WorldWideScience

Sample records for enhance mutation detection

  1. Enhanced Ratio of Signals Enables Digital Mutation Scanning for Rare Allele Detection

    Science.gov (United States)

    Castellanos-Rizaldos, Elena; Paweletz, Cloud; Song, Chen; Oxnard, Geoffrey R.; Mamon, Harvey; Jänne, Pasi A.; Makrigiorgos, G. Mike

    2016-01-01

    The use of droplet digital PCR (ddPCR) for low-level DNA mutation detection in cancer, prenatal diagnosis, and infectious diseases is growing rapidly. However, although ddPCR has been implemented successfully for detection of rare mutations at pre-determined positions, no ddPCR adaptation for mutation scanning exists. Yet, frequently, clinically relevant mutations reside on multiple sequence positions in tumor suppressor genes or complex hotspot mutations in oncogenes. Here, we describe a combination of coamplification at lower denaturation temperature PCR (COLD-PCR) with ddPCR that enables digital mutation scanning within approximately 50-bp sections of a target amplicon. Two FAM/HEX-labeled hydrolysis probes matching the wild-type sequence are used during ddPCR. The ratio of FAM/HEX-positive droplets is constant when wild-type amplicons are amplified but deviates when mutations anywhere under the FAM or HEX probes are present. To enhance the change in FAM/HEX ratio, we employed COLD-PCR cycling conditions that enrich mutation-containing amplicons anywhere on the sequence. We validated COLD-ddPCR on multiple mutations in TP53 and in EGFR using serial mutation dilutions and cell-free circulating DNA samples, and demonstrate detection down to approximately 0.2% to 1.2% mutation abundance. COLD-ddPCR enables a simple, rapid, and robust two-fluorophore detection method for the identification of multiple mutations during ddPCR and potentially can identify unknown DNA variants present in the target sequence. PMID:25772705

  2. Validation of a mobile phone-assisted microarray decoding platform for signal-enhanced mutation detection.

    Science.gov (United States)

    Zhang, Guanbin; Li, Caixia; Lu, Yuan; Hu, Hua; Xiang, Guangxin; Liang, Zhiqing; Liao, Pu; Dai, Pu; Xing, Wanli; Cheng, Jing

    2011-08-15

    We have established a mobile phone-assisted microarray decoding platform for signal-enhanced mutation detection. A large amount of single-stranded DNA (ssDNA) was obtained by combining symmetric PCR and magnetic isolation, and ssDNA prepared with magnetic bead as label was further allowed to hybridize against the tag-array for decoding purpose. High sensitivity and specificity was achieved with the detection of genomic DNA. When simultaneously genotyping nine common mutations associated with hereditary hearing loss, the detection limit of 1 ng genomic DNA was achieved. Significantly, a mobile phone was also used to record and decode the genotyping results through a custom-designed imaging adaptor and a dedicated mobile phone software. A total of 51 buccal swabs from patients probably with deafness-related mutations were collected and analyzed. The genotyping results were all confirmed by fluorescence-based laser confocal scanning and direct DNA sequencing. This mobile phone-assisted decoding platform provides an effective but economic mutation detection alternative for the future quicker and sensitive detection of virtually any mutation-related diseases in developing and underdeveloped countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Detecting clusters of mutations.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Positive selection for protein function can lead to multiple mutations within a small stretch of DNA, i.e., to a cluster of mutations. Recently, Wagner proposed a method to detect such mutation clusters. His method, however, did not take into account that residues with high solvent accessibility are inherently more variable than residues with low solvent accessibility. Here, we propose a new algorithm to detect clustered evolution. Our algorithm controls for different substitution probabilities at buried and exposed sites in the tertiary protein structure, and uses random permutations to calculate accurate P values for inferred clusters. We apply the algorithm to genomes of bacteria, fly, and mammals, and find several clusters of mutations in functionally important regions of proteins. Surprisingly, clustered evolution is a relatively rare phenomenon. Only between 2% and 10% of the genes we analyze contain a statistically significant mutation cluster. We also find that not controlling for solvent accessibility leads to an excess of clusters in terminal and solvent-exposed regions of proteins. Our algorithm provides a novel method to identify functionally relevant divergence between groups of species. Moreover, it could also be useful to detect artifacts in automatically assembled genomes.

  4. Detecting the brachyspina mutation

    DEFF Research Database (Denmark)

    2012-01-01

    This invention relates to methods for the detection of a bovine that is affected by or carrier of brachyspina. It is based on the identification of a 3.3 Kb deletion in the bovine FANCI gene that is shown to cause the brachyspina syndrome. The present invention provides methods and uses for deter...

  5. Sea-urchin-like Au nanocluster with surface-enhanced raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion.

    Science.gov (United States)

    Wang, Lei; Guo, Ting; Lu, Qiang; Yan, Xiaolong; Zhong, Daixing; Zhang, Zhipei; Ni, Yunfeng; Han, Yong; Cui, Daxiang; Li, Xiaofei; Huang, Lijun

    2015-01-14

    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are common in patients with lung adenocarcinomas and are associated with sensitivity to the small-molecule tyrosine kinase inhibitors (TKIs). For 10%-50% of the patients who experienced malignant pleural effusion (MPE), pathological diagnosis might rely exclusively on finding lung cancer cells in the MPE. Current methods based on polymerase chain reaction were utilized to test EGFR mutation status of MPE samples, but the accuracy of the test data was very low, resulting in many patients losing the chance of TKIs treatment. Herein, we synthesized the sea-urchin-like Au nanocluster (AuNC) with an average diameter of 92.4 nm, composed of 15-nm nanopricks. By introducing abundant sharp nanopricks, the enhancement factor of AuNC reached at 1.97 × 10(7). After capped with crystal violet (CV), polyethylene glycol, and EGFR mutation specific antibody, the AuNC-EGFR had excellent surface-enhanced Raman scattering (SERS) activity and EGFR mutation targeted recognition capability in lung cancer cells. Characteristic SERS signal at 1617 cm(-1) of CV was linear correlation with the number of H1650 cells, demonstrating the minimum detection limit as 25 cells in a 1-mL suspension. The gold mass in single H1650 cells exposed to AuNC-E746_750 for 2 h ranged from 208.6 pg to 231.4 pg, which approximately corresponded to 56-62 AuNCs per cell. Furthermore, SERS was preclinically utilized to test EGFR mutation status in MPE samples from 35 patients with lung adenocarcinoma. Principal component analysis (PCA) and the support vector machine (SVM) algorithm were constructed for EGFR mutation diagnostic analysis, yielding an overall accuracy of 90.7%. SERS measurement based on sea-urchin-like AuNC was an efficient method for EGFR mutation detection in MPE, and it might show great potential in applications such as predicting gene typing of clinical lung cancer in the near future.

  6. Immunohistochemical Detections of EGFR Mutations in NSCLC

    Directory of Open Access Journals (Sweden)

    Chang LIU

    2014-09-01

    Full Text Available In recent years, it has been well known that non-small cell lung cancer (NSCLC patients with mutations of epidermal growth factor receptor (EGFR response better to EGFR-tyrosine kinase inhibitor treatment. Although DNA-based assays (e.g. DNA sequencing are the most frequently used and a relatively reliable method to detect EGFR mutations, they are complex, time-consuming and relatively expensive for routine use in clinical laboratories, besides they require high quality tumor samples. In contrast, the immunohistochemistry (IHC methods make up fully for the above shortcomings and can serve as screening tests for EGFR mutations. However, there are many factors that can influence the results of IHC methods, such as different staining procedures, different antigen retrieval solutions and different sets of criteria, etc. Thus the IHC methods for detecting EGFR mutations have not been widely used in clinic and only in the research stage. This article reviews the use of IHC methods by different researchers and further discusses how to make the IHC methods work best for the detection of EGFR mutations.

  7. Enhanced tumorigenicity by mitochondrial DNA mild mutations.

    Science.gov (United States)

    Cruz-Bermúdez, Alberto; Vallejo, Carmen G; Vicente-Blanco, Ramiro J; Gallardo, María Esther; Fernández-Moreno, Miguel Ángel; Quintanilla, Miguel; Garesse, Rafael

    2015-05-30

    To understand how mitochondria are involved in malignant transformation we have generated a collection of transmitochondrial cybrid cell lines on the same nuclear background (143B) but with mutant mitochondrial DNA (mtDNA) variants with different degrees of pathogenicity. These include the severe mutation in the tRNALys gene, m.8363G>A, and the three milder yet prevalent Leber's hereditary optic neuropathy (LHON) mutations in the MT-ND1 (m.3460G>A), MT-ND4 (m.11778G>A) and MT-ND6 (m.14484T>C) mitochondrial genes. We found that 143B ρ0 cells devoid of mtDNA and cybrids harboring wild type mtDNA or that causing severe mitochondrial dysfunction do not produce tumors when injected in nude mice. By contrast cybrids containing mild mutant mtDNAs exhibit different tumorigenic capacities, depending on OXPHOS dysfunction.The differences in tumorigenicity correlate with an enhanced resistance to apoptosis and high levels of NOX expression. However, the final capacity of the different cybrid cell lines to generate tumors is most likely a consequence of a complex array of pro-oncogenic and anti-oncogenic factors associated with mitochondrial dysfunction.Our results demonstrate the essential role of mtDNA in tumorigenesis and explain the numerous and varied mtDNA mutations found in human tumors, most of which give rise to mild mitochondrial dysfunction.

