OpenAIRE

    Cheng-Shih Su; Shu-Chen Hsu

    2014-01-01

    This paper is presented fuzzy preference relations approach to forecast the success of implementing sensors advanced manufacturing technology (AMT). In the manufacturing environment, performance measurement is based on different quantitative and qualitative factors. This study proposes an analytic hierarchical prediction model based on fuzzy preference relations to help the organizations become aware of the essential factors affecting the AMT implementation, forecasting the chance of successf...

  10. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  11. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  12. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  13. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  14. Pharmacy on demand: New technologies to enable miniaturized and mobile drug manufacturing.

    Science.gov (United States)

    Lewin, John J; Choi, Eugene J; Ling, Geoffrey

    2016-01-15

    Developmental pharmaceutical manufacturing systems and techniques designed to overcome the shortcomings of traditional batch processing methods are described. Conventional pharmaceutical manufacturing processes do not adequately address the needs of military and civilian patient populations and healthcare providers. Recent advances within the Defense Advanced Research Projects Agency (DARPA) Battlefield Medicine program suggest that miniaturized, flexible platforms for end-to-end manufacturing of pharmaceuticals are possible. Advances in continuous-flow synthesis, chemistry, biological engineering, and downstream processing, coupled with online analytics, automation, and enhanced process control measures, pave the way for disruptive innovation to improve the pharmaceutical supply chain and drug manufacturing base. These new technologies, along with current and ongoing advances in regulatory science, have the future potential to (1) permit "on demand" drug manufacturing on the battlefield and in other austere environments, (2) enhance the level of preparedness for chemical, biological, radiological, and nuclear threats, (3) enhance health authorities' ability to respond to natural disasters and other catastrophic events, (4) minimize shortages of drugs, (5) address gaps in the orphan drug market, (6) support and enable the continued drive toward precision medicine, and (7) enhance access to needed medications in underserved areas across the globe. Modular platforms under development by DARPA's Battlefield Medicine program may one day improve the safety, efficiency, and timeliness of drug manufacturing. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  15. Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tethers Unlimited, Inc. (TUI) proposes to develop the Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, a robotically managed metal press and...

  16. NATO Advanced Research Institute on the Efficiency of Manufacturing Systems

    CERN Document Server

    Berg, C; French, D

    1983-01-01

    The Advanced Research Institute (A.R. 1.) on "the efficiency of Manufacturing Systems" was held under the auspices of the NATO Special Programm~ Panel on Systems Science as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international co-operation. Advanced Research Institutes are organised for the purpose of bringing together experts in a particular field of interest to identify and make known the present state of knowledge in that area and, through informed debate, to make recommendations for directions for future research that would benefit the community at large. To this end two kinds of contribution were obtained by invitation. There were those papers which were about the current state of work in the area of manufacturing systems and its organisation; in addition three theme papers were presented to provide a stimulus to the discussion in terms of ways of thinking, both about the area and about the kind of research needed.

  17. Advanced Manufacture of Spiral Bevel and Hypoid Gears

    Directory of Open Access Journals (Sweden)

    Vilmos Simon

    2016-11-01

    Full Text Available In this study, an advanced method for the manufacture of spiral bevel and hypoid gears on CNC hypoid generators is proposed. The optmal head-cutter geometry and machine tool settings are determined to introduce the optimal tooth surface modifications into the teeth of spiral bevel and hypoid gears. The aim of these tooth surface modifications is to simultaneously reduce the tooth contact pressure and the transmission errors, to maximize the EHD load carrying capacity of the oil film, and to minimize power losses in the oil film. The proposed advanced method for the manufacture of spiral bevel and hypoid gears is based on machine tool setting variation on the cradle-type generator conducted by optimal polynomial functions and on the use of a CNC hypoid generator. An algorithm is developed for the execution of motions on the CNC hypoid generator using the optimal relations on the cradle-type machine. Effectiveness of the method was demonstrated by using spiral bevel and hypoid gear examples. Significant improvements in the operating characteristics of the gear pairs are achieved.

  18. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  19. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  20. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    Science.gov (United States)

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  1. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  2. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  3. Advances in battery manufacturing, service, and management systems

    CERN Document Server

    Zhou, Shiyu; Han, Yehui

    2016-01-01

    This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, opera ions, and hybrid storage systems to ensure overall performance and safety, as well as EV management.

  4. Telefacturing Based Distributed Manufacturing Environment for Optimal Manufacturing Service by Enhancing the Interoperability in the Hubs

    Directory of Open Access Journals (Sweden)

    V. K. Manupati

    2017-01-01

    Full Text Available Recent happenings are surrounding the manufacturing sector leading to intense progress towards the development of effective distributed collaborative manufacturing environments. This evolving collaborative manufacturing not only focuses on digitalisation of this environment but also necessitates service-dependent manufacturing system that offers an uninterrupted approach to a number of diverse, complicated, dynamic manufacturing operations management systems at a common work place (hub. This research presents a novel telefacturing based distributed manufacturing environment for recommending the manufacturing services based on the user preferences. The first step in this direction is to deploy the most advanced tools and techniques, that is, Ontology-based Protégé 5.0 software for transforming the huge stored knowledge/information into XML schema of Ontology Language (OWL documents and Integration of Process Planning and Scheduling (IPPS for multijobs in a collaborative manufacturing system. Thereafter, we also investigate the possibilities of allocation of skilled workers to the best feasible operations sequence. In this context, a mathematical model is formulated for the considered objectives, that is, minimization of makespan and total training cost of the workers. With an evolutionary algorithm and developed heuristic algorithm, the performance of the proposed manufacturing system has been improved. Finally, to manifest the capability of the proposed approach, an illustrative example from the real-time manufacturing industry is validated for optimal service recommendation.

  5. 3D metal droplet printing development and advanced materials additive manufacturing

    Directory of Open Access Journals (Sweden)

    Lawrence E. Murr

    2017-01-01

    Full Text Available While commercial additive manufacturing processes involving direct metal wire or powder deposition along with powder bed fusion technologies using laser and electron beam melting have proliferated over the past decade, inkjet printing using molten metal droplets for direct, 3D printing has been elusive. In this paper we review the more than three decades of development of metal droplet generation for precision additive manufacturing applications utilizing advanced, high-temperature metals and alloys. Issues concerning process optimization, including product structure and properties affected by oxidation are discussed and some comparisons of related additive manufactured microstructures are presented.

  6. Advanced Manufacturing - National Information Infrastructure (AM-NII) Final Report CRADA No. TO-4013-01

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2001-03-23

    Advanced Manufacturing - National Information Infrastructure (AM-NII) was a multiyear DOE/DP program, involving multiple DOE laboratories and production facilities, focused on improving the manufacturing capabilities of the Nuclear Weapons Complex (NWC) through the application of modem information technologies. AM-NII's published mission states: "In partnership with the manufacturing business sector, AMNII will leverage DOE capabilities to develop, demonstrate, and pilot industrial information infrastructure and applications that enhance national security." LLNL's AM-NII project targeted two opportunities for improving NWC manufacturing capabilities. First was the link between the NWC and its outside suppliers of manufactured parts - web-based supply-chain integration. Second was the cross-site enterprise integration (EI) within the Complex itself. The general approach to supply-chain integration was to leverage the National Information Infrastructure (including Internet) to demonstrate the procurement of fabricated electrical and mechanical parts using a completely paperless procurement process. The general approach to NWC enterprise integration was to utilize SecureNet, a network that provides a secure, high-speed data link among the various NWC sites. If one looks at SecureNet as "the track," our goal was to get the trains running. Cross-site enterprise integration presupposes there is some level of local integration, so we worked both local and cross-site is sues simultaneously. Our EI work was in support of the LLNL Stockpile Life Extension Programs (SLEPs), the Submarine Launch Ballistic Missile Warhead Protection Program (SWPP), and the Laser Cutter Workstation installed at Y-12.

  7. An Internet of Things based framework to enhance just-in-time manufacturing

    OpenAIRE

    Xu, Yuchun; Chen, Mu

    2017-01-01

    Just-in-time manufacturing is a main manufacturing strategy used to enhance manufacturers’ competitiveness through inventory and lead time reduction. Implementing just-in-time manufacturing has a number of challenges, for example, effective, frequent and real-time information sharing and communication between different functional departments, responsive action for adjusting the production plan against the continually changing manufacturing situation. Internet of Things technology has the pote...

  8. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    Science.gov (United States)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  9. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    Science.gov (United States)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  10. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.

    Science.gov (United States)

    Li, Jia; Rossignol, Fabrice; Macdonald, Joanne

    2015-06-21

    Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.

  11. Advanced Manufacturing Technology: The Perceived Impact on Producer’s Value

    Directory of Open Access Journals (Sweden)

    Rohani Abdullah

    2012-09-01

    Full Text Available The purpose of this study is to determine which AMT has the greatest perceived impact on producer’s value and to identify which AMTs has been most successfully employed. The study population consists of senior manufacturing executives in electrical and electronic firms located in the northern region of Malaysia. The study addresses the senior manufacturing executives’ perceptions on how well specific AMTs have achieved the expectation of the firms implementing them. They are selected as respondents because of their understanding of the technology and their effects, and because as top manufacturing decision makers, their opinions are likely to shape the future technology of the organization. This study found that the type of AMT that perceived the greatest impact on producer’s value is Flexible Manufacturing System, due to its high effects on two dimensions of producer’s value: quality and cost while Just-in-Time is found to be the most successfully employed AMT among respondents. The findings of this study are significant as they contribute to the AMT literature especially in the context of Electrical and Electronic firms. Keywords: advanced manufacturing technology, producer’s value

  12. Model-based Engineering for the Integration of Manufacturing Systems with Advanced Analytics

    OpenAIRE

    Lechevalier , David; Narayanan , Anantha; Rachuri , Sudarsan; Foufou , Sebti; Lee , Y Tina

    2016-01-01

    Part 3: Interoperability and Systems Integration; International audience; To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformatio...

  13. 5th International Conference on Advanced Manufacturing Engineering and Technologies

    CERN Document Server

    Jakovljevic, Zivana; NEWTECH2017

    2017-01-01

    This book presents the proceedings from the 5th NEWTECH conference (Belgrade, Serbia, 5–9 June 2017), the latest in a series of high-level conferences that bring together experts from academia and industry in order to exchange knowledge, ideas, experiences, research results, and information in the field of manufacturing. The range of topics addressed is wide, including, for example, machine tool research and in-machine measurements, progress in CAD/CAM technologies, rapid prototyping and reverse engineering, nanomanufacturing, advanced material processing, functional and protective surfaces, and cyber-physical and reconfigurable manufacturing systems. The book will benefit readers by providing updates on key issues and recent progress in manufacturing engineering and technologies and will aid the transfer of valuable knowledge to the next generation of academics and practitioners. It will appeal to all who work or conduct research in this rapidly evolving field.

  14. Advanced manufacturing: optimising the factories of tomorrow

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2013-01-01

    Faced with competition Patrick Philippon - Les Defis du CEA no.179 - April 2013 from the emerging countries, the competitiveness of the industrialised nations depends on the ability of their industries to innovate. This strategy necessarily entails the reorganisation and optimisation of the production systems. This is the whole challenge for 'advanced manufacturing', which relies on the new information and communication technologies. Interactive robotics, virtual reality and non-destructive testing are all technological building blocks developed by CEA, now approved within a cross-cutting programme, to meet the needs of industry and together build the factories of tomorrow. (author)

  15. Advanced Manufacturing Technology Adoption In SMEs: An Integrative Model

    Directory of Open Access Journals (Sweden)

    Mirmahdi Darbanhosseiniamirkhiz

    2012-12-01

    Full Text Available The objective of this study is to assess the critical factors which influence adoption of  Advanced Manufacturing Technologies (AMTs and identify hurdles and barriers which prevent small- and medium-sized enterprises (SMEs from accomplishing the desired goals of AMTs utilization. The proposed framework has synthesized previous studies and integrated related studies through conducting a comprehensive literature review. This paper is a theoretical construction that synthesizes previous studies, and centers on three context (Environmental, Organizational, and Technological which influence  adoption of AMTs. This model can provide managers with practical solutions through granting in-depth understanding of whole internal, external, and technological environments, and awarding empirical insight into overcoming barriers to the adoption and implementation of AMT and other process innovations in manufacturing organizations.

  16. Analysis of the influence of advanced materials for aerospace products R and D and manufacturing cost

    International Nuclear Information System (INIS)

    Shen, A W; Guo, J L; Wang, Z J

    2015-01-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research and Development (R and D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R and D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable. (paper)

  17. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  18. Bio-Manufacturing to market pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Dressen, Tiffaney [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companies and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.

  19. Implementation status and barriers of good manufacturing practice ...

    African Journals Online (AJOL)

    Removal of implementation barriers could be considered, including strengthening personnel competence, improving the quality management system and enhancing the international communication with advanced GMP regulators. Keywords: good manufacturing practice, GMP, Chinese patent medicine, traditional Chinese ...

  20. Forecasting the Success of Implementing Sensors Advanced Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Cheng-Shih Su

    2014-08-01

    Full Text Available This paper is presented fuzzy preference relations approach to forecast the success of implementing sensors advanced manufacturing technology (AMT. In the manufacturing environment, performance measurement is based on different quantitative and qualitative factors. This study proposes an analytic hierarchical prediction model based on fuzzy preference relations to help the organizations become aware of the essential factors affecting the AMT implementation, forecasting the chance of successful implementing sensors AMT, as well as identifying the actions necessary before implementing sensors AMT. Then predicted success/failure values are obtained to enable organizations to decide whether to initiate sensors AMT, inhibit adoption or take remedial actions to increase the possibility of successful sensors AMT initiatives. This proposed approach is demonstrated with a real case study involving six influential factors assessed by nine evaluators solicited from a semiconductor engineering incorporation located in Taiwan.

  1. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.

    Science.gov (United States)

    Zhang, Ping; Weeranoppanant, Nopphon; Thomas, Dale A; Tahara, Kohei; Stelzer, Torsten; Russell, Mary Grace; O'Mahony, Marcus; Myerson, Allan S; Lin, Hongkun; Kelly, Liam P; Jensen, Klavs F; Jamison, Timothy F; Dai, Chunhui; Cui, Yuqing; Briggs, Naomi; Beingessner, Rachel L; Adamo, Andrea

    2018-02-21

    As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Additive manufacturing technology in reconstructive surgery.

    Science.gov (United States)

    Fuller, Scott C; Moore, Michael G

    2016-10-01

    Technological advances have been part and parcel of modern reconstructive surgery, in that practitioners of this discipline are continually looking for innovative ways to perfect their craft and improve patient outcomes. We are currently in a technological climate wherein advances in computers, imaging, and science have coalesced with resulting innovative breakthroughs that are not merely limited to improved outcomes and enhanced patient care, but may provide novel approaches to training the next generation of reconstructive surgeons. New developments in software and modeling platforms, imaging modalities, tissue engineering, additive manufacturing, and customization of implants are poised to revolutionize the field of reconstructive surgery. The interface between technological advances and reconstructive surgery continues to expand. Additive manufacturing techniques continue to evolve in an effort to improve patient outcomes, decrease operative time, and serve as instructional tools for the training of reconstructive surgeons.

  3. A manufacturing database of advanced materials used in spacecraft structures

    Science.gov (United States)

    Bao, Han P.

    1994-12-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  4. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    Science.gov (United States)

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.

  6. Development of STEP-NC Adaptor for Advanced Web Manufacturing System

    Science.gov (United States)

    Ajay Konapala, Mr.; Koona, Ramji, Dr.

    2017-08-01

    Information systems play a key role in the modern era of Information Technology. Rapid developments in IT & global competition calls for many changes in basic CAD/CAM/CAPP/CNC manufacturing chain of operations. ‘STEP-NC’ an enhancement to STEP for operating CNC machines, creating new opportunities for collaborative, concurrent, adaptive works across the manufacturing chain of operations. Schemas and data models defined by ISO14649 in liaison with ISO10303 standards made STEP-NC file rich with feature based, rather than mere point to point information of G/M Code format. But one needs to have a suitable information system to understand and modify these files. Various STEP-NC information systems are reviewed to understand the suitability of STEP-NC for web manufacturing. Present work also deals with the development of an adaptor which imports STEP-NC file, organizes its information, allowing modifications to entity values and finally generates a new STEP-NC file to export. The system is designed and developed to work on web to avail additional benefits through the web and also to be part of a proposed ‘Web based STEP-NC manufacturing platform’ which is under development and explained as future scope.

  7. Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing

    International Nuclear Information System (INIS)

    Bai, John G; Creehan, Kevin D; Kuhn, Howard A

    2007-01-01

    Inkjet printable nanosilver suspensions were prepared by dispersing 30 nm silver particles into a water-based binder system to enhance the sintering quality in rapid manufacturing. During three-dimensional printing (3DP), the nanosilver suspensions were inkjet printed onto repetitively spread microsilver powder for selective joining. Since the nanosilver particles in the suspensions can be sintered at relatively low temperatures to bond the neighbouring microsilver powder, they were used to provide the continuous bonding strength of the manufacturing parts during the heat-up procedure of the sintering operation. Comparative study shows that the silver parts printed using the nanosilver suspension were significantly enhanced in sintering quality than those printed using the binder system, especially when the silver parts had thin or small features with high aspect ratios

  8. Advanced manufacturing technology effectiveness: A review of literature and some issues

    Science.gov (United States)

    Goyal, Sanjeev; Grover, Sandeep

    2012-09-01

    Advanced manufacturing technology (AMT) provides advantages to manufacturing managers in terms of flexibility, quality, reduced delivery times, and global competitiveness. Although a large number of publications had presented the importance of this technology, only a few had delved into related literature review. Considering the importance of this technology and the recent contributions by various authors, the present paper conducts a more comprehensive review. Literature was reviewed in a way that will help researchers, academicians, and practitioners to take a closer look at the implementation, evaluation, and justification of the AMT. The authors reviewed various papers, proposed a different classification scheme, and identified certain gaps that will provide hints for further research in AMT management.

  9. Advances in compact manufacturing for shape and performance controllability of large-scale components-a review

    Science.gov (United States)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Ju, Li

    2017-01-01

    Research on compact manufacturing technology for shape and performance controllability of metallic components can realize the simplification and high-reliability of manufacturing process on the premise of satisfying the requirement of macro/micro-structure. It is not only the key paths in improving performance, saving material and energy, and green manufacturing of components used in major equipments, but also the challenging subjects in frontiers of advanced plastic forming. To provide a novel horizon for the manufacturing in the critical components is significant. Focused on the high-performance large-scale components such as bearing rings, flanges, railway wheels, thick-walled pipes, etc, the conventional processes and their developing situations are summarized. The existing problems including multi-pass heating, wasting material and energy, high cost and high-emission are discussed, and the present study unable to meet the manufacturing in high-quality components is also pointed out. Thus, the new techniques related to casting-rolling compound precise forming of rings, compact manufacturing for duplex-metal composite rings, compact manufacturing for railway wheels, and casting-extruding continuous forming of thick-walled pipes are introduced in detail, respectively. The corresponding research contents, such as casting ring blank, hot ring rolling, near solid-state pressure forming, hot extruding, are elaborated. Some findings in through-thickness microstructure evolution and mechanical properties are also presented. The components produced by the new techniques are mainly characterized by fine and homogeneous grains. Moreover, the possible directions for further development of those techniques are suggested. Finally, the key scientific problems are first proposed. All of these results and conclusions have reference value and guiding significance for the integrated control of shape and performance in advanced compact manufacturing.

  10. Gender differences on the job satisfaction in the phase of implementing advanced manufacturing technology in the Chinese manufacturing firms.

    Science.gov (United States)

    Yu, Na; Shen, Li Ming; Lewark, Siegfried

    2012-01-01

    This research gave an effort to study on gender differences in the job satisfaction for technological innovation at Chinese manufacturing firm. The exploratory study was conducted in four Chinese furniture manufacturing firms, which are all in the phases of introducing advanced manufacturing system. The results of statistical analysis show that general satisfaction of female employees to their jobs is significantly higher than male employees. In addition, supervisory satisfaction of female employees is significantly higher than male employees. The findings of the study reveal that activities are suggested to be carried out to increase the job satisfaction of male employees, especially improve communication and relationship between the managerial and the non-managerial levels in the innovation process. In addition, the higher job satisfaction of female employees could be considered a positive factor for the successful implementation of AMT in the technological innovation, although male employees are still dominated work force in the case study firms.

  11. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  12. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  13. Experiences and Trends of Manufacturing Technology of Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    2012-08-01

    The 'Atoms for Peace' mission initiated in the mid-1950s paved the way for the development and deployment of nuclear fission reactors as a source of heat energy for electricity generation in nuclear power reactors and as a source of neutrons in non-power reactors for research, materials irradiation, and testing and production of radioisotopes. The fuels for nuclear reactors are manufactured from natural uranium (∼99.3% 238 U + ∼0.7% 235 U) and natural thorium (∼100% 232 Th) resources. Currently, most power and research reactors use 235 U, the only fissile isotope found in nature, as fuel. The fertile isotopes 238 U and 232 Th are transmuted in the reactor to human-made 239 Pu and 233 U fissile isotopes, respectively. Likewise, minor actinides (MA) (Np, Am and Cm) and other plutonium isotopes are also formed by a series of neutron capture reactions with 238 U and 235 U. Long term sustainability of nuclear power will depend to a great extent on the efficient, safe and secure utilization of fissile and fertile materials. Light water reactors (LWRs) account for more than 82% of the operating reactors, followed by pressurized heavy water reactors (PHWRs), which constitute ∼10% of reactors. LWRs will continue to dominate the nuclear power market for several decades, as long as economically viable natural uranium resources are available. Currently, the plutonium obtained from spent nuclear fuel is subjected to mono recycling in LWRs as uranium-plutonium mixed oxide (MOX), containing up to 12% PuO 2 , in a very limited way. The reprocessed uranium (RepU) is also re-enriched and recycled in LWRs in a few countries. Unfortunately, the utilization of natural uranium resources in thermal neutron reactors is 2 and MOX fuel technology has matured during the past five decades. These fuels are now being manufactured, used and reprocessed on an industrial scale. Mixed uranium- plutonium monocarbide (MC), mononitride (MN) and U-Pu-Zr alloys are recognized as advanced fuels

  14. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  15. Domestic Wood Products Manufacturing Trends and Factors to Enhance Competitiveness

    Science.gov (United States)

    Urs Buehlmann; Matthew Bumgardner; Albert Schuler; Rich Christianson; Rich Christianson

    2003-01-01

    There is little question that imports have captured a substantial portion of the domestic furniture market. However, there is much speculation and concern as to the future of this and related industries. This study sought to obtain industry perspectives of trends in domestic manufacturing and importing, and to identify factors that can enhance domestic competitiveness...

  16. Importance of Advanced Planning of Manufacturing for Nuclear Industry

    Directory of Open Access Journals (Sweden)

    Shykinov Nick

    2016-06-01

    Full Text Available In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.

  17. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong

    2015-02-02

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×105 counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry.

  18. Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing.

    Science.gov (United States)

    Jin, Xiaoning; Weiss, Brian A; Siegel, David; Lee, Jay

    2016-01-01

    The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy.

  19. Advanced Manufacturing for Thermal and Environmental Control Systems: Achieving National Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2017-02-20

    This project was part of a regional initiative in the five counties of Central New York (CNY) that received funding from the U.S. Department of Energy (DOE) and four other federal agencies through the 2012 Advanced Manufacturing Jobs and Innovation Accelerator Challenge (AMJIAC). The CNY initiative was focused on cultivating the emergent regional cluster in “Advanced Manufacturing for Thermal and Environmental Control (AM-TEC).” As one component of the CNY AM-TEC initiative, the DOE-funded project supported five research & development seed projects that strategically targeted: 1) needs and opportunities of CNY AM-TEC companies, and 2) the goal of DOE’s Advanced Manufacturing Office (AMO) to reduce energy consumption by 50% across product life-cycles over 10 years. The project also sought to fulfill the AMO mission of developing and demonstrating new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. The five seed projects demonstrated technologies and processes that can reduce energy intensity and improve production as well as use less energy throughout their lifecycles. The project was conducted over three years in two 18-month budget periods. During the first budget period, two projects proposed in the original AMJAIC application were successfully completed: Seed Project 1 focused on saving energy in heat transfer processes via development of nano structured surfaces to significantly increase heat flux; Seed Project 2 addressed saving energy in data centers via subzero cooling of the computing processors. Also during the first budget period, a process was developed and executed to select a second round of seed projects via a competitive request for proposals from regional companies and university collaborators. Applicants were encouraged to form industry-academic partnerships to leverage experience and resources of public and private sectors in the CNY region. Proposals were

  20. Electronics manufacturing and assembly in Japan

    Science.gov (United States)

    Kukowski, John A.; Boulton, William R.

    1995-02-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  1. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Roll-to-Roll Advanced Materials Manufacturing DOE Lab Consortium - FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wood, III, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States); Ulsh, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Srinivasan, Venkat [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-12-01

    A DOE laboratory consortium comprised of ORNL, ANL, NREL and LBNL, coordinating with Kodak’s Eastman Business Park (Kodak) and other selected industry partners, was formed to address enhancing battery electrode performance and R2R manufacturing challenges. The objective of the FY 2016 seed project was to develop a materials genome synthesis process amenable to R2R manufacturing and to provide modeling, simulation, processing, and manufacturing techniques that demonstrate the feasibility of process controls and scale-up potential for improved battery electrodes. The research efforts were to predict and measure changes and results in electrode morphology and performance based on process condition changes; to evaluate mixed, active, particle size deposition and drying for novel electrode materials; and to model various process condition changes and the resulting morphology and electrode performance.

  3. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  4. Organizational Considerations for Advanced Manufacturing Technology

    Science.gov (United States)

    DeRuntz, Bruce D.; Turner, Roger M.

    2003-01-01

    In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…

  5. Developing novel 3D antennas using advanced additive manufacturing technology

    Science.gov (United States)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  6. PowerGuard{reg_sign} Advanced Manufacturing; PVMaT Phase 1 Final Technical Report: June 1, 1998 to September 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M. C.; Dinwoodie, T. L.; O' Brian, C.; Botkin, J.; Ansley, J.

    2000-06-14

    During Phase 1 of PowerGuard{reg_sign} Advanced Manufacturing, PowerLight Corporation accomplished the following advancements: (1) Decreased system cost by 15%; (2) Increased PowerGuard tile production capacity from 5 MW/year to 8 MW/yr; (3) Established a manufacturing layout master plan for sequential integration of semi-automated and automated component workstations; (4) Defined semi-automation or automation of selected stages of the existing tile fabrication sequence, including PV module preparation, XPS processing, and coating; (5) Completed the advancement of several design improvements to the grid-tied inverter control board, including controller redesign, integrated data acquisition system (DAS), and communications for audit-worthy verification of PV system performance; (6) Conformed to NEPA, OSHA, and other federal and state regulations applicable to the proposed production process and mitigated potential for waste streams; (7) Initiated Underwriters Laboratories listings and international certifications on PowerGuard improvements; (8) Developed finance packages and integrated warranties; (9) Evaluated commercial demonstrations that incorporated the new design features and manufacturing process.

  7. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Elizabeth [Columbia River Economic Development Council, Vancouver, WA (United States)

    2017-01-06

    This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companies interact and use their machines to reduce energy consumption.

  8. Enhanced biodegradation of polyaromatic hydrocarbons in manufactured gas plant wastes

    International Nuclear Information System (INIS)

    Gauger, W.K.; Srivastava, V.J.; Hayes, T.D.; Linz, D.G.

    1991-01-01

    Scientists at the Institute of Gas Technology (IGT) have focused on enhancing destruction of polyaromatic hydrocarbons (PAHs) present as pollutants in manufactured gas plant (MGP) soils. The factor that bears the most restrictive influence on successful biological PAH degradation is low pollutant transfer from soil into an aqueous environment where biotreatment processes can take place. Physical and chemical enhancements were used in conjunction with biological processes. Physical enhancements overcame the mass transfer problem and made possible the biological destruction of aromatic hydrocarbons. One- to three-ring aromatic hydrocarbons were readily biodegraded in liquid, soil slurry, and - to a lesser degree - composted soil systems. Four- to six-ring PAHs remained persistent but were effectively destroyed when chemical co-treatments were used. Combined biological/chemical/physical processes are currently being tested to achieve the most extensive PAH degradation possible for MGP soils

  9. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  10. Enhanced biodegradation of polyaromatic hydrocarbons in manufactured gas plant wastes

    International Nuclear Information System (INIS)

    Gauger, W.K.; Srivastava, V.J.; Hayes, T.D.; Linz, D.G.

    1990-01-01

    Scientists at the Institute of Gas Technology (IGT) have focused on enhancing destruction of polyaromatic hydrocarbons (PAHs) present as pollutants in manufactured gas plant (MGP) soils. The factor that bears the most restrictive influence on successful biological PAH degradation is low pollutant transfer from soil into an aqueous environment where biotreatment processes can take place. Physical and chemical enhancements were used in conjunction with biological processes. Physical enhancements overcame the mass transfer problem and made possible the biological destruction of aromatic hydrocarbons. One- to three-ring aromatic hydrocarbons were readily biodegraded in liquid, soil slurry, and -- to a lesser degree -- composted soil systems. Four- to six-ring PAHs remained persistent but were effectively destroyed when chemical co-treatments were used. Combined biological/chemical/physical processes are currently being tested to achieve the most extensive PAH degradation possible for MGP soils. 8 refs., 9 figs., 2 tabs

  11. Sustainability Enhancement of a Turbine Vane Manufacturing Cell through Digital Simulation-Based Design

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2016-09-01

    Full Text Available Modern manufacturing systems should satisfy emerging needs related to sustainable development. The design of sustainable manufacturing systems can be valuably supported by simulation, traditionally employed mainly for time and cost reduction. In this paper, a multi-purpose digital simulation approach is proposed to deal with sustainable manufacturing systems design through Discrete Event Simulation (DES and 3D digital human modelling. DES models integrated with data on power consumption of the manufacturing equipment are utilized to simulate different scenarios with the aim to improve productivity as well as energy efficiency, avoiding resource and energy waste. 3D simulation based on digital human modelling is employed to assess human factors issues related to ergonomics and safety of manufacturing systems. The approach is implemented for the sustainability enhancement of a real manufacturing cell of the aerospace industry, automated by robotic deburring. Alternative scenarios are proposed and simulated, obtaining a significant improvement in terms of energy efficiency (−87% for the new deburring cell, and a reduction of energy consumption around −69% for the coordinate measuring machine, with high potential annual energy cost savings and increased energy efficiency. Moreover, the simulation-based ergonomic assessment of human operator postures allows 25% improvement of the workcell ergonomic index.