  8. The value of a rapid contrast-enhanced angio-MRI protocol in the detection of head and neck paragangliomas in SDHx mutations carriers: a retrospective study on behalf of the PGL.EVA investigators*

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, Guillaume; Hernigou, Anne [Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Service de Radiologie, Paris (France); Niccoli, Patricia [Centre Hospitalier Universitaire la Timone, Assistance Publique-Hopitaux de Marseille, Service d' Endocrinologie, Diabete et Maladies Metaboliques, Marseille (France); Rohmer, Vincent [Centre Hospitalier Universitaire d' Angers, Service d' Endocrinologie, Diabetologie, Nutrition, Angers (France); LUNAM Universite, INSERM, U1063, Angers (France); Moulin, Guy [Centre Hospitalier Universitaire la Timone, Assistance Publique-Hopitaux de Marseille, Service de Radiologie, Marseille (France); Borson-Chazot, Francoise [Federation d' Endocrinologie, Hospices civils de Lyon, Groupement Hospitalier Est, Lyon (France); Universite de Lyon, Faculte de Medecine Lyon-Est, Lyon (France); Cancer Research Center of Lyon, INSERM UMR1052, UMR CNRS 5286, Lyon (France); Rousset, Pascal [Hospices civils de Lyon, Groupement Hospitalier Est, Service de Radiologie, Lyon (France); Pasco-Papon, Anne [Centre Hospitalier Universitaire d' Angers, Service de Radiologie, Angers (France); Marcus, Claude [Centre Hospitalo-Universitaire de Reims, Service de Radiologie, Reims (France); Dubrulle, Frederique [Centre Hospitalo-Universitaire de Lille, Service de Radiologie, Lille (France); Gouya, Herve [Hopital Cochin, Assistance Publique-Hopitaux de Paris, Service de Radiologie, Paris (France); Bidault, Francois [Institut Gustave Roussy, Service de Radiologie, Villejuif (France); Dupas, Benoit [Centre Hospitalo-Universitaire de Nantes, Service de Radiologie, Nantes (France); Gabrillargues, Jean [Centre Hospitalo-Universitaire de Clermont-Ferrand, Service de Neuroradiologie, Clermont Ferrand (France); Caumont-Prim, Aurore [Unite d' Epidemiologie et de Recherche Clinique, Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Paris (France); Centre d' investigation Epidemiologique 4, INSERM, Paris (France); Gimenez-Roqueplo, Anne-Paule [Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Service de Genetique, Paris (France); Paris Cardiovascular Research Center, INSERM, UMR970, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Paris (France); Halimi, Philippe [Hopital Europeen Georges Pompidou, Assistance Publique-Hopitaux de Paris, Service de Radiologie, Paris (France); Universite Paris Descartes, Sorbonne Paris Cite, Faculte de Medecine, Paris (France)

    2016-06-15

    To assess the performance of a simplified MRI protocol consisting of a contrast-enhanced three-dimensional MR angiography (CE-MRA) in association with a post-contrast T1-weighted sequence (T1WIV) for the detection of HNPGLs in SDHx mutation carriers. This retrospective sub-study is based on the multicenter PGL.EVA cohort, which prospectively enrolled SDHx mutation carriers from 2005 to 2009; 157 index cases or relatives were included. CE-MRA and the T1WIV images were read solely with knowledge of the clinical data but blind to the diagnosis. Sensitivity, specificity and likelihood ratios for the simplified MRI protocol were compared to the full MRI protocol reading results and to the gold standard status obtained through the consensus of an expert committee. The sensitivity and specificity of the readings of the simplified MRI protocol were, respectively, 88.7 % (95 % CI = 78.1-95.3) and 93.7 % (95 % CI = 86.8-97.7) versus 80.7 % (95 % CI = 68.6-89.6) and 94.7 % (95 % CI = 88.1-98.3) for the readings of the full MRI protocol. The simplified post-contrast MRI with shorter duration (5 to 10 minutes) showed no performance difference compared to the lengthy standard full MRI and can be proposed for the detection of head and neck paragangliomas (HNPGLs) in SDHx mutation carriers. (orig.)

  9. DMSO increases mutation-scanning detection sensitivity in clinical samples using high resolution melting

    Science.gov (United States)

    Song, Chen; Castellanos-Rizaldos, Elena; Bejar, Rafael; Ebert, Benjamin L.; Makrigiorgos, G. Mike

    2016-01-01

    BACKGROUND Mutation scanning provides the simplest, lowest cost method for identifying DNA variations on single PCR amplicons, and it may be performed prior to sequencing to avoid screening of non-informative wild type samples. High resolution melting (HRM) is the most commonly used method for mutation scanning. However, by using PCR-HRM mutations below ≈ 3–10% that can still be clinically significant may often be missed. Therefore, enhancing HRM detection sensitivity is important for mutation scanning and its clinical application. METHODS We used serial dilution of TP53 exon 8 mutation containing cell lines to demonstrate the improvement in detection sensitivity for conventional-PCR-HRM in the presence of DMSO. We also conducted full-COLD-PCR to further enrich low-level mutations prior to HRM±DMSO and employed droplet-digital PCR to derive the optimal conditions for mutation enrichment. Both conventional-PCR-HRM and full-COLD-PCR-HRM ±DMSO were used for mutation scanning in TP53 exon 8 in cancer samples containing known mutations and in myelodysplastic syndrome samples with unknown mutations. Mutations in other genes were also examined. RESULTS The detection sensitivity of PCR-HRM-scanning increases 2–5-fold in the presence of DMSO, depending also on mutation type and sequence context, and can typically detect mutation abundance of about 1%. When mutation enrichment is applied during amplification using full-COLD-PCR and followed by HRM in the presence of DMSO, mutations with 0.2–0.3% mutation abundance in TP53 exon 8 can be detected. CONCLUSIONS DMSO improves HRM mutation scanning sensitivity. When full-COLD-PCR is employed, followed by DMSO-HRM, the overall improvement is about 20-fold as compared to conventional PCR-HRM. PMID:26432802

  10. cDNA analyses of CAPN3 enhance mutation detection and reveal a low prevalence of LGMD2A patients in Denmark

    DEFF Research Database (Denmark)

    Duno, M.; Sveen, M.L.; Schwartz, M.

    2008-01-01

    suspected to have LGMD2A, based on western blot results. Four of these patients were shown to have LGMD2I upon molecular analysis, whereas 16 of the remaining 42 patients harbored mutations in CAPN3 by both direct genomic sequencing and cDNA analyses. In 10 patients, we identified both mutant alleles....... In three other, only one heterozygous mutation could be identified on the genomic level; however, CAPN3 cDNA analyses demonstrated homozygosity for the mutant allele, indicating the presence of an unidentified allele that somehow compromise correct CAPN3 RNA processing. In the three remaining patients......, only a single heterozygous mutation could be identified both at the genomic level and on full-length CAPN3 cDNA. All three patients exhibited a highly abnormal western blot for calpain-3 and clinical characteristics of LGMD2A. Only three of the genetically confirmed LGMD2A patients were of Danish...

  11. BEAMing Up Personalized Medicine: Mutation Detection In Blood

    OpenAIRE

    Richardson, Andrea L.; Iglehart, J. Dirk

    2012-01-01

    BEAMing is a feasible, accurate and sensitive method for detection of PIK3CA mutations in circulating tumor DNA in blood. Mutation status of PIK3CA may change between primary tumor and recurrence. The results suggest a new approach for non-invasive determination of current mutation status in patients with metastatic disease.

  12. Brain tumor mutations detected in cerebral spinal fluid.

    Science.gov (United States)

    Pan, Wenying; Gu, Wei; Nagpal, Seema; Gephart, Melanie Hayden; Quake, Stephen R

    2015-03-01

    Detecting tumor-derived cell-free DNA (cfDNA) in the blood of brain tumor patients is challenging, presumably owing to the blood-brain barrier. Cerebral spinal fluid (CSF) may serve as an alternative "liquid biopsy" of brain tumors by enabling measurement of circulating DNA within CSF to characterize tumor-specific mutations. Many aspects about the characteristics and detectability of tumor mutations in CSF remain undetermined. We used digital PCR and targeted amplicon sequencing to quantify tumor mutations in the cfDNA of CSF and plasma collected from 7 patients with solid brain tumors. Also, we applied cancer panel sequencing to globally characterize the somatic mutation profile from the CSF of 1 patient with suspected leptomeningeal disease. We detected tumor mutations in CSF samples from 6 of 7 patients with solid brain tumors. The concentration of the tumor mutant alleles varied widely between patients, from tumor biopsy. Tumor mutations were detectable in cfDNA from the CSF of patients with different primary and metastatic brain tumors. We designed 2 strategies to characterize tumor mutations in CSF for potential clinical diagnosis: the targeted detection of known driver mutations to monitor brain metastasis and the global characterization of genomic aberrations to direct personalized cancer care. © 2014 American Association for Clinical Chemistry.

  13. TILLING to detect induced mutations in soybean.

    Science.gov (United States)

    Cooper, Jennifer L; Till, Bradley J; Laport, Robert G; Darlow, Margaret C; Kleffner, Justin M; Jamai, Aziz; El-Mellouki, Tarik; Liu, Shiming; Ritchie, Rae; Nielsen, Niels; Bilyeu, Kristin D; Meksem, Khalid; Comai, Luca; Henikoff, Steven

    2008-01-24

    Soybean (Glycine max L. Merr.) is an important nitrogen-fixing crop that provides much of the world's protein and oil. However, the available tools for investigation of soybean gene function are limited. Nevertheless, chemical mutagenesis can be applied to soybean followed by screening for mutations in a target of interest using a strategy known as Targeting Induced Local Lesions IN Genomes (TILLING). We have applied TILLING to four mutagenized soybean populations, three of which were treated with ethyl methanesulfonate (EMS) and one with N-nitroso-N-methylurea (NMU). We screened seven targets in each population and discovered a total of 116 induced mutations. The NMU-treated population and one EMS mutagenized population had similar mutation density (approximately 1/140 kb), while another EMS population had a mutation density of approximately 1/250 kb. The remaining population had a mutation density of approximately 1/550 kb. Because of soybean's polyploid history, PCR amplification of multiple targets could impede mutation discovery. Indeed, one set of primers tested in this study amplified more than a single target and produced low quality data. To address this problem, we removed an extraneous target by pretreating genomic DNA with a restriction enzyme. Digestion of the template eliminated amplification of the extraneous target and allowed the identification of four additional mutant alleles compared to untreated template. The development of four independent populations with considerable mutation density, together with an additional method for screening closely related targets, indicates that soybean is a suitable organism for high-throughput mutation discovery even with its extensively duplicated genome.

  14. TILLING to detect induced mutations in soybean

    Directory of Open Access Journals (Sweden)

    Nielsen Niels

    2008-01-01

    Full Text Available Abstract Background Soybean (Glycine max L. Merr. is an important nitrogen-fixing crop that provides much of the world's protein and oil. However, the available tools for investigation of soybean gene function are limited. Nevertheless, chemical mutagenesis can be applied to soybean followed by screening for mutations in a target of interest using a strategy known as Targeting Induced Local Lesions IN Genomes (TILLING. We have applied TILLING to four mutagenized soybean populations, three of which were treated with ethyl methanesulfonate (EMS and one with N-nitroso-N-methylurea (NMU. Results We screened seven targets in each population and discovered a total of 116 induced mutations. The NMU-treated population and one EMS mutagenized population had similar mutation density (~1/140 kb, while another EMS population had a mutation density of ~1/250 kb. The remaining population had a mutation density of ~1/550 kb. Because of soybean's polyploid history, PCR amplification of multiple targets could impede mutation discovery. Indeed, one set of primers tested in this study amplified more than a single target and produced low quality data. To address this problem, we removed an extraneous target by pretreating genomic DNA with a restriction enzyme. Digestion of the template eliminated amplification of the extraneous target and allowed the identification of four additional mutant alleles compared to untreated template. Conclusion The development of four independent populations with considerable mutation density, together with an additional method for screening closely related targets, indicates that soybean is a suitable organism for high-throughput mutation discovery even with its extensively duplicated genome.

  15. Enhanced lipase production by mutation induced Aspergillus ...

    African Journals Online (AJOL)

    ... the HNO2 mutant (AHN3) and 217% higher than the UV mutant (AUV3) and 276% higher lipase activity than the parent strain. The results indicated that UV, HNO2 and NTG treatment were effective physical and chemical mutagenic agents for strain improvement of Aspergillus japonicus for enhanced lipase productivity.

  16. Mutation induced enhanced biosynthesis of lipase | Bapiraju ...

    African Journals Online (AJOL)

    Also, the lipase yield of the best NTG mutant BTNT2 was 133 % higher than the parent strain (BTUV3) and 232% higher than the wild strain (BTS-24). The results indicated that UV and NTG were effective mutagenic agents for strain improvement of Rhizopus sp. BTS-24 for enhanced lipase productivity. Key Words: Lipase ...

  17. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  18. SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis.

    Science.gov (United States)

    Graham, Rondell P; Dina, Michelle A; Howe, Sarah C; Butz, Malinda L; Willkomm, Kurt S; Murray, David L; Snyder, Melissa R; Rumilla, Kandelaria M; Halling, Kevin C; Highsmith, W Edward

    2015-11-01

    Genetic α-1 antitrypsin (AAT) deficiency is characterized by low serum AAT levels and the identification of causal mutations or an abnormal protein. It needs to be distinguished from deficiency because of nongenetic causes, and diagnostic delay may contribute to worse patient outcome. Current routine clinical testing assesses for only the most common mutations. We wanted to determine the proportion of unexplained cases of AAT deficiency that harbor causal mutations not identified through current standard allele-specific genotyping and isoelectric focusing (IEF). All prospective cases from December 1, 2013, to October 1, 2014, with a low serum AAT level not explained by allele-specific genotyping and IEF were assessed through full-gene sequencing with a direct sequencing method for pathogenic mutations. We reviewed the results using American Council of Medical Genetics criteria. Of 3523 cases, 42 (1.2%) met study inclusion criteria. Pathogenic or likely pathogenic mutations not identified through clinical testing were detected through full-gene sequencing in 16 (38%) of the 42 cases. Rare mutations not detected with current allele-specific testing and IEF underlie a substantial proportion of genetic AAT deficiency. Full-gene sequencing, therefore, has the ability to improve accuracy in the diagnosis of AAT deficiency. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. COLD-PCR enhanced melting curve analysis improves diagnostic accuracy for KRAS mutations in colorectal carcinoma.

    Science.gov (United States)

    Pritchard, Colin C; Akagi, Laura; Reddy, Poluru L; Joseph, Loren; Tait, Jonathan F

    2010-11-26

    KRAS mutational analysis is the standard of care prior to initiation of treatments targeting the epidermal growth factor receptor (EGFR) in patients with metastatic colorectal cancer. Sensitive methods are required to reliably detect KRAS mutations in tumor samples due to admixture with non-mutated cells. Many laboratories have implemented sensitive tests for KRAS mutations, but the methods often require expensive instrumentation and reagents, parallel reactions, multiple steps, or opening PCR tubes. We developed a highly sensitive, single-reaction, closed-tube strategy to detect all clinically significant mutations in KRAS codons 12 and 13 using the Roche LightCycler® instrument. The assay detects mutations via PCR-melting curve analysis with a Cy5.5-labeled sensor probe that straddles codons 12 and 13. Incorporating a fast COLD-PCR cycling program with a critical denaturation temperature (Tc) of 81°C increased the sensitivity of the assay >10-fold for the majority of KRAS mutations. We compared the COLD-PCR enhanced melting curve method to melting curve analysis without COLD-PCR and to traditional Sanger sequencing. In a cohort of 61 formalin-fixed paraffin-embedded colorectal cancer specimens, 29/61 were classified as mutant and 28/61 as wild type across all methods. Importantly, 4/61 (6%) were re-classified from wild type to mutant by the more sensitive COLD-PCR melting curve method. These 4 samples were confirmed to harbor clinically-significant KRAS mutations by COLD-PCR DNA sequencing. Five independent mixing studies using mutation-discordant pairs of cell lines and patient specimens demonstrated that the COLD-PCR enhanced melting curve assay could consistently detect down to 1% mutant DNA in a wild type background. We have developed and validated an inexpensive, rapid, and highly sensitive clinical assay for KRAS mutations that is the first report of COLD-PCR combined with probe-based melting curve analysis. This assay significantly improved diagnostic

  20. COLD-PCR enhanced melting curve analysis improves diagnostic accuracy for KRAS mutations in colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Joseph Loren