  12. Advanced Manufacturing Technologies and Strategically Flexible Production. A Review and Outlook

    DEFF Research Database (Denmark)

    Boer, Harry

    2016-01-01

    ) led to only partial results, and were often abandoned or scaled down. At the same time, a number of soft organizational and managerial approaches and improvement programs, mostly derived from Japan, began to spread in response to the dramatic changes in the competitive environment that seemed...... to require new rationales to organize and manage production systems. However, the compatibility and coherence between changing organizational paradigms and CIM approaches were not extensively explored nor understood. This paper aims to investigate the interactions between the implementation and integration...... of Advanced Manufacturing Technologies (AMT) and the adoption of new managerial and organizational principles....

  13. Benefits of Hot Isostatic Pressure/Powdered Metal (HIP/PM) and Additive Manufacturing (AM) To Fabricate Advanced Energy System Components

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Nancy [Energy Industries of Ohio, Cleveland, OH (United States); Sheppard, Roy [Energy Industries of Ohio, Cleveland, OH (United States)

    2016-12-31

    Advanced Energy systems require large, complex components produced from materials capable of withstanding severe operating environments (high temperature, pressure, corrosivity). Such parts can be difficult to source, as conventional material processing technologies must be tailored to ensure a safe and cost effective approach to large-scale manufacture of quality structural advanced alloy components that meet the performance specifications of AE systems. (HIP/PM) has shown advantages over other manufacturing methods when working with these materials. For example, using HIP’ing in lieu of casting means significant savings in raw material costs, which for expensive, high-nickel alloys can be considerable for large-scale production. Use of HIP/PM also eliminates the difficulties resulting from reactivity of these materials in the molten state and facilitates manufacture of the large size requirements of the AE industry, producing a part that is defect and porosity free, thus further reducing or eliminating time and expense of post processing machining and weld repair. New advances in Additive Manufacturing (AM) techniques make it possible to further expand the benefits of HIP/PM in producing AE system components to create an even more robust manufacturing approach. Traditional techniques of welding and forming sheet metal to produce the HIP canisters can be time consuming and costly, with limitations on the complexity of part which can be achieved. A key benefit of AM is the freedom of design that it offers, so use of AM could overcome such challenges, ultimately enabling redesign of complete energy systems. A critical step toward this goal is material characterization of the required advanced alloys, for use in AM. Using Haynes 282, a high nickel alloy of interest to the Fossil Energy community, particularly for Advanced-UltraSuperCritical (AUSC) operating environments, as well as the crosscutting interests of the aerospace, defense and medical markets, this

  14. JIT Manufacturing: A Survey of Implementations in Small and Large U.S. Manufacturers

    OpenAIRE

    Richard E. White; John N. Pearson; Jeffrey R. Wilson

    1999-01-01

    Since the early 1980s, the diffusion of Just-In-Time (JIT) manufacturing from Japanese manufacturers to U.S. manufacturers has progressed at an accelerated rate. At this stage of the diffusion process, JIT implementations are more common and more advanced in large U.S. manufacturers than in small; consequently, U.S. businessmen's understanding of issues associated with JIT implementations in large manufacturers is more developed than that of small manufacturers. When small manufacturers repre...

  15. A note on “A new approach for the selection of advanced manufacturing technologies: Data envelopment analysis with double frontiers”

    Directory of Open Access Journals (Sweden)

    Hossein Azizi

    2015-08-01

    Full Text Available Recently, using the data envelopment analysis (DEA with double frontiers approach, Wang and Chin (2009 proposed a new approach for the selection of advanced manufacturing technologies: DEA with double frontiers and a new measure for the selection of the best advanced manufacturing technologies (AMTs. In this note, we show that their proposed overall performance measure for the selection of the best AMT has an additional computational burden. Moreover, we propose a new measure for developing a complete ranking of AMTs. Numerical examples are examined using the proposed measure to show its simplicity and usefulness in the AMT selection and justification.

  16. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  17. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  18. Advanced Methods for Direct Ink Write Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Compel, W. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    Lawrence Livermore National Laboratory is one of the world’s premier labs for research and development of additive manufacturing processes. Out of these many processes, direct ink write (DIW) is arguably one of the most relevant for the manufacture of architected polymeric materials, components and hardware. However, a bottleneck in this pipeline that has largely been ignored to date is the lack of advanced software implementation with respect to toolpath execution. There remains to be a convenient, automated method to design and produce complex parts that is user-friendly and enabling for the realization of next generation designs and structures. For a material to be suitable as a DIW ink it must possess the appropriate rheological properties for this process. Most importantly, the material must exhibit shear-thinning in order to extrude through a print head and have a rapid recovery of its static shear modulus. This makes it possible for the extrudate to be self-supporting upon exiting the print head. While this and other prerequisites narrow the scope of ‘offthe- shelf’ printable materials directly amenable to DIW, the process still tolerates a wide range of potential feedstock materials. These include metallic alloys, inorganic solvent borne dispersions, polymeric melts, filler stabilized monomer compositions, pre-elastomeric feedstocks and thermoset resins each of which requires custom print conditions tailored to the individual ink. As such, an ink perfectly suited for DIW may be prematurely determined to be undesirable for the process if printed under the wrong conditions. Defining appropriate print conditions such as extrusion rate, layer height, and maximum bridge length is a vital first step in validating an ink’s DIW capability.

  19. Advances in Additive Manufacturing

    Science.gov (United States)

    2016-07-14

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS...Hamilton • Beth Bimber Air Force Research Laboratory, Metals Branch • Eddie Schwalbach • Mike Groeber • Benjamin Leever • James Hardin...conducting more in-field, or point-of-need, manufacturing than ever before. Other areas of concentration include man- machine interface, capabilities

  20. Reconfigurable manufacturing systems: Principles, design, and future trends

    Science.gov (United States)

    Koren, Yoram; Gu, Xi; Guo, Weihong

    2018-06-01

    Reconfigurable manufacturing systems (RMSs), which possess the advantages of both dedicated serial lines and flexible manufacturing systems, were introduced in the mid-1990s to address the challenges initiated by globalization. The principal goal of an RMS is to enhance the responsiveness of manufacturing systems to unforeseen changes in product demand. RMSs are costeffective because they boost productivity, and increase the lifetime of the manufacturing system. Because of the many streams in which a product may be produced on an RMS, maintaining product precision in an RMS is a challenge. But the experience with RMS in the last 20 years indicates that product quality can be definitely maintained by inserting in-line inspection stations. In this paper, we formulate the design and operational principles for RMSs, and provide a state-of-the-art review of the design and operations methodologies of RMSs according to these principles. Finally, we propose future research directions, and deliberate on how recent intelligent manufacturing technologies may advance the design and operations of RMSs.

  1. Advances in solid dosage form manufacturing technology.

    Science.gov (United States)

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.

  2. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  3. The path to the enhanced and advanced LIGO gravitational-wave detectors

    International Nuclear Information System (INIS)

    Smith, J R

    2009-01-01

    We report on the status of the Laser Interferometric Gravitational-Wave Observatory (LIGO) and the plans and progress toward Enhanced and Advanced LIGO. The initial LIGO detectors have finished a two-year long data run during which a full year of triple-coincidence data was collected at design sensitivity. Much of this run was also coincident with the data runs of interferometers in Europe, GEO600 and Virgo. The joint analysis of data from this international network of detectors is ongoing. No gravitational wave signals have been detected in analyses completed to date. Currently two of the LIGO detectors are being upgraded to increase their sensitivity in a program called Enhanced LIGO. The Enhanced LIGO detectors will start another roughly one-year long data run with increased sensitivity in 2009. In parallel, construction of Advanced LIGO, a major upgrade to LIGO, has begun. Installation and commissioning of Advanced LIGO hardware at the LIGO sites will commence at the end of the Enhanced LIGO data run in 2011. When fully commissioned, the Advanced LIGO detectors will be ten times as sensitive as the initial LIGO detectors. Advanced LIGO is expected to make several gravitational-wave detections per year.

  4. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  5. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  6. Integrated and Intelligent Manufacturing: Perspectives and Enablers

    Directory of Open Access Journals (Sweden)

    Yubao Chen

    2017-10-01

    Full Text Available With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP in 2011 and the National Network for Manufacturing Innovation (NNMI in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further “leverage existing resources... to nurture manufacturing innovation and accelerate commercialization” by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10-year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Internet of Things and Services (IoTS, cyber-physical systems (CPSs, and cloud computing are discussed. Challenges are addressed with applications that are based on commercially available platforms such as General Electric (GE’s Predix and PTC’s ThingWorx.

  7. JTEL Winter School for Advanced Technologically Enhanced Learning

    NARCIS (Netherlands)

    Glahn, Christian; Gruber, Marion

    2010-01-01

    Glahn, C., & Gruber, M. (2010). JTEL Winter School for Advanced Technologically Enhanced Learning. In ~mail. Das Magazin des Tiroler Bildungsinstituts, 01/10, März (p. 3-4). Innsbruck: Grillhof, Medienzentrum.

  8. Tribal Colleges and Universities/American Indian Research and Education Initiatives Advanced Manufacturing Technical Assistance Project

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, Stanley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The overall goal of this project is to establish a network of TCUs with essential advanced manufacturing (AM) facilities, associated training and education programs, and private sector and federal agency partnerships to both prepare an American Indian AM workforce and create economic and employment opportunities within Tribal communities through design, manufacturing, and marketing of high quality products. Some examples of high quality products involve next generation grid components such as mechanical energy storage, cabling for distribution of energy, and electrochemical energy storage enclosures. Sandia National Laboratories (Sandia) is tasked to provide technical advising, planning, and academic program development support for the TCU/American Indian Higher Education Consortium (AIHEC) Advanced Manufacturing Project. The TCUs include Bay Mills Community College (BMCC), Cankdeska Cikana Community College (CCCC), Navajo Technical University (NTU), Southwestern Indian Polytechnic Institute (SIPI), and Salish Kooteani College. AIHEC and Sandia, with collaboration from SIPI, will be establishing an 8-week summer institute on the SIPI campus during the summer of 2017. Up to 20 students from TCUs are anticipated to take part in the summer program. The goal of the program is to bring AM science, technology, engineering, and mathematics (STEM) awareness and opportunities for the American Indian students. Prior to the summer institute, Sandia will be providing reviews on curriculum plans at the each of the TCUs to ensure the content is consistent with current AM design and engineering practice. In addition, Sandia will provide technical assistance to each of the TCUs in regards to their current AM activities.

  9. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  10. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration.

    Science.gov (United States)

    Costa, Pedro F; Puga, Ana M; Díaz-Gomez, Luis; Concheiro, Angel; Busch, Dirk H; Alvarez-Lorenzo, Carmen

    2015-12-30

    The adoption of additive manufacturing in tissue engineering and regenerative medicine (TERM) strategies greatly relies on the development of novel 3D printable materials with advanced properties. In this work we have developed a material for bone TERM applications with tunable bioerosion rate and dexamethasone release profile which can be further employed in fused deposition modelling (the most common and accessible 3D printing technology in the market). The developed material consisted of a blend of poly-ϵ-caprolactone (PCL) and poloxamine (Tetronic®) and was processed into a ready-to-use filament form by means of a simplified melt-based methodology, therefore eliminating the utilization of solvents. 3D scaffolds composed of various blend formulations were additively manufactured and analyzed revealing blend ratio-specific degradation rates and dexamethasone release profiles. Furthermore, in vitro culture studies revealed a similar blend ratio-specific trend concerning the osteoinductive activity of the fabricated scaffolds when these were seeded and cultured with human mesenchymal stem cells. The developed material enables to specifically address different regenerative requirements found in various tissue defects. The versatility of such strategy is further increased by the ability of additive manufacturing to accurately fabricate implants matching any given defect geometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Toward New-Generation Intelligent Manufacturing

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    2018-02-01

    Full Text Available Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and new-generation intelligent manufacturing. New-generation intelligent manufacturing represents an in-depth integration of new-generation artificial intelligence (AI technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises’ product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new industrial revolution and will continue to be the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyber-physical systems (HCPSs reveal the technological mechanisms of new-generation intelligent manufacturing and can effectively guide related theoretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technology roadmap for “parallel promotion and integrated development” should be developed in order to drive forward the intelligent transformation of the manufacturing industry in China. Keywords: Advanced manufacturing, New-generation intelligent manufacturing, Human-cyber-physical system, New-generation AI, Basic paradigms, Parallel promotion, Integrated development

  12. Decentralized manufacturing of cell and gene therapies: Overcoming challenges and identifying opportunities.

    Science.gov (United States)

    Harrison, Richard P; Ruck, Steven; Medcalf, Nicholas; Rafiq, Qasim A

    2017-10-01

    Decentralized or "redistributed" manufacturing has the potential to revolutionize the manufacturing approach for cell and gene therapies (CGTs), moving away from the "Fordist" paradigm, delivering health care locally, customized to the end user and, by its very nature, overcoming many of the challenges associated with manufacturing and distribution of high volume goods. In departing from the traditional centralized model of manufacturing, decentralized manufacturing divides production across sites or geographic regions. This paradigm shift imposes significant structural and organisational changes on a business presenting both hidden challenges that must be addressed and opportunities to be embraced. By profoundly adapting business practices, significant advantages can be realized through a democratized value chain, creation of professional-level jobs without geographic restriction to the central hub and a flexibility in response to external pressures and demands. To realize these potential opportunities, however, advances in manufacturing technology and support systems are required, as well as significant changes in the way CGTs are regulated to facilitate multi-site manufacturing. Decentralized manufacturing is likely to be the manufacturing platform of choice for advanced health care therapies-in particular, those with a high degree of personalization. The future success of these promising products will be enhanced by adopting sound business strategies early in development. To realize the benefits that decentralized manufacturing of CGTs has to offer, it is important to examine both the risks and the substantial opportunities present. In this research, we examine both the challenges and the opportunities this shift in business strategy represents in an effort to maximize the success of adoption. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Training for my Life: Lived Experiences of Dislocated Workers in an Advanced Manufacturing Training Program

    OpenAIRE

    Marquita R. Walker

    2012-01-01

    This qualitative paper explores the lived experiences of one group of workers dislocated because of globalized trade policies who completed a hybrid Advanced Manufacturing Training Program (AMTP) by taking advantage of Trade Adjustment Assistance (TAA), a federally-funded program for retraining workers dislocated because of trade policies. The research questions focus on how satisfied these workers are with the services and programs provided by TAA. Focus groups and survey instrument results ...

  14. Recent advances in functional assays of transcriptional enhancers.

    Science.gov (United States)

    Babbitt, Courtney C; Markstein, Michele; Gray, Jesse M

    2015-09-01

    In this special edition of Genomics, we present reviews of the current state of the field in identifying and functionally understanding transcriptional enhancers in cells and developing tissues. Typically several enhancers coordinate the expression of an individual target gene, each controlling that gene's expression in specific cell types at specific times. Until recently, identifying each gene's enhancers had been challenging because enhancers do not occupy prescribed locations relative to their target genes. Recently there have been powerful advances in DNA sequencing and other technologies that make it possible to identify the majority of enhancers in virtually any cell type of interest. The reviews in this edition of Genomics highlight some of these new and powerful approaches. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Advances and highlights of the CNEA qualification program as high density fuel manufacturer for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [Unidad de Actividad Combustibles Nucleares Comision Nacional de Energia Atomica (CNE4), Avda. del Libertador, 8250 C1429BNO Buenos Aires (Argentina)

    2002-07-01

    One of the main objectives of CNEA regarding the fuel for research reactors is the development and qualification of the manufacturing of LEU high-density fuels. The qualification programs for both types of fuels, Silicide fuel and U- x Mo fuel, are similar. They include the following activities: development and set up of the fissile compound manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of mini plates and plates, design and fabrication of fuel assembly prototypes for irradiation, post-irradiation examination and feedback for manufacturing improvements. This paper describes the different activities performed within each program during the last year and the main advances and achievements of the programs within this period. The main achievements may be summarized in the following activities: Continuation of the irradiation of the first silicide fuel element in the R A3. Completion of the manufacturing of the second silicide fuel element, licensing and beginning of its irradiation in the R A3. Development of the HMD Process to manufacture U-Mo powder (pUMA project). Set up of fuel plates manufacturing at industrial level using U-Mo powder. Preliminary studies and the design for the irradiation of mini plates, plates and full scale fuel elements with U-Mo and 7 g U/cm{sup 3}. PIE destructive studies for the P-04 silicide fuel prototype (accurate burnup determination through chemical analysis, metallography and SEM of samples from the irradiated fuel plates). Improvement and development of new characterization techniques for high density fuel plates quality control including US testing and densitometric analysis of X-ray examinations. The results obtained in this period are encouraging and also allow to foresee a wider participation of CNEA in the international effort to qualify U-Mo as a new material for the manufacturing of research reactor fuels. (author)

  16. Advances and highlights of the CNEA qualification program as high density fuel manufacturer for research reactors

    International Nuclear Information System (INIS)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H.

    2002-01-01

    One of the main objectives of CNEA regarding the fuel for research reactors is the development and qualification of the manufacturing of LEU high-density fuels. The qualification programs for both types of fuels, Silicide fuel and U- x Mo fuel, are similar. They include the following activities: development and set up of the fissile compound manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of mini plates and plates, design and fabrication of fuel assembly prototypes for irradiation, post-irradiation examination and feedback for manufacturing improvements. This paper describes the different activities performed within each program during the last year and the main advances and achievements of the programs within this period. The main achievements may be summarized in the following activities: Continuation of the irradiation of the first silicide fuel element in the R A3. Completion of the manufacturing of the second silicide fuel element, licensing and beginning of its irradiation in the R A3. Development of the HMD Process to manufacture U-Mo powder (pUMA project). Set up of fuel plates manufacturing at industrial level using U-Mo powder. Preliminary studies and the design for the irradiation of mini plates, plates and full scale fuel elements with U-Mo and 7 g U/cm 3 . PIE destructive studies for the P-04 silicide fuel prototype (accurate burnup determination through chemical analysis, metallography and SEM of samples from the irradiated fuel plates). Improvement and development of new characterization techniques for high density fuel plates quality control including US testing and densitometric analysis of X-ray examinations. The results obtained in this period are encouraging and also allow to foresee a wider participation of CNEA in the international effort to qualify U-Mo as a new material for the manufacturing of research reactor fuels. (author)

  17. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries

    Science.gov (United States)

    Ferrari, Stefania; Loveridge, Melanie; Beattie, Shane D.; Jahn, Marcus; Dashwood, Richard J.; Bhagat, Rohit

    2015-07-01

    Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1-10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.

  18. Creativity Enhancement in Lithuanian Furniture Manufacturing Business According to International Business Development

    Directory of Open Access Journals (Sweden)

    Rita Zybartaitė

    2014-04-01

    Full Text Available This article analyzes Lithuanian furniture manufacturing business perceptions towards creativity, and creativityenhancement behavior according to its international development. Firstly article focuses on international business development,substantiate need of creativity for international business development, outline creativity influencing factors which operateat individual, team and organizational levels and recommendations how to enhance creativity in methodical way. Secondly,article describes a problem of empirical research, methodology of used methods and instruments, and presents results of surveyresearch.

  19. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Science.gov (United States)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  20. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-01

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  1. Evaluation of Advanced Polymers for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kutchko, Cindy [PPG Industries, Pittsburgh, PA (United States); Fenn, David [PPG Industries, Pittsburgh, PA (United States); Olson, Kurt [PPG Industries, Pittsburgh, PA (United States)

    2017-09-08

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.

  2. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    Science.gov (United States)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  3. MANAGEMENT OPTIMISATION OF MASS CUSTOMISATION MANUFACTURING USING COMPUTATIONAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Louwrens Butler

    2018-05-01

    Full Text Available Computational intelligence paradigms can be used for advanced manufacturing system optimisation. A static simulation model of an advanced manufacturing system was developed in order to simulate a manufacturing system. The purpose of this advanced manufacturing system was to mass-produce a customisable product range at a competitive cost. The aim of this study was to determine whether this new algorithm could produce a better performance than traditional optimisation methods. The algorithm produced a lower cost plan than that for a simulated annealing algorithm, and had a lower impact on the workforce.

  4. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riddle, Matt [Argonne National Laboratory; Graziano, Diane [Argonne National Laboratory

    2017-10-09

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristic is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified

  5. Pattern database applications from design to manufacturing

    Science.gov (United States)

    Zhuang, Linda; Zhu, Annie; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    Pattern-based approaches are becoming more common and popular as the industry moves to advanced technology nodes. At the beginning of a new technology node, a library of process weak point patterns for physical and electrical verification are starting to build up and used to prevent known hotspots from re-occurring on new designs. Then the pattern set is expanded to create test keys for process development in order to verify the manufacturing capability and precheck new tape-out designs for any potential yield detractors. With the database growing, the adoption of pattern-based approaches has expanded from design flows to technology development and then needed for mass-production purposes. This paper will present the complete downstream working flows of a design pattern database(PDB). This pattern-based data analysis flow covers different applications across different functional teams from generating enhancement kits to improving design manufacturability, populating new testing design data based on previous-learning, generating analysis data to improve mass-production efficiency and manufacturing equipment in-line control to check machine status consistency across different fab sites.

  6. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway

  7. Enhanced in-pile instrumentation at the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T.; Chase, B. M.; Palmer, J.; Condie, K. G.; Davis, K. L. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2011-07-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)

  8. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  9. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  10. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Dentz, J. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Barker, G. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Rath, P. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Dadia, D. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States)

    2016-03-01

    Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductless mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.

  11. Advance directives as autonomy enhancers: reality or myth?

    OpenAIRE

    Navarro Michel, Mónica

    2015-01-01

    In the last few decades there has been a wealth of literature and legislation on advance directives. As you all know, it is an instrument by which a person can express their wishes as regards what treatment they should be given or, more to the point, not to be given, when he is in a situation when he can not do so himself. Regulations in the western world seem to promote advance directives as a way to enhance patient¿s autonomy in the context of human rights, and the media has presen...

  12. Performance Enhancements for Advanced Database Management Systems

    OpenAIRE

    Helmer, Sven

    2000-01-01

    New applications have emerged, demanding database management systems with enhanced functionality. However, high performance is a necessary precondition for the acceptance of such systems by end users. In this context we developed, implemented, and tested algorithms and index structures for improving the performance of advanced database management systems. We focused on index structures and join algorithms for set-valued attributes.

  13. Introduction to semiconductor manufacturing technology

    CERN Document Server

    2012-01-01

    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  14. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Microsoft(trademark) Access/Excel based software. We will be processing this well data and identifying potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the final technical report is underway

  15. Manufacturing and material properties of ultralarge size forgings for advanced BWRPV

    International Nuclear Information System (INIS)

    Suzuki, Komei; Sato, Ikuo; Tsukada, Hisashi

    1994-01-01

    Ultralarge size forgings for the advanced boiling water reactor (ABWR) pressure vessel as represented by the bottom petal made from a 600ton ingot have been developed. The bottom petal is a larger wall thickness ring with 10 integrated nozzles inside and outside the ring. The outer diameter is 7.8m, the height is 1.8m and the wall thickness if 1.1m in the as-forged condition. A very high purity level of P≤qslant0.003% and S≤qslant0.003% can be obtained by the application of double-refining processes to all the molten steel. The forging shows a homogeneous chemical distribution, sound internal qualities and adequate impact properties.This paper summarizes the manufacturing technique and material properties of large size forgings such as the bottom petal, the shell with integrated skirt and the bottom dome. ((orig.))

  16. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Williams, T.

    1997-01-01

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  17. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...

  18. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  19. Westinghouse employs advanced robotics in a state-of-the-art LWR line

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    To increase productivity while maintaining quality, Westinghouse's new Manufacturing Automation Process for oxide fuel features Integrated Dry Route conversion technology, a fully-integrated management information system, advanced robotics and enhanced materials handling practices. The new line is expected to begin operating in 1985.

  20. Assimilation Patterns in the Use of Advanced Manufacturing Technologies in SMEs: Exploring their Effects on Product Innovation Performance

    Directory of Open Access Journals (Sweden)

    Sylvestre Uwizeyemungu

    2015-10-01

    Full Text Available Manufacturing small and medium-sized enterprises (SMEs are more and more adopting advanced manufacturing technologies (AMT aimed at fostering product innovation process, improving product quality, streamlining the production process, and gaining productivity. In this study, we analyze the relationship between AMT proficiency levels in manufacturing SMEs and product innovation performance. Using data from 616 manufacturing SMEs, and considering a wide range of various AMT (20 different types of AMT grouped into 5 categories, we derived three AMT assimilation patterns through a cluster analysis procedure combining hierarchical and non-hierarchical clustering algorithms. The analysis of the relationship between AMT assimilation patterns and product innovation performance shows a rather unexpected picture: in spite of the existence of clearly distinct patterns of AMT assimilation, we find no significant relationship between any pattern and product innovation performance. Instead, we find the organizational and environmental context of SMEs to be more determinant for product innovation performance than any of the AMT assimilation patterns. From a practical point of view, this study indicates that manufacturing SMEs managers interested in fostering their innovation capabilities through AMT assimilation need to be aware of the contingency effects of their organizational size, age, and sector of activity.

  1. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  2. Advanced motion control for next-generation precision mechatronics: Challenges for control, identification, and learning

    NARCIS (Netherlands)

    Oomen, Tom

    2017-01-01

    Manufacturing equipment and scientific instruments, including wafer scanners, printers, microscopes, and medical imaging scanners, require accurate and fast motions. Increasing requirements necessitate enhanced control performance. The aim of this paper is to identify several challenges for advanced

  3. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  4. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States

  5. Prosperity Game: Advanced Manufacturing Day, May 17, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.

    1994-12-01

    Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents a 90-minute Prosperity Game conducted as part of Advanced Manufacturing Day on May 17, 1994. This was the fourth game conducted under the direction of the Center for National Industrial Alliances at Sandia. Although previous games lasted from one to two days, this abbreviated game produced interesting and important results. Most of the strategies proposed in previous games were reiterated here. These included policy changes in international trade, tax laws, the legal system, and the educational system. Government support of new technologies was encouraged as well as government-industry partnerships. The importance of language in international trade was an original contribution of this game. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, and the development, delivery and commercialization of new technologies.

  6. Composite fuselage crown panel manufacturing technology

    Science.gov (United States)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  7. Westinghouse employs advanced robotics in a state-of-the-art LWR line

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    To increase productivity while maintaining quality, Westinghouse's new Manufacturing Automation Process for oxide fuel features Integrated Dry Route conversion technology, a fully-integrated management information system, advanced robotics and enhanced materials handling practices. The new line is expected to begin operating in 1985. (author)

  8. Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function.

    Science.gov (United States)

    Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M

    2017-12-19

    The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.

  9. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar [Lambda Technologies, Inc., Morrisville, NC (United States); Zhang, Pu [Lambda Technologies, Inc., Morrisville, NC (United States)

    2016-11-30

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much faster than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of

  10. Advanced manufacturing technologies for improved competitiveness of the South African manufacturing industry

    CSIR Research Space (South Africa)

    Tlale, NS

    2008-11-01

    Full Text Available In this paper the manufacturing environment with regards to technology and market is discussed. Both the South African and global view are given, together with technology management strategies. Value added products are described and determined...

  11. Problems and future outlook in the nuclear equipment manufacturing industry

    International Nuclear Information System (INIS)

    Suenaga, Soichiro

    1984-01-01

    The energy policy in Japan is based on a balance between the energy security and the energy cost for the purpose of realizing optimal supply/demand structure. In this field, nuclear equipment manufacturers should cooperate in the settlement of LWR power generation through plant safety and reliability and through high economical efficiency, all involving the advancement of technology. As a new concept being developed, there is an APWR (advanced PWR) which has the electric output of 1,350 MWe. The export of nuclear power plants, though there are various problems, should be enhanced in the high-technology export area. The following matters are described: the settlement of and the heightening of technology in nuclear power generation, the development of the advanced PWR, and the measures for the export of nuclear power plants and components. (Mori, K.)

  12. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    Science.gov (United States)

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  13. Enabling Manufacturing Competitiveness and Economic Sustainability : Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production

    CERN Document Server

    2012-01-01

    The changing manufacturing environment requires more responsive and adaptable manufacturing systems. The theme of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production (CARV2011) is “Enabling Manufacturing Competitiveness and Economic Sustainability”. Leading edge research and best implementation practices and experiences, which address these important issues and challenges, are presented. The proceedings include advances in manufacturing systems design, planning, evaluation, control and evolving paradigms such as mass customization, personalization, changeability, re-configurability and flexibility. New and important concepts such as the dynamic product families and platforms, co-evolution of products and systems, and methods for enhancing manufacturing systems’ economic sustainability and prolonging their life to produce more than one product generation are treated. Enablers of change in manufacturing systems, production volume and capability scalability and man...

  14. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  15. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  16. Additive Manufacturing of Composites and Complex Materials

    Science.gov (United States)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  17. Fabrication of Circuit QED Quantum Processors, Part 2: Advanced Semiconductor Manufacturing Perspectives

    Science.gov (United States)

    Michalak, D. J.; Bruno, A.; Caudillo, R.; Elsherbini, A. A.; Falcon, J. A.; Nam, Y. S.; Poletto, S.; Roberts, J.; Thomas, N. K.; Yoscovits, Z. R.; Dicarlo, L.; Clarke, J. S.

    Experimental quantum computing is rapidly approaching the integration of sufficient numbers of quantum bits for interesting applications, but many challenges still remain. These challenges include: realization of an extensible design for large array scale up, sufficient material process control, and discovery of integration schemes compatible with industrial 300 mm fabrication. We present recent developments in extensible circuits with vertical delivery. Toward the goal of developing a high-volume manufacturing process, we will present recent results on a new Josephson junction process that is compatible with current tooling. We will then present the improvements in NbTiN material uniformity that typical 300 mm fabrication tooling can provide. While initial results on few-qubit systems are encouraging, advanced processing control is expected to deliver the improvements in qubit uniformity, coherence time, and control required for larger systems. Research funded by Intel Corporation.

  18. A Systematic Cycle Time Reduction Procedure for Enhancing the Competitiveness and Sustainability of a Semiconductor Manufacturer

    Directory of Open Access Journals (Sweden)

    Toly Chen

    2013-11-01

    Full Text Available Cycle time reduction plays an important role in improving the competitiveness and sustainability of a semiconductor manufacturer. However, in the past, cycle time reduction was usually unplanned owing to the lack of a systematic and quantitative procedure. To tackle this problem, a systematic procedure was established in this study for planning cycle time reduction actions to enhance the competitiveness and sustainability of a semiconductor manufacturer. First, some controllable factors that are influential to the job cycle time are identified. Subsequently, the relationship between the controllable factors and the job cycle time is fitted with a back propagation network. Based on this relationship, actions to shorten the job cycle time can be planned. The feasibility and effectiveness of an action have to be assessed before it can be taken in practice. An example containing the real data of hundreds of jobs has been used to illustrate the applicability of the proposed methodology. In addition, the financial benefits of the cycle time reduction action were analyzed, which provided the evidence that the proposed methodology enabled the sustainable development of the semiconductor manufacturer, since capital adequacy is very important in the semiconductor manufacturing industry.

  19. Just-in-time Design and Additive Manufacture of Patient-specific Medical Implants

    Science.gov (United States)

    Shidid, Darpan; Leary, Martin; Choong, Peter; Brandt, Milan

    Recent advances in medical imaging and manufacturing science have enabled the design and production of complex, patient-specific orthopaedic implants. Additive Manufacture (AM) generates three-dimensional structures layer by layer, and is not subject to the constraints associated with traditional manufacturing methods. AM provides significant opportunities for the design of novel geometries and complex lattice structures with enhanced functional performance. However, the design and manufacture of patient-specific AM implant structures requires unique expertise in handling various optimization platforms. Furthermore, the design process for complex structures is computationally intensive. The primary aim of this research is to enable the just-in-time customisation of AM prosthesis; whereby AM implant design and manufacture be completed within the time constraints of a single surgical procedure, while minimising prosthesis mass and optimising the lattice structure to match the stiffness of the surrounding bone tissue. In this research, a design approach using raw CT scan data is applied to the AM manufacture of femoral prosthesis. Using the proposed just-in-time concept, the mass of the prosthesis was rapidly designed and manufactured while satisfying the associated structural requirements. Compressive testing of lattice structures manufactured using proposed method shows that the load carrying capacity of the resected composite bone can be recovered by up to 85% and the compressive stiffness of the AM prosthesis is statistically indistinguishable from the stiffness of the initial bone.

  20. Application of advanced diffraction based optical metrology overlay capabilities for high-volume manufacturing

    Science.gov (United States)

    Chen, Kai-Hsiung; Huang, Guo-Tsai; Hsieh, Hung-Chih; Ni, Wei-Feng; Chuang, S. M.; Chuang, T. K.; Ke, Chih-Ming; Huang, Jacky; Rao, Shiuan-An; Cumurcu Gysen, Aysegul; d'Alfonso, Maxime; Yueh, Jenny; Izikson, Pavel; Soco, Aileen; Wu, Jon; Nooitgedagt, Tjitte; Ottens, Jeroen; Kim, Yong Ho; Ebert, Martin

    2017-03-01

    On-product overlay requirements are becoming more challenging with every next technology node due to the continued decrease of the device dimensions and process tolerances. Therefore, current and future technology nodes require demanding metrology capabilities such as target designs that are robust towards process variations and high overlay measurement density (e.g. for higher order process corrections) to enable advanced process control solutions. The impact of advanced control solutions based on YieldStar overlay data is being presented in this paper. Multi patterning techniques are applied for critical layers and leading to additional overlay measurement demands. The use of 1D process steps results in the need of overlay measurements relative to more than one layer. Dealing with the increased number of overlay measurements while keeping the high measurement density and metrology accuracy at the same time presents a challenge for high volume manufacturing (HVM). These challenges are addressed by the capability to measure multi-layer targets with the recently introduced YieldStar metrology tool, YS350. On-product overlay results of such multi-layers and standard targets are presented including measurement stability performance.

  1. Emerging Global Trends in Advanced Manufacturing

    Science.gov (United States)

    2012-03-01

    facility. Such distributed manufacturing could be made accessible to large masses even in remote areas (Ehmann 2011). For example, Zara is a Spanish...consumers. It has tightened its supply-chain management so that the consumer “pulls” the design. Zara uses state-of-the-art IT and distribution...systems to collect data daily on trends so they can quickly turn out new designs. Zara keeps costs down by using existing materials in stock and through

  2. Advanced chemical quality control techniques for use in the manufacture of (U-Pu) MOX fuels

    International Nuclear Information System (INIS)

    Panakkal, J.P.; Prakash, Amrit

    2010-01-01

    Analytical chemistry plays a very important role for nuclear fuel cycle activities be it fuel fabrication, waste management or reprocessing. Nuclear fuels are selected based on the type of reactor. The nuclear fuel has to conform to various stringent chemical specifications like B, rare earths, H, O/M heavy metal content etc. Selection of technique is very important to determine the true specification. This is important particularly when the analyses has to be performed inside leak tight enclosure. The present paper describes the details of the advanced techniques being developed and used in the manufacture of (U,Pu) MOX fuels. (author)

  3. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  4. Modernization of the Radioisotopes Production Laboratory of the La Reina Nuclear Center in Chile: Incorporating advanced concepts of safety and good manufacturing practices

    International Nuclear Information System (INIS)

    Lagos Espinoza, Silvia

    2014-01-01

    A radioisotopes and radiopharmaceuticals production laboratory was established in Chile in the 1960s for research activities. From 1967 until January 2012, it was dedicated to the manufacturing of radioisotopes and radiopharmaceuticals for medical diagnosis and treatment purposes. In 2012, modernization of the facility’s design and technology began as part of the IAEA technical cooperation project, Modernizing the Radioisotopes Production Laboratory of La Reina Nuclear Centre by Incorporating Advanced Concepts of Safety and Good Manufacturing Practices, (CHI4022)

  5. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J [ORNL

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  6. Lean manufacturing: A better way for enhancement in productivity

    Science.gov (United States)

    Kumar Ahir, Pankaj; Kumar Yadav, Lalit; Singh Chandrawat, Saurabh

    2012-03-01

    Productivity is the impact of peoples working together. Machines are merely an extended way of collective imagination and energy. Lean Manufacturing is the most used method for continues improvement of business. Organization management philosophy focusing on the reduction of wastage to improve overall customer value. "Lean" operating principles began in manufacturing environments and are known by a variety of synonyms; Lean Manufacturing, Lean Production, Toyota Production System, etc. It is commonly believed that Lean started in Japan "The notable activities in keeping the price of Ford products low is the steady restriction of the production cycle. The longer an article is in the process of manufacture and the more it is moved about, the greater is its ultimate cost." "A systematic approach to identifying and eliminating waste through continuous improvement, flowing the product at the pull of the customer in pursuit of perfection."

  7. Laser nano-manufacturing: state of the art and challenges

    NARCIS (Netherlands)

    Li, L.; Hong, M.; Schmidt, M.; Zhong, M.; Mashe, A.; Huis in 't veld, A.J.; Kovalenko, V.

    2011-01-01

    This paper provides an overview of advances in laser based nano-manufacturing technologies including surface nano-structure manufacturing, production of nano materials (nanoparticles, nanotubes and nanowires) and 3D nano-structures manufacture through multiple layer additive techniques and

  8. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    Science.gov (United States)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  9. Bioprinting: an assessment based on manufacturing readiness levels.

    Science.gov (United States)

    Wu, Changsheng; Wang, Ben; Zhang, Chuck; Wysk, Richard A; Chen, Yi-Wen

    2017-05-01

    Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions. Technology Readiness Level (TRL) is used to evaluate the maturity of a technology. This paper reviews recent advances in bioprinting following the MRL scheme and addresses corresponding MRL levels of engineering challenges and gaps associated with the translation of bioprinting from lab-bench experiments to ultimate full-scale manufacturing of tissues and organs. According to our step-by-step TRL and MRL assessment, after years of rigorous investigation by the biotechnology community, bioprinting is on the cusp of entering the translational phase where laboratory research practices can be scaled up into manufacturing products specifically designed for individual patients.

  10. Comparison of Oral Contrast-Enhanced Transabdominal Ultrasound Imaging With Transverse Contrast-Enhanced Computed Tomography in Preoperative Tumor Staging of Advanced Gastric Carcinoma.

    Science.gov (United States)

    He, Xuemei; Sun, Jing; Huang, Xiaoling; Zeng, Chun; Ge, Yinggang; Zhang, Jun; Wu, Jingxian

    2017-12-01

    This study assessed the diagnostic performance of transabdominal oral contrast-enhanced ultrasound (US) imaging for preoperative tumor staging of advanced gastric carcinoma by comparing it with transverse contrast-enhanced computed tomography (CT). This retrospective study included 42 patients with advanced gastric cancer who underwent laparoscopy, radical surgery, or palliative surgery because of serious complications and had a body mass index of less than 25 kg/m 2 . A cereal-based oral contrast agent was used for transabdominal oral contrast-enhanced US. Retrospective analyses were conducted using preoperative tumor staging data acquired by either transabdominal oral contrast-enhanced US or transverse contrast-enhanced CT. Both contrast-enhanced US and contrast-enhanced CT examinations were reviewed by 2 experienced radiologists independently for preoperative tumor staging according to the seventh edition of the TNM classification. The accuracy, sensitivity, and specificity were calculated by comparing the results of contrast-enhanced US and contrast-enhanced CT with pathologic findings. The overall accuracies of the imaging modalities were compared by the McNemar test. No significant difference was noted in the overall accuracy of transabdominal oral contrast-enhanced US (86% [36 of 42]) and transverse contrast-enhanced CT (83% [35 of 42] P > .999). For stage T2 to T4 gastric cancer, the accuracies of transabdominal oral contrast-enhanced US were 88%, 86%, and 98%, respectively, and those of transverse contrast-enhanced CT were 93%, 83%, and 90%. The overall accuracy of transabdominal oral contrast-enhanced US was comparable with that of transverse contrast-enhanced CT for preoperative tumor staging of advanced gastric cancer. © 2017 by the American Institute of Ultrasound in Medicine.

  11. Center for Advanced Materials Manufacturing | College of Engineering &

    Science.gov (United States)

    generation, transmission and purification; biomedical applications; green manufacturing techniques, and finally materials used for national defense by the Navy, Air Force, and Army. Specific areas of research

  12. Industry 4.0 implies lean manufacturing: research activities in industry 4.0 function as enablers for lean manufacturing

    OpenAIRE

    Sanders, Adam; Elangeswaran, Chola; Wulfsberg, Jens

    2016-01-01

    Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industr...

  13. Low-cost solar module manufacturing

    International Nuclear Information System (INIS)

    Little, Roger G.; Nowlan, Michael J.; Matthei, Keith W.; Darkazalli, Ghazi

    1997-01-01

    As the market for terrestrial photovoltaic modules expands beyond the 80 MW per year level, module manufacturers are adopting a number of cost-reduction strategies, including the use of higher throughput equipment, increased process automation, and the fabrication of larger area cells and modules. This paper reviews recent activities at Spire Corporation in the development of advanced module manufacturing and testing equipment

  14. USCAR LEP ESST Advanced Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  15. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO 2 , MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  16. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  17. Exploring manufacturing competencies of a two wheeler manufacturing unit

    Science.gov (United States)

    Deep Singh, Chandan; Singh Khamba, Jaimal; Singh, Rajdeep; Singh, Navdeep

    2014-07-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry.

  18. Exploring manufacturing competencies of a two wheeler manufacturing unit

    International Nuclear Information System (INIS)

    Singh, Chandan Deep; Khamba, Jaimal Singh; Singh, Rajdeep; Singh, Navdeep

    2014-01-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry

  19. Manufacturing Advanced Channel Wall Rocket Liners, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  20. Additive Manufacturing of Biomaterials, Tissues, and Organs

    NARCIS (Netherlands)

    Zadpoor, Amir A; Malda, Jos|info:eu-repo/dai/nl/412461099

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further

  1. Nano-Magnets and Additive Manufacturing for Electric Motors

    Science.gov (United States)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  2. Rapid Response Manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  3. NASA Game Changing Development Program Manufacturing Innovation Project

    Science.gov (United States)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  4. Development of steam generator manufacturing technology

    International Nuclear Information System (INIS)

    Grant, J.A.

    1979-01-01

    In 1968 Babcock and Wilcox (Operations) Ltd., received an order from the CEGB to design, manufacture, install and commission 16 Steam Generators for 2 x 660 Mw (e) Advanced Gas Cooled Reactor Power Station at Hartlepool. This order was followed in 1970 by a similar order for the Heysham Power Station. The design and manufacture of the Steam Generators represented a major advance in technology and the paper discusses the methods by which a manufacturing facility was developed, by the Production Division of Babcock, to produce components to a quality, complexity and accuracy unique in the U.K. commercial boilermaking industry. The discussion includes a brief design background, a description of the Steam Generators and a view of the Production Division background. This is followed by a description of the organisation of the technological development and a consideration of the results. (author)

  5. Additive Manufacturing of Biomaterials, Tissues, and Organs

    NARCIS (Netherlands)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further

  6. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark [Quantum Fuel Systems Technologies Worldwide, Inc., Irvine, CA (United States); Lam, Patrick [Boeing Research and Technology (BR& T), Seattle, WA (United States)

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  7. Evolution of the Pediatric Advanced Life Support course: enhanced learning with a new debriefing tool and Web-based module for Pediatric Advanced Life Support instructors.

    Science.gov (United States)

    Cheng, Adam; Rodgers, David L; van der Jagt, Élise; Eppich, Walter; O'Donnell, John

    2012-09-01

    To describe the history of the Pediatric Advanced Life Support course and outline the new developments in instructor training that will impact the way debriefing is conducted during Pediatric Advanced Life Support courses. The Pediatric Advanced Life Support course, first released by the American Heart Association in 1988, has seen substantial growth and change over the past few decades. Over that time, Pediatric Advanced Life Support has become the standard for resuscitation training for pediatric healthcare providers in North America. The incorporation of high-fidelity simulation-based learning into the most recent version of Pediatric Advanced Life Support has helped to enhance the realism of scenarios and cases, but has also placed more emphasis on the importance of post scenario debriefing. We developed two new resources: an online debriefing module designed to introduce a new model of debriefing and a debriefing tool for real-time use during Pediatric Advanced Life Support courses, to enhance and standardize the quality of debriefing by Pediatric Advanced Life Support instructors. In this article, we review the history of Pediatric Advanced Life Support and Pediatric Advanced Life Support instructor training and discuss the development and implementation of the new debriefing module and debriefing tool for Pediatric Advanced Life Support instructors. The incorporation of the debriefing module and debriefing tool into the 2011 Pediatric Advanced Life Support instructor materials will help both new and existing Pediatric Advanced Life Support instructors develop and enhance their debriefing skills with the intention of improving the acquisition of knowledge and skills for Pediatric Advanced Life Support students.

  8. Challenges in Additive Manufacturing of Alumina

    OpenAIRE

    Gonzalez, Hugo

    2016-01-01

    Additive manufacturing is seen by many as the holy grail of manufacturing, the ability to produce parts nearly autonomously. Adding material rather than removing it would eliminate the need for expensive resources and machining. The recent expiration of key 3D printing patents has led to many advances in the field and has dramatically lowered the prices of 3D printers, making them accessible to the average individual. The one area where additive manufacturing is still in its infancy is in cer...

  9. Automation and Integration in Semiconductor Manufacturing

    OpenAIRE

    Liao, Da-Yin

    2010-01-01

    Semiconductor automation originates from the prevention and avoidance of frauds in daily fab operations. As semiconductor technology and business continuously advance and grow, manufacturing systems must aggressively evolve to meet the changing technical and business requirements in this industry. Semiconductor manufacturing has been suffering pains from islands of automation. The problems associated with these systems are limited

  10. Computer-Aided Manufacturing of 3D Workpieces

    OpenAIRE

    Cornelia Victoria Anghel Drugarin; Mihaela Dorica Stroia

    2017-01-01

    Computer-Aided Manufacturing (CAM) assumes to use dedicated software for controlling machine tools and similar devices in the process of workpieces manufacturing. CAM is, in fact, an application technology that uses computer software and machinery to simplify and automate manufacturing processes. CAM is the inheritor of computer-aided engineering (CAE) and is often used conjunctively with computer-aided design (CAD). Advanced CAM solutions are forthcoming and have a large ...

  11. Robotics in space-age manufacturing

    Science.gov (United States)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  12. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    Science.gov (United States)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  13. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  14. Challenges in teaching modern manufacturing technologies

    Science.gov (United States)

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-07-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.

  15. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry

    KAUST Repository

    Zheng, Tianlong; Wang, Qunhui; Zhang, Tao; Shi, Zhining; Tian, Yanli; Shi, Shanshan; Smale, Nicholas; Wang, Juan

    2015-01-01

    zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic

  16. Rapid manufacture of monolithic micro-actuated forceps inspired by echinoderm pedicellariae

    International Nuclear Information System (INIS)

    Leigh, S J; Purssell, C P; Covington, J A; Billson, D R; Hutchins, D A; Bowen, J

    2012-01-01

    The concept of biomimetics and bioinspiration has been used to enhance the function of materials and devices in fields ranging from healthcare to renewable energy. By developing advanced design and manufacturing processes, researchers are rapidly accelerating their ability to mimic natural systems. In this paper we show how micro-actuated forceps inspired by echinoderm pedicellarie have been produced using the rapid manufacturing technology of micro-stereolithography. The manufactured monolithic devices are composed of sets of jaws on the surface of thin polymer resin membranes, which serve as musculature for the jaws. The membranes are suspended above a pneumatic chamber with the jaws opened and closed through pneumatic pressure changes exerted by a simple syringe. The forceps can be used for tasks such as grasping of microparticles. Furthermore, when an object is placed in the centre of the membrane, the membrane flexes and the jaws of the device close and grasp the object in a responsive manner. When uncured liquid photopolymer is used to actuate the devices hydraulically instead of pneumatically, the devices exhibit self-healing behaviour, sealing the damaged regions and maintaining hydraulic integrity. The manufactured devices present exciting possibilities in fields such as micromanipulation and micro-robotics for healthcare. (communication)

  17. Contemporary design and manufacturing technology

    CERN Document Server

    Wang, Taiyong; Zuo, Dunwen

    2013-01-01

    The special topic volume communicates the latest progress and research results of new theory, new technology, method, equipment and so on in Engineering Technology, and to grasp the updated technological and research trends in internationally. The major topics covered by the special volumes include Advanced Materials and Manufacturing Technologies, Control, Automation and Detection Systems, Advanced Design Technology, Optimization and Modeling. In 80 invited and peer-reviewed papers, mechanical and other engineers describe their recent and current research and results in advanced materials and

  18. Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials

    Science.gov (United States)

    2016-04-18

    SECURITY CLASSIFICATION OF: The grant focused on the purchase of a Renishaw InVia Raman microscope to support and enhance the research in...laser. The system includes an accessory for polarization (for 785 nm) and an optical cable that allows external Raman measurements. The manufacturer...UU 18-04-2016 1-Feb-2015 31-Jan-2016 Final Report: Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials The views

  19. Impacts of Advanced Manufacturing Technology on Parametric Estimating

    Science.gov (United States)

    1989-12-01

    been build ( Blois , p. 65). As firms move up the levels of automation, there is a large capital investment to acquire robots, computer numerically...Affordable Acquisition Approach Study, Executive Summary, Air Force Systems Command, Andrews AFB, Maryland, February 9, 1983. Blois , K.J., "Manufacturing

  20. Manufacturing of ultra high vacuum compatible accelerator and laser components

    International Nuclear Information System (INIS)

    Mundra, G.; Sharma, S.D.; Bhatnagar, V.

    2015-01-01

    For carrying out advanced basic research, Raja Ramanna Centre for Advanced Technology, (RRCAT) had set up 450 MeV and 2.5 GeV Synchrotron Radiation Sources. Many beamlines are being utilized by researchers from various universities and institutions of the country. Centre has also developed various lasers that find application in various front line areas like medicine, industry and research. To cater the need of manufacturing for these programs, an advanced and versatile manufacturing development center was established, called Accelerator Components Design and Fabrication Section (ACDFS),

  1. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    Science.gov (United States)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  2. Using microwave Doppler radar in automated manufacturing applications

    Science.gov (United States)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  3. Neural manufacturing: a novel concept for processing modeling, monitoring, and control

    Science.gov (United States)

    Fu, Chi Y.; Petrich, Loren; Law, Benjamin

    1995-09-01

    Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.

  4. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  5. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-07-25

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  6. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2017-07-01

    Full Text Available Recent advances in additive manufacturing (AM techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  7. Design, manufacture and installation of measuring and control equipments for the advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Hirota, Shigeo; Kawabata, Yoshinori

    1979-01-01

    The advanced thermal prototype reactor ''Fugen'' attained the criticality on March 20, 1978, and 100% output operation on November 13, 1978. On March 20, 1979, it passed the final inspection, and since then, it has continued the smooth operation up to now. The measuring and control equipments are provided for grasping the operational conditions of the plant and operating it safely and efficiently. At the time of designing, manufacturing and installing the measuring and control equipments for Fugen, it was required to clarify the requirements of the plant design, to secure the sufficient functions, and to improve the operational process, maintainability and the reliability and accuracy of the equipments. Many design guidelines and criteria were decided in order to coordinate the conditions among five manufacturers and give the unified state as one plant. The outline of the instrumentations for neutrons, radiation monitoring and process data, the control systems for reactivity, reactor output, pressure and water supply, the safety protection system, and the process computer are described. Finally, the installations and tests of the measuring and control equipments are explained. The aseismatic capability of the equipments was confirmed. (Kako, I.)

  8. Advanced single-wafer sequential multiprocessing techniques for semiconductor device fabrication

    International Nuclear Information System (INIS)

    Moslehi, M.M.; Davis, C.

    1989-01-01

    Single-wafer integrated in-situ multiprocessing (SWIM) is recognized as the future trend for advanced microelectronics production in flexible fast turn- around computer-integrated semiconductor manufacturing environments. The SWIM equipment technology and processing methodology offer enhanced equipment utilization, improved process reproducibility and yield, and reduced chip manufacturing cost. They also provide significant capabilities for fabrication of new and improved device structures. This paper describes the SWIM techniques and presents a novel single-wafer advanced vacuum multiprocessing technology developed based on the use of multiple process energy/activation sources (lamp heating and remote microwave plasma) for multilayer epitaxial and polycrystalline semiconductor as well as dielectric film processing. Based on this technology, multilayer in-situ-doped homoepitaxial silicon and heteroepitaxial strained layer Si/Ge x Si 1 - x /Si structures have been grown and characterized. The process control and the ultimate interfacial abruptness of the layer-to-layer transition widths in the device structures prepared by this technology will challenge the MBE techniques in multilayer epitaxial growth applications

  9. Manufacturing Capacity Utilization and Industrial Development in ...

    African Journals Online (AJOL)

    FIRST LADY

    utilization in the late 1970s was as high as 78.70 percent and nosedived to as low as 43.80 percent in the 1980s. Between ... through a regime of high inflation rate which makes domestic manufacturers and domestic market ... However, inflation and loans and advances to manufacturing were found to have negative effect.

  10. Innovation Training within the Australian Advanced Manufacturing Industry

    Science.gov (United States)

    Donovan, Jerome Denis; Maritz, Alex; McLellan, Andrew

    2013-01-01

    Innovation has emerged as a core driver for the future profitability and success of the manufacturing sector, and increasingly both governments and the private sector are examining ways to support the development of innovation capabilities within organisations. In this research, we have evaluated a government-funded innovation training course…

  11. Advanced Manufacturing Technology Implementation Process in SME: Critical Success Factors

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2010-01-01

    Full Text Available The aim of this paper is to present critical factors that constitute a successful implementation of the Advanced Manufacturing Technologies (AMT in Small Medium Enterprise (SME. Many large companies have applied AMT and the applications have shown significant results in this global market era. Conveniently, these phenomenons are also engaged to Small Medium Enterprises (SME that of high demands on performing high quality product, fast delivery, reliable and more flexible. The implementation of AMT follow several processes namely pre installation, installation, improvement and mature. In order to guarantee the succesfull of running these processes, one should consider the Critical Success Factors (CSF. We conducted a survey to 125 SMEs that have implemented AMT, and found that the CSF for each process are moderately different. Good leadership is the main critical success factor for preparing and installation of the AMT. Once the AMT started or installed and arrived at growth stage, the financial availability factor turns into a critical success factor in the AMT implementation. In, mature stage, the support and commitment of top management becomes an important factor for gaining successful implementation. By means of factor analysis, we could point out that strategic factors are the main factors in pre-installation and installation stage. Finally, in the growth stage and mature stage, both tactical and strategic factors are the important factors in the successful of AMT implementation

  12. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the...

  13. Good Manufacturing Practices (GMP) / Good Laboratory Practices (GLP) Review and Applicability for Chemical Security Enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Iveson, Steven W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Chemical Security Threat Reduction

    2014-11-01

    Global chemical security has been enhanced through the determined use and integration of both voluntary and legislated standards. Many popular standards contain components that specifically detail requirements for the security of materials, facilities and other vital assets. In this document we examine the roll of quality management standards and how they affect the security culture within the institutions that adopt these standards in order to conduct business within the international market place. Good manufacturing practices and good laboratory practices are two of a number of quality management systems that have been adopted as law in many nations. These standards are designed to protect the quality of drugs, medicines, foods and analytical test results in order to provide the world-wide consumer with safe and affective products for consumption. These standards provide no established security protocols and yet manage to increase the security of chemicals, materials, facilities and the supply chain via the effective and complete control over the manufacturing, the global supply chains and testing processes. We discuss the means through which these systems enhance security and how nations can further improve these systems with additional regulations that deal specifically with security in the realm of these management systems. We conclude with a discussion of new technologies that may cause disruption within the industries covered by these standards and how these issues might be addressed in order to maintain or increase the level of security within the industries and nations that have adopted these standards.

  14. Manufacturing development of low activation vanadium alloys

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  15. New entrants and overcapacity: lessons from regional aircraft manufacturing

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2010-01-01

    The commercial aircraft manufacturing industry has been largely dominated by the advanced economies in North America and Western Europe. During recent decades, several emerging economies have invested heavily in the commercial aircraft industry, notably in regional aircraft manufacturing. This paper

  16. MODULAR RESEARCH EQUIPMENT FOR ON-LINE INSPECTION IN ADVANCED MANUFACTURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Davrajh, S.

    2012-11-01

    Full Text Available The significance of inspection processes increases when producing parts with high levels of customer input. These processes must adapt to variations in significant product characteristics. Mass customisation and reconfigurable manufacturing are currently being researched as ways to respond to high levels of customer input. This paper presents the research and development of modular inspection equipment that was designed to meet the on-line quality requirements of mass customisation and reconfigurable manufacturing environments. Simulated results were analysed for application in an industrial environment. The implementation of the equipment in South Africa is briefly discussed. The research indicates that manufacturers need only invest in the required equipment configurations when they are needed for on-line inspection.

  17. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  18. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  19. CT-assisted agile manufacturing

    Science.gov (United States)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  20. Advances in the production of freeform optical surfaces

    Science.gov (United States)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  1. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B.

    2018-03-30

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclear industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1

  2. Training for my Life: Lived Experiences of Dislocated Workers in an Advanced Manufacturing Training Program

    Directory of Open Access Journals (Sweden)

    Marquita R. Walker

    2012-07-01

    Full Text Available This qualitative paper explores the lived experiences of one group of workers dislocated because of globalized trade policies who completed a hybrid Advanced Manufacturing Training Program (AMTP by taking advantage of Trade Adjustment Assistance (TAA, a federally-funded program for retraining workers dislocated because of trade policies. The research questions focus on how satisfied these workers are with the services and programs provided by TAA. Focus groups and survey instrument results indicate these workers found TAA services and processes cumbersome and time- consuming and actually had the effect of discouraging their education, training, and self- employment. The consequences of their dislocation as it relates to TAA experiences are increased frustration and dissatisfaction with the TAA program. Serious consideration for TAA policy changes should be deemed of utmost importance.

  3. Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability

    Science.gov (United States)

    Lei, Wei

    In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The

  4. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stelhy, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  5. Innovative manufacturing technologies for low-cost, high efficiency PERC-based PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Yelundur, Vijay [Suniva Inc., Norcross, GA (United States)

    2017-04-19

    The goal this project was to accelerate the deployment of innovative solar cell and module technologies that reduce the cost of PERC-based modules to best-in-class. New module integration technology was to be used to reduce the cost and reliance on conventional silver bus bar pastes and enhance cell efficiency. On the cell manufacturing front, the cost of PERC solar cells was to be reduced by introducing advanced metallization approaches to increase cell efficiency. These advancements will be combined with process optimization to target cell efficiencies in the range of 21 to 21.5%. This project will also explore the viability of a bifacial PERC solar cell design to enable cost savings through the use of thin silicon wafers. This project was terminated on 4/30/17 after four months of activity due financial challenges facing the recipient.

  6. Advances in infrastructure support for flat panel display manufacturing

    Science.gov (United States)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  7. Mining manufacturing data for discovery of high productivity process characteristics.

    Science.gov (United States)

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  8. Consolidating indigenous capability for PHWR fuel manufacturing in India

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraj, R.N., E-mail: cenfc@nfc.gov.in [Nuclear Fuel Complex, Dept. of Atomic Energy, Government of India, Hyderabad (India)

    2010-07-01

    Since inception of Nuclear Power Programme in India greater emphasis was laid on total self- reliance in Fuel manufacturing. For Pressurized Heavy Water Reactors (PHWRs), which forms a base for the first stage of the programme, an integrated approach was adopted encompassing different areas of expertise -Design, Construction and Operation of PHWRs; Heavy Water production and Fuel Design and Manufacturing technologies. For the first PHWR constructed about 35 years back with the Canadian collaboration, known as Rajasthan Atomic Power Station (RAPS), half the core requirement of fuel was met from the fuel manufactured for the first time in India. Since then the fuel production capabilities were enhanced by setting up an industrial scale fuel manufacturing facility - Nuclear Fuel Complex (NFC) at Hyderabad, India during early '70s. NFC has been continuously expanding its capacities to meet the fuel demand of all the PHWRs constructed and operated by Nuclear Power Corporation of India Limited (NPCIL). Presently, fifteen PHWR 220 MWe units and two PHWR 540 MWe units are in operation and one more PHWR 220 MWe unit is in advanced stage of commissioning in India. While continuously engaged in the manufacture of fuel for these reactors, NFC has been upgrading the production lines with new processes and quality assurance systems. In order to multiply the production capacities, NFC has embarked on developing indigenous capability for design and building of special purpose process equipment for Uranium dioxide powder production, pelletisation and final assembly operations. Some of the equipment having state-of-the-art features includes dryers/furnaces for UO{sub 2} powder, presses/ sintering furnaces for pelletisation and resistance welding equipment/ machining stations for assembly operations. In addition, several campaigns were taken over the years for manufacturing PHWR fuel bundles containing reprocessed Uranium, Thoria and slightly enriched Uranium. The paper

  9. Consolidating indigenous capability for PHWR fuel manufacturing in India

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2010-01-01

    Since inception of Nuclear Power Programme in India greater emphasis was laid on total self- reliance in Fuel manufacturing. For Pressurized Heavy Water Reactors (PHWRs), which forms a base for the first stage of the programme, an integrated approach was adopted encompassing different areas of expertise -Design, Construction and Operation of PHWRs; Heavy Water production and Fuel Design and Manufacturing technologies. For the first PHWR constructed about 35 years back with the Canadian collaboration, known as Rajasthan Atomic Power Station (RAPS), half the core requirement of fuel was met from the fuel manufactured for the first time in India. Since then the fuel production capabilities were enhanced by setting up an industrial scale fuel manufacturing facility - Nuclear Fuel Complex (NFC) at Hyderabad, India during early '70s. NFC has been continuously expanding its capacities to meet the fuel demand of all the PHWRs constructed and operated by Nuclear Power Corporation of India Limited (NPCIL). Presently, fifteen PHWR 220 MWe units and two PHWR 540 MWe units are in operation and one more PHWR 220 MWe unit is in advanced stage of commissioning in India. While continuously engaged in the manufacture of fuel for these reactors, NFC has been upgrading the production lines with new processes and quality assurance systems. In order to multiply the production capacities, NFC has embarked on developing indigenous capability for design and building of special purpose process equipment for Uranium dioxide powder production, pelletisation and final assembly operations. Some of the equipment having state-of-the-art features includes dryers/furnaces for UO 2 powder, presses/ sintering furnaces for pelletisation and resistance welding equipment/ machining stations for assembly operations. In addition, several campaigns were taken over the years for manufacturing PHWR fuel bundles containing reprocessed Uranium, Thoria and slightly enriched Uranium. The paper summarises

  10. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    Science.gov (United States)

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  11. A Review of Decisions Support Systems for Manufacturing Systems

    OpenAIRE

    Felsberger, Andreas; Oberegger, Bernhard; Reiner, Gerald

    2017-01-01

    In the field of manufacturing systems automated data acquisition and development of technological innovations like manufacturing execution systems (MES), Enterprise Resource Planning (ERP), Advanced Planning Systems (APS) and new trends in Big Data and Business Intelligence (BI) have given rise to new applications and methods of existing decisionsupport technologies. Today manufacturers need an adaptive system that helps to react and adapt to the constantly changing business environment. The ...