    2010-11-01

    Full Text Available Abstract Background KRAS mutational analysis is the standard of care prior to initiation of treatments targeting the epidermal growth factor receptor (EGFR in patients with metastatic colorectal cancer. Sensitive methods are required to reliably detect KRAS mutations in tumor samples due to admixture with non-mutated cells. Many laboratories have implemented sensitive tests for KRAS mutations, but the methods often require expensive instrumentation and reagents, parallel reactions, multiple steps, or opening PCR tubes. Methods We developed a highly sensitive, single-reaction, closed-tube strategy to detect all clinically significant mutations in KRAS codons 12 and 13 using the Roche LightCycler® instrument. The assay detects mutations via PCR-melting curve analysis with a Cy5.5-labeled sensor probe that straddles codons 12 and 13. Incorporating a fast COLD-PCR cycling program with a critical denaturation temperature (Tc of 81°C increased the sensitivity of the assay >10-fold for the majority of KRAS mutations. Results We compared the COLD-PCR enhanced melting curve method to melting curve analysis without COLD-PCR and to traditional Sanger sequencing. In a cohort of 61 formalin-fixed paraffin-embedded colorectal cancer specimens, 29/61 were classified as mutant and 28/61 as wild type across all methods. Importantly, 4/61 (6% were re-classified from wild type to mutant by the more sensitive COLD-PCR melting curve method. These 4 samples were confirmed to harbor clinically-significant KRAS mutations by COLD-PCR DNA sequencing. Five independent mixing studies using mutation-discordant pairs of cell lines and patient specimens demonstrated that the COLD-PCR enhanced melting curve assay could consistently detect down to 1% mutant DNA in a wild type background. Conclusions We have developed and validated an inexpensive, rapid, and highly sensitive clinical assay for KRAS mutations that is the first report of COLD-PCR combined with probe

  1. Detection of mutations in quinolone-resistant determining regions in ...

    African Journals Online (AJOL)

    This study devotes to determine the resistance rate of fluoroquinolones for 112 Escherichia coli isolates from Prince Salman Hospital, Riyadh and to detect the mutations in the quinolone resistance-determining region (QRDR) of gyrA and parC in the fluoroquinolones resistant isolates. The resistance rate of ciprofloxacin for ...

  2. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  3. Molecular analyses of novel ASAH1 mutations causing Farber lipogranulomatosis: analyses of exonic splicing enhancer inactivating mutation.

    Science.gov (United States)

    Bashyam, M D; Chaudhary, A K; Kiran, M; Reddy, V; Nagarajaram, H A; Dalal, A; Bashyam, L; Suri, D; Gupta, A; Gupta, N; Kabra, M; Puri, R D; RamaDevi, R; Kapoor, S; Danda, S

    2014-12-01

    Farber lipogranulomatosis is a rare autosomal recessive lysosomal storage disorder caused by mutations in the ASAH1 gene. In the largest ever study, we identified and characterized ASAH1 mutations from 11 independent Farber disease (FD) families. A total of 13 different mutations were identified including 1 splice, 1 polypyrimidine tract (PPT) deletion and 11 missense mutations. Eleven mutations were exclusive to the Indian population. The IVS6+4A>G splice and IVS5-16delTTTTC PPT deletion mutations resulted in skipping of exon 6 precluding thereby the region responsible for cleavage of enzyme precursor. A missense mutation (p.V198A) resulted in skipping of exon 8 due to inactivation of an exonic splicing enhancer (ESE) element. This is the first report of mutations affecting PPT and ESE in the ASAH1 gene resulting in FD. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Predicting IDH mutation status of intrahepatic cholangiocarcinomas based on contrast-enhanced CT features.

    Science.gov (United States)

    Zhu, Yong; Chen, Jun; Kong, Weiwei; Mao, Liang; Kong, Wentao; Zhou, Qun; Zhou, Zhengyang; Zhu, Bin; Wang, Zhongqiu; He, Jian; Qiu, Yudong

    2018-01-01

    To explore the difference in contrast-enhanced computed tomography (CT) features of intrahepatic cholangiocarcinomas (ICCs) with different isocitrate dehydrogenase (IDH) mutation status. Clinicopathological and contrast-enhanced CT features of 78 patients with 78 ICCs were retrospectively analysed and compared based on IDH mutation status. There were 11 ICCs with IDH mutation (11/78, 14.1%) and 67 ICCs without IDH mutation (67/78, 85.9%). IDH-mutated ICCs showed intratumoral artery more often than IDH-wild ICCs (p = 0.023). Most ICCs with IDH mutation showed rim and internal enhancement (10/11, 90.9%), while ICCs without IDH mutation often appeared diffuse (26/67, 38.8%) or with no enhancement (4/67, 6.0%) in the arterial phase (p = 0.009). IDH-mutated ICCs showed significantly higher CT values, enhancement degrees and enhancement ratios in arterial and portal venous phases than IDH-wild ICCs (all p IDH mutation, with an area under the curve of 0.798 (p = 0.002). ICCs with and without IDH mutation differed significantly in arterial enhancement mode, and the tumour enhancement degree on multiphase contrast-enhanced CT was helpful in predicting IDH mutation status. • IDH mutation occurred frequently in ICCs. • ICCs with and without IDH mutation differed significantly in arterial enhancement mode. • ICCs with IDH mutation enhanced more than those without IDH mutation. • Enhancement ratio and tumour CT value can predict IDH mutation status.

  5. Enhanced multifunctional paint for detection of radiation

    Science.gov (United States)

    Farmer, Joseph C.; Moses, Edward Ira; Rubenchik, Alexander M.

    2017-03-07

    An enhanced multifunctional paint apparatus, systems, and methods for detecting radiation on a surface include providing scintillation particles; providing an enhance neutron absorptive material; providing a binder; combining the scintillation particles, the enhance neutron absorptive material, and the binder creating a multifunctional paint; applying the multifunctional paint to the surface; and monitoring the surface for detecting radiation.

  6. An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies

    Directory of Open Access Journals (Sweden)

    Wan-li Xiang

    2015-01-01

    Full Text Available Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However, there is a shortcoming of premature convergence in standard DE, especially in DE/best/1/bin. In order to take advantage of direction guidance information of the best individual of DE/best/1/bin and avoid getting into local trap, based on multiple mutation strategies, an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization technique, opposition-based learning initialization for improving the initial solution quality, and a new combined mutation strategy composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark functions.

  7. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Detection of gene mutations in somatic....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture systems may be used to detect mutations induced by chemical substances. Widely used cell lines include...

  8. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance.

    Directory of Open Access Journals (Sweden)

    Huiling He

    Full Text Available Thyroid cancer shows high heritability but causative genes remain largely unknown. According to a common hypothesis the genetic predisposition to thyroid cancer is highly heterogeneous; being in part due to many different rare alleles. Here we used linkage analysis and targeted deep sequencing to detect a novel single-nucleotide mutation in chromosome 4q32 (4q32A>C in a large pedigree displaying non-medullary thyroid carcinoma (NMTC. This mutation is generally ultra-rare; it was not found in 38 NMTC families, in 2676 sporadic NMTC cases or 2470 controls. The mutation is located in a long-range enhancer element whose ability to bind the transcription factors POU2F and YY1 is significantly impaired, with decreased activity in the presence of the C- allele compared with the wild type A-allele. An enhancer RNA (eRNA is transcribed in thyroid tissue from this region and is greatly downregulated in NMTC tumors. We suggest that this is an example of an ultra-rare mutation predisposing to thyroid cancer with high penetrance.

  9. Ultra-rare mutation in long-range enhancer predisposes to thyroid carcinoma with high penetrance.

    Science.gov (United States)

    He, Huiling; Li, Wei; Wu, Dayong; Nagy, Rebecca; Liyanarachchi, Sandya; Akagi, Keiko; Jendrzejewski, Jaroslaw; Jiao, Hong; Hoag, Kevin; Wen, Bernard; Srinivas, Mukund; Waidyaratne, Gavisha; Wang, Rui; Wojcicka, Anna; Lattimer, Ilene R; Stachlewska, Elzbieta; Czetwertynska, Malgorzata; Dlugosinska, Joanna; Gierlikowski, Wojciech; Ploski, Rafal; Krawczyk, Marek; Jazdzewski, Krystian; Kere, Juha; Symer, David E; Jin, Victor; Wang, Qianben; de la Chapelle, Albert

    2013-01-01

    Thyroid cancer shows high heritability but causative genes remain largely unknown. According to a common hypothesis the genetic predisposition to thyroid cancer is highly heterogeneous; being in part due to many different rare alleles. Here we used linkage analysis and targeted deep sequencing to detect a novel single-nucleotide mutation in chromosome 4q32 (4q32A>C) in a large pedigree displaying non-medullary thyroid carcinoma (NMTC). This mutation is generally ultra-rare; it was not found in 38 NMTC families, in 2676 sporadic NMTC cases or 2470 controls. The mutation is located in a long-range enhancer element whose ability to bind the transcription factors POU2F and YY1 is significantly impaired, with decreased activity in the presence of the C- allele compared with the wild type A-allele. An enhancer RNA (eRNA) is transcribed in thyroid tissue from this region and is greatly downregulated in NMTC tumors. We suggest that this is an example of an ultra-rare mutation predisposing to thyroid cancer with high penetrance.

  10. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  11. Automation of diagnostic genetic testing: mutation detection by cyclic minisequencing.