  12. Advanced Process Chains for Prototyping and Pilot Production based on Additive Manufacturing

    DEFF Research Database (Denmark)

    Mischkot, Michael

    2015-01-01

    For many years, Additive Manufacturing (AM) has been a well-established production technology used mainly for rapid prototyping. But the need for increased flexibility and economic low volume production led to the discovery of Additive Manufacturing as a suitable fabrication technique (Mellor 2013...

  13. Energy content in manufacturing exports: A cross-country analysis

    International Nuclear Information System (INIS)

    Amador, João

    2012-01-01

    This article compares the energy content in manufacturing exports in a set of 30 advanced and emerging economies and examines its evolution from 1995 to 2005, combining information from the OECD input–output matrices and international trade data in 17 manufacturing sectors. In addition, the article suggests a methodology to disentangle export structure and sectoral energy efficiency effects, presenting results according to technological categories. The article concludes that Brazil, India and, mostly, China, present a high energy content in manufacturing exports, which has increased from 1995 to 2005. Conversely, many advanced economies, notably in Europe and North America, which showed energy contents below the world average in 1995, reinforced their position as exporters with relatively lower energy usage. The contribution of export structure and energy efficiency effects to explain differences in the energy content of exports draws attention to the situation of China. This country increased its relative energy usage in the exports of all technological categories of goods. This effect was reinforced by the stronger export specialization in high-tech products and hindered by a comparatively lower specialization in medium-high-tech products. - Highlights: ► We compare the energy content in manufacturing exports in advanced and emerging economies. ► We suggest a methodology to disentangle export structure and sectoral energy efficiency effects. ► Large emerging economies present high energy content in manufacturing exports. ► China increased its relative energy usage in the exports of all technological categories of goods.

  14. Foundations & principles of distributed manufacturing elements of manufacturing networks, cyber-physical production systems and smart automation

    CERN Document Server

    Kühnle, Hermann

    2015-01-01

    The book presents a coherent description of distributed manufacturing, providing a solid base for further research on the subject as well as smart implementations in companies. It provides a guide for those researching and working in a range of fields, such as smart manufacturing, cloud computing, RFID tracking, distributed automation, cyber physical production and global design anywhere, manufacture anywhere solutions. Foundations & Principles of Distributed Manufacturing anticipates future advances in the fields of embedded systems, the Internet of Things and cyber physical systems, outlining how adopting these innovations could rapidly bring about improvements in key performance indicators, which could in turn generate competition pressure by rendering successful business models obsolete. In laying the groundwork for powerful theoretical models, high standards for the homogeneity and soundness of the suggested setups are applied. The book especially elaborates on the upcoming competition in online manu...

  15. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Dentz, J. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Barker, G. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Rath, P. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States); Dadia, D. [Advanced Residential Integrated Energy Solutions (ARIES) Collaborative, New York, NY (United States)

    2016-03-01

    Through field-testing and analysis, this project evaluated whole-building approaches and estimated the relative contributions of select technologies toward reducing energy use related to space conditioning in new manufactured homes. Three lab houses of varying designs were built and tested side-by-side under controlled conditions in Russellville, Alabama. The tests provided a valuable indicator of how changes in the construction of manufactured homes can contribute to significant reductions in energy use.

  16. Intelligent manufacturing: the challenge for manufacturing strategy in China in the 21st century--what we will do

    Science.gov (United States)

    Yang, Shuzi; Lei, Ming; Guan, Zai-Lin; Xiong, Youlun

    1995-08-01

    This paper first introduces the project of intelligent manufacturing in China and the research state of the IIMRC (Intelligent and Integrated Manufacturing Research Centre) of HUST (Huazhong University of Science and Technology), then reviews the recent advances in object- oriented and distributed artificial intelligence and puts forth the view that these advances open up the prospect of systems that will enable the true integration of enterprises. In an attempt to identify domain requirements and match them with research achievements, the paper examines the current literature and distinguishes 14 features that are common. It argues that effective enterprise-wide support could be greatly facilitated by the existence of intelligent software entities with autonomous processing capabilities, that possess coordination and negotiation facilities and are organized in distributed hierarchical states.

  17. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  18. The Current State of Additive Manufacturing in Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palmer, Sierra [Worcester Polytechnic Institute (WPI), , Worcester, MA (United States); Lee, Dominic [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, Dale Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% of the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).

  19. Ergonomic Challenges in Conventional and Advanced Apparel Manufacturing.

    Science.gov (United States)

    1992-10-01

    Attn.: Nina Harris Corporate Safety Director 2680 Pershing Avenue P.O. Drawer E Memphis, TN 38112 Griffin, GA 30224 901-320-3200 404-227-5581 Disneyland ...Box 498 Rome, GA 30161 Granite Quarry, NC 28072-0498 404-295-6008 Grant City Manufacturing Corporation Gerber Garment Technology, Inc. Old Highway...169 North See CMS Division Grant City, MO 64456 Gibson, Dunn & Crutcher Lawyers Sue Unger, Librarian Great West Casualty Company 1050 Connecticut

  20. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    Science.gov (United States)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  1. CAD And Distributed Manufacturing Solutions for Pellet Boiler Producers

    Directory of Open Access Journals (Sweden)

    Timur Mamut

    2016-12-01

    Full Text Available The paper is summarizing the research activities that had been carried out for defining an appropriate manufacturing concept and the system architecture for a manufacturing plant of pellet boilers. The concept has been validated through the implementation of a solution of computer integrated manufacturing that includes a CAD platform and a CAM facility including laser cutting machines, rolling and welding machines and advanced technologies for assembly, quality control and testing.

  2. Controlled Thermal-Mechanical Processing of Tubes and Pipes for Enhanced Manufacturing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V.

    2005-11-11

    The Alloy Steel Business of The Timken Company won an award for the controlled thermo-mechanical processing (CTMP) project and assembled a strong international public/private partnership to execute the project. The premise of the CTMP work was to combine Timken's product understanding with its process expertise and knowledge of metallurgical and deformation fundamentals developed during the project to build a predictive process design capability. The CTMP effort succeeded in delivering a pc-based capability in the tube optimization model, with a virtual pilot plant (VPP) feature to represent the desired tube making process to predict the resultant microstructure tailored for the desired application. Additional tasks included a system for direct, online measurement of grain size and demonstration of application of CTMP via robotically enhanced manufacturing.

  3. An Exploratory Analysis for the Selection and Implementation of Advanced Manufacturing Technology by Fuzzy Multi-criteria Decision Making Methods: A Comparative Study

    Science.gov (United States)

    Nath, Surajit; Sarkar, Bijan

    2017-08-01

    Advanced Manufacturing Technologies (AMTs) offer opportunities for the manufacturing organizations to excel their competitiveness and in turn their effectiveness in manufacturing. Proper selection and evaluation of AMTs is the most significant task in today's modern world. But this involves a lot of uncertainty and vagueness as it requires many conflicting criteria to deal with. So the task of selection and evaluation of AMTs becomes very tedious for the evaluators as they are not able to provide crisp data for the criteria. Different Fuzzy Multi-criteria Decision Making (MCDM) methods help greatly in dealing with this problem. This paper focuses on the application of two very much potential Fuzzy MCDM methods namely COPRAS-G, EVAMIX and a comparative study between them on some rarely mentioned criteria. Each of the two methods is very powerful evaluation tool and has beauty in its own. Although, performance wise these two methods are almost at same level, but, the approach of each one of them are quite unique. This uniqueness is revealed by introducing a numerical example of selection of AMT.

  4. Advances in AGR fuel fabrication - now and the future

    International Nuclear Information System (INIS)

    Bleasdale, P.A.

    1995-01-01

    To date, over 3 million AGR fuel pins have been manufactured at Springfields for the UK AGR programme. During this time, AGR fuel design and manufacture has developed and evolved in response to the needs of the reactor operators to enhance fuel reliability and performance. More recently, major advances have been made in the systems and organisational culture which support fuel manufacture at Fuel Division. The introduction of MRP II in 1989 into Fuel Division enabled significant reductions in stock and work-in-progress, together with reductions in manufacturing lead times. Other successful initiatives introduced into Fuel Division have been Just-in-Time (JIT) and AST (Additional Skills Training) which have built on the success of MRP II. All of these initiatives are evidence of Fuel Division's ''Total Quality'' approach to fabricating fuel. Fuel Division is currently in the final stages of commissioning the New Oxide Fuels Complex (NOFC) where both AGR and PWR fuel will be manufactured to the highest standards of quality, safety and environmental protection. NOFC is a totally integrated plant which represents a Pound 200M investment, demonstrating Fuel Division's commitment to building on its 40+ years of fuel fabrication experience and ensuring secure supply of fuel to its customers for years to come. (author)

  5. PERFORMANCE IMPROVEMENT OF DIESEL ENGINE THROUGH VARIOUS ADVANCEMENTS IN TURBOCHARGING TECHNOLOGY: A REVIEW

    OpenAIRE

    A.F. Sherwani

    2016-01-01

    In this paper, the effect of various advancements in turbocharging technology on diesel engine power, fuel consumption, thermal efficiency, volumetric efficiency and emissions are reviewed and analyzed.Turbochargers are used throughout the automotive industry to enhance the output of an internal combustion engine without increasing the cylinder capacity. The emphasis today is to provide a feasible engineering solution to manufacturing economics and greener road vehicles. It is because of thes...

  6. Single-use disposable technologies for biopharmaceutical manufacturing.

    Science.gov (United States)

    Shukla, Abhinav A; Gottschalk, Uwe

    2013-03-01

    The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A manufacturing method for multi-layer polysilicon surface-micromachining technology

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.; Rodgers, M.S.

    1998-01-01

    An advanced manufacturing technology which provides multi-layered polysilicon surface micromachining technology for advanced weapon systems is presented. Specifically, the addition of another design layer to a 4 levels process to create a 5 levels process allows consideration of fundamentally new architecture in designs for weapon advanced surety components.

  8. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Dehoff, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility

    2016-05-01

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact of the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  9. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography

    International Nuclear Information System (INIS)

    Diekmann, Felix; Bick, Ulrich

    2007-01-01

    Digital mammography is more and more replacing conventional mammography. Initial concerns about an inferior image quality of digital mammography have been largely overcome and recent studies even show digital mammography to be superior in women with dense breasts, while at the same time reducing radiation exposure. Nevertheless, an important limitation of digital mammography remains: namely, the fact that summation may obscure lesions in dense breast tissue. However, digital mammography offers the option of so-called advanced applications, and two of these, contrast-enhanced mammography and tomosynthesis, are promising candidates for improving the detection of breast lesions otherwise obscured by the summation of dense tissue. Two techniques of contrast-enhanced mammography are available: temporal subtraction of images acquired before and after contrast administration and the so-called dual-energy technique, which means that pairs of low/high-energy images acquired after contrast administration are subtracted. Tomosynthesis on the other hand provides three-dimensional information on the breast. The images are acquired with different angulations of the X-ray tube while the object or detector is static. Various reconstruction algorithms can then be applied to the set of typically nine to 28 source images to reconstruct 1-mm slices with a reduced risk of obscuring pathology. Combinations of both advanced applications have only been investigated in individual experimental studies; more advanced software algorithms and CAD systems are still in their infancy and have only undergone preliminary clinical evaluation. (orig.)

  11. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    International Nuclear Information System (INIS)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-01-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current 'metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  12. Integrating Materials, Manufacturing, Design and Validation for Sustainability in Future Transport Systems

    Science.gov (United States)

    Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.

    2011-05-01

    The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of

  13. Expanding the Design Space: Forging the Transition from 3D Printing to Additive Manufacturing

    Science.gov (United States)

    Amend, Matthew

    The synergy of Additive Manufacturing and Computational Geometry has the potential to radically expand the "design space" of solutions available to designers. Additive Manufacturing (AM) is capable of fabricating objects that are highly complex both in geometry and material properties. However, the introduction of any new technology can have a disruptive effect on established design practices and organizations. Before "Design for Additive Manufacturing" (DFAM) is a commonplace means of producing objects employed in "real world" products, appropriate design knowledge must be sufficiently integrated within industry. First, materials suited to additive manufacturing methods must be developed to satisfy existing industry standards and specifications, or new standards must be developed. Second, a new class of design representation (CAD) tools will need to be developed. Third, designers and design organizations will need to develop strategies for employing such tools. This thesis describes three DFAM exercises intended to demonstrate the potential for innovative design when using advanced additive materials, tools, and printers. These design exercises included 1) a light-weight composite layup mold developed with topology optimization, 2) a low-pressure fluid duct enhanced with an external lattice structure, and 3) an airline seat tray designed using a non-uniform lattice structure optimized with topology optimization.

  14. Manufacturing Theory for Advanced Grid Stiffened Structures

    National Research Council Canada - National Science Library

    Huybrechts, Steven M; Meink, Troy E; Wegner, Peter M; Ganley, Jeff M

    2002-01-01

    Lattices of rigidly connected ribs, known as advanced grid stiffened (AGS) structures, have many advantages over traditional construction methods, which use panels, sandwich cores and/or expensive frameworks...

  15. Advanced SLARette delivery machine

    International Nuclear Information System (INIS)

    Bodner, R.R.

    1995-01-01

    SLARette 1 equipment, comprising of a SLARette Delivery Machine, SLAR Tools, SLAR power supplies and SLAR Inspection Systems was designed, developed and manufactured to service fuel channels of CANDU 6 stations during the regular yearly station outages. The Mark 2 SLARette Delivery Machine uses a Push Tube system to provide the axial and rotary movements of the SLAR Tool. The Push Tubes are operated remotely but must be attached and removed manually. Since this operation is performed at the Reactor face, there is radiation dose involved for the workers. An Advanced SLARette Delivery Machine which incorporates a computer controlled telescoping Ram in the place of the Push Tubes has been recently designed and manufactured. Utilization of the Advanced SLARette Delivery Machine significantly reduces the amount of radiation dose picked up by the workers because the need to have workers at the face of the Reactor during the SLARette operation is greatly reduced. This paper describes the design, development and manufacturing process utilized to produce the Advanced SLARette Delivery Machine and the experience gained during the Gentilly-2 NGS Spring outage. (author)

  16. Polymers for 3D Printing and Customized Additive Manufacturing.

    Science.gov (United States)

    Ligon, Samuel Clark; Liska, Robert; Stampfl, Jürgen; Gurr, Matthias; Mülhaupt, Rolf

    2017-08-09

    Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.

  17. Polymers for 3D Printing and Customized Additive Manufacturing

    Science.gov (United States)

    2017-01-01

    Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems. PMID:28756658

  18. Engineering Students: Enhancing Employability Skills through PBL

    Science.gov (United States)

    H, Othman; Mat Daud K., A.; U, Ewon; Salleh B, Mohd; Omar N., H.; Baser J, Abd; Ismail M., E.; A, Sulaiman

    2017-05-01

    As a developing country, Malaysia faces challenging tasks to develop her economy just like many other countries. Nowadays, change involves many aspects like the economy from agriculture to manufacturing, technology from modern to more advanced ones; mindset from traditional to advanced and so on. Previous studies show that one of the major issues facing local graduates is the lack of employability skills. This problem concerns not only the government but undergraduates and institutions alike. From the pedagogical aspect, one of the more effective ways to improve this is through instructional delivery and in this case the use of Problem-based Learning (PBL). The need to adopt PBL should involved applied subjects undertaken by engineering students. Studies have shown that the use of PBL has been proven to make learning more attractive and effective. In this research, we studied the effectiveness of PBL towards enhancing employability skills among engineering undergraduates. This study adopted a combination of qualitative and quantitative approaches. Data was collected using documents analysis. Student samples comprised manufacturing engineering undergraduates from public institutions of higher learning in Malaysia. The results show that student’s employability skills can be enhanced using PBL. In addition, students become more competitive towards making them more relevance with the needs of the industry with regard to employability skills. In conclusion, PBL is a very effective catalyst towards raising the employability skills among engineering undergraduates and should be adopted in all engineering education.

  19. Advancements in solar stills for enhanced flow rate

    Science.gov (United States)

    Mishra, Sourav; Dubey, Maneesh; Raghuwanshi, Jitendra; Sharma, Vipin

    2018-05-01

    All over the world there is a scarcity of water and it is difficult to access potable water. Due to this most of the people are affected by diseases that are caused due to drinking of polluted water. There are technologies through which we can purify polluted water but the only problem is these technologies uses electrical energy. Since solar energy is abundant in nature therefore we can use solar as an energy source in solar stills for water distillation. Solar stills can be used in village areas where there is no electricity. It is simple and also economic in construction. This article addresses advancement in solar distillation and usage of nanofluids for enhancement in flow rate.

  20. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    Science.gov (United States)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  1. Review on Advances of Functional Material for Additive Manufacturing

    Science.gov (United States)

    Zulkifli, Nur Amalina Binti; Akmal Johar, Muhammad; Faizan Marwah, Omar Mohd; Irwan Ibrahim, Mohd Halim

    2017-08-01

    The attempt of finding and making new materials in improving products that are already in the market are widely done by researchers nowadays. This project is focusing on making new materials for functional material through additive manufacturing application. The idea of this project came from the ability limitation of capacitor in market nowadays in storing higher charges but smaller in size. Powder glass is the new material that could to be used as a dielectric material for capacitor with the help of palm kernel oil as the binder. This paper reviews on applications done through additive manufacturing method and also types of functional materials used in this method previously. Structure of a capacitor, dielectric properties and measurement techniques that are trying to be carried out are also explains in this paper. Last part of this paper brief on the material proposal and reasons those materials are chosen. New dielectric material for capacitor which are able to store more charges but still small in size are expected to be produced as the outcome of this research.

  2. Manufacturers Mergers and Product Variety in Vertically Related Markets

    OpenAIRE

    Chrysovalantou Milliou; Joel Sandonis

    2014-01-01

    We study final product manufacturers’ incentives to introduce new products into the market and how they are affected by a merger among them. We show that when manufacturers distribute their products through multi-product retailers, a manufacturers merger, although it leads to an increase in the wholesale prices, it can enhance product variety. The merger generated product variety efficiencies though arise only when vertical relations are present: when manufacturers sell directly their produ...

  3. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  4. Developing a cyber-physical system for hybrid manufacturing in an internet-of-things context

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Vanderfeesten, I.T.P.; Boultadakis, G.; Gonzalez Garcia, Christian; Garcia-Diaz, Vicente; Pelayo Garcia-Bustelo, B. Cristina; Cueva Lovelle, Juan Manuel

    2018-01-01

    This chapter describes design and development of the HORSE system for process-oriented hybrid manufacturing that seamlessly integrates human and robotics actors in vertical manufacturing cells that are horizontally coupled in end-to-end manufacturing processes. The HORSE system supports advanced

  5. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  6. A Review of Current Machine Learning Techniques Used in Manufacturing Diagnosis

    OpenAIRE

    Ademujimi , Toyosi ,; Brundage , Michael ,; Prabhu , Vittaldas ,

    2017-01-01

    Part 6: Intelligent Diagnostics and Maintenance Solutions; International audience; Artificial intelligence applications are increasing due to advances in data collection systems, algorithms, and affordability of computing power. Within the manufacturing industry, machine learning algorithms are often used for improving manufacturing system fault diagnosis. This study focuses on a review of recent fault diagnosis applications in manufacturing that are based on several prominent machine learnin...

  7. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  8. Enhanced additive manufacturing with a reciprocating platen

    Science.gov (United States)

    Lind, Randall F.; Blue, Craig A.; Love, Lonnie J.; Post, Brian K.; Lloyd, Peter D.

    2018-02-06

    An additive manufacturing extrusion head that includes a heated nozzle for accepting a feedstock and extruding the feedstock onto a substrate at a deposition plane, the nozzle having a longitudinal extrusion axis. A reciprocating platen surrounds the nozzle, the platen operable to reciprocate along the extrusion axis at or above the deposition plane as the nozzle extrudes feedstock onto the substrate; and wherein the platen flattens the extruded feedstock such that it does not protrude above the deposition plane as the extrusion head traverses over the substrate.

  9. An implementation framework for additive manufacturing in supply chains

    Directory of Open Access Journals (Sweden)

    Raed Handal

    2017-12-01

    Full Text Available Additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. However, theoretical development in the field of additive manufacturing with regard to its impact on supply chain management is rare. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field to assess the impact of additive manufacturing and determine the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing impacts supply chain management efficiently.

  10. Nuclear engineering training and advanced training at universities and in manufacturing industries

    International Nuclear Information System (INIS)

    Sauer, A.

    1984-01-01

    The lecture describes: the qualification of the staff of one nuclear power plant building company, the structure of university studies in the Federal Republic of Germany, in the USA and in the GDR, technical colleges, continuation studies, in-service training in the manufacturing industry, training programmes for short-term benefits, training of German and foreign operating personnel by the manufacturers, training within the framework of technology transfer. (HSCH) [de

  11. Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing.

    Science.gov (United States)

    Kahng, Seong-Joong; Kim, Jong-Hoon; Chung, Jae-Hyun

    2016-12-23

    Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

  12. Additively Manufactured, Net Shape Powder Metallurgy Cans for Valves Used in Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H. [ORNL; Gandy, David [Electric Power Research Institute (EPRI); Lannom, Robert [Oak Ridge National Laboratory (ORNL)

    2018-01-01

    This CRADA NFE-14-05241 was conducted as a Technical Collaboration project within the Oak Ridge National Laboratory (ORNL) Manufacturing Demonstration Facility (MDF) sponsored by the US Department of Energy Advanced Manufacturing Office (CPS Agreement Number 24761). Opportunities for MDF technical collaborations are listed in the announcement “Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies” posted at http://web.ornl.gov/sci/manufacturing/docs/FBO-ORNL-MDF-2013-2.pdf. The goal of technical collaborations is to engage industry partners to participate in short-term, collaborative projects within the Manufacturing Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.ORNL would like to acknowledge the leadership of EPRI in pulling together the extensive team and managing the execution of the project. In addition, ORNL would like to acknowledge the other contributions of the team members associated with this project. Quintus provided time, access, expertise, and labor of their hydro forming capabilities to evaluate both conventional and additively manufactured tools through this process. Crane ChemPharma Energy provided guidance and information on valve geometries. Carpenter Powder Products was involved with the team providing information on powder processing as it pertains to the canning and hot isostatic pressing of powder. on providing powder and knowledge as it pertains to powder supply for hot isostatic pressing; they also provided powder for the test trials by the industrial team. Bodycote provided guidance on hot isostatic pressing and can requirements. They were also responsible for the hot isostatic pressing of the test valve

  13. Manufacturing of nuclear power components in CDM

    International Nuclear Information System (INIS)

    Krishnan, J.; Jawale, S.B.

    2002-01-01

    Full text: In the nuclear research programme in India, Dr. H.J. Bhabha, the architecture of the Indian Nuclear programme felt a need for proto-type development and precision manufacturing facility to fulfill the requirements of mechanical components in establishing the manufacturing capability for the successful and self sustained nuclear programme. Centre for Design and Manufacture (CDM) hitherto known as CWS was established in 1964 to cater to the specific requirements of DAE and other associated units like ISRO, DRDO. Since then CDM has made multiple technological achievements and changes towards high quality products. The acquisition of up-to-date machines during High-Tech facility under VIII Plan project and Advance Precision Fabrication facility under IX Plan project has changed the capability of CDM towards CAD, CAM, CAE and CNC machining centres. Considering the rapid growth in the design and manufacturing, it was renamed as Centre for Design and Manufacture in March 2002, with the mission of quality output through group effort and team work

  14. Advances in the manufacture of MIP nanoparticles.

    Science.gov (United States)

    Poma, Alessandro; Turner, Anthony P F; Piletsky, Sergey A

    2010-12-01

    Molecularly imprinted polymers (MIPs) are prepared by creating a three-dimensional polymeric matrix around a template molecule. After the matrix is removed, complementary cavities with respect to shape and functional groups remain. MIPs have been produced for applications in in vitro diagnostics, therapeutics and separations. However, this promising technology still lacks widespread application because of issues related to large-scale production and optimization of the synthesis. Recent developments in the area of MIP nanoparticles might offer solutions to several problems associated with performance and application. This review discusses various approaches used in the preparation of MIP nanoparticles, focusing in particular on the issues associated with large-scale manufacture and implications for the performance of synthesized nanomaterials. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Analysis of Agility Performance of Supply Chain: A Case Study on Indian Automotive Manufacturer

    Science.gov (United States)

    Routroy, S.; Sharma, S.; Bhardwaj, A.

    2018-04-01

    Manufacturing companies should understand the changing customer needs and expectations, access and defend the competitive pressure, anticipate and manage the uncertain demand and supply chain risk, and implement the appropriate technology to survive and excel in today’s marketplace. Therefore, they are moving away from mass production (i.e. lean supply chain) to one based on fast-responsiveness and flexibility, capitalizing on the rapid advancement in internet technologies and factory-on-demand mode of production (i.e. agile supply chain). It is observed that manufacturing companies in India in general and automotive supply chain in specific are compelled to cultivate supply chain agility for enhancing its performance level on continuous basis and comparing its supply chain agility performance with competitors to survive and sustain in the competitive business environment. Therefore, a methodology is proposed to evaluate the supply chain agility of a manufacturing supply chain and compare its performance level with competitors using Fuzzy Analytic Hierarchy Process and Taguchi Loss Function. A case study is developed and the proposed methodology is applied to Indian automotive supply chain for explaining the salient features of it.

  16. CSIR R&D in emerging manufacturing technologies

    CSIR Research Space (South Africa)

    Trollip, Neil

    2017-10-01

    Full Text Available This presentation discusses Advanced Robotics and Emerging manufacturing technologies by Dr Neil Trollip, at the 6th CSIR Conference: Ideas that work for industrial development, 5-6 October 2017, CSIR International Convention Centre, Pretoria...

  17. Manufacturing Enhancement through Reduction of Cycle Time using Different Lean Techniques

    Science.gov (United States)

    Suganthini Rekha, R.; Periyasamy, P.; Nallusamy, S.

    2017-08-01

    In recent manufacturing system the most important parameters in production line are work in process, TAKT time and line balancing. In this article lean tools and techniques were implemented to reduce the cycle time. The aim is to enhance the productivity of the water pump pipe by identifying the bottleneck stations and non value added activities. From the initial time study the bottleneck processes were identified and then necessary expanding processes were also identified for the bottleneck process. Subsequently the improvement actions have been established and implemented using different lean tools like value stream mapping, 5S and line balancing. The current state value stream mapping was developed to describe the existing status and to identify various problem areas. 5S was used to implement the steps to reduce the process cycle time and unnecessary movements of man and material. The improvement activities were implemented with required suggested and the future state value stream mapping was developed. From the results it was concluded that the total cycle time was reduced about 290.41 seconds and the customer demand has been increased about 760 units.

  18. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Science.gov (United States)

    Reid, Concha; Bennett, William

    2009-01-01

    or reasonable cost manufacturing techniques, manufacturability of the materials in dimensions required for integration into battery cells of practical capacities, low Technology Readiness levels (TRl), and the ability to achieve the desired performance by the customer need dates. The advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide (lithium NMC) cathode with a silicon-based composite anode was selected as the technology that can offer the best combination of safety, specific energy, energy density, and likelihood of success. Tasks over the next three years will focus on development of electrode materials, compatible electrolytes, and separator materials, and integration of promising components to assess their combined performance in working cells. Cells of the chosen chemistry will be developed to TRl 6 by 2014 and will then be transferred to the customers for infusion into their mission paths.

  19. Rapid response manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1998-02-10

    US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was

  20. 3rd International Conference on Sustainable Design and Manufacturing

    CERN Document Server

    Howlett, Robert; Liu, Ying; Theobald, Peter

    2016-01-01

    This volumes consists of 59 peer-reviewed papers, presented at the International Conference on Sustainable Design and Manufacturing (SDM-16) held in Chania, Crete Greece in April 2016. Leading-edge research into sustainable design and manufacturing aims to enable the manufacturing industry to grow by adopting more advanced technologies, and at the same time improve its sustainability by reducing its environmental impact. SDM-16 covers a wide range of topics from sustainable product design and service innovation, sustainable process and technology for the manufacturing of sustainable products, sustainable manufacturing systems and enterprises, decision support for sustainability, and the study of societal impact of sustainability including research for circular economy. Application areas are wide and varied. The book will provide an excellent overview of the latest research and development in the area of Sustainable Design and Manufacturing.

  1. Joint R and D in low-carbon technology development in China: A case study of the wind-turbine manufacturing industry

    International Nuclear Information System (INIS)

    Zhou Yuanchun; Zhang Bing; Zou Ji; Bi Jun; Wang Ke

    2012-01-01

    China faces the dual challenges of climate change and increased energy demand. These challenges in turn increase the demand for wind energy development. Along with rapid growth in manufacturing capacity, Chinese companies have aspired to increase their innovation capacity in order to enhance their competitiveness in the market. Joint research and development (R and D) is an attractive path for Chinese companies striving to advance their R and D capacity. This paper examines joint R and D between Chinese wind-turbine manufacturing companies and foreign design firms, assessing the performance of joint R and D activities in China using the structure-conduct-performance (SCP) framework. The study found that joint R and D has improved Chinese companies’ technical capacity, human resources and financial growth. However, the effect on Chinese companies’ innovation capacity is still limited because of unequal technical capacities of the two sides in collaboration, as well as their preference for augmenting profits rather than technical capacity. Current joint R and D mode is only the extension of licensing mode in wind-turbine manufacturing industry. - Highlights: ► Joint R and D is an attractive path for Chinese companies striving to advance R and D capacity. ► We examined the performance of joint R and D in wind-turbine manufacturing industry. ► Joint R and D has improved Chinese companies’ technical capacity. ► The effect of Joint R and D on innovation capacity is still limited.