    Science.gov (United States)

    Alagrund, Katariina; Orpana, Arto K

    2014-01-01

    The rising role of nucleic acid testing in clinical decision making is creating a need for efficient and automated diagnostic nucleic acid test platforms. Clinical use of nucleic acid testing sets demands for shorter turnaround times (TATs), lower production costs and robust, reliable methods that can easily adopt new test panels and is able to run rare tests in random access principle. Here we present a novel home-brew laboratory automation platform for diagnostic mutation testing. This platform is based on the cyclic minisequecing (cMS) and two color near-infrared (NIR) detection. Pipetting is automated using Tecan Freedom EVO pipetting robots and all assays are performed in 384-well micro plate format. The automation platform includes a data processing system, controlling all procedures, and automated patient result reporting to the hospital information system. We have found automated cMS a reliable, inexpensive and robust method for nucleic acid testing for a wide variety of diagnostic tests. The platform is currently in clinical use for over 80 mutations or polymorphisms. Additionally to tests performed from blood samples, the system performs also epigenetic test for the methylation of the MGMT gene promoter, and companion diagnostic tests for analysis of KRAS and BRAF gene mutations from formalin fixed and paraffin embedded tumor samples. Automation of genetic test reporting is found reliable and efficient decreasing the work load of academic personnel.

  12. A parylene-based dual channel microelectrophoresis system for rapid mutation detection via heteroduplex analysis

    NARCIS (Netherlands)

    Sukas, S.; Erson, Ayse Elif; Sert, Cuneyt; Kulah, Haluk

    2008-01-01

    A new dual channel micro-electrophoresis system for rapid mutation detection based on heteroduplex analysis was designed and implemented. Mutation detection was successfully achieved in a total separation length of 250 μm in less than 3 min for a 590 bp DNA sample harboring a 3 bp mutation causing

  13. Detection of K-ras gene mutations in feces by magnetic nanoprobe in patients with pancreatic cancer: A preliminary study.

    Science.gov (United States)

    Wang, Xiaoguang; Wang, Jingshuai; Chen, Fei; Zhong, Zhengxiang; Qi, Lifeng

    2018-01-01

    The present study aimed to investigate the feasibility and effectiveness of detecting K-ras mutation by using magnetic nanoparticles in fecal samples of patients with pancreatic cancer at different stages. The novel methodology of K-ras mutation detection was compared to the existing methodology of cancer antigen (CA)19-9 examination. Patients with pancreatic cancer (n=88), pancreatic benign diseases who displayed chronic pancreatitis (n=35), pancreatic mucinous cyst neoplasms (n=10) and pancreatic serous cyst (n=9) admitted to the Department of Surgery, Jiaxing Second Hospital were enrolled in the present study. Fecal samples were collected from all patients, DNA was extracted and magnetic nanoprobe was then used to detect K-ras mutation. The results obtained using the novel magnetic nanoprobe detection technique showed a K-ras mutation rate of 81.8% (72/88) in the patients with pancreatic cancer and 18.5% (10/54) in patients with pancreatic benign diseases. In patients with pancreatic cancer, the K-ras mutation rate was comparable in stages I + IIA and IIB + III + IV (78.9 vs. 84.0%; P>0.05). The sensitivity and specificity of K-ras mutation for detection of pancreatic cancer was 81.8 and 81.5%, respectively. Sixty-eight pancreatic cancer patients had >37 U/ml CA99 with a sensitivity and specificity for pancreatic cancer detection of 77.3 and 77.8%, which was not significantly lower than detection by the fecal K-ras mutations (P>0.05). Combinational detection of fecal K-ras mutations and serum CA19-9 significantly increased the sensitivity regarding pancreatic cancer detection to 97.7% (P0.05) compared with fecal K-ras mutations or CA19-9 alone. The findings showed that the magnetic nanoprobe is able to detect fecal K-ras mutations in different stages of pancreatic cancer, with comparable sensitivity and specificity to CA19-9 examination for differentiating pancreatic cancer. Furthermore, combined detection of CA19-9 and K-ras mutations has enhanced sensitivity

  14. Preimplantational genetic diagnosis and mutation detection in a family with duplication mutation of DMD gene.

    Science.gov (United States)

    Ye, Yinghui; Yu, Ping; Yong, Jing; Zhang, Ting; Wei, Xiaoming; Qi, Ming; Jin, Fan

    2014-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disease caused by mutation in the DMD gene. A 38-year-old woman was referred to our hospital with her son who was diagnosed with DMD. Multiplex PCR failed to detect DMD mutations in the affected child. The female carrier underwent preimplantation genetic diagnosis by linkage analysis and gender determination. Eight embryos were biopsied after in vitro fertilization. Two healthy embryos determined both as females (E1 and E3) were transferred. Although the paternal allele was absent in E3, it was considered to be a result of allele dropout for the STR-49 marker. Surprisingly, a female and a male baby were delivered at 38 gestational weeks, suggesting that E3 was a male embryo with the allele dropout occurring at the SRY gene. Exon 2 duplication was detected in the DMD patient and the carrier mother using next-generation sequencing and multiple ligation-dependent probe amplification. Next, we verified the duplication of exon 2 by real-time PCR, using a special primer at 3' of intron 1, very close to exon 2. Finally, we confirmed that both newborns inherited the normal allele, using quantitative real-time PCR and linkage analysis. © 2014 S. Karger AG, Basel.

  15. Mutations of the SRY-responsive enhancer of SOX9 are uncommon in XY gonadal dysgenesis.

    Science.gov (United States)

    Georg, I; Bagheri-Fam, S; Knower, K C; Wieacker, P; Scherer, Gerd; Harley, V R

    2010-01-01

    During mouse sex determination, SRY upregulates the core testis-specific enhancer of Sox9, TESCO. Mutations in human SRY are found in one third of cases with XY pure gonadal dysgenesis (XY GD; Swyer syndrome), while two thirds remain unexplained. Heterozygous SOX9 mutations can cause XY GD in association with the skeletal malformation syndrome campomelic dysplasia. We hypothesized that human TESCO mutations could cause isolated XY GD. Sixty-six XY GD cases with an intact SRY were analyzed for TESCO point mutations or deletions. No mutations were identified. We conclude that TESCO mutations are not a common cause of XY GD. Copyright © 2010 S. Karger AG, Basel.

  16. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor®

    Directory of Open Access Journals (Sweden)

    Vincent Kate

    2009-12-01

    Full Text Available Abstract Background TILLING (Targeting Induced Local Lesions IN Genomes is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor® software, aimed at simultaneous detection of mutations in three homoeologous genes. Results We demonstrate that High Resolution Melting (HRM analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor® is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Conclusion Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence

  17. Compound EGFR mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma.

    Science.gov (United States)

    Kim, Eun Young; Cho, Eun Na; Park, Heae Surng; Hong, Ji Young; Lim, Seri; Youn, Jong Pil; Hwang, Seung Yong; Chang, Yoon Soo

    2016-01-01

    Compound EGFR mutations, defined as double or multiple mutations in the EGFR tyrosine kinase domain, are frequently detected with advances in sequencing technology but its clinical significance is unclear. This study analyzed 61 cases of EGFR mutation positive lung adenocarcinoma using next-generation sequencing (NGS) based repeated deep sequencing panel of 16 genes that contain actionable mutations and investigated clinical implication of compound EGFR mutations. Compound EGFR mutation was detected in 15 (24.6%) of 61 cases of EGFR mutation-positive lung adenocarcinoma. The majority (12/15) of compound mutations are combination of the atypical mutation and typical mutations such as exon19 deletion, L858R or G719X substitutions, or exon 20 insertion whereas 3 were combinations of rare atypical mutations. The patients with compound mutation showed shorter overall survival than those with simple mutations (83.7 vs. 72.8 mo; P = 0.020, Breslow test). Among the 115 missense mutations discovered in the tested genes, a few number of actionable mutations were detected irrelevant to the subtype of EGFR mutations, including ALK rearrangement, BCL2L11 intron 2 deletion, KRAS c.35G>A, PIK3CA c.1633G>A which are possible target of crizotinib, BH3 mimetics, MEK inhibitors, and PI3K-tyrosine kinase inhibitors, respectively. 31 missense mutations were detected in the cases with simple mutations whereas 84 in those with compound mutation, showing that the cases with compound missense mutation have higher burden of missense mutations (P = 0.001, independent sample t-test). Compound EGFR mutations are detected at a high frequency using NGS-based repeated deep sequencing. Because patients with compound EGFR mutations showed poor clinical outcomes, they should be closely monitored during follow-up.

  18. Rapid detection of RB1 recurrent mutations in retinoblastoma by ...

    Indian Academy of Sciences (India)

    mutations in RB1 in patients with retinoblastoma. Materials and methods. Subjects. To investigate recurrent mutations of RB1 in retinoblastoma patients, 121 children with sporadic or familial retinoblastoma. Keywords. retinoblastoma; ARMS-PCR; RB1 gene; recurrent mutation. Journal of Genetics Vol. 92, Online Resources.

  19. [Value of immunohistochemical staining with mutation-specific antibodies in detecting EGFR mutations: a meta-analysis].

    Science.gov (United States)

    Ma, Qing; Wang, Jing; Zhong, Diansheng; Ning, Chao; Liu, Chang; Xiao, Ping

    2014-06-20

    It has been proven that epidermal growth factor receptor (EGFR) mutation is the most important predictive factor for determining the effect of EGFR tyrosine kinase inhibitors (TKIs) applied to non-small cell lung cancer (NSCLC) patients. The patients with EGFR mutations response better to TKIs. To detect EGFR mutation has been particularly essential to select first-line treatment for lung cancer patients. To research and analyze the sensitivity and specificity of immunohistochemistry (IHC) using mutation specific antibodies in detecting EGFR mutations compared with DNA sequencing, and further evaluate the accuracy and clinical application value of IHC. All required articles in Pubmed database were searched. The deadline of retrieval was March 26, 2013. Then further screening the articles based on the inclusion and exclusion criteria. Meta analysis of diagnostic test was applied to analyze the sensitivity and specificity of IHC compared with DNA sequencing for the detection of EGFR mutations. Ten articles were included in the meta analysis, there were 1,679 samples in L858R group and 1,041 samples in E746-A750del group. The DOR were 225.17 (95%CI: 55.67-910.69) and 267.16 (95%CI: 132.45-538.88) respectively; the AUC of SROC were 0.948,4 (SEAUC=0.014,4) and 0.981,3 (SEAUC=0.009,9) respectively; the Q values were 0.888,3 (SEQ*=0.019,2) and 0.939,7 (SEQ*=0.019,1) respectively. The specificity and sensitivity of IHC method using these two mutation-specific antibodies were relatively high. As a screening method for EGFR mutations, the IHC with mutation specific antibodies is of clinical value.

  20. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Ahn

    Full Text Available Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS methods have high error rates. We have established a new method termed Duplex Sequencing (DS, which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  1. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing

    Science.gov (United States)

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F.; Fox, Edward J.; Chang, Chia-Cheng; Loeb, Lawrence A.

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles. PMID:26305705

  2. Driver Gene Mutations in Stools of Colorectal Carcinoma Patients Detected by Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Armengol, Gemma; Sarhadi, Virinder K; Ghanbari, Reza; Doghaei-Moghaddam, Masoud; Ansari, Reza; Sotoudeh, Masoud; Puolakkainen, Pauli; Kokkola, Arto; Malekzadeh, Reza; Knuutila, Sakari

    2016-07-01

    Detection of driver gene mutations in stool DNA represents a promising noninvasive approach for screening colorectal cancer (CRC). Amplicon-based next-generation sequencing (NGS) is a good option to study mutations in many cancer genes simultaneously and from a low amount of DNA. Our aim was to assess the feasibility of identifying mutations in 22 cancer driver genes with Ion Torrent technology in stool DNA from a series of 65 CRC patients. The assay was successful in 80% of stool DNA samples. NGS results showed 83 mutations in cancer driver genes, 29 hotspot and 54 novel mutations. One to five genes were mutated in 75% of cases. TP53, KRAS, FBXW7, and SMAD4 were the top mutated genes, consistent with previous studies. Of samples with mutations, 54% presented concomitant mutations in different genes. Phosphatidylinositol 3-kinase/mitogen-activated protein kinase pathway genes were mutated in 70% of samples, with 58% having alterations in KRAS, NRAS, or BRAF. Because mutations in these genes can compromise the efficacy of epidermal growth factor receptor blockade in CRC patients, identifying mutations that confer resistance to some targeted treatments may be useful to guide therapeutic decisions. In conclusion, the data presented herein show that NGS procedures on stool DNA represent a promising tool to detect genetic mutations that could be used in the future for diagnosis, monitoring, or treating CRC. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. Nonlinear retinal image enhancement for vessel detection

    Science.gov (United States)

    Wang, Xiaohong; Jiang, Xudong

    2017-07-01

    Retinal vessel detection is an essential part of the computer-aided diagnosis of eye diseases. Due to non-perfect imaging environment, retinal images often appear with intensity variations and artificial noises. This work proposes a two-step nonlinear retinal image enhancement to compensate for those imperfections of retinal images. The first step reduces intensity fluctuations of the image and the second step attenuates impulsive noise while preserving retinal vessels. Classification on the feature vector extracted from the enhanced retinal images is performed by using a linear SVM classifier. Experimental results demonstrate that the proposed method of two-step nonlinear image enhancement visibly improves the vessel detection performance, achieving better accuracy than that without enhancement process on the both DRIVE and STARE databases.

  4. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    Science.gov (United States)

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  5. Human fine body hair enhances ectoparasite detection.

    Science.gov (United States)

    Dean, Isabelle; Siva-Jothy, Michael T

    2012-06-23

    Although we are relatively naked in comparison with other primates, the human body is covered in a layer of fine hair (vellus and terminal hair) at a relatively high follicular density. There are relatively few explanations for the evolutionary maintenance of this type of human hair. Here, we experimentally test the hypothesis that human fine body hair plays a defensive function against ectoparasites (bed bugs). Our results show that fine body hair enhances the detection of ectoparasites through the combined effects of (i) increasing the parasite's search time and (ii) enhancing its detection.

  6. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    Science.gov (United States)

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    23 (35%) of 'missing' mutations in Usher type 2 probands with only a single heterozygous USH2A mutation detected with Sanger sequencing could be attributed to deletions, duplications or a pathogenic deep intronic variant. Future mutation detection strategies and genetic counselling will need to take into account the prevalence of these types of mutations in order to provide a more comprehensive diagnostic service.

  7. Escherichia coli Mutators Present an Enhanced Risk for Emergence of Antibiotic Resistance during Urinary Tract Infections

    OpenAIRE

    Miller, Keith; O'Neill, Alexander John; Chopra, Ian

    2004-01-01

    Mutators may present an enhanced risk for the emergence of antibiotic resistance in bacteria during chemotherapy. Using Escherichia coli mutators as a model, we evaluated their ability to develop resistance to antibiotics routinely used for the treatment of urinary tract infections (UTIs). Under conditions that simulate therapeutic drug concentrations in humans, low-level resistance to trimethoprim, gentamicin, and cefotaxime emerged more frequently in mutators than normal strains. Resistance...

  8. Mistranslation can enhance fitness through purging of deleterious mutations.

    Science.gov (United States)

    Bratulic, Sinisa; Toll-Riera, Macarena; Wagner, Andreas

    2017-05-19

    Phenotypic mutations are amino acid changes caused by mistranslation. How phenotypic mutations affect the adaptive evolution of new protein functions is unknown. Here we evolve the antibiotic resistance protein TEM-1 towards resistance on the antibiotic cefotaxime in an Escherichia coli strain with a high mistranslation rate. TEM-1 populations evolved in such strains endow host cells with a general growth advantage, not only on cefotaxime but also on several other antibiotics that ancestral TEM-1 had been unable to deactivate. High-throughput sequencing of TEM-1 populations shows that this advantage is associated with a lower incidence of weakly deleterious genotypic mutations. Our observations show that mistranslation is not just a source of noise that delays adaptive evolution. It could even facilitate adaptive evolution by exacerbating the effects of deleterious mutations and leading to their more efficient purging. The ubiquity of mistranslation and its effects render mistranslation an important factor in adaptive protein evolution.

  9. Detection of mutations in quinolone-resistant determining regions in ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... mutation(s) in gyrA and/or in another target such as parC is required. Thus, it has been proposed that the MIC of nalidixic acid could be used as a genetic marker of resistance for quinolone family in Gram-negative bacteria. (Ruiz, 2003). Quinolone resistance genes associated with plasmids have been also ...

  10. [18F]Fluoro-2-deoxy-D-glucose positron emission tomography detects gastric carcinoma in an early stage in an asymptomatic E-cadherin mutation carrier.

    NARCIS (Netherlands)

    Kouwen, M.C.A. van; Drenth, J.P.H.; Oyen, W.J.G.; Bruin, J.H.F.M. de; Ligtenberg, M.J.L.; Bonenkamp, J.J.; Krieken, J.H.J.M. van; Nagengast, F.M.

    2004-01-01

    PURPOSE: Autosomal dominant hereditary diffuse gastric cancer (HDGC) is caused by germ-line E-cadherin (CDH1) gene mutations. Early detection of cancer in carriers is difficult because HDGC escapes endoscopic detection. We hypothesized that the glucose metabolism is enhanced in HDGC and that this

  11. Improved detection of p53 point mutations by dideoxyfingerprinting (ddF).

    Science.gov (United States)

    Martincic, D; Whitlock, J A

    1996-11-07

    Two screening techniques for identifying point mutations (single-strand conformational polymorphism (SSCP) and dideoxyfingerprinting (ddF)) were compared to sequencing to determine their efficiency in detecting mutations in exons 5-8 of the p53 tumor suppressor gene. Twelve human glioblastoma cell lines were studied by each of the three methods. Ten mutations were identified by sequencing; of these, 10/10 were detected by ddF, while SSCP detected 6/10 true mutations and falsely identified two presumed mutations not confirmed by sequencing. We examined the impact of parameters which influence DNA conformation (gel temperature, gel composition, and PCR product size) on the ability of SSCP and ddF to detect mutations. The sensitivity of SSCP varied with both gel temperature and the size of the PCR product; in contrast, ddF was not influenced by either gel temperature or product length (up to 460 nucleotides). We conclude that the increased sensitivity of ddF, together with its greater ease of application due to the lack of need for optimization, provides significant advantages over SSCP in screening DNA sequences for the presence of point mutations. Our results also suggest that the incidence of p53 mutations may be underestimated in studies of human cancers which utilize SSCP as the method of mutational screening.