  2. Minding the Gap: Investing in a Skilled Manufacturing Workforce

    Science.gov (United States)

    Richard, Alan

    2015-01-01

    Advanced manufacturing is growing and thriving in the United States. Companies are in great need of reliable employees who can communicate well, effectively make decisions, and are interested in long-term careers with opportunity for advancement. Employers have identified a need for a more robust talent pipeline to narrow America's skills gap--a…

  3. Biocatalyst Enhancement

    Science.gov (United States)

    The increasing availability of enzyme collections has assisted attempts by pharmaceutical producers to adopt green chemistry approaches to manufacturing. A joint effort between an enzyme producer and a pharmaceutical manufacturer has been enhanced over the past three years by ena...

  4. Transaction Costs in Global Supply Chains of Manufacturing Companies

    Directory of Open Access Journals (Sweden)

    Philipp Bremen

    2010-02-01

    Full Text Available Outsourcing has advanced to an important measure that is applied broadly in operations management. Nowadays, suppliers of manufacturing companies do not only provide direct material like raw material and operational supplements but offer components and advanced modules incurring many value-adding stages. Whereas in the past companies built up local supplier networks, they recently tend to search for global sources. However, not all companies reach their expectations towards the success of global sourcing projects. Important reasons for relocating manufacturing capacities back to local suppliers or in- house manufacturing are costs for unexpected coordination activities, limited flexibility and declined or fluctuating quality. The theory of Transaction Cost Economics postulates that transaction costs of the types information, communication and coordination determine the governance structure of a supply chain, i.e. market, hybrid or firm. The objective of this paper is to analyze the cause-and-effect chain of inter-firm transaction costs concerning global sourcing. The resulting qualitative model is based on explorative multiple-case study.

  5. Advancing lean manufacturing, the role of IT

    NARCIS (Netherlands)

    Riezebos, J.; Klingenberg, W.

    This introduction to the special issue discusses the changing role of information technology (IT) in advancing lean production. Lean principles and techniques have been applied in a wide variety of organisations, from make-to-stock to engineer-to-order industries, and even in typical service

  6. Does External Knowledge Sourcing Enhance Market Performance? Evidence from the Korean Manufacturing Industry.

    Science.gov (United States)

    Lee, Kibaek; Yoo, Jaeheung; Choi, Munkee; Zo, Hangjung; Ciganek, Andrew P

    2016-01-01

    Firms continuously search for external knowledge that can contribute to product innovation, which may ultimately increase market performance. The relationship between external knowledge sourcing and market performance is not well-documented. The extant literature primarily examines the causal relationship between external knowledge sources and product innovation performance or to identify factors which moderates the relationship between external knowledge sourcing and product innovation. Non-technological innovations, such as organization and marketing innovations, intervene in the process of external knowledge sourcing to product innovation to market performance but has not been extensively examined. This study addresses two research questions: does external knowledge sourcing lead to market performance and how does external knowledge sourcing interact with a firm's different innovation activities to enhance market performance. This study proposes a comprehensive model to capture the causal mechanism from external knowledge sourcing to market performance. The research model was tested using survey data from manufacturing firms in South Korea and the results demonstrate a strong statistical relationship in the path of external knowledge sourcing (EKS) to product innovation performance (PIP) to market performance (MP). Organizational innovation is an antecedent to EKS while marketing innovation is a consequence of EKS, which significantly influences PIP and MP. The results imply that any potential EKS effort should also consider organizational innovations which may ultimately enhance market performance. Theoretical and practical implications are discussed as well as concluding remarks.

  7. Empirical study on entropy models of cellular manufacturing systems

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Zhang; Renbin Xiao

    2009-01-01

    From the theoretical point of view,the states of manufacturing resources can be monitored and assessed through the amount of information needed to describe their technological structure and operational state.The amount of information needed to describe cellular manufacturing systems is investigated by two measures:the structural entropy and the operational entropy.Based on the Shannon entropy,the models of the structural entropy and the operational entropy of cellular manufacturing systems are developed,and the cognizance of the states of manufacturing resources is also illustrated.Scheduling is introduced to measure the entropy models of cellular manufacturing systems,and the feasible concepts of maximum schedule horizon and schedule adherence are advanced to quantitatively evaluate the effectiveness of schedules.Finally,an example is used to demonstrate the validity of the proposed methodology.

  8. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  9. Digital control application for the advanced boiling water reactor

    International Nuclear Information System (INIS)

    Fennern, L.E.; Pearson, T.; Wills, H.D.; Swire Rhodes, L.; Pearson, R.L.

    1986-01-01

    The Advanced Boiling Water Reactor (ABWR) is a 1300 MWe class Nuclear Power Plant whose design studies and demonstration tests are being performed by the three manufacturers, General Electric, Toshiba and Hitachi, under requirement specifications from the Tokyo Electric Power Company. The goals are to apply new technology to the BWR in order to achieve enhanced operational efficiencies, improved safety measures and cost reductions. In the plant instrumentation and control areas, traditional analog control equipment and wire cables will be replaced by distributed digital microprocessor based control units communicating with each other and the control room over fiber optic multiplexed data buses

  10. Enhancing Manufacturing Process Education via Computer Simulation and Visualization

    Science.gov (United States)

    Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter

    2014-01-01

    Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…

  11. Localization of Manufacturing Capabilities in Setting Up Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chadda, Sushil Kumar

    2011-01-01

    group for supply of forgings for nuclear reactor, vessels, steam generators, turbine generators and other safety critical components including pumps, valves, pipes and tubes, and other integration work for the balance of plant are summarized. In close association with its sister concerns like Kalyani Carpenter special Steels, the challenges to manufacture critical pieces of metal with advanced materials and alloys are being addressed. The paper would briefly touch upon these efforts on advanced materials and alloys. The company has planned significant investments for setting up an integrated manufacturing facility to clear the global bottleneck in the supply of ultra-heavy forgings for not only for light water reactors but also for a variety of other applications like conventional island rotors, shafts, etc. Bharat Forge is also setting up a dedicated steel plant and a large foundry to address the requirements of cast pieces, casings and the like in nuclear and conventional islands. The overall effort of the Group is to develop in-house capabilities for meeting most component specific requirement of nuclear power plants. Civil structuring involves execution by prior qualification with proven skills for specialized civil works needed in the construction of nuclear plants. Another group company is also gearing up to enhance its capabilities to undertake construction projects and execute EPC contracts. This company is also in dialogue with a number of nuclear design and engineering outfits of the world to sew up formidable combination of design, engineering, construction and execution strengths. In the context of Indian Nuclear Power Program, the various initiatives taken for overall human resource development to meet the demands requiring skills in high end technology manufacturing and project management are included. Kalyani Group's trans-continental efforts to join hands with various educational and training institutions to create and replicate world-class talent pool

  12. Recent advance on design and manufacturing of composite anisogrid structures for space launchers

    Science.gov (United States)

    Totaro, G.; De Nicola, F.

    2012-12-01

    Anisogrid composite shells have been developed and applied since the eighties by the Russian technology aiming at critical weight structures for space launchers, as interstages and cone adapters. The manufacturing process commonly applied is based on the wet filament winding. The paper concerns with some developments of design and manufacturing recently performed at the Italian Aerospace Research Center on a cylindrical structural model representative of this kind of structures. The framework of preliminary design is improved by introducing the concept of suboptimal configuration in order to match the stiffness requirement of the shell and minimise the mass, in conjunction with the typical strength constraints. The undertaken manufacturing process is based on dry robotic winding for the lattice structure and for the outer skin, with the aid of usual rubber tooling and new devices for the automated deposition strategy. Resin infusion under vacuum bag and co-cure of the system of ribs and skin is finally applied out-of-autoclave, with the aid of a heated mandrel. With such approach an interstage structural model (scale factor 1:1.5) has been designed, manufactured and tested. Design requirements and loads refer to a typical space launcher whose baseline configuration is made in aluminium. The global mechanical test of the manufactured structure has confirmed the expected high structural performance. The possibility to reach substantial weight savings in comparison with the aluminium benchmark has been fully demonstrated.

  13. The effect of product quality on the integrity of advanced surface engineering treatments applied to high speed steel circular saw blades

    International Nuclear Information System (INIS)

    Bradbury, S.R.; Sarwar, M.

    1996-01-01

    Advanced surface engineering technologies have been successfully applied to high speed steel drills and carbide single-point cutting tools, but, as yet, limited benefits have been realized when applying the same technologies to multi-point cutting tools of commercial quality. This paper discusses the factors that have limited the benefits of advanced surface engineering treatments when applied to high speed steel circular saw blades. Common manufacturing defects have been identified on the teeth of the blades. Tests which evaluate the blade performance throughout its useful life and examination by scanning electron microscopy (SEM) have shown that these defects adversely affect the performance and wear resistance of surface engineered blades. Further investigations suggest that significant improvements in coating integrity can be achieved through the careful preparation of the substrate surface and refinement of the cutting edge geometry prior to treatment. For this application, the need for refinement and enhancement of current manufacturing practices is demonstrated if the full benefits of advanced surface engineering are to be realized. (orig.)

  14. The manufacture of ZPR dynamic parameter analysis system

    International Nuclear Information System (INIS)

    Chen Huaide

    1992-01-01

    Under the guiding ideology of synthesize to blaze new trails. Utilizing the combination of various technologies, such as modern nuclear detective technology, electronic technology, computer technology, reactor physics experimental technology, and system technology etc., a new type ZPR dynamic parameter analysis system is manufactured. It consists of neutron detector sets, which including BF 3 proportional counter, 3 He proportional counter, fission chamber etc., detector bias supply, amplifier and discriminator, counter and multiplexer, micro-computer-based multifunction multichannel analyzer and system management software etc. The system has been checked and accepted by the group of experts in 1991. After the discussion, it is thought, that the specifications of the system are satisfactory and surpassed the requirement in advance, the overall design is thoughtful, the manufacture technology attains the advanced level of China

  15. The manufacture of ZPR dynamic parameter analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Huaide, Chen

    1993-12-31

    Under the guiding ideology of synthesize to blaze new trails. Utilizing the combination of various technologies, such as modern nuclear detective technology, electronic technology, computer technology, reactor physics experimental technology, and system technology etc., a new type ZPR dynamic parameter analysis system is manufactured. It consists of neutron detector sets, which including BF{sub 3} proportional counter, {sup 3}He proportional counter, fission chamber etc., detector bias supply, amplifier and discriminator, counter and multiplexer, micro-computer-based multifunction multichannel analyzer and system management software etc. The system has been checked and accepted by the group of experts in 1991. After the discussion, it is thought, that the specifications of the system are satisfactory and surpassed the requirement in advance, the overall design is thoughtful, the manufacture technology attains the advanced level of China

  16. Manufacturing process optimization of nuclear fuel guide tube using HANA alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Choi, B. K.; Park, J. Y.; Kim, H. G.; Jeong, Y. I.; Park, D. J.; Lim, J. K.

    2010-08-01

    From this project, the advanced manufacturing parameters which were contained of heat-treatment, reduction rate, and new process (2 step) were considered to increase the guide tube performance of HANA material. It was obtained that the strength and corrosion resistance of HANA material were improved by applying the improve manufacturing parameters when compared to the commercial guide tube material. · Manufacturing parameter study to increase mechanical property -Tensile strength increase of 30% by manufacturing parameter setup when compared to the guide tube specification · Manufacturing parameter study to decrease irradiation growth -Theoretical study of the texture effect on sample specimens related to the irradiation growth · Manufacturing parameter study to increase corrosion resistance -Corrosion resistance increase of 30% by manufacturing parameter setup when compared to the commercial guide tube

  17. Development of zirconium alloy tube manufacturing technology

    International Nuclear Information System (INIS)

    Kim, In Kyu; Park, Chan Hyun; Lee, Seung Hwan; Chung, Sun Kyo

    2009-01-01

    In late 2004, Korea Nuclear Fuel Company (KNF) launched a government funded joint development program with Westinghouse Electric Co. (WEC) to establish zirconium alloy tube manufacturing technology in Korea. Through this program, KNF and WEC have developed a state of the art facility to manufacture high quality nuclear tubes. KNF performed equipment qualification tests for each manufacturing machine with the support of WEC, and independently carried out product qualification tests for each tube product to be commercially produced. Apart from those tests, characterization test program consisting of specification test and characterization test was developed by KNF and WEC to demonstrate to customers of KNF the quality equivalency of products manufactured by KNF and WEC plants respectively. As part of establishment of performance evaluation technology for zirconium alloy tube in Korea, KNF carried out analyses of materials produced for the characterization test program using the most advanced techniques. Thanks to the accomplishment of the development of zirconium alloy tube manufacturing technology, KNF is expected to acquire positive spin off benefits in terms of technology and economy in the near future

  18. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    Science.gov (United States)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  19. PDC Journeys to Product Analysis Development and Additive Manufacturing?

    International Nuclear Information System (INIS)

    Shalina Sheik Muhamad

    2015-01-01

    The technology for product development and manufacturing has gone through many advancements. It is widely recognised that it would provide competitive advantage for engineering organization in term of product development cycle, productivity, sustainability and efficiency. We begin by describing the general characteristic of design process that will need to be integrated in product life cycle management. In Nuclear Malaysia, especially in engineering design activities the majority have been using 3D modelling. This paper discusses on the current product design practiced in Nuclear Malaysia, new product development process and new manufacturing technique which is additive manufacturing. (author)

  20. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some...... recent advances in this direction. The efficient coupling of light between optical fibers and the planar silicon devices and circuits is of crucial importance. Both end-coupling (Fig. 1) and grating-coupling solutions will be discussed along with polarization issues. A new scheme for a hybrid III...

  1. Heliostat Manufacturing for near-term markets. Phase II final report

    International Nuclear Information System (INIS)

    1998-01-01

    This report describes a project by Science Applications International Corporation and its subcontractors Boeing/Rocketdyne and Bechtel Corp. to develop manufacturing technology for production of SAIC stretched membrane heliostats. The project consists of three phases, of which two are complete. This first phase had as its goals to identify and complete a detailed evaluation of manufacturing technology, process changes, and design enhancements to be pursued for near-term heliostat markets. In the second phase, the design of the SAIC stretched membrane heliostat was refined, manufacturing tooling for mirror facet and structural component fabrication was implemented, and four proof-of-concept/test heliostats were produced and installed in three locations. The proposed plan for Phase III calls for improvements in production tooling to enhance product quality and prepare increased production capacity. This project is part of the U.S. Department of Energy's Solar Manufacturing Technology Program (SolMaT)

  2. Targeted Structural Optimization with Additive Manufacturing of Metals

    Science.gov (United States)

    Burt, Adam; Hull, Patrick

    2015-01-01

    The recent advances in additive manufacturing (AM) of metals have now improved the state-of-the-art such that traditionally non-producible parts can be readily produced in a cost-effective way. Because of these advances in manufacturing technology, structural optimization techniques are well positioned to supplement and advance this new technology. The goal of this project is to develop a structural design, analysis, and optimization framework combined with AM to significantly light-weight the interior of metallic structures while maintaining the selected structural properties of the original solid. This is a new state-of-the-art capability to significantly reduce mass, while maintaining the structural integrity of the original design, something that can only be done with AM. In addition, this framework will couple the design, analysis, and fabrication process, meaning that what has been designed directly represents the produced part, thus closing the loop on the design cycle and removing human iteration between design and fabrication. This fundamental concept has applications from light-weighting launch vehicle components to in situ resource fabrication.

  3. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    Science.gov (United States)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  4. Enhancing Lean Manufacturing Learning Experience through Hands-On Simulation

    Science.gov (United States)

    Elbadawi, Isam; McWilliams, Douglas L.; Tetteh, Edem G.

    2010-01-01

    Finding appropriate interactive exercises to increase students' learning in technical topic courses is always challenging to educators. In this study, several paper plane hands-on simulation exercises were developed, used, and tested in a lean manufacturing course for beginning college students. A pretest and posttest was used to assess the…

  5. Implementing the South African additive manufacturing technology roadmap - the role of an additive manufacturing centre of competence

    Directory of Open Access Journals (Sweden)

    Du Preez, Willie Bouwer

    2015-08-01

    Full Text Available The Rapid Product Development Association of South Africa (RAPDASA expressed the need for a national Additive Manufacturing Roadmap. Consequentially, the South African Department of Science and Technology commissioned the development of a South African Additive Manufacturing Technology Roadmap. This was intended to guide role-players in identifying business opportunities, addressing technology gaps, focusing development programmes, and informing investment decisions that would enable local companies and industry sectors to become global leaders in selected areas of additive manufacturing. The challenge remains now for South Africa to decide on an implementation approach that will maximize the impact in the shortest possible time. This article introduces the concept of a national Additive Manufacturing Centre of Competence (AMCoC as a primary implementation vehicle for the roadmap. The support of the current leading players in additive manufacturing in South Africa for such a centre of competence is shared and their key roles are indicated. A summary of the investments that the leading players have already made in the focus areas of the AMCoC over the past two decades is given as confirmation of their commitment towards the advancement of the additive manufacturing technology. An exposition is given of how the AMCoC could indeed become the primary initiative for achieving the agreed national goals on additive manufacturing. The conclusion is that investment by public and private institutions in an AMCoC would be the next step towards ensuring South Africa’s continued progress in the field.

  6. Regulatory Perspectives on Continuous Pharmaceutical Manufacturing: Moving From Theory to Practice: September 26-27, 2016, International Symposium on the Continuous Manufacturing of Pharmaceuticals.

    Science.gov (United States)

    Nasr, Moheb M; Krumme, Markus; Matsuda, Yoshihiro; Trout, Bernhardt L; Badman, Clive; Mascia, Salvatore; Cooney, Charles L; Jensen, Keith D; Florence, Alastair; Johnston, Craig; Konstantinov, Konstantin; Lee, Sau L

    2017-11-01

    Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  7. Enhanced Inter-Cell Interference Coordination in Co-Channel Multi-Layer LTE-Advanced Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Wang, Yuanye; Strzyz, Stanislav

    2013-01-01

    Different technical solutions and innovations are enabling the move from macro-only scenarios towards heterogeneous networks with a mixture of different base station types. In this article we focus on multi-layer LTE-Advanced networks, and especially address aspects related to interference...... management. The network controlled time-domain enhanced inter-cell interference coordination (eICIC) concept is outlined by explaining the benefits and characteristics of this solution. The benefits of using advanced terminal device receiver architectures with interference suppression capabilities...... are motivated. Extensive system level performance results are presented with bursty traffic to demonstrate the eICIC concepts ability to dynamically adapt according to the traffic conditions....

  8. Computational modeling of electrically-driven deposition of ionized polydisperse particulate powder mixtures in advanced manufacturing processes

    Science.gov (United States)

    Zohdi, T. I.

    2017-07-01

    A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.

  9. Does External Knowledge Sourcing Enhance Market Performance? Evidence from the Korean Manufacturing Industry

    Science.gov (United States)

    Lee, Kibaek; Yoo, Jaeheung; Choi, Munkee; Zo, Hangjung; Ciganek, Andrew P.

    2016-01-01

    Firms continuously search for external knowledge that can contribute to product innovation, which may ultimately increase market performance. The relationship between external knowledge sourcing and market performance is not well-documented. The extant literature primarily examines the causal relationship between external knowledge sources and product innovation performance or to identify factors which moderates the relationship between external knowledge sourcing and product innovation. Non-technological innovations, such as organization and marketing innovations, intervene in the process of external knowledge sourcing to product innovation to market performance but has not been extensively examined. This study addresses two research questions: does external knowledge sourcing lead to market performance and how does external knowledge sourcing interact with a firm’s different innovation activities to enhance market performance. This study proposes a comprehensive model to capture the causal mechanism from external knowledge sourcing to market performance. The research model was tested using survey data from manufacturing firms in South Korea and the results demonstrate a strong statistical relationship in the path of external knowledge sourcing (EKS) to product innovation performance (PIP) to market performance (MP). Organizational innovation is an antecedent to EKS while marketing innovation is a consequence of EKS, which significantly influences PIP and MP. The results imply that any potential EKS effort should also consider organizational innovations which may ultimately enhance market performance. Theoretical and practical implications are discussed as well as concluding remarks. PMID:28006022

  10. U.S. Wind Energy Manufacturing & Supply Chain: A Competitive Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fullenkamp, Patrick [Global WindNetwork, Cleveland, OH (United States)

    2014-06-15

    The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs.

  11. Pharmacological cognitive enhancement-how neuroscientific research could advance ethical debate.

    Science.gov (United States)

    Maslen, Hannah; Faulmüller, Nadira; Savulescu, Julian

    2014-01-01

    THERE ARE NUMEROUS WAYS PEOPLE CAN IMPROVE THEIR COGNITIVE CAPACITIES: good nutrition and regular exercise can produce long-term improvements across many cognitive domains, whilst commonplace stimulants such as coffee temporarily boost levels of alertness and concentration. Effects like these have been well-documented in the medical literature and they raise few (if any) ethical issues. More recently, however, clinical research has shown that the off-label use of some pharmaceuticals can, under certain conditions, have modest cognition-improving effects. Substances such as methylphenidate and modafinil can improve capacities such as working memory and concentration in some healthy individuals. Unlike their more mundane predecessors, these methods of "cognitive enhancement" are thought to raise a multitude of ethical issues. This paper presents the six principal ethical issues raised in relation to pharmacological cognitive enhancers (PCEs)-issues such as whether: (1) the medical safety-profile of PCEs justifies restricting or permitting their elective or required use; (2) the enhanced mind can be an "authentic" mind; (3) individuals might be coerced into using PCEs; (4), there is a meaningful distinction to be made between the treatment vs. enhancement effect of the same PCE; (5) unequal access to PCEs would have implications for distributive justice; and (6) PCE use constitutes cheating in competitive contexts. In reviewing the six principal issues, the paper discusses how neuroscientific research might help advance the ethical debate. In particular, the paper presents new arguments about the contribution neuroscience could make to debates about justice, fairness, and cheating, ultimately concluding that neuroscientific research into "personalized enhancement" will be essential if policy is to be truly informed and ethical. We propose an "ethical agenda" for neuroscientific research into PCEs.

  12. Enhanced Prophylaxis plus Antiretroviral Therapy for Advanced HIV Infection in Africa.

    Science.gov (United States)

    Hakim, James; Musiime, Victor; Szubert, Alex J; Mallewa, Jane; Siika, Abraham; Agutu, Clara; Walker, Simon; Pett, Sarah L; Bwakura-Dangarembizi, Mutsa; Lugemwa, Abbas; Kaunda, Symon; Karoney, Mercy; Musoro, Godfrey; Kabahenda, Sheila; Nathoo, Kusum; Maitland, Kathryn; Griffiths, Anna; Thomason, Margaret J; Kityo, Cissy; Mugyenyi, Peter; Prendergast, Andrew J; Walker, A Sarah; Gibb, Diana M

    2017-07-20

    In sub-Saharan Africa, among patients with advanced human immunodeficiency virus (HIV) infection, the rate of death from infection (including tuberculosis and cryptococcus) shortly after the initiation of antiretroviral therapy (ART) is approximately 10%. In this factorial open-label trial conducted in Uganda, Zimbabwe, Malawi, and Kenya, we enrolled HIV-infected adults and children 5 years of age or older who had not received previous ART and were starting ART with a CD4+ count of fewer than 100 cells per cubic millimeter. They underwent simultaneous randomization to receive enhanced antimicrobial prophylaxis or standard prophylaxis, adjunctive raltegravir or no raltegravir, and supplementary food or no supplementary food. Here, we report on the effects of enhanced antimicrobial prophylaxis, which consisted of continuous trimethoprim-sulfamethoxazole plus at least 12 weeks of isoniazid-pyridoxine (coformulated with trimethoprim-sulfamethoxazole in a single fixed-dose combination tablet), 12 weeks of fluconazole, 5 days of azithromycin, and a single dose of albendazole, as compared with standard prophylaxis (trimethoprim-sulfamethoxazole alone). The primary end point was 24-week mortality. A total of 1805 patients (1733 adults and 72 children or adolescents) underwent randomization to receive either enhanced prophylaxis (906 patients) or standard prophylaxis (899 patients) and were followed for 48 weeks (loss to follow-up, 3.1%). The median baseline CD4+ count was 37 cells per cubic millimeter, but 854 patients (47.3%) were asymptomatic or mildly symptomatic. In the Kaplan-Meier analysis at 24 weeks, the rate of death with enhanced prophylaxis was lower than that with standard prophylaxis (80 patients [8.9% vs. 108 [12.2%]; hazard ratio, 0.73; 95% confidence interval [CI], 0.55 to 0.98; P=0.03); 98 patients (11.0%) and 127 (14.4%), respectively, had died by 48 weeks (hazard ratio, 0.76; 95% CI, 0.58 to 0.99; P=0.04). Patients in the enhanced-prophylaxis group had

  13. Design and manufacturing of bio-based sandwich structures

    CSIR Research Space (South Africa)

    John, Maya J

    2017-03-01

    Full Text Available The aim of this chapter is to discuss the design and manufacturing of bio-based sandwich structures. As the economic advantages of weight reduction have become mandatory for many advanced industries, bio-based sandwich panels have emerged...

  14. Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery

    Science.gov (United States)

    Harrysson, Ola L. A.; Marcellin-Little, Denis J.; Horn, Timothy J.

    2015-03-01

    Veterinary medicine has undergone a rapid increase in specialization over the last three decades. Veterinarians now routinely perform joint replacement, neurosurgery, limb-sparing surgery, interventional radiology, radiation therapy, and other complex medical procedures. Many procedures involve advanced imaging and surgical planning. Evidence-based medicine has also become part of the modus operandi of veterinary clinicians. Modeling and additive manufacturing can provide individualized or customized therapeutic solutions to support the management of companion animals with complex medical problems. The use of metal additive manufacturing is increasing in veterinary orthopedic surgery. This review describes and discusses current and potential applications of metal additive manufacturing in veterinary orthopedic surgery.

  15. Advances in the manufacture of clad tubes and components for PHWR fuel bundle

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Chandrasekha, B.; Tonpe, S.; Jayaraj, R.N.

    2010-01-01

    Fuel bundles for Pressurized Heavy Water Reactors (PHWRs) consists of Uranium di-oxide pellets encapsulated into thin wall Zircaloy clad tubes. Other components such as end caps, bearing pads and spacer pads are the integral elements of the fuel bundle. As the fuel assembly is subjected to severe operating conditions of high temperature and pressure in addition to continual irradiation exposure, all the components are manufactured conforming to stringent specifications with respect to chemical composition, mechanical & metallurgical properties and dimensional tolerances. The integrity of each component is ensured by NDE at different stages of manufacture. The manufacturing route for fuel tubes and components comprise of a combination of thermomechanical processing and each process step has marked effect on the final properties. The fuel tubes are manufactured by processing the extruded blanks in four stage cold pilgering with intermediate annealing and final stress relieving operation. The bar material is produced by hot extrusion followed by multi-pass swaging and intermediate annealing. Spacer pads and bearing pads are manufactured by blanking and coining of Zircaloy sheet which is made by a combination of hot and cold rolling operations. Due to the small size and stringent dimensional requirements of these appendages, selection of production route and optimization of process parameters are important. This paper discusses about various measures taken for improving the recoveries and mechanical and corrosion properties of the tube, sheet and bar materials being manufactured at Nuclear Fuel Complex, Hyderabad For the production of clad tubes, modifications at extrusion stage to reduce the wall thickness variation, introduction of ultrasonic testing of extruded blanks, optimization of cold working and heat treatment parameters at various stages of production etc. were done. The finished bar material is subjected to 100% Ultrasonic and eddy current testing to ensure

  16. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to demonstrate feasibility of using selective laser melting (SLM, an emerging manufacturing technique) to manufacture a subscale...

  17. Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...

  18. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  19. Characterization and manufacture of braided composites for large commercial aircraft structures

    Science.gov (United States)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  20. ADVANCING THE SCIENCE OF NATURAL AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B; TOM O. EARLY, T; TYLER GILMORE, T; FRANCIS H. CHAPELLE, F; NORMAN H. CUTSHALL, N; JEFF ROSS, J; MARK ANKENY, M; Michael Heitkamp, M; DAVID MAJOR, D; CHARLES J. NEWELL, C; W. JODY WAUGH, W; GARY WEIN, G; Karen Vangelas, K; Karen-M Adams, K; CLAIRE H. SINK, C

    2006-12-27

    This report summarizes the results of a three-year program that addressed key scientific and technical aspects related to natural and enhanced attenuation of chlorinated organics. The results from this coordinated three-year program support a variety of technical and regulatory advancements. Scientists, regulators, engineers, end-users and stakeholders participated in the program, which was supported by the U.S. Department of Energy (DOE) and the Interstate Technology and Regulatory Council (ITRC). The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). A key result of the recent effort was the general affirmation of the approaches and guidance in the original U.S. Environmental Protection Agency (EPA) chlorinated solvent MNA protocols and directives from 1998 and 1999, respectively. The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Natural attenuation processes occur in all soil and groundwater systems and act, to varying degrees, on all contaminants. Thus, a decision to rely on natural attenuation processes as part of a site-remediation strategy does not depend on the occurrence of natural attenuation, but on its effectiveness in meeting site-specific remediation goals. Meeting these goals

  1. Advancing Drug Discovery through Enhanced Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Harder, Edward D; Berne, B J; Friesner, Richard A

    2017-07-18

    A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates

  2. Manufacturing Improvement Program for the Oil and Gas Industry Supply Chain and Marketing Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robert [Oklahoma State Univ., Stillwater, OK (United States)

    2016-09-28

    This project supported upgrades for manufacturing companies in the oil and natural gas supply chain in Oklahoma. The goal is to provide assistance that will lead to the improved efficiency advancement of the manufacturing processes currently used by the existing manufacturing clients. The basis for the work is to improve the economic environment for the clients and the communities they serve.

  3. A Pilot Computer-Aided Design and Manufacturing Curriculum that Promotes Engineering

    Science.gov (United States)

    2002-01-01

    Elizabeth City State University (ECSU) is located in a community that is mostly rural in nature. The area is economically deprived when compared to the rest of the state. Many businesses lack the computerized equipment and skills needed to propel upward in today's technologically advanced society. This project will close the ever-widening gap between advantaged and disadvantaged workers as well as increase their participation with industry, NASA and/or other governmental agencies. Everyone recognizes computer technology as the catalyst for advances in design, prototyping, and manufacturing or the art of machining. Unprecedented quality control and cost-efficiency improvements are recognized through the use of computer technology. This technology has changed the manufacturing industry with advanced high-tech capabilities needed by NASA. With the ever-widening digital divide, we must continue to provide computer technology to those who are socio-economically disadvantaged.

  4. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to use selective laser melting (SLM, an additive manufacturing technique) to manufacture a hot fire-capable, water-cooled spool...