  12. Heteroduplex analysis of the dystrophin gene: application to point mutation and carrier detection.

    Science.gov (United States)

    Prior, T W; Papp, A C; Snyder, P J; Sedra, M S; Western, L M; Bartolo, C; Moxley, R T; Mendell, J R

    1994-03-01

    Approximately one-third of the Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, we identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. We conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing.

  13. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R. [Ohio State Univ., Columbus, OH (United States); Moxley, R.T. [Univ. of Rochester Medical Center, NY (United States)

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  14. Enhanced Propagating Surface Plasmon Signal Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2016-12-21

    Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from a hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.

  15. Enhanced photoacoustic detection using photonic crystal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  16. Detection of non-ΔGT NCF-1 mutations in chronic granulomatous disease

    DEFF Research Database (Denmark)

    Jakobsen, Marianne Antonius; Pedersen, Svend Stenvang; Barington, Torben

    2009-01-01

    to the functional NCF-1 has complicated the identification of other mutations in the gene. The aim of this study was to find a general technique for detection of non-GT deletion mutations in the coding region of NCF-1. RESULTS: A technique involving GeneScan analysis followed by amplification of cDNA with intact...... with suspected CGD....

  17. Video enhancement effectiveness for target detection

    Science.gov (United States)

    Simon, Michael; Fischer, Amber; Petrov, Plamen

    2011-05-01

    Unmanned aerial vehicles (UAVs) capture real-time video data of military targets while keeping the warfighter at a safe distance. This keeps soldiers out of harm's way while they perform intelligence, surveillance and reconnaissance (ISR) and close-air support troops in contact (CAS-TIC) situations. The military also wants to use UAV video to achieve force multiplication. One method of achieving effective force multiplication involves fielding numerous UAVs with cameras and having multiple videos processed simultaneously by a single operator. However, monitoring multiple video streams is difficult for operators when the videos are of low quality. To address this challenge, we researched several promising video enhancement algorithms that focus on improving video quality. In this paper, we discuss our video enhancement suite and provide examples of video enhancement capabilities, focusing on stabilization, dehazing, and denoising. We provide results that show the effects of our enhancement algorithms on target detection and tracking algorithms. These results indicate that there is potential to assist the operator in identifying and tracking relevant targets with aided target recognition even on difficult video, increasing the force multiplier effect of UAVs. This work also forms the basis for human factors research into the effects of enhancement algorithms on ISR missions.

  18. Friedreich ataxia: Detection of GAA repeat expansions and frataxin point mutations.

    Science.gov (United States)

    Pandolfo, Massimo

    2006-01-01

    Friedreich ataxia (FA) is an autosomal-recessive disease primarily characterized by progressive neurological disability. A significant proportion of patients also present with a hypertrophic cardiomyopathy, which may, in some cases, cause premature death. FA is caused by insufficient levels of the protein, frataxin, which is involved in mitochondrial iron metabolism. All patients carry at least one copy of an intronic GAA triplet-repeat expansion that interferes with frataxin transcription. Normal chromosomes contain up to 35 to 40 GAA triplets in an Alu sequence localized in the first intron of the frataxin gene; FA chromosomes carry from approx 70 to more than 1000 GAA triplets. The molecular diagnosis of FA is, therefore, based on the detection of this expansion, which is present in homozygosity in more than 95% of the cases. The remaining patients are heterozygous for the GAA expansion and carry a frataxin point mutation as the other pathogenic allele. The expanded GAA triplet repeat may be detected by polymerase chain reaction (PCR) amplification followed by agarose gel electrophoresis analysis. In our hands, carefully performed PCR testing, in particular, if fragment detection is enhanced by hybridization with a GAA oligonucleotide probe, is as effective in identifying patients and carriers as is Southern blot analysis of genomic DNA, and allows a more accurate sizing of the repeat. Furthermore, in the case of smaller expansions, the amplified fragment may be directly sequenced to identify very rare nonpathogenic variant repeats, such as GAAGGA. Sequence analysis of the five coding exons of the frataxin gene should be performed in clinically affected individuals who are heterozygous for an expanded GAA repeat to identify point mutations.

  19. Biochip-Based Detection of KRAS Mutation in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Barbara Ziegler

    2011-11-01

    Full Text Available This study is aimed at evaluating the potential of a biochip assay to sensitively detect KRAS mutation in DNA from non-small cell lung cancer (NSCLC tissue samples. The assay covers 10 mutations in codons 12 and 13 of the KRAS gene, and is based on mutant-enriched PCR followed by reverse-hybridization of biotinylated amplification products to an array of sequence-specific probes immobilized on the tip of a rectangular plastic stick (biochip. Biochip hybridization identified 17 (21% samples to carry a KRAS mutation of which 16 (33% were adenocarcinomas and 1 (3% was a squamous cell carcinoma. All mutations were confirmed by DNA sequencing. Using 10 ng of starting DNA, the biochip assay demonstrated a detection limit of 1% mutant sequence in a background of wild-type DNA. Our results suggest that the biochip assay is a sensitive alternative to protocols currently in use for KRAS mutation testing on limited quantity samples.

  20. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy

    DEFF Research Database (Denmark)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee

    2015-01-01

    of methods since they would allow rapid and relatively inexpensive detection of nucleic acids. Modern fluorescence microscopy is having a huge impact on detection of biomolecules at previously unachievable resolution. However, no straightforward methods to detect DNA in a non-enzymatic way using fluorescence......) and finally, detection by fluorescence microscopy. The LNA containing probes display high binding affinity and specificity to DNA containing mutations, which allows for the detection of mutation abundance with an intercalating EvaGreen dye. We used a second probe, which increases the overall number of base...... pairs in order to produce a higher fluorescence signal by incorporating more dye molecules. Indeed we show here that using EvaGreen dye and LNA probes, genomic DNA containing BRAF V600E mutation could be detected by fluorescence microscopy at low femtomolar concentrations. Notably, this was at least...

  1. Projection image enhancement for explosive detection systems

    Science.gov (United States)

    Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen

    2008-02-01

    Automated Explosive Detection Systems (EDS) utilizing Computed Tomography (CT) generate a series of 2-D projections from a series of X-ray scans OF luggage under inspection. 3-D volumetric images can also be generated from the collected data set. Extensive data manipulation of the 2-D and 3-D image sets for detecting the presence of explosives is done automatically by EDS. The results are then forwarded to human screeners for final review. The final determination as to whether the luggage contains an explosive and needs to be searched manually is performed by trained TSA (Transportation Security Administration) screeners following an approved TSA protocol. The TSA protocol has the screeners visually inspect the resulting images and the renderings from the EDS to determine if the luggage is suspicious and consequently should be searched manually. Enhancing those projection images delivers a higher quality screening, reduces screening time and also reduces the amount of luggage that needs to be manually searched otherwise. This paper presents a novel edge detection algorithm that is geared towards, though not exclusive to, automated explosive detection systems. The goal of these enhancements is to provide a higher quality screening process while reducing the overall screening time and luggage search rates. Accurately determining the location of edge pixels within 2-D signals, often the first step in segmentation and recognition systems indicates the boundary between overlapping objects in a luggage. Most of the edge detection algorithms such as Canny, Prewitt, Roberts, Sobel, and Laplacian methods are based on the first and second derivatives/difference operators. These operators detect the discontinuities in the differences of pixels. These approaches are sensitive to the presence of noise and could produce false edges in noisy images. Including large scale filters, may avoid errors generated by noise, but often simultaneously eliminating the finer edge details as

  2. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  3. Seeing Objects as Faces Enhances Object Detection

    Directory of Open Access Journals (Sweden)

    Kohske Takahashi

    2015-09-01

    Full Text Available The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness.

  4. Anomaly detection enhanced classification in computer intrusion detection

    Energy Technology Data Exchange (ETDEWEB)

    Fugate, M. L. (Michael L.); Gattiker, J. R. (James R.)

    2002-01-01

    This report describes work with the goal of enhancing capabilities in computer intrusion detection. The work builds upon a study of classification performance, that compared various methods of classifying information derived from computer network packets into attack versus normal categories, based on a labeled training dataset. This previous work validates our classification methods, and clears the ground for studying whether and how anomaly detection can be used to enhance this performance, The DARPA project that initiated the dataset used here concluded that anomaly detection should be examined to boost the performance of machine learning in the computer intrusion detection task. This report investigates the data set for aspects that will be valuable for anomaly detection application, and supports these results with models constructed from the data. In this report, the term anomaly detection means learning a model from unlabeled data, and using this to make some inference about future data. Our data is a feature vector derived from network packets: an 'example' or 'sample'. On the other hand, classification means building a model from labeled data, and using that model to classify unlabeled (future) examples. There is some precedent in the literature for combining these methods. One approach is to stage the two techniques, using anomaly detection to segment data into two sets for classification. An interpretation of this is a method to combat nonstationarity in the data. In our previous work, we demonstrated that the data has substantial temporal nonstationarity. With classification methods that can be thought of as learning a decision surface between two statistical distributions, performance is expected to degrade significantly when classifying examples that are from regions not well represented in the training set. Anomaly detection can be seen as a problem of learning the density (landscape) or the support (boundary) of a statistical

  5. Detecting coevolving amino acid sites using Bayesian mutational mapping

    DEFF Research Database (Denmark)

    Dimmic, Matthew W.; Hubisz, Melissa J.; Bustamente, Carlos D.