  5. Preliminary Characterization and Analysis of the Designs and Research-Manufacturing Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Gwendolyn Cheney; Williams Dawson; Michael Cobb; Kirby Meacham; James Stephan; Bob Remick; Harlan Anderson; Wayne Huebner; Aaron Crumm; John Holloran; Tim Armstrong

    2000-10-30

    This report summarizes the results of Phase I of a study entitled, Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells. The work was carried out by a group called the Multilayer Fuel Cell Alliance (MLFCA) led by NexTech Materials and including Adaptive Materials, Advanced Materials Technologies (AMT), Cobb & Co., Edison Materials Technology Center, Iowa State University, Gas Technology Institute (GTI), Northwestern University, Oak Ridge National Laboratory (ORNL), Ohio State University, University of Missouri-Rolla (UMR), and Wright-Patterson Air Force Base. The objective of the program is to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. In the Phase I effort, five approaches were considered: two based on NexTech's planar approach using anode and cathode supported variations, one based on UMR's ultra-thin electrolyte approach, and two based on AMI's co-extrusion technology. Based on a detailed manufacturing cost analysis, all of the approaches are projected to result in a significantly reduced production cost. Projected costs range from $139/kW to $179/kW for planar designs. Development risks were assessed for each approach and it was determined that the NexTech and UMR approaches carried the least risk for successful development. Using advanced manufacturing methods and a proprietary high power density design, the team estimated that production costs could be reduced to $94/kW.

  6. Decision making in the manufacturing environment using graph theory and fuzzy multiple attribute decision making methods

    CERN Document Server

    Rao, Ravipudi Venkata

    2007-01-01

    Manufacturing is the backbone of any industrialized nation. Recent worldwide advances in manufacturing technologies have brought about a metamorphism in the industry. Fast-changing technologies on the product front have created a need for an equally fast response from manufacturing industries. To meet these challenges, manufacturing industries have to select appropriate manufacturing strategies, product designs, manufacturing processes, work piece and tool materials, and machinery and equipment. The selection decisions are complex as decision making is more challenging today. Decision makers i

  7. Chemistry, manufacturing and control (CMC) and clinical trial technical support for influenza vaccine manufacturers.

    Science.gov (United States)

    Wahid, Rahnuma; Holt, Renee; Hjorth, Richard; Berlanda Scorza, Francesco

    2016-10-26

    With the support of the Biomedical Advanced Research and Development Authority (BARDA) of the US Department of Health and Human Services, PATH has contributed to the World Health Organization's (WHO's) Global Action Plan for Influenza Vaccines (GAP) by providing technical and clinical assistance to several developing country vaccine manufacturers (DCVMs). GAP builds regionally based independent and sustainable influenza vaccine production capacity to mitigate the overall global shortage of influenza vaccines. The program also ensures adequate influenza vaccine manufacturing capacity in the event of an influenza pandemic. Since 2009, PATH has worked closely with two DCVMs in Vietnam: the Institute of Vaccines and Medical Biologicals (IVAC) and VABIOTECH. Beginning in 2013, PATH also began working with Torlak Institute in Serbia; Instituto Butantan in Brazil; Serum Institute of India Private Ltd. in India; and Changchun BCHT Biotechnology Co. (BCHT) in China. The DCVMs supported under the GAP program all had existing influenza vaccine manufacturing capability and required technical support from PATH to improve vaccine yield, process efficiency, and product formulation. PATH has provided customized technical support for the manufacturing process to each DCVM based on their respective requirements. Additionally, PATH, working with BARDA and WHO, supported several DCVMs in the clinical development of influenza vaccine candidates progressing toward national licensure or WHO prequalification. As a result of the activities outlined in this review, several companies were able to make excellent progress in developing state-of-the-art manufacturing processes and completing early phase clinical trials. Licensure trials are currently ongoing or planned for several DCVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The ManuFuture road: towards competitive and sustainable high-adding-value manufacturing

    National Research Council Canada - National Science Library

    Jovane, Francesco; Westkämper, E; Williams, D. J

    2009-01-01

    ... is still leading the global trade market. Key issues, from globalization to climate change, are challenging manufacturing in advanced as well as emerging countries. Hence, manufacturing is getting back to the political agendas and the awareness of stakeholders is rising. In Europe key issues may lead to disruptive changes in the socio-economic syst...

  9. The present status and future growth of maintenance in US manufacturing: results from a pilot survey.

    Science.gov (United States)

    Jin, Xiaoning; Siegel, David; Weiss, Brian A; Gamel, Ellen; Wang, Wei; Lee, Jay; Ni, Jun

    A research study was conducted (1) to examine the practices employed by US manufacturers to achieve productivity goals and (2) to understand what level of intelligent maintenance technologies and strategies are being incorporated into these practices. This study found that the effectiveness and choice of maintenance strategy were strongly correlated to the size of the manufacturing enterprise; there were large differences in adoption of advanced maintenance practices and diagnostics and prognostics technologies between small and medium-sized enterprises (SMEs). Despite their greater adoption of maintenance practices and technologies, large manufacturing organizations have had only modest success with respect to diagnostics and prognostics and preventive maintenance projects. The varying degrees of success with respect to preventative maintenance programs highlight the opportunity for larger manufacturers to improve their maintenance practices and use of advanced prognostics and health management (PHM) technology. The future outlook for manufacturing PHM technology among the manufacturing organizations considered in this study was overwhelmingly positive; many manufacturing organizations have current and planned projects in this area. Given the current modest state of implementation and positive outlook for this technology, gaps, future trends, and roadmaps for manufacturing PHM and maintenance strategy are presented.

  10. Advances in recombinant antibody manufacturing.

    Science.gov (United States)

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.

  11. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  12. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  13. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  14. A study on the economics enhancement of OPR1000 applied to advanced construction methods

    International Nuclear Information System (INIS)

    Park, Ki Jo; Yoon, Eun Sang

    2007-01-01

    OPR1000 (Optimized Power Reactor 1000MW) is a totally improved design model of Korea nuclear power plants and the latest 1,000MW nuclear power plant in the Republic of Korea. Shin Kori 1 and 2 and Shin Wolsong 1 and 2 and under construction and these are OPR1000 types. Although OPR1000 is up to data 1,000MW nuclear power plant, it is not enough to be much superior to other nuclear power plants. Under the WTO and FTA circumstance of domestic and stiff overseas competition for nuclear power plants, it is necessary to enhance the economics of OPR1000. And then, the enhanced economic alternatives are reviewed and the advanced construction methods are considered. Based on research and a comprehensive review of nuclear power plant construction experiences, an alternative application of advanced construction methods is developed and compared with existing OPR1000 for schedule and economics. In this paper, economic analyses of a construction cost and a levelized electricity generation cost are performed

  15. Fact sheet on fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2006-01-01

    The Nuclear Fuel Cycle and Materials Section (NFCMS) supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle, provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection, supports the development fuel modeling expertise in Member States, covering both normal operation and postulated and severe accident conditions, provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation, supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, provides information and support research into the basic properties of fuel materials, including UO2, MOX, (Th, Pu)O2, (Th, U233)O2 fuels and zirconium alloy cladding and fuel assembly components and offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology and materials, economic and other aspects of nuclear fuel use (e.g. environmental impact). Recently NFCMS provided support to a Member State manufacturing Gadolinia doped fuel and provided in-mast sipping equipment to a Nuclear Power Plant to allow the determination of fuel failure. Member States interested in fuel performance and manufacture should contact the Technical Cooperation Department of the Agency and Member States interested in knowing more about the Agency's programme on source management should contact: C. Ganguly, Section Head, V. Inozemtsev, J. Killeen

  16. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing

    Directory of Open Access Journals (Sweden)

    Adam Sanders

    2016-09-01

    Full Text Available Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industry 4.0 and lean manufacturing, and investigates whether Industry 4.0 is capable of implementing lean. Executing Industry 4.0 is a cost-intensive operation, and is met with reluctance from several manufacturers. This research also provides an important insight into manufacturers’ dilemma as to whether they can commit into Industry 4.0, considering the investment required and unperceived benefits. Design/methodology/approach: Lean manufacturing is first defined and different dimensions of lean are presented. Then Industry 4.0 is defined followed by representing its current status in Germany. The barriers for implementation of lean are analysed from the perspective of integration of resources. Literatures associated with Industry 4.0 are studied and suitable solution principles are identified to solve the abovementioned barriers of implementing lean. Findings: It is identified that researches and publications in the field of Industry 4.0 held answers to overcome the barriers of implementation of lean manufacturing. These potential solution principles prove the hypothesis that Industry 4.0 is indeed capable of implementing lean. It uncovers the fact that committing into Industry 4.0 makes a factory lean besides being smart. Originality/value: Individual researches have been done in various technologies allied with Industry 4.0, but the potential to execute lean manufacturing was not completely perceived. This paper bridges the gap between these two realms, and identifies

  17. Comparative labour productivity performance in Chinese manufacturing, 1952-1997 : An ICOP PPP approach

    NARCIS (Netherlands)

    Wu, Harry X.

    2001-01-01

    This study joins the debate of whether Chinese manufacturing has experienced a significant catch-up with or a process of falling behind the world’s advanced economies. It calculates a new set of industry-of-origin China-US PPPs for major manufacturing industries at 1987 prices. Then using a newly

  18. Advanced technologies for manufacturing high strength sour grade UOE line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Omura, Tomohiko; Takahashi, Nobuaki; Minato, Izuru; Yamamoto, Akio [Sumitomo Metal Industries, Ltd., Kashima, (Japan)

    2010-07-01

    A new kind of high strength pipeline has been manufactured for sour service in offshore pipelines. This paper first presents a review of developments in manufacturing technology to improve sour resistance. This was particularly the case with Grade UOE line pipe. The improvement was achieved by optimizing the continuous casting process, monitoring the shape of inclusions (such as MnS, CaS, Al2O3, CaO-Al2O3) and decreasing coarse precipitates (Nb(C,N), TiN). The study then used the HIC evaluation method to determine hydrogen induced cracking (HIC) resistance of the material and HAZ test for sulfide stress cracking (SSC) resistance. The evaluation of the NACE TM0284 solution A showed that these pipelines are able to resist severe sour conditions because of good HIC and SSC resistance. Optimizing others components like alloying elements and the ACC process would improve sour resistance in future applications.

  19. Manufacturing Technology Information Analysis Center: Knowledge Is Strength

    Science.gov (United States)

    Safar, Michal

    1992-01-01

    The Center's primary function is to facilitate technology transfer within DoD, other government agencies and industry. The DoD has recognized the importance of technology transfer, not only to support specific weapon system manufacture, but to strengthen the industrial base that sustains DoD. MTIAC uses an experienced technical staff of engineers and information specialists to acquire, analyze, and disseminate technical information. Besides ManTech project data, MTIAC collects manufacturing technology from other government agencies, commercial publications, proceedings, and various international sources. MTIAC has various means of disseminating this information. Much of the technical data is on user accessible data bases. The Center researches and writes a number of technical reports each year and publishes a newsletter monthly. Customized research is performed in response to specific inquiries from government and industry. MTIAC serves as a link between Government and Industry to strengthen the manufacturing technology base through the dissemination of advanced manufacturing information.

  20. Lean Manufacturing Auto Cluster at Chennai

    Science.gov (United States)

    Bhaskaran, E.

    2012-10-01

    Due the presence of lot of automotive Industry, Chennai is known as Detroit of India, that producing over 40 % of the Indian vehicle and components. Lean manufacturing concepts have been widely recognized as an important tool in improving the competitiveness of industries. This is a continuous process involving everyone, starting from management to the shop floor. Automotive Component Industries (ACIs) in Ambattur Industrial Estate, Chennai has formed special purpose vehicle (SPV) society namely Ambattur Industrial Estate Manufacturers Association (AIEMA) Technology Centre (ATC) lean manufacturing cluster (ATC-LMC) during July 2010 under lean manufacturing competitiveness scheme, that comes under National Manufacturing Competitiveness Programme of Government of India. The Tripartite Agreement is taken place between National Productivity Council, consultants and cluster (ATC-LMC). The objective is to conduct diagnostic study, study on training and application of various lean manufacturing techniques and auditing in ten ACIs. The methodology adopted is collection of primary data/details from ten ACIs. In the first phase, diagnostic study is done and the areas for improvement in each of the cluster member companies are identified. In the second phase, training programs and implementation is done on 5S and other areas. In the third phase auditing is done and found that the lean manufacturing techniques implementation in ATC-LMC is sustainable and successful in every cluster companies, which will not only enhance competitiveness but also decrease cost, time and increase productivity. The technical efficiency of LMC companies also increases significantly.

  1. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing.

    Science.gov (United States)

    Oh, Ji-Hyeon

    2018-12-01

    With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

  2. Motivational factors as determinants of employee commitment and performance enhancement in profit oriented firms: a survey of selected brewery manufacturing companies in Nigeria

    Directory of Open Access Journals (Sweden)

    Sev Joseph Teryima

    2016-07-01

    Full Text Available The objective of the study is to investigate the Impact of Motivational Factors such as extrinsic, intrinsic rewards and social motivational on employee commitment and performance enhancement in profit oriented firms with a focus on selected Brewery Manufacturing firms in Nigeria. Data for this research is obtained from both primary and secondary sources. The sample size for the study is 280 from six (6 Brewery firms. Multiple Regression test was used in testing the two (2 formulated hypotheses. The study findings revealed that motivational factors such as Intrinsic, extrinsic and social motivation have a good relationship with employee commitment and performance enhancement in profit oriented firms especially Brewery manufacturing companies. Other findings were that lack of motivational incentives will lead to employee frustration in these companies. The study recommends that adequate and consistent provision of intrinsic, extrinsic and social motivational incentive packages to staff to facilitate employee commitment and high performance attainment is important at all times. The study also recommended that, establishing organizational objectives and goals by companies is a good starting point by management to know the essential motivational incentives that should be granted to employees for productivity attainment.

  3. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Energy Technology Data Exchange (ETDEWEB)

    James, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-12

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing, and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  4. Blockchain Enhanced Emission Trading Framework in Fashion Apparel Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Bailu Fu

    2018-04-01

    Full Text Available Motivated by the recent blockchain technology originally built for bitcoin transactions, various industries are exploring the opportunities to redefine their existing operational systems. In this study, an innovative environmentally sustainable solution is proposed for the fashion apparel manufacturing industry (FAMI, which is energized by blockchain. Incorporating the Emission Trading Scheme (ETS, and a novel “emission link” system, the proposed framework exposes carbon emission to the public and establishes a feature to reduce the emissions for all key steps of clothing making. Fully compatible with Industry 4.0, blockchain provides decentralization, transparency, automation, and immutability characteristics to the proposed framework. Specifically, the blockchain supported ETS framework, the carbon emissions of clothing manufacturing life cycle, and the emission link powered procedures are introduced in detail. A case study is provided to demonstrate the carbon emission evaluation procedure. Finally, a multi-criteria evaluation is performed to demonstrate the benefits and drawbacks of the proposed system.

  5. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    Science.gov (United States)

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  6. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  7. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project “Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  8. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    Science.gov (United States)

    O’Neal, T. Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. This paper discusses the impacts of the DMLS fabrication technique on the design of the turbopump and lessons learned during DMLS hardware fabrication and material testing.

  9. Advanced Polymer Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  10. Employee commitment and performance of manufacturing firms ...

    African Journals Online (AJOL)

    445) between job satisfaction and employee organizational commitment. Multiple regression revealed that pay and job promotion are the important elements that influence employee commitment. It is recommended that manufacturing organizations should emphasize pay and job promotion to enhance higher employee ...

  11. Industry 4.0 and representative participation in innovation in manufacturing industries

    OpenAIRE

    Ramioul, Monique

    2017-01-01

    Industry 4.0 and representative participation in innovation in manufacturing industries Prof. dr. Monique Ramioul HIVA-KU Leuven, Belgium Abstract submitted for the ETUI-workshop “Digitalization of manufacturing and restructuring of value chains: technology adoption, upgrading, and the changing geography of production in Europe.” (23-24 February 2017, Naples Italy). Under the umbrella concept Industry4.0, the advanced digitalisation and robotisation of industry is presented as a pro...

  12. The impact on advanced economies of north-south trade in manufacturing and services

    Directory of Open Access Journals (Sweden)

    Robert Rowthorn

    2005-04-01

    Full Text Available Many types of production are being transferred from the rich economies of the North to the poorer economies of the South. Such changes began in manufacturing but are now spreading to services. This paper provides estimates of their past and future impact on employment in the North. About 5 million manufacturing jobs have been lost over the past decade because of trade with low-wage economies. A similar number of service jobs may be lost to low-wage economies over the next decade. Although small compared to total employment, such losses may seriously harm certain localities or types of worker.

  13. Micro-manufacturing technologies and their applications a theoretical and practical guide

    CERN Document Server

    Shipley, David

    2017-01-01

    This book provides in-depth theoretical and practical information on recent advances in micro-manufacturing technologies and processes, covering such topics as micro-injection moulding, micro-cutting, micro-EDM, micro-assembly, micro-additive manufacturing, moulded interconnected devices, and microscale metrology. It is designed to provide complementary material for the related e-learning platform on micro-manufacturing developed within the framework of the Leonardo da Vinci project 2013-3748/542424: MIMAN-T: Micro-Manufacturing Training System for SMEs. The book is mainly addressed to technicians and prospective professionals in the sector and will serve as an easily usable tool to facilitate the translation of micro-manufacturing technologies into tangible industrial benefits. Numerous examples are included to assist readers in learning and implementing the described technologies. In addition, an individual chapter is devoted to technological foresight, addressing market analysis and business models for mic...

  14. Additive manufacturing for freeform mechatronics design: from concepts to applications

    NARCIS (Netherlands)

    Baars, G. van; Smeltink, J.; Werff, J. van der; Limpens, M.; Barink, M.; Berg, D. van den; Vreugd, J. de; Witvoet, G.; Galaktionov, O.S.

    2015-01-01

    This article presents developments of freeform mechatronics concepts, enabled by industrial Additive Manufacturing (AM), aiming at breakthroughs for precision engineering challenges such as lightweight, advanced thermal control, and integrated design. To assess potential impact in future

  15. Simulation Modeling by Classification of Problems: A Case of Cellular Manufacturing

    International Nuclear Information System (INIS)

    Afiqah, K N; Mahayuddin, Z R

    2016-01-01

    Cellular manufacturing provides good solution approach to manufacturing area by applying Group Technology concept. The evolution of cellular manufacturing can enhance performance of the cell and to increase the quality of the product manufactured but it triggers other problem. Generally, this paper highlights factors and problems which emerge commonly in cellular manufacturing. The aim of the research is to develop a thorough understanding of common problems in cellular manufacturing. A part from that, in order to find a solution to the problems exist using simulation technique, this classification framework is very useful to be adapted during model building. Biology evolution tool was used in the research in order to classify the problems emerge. The result reveals 22 problems and 25 factors using cladistic technique. In this research, the expected result is the cladogram established based on the problems in cellular manufacturing gathered. (paper)

  16. Development in the manufacture of fuel assembly components at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Saibaba, N.

    2012-01-01

    The integrity of the fuel bundle and pellet-clad mechanical and chemical interaction (PCMCI) is the major limiting factor in achieving high burn up in thermal as well as fast reactors. Zircaloy based fuel bundle used for Indian pressurized heavy water reactor consists of number of components such as fuel clad tube, end cap bearing pad and spacer pad. These tubular, bar and sheet components are manufactured at Nuclear Fuel Complex using a series of thermomechanical processes involving hot and cold working with intermediate heat treatment. This paper is aimed at bringing out recent advances in NFC in the manufacture of fuel assembly components. Zircaloy based double clad tube adopting co-extrusion route followed by cold pilgering was successfully produced for its potential usage for high burnup in advance thermal reactors such as Advanced Heavy Water Reactors, This paper also includes process modifications carried out in the manufacture of clad tube and end cap components based on in-depth metallurgical studies. A radial forging process was established for primary breakdown of arc melted ingot which allows for better soundness and homogeneous microstructure. Manufacturing route of bar components for end caps was suitably modified by adopting only barrel straightening to minimize the residual stress and thereby increasing the recovery appreciably. NFC also supplies clad tube for fast breeder reactors where limiting factor for burn up are void swelling and fuel-clad interaction. In view of this, advance claddings such as P/M based 9Cr - Oxide Dispersion strengthened (ODS) steel clad and Zirconium lined T91 (9Cr-1 Mo) steel double clad have been successfully produced. Zirconium lined T91 (9Cr-1 Mo) double clad tubes required was successfully produced by adopting the method of co-pilgering, as a candidate material for clad tubes of Fast Breeder Reactors. (author)

  17. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  18. Advanced light source technologies that enable high-volume manufacturing of DUV lithography extensions

    Science.gov (United States)

    Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin

    2012-03-01

    Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.

  19. Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties.

    Science.gov (United States)

    Luchese, Cláudia Leites; Uranga, Jone; Spada, Jordana Corralo; Tessaro, Isabel Cristina; de la Caba, Koro

    2018-08-01

    Blueberry waste from juice processing was valorised to develop starch films by compression moulding. The compression process resulted in hydrophobic films with water contact angles even higher than 100° for the films prepared with the highest blueberry waste content. Additionally, the film solubility was reduced by the incorporation of blueberry waste, regardless of the solution pH. These films also exhibited good barrier properties against UV light due to the aromatic compounds present in the blueberry waste. Furthermore, films showed a homogenous surface, although some pores appeared in the cross-section for the films with the highest blueberry waste content. Results highlighted the use of thermo-mechanical processes such as compression to manufacture sustainable films with enhanced properties through waste valorisation by the techniques actually employed at industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. E3 Success Story - Advancing Performance in Sustainability and Workforce Development

    Science.gov (United States)

    E3: North Carolina advances performance in sustainability and workforce development strategies for the state's manufacturers. The initiative helps communities and manufacturers address energy and sustainability challenges by leveraging expertise.

  1. Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement (ADVANCE) Technology Development for Resilient Flight Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test a framework referred to as the ADVANCE (Algorithm Design and Validation for Adaptive Nonlinear Control Enhancement), within which...

  2. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  3. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    Science.gov (United States)

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  5. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  6. A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy.

    Science.gov (United States)

    Spielmann, Guillaume; Bollard, Catherine M; Kunz, Hawley; Hanley, Patrick J; Simpson, Richard J

    2016-05-16

    Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy.

  7. Research cooperation project on manufacturing technology supported by advanced and integrated information system through international cooperation (MATIC); Kan`i sosagata denshi sekkei seisan shien system no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To support the advancement of basic industries including machine industry in Asian countries, research cooperation has been conducted for developing the manufacturing technology supported by advanced and integrated information system suitable for actual circumstances of individual countries. For the automotive and the parts industries, it is significant for the preparation works of manufacturing in overseas factories to possess common information between Japan and overseas factories. In this project, a system is constructed, which can be used in industries surrounding automotive industry, such as parts and facility industries, as well as in the automotive industry. In FY 1996, a primary system has been developed, and the demonstration tests were carried out. For the home electric machine and the parts industries, the technology applicable to the design of printed board circuit was developed, and the catalog of electronic parts was constructed. In FY 1996, a preliminary prototype system of the electronic parts catalog system was designed and developed. For the textile and apparel industries, the EDI, exchange system of CAD/CAM data, and construction of data bank were investigated. 87 figs., 19 tabs.

  8. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  9. Diverse task scheduling for individualized requirements in cloud manufacturing

    Science.gov (United States)

    Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida

    2018-03-01

    Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.

  10. Differences in the design and sale of e-cigarettes by cigarette manufacturers and non-cigarette manufacturers in the USA.

    Science.gov (United States)

    Seidenberg, Andrew B; Jo, Catherine L; Ribisl, Kurt M

    2016-04-01

    Three categories of e-cigarette brands have emerged within the US market: e-cigarette brands developed by cigarette manufacturers, brands acquired by cigarette manufacturers and brands with no cigarette manufacturer affiliation. In the absence of federal regulatory oversight of e-cigarettes, we assessed differences in e-cigarette products and sales practices across these categories. Brand websites for top-selling e-cigarette brands from each of these categories were examined in October of 2015 to compare website access restrictions, online sales practices and products sold, including e-cigarette model type (eg, 'cigalike' vs advanced systems) and options available (eg, flavoured, nicotine free). Website access to brands developed by cigarette manufacturers was restricted to users aged 21 years or older, and one website required user registration. In addition, these brands were exclusively reusable/rechargeable 'cigalikes.' Limited flavour options were available for these products, and nicotine-free options were not sold. In contrast, brands acquired by cigarette manufacturers and brands with no cigarette manufacturer affiliation generally required website visitors to be 18, offered a nicotine-free option, and most offered disposable products and an array of flavoured products (eg, fruit/candy flavours). This exploratory study finds differences in e-cigarette products and sales practices across these three e-cigarette brand categories, with brands developed by cigarette manufacturers adopting a particularly distinctive product and sales strategy. Anticipated regulation of e-cigarettes in the USA may be influencing these product and sales decisions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    Science.gov (United States)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  12. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  13. Manufacturing data analytics using a virtual factory representation.

    Science.gov (United States)

    Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun

    2017-01-01

    Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.

  14. Friction Stir Welding: Standards and Specifications in Today's U.S. Manufacturing and Fabrication

    Science.gov (United States)

    Ding, Robert Jeffrey

    2008-01-01

    New welding and technology advancements are reflected in the friction stir welding (FSW) specifications used in the manufacturing sector. A lack of publicly available specifications as one of the reasons that the FSW process has not propagate through the manufacturing sectors. FSW specifications are an integral supporting document to the legal agreement written between two entities for deliverable items. Understanding the process and supporting specifications is essential for a successful FSW manufacturing operation. This viewgraph presentation provides an overview of current FSW standards in the industry and discusses elements common to weld specifications.

  15. Further Cost Reduction of Battery Manufacturing

    Directory of Open Access Journals (Sweden)

    Amir A. Asif

    2017-06-01

    Full Text Available The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV and wind energy installation as well as electric vehicle (EV, hybrid electric vehicle (HEV and plug-in hybrid electric vehicle (PHEV. Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%.

  16. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A [ORNL; Lindahl, John M [ORNL; JohnsonPhD, DR Joseph E. [Nanocomp Technologies, Inc.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  17. Future Role of Application of New Technologies in Small-and Medium Scale Manufacturing Systems - Regarding Intelligent and Advanced Manufacturing Systems in Northern Peripheral Area

    OpenAIRE

    Somlò, Kinga; Sziebig, Gabor

    2017-01-01

    Accepted manuscript version. Link to publishers version: http://doi.org/10.1109/ISIE.2017.8001510 Nowadays the concept of Industry 4.0. and the relating intelligent manufacturing system are getting more and more current and well-known. In the past years the outstanding development of different areas such as information technology computer science, machining, robotics and so on, made possible a comprehensive transformation of the manufacturing systems. Present paper aims to give a gener...

  18. An analytic framework for developing inherently-manufacturable pop-up laminate devices

    International Nuclear Information System (INIS)

    Aukes, Daniel M; Goldberg, Benjamin; Wood, Robert J; Cutkosky, Mark R

    2014-01-01

    Spurred by advances in manufacturing technologies developed around layered manufacturing technologies such as PC-MEMS, SCM, and printable robotics, we propose a new analytic framework for capturing the geometry of folded composite laminate devices and the mechanical processes used to manufacture them. These processes can be represented by combining a small set of geometric operations which are general enough to encompass many different manufacturing paradigms. Furthermore, such a formulation permits one to construct a variety of geometric tools which can be used to analyze common manufacturability concepts, such as tool access, part removability, and device support. In order to increase the speed of development, reduce the occurrence of manufacturing problems inherent with current design methods, and reduce the level of expertise required to develop new devices, the framework has been implemented in a new design tool called popupCAD, which is suited for the design and development of complex folded laminate devices. We conclude with a demonstration of utility of the tools by creating a folded leg mechanism. (paper)

  19. Smart manufacturing of complex shaped pipe components

    Science.gov (United States)

    Salchak, Y. A.; Kotelnikov, A. A.; Sednev, D. A.; Borikov, V. N.

    2018-03-01

    Manufacturing industry is constantly improving. Nowadays the most relevant trend is widespread automation and optimization of the production process. This paper represents a novel approach for smart manufacturing of steel pipe valves. The system includes two main parts: mechanical treatment and quality assurance units. Mechanical treatment is performed by application of the milling machine with implementation of computerized numerical control, whilst the quality assurance unit contains three testing modules for different tasks, such as X-ray testing, optical scanning and ultrasound testing modules. The advances of each of them provide reliable results that contain information about any failures of the technological process, any deviations of geometrical parameters of the valves. The system also allows detecting defects on the surface or in the inner structure of the component.

  20. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  1. Internal Fiber Structure of a High-Performing, Additively Manufactured Injection Molding Insert

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Baier, Sina; Trinderup, Camilla H.

    A standard mold is equipped with additively manufactured inserts in a rectangular shape produced with vat photo polymerization. While the lifetime compared to conventional materials such as brass, steel, and aluminum is reduced, the prototyping and design phase can be shortened significantly...... by using flexible and cost-effective additive manufacturing technologies. Higher production volumes still exceed the capability of additively manufactured inserts, which are overruled by the stronger performance of less-flexible but mechanically advanced materials. In this contribution, the internal...... structure of a high-performing, fiber-reinforced injection molding insert has been analyzed. The insert reached a statistically proven and reproducible lifetime of 4,500 shots, which significantly outperforms any other previously published additively manufactured inserts. Computer tomography, tensile tests...

  2. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  3. CT image segmentation methods for bone used in medical additive manufacturing.

    Science.gov (United States)

    van Eijnatten, Maureen; van Dijk, Roelof; Dobbe, Johannes; Streekstra, Geert; Koivisto, Juha; Wolff, Jan

    2018-01-01

    The accuracy of additive manufactured medical constructs is limited by errors introduced during image segmentation. The aim of this study was to review the existing literature on different image segmentation methods used in medical additive manufacturing. Thirty-two publications that reported on the accuracy of bone segmentation based on computed tomography images were identified using PubMed, ScienceDirect, Scopus, and Google Scholar. The advantages and disadvantages of the different segmentation methods used in these studies were evaluated and reported accuracies were compared. The spread between the reported accuracies was large (0.04 mm - 1.9 mm). Global thresholding was the most commonly used segmentation method with accuracies under 0.6 mm. The disadvantage of this method is the extensive manual post-processing required. Advanced thresholding methods could improve the accuracy to under 0.38 mm. However, such methods are currently not included in commercial software packages. Statistical shape model methods resulted in accuracies from 0.25 mm to 1.9 mm but are only suitable for anatomical structures with moderate anatomical variations. Thresholding remains the most widely used segmentation method in medical additive manufacturing. To improve the accuracy and reduce the costs of patient-specific additive manufactured constructs, more advanced segmentation methods are required. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing

    CERN Document Server

    Trentesaux, Damien; Thomas, André; McFarlane, Duncan

    2016-01-01

    This volume gathers the peer reviewed papers which were presented at the 5th edition of the International Workshop “Service Orientation in Holonic and Multi-agent Man-ufacturing – SOHOMA’15” organized in November 5-6, 2015 by the Institute for Manufacturing (IfM) of the University of Cambridge, UK in collaboration with the CIMR Research Centre in Computer Integrated Manufacturing and Robotics of the University Politehnica of Bucharest, Romania, the LAMIH Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Science of the University of Valenciennes and Hainaut-Cambrésis, France and the CRAN Re-search Centre for Automatic Control, Nancy of the University of Lorraine, France. The book is structured in seven parts, each one grouping a number of chapters de-scribing research in actual domains of the digital transformation in manufacturing and trends in future manufacturing control: (1) Applications of Intelligent Products; (2) Advances in Control of Physical Internet ...

  5. Career Advancement, Career Enhancement, and Personal Growth of Pepperdine University's Educational Leadership Academy Graduate Program Alumni

    Science.gov (United States)

    Nichols, Ruth I.

    2012-01-01

    The purpose of this phenomenological study was two-fold: (a) to explore and describe the perceived impact of Pepperdine University's Educational Leadership Academy (ELA) on 2003-2006 ELA graduates' career advancement, career enhancement, and personal growth; and (b) to obtain ELA graduates' suggestions for ELA program improvement to better prepare…

  6. Metrological assurance and traceability for Industry 4.0 and additive manufacturing in Ukraine

    Science.gov (United States)

    Skliarov, Volodymyr; Neyezhmakov, Pavel; Prokopov, Alexander

    2018-03-01

    The national measurement standards from the point of view of traceability of the results of measurement in additive manufacturing in Ukraine are considered in the paper. The metrological characteristics of the national primary measurement standards in the field of geometric, temperature, optical-physical and time-frequency measurements, which took part in international comparisons within COOMET projects, are presented. The accurate geometric, temperature, optical-physical and time-frequency measurements are the key ones in controlling the quality of additive manufacturing. The use of advanced CAD/CAE/CAM systems allows to simulate the process of additive manufacturing at each stage. In accordance with the areas of the technology of additive manufacturing, the ways of improving the national measurement standards of Ukraine for the growing needs of metrology of additive manufacturing are considered.

  7. Additively Manufactured Low Cost Upper Stage Combustion Chamber

    Science.gov (United States)

    Protz, Christopher; Cooper, Ken; Ellis, David; Fikes, John; Jones, Zachary; Kim, Tony; Medina, Cory; Taminger, Karen; Willingham, Derek

    2016-01-01

    Over the past two years NASA's Low Cost Upper Stage Propulsion (LCUSP) project has developed Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. High pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design fabrication to be costly and time consuming due to the number of individual steps and different processes required. Under LCUSP, AM technologies in Sintered Laser Melting (SLM) GRCop-84 and Electron Beam Freeform Fabrication (EBF3) Inconel 625 have been significantly advanced, allowing the team to successfully fabricate a 25k-class regenerative chamber. Estimates of the costs and schedule of future builds indicate cost reductions and significant schedule reductions will be enabled by this technology. Characterization of the microstructural and mechanical properties of the SLM-produced GRCop-84, EBF3 Inconel 625 and the interface layer between the two has been performed and indicates the properties will meet the design requirements. The LCUSP chamber is to be tested with a previously demonstrated SLM injector in order to advance the Technology Readiness Level (TRL) and demonstrate the capability of the application of these processes. NASA is advancing these technologies to reduce cost and schedule for future engine applications and commercial needs.

  8. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  9. Lithography-based addtive manufacture of ceramic biodevices with design-controlled surface topographies

    OpenAIRE

    Blas Romero, Adrián de; Pfaffinger, Markus; Mitteramskogler, Gerald; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes; Díaz Lantada, Andrés; Stampfl, Jürgen

    2017-01-01

    The possibility of manufacturing textured materials and devices, with surface properties controlled from the design stage, instead of being the result of machining processes or chemical attacks, is a key factor for the incorporation of advanced functionalities to a wide set of micro- and nanosystems. High-precision additive manufacturing (AM) technologies based on photopolymerization, together with the use of fractal models linked to computer-aided design tools, allow for a precise definit...

  10. Additive Manufacturing of Biomaterials, Tissues, and Organs.

    Science.gov (United States)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further development of patient-specific healthcare solutions. Customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, prosthetics, and in vitro models, would have been extremely challenging-if not impossible-without AM technologies. The current special issue of the Annals of Biomedical Engineering presents the latest trends in application of AM techniques to healthcare-related areas of research. As a prelude to this special issue, we review here the most important areas of biomedical research and clinical practice that have benefited from recent developments in additive manufacturing techniques. This editorial, therefore, aims to sketch the research landscape within which the other contributions of the special issue can be better understood and positioned. In what follows, we briefly review the application of additive manufacturing techniques in studies addressing biomaterials, (re)generation of tissues and organs, disease models, drug delivery systems, implants, medical instruments, prosthetics, orthotics, and AM objects used for medical visualization and communication.

  11. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Science.gov (United States)

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  12. Evaluation of Large Grained UO{sub 2} Pellet's Manufacturability in a Commercial Plant and Development of its Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jae; Lee, J. N.; Lee, S. J. [Korea Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)] (and others)

    2007-02-15

    To apply the various methods for grain growth of the fuel pellet to the commercial manufacturing process, which have been developed through the 'Advanced Fuel Pellet Development Program' in KAERI, it is necessary to conduct the performance test on the mass product line of UO{sub 2} pellets. For this purpose there are two main areas to be evaluated: The first area is the manufacturability of the lab-developed methods on large volume equipment (kg-batch) and commercial manufacturing scale. As a second part the material characteristics should satisfy the specification requirements for the UO{sub 2} pellet design. Above all, the applicability tests for the 'Seed' and 'Micro-doping' technology respectively were performed in the KNFC UO{sub 2} pellet commercial product line. These tests focused on the manufacturability on mass production and acceptable properties of the developed samples on demands of UO{sub 2} pellet design criteria. The tests showed very positive results. Judging from all the test results, the Al micro-doping method is likely to be the best way to enhance the grain size of UO{sub 2} pellet in the KNFC commercial product line without installation of any additional equipment. Through a series of additional reproducibility tests and process optimization, the micro-doping technology will be good applied for X-gen fuel pellet in the near future.

  13. The development of manufacturing techniques and philosophies for the cost effective production of modern nuclear transport flasks

    International Nuclear Information System (INIS)

    Balmer, S.L.; Ward, S.

    1997-01-01

    Design changes to enhance the characteristics of a new generation of large transport flasks have created new challenges to manufacturers. New fabrication, manufacturing and handling techniques have been developed but often at significant costs. The paper examines these developments covering two main areas, welding and the application of neutron absorbing material. Whilst designers have looked at enhancing flask performance, they often fail to appreciate that ultimately whatever has been designed, has to be firstly sold' and then manufactured. Optimisation of design must therefore include due consideration of the ultimate clients cost structure and the manufacturing route. The paper suggests that the only way this can be achieved is to adopt a teaming approach between designers and manufacturers. The ultimate choice of manufacturer however is left to the designers who must consider competencies, track record and commitment to assistance prior to entering into an agreement. (Author)

  14. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    Science.gov (United States)

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  15. ACR-700 advanced technologies

    International Nuclear Information System (INIS)

    Tapping, R.L.; Turner, C.W.; Yu, S.K.W.; Olmstead, R.; Speranzini, R.A.

    2004-01-01

    A successful advanced reactor plant will have optimized economics including reduced operating and maintenance costs, improved performance, and enhanced safety. Incorporating improvements based on advanced technologies ensures cost, safety and operational competitiveness of the ACR-700. These advanced technologies include modern configuration management; construction technologies; operational technology for the control centre and information systems for plant monitoring and analysis. This paper summarizes the advanced technologies used to achieve construction and operational improvements to enhance plant economic competitiveness, advances in the operational technology used for reactor control, and presents the development of the Smart CANDU suite of tools and its application to existing operating reactors and to the ACR-700. (author)

  16. 3D Printer-Manufacturing of Complex Geometry Elements

    Science.gov (United States)

    Ciubară, A.; Burlea, Ș L.; Axinte, M.; Cimpoeșu, R.; Chicet, D. L.; Manole, V.; Burlea, G.; Cimpoeșu, N.

    2018-06-01

    In the last 5-10 years the process of 3D printing has an incredible advanced in all the fields with a tremendous number of applications. Plastic materials exhibit highly beneficial mechanical properties while delivering complex designs impossible to achieve using conventional manufacturing. In this article the printing process (filling degree, time, complications and details finesse) of few plastic elements with complicated geometry and fine details was analyzed and comment. 3D printing offers many of the thermoplastics and industrial materials found in conventional manufacturing. The advantages and disadvantages of 3D printing for plastic parts are discussed. Time of production for an element with complex geometry, from the design to final cut, was evaluated.

  17. Revisiting the Competitiveness of Romanian Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Ovidiu RUJAN

    2007-01-01

    Full Text Available Since the early 1990s the Romanian manufacturing industry has improved in many ways. This headway concerns the labour-intensive sector rather than the technology-intensive one. Apart from local entrepreneurship, foreign direct investments (FDI have been instrumental in enhancing industrial competitiveness. TheLisbon Agenda revival and Romania’s EU accession will be further inducements for Western businesses to shift production here to fight back both low-cost producers (typically from emerging Asia and more quality-oriented producers (typically from OECD countries. Hopefully, the FDI spillover effects will send positive vibrationsacross the economy, and tone down the asymmetry at the core of the manufacturing industry.

  18. Optimization and management in manufacturing engineering resource collaborative optimization and management through the Internet of Things

    CERN Document Server

    Liu, Xinbao; Liu, Lin; Cheng, Hao; Zhou, Mi; Pardalos, Panos M

    2017-01-01

    Problems facing manufacturing clusters that intersect information technology, process management, and optimization within the Internet of Things (IoT) are examined in this book. Recent advances in information technology have transformed the use of resources and data exchange, often leading to management and optimization problems attributable to technology limitations and strong market competition. This book discusses several problems and concepts which makes significant connections in the areas of information sharing, organization management, resource operations, and performance assessment. Geared toward practitioners and researchers, this treatment deepens the understanding between resource collaborative management and advanced information technology. Those in manufacturing will utilize the numerous mathematical models and methods offered to solve practical problems related to cutting stock, supply chain scheduling, and inventory management.  Academics and students with a basic knowledge of manufacturing, c...

  19. Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype.

    Science.gov (United States)

    Singh, Ramandeep; Suri, Ashish; Anand, Sneh; Baby, Britty

    2016-12-01

    With advancements in imaging techniques, neurosurgical procedures are becoming highly precise and minimally invasive, thus demanding development of new ergonomically aesthetic instruments. Conventionally, neurosurgical instruments are manufactured using subtractive manufacturing methods. Such a process is complex, time-consuming, and impractical for prototype development and validation of new designs. Therefore, an alternative design process has been used utilizing blue light scanning, computer-aided designing, and additive manufacturing direct metal laser sintering (DMLS) for microsurgical instrument prototype development. Deviations of DMLS-fabricated instrument were studied by superimposing scan data of fabricated instrument with the computer-aided designing model. Content and concurrent validity of the fabricated prototypes was done by a group of 15 neurosurgeons by performing sciatic nerve anastomosis in small laboratory animals. Comparative scoring was obtained for the control and study instrument. T test was applied to the individual parameters and P values for force (P direct application of these additive-manufactured instruments in the operating room requires further validation. © The Author(s) 2016.

  20. An advanced liquid hydrogen cold source for the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, R.E.; Kopetka, P.; Rowe, J.M.

    1999-01-01

    A second-generation liquid hydrogen cold neutron source is currently being fabricated and will be installed in the NIST reactor early next year. The existing source has operated very successfully over the last four years, providing a six-fold increase in the cold neutron yield compared to the previous heavy ice source. The design of the new source is based on our operating experience with the existing LH 2 source and extensive neutron transport calculations using improved MCNP modeling and computational capabilities. Enhanced mechanical design and manufacturing tools are exploited in the fabrication of the advanced source, which is expected to nearly double the yield of the existing LH 2 source. (author)

  1. The industrial resurgence of Southern California? Advanced ground transportation equipment manufacturing and local economic develoment

    OpenAIRE

    A J Scott; D Bergman

    1995-01-01

    Southern California is in a deeply rooted process of economic restructuring. Much of the region's manufacturing base is made up of two groups of industries: a declining aerospace - defense sector, and a low-wage, low-skill sweatshop sector. What are the prospects for creating a growing manufacturing base focused on high-wage, high-skill industries? In this paper we examine the opportunities presented by the Los Angeles County Metropolitan Transportation Authority's S183 billion thirty-year ca...

  2. Manufacturing technology for advanced jet engines; Jisedai jetto engine no seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, H [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1997-04-05

    A part of the latest production technologies for aircraft jet engines is introduced. Outline of the turbofan engine, turbo-prop engine, and turbo-shaft engine are given. Every one of them employs a gas turbine engine comprising a compressor, combustor, and a turbine as the output generator. Increase in the turbine inlet temperature is effective for making the gas turbine engine more efficient. The development tread of heat resisting materials for realizing higher temperature is shown. The current status and future aspect of the manufacturing technology is discussed for each main component of the engine. Technological development for decreasing weight is important because the weight of the fan member increases when the fan diameter is increased to increase the bypass ratio. FRP is adopted for the blades and casing to decrease the weight of the compressor, and studies have been made on fiber reinforced materials to reduce the weight of the disks. The outlines of the latest manufacturing technologies for the combustor and turbine are introduced. 2 refs., 9 figs.

  3. Visual correlation analytics of event-based error reports for advanced manufacturing

    OpenAIRE

    Nazir, Iqbal

    2017-01-01

    With the growing digitalization and automation in the manufacturing domain, an increasing amount of process data and error reports become available. To minimize the number of errors and maximize the efficiency of the production line, it is important to analyze the generated error reports and find solutions that can reduce future errors. However, not all errors have the equal importance, as some errors may be the result of previously occurred errors. Therefore, it is important for domain exper...

  4. NASA Advances Technologies for Additive Manufacturing of GRCop-84 Copper Alloy

    Science.gov (United States)

    Gradl, Paul; Protz, Chris

    2017-01-01

    The Low Cost Upper Stage Propulsion project has successfully developed and matured Selective Laser Melting (SLM) Fabrication of the NASA developed GRCop-84 copper alloy. Several parts have been printed in house and at a commercial vendor, and these parts have been successfully machined and have undergone further fabrication steps to allow hot-fire testing. Hot-fire testing has demonstrated parts manufactured with this technique can survive and perform well in the relevant environments for liquid rocket propulsion systems.

  5. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Beaujon University Hospital Paris Nord, Department of Radiology, Clichy (France); Pastor, Catherine M. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Hopitaux Universitaires de Geneve, Departement d' Imagerie et des Sciences de l' Information Medicale, Geneva (Switzerland)

    2017-05-15

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  6. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    International Nuclear Information System (INIS)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina; Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E.; Pastor, Catherine M.

    2017-01-01

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  7. Advancement in the Feeding and Nutrition of Farm Animals of Bangladesh and a Panoramic View 2050

    Directory of Open Access Journals (Sweden)

    Khan Shahidul Huque

    2018-03-01

    Full Text Available This article describes genesis and the advances of schooling, research and extension of animal nutrition science and practices in Bangladesh. It portrays sine qua non of the advancement of animal nutrition, fodder production and frontier knowledge of allied disciplines. Domestic growth of good practices and its global and regional competitive advantages are delineated for supporting the growing need of safe animal sourced food pillared with profit, people, planet and the ethics of sustainable production of farm animals. A vision of becoming world middle income country with a national population plateau of around 202.0 million and demographic shifts by 2050 may require the annual production of 130.0 and 27.0 thousand tons of manufactured dairy and beef feed furthering global trading competitions for feed ingredients. This competition may be minimized through the production and supply of domestic sourced unique quality feeds and value additions to roughages. Capacity enhancement in research, education and extension will boost socioeconomic and the production efficiency of farm animals and enhance sustainable growth of feed industry racing with regional and global competitions.

  8. Automation in Siemens fuel manufacturing - the basis for quality improvement by statistical process control (SPC)

    International Nuclear Information System (INIS)

    Drecker, St.; Hoff, A.; Dietrich, M.; Guldner, R.

    1999-01-01

    Statistical Process Control (SPC) is one of the systematic tools to perform a valuable contribution to the control and planning activities for manufacturing processes and product quality. Advanced Nuclear Fuels GmbH (ANF) started a program to introduce SPC in all sections of the manufacturing process of fuel assemblies. The concept phase is based on a realization of SPC in 3 pilot projects. The existing manufacturing devices are reviewed for the utilization of SPC. Subsequent modifications were made to provide the necessary interfaces. The processes 'powder/pellet manufacturing'. 'cladding tube manufacturing' and 'laser-welding of spacers' are located at the different locations of ANF. Due to the completion of the first steps and the experience obtained by the pilot projects, the introduction program for SPC has already been extended to other manufacturing processes. (authors)

  9. Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives

    Science.gov (United States)

    Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun

    2018-06-01

    Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

  10. Research on networked manufacturing system for reciprocating pump industry

    Science.gov (United States)

    Wu, Yangdong; Qi, Guoning; Xie, Qingsheng; Lu, Yujun

    2005-12-01

    Networked manufacturing is a trend of reciprocating pump industry. According to the enterprises' requirement, the architecture of networked manufacturing system for reciprocating pump industry was proposed, which composed of infrastructure layer, system management layer, application service layer and user layer. Its main functions included product data management, ASP service, business management, and customer relationship management, its physics framework was a multi-tier internet-based model; the concept of ASP service integration was put forward and its process model was also established. As a result, a networked manufacturing system aimed at the characteristics of reciprocating pump industry was built. By implementing this system, reciprocating pump industry can obtain a new way to fully utilize their own resources and enhance the capabilities to respond to the global market quickly.

  11. Advanced TCA Backplane Tester

    CERN Document Server

    Oltean, Alexandra Dana

    2004-01-01

    At the beginning of 2003, the PICMG group adopted the AdvancedTCA (Advanced Telecom Computing Architecture) standard. The 10Gb/s backplane of the AdvancedTCA chassis is well specified in the standard but it remains however a high end product, which can be itself subject to printed circuit board manufacturing control problems that could greatly affect its quality control. In order to study the practical aspects of high speed Ethernet switching at 10Gb/s and to validate the signal integrity of the AdvancedTCA backplane, we developed a Backplane Tester. The tester system is able of running monitored PRBS traffic at 3.125Gb/s over every link on the AdvancedTCA backplane simultaneously and to monitor any possible connectivity failure immediately in terms of link and slot position inside the chassis. The present report presents the architectural hardware design, the control structure and software aspects of the AdvancedTCA Backplane Tester design.

  12. Social manufacturing

    OpenAIRE

    Hamalainen, Markko; Karjalainen, Jesse

    2017-01-01

    New business models harnessing the power of individuals have already revolutionized service industries and digital content production. In this study, we investigate whether a similar phenomenon is taking place in manufacturing industries. We start by conceptually defining two distinct forms of firm-individual collaboration in manufacturing industries: (1) social cloud manufacturing, in which firms outsource manufacturing to individuals, and (2) social platform manufacturing, in which firms pr...

  13. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    Science.gov (United States)

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  16. Laser additive manufacturing bulk graphene-copper nanocomposites.

    Science.gov (United States)

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-11-03

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  17. Innovative Processing Methods for the Affordable Manufacture of Multifunctional High Temperature Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed to investigate the feasibility of using advanced manufacturing techniques to enable the affordable application of multi-functional high...

  18. Integrating developing country manufacturing industries into global supply chain

    Directory of Open Access Journals (Sweden)

    Fasika Bete Georgise

    2014-01-01

    Full Text Available Purpose: Due to globalization of manufacturing activities, the arena of competition and competitiveness advantage is moving from firms towards supply chains and networks. With the recent advancement of information and communication technologies this participation are becoming as common business practice in developed countries firms. Companies were more integrated into the world market for the global nature of the sourcing, manufacturing and distribution. These changes create both challenges and opportunities for the manufacturing industries in developing countries. The objective of this paper is to examine the level of inter-organizational and intra-organizational supply chain integration practices in developing country, Ethiopia.Design/methodology/approach: An industrial questionnaires survey was used to collect the current practices of the manufacturing industries in Ethiopia as an example of the developing countries. Descriptive statistics is primarily used for the analysis.Findings: Results show a low level of supply chain relationship both in intra and inter organizational supply chain integration level among members. Accordingly, such issues require much attention to facilitate a greater integration within the supply chains in the Ethiopian manufacturing industries.Research limitations/implications: The paper focuses on examining the practices of Ethiopian manufacturing industries empirical data. The interpretation of results should be taken with prudence.Originality/Value: The manufacturing industry in developing countries (MIDC has been a part of the global supply chains for long time as a supplier of raw material and manufacturer of primary products. Currently, the MIDC is trying to access the different markets segment of the world even with new products starting from their local market to the complex and dynamic international market. Nevertheless, their supply chains are inefficient and hence, their competitiveness level far from the

  19. AM Envelope. The potential of Additive Manufacturing for facade constructions

    Directory of Open Access Journals (Sweden)

    Holger Strauss

    2017-11-01

    Full Text Available This dissertation shows the potential of Additive Manufacturing (AM for the development of building envelopes: AM will change the way of designing facades, how we engineer and produce them. To achieve today’s demands from those future envelopes, we have to find new solutions. New technologies offer one possible way to do so. They open new approaches in designing, producing and processing building construction and facades. Finding the one capable of having big impact is difficult – Additive Manufacturing is one possible answer. The term ‘AM Envelope’ (Additive Manufacturing Envelope describes the transfer of this technology to the building envelope. Additive Fabrication is a building block that aids in developing the building envelope from a mere space enclosure to a dynamic building envelope. First beginnings of AM facade construction show up when dealing with relevant aspects like material consumption, mounting or part’s performance. From those starting points several parts of an existing post-and-beam façade system were optimized, aiming toward the implementation of AM into the production chain. Enhancements on all different levels of production were achieved: storing, producing, mounting and performance. AM offers the opportunity to manufacture facades ‘just in time’. It is no longer necessary to store or produce large numbers of parts in advance. Initial investment for tooling can be avoided, as design improvements can be realized within the dataset of the AM part. AM is based on ‘tool-less’ production, all parts can be further developed with every new generation. Producing tool-less also allows for new shapes and functional parts in small batch sizes – down to batch size one. The parts performance can be re-interpreted based on the demands within the system, not based on the limitations of conventional manufacturing. AM offers new ways of materializing the physical part around its function. It leads toward customized

  20. Manufacture of EAST VS In-Vessel Coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Du, Shijun; Jin, Huan; Yu, Min; Han, Qiyang; Wan, Jiansheng; Liu, Bin; Qiao, Jingchun; Liu, Xiaochuan; Li, Chang; Cai, Denggang; Tong, Yunhua

    2013-01-01

    Highlights: • ITER like Stainless Steel Mineral Insulation Conductor (SSMIC) used for EAST Tokamak VS In-Vessel Coil manufacture first time. • Research on SSMIC fabrication was introduced in detail. • Two sets totally four single-turn VS coils were manufactured and installed in place symmetrically above and below the mid-plane in the vacuum vessel of EAST. • The manufacture and inspection of the EAST VS coil especially the joint for the SSMIC connection was described in detail. • The insulation resistances of all the VS coils have no significant reduction after endurance test. -- Abstract: In the ongoing latest update round of EAST (Experimental Advanced Superconducting Tokamak), two sets of two single-turn Vertical Stabilization (VS) coils were manufactured and installed symmetrically above and below the mid-plane in the vacuum vessel of EAST. The Stainless Steel Mineral Insulated Conductor (SSMIC) developed for ITER In-Vessel Coils (IVCs) in Institute of Plasma Physics, Chinese Academy of Science (ASIPP) was used for the EAST VS coils manufacture. Each turn poloidal field VS coil includes three internal joints in the vacuum vessel. The middle joint connects two pieces of conductor which together form an R2.3 m arc segment inside the vacuum vessel. The other two joints connect the arc segment with the two feeders near the port along the toroidal direction to bear lower electromagnetic loads during operation. Main processes and tests include material performances checking, conductor fabrication, joint connection and testing, coil forming, insulation performances measurement were described herein

  1. A flexible architecture for advanced process control solutions

    Science.gov (United States)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  2. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  3. Advanced methods of process/quality control in nuclear reactor fuel manufacture. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Nuclear fuel plays an essential role in ensuring the competitiveness of nuclear energy and its acceptance by the public. The economic and market situation is not favorable at present for nuclear fuel designers and suppliers. The reduction in fuel prices (mainly to compete with fossil fuels) and in the number of fuel assemblies to be delivered to customers (mainly due to burnup increase) has been offset by the rising number of safety and other requirements, e.g. the choice of fuel and structural materials and the qualification of equipment. In this respect, higher burnup and thermal rates, longer fuel cycles and the use of MOX fuels are the real means to improve the economics of the nuclear fuel cycle as a whole. Therefore, utilities and fuel vendors have recently initiated new research and development programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel for safe and reliable reactor operation more demanding conditions. In this connection, improvement of fuel quality occupies an important place and this requires continuous effort on the part of fuel researchers, designers and producers. In the early years of commercial fuel fabrication, emphasis was given to advancements in quality control/quality assurance related mainly to the product itself. Now, the emphasis is transferred to improvements in process control and to implementation of overall total quality management (TQM) programmes. In the area of fuel quality control, statistical methods are now widely implemented, replacing 100% inspection. The IAEA, recognizing the importance of obtaining and maintaining high standards in fuel fabrication, has paid particular attention to this subject. In response to the rapid progress in development and implementation of advanced methods of process/quality control in nuclear fuel manufacture and on the recommendation of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA conducted a

  4. Advanced methods of process/quality control in nuclear reactor fuel manufacture. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-07-01

    Nuclear fuel plays an essential role in ensuring the competitiveness of nuclear energy and its acceptance by the public. The economic and market situation is not favorable at present for nuclear fuel designers and suppliers. The reduction in fuel prices (mainly to compete with fossil fuels) and in the number of fuel assemblies to be delivered to customers (mainly due to burnup increase) has been offset by the rising number of safety and other requirements, e.g. the choice of fuel and structural materials and the qualification of equipment. In this respect, higher burnup and thermal rates, longer fuel cycles and the use of MOX fuels are the real means to improve the economics of the nuclear fuel cycle as a whole. Therefore, utilities and fuel vendors have recently initiated new research and development programmes aimed at improving fuel quality, design and materials to produce robust and reliable fuel for safe and reliable reactor operation more demanding conditions. In this connection, improvement of fuel quality occupies an important place and this requires continuous effort on the part of fuel researchers, designers and producers. In the early years of commercial fuel fabrication, emphasis was given to advancements in quality control/quality assurance related mainly to the product itself. Now, the emphasis is transferred to improvements in process control and to implementation of overall total quality management (TQM) programmes. In the area of fuel quality control, statistical methods are now widely implemented, replacing 100% inspection. The IAEA, recognizing the importance of obtaining and maintaining high standards in fuel fabrication, has paid particular attention to this subject. In response to the rapid progress in development and implementation of advanced methods of process/quality control in nuclear fuel manufacture and on the recommendation of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA conducted a

  5. Advanced laser processing for industrial solar cell manufacturing (ALPINISM)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Fieret, J. [Exitech Ltd. (United Kingdom)

    2006-05-04

    The study was aimed at improving methods for the manufacture of high efficiency solar cells and thereby increase production rates. The project focused on the laser grooved buried contact solar cell (LGBC) which is produced by high-speed laser machining. The specific objectives were (i) to optimise the laser technology for high speed processing; (ii) to optimise the solar cell process conditions for high speed processing; (iii) to produce a prototype tool and demonstrate high throughput; and (iv) to demonstrate increased cell efficiency using laser processing of rear contact. Essentially, all the objectives were met and Exitech have already sold six production tools and one research tool developed in this study. In addition, it was found that laser processing at the rear cell surface offers the prospect of LGBC solar cells with an efficiency of 20 per cent. BP Solar Limited carried out this work under contract to the DTI.

  6. Printed Proliferation: The Implications of Additive Manufacturing and Nuclear Weapons Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Nicholas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-26

    The growth of additive manufacturing as a disruptive technology poses nuclear proliferation concerns worthy of serious consideration. Additive manufacturing began in the early 1980s with technological advances in polymer manipulation, computer capabilities, and computer-aided design (CAD) modeling. It was originally limited to rapid prototyping; however, it eventually developed into a complete means of production that has slowly penetrated the consumer market. Today, additive manufacturing machines can produce complex and unique items in a vast array of materials including plastics, metals, and ceramics. These capabilities have democratized the manufacturing industry, allowing almost anyone to produce items as simple as cup holders or as complex as jet fuel nozzles. Additive manufacturing, or three-dimensional (3D) printing as it is commonly called, relies on CAD files created or shared by individuals with additive manufacturing machines to produce a 3D object from a digital model. This sharing of files means that a 3D object can be scanned or rendered as a CAD model in one country, and then downloaded and printed in another country, allowing items to be shared globally without physically crossing borders. The sharing of CAD files online has been a challenging task for the export controls regime to manage over the years, and additive manufacturing could make these transfers more common. In this sense, additive manufacturing is a disruptive technology not only within the manufacturing industry but also within the nuclear nonproliferation world. This paper provides an overview of additive manufacturing concerns of proliferation.

  7. A synopsis of the Defense Advanced Research Projects Agency (DARPA) investment in additive manufacture and what challenges remain

    Science.gov (United States)

    Maher, Michael; Smith, Adrien; Margiotta, Jesse

    2014-03-01

    DARPA's interest in additive manufacture dates back to the mid-80s with seedling programs that developed the foundational knowledge and equipment that led to the Solid Freeform Fabrication program in 1990. The drivers for this program included reducing development times by enabling "tool-less" manufacturing as well as integration of design and fabrication tools. DARPA consistently pushed the boundaries of additive manufacture with follow-on programs that expanded the material suite available for 3-D printing as well as new processes that expanded the technology's capability base. Programs such as the Mesoscopic Integrated Conformal Electronics (MICE) program incorporated functionality to the manufacturing processes through direct write of electronics. DARPA's investment in additive manufacture continues to this day but the focus has changed. DARPA's early investments were focused on developing and demonstrating the technology's capabilities. Now that the technology has been demonstrated, there is serious interest in taking advantage of the attributes unique to the processing methodology (such as customization and new design possibilities) for producing production parts. Accordingly, today's investment at DARPA addresses the systematic barriers to implementation rather than the technology itself. The Open Manufacturing program is enabling rapid qualification of new technologies for the manufacturing environment through the development of new modeling and informatics tools. While the technology is becoming more mainstream, there are plenty of challenges that need to be addressed. And as the technology continues to mature, the agency will continue to look for those "DARPA-hard" challenges that enable revolutionary changes in capability and performance for the Department of Defense.

  8. Strategic Alliance to Advanced Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level

    Science.gov (United States)

    Scarborough, Jule Dee

    2004-01-01

    This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…

  9. Asilomar Leadership Skills Seminar: The Career Preparation, Advancement, and Enhancement of Women in California Community College Leadership

    Science.gov (United States)

    Castillo-Garrison, Estella M.

    2012-01-01

    This mixed-methods research study examined the effects on the career preparation, advancement, and enhancement of women from California community college leadership who participated in the Asilomar Leadership Skills Seminar (Asilomar) from 2005-2011. Data were collected during the 2011-2012 academic year and were gathered from the results of 67…

  10. Competitive low-tech manufacturing and challenges for regional policy in the European context

    DEFF Research Database (Denmark)

    Hansen, Teis; Winther, Lars

    2014-01-01

    Today, low-tech firms in high-wage countries are focusing on increasing investments in highly skilled labour and advanced machinery, incremental innovation and high value-added niches. Danish policy, however, gives little attention to the new specificities of low-tech manufacturing......, and the understanding of innovation in national and regional strategies is dominated by a science-based perspective. There is a strong policy focus on human capital and research and development in manufacturing. Human capital is vital to manufacturing in general, but the latter is of less importance for low-tech firms....... Conversely, user–producer interactions and machinery investments, which are critical to low-tech competitiveness, are disregarded by policies....

  11. Utility Advanced Turbine Systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  12. Comprehensive simulation-enhanced training curriculum for an advanced minimally invasive procedure: a randomized controlled trial.

    Science.gov (United States)

    Zevin, Boris; Dedy, Nicolas J; Bonrath, Esther M; Grantcharov, Teodor P

    2017-05-01

    There is no comprehensive simulation-enhanced training curriculum to address cognitive, psychomotor, and nontechnical skills for an advanced minimally invasive procedure. 1) To develop and provide evidence of validity for a comprehensive simulation-enhanced training (SET) curriculum for an advanced minimally invasive procedure; (2) to demonstrate transfer of acquired psychomotor skills from a simulation laboratory to live porcine model; and (3) to compare training outcomes of SET curriculum group and chief resident group. University. This prospective single-blinded, randomized, controlled trial allocated 20 intermediate-level surgery residents to receive either conventional training (control) or SET curriculum training (intervention). The SET curriculum consisted of cognitive, psychomotor, and nontechnical training modules. Psychomotor skills in a live anesthetized porcine model in the OR was the primary outcome. Knowledge of advanced minimally invasive and bariatric surgery and nontechnical skills in a simulated OR crisis scenario were the secondary outcomes. Residents in the SET curriculum group went on to perform a laparoscopic jejunojejunostomy in the OR. Cognitive, psychomotor, and nontechnical skills of SET curriculum group were also compared to a group of 12 chief surgery residents. SET curriculum group demonstrated superior psychomotor skills in a live porcine model (56 [47-62] versus 44 [38-53], Ppsychomotor skills in the live porcine model and in the OR in a human patient (56 [47-62] versus 63 [61-68]; P = .21). SET curriculum group demonstrated inferior knowledge (13 [11-15] versus 16 [14-16]; P<.05), equivalent psychomotor skill (63 [61-68] versus 68 [62-74]; P = .50), and superior nontechnical skills (41 [38-45] versus 34 [27-35], P<.01) compared with chief resident group. Completion of the SET curriculum resulted in superior training outcomes, compared with conventional surgery training. Implementation of the SET curriculum can standardize training

  13. Additive manufacturing of reflective optics: evaluating finishing methods

    Science.gov (United States)

    Leuteritz, G.; Lachmayer, R.

    2018-02-01

    Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.

  14. Product Life Cycle of the Manufactured Home Industry

    Directory of Open Access Journals (Sweden)

    Gavin Wherry

    2014-09-01

    Full Text Available Residential construction consumes an estimated 26 percent of the total U.S. wood harvest and thus plays an important role in the forest products value chain. While being a relatively small part of the U.S. residential construction market, the factory-built residential housing industry, originating from manufactured homes (e.g. mobile homes, is embracing emerging industry segments such as modular or panelized homes. Since indications exist that factory-built home production is slated to gain a more prominent role in the U.S. construction markets at the cost of traditional stick-built production, the factory-built home industry sub-segment is of considerable importance to the forest products industry. This research looks at manufactured home producers as a benchmark for analyzing the current economic state of the industry and discusses competitive strategies. The analysis concludes, through macroeconomic modeling, that manufactured homes are in the declining stage of their product life cycle due to changes to the U.S. residential construction sector and the factory-built home industry and by advancements of rival industry-segments. As market share continues to decline, firms operating in this industry-segment seek to either hedge their losses through product diversification strategies or remain focused on strategically repositioning the manufactured home segment.

  15. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  16. Challenges of locally manufactured vehicle supply chains in South Africa

    Directory of Open Access Journals (Sweden)

    Intaher M. Ambe

    2013-08-01

    Full Text Available Locally manufactured vehicles are destined (partly for the export market and thus, global competitiveness  is  important.  This  article  explores  the  challenges  facing  supply  chains  of locally manufactured vehicles in South Africa. The automotive industry is perceived to be the most advanced in supply chain management practices in South Africa. It has embraced technology and management practices that have transformed the manufacturing environment by using cutting-edge design and visualisation tools. However, the industry has fragilities and faces new and emerging supply chain challenges. A survey research design was employed and  the  data  was  collected  through  face-to-face  semi-structured  interview  questionnaires based on the purposive sampling technique. Data analysis and interpretation was based on descriptive  statistics  using  SPSS  software.  The  findings  revealed  that  there  are  challenges hindering  best  supply  chain  practices  of  local  vehicle  manufacturers.  The  research  also revealed that there is a perceived difference in supply chain challenges between the different manufacturers of different origins in South Africa. Asian manufacturers felt much stronger about the adequacy of their information systems compared to the European manufacturers. Asian  manufacturers  tended  to  agree  more  than  their  European  counterparts  that  labour problems were a challenge. European manufacturers, on the other hand, tended to agree more that rail transport is unreliable. This article contributes to the body of knowledge on supply chain practices in South Africa.

  17. Summary Report for the Technical Interchange Meeting on Development of Baseline Material Properties and Design Guidelines for In-Space Manufacturing Activities

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Johnston, M. M.; Ordonez, E. A.; Ledbetter, F. E.; Risdon, D. L.; Stockman, T. J.; Sandridge, S. K. R.; Nelson, G. M.

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) and the Agency as a whole are currently engaged in a number of in-space manufacturing (ISM) activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long-duration spaceflight. The recent 3D Printing in Zero-G experiment conducted on board the International Space Station (ISS) demonstrated that parts of acrylonitrile butadiene styrene (ABS) plastic can be manufactured in microgravity using fused deposition modeling (FDM). This project represents the beginning of the development of a capability that is critical to future NASA missions. Current and future ISM activities will require the development of baseline material properties to facilitate design, analysis, and certification of materials manufactured using in-space techniques. The purpose of this technical interchange meeting (TIM) was to bring together MSFC practitioners and experts in materials characterization and development of baseline material properties for emerging technologies to advise the ISM team as we progress toward the development of material design values, standards, and acceptance criteria for materials manufactured in space. The overall objective of the TIM was to leverage MSFC's shared experiences and collective knowledge in advanced manufacturing and materials development to construct a path forward for the establishment of baseline material properties, standards development, and certification activities related to ISM. Participants were asked to help identify research and development activities that will (1) accelerate acceptance and adoption of ISM techniques among the aerospace design community; (2) benefit future NASA programs, commercial technology developments, and national needs; and (3) provide opportunities and avenues for further collaboration.

  18. New high-precision deep concave optical surface manufacturing capability

    Science.gov (United States)

    Piché, François; Maloney, Chris; VanKerkhove, Steve; Supranowicz, Chris; Dumas, Paul; Donohue, Keith

    2017-10-01

    This paper describes the manufacturing steps necessary to manufacture hemispherical concave aspheric mirrors for high- NA systems. The process chain is considered from generation to final figuring and includes metrology testing during the various manufacturing steps. Corning Incorporated has developed this process by taking advantage of recent advances in commercially available Satisloh and QED Technologies equipment. Results are presented on a 100 mm concave radius nearly hemispherical (NA = 0.94) fused silica sphere with a better than 5 nm RMS figure. Part interferometric metrology was obtained on a QED stitching interferometer. Final figure was made possible by the implementation of a high-NA rotational MRF mode recently developed by QED Technologies which is used at Corning Incorporated for production. We also present results from a 75 mm concave radius (NA = 0.88) Corning ULE sphere that was produced using sub-aperture tools from generation to final figuring. This part demonstrates the production chain from blank to finished optics for high-NA concave asphere.

  19. "Industrie 4.0" and Smart Manufacturing – A Review of Research Issues and Application Examples

    OpenAIRE

    Klaus-Dieter Thoben; Stefan Wiesner; Thorsten Wuest

    2017-01-01

    A fourth industrial revolution is occurring in global manufacturing. It is based on the introduction of Internet of things and servitization concepts into manufacturing companies, leading to vertically and horizontally integrated production systems. The resulting smart factories are able to fulfill dynamic customer demands with high variability in small lot sizes while integrating human ingenuity and automation. To support the manufacturing industry in this conversion process and enhance glob...

  20. Manufacturing of Zirconium products at Chepetsky Mechanical Plant, Stock Company. Prospects of development and products quality assurance

    International Nuclear Information System (INIS)

    Vergazov, K.; Shtuza, M.; Lozitsky, S.; Kutyavin, A.

    2015-01-01

    The report described all the steps required to fabricate zirconium components, starting from the procurement of feed material up to rolling of sheets, tubes, bars and manufacture of the applicable parts required to manufacture fuel assemblies. Automated state-of-the-art equipment used for advanced productivity, as well as various installations able to perform numerous inspection steps to assure quality of the manufactured products was showcased. The challenges to be addressed in the nearest future were also presented

  1. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  2. Qualification of high-density fuel manufacturing for research reactors at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; De La Fuente, M.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [CNEA, Buenos Aires (Argentina)

    2001-07-01

    CNEA, the National Atomic Energy Commission of Argentina, is at the present a qualified supplier of uranium oxide fuel for research reactors. A new objective in this field is to develop and qualify the manufacturing of LEU high-density fuel for this type of reactors. According with the international trend Silicide fuel and U-xMo fuel are included in our program as the most suitable options. The facilities to complete the qualification of high-density MTR fuels, like the manufacturing plant installations, the reactor, the pool side fuel examination station and the hot cells are fully operational and equipped to perform all the activities required within the program. The programs for both type of fuels include similar activities: development and set up of the fuel material manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of miniplates, fabrication and irradiation of full scale fuel elements, post-irradiation examination and feedback for manufacturing improvements. For silicide fuels most of these steps have already been completed. For U-xMo fuel the activities also include the development of alternative ways to obtain U-xMo powder, feasibility studies for large-scale manufacturing and the economical assessment. Set up of U-xMo fuel plate manufacturing is also well advanced and the fabrication of the first full scale prototype is foreseen during this year. (author)

  3. Scanning the horizon for high value-add manufacturing science: Accelerating manufacturing readiness for the next generation of disruptive, high-value curative cell therapeutics.

    Science.gov (United States)

    Hourd, Paul; Williams, David J

    2018-05-01

    Since the regenerative medicine sector entered the second phase of its development (RegenMed 2.0) more than a decade ago, there is increasing recognition that current technology innovation trajectories will drive the next translational phase toward the production of disruptive, high-value curative cell and gene-based regenerative medicines. To identify the manufacturing science problems that must be addressed to permit translation of these next generation therapeutics. In this short report, a long lens look within the pluripotent stem cell therapeutic space, both embryonic and induced, is used to gain early insights on where critical technology and manufacturing challenges may emerge. This report offers a future perspective on the development and innovation that will be needed within manufacturing science to add value in the production and commercialization of the next generation of advanced cell therapies and precision medicines. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  5. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  6. A factory concept for processing and manufacturing with lunar material

    Science.gov (United States)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  7. Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Kang; Tsai, Tsung-Yueh; Liu, Jiunn-Ching; Chen, Mei-Chen [Energy and Resources Labs., ITRI, Hsinchu (Taiwan)

    2001-07-01

    The characteristics of degradation/conversion of bio-refractory and the growth of a biofilm are investigated in laboratory-scale pre-ozonation and lifted moving-bed biological activated carbon (BAC) advanced treatment processes treating phenol, benzoic acid, aminobenzoic acid and petrochemical industry wastewater which contains acrylonitrile butadiene styrene (ABS). The optimal reaction time and ozone dosage of pre-ozonation for bio-refractory conversion were determined to be 30 min and 100-200mg O{sub 3}/hr, respectively. After pre-ozonation of 30 min treatment, BOD{sub 5}/COD ratio of influent and effluent increased apparently from 20 to 35%, approximately. However, the change of pH in pre-ozonation was inconspicuous. The optimal flow rate of influent and air were controlled at 1.6 1/h and 120-l50nl/min in lifted moving-bed BAC advanced treatment reactor. A COD removal efficiency of 85-95% and 70-90% may be maintained by using an organic loading of 3.2-6.3kg COD/m{sup 3} day and 0.6-1.6 kg-COD/m{sup 3} day with an HRT of 6.0 h as secondary and advanced treatment system, respectively. The time required for the BAC bed to be regenerated by a thermal regeneration is prolonged 4-5 times more than that of GAC system. It can be estimated that the enhanced COD removal capability of the biofilm was not only due to the increase in the COD removal capability of acclimated bacteria, but also due to species succession of bacteria in bio-film ecosystem. (Author)

  8. Challenges and Recent Developments in Hearing Aids: Part II. Feedback and Occlusion Effect Reduction Strategies, Laser Shell Manufacturing Processes, and Other Signal Processing Technologies

    Science.gov (United States)

    Chung, King

    2004-01-01

    This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed. PMID:15735871

  9. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  10. Microsystems for enhanced control of cell behavior fundamentals, design and manufacturing strategies, applications and challenges

    CERN Document Server

    2016-01-01

    This handbook focuses on the entire development process of biomedical microsystems that promote special interactions with cells. Fundamentals of cell biology and mechanobiology are described as necessary preparatory input for design tasks. Advanced design, simulation, and micro/nanomanufacturing resources, whose combined use enables the development of biomedical microsystems capable of interacting at a cellular level, are covered in depth. A detailed series of chapters is then devoted to applications based on microsystems that offer enhanced cellular control, including microfluidic devices for diagnosis and therapy, cell-based sensors and actuators (smart biodevices), microstructured prostheses for improvement of biocompatibility, microstructured and microtextured cell culture matrices for promotion of cell growth and differentiation, electrophoretic microsystems for study of cell mechanics, microstructured and microtextured biodevices for study of cell adhesion and dynamics, and biomimetic microsystems (incl...

  11. Multi Scale Micro and Nano Metrology for Advanced Precision Moulding Technologies

    DEFF Research Database (Denmark)

    Quagliotti, Danilo

    dimensions of the novel micro and nano production. Nowadays, design methodologies and concurrent tolerance guidelines are not yet available for advanced micro manufacture. Moreover, there are no shared methodologies that deals with the uncertainty evaluation of feature of size in the sub-millimetre scale......The technological revolution that has deeply influenced the manufacturing industry over the past two decades opened up new possibilities for the realisation of advanced micro and nano systems but, at the same time, traditional techniques for quality assurance became not adequate any longer......, as the technology progressed. The gap between the needs of the manufacturing industry and the well-organized structure of the dimensional and geometrical metrology appeared, above all, related to the methodologies and, also, to the instrumentation used to deal with the incessant scaling down of the critical...

  12. Robust localisation of automated guided vehicles for computer-integrated manufacturing environments

    Directory of Open Access Journals (Sweden)

    Dixon, R. C.

    2013-05-01

    Full Text Available As industry moves toward an era of complete automation and mass customisation, automated guided vehicles (AGVs are used as material handling systems. However, the current techniques that provide navigation, control, and manoeuvrability of automated guided vehicles threaten to create bottlenecks and inefficiencies in manufacturing environments that strive towards the optimisation of part production. This paper proposes a decentralised localisation technique for an automated guided vehicle without any non-holonomic constraints. Incorporation of these vehicles into the material handling system of a computer-integrated manufacturing environment would increase the characteristics of robustness, efficiency, flexibility, and advanced manoeuvrability.

  13. 75 FR 57230 - 340B Drug Pricing Program Manufacturer Civil Monetary Penalties

    Science.gov (United States)

    2010-09-20

    ... Civil Monetary Penalties AGENCY: Health Resources and Services Administration, HHS. ACTION: Advance notice of proposed rulemaking and request for comments. SUMMARY: Section 602 of Public Law 102-585, the... of civil monetary penalties for manufacturers that knowingly and intentionally overcharge a covered...

  14. Reticle variation influence on manufacturing line and wafer device performance

    Science.gov (United States)

    Nistler, John L.; Spurlock, Kyle

    1994-01-01

    Cost effective manufacturing of devices at 0.5, 0.35 and 0.25μm geometries will be highly dependent on a companys' ability to obtain an economic return on investment. The high capital investment in equipment and facilities, not to mention the related chemical and wafer costs, for producing 200mm silicon wafers requires aspects of wafer processing to be tightly controlled. Reduction in errors and enhanced yield management requires early correction or avoidance of reticle problems. It is becoming increasingly important to recognize and track all pertinent factors impacting both the technical and financial viability of a wafer manufacturing fabrication area. Reticle related effects on wafer manufacturing can be costly and affect the total quality perceived by the device customer.

  15. Advances in Flexible Hybrid Electronics Reliability

    Science.gov (United States)

    2017-03-01

    evaluate these new capabilities. This paper has presented initial work that helps define new test requirements for FHE systems. Acknowledgements...for supporting FHE capability improvements under the program "Advanced FleX-SoC Microcontroller " • Nano-Bio Manufacturing Consortium (NBMC) for

  16. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    Science.gov (United States)

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  17. Dynamic contrast-enhanced CT in advanced lung cancer after chemotherapy with/within radiation therapy: Can it predict treatment responsiveness of the tumor?

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Mi Ri; Whang, Sung Ho; Park, Chul Hwan; Kim, Sang Jin; Kim, Tae Hoon [Dept. of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul (Korea, Republic of)

    2013-08-15

    To evaluate the contrast enhancement patterns of lung cancer after chemotherapy using a dynamic contrast-enhanced (DCE) CT and to determine whether the enhancement patterns of tumors at early stages of treatment can predict treatment responses. Forty-two patients with advanced lung cancers underwent DCE-CT and follow-up CT after chemotherapy. We evaluated peak and net enhancement (PE and NE, respectively) and time-density curves (TDCs) (type A, B, C, and D) on DCE-CT images. Treatment responses were evaluated using revised Response Evaluation Criteria in Solid Tumor criteria. NE and PE values were significantly higher in the progressive disease (PD) groups than in the stable disease (SD) or partial response (PR) groups (p < 0.05). Types B, C, and D on TDCs were observed mostly in the PR and SD groups (96.0%), whereas type A was most frequent in the SD and PD groups (97.2%), which were significantly different in terms of PE and NE. Contrast enhancement pattern regarding the response of treatment on DCE-CT images could be helpful in predicting treatment response of advanced lung cancer after treatment.

  18. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  19. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    OpenAIRE

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2015-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013?2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen rece...

  20. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  1. Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping

    Directory of Open Access Journals (Sweden)

    Valerie Ussyshkin

    2011-02-01

    Full Text Available Conventional discrete return airborne lidar systems, used in the commercial sector for efficient generation of high quality spatial data, have been considered for the past decade to be an ideal choice for various mapping applications. Unlike two-dimensional aerial imagery, the elevation component of airborne lidar data provides the ability to represent vertical structure details with very high precision, which is an advantage for many lidar applications focusing on the analysis of elevated features such as 3D vegetation mapping. However, the use of conventional airborne discrete return lidar systems for some of these applications has often been limited, mostly due to relatively coarse vertical resolution and insufficient number of multiple measurements in vertical domain. For this reason, full waveform airborne sensors providing more detailed representation of target vertical structure have often been considered as a preferable choice in some areas of 3D vegetation mapping application, such as forestry research. This paper presents an overview of the specific features of airborne lidar technology concerning 3D mapping applications, particularly vegetation mapping. Certain key performance characteristics of lidar sensors important for the quality of vegetation mapping are discussed and illustrated by the advanced capabilities of the ALTM-Orion, a new discrete return sensor manufactured by Optech Incorporated. It is demonstrated that advanced discrete return sensors with enhanced 3D mapping capabilities can produce data of enhanced quality, which can represent complex structures of vegetation targets at the level of details equivalent in some aspects to the content of full waveform data. It is also shown that recent advances in conventional airborne lidar technology bear the potential to create a new application niche, where high quality dense point clouds, enhanced by fully recorded intensity for multiple returns, may provide sufficient

  2. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  3. Advanced Environment Friendly Nanotechnologies

    Science.gov (United States)

    Figovsky, O.; Beilin, D.; Blank, N.

    The economic, security, military and environmental implications of molecular manufacturing are extreme. Unfortunately, conflicting definitions of nanotechnology and blurry distinctions between significantly different fields have complicated the effort to understand those differences and to develop sensible, effective policy for each. The risks of today's nanoscale technologies cannot be treated the same as the risks of longer-term molecular manufacturing. It is a mistake to put them together in one basket for policy consideration — each is important to address, but they offer different problems and will require far different solutions. As used today, the term nanotechnology usually refers to a broad collection of mostly disconnected fields. Essentially, anything sufficiently small and interesting can be called nanotechnology. Much of it is harmless. For the rest, much of the harm is of familiar and limited quality. Molecular manufacturing, by contrast, will bring unfamiliar risks and new classes of problems. The advanced environment friendly nanotechnologies elaborated by Israel Company Polymate Ltd. — International Research Center are illustrated.

  4. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  5. Heavy water moderated reactors advances and challenges

    International Nuclear Information System (INIS)

    Meneley, D.A.; Olmstead, R.A.; Yu, A.M.; Dastur, A.R.; Yu, S.K.W.

    1994-01-01

    Nuclear energy is now considered a key contributor to world electricity production, with total installed capacity nearly equal to that of hydraulic power. Nevertheless, many important challenges lie ahead. Paramount among these is gaining public acceptance: this paper makes the basic assumption that public acceptance will improve if, and only if, nuclear power plants are operated safely and economically over an extended period of time. The first task, therefore, is to ensure that these prerequisites to public acceptance are met. Other issues relate to the many aspects of economics associated with nuclear power, include capital cost, operation cost, plant performance and the risk to the owner's investment. Financing is a further challenge to the expansion of nuclear power. While the ability to finance a project is strongly dependent on meeting public acceptance and economic challenges, substantial localisation of design and manufacture is often essential to acceptance by the purchaser. The neutron efficient heavy water moderated CANDU with its unique tube reactor is considered to be particularly well qualified to respond to these market challenges. Enhanced safety can be achieved through simplification of safety systems, design of the moderator and shield water systems to mitigate severe accident events, and the increased use of passive systems. Economics are improved through reduction in both capital and operating costs, achieved through the application of state-of-the-art technologies and economy of scale. Modular features of the design enhance the potential for local manufacture. Advanced fuel cycles offer reduction in both capital costs and fuelling costs. These cycles, including slightly enriched uranium and low grade fuels from reprocessing plants can serve to increase reactor output, reduce fuelling cost and reduce waste production, while extending resource utilisation. 1 ref., 1 tab

  6. Technical Meeting on Design, Manufacturing and Irradiation Behaviour of Fast Reactors Fuels. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this meeting was to enable a rationalization and advancement of the design and manufacturing processes, a better selection of promising fuels, and a reduction of the time and costs currently required for R and D and testing, as well as to contribute to the improvement of the safety features of fuels under all operational states and accidental conditions. An overview of the status and perspective of the design, manufacturing and irradiation behaviour of fast reactors fuels were provided during this meeting. The main objectives are the following: Ensure sharing and dissemination of knowledge and expertise; Discuss specific features and issues of existing fuels; Improve knowledge and data for the design and engineering of fast reactor fuel and core structural materials; Discuss perspectives on advanced fuels; Consider modern technological, design and testing tools enabling reliable performance of fuels in current and planned operational environments; Establish international consensus in the developmental efforts on advanced fast reactor technologies, including collaborative programs and experiments. Contribute to the preparation and outline of the planned IAEA Coordinated Research Project on 'Examination of advanced fast reactor fuel and core structural materials. Each of the 24 presentations made at the meeting have been indexed separately

  7. Grain Structure Control of Additively Manufactured Metallic Materials

    Directory of Open Access Journals (Sweden)

    Fuyao Yan

    2017-11-01

    Full Text Available Grain structure control is challenging for metal additive manufacturing (AM. Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.

  8. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    Science.gov (United States)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  9. How it outsourcing impacts on value creation of manufacturer?

    Directory of Open Access Journals (Sweden)

    Chen Li-Shan

    2017-01-01

    Full Text Available A growing concern among the manufacturers who are actively involved in Information Technology outsourcing is post-contract management and the ensuing development of what many practitioners have coined the ‘outsourcing partnership’. Over the past few decades, information technology outsourcing has become a widely used and researched means for manufacturers to enhance their performance. Increasing attention has been paid to building successful partnerships in information systems outsourcing. This study employs strategic social positioning, customer participation, customer orientation, and communication culture to develop research model. The quantitative method will be used to validate the research model and test hypotheses developed. This study uses survey method to collect data, and analysis of the reliability, validity and test the proposed hypotheses by Smart Partial Least Squares. The purpose of this study is to use above four factors to produce value co-creation between outsourcing vendors and manufacturers. The final aim is for the future collaboration. This combination will allow manufacturers and information technology outsourcing vendors to increase their value co-creations in the fields of these factors.

  10. Manufacturing of advanced bent crystals for Laue Optics for Gamma ObservationS (LOGOS)

    International Nuclear Information System (INIS)

    Mazzolari, Andrea; Camattari, Riccardo; Bellucci, Valerio; Paternò, Gianfranco; Scian, Carlo; Mattei, Giovanni; Guidi, Vincenzo

    2015-01-01

    X- and γ-ray detection is currently a hot topic for a wide scientific community, spanning from astrophysics to nuclear medicine. However, lack of optics capable of focusing photons of energies in the energy range 0.1–1 MeV leaves the photon detection to a direct-view approach, resulting in a limited efficiency and resolution. The main scope of the INFN-LOGOS project is the development of technologies that enable manufacturing highly performing optical elements to be employed in the realization of hard X-ray lenses. Such lenses, typically named Laue lenses, consist of an ensemble of crystals disposed in concentric rings in order to diffract the incident radiation towards the focus of the lens, where a detector is placed. In particular, the INFN-LOGOS project aims at the realization of intrinsically bent silicon and germanium crystals exploiting the quasi-mosaic effect for focusing hard X-rays. Crystal manufacturing relies on a proper revisitation of techniques typically employed in silicon micromachining, such as thin film deposition and patterning or ion implantation

  11. Manufacturing of advanced bent crystals for Laue Optics for Gamma ObservationS (LOGOS)

    Energy Technology Data Exchange (ETDEWEB)

    Mazzolari, Andrea, E-mail: mazzolari@fe.infn.it [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy); Camattari, Riccardo; Bellucci, Valerio; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy); Scian, Carlo; Mattei, Giovanni [University of Padova, Department of Physics and Astronomy Galileo Galilei (Italy); Guidi, Vincenzo [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy)

    2015-07-15

    X- and γ-ray detection is currently a hot topic for a wide scientific community, spanning from astrophysics to nuclear medicine. However, lack of optics capable of focusing photons of energies in the energy range 0.1–1 MeV leaves the photon detection to a direct-view approach, resulting in a limited efficiency and resolution. The main scope of the INFN-LOGOS project is the development of technologies that enable manufacturing highly performing optical elements to be employed in the realization of hard X-ray lenses. Such lenses, typically named Laue lenses, consist of an ensemble of crystals disposed in concentric rings in order to diffract the incident radiation towards the focus of the lens, where a detector is placed. In particular, the INFN-LOGOS project aims at the realization of intrinsically bent silicon and germanium crystals exploiting the quasi-mosaic effect for focusing hard X-rays. Crystal manufacturing relies on a proper revisitation of techniques typically employed in silicon micromachining, such as thin film deposition and patterning or ion implantation.

  12. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  13. A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing

    Science.gov (United States)

    Ko, Woo-Hyun; Srinivasa, Arun; Kumar, P. R.

    2017-12-01

    Cyber-manufacturing systems can be enhanced by an integrated network architecture that is easily configurable, reliable, and scalable. We consider a cyber-physical system for use in an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are built around the laser processing machine. They include a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data and user’s job requests, a robotic arm manipulating the workpiece in the work space, and middleware, named Etherware, supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result.

  14. Manufacture and Erection of SFR Components: Feedback from PFBR Experience

    International Nuclear Information System (INIS)

    Chellapandi, P.

    2013-01-01

    Unique Features of SFR Components: • Large diameter thin walled shell and slender structures calling for stringent tolerances posing challenges in manufacturing, handling and erection. • Single side welds are unavoidable at some difficult locations. • In-service inspection is difficult. • Residual stresses should be minimum calling for robust heat treatment strategy. • Minimum number of materials to be used from reliability point of view (but not preferred from economic considerations). • Mainly austenitic stainless steels calling for careful considerations for welding without significant weld repairs and distortions. • Reactor assembly components decide the project time schedule (large manufacturing, assembly and erection time). • Leak tightness is very important in view of resulting sodium leaks. • Limited experience on manufacturing and erection of components. • Design and manufacturing codes still evolvingPFBR Reactor Assembly – Major Lessons: • Grid plate Large number of sleeves, posing difficulty in assembly, hard facing of large diameter plates and heavy flange construction. • Roof slab Large box type structure with many penetrations – complicated manufacturing process, time consuming and difficulty to overcome lamellar tearing problems. • Inclined Fuel Transfer Machine Complex manufacturing processes leading to large time and extensive qualification tests. • Increase of number of primary pipes – essential for enhancing safety. • Integration of components manufactured by different industries took unduly long time

  15. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  17. The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures

    International Nuclear Information System (INIS)

    Long, Xingle; Zhao, Xicang; Cheng, Faxin

    2015-01-01

    This paper mainly compares total factor productivity and eco-efficiency in China's cement manufactures from 2005 to 2010. First, we evaluate total factor productivity and eco-efficiency of China's cement manufactures through distance function and directional slack-based measure (DSBM) respectively. Furthermore, we also explore the difference of total factor productivity and eco-efficiency. Last, we investigate the determinants of Malmquist, Mamlquist–Luenberger of China's cement manufactures through random-effect Tobit and bootstrap truncated econometric methods. We find that there are some gaps between Malmquist and Mamlquist–Luenberger of China's cement manufactures. Per labor cement industry value has U-shape relationship with both Malmquist and Malmquist–Luenberger. It is necessary to adopt advanced technology to reduce pollutant emissions. -- Highlights: •Eco-efficiency of cement manufactures is evaluated through slack-based measure. •Eco-efficiency of China's cement manufactures has biases with total factor productivity. •Environmental Kuznets curve is existed for China's cement manufactures

  18. Advances in second generation high temperature superconducting wire manufacturing and R and D at American Superconductor Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, Martin W; Li Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James, E-mail: mrupich@amsc.co [American Superconductor Corporation, 64 Jackson Road, Devens, MA 01434-4020 (United States)

    2010-01-15

    The RABiTS(TM)/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cm{sub width}{sup -1} at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R and D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R and D improvements.

  19. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  20. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.