    2005-01-01

    of coevolving residues in protein families. This method, Bayesian mutational mapping (BMM), assigns mutations to the branches of the evolutionary tree stochastically, and then test statistics are calculated to determine whether a coevolutionary signal exists in the mapping. Posterior predictive P-values provide...... an estimate of significance, and specificity is maintained by integrating over uncertainty in the estimation of the tree topology, branch lengths and substitution rates. A coevolutionary Markov model for codon substitution is also described, and this model is used as the basis of several test statistics...... of eukaryotic proteins from the phosphoglycerate kinase (PGK) family, interdomain site contacts yield a significantly greater coevolutionary signal than interdomain non-contacts, an indication that the method provides information about interacting sites. Failure to account for the heterogeneity in rates across...

  6. The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wei-Lun Huang

    2015-01-01

    Full Text Available The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR. The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer.

  7. Megalencephaly syndromes: exome pipeline strategies for detecting low-level mosaic mutations.

    Directory of Open Access Journals (Sweden)

    William J Tapper

    Full Text Available Two megalencephaly (MEG syndromes, megalencephaly-capillary malformation (MCAP and megalencephaly-polymicrogyriapolydactyly-hydrocephalus (MPPH, have recently been defined on the basis of physical and neuroimaging features. Subsequently, exome sequencing of ten MEG cases identified de-novo postzygotic mutations in PIK3CA which cause MCAP and de-novo mutations in AKT and PIK3R2 which cause MPPH. Here we present findings from exome sequencing three unrelated megalencephaly patients which identified a causal PIK3CA mutation in two cases and a causal PIK3R2 mutation in the third case. However, our patient with the PIK3R2 mutation which is considered to cause MPPH has a marked bifrontal band heterotopia which is a feature of MCAP. Furthermore, one of our patients with a PIK3CA mutation lacks syndactyly/polydactyly which is a characteristic of MCAP. These findings suggest that the overlap between MCAP and MPPH may be greater than the available studies suggest. In addition, the PIK3CA mutation in one of our patients could not be detected using standard exome analysis because the mutation was observed at a low frequency consistent with somatic mosaicism. We have therefore investigated several alternative methods of exome analysis and demonstrate that alteration of the initial allele frequency spectrum (AFS, used as a prior for variant calling in samtools, had the greatest power to detect variants with low mutant allele frequencies in our 3 MEG exomes and in simulated data. We therefore recommend non-default settings of the AFS in combination with stringent quality control when searching for causal mutation(s that could have low levels of mutant reads due to post-zygotic mutation.

  8. BRAF mutation detection in hairy cell leukaemia from archival haematolymphoid specimens.

    Science.gov (United States)

    Thomas, Carla; Amanuel, Benhur; Finlayson, Jill; Grieu-Iacopetta, Fabienne; Spagnolo, Dominic V; Erber, Wendy N

    2015-06-01

    Hairy cell leukaemia (HCL) is a rare, indolent chronic B-cell leukaemia accounting for approximately 2% of all adult leukaemias. The recent association of the BRAF p.Val600Glu (V600E) mutation in HCL makes it a valuable molecular diagnostic marker. We compared the ability of Sanger sequencing, fluorescent single-strand conformational polymorphism (F-SSCP) and high resolution melting (HRM) analysis to detect BRAF mutations in 20 cases of HCL consisting of four archival Romanowsky stained air-dried peripheral blood and bone marrow aspirate smears, 12 mercury fixed decalcified bone marrow trephine biopsies, three formalin fixed, paraffin embedded (FFPE) splenectomy samples and one fresh peripheral blood sample. DNA was amplified and BRAF mutation status determined by the three methods above. V600E mutation was identified in 94%, 89% and 72% of HCL cases by F-SSCP, HRM and Sanger sequencing, respectively. In one case, in addition to the p.Val600Glu mutation, a p.Lys601Thr (K601T) mutation was identified. DNA from archival slide scrapings, mercury-fixed and FFPE tissue can be used to identify BRAF mutations with high sensitivity, especially using HRM/F-SSCP. The V600E mutation can be used as a supplementary molecular marker to aid in the diagnosis of HCL and the presence of the mutation may provide a target for therapy.

  9. Mutation detection in autosomal dominant Hirschsprung disease: SSCP analysis of the RET proto-oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Angrist, M.; Bolk, S.; Chakravarti, A. [Case Western Reserve Univ., Cleveland, OH (United States)

    1994-09-01

    Hirschsprung disease (HSCR), or congenital aganglionic megacolon, is the most common cause of congenital bowel obstruction, with an incidence of 1 in 5000. Recently, linkage of an incompletely penetrant, dominant form of HSCR to the pericentromeric region of chromosome 10 was reported, followed by identification of mutations in the RET proto-oncogene in HSCR patients. RET mutations have also been reported in both sporadic and familial forms of three neuroendrocrine tumor syndromes. Unlike the clustered RET mutations observed in these syndromes, the 18 reported HSCR mutations are distributed throughout the extracellular and tryosine kinase domains of RET. In an effort to determine the frequency of RET mutations in HSCR and correlate genotype with phenotype, we have begun to screen for mutations among 80 HSCR probands representing a wide range of phenotypes and pedigree structures. Non-isotopic single strand conformation of polymorphism (SSCP) analysis was carried out using the Pharmacia PhastSystem{trademark}. Initial screening of exons 2 through 6 detected variants in 11 patients not seen in 24 controls. One additional band shift in exon 6 has been observed in both patients and controls. Preliminary sequence analysis has revealed two putative familial mutations in exon 2: a single base pair deletion (49Pro del C 296) and a point mutation that leads to a conservative amino acid substitution (93Gly{r_arrow}Ser). These results suggest that HSCR may be associated with a range of alterations in the coding sequence of the RET extracellular domain. Additional mutations will be described.

  10. The application of estrogen receptor-1 mutations' detection through circulating tumor dna in breast cancer

    Directory of Open Access Journals (Sweden)

    Binliang Liu

    2017-01-01

    Full Text Available Breast cancer is the most common cancer in women worldwide. Endocrine therapy is the cornerstone of treatment for patients with hormone receptor-positive advanced breast cancer. Unfortunately, although most patients initially respond to endocrine treatment, they will eventually acquire resistance to endocrine therapy. The mechanisms of endocrine resistance are complicated. In particular, the estrogen receptor-1 (ESR1 mutation has been recognized as an important topic in recent years. Mutation of ESR1 leads to complete aromatase inhibitor resistance and partial resistance to estrogen receptor agonists and antagonists. Therefore, during clinical treatment, it is of great importance to continuously monitor ESR1 mutations before and after endocrine therapy. Conventional tissue biopsies have unavoidable disadvantages, and therefore, the use of circulating tumor DNA (ctDNA has become more prevalent because it is noninvasive and convenient, has excellent sensitivity, and can quickly assess the overall situation of the tumor. The current methods for detecting ctDNA ESR1 mutations mainly include droplet digital polymerase chain reaction and next-generation sequencing techniques. Based on their advantages and disadvantages, we can establish an initial ESR1 mutation monitoring system. However, developing robust methods to monitor ESR1 mutation, detecting endocrine drug resistance, and evaluating prognoses for guiding clinical treatment strategies require long-term exploration. In this review, we will summarize recent concepts and advancements regarding ESR1 mutation monitoring, ctDNA detection technology, and their application in endocrine therapy of breast cancer.

  11. Potential Pitfalls of SDH Immunohistochemical Detection in Paragangliomas and Phaeochromocytomas Harbouring Germline SDHx Gene Mutation.

    Science.gov (United States)

    Santi, Raffaella; Rapizzi, Elena; Canu, Letizia; Ercolino, Tonino; Baroni, Gianna; Fucci, Rossella; Costa, Giuseppe; Mannelli, Massimo; Nesi, Gabriella

    2017-02-01

    Germline mutations in any of the succinate dehydrogenase (SDH) genes result in destabilization of the SDH protein complex and loss of SDHB expression at immunohistochemistry. SDHA is lost together with SDHB in SDHA-mutated tumours, but its expression is retained in tumours with other SDH mutations. We investigated whether SDHA/SDHB immunohistochemistry is able to identify SDH-related tumours in a retrospective case series of phaeochromocytomas (PCCs) and paragangliomas (PGLs). SDHA and SDHB immunostaining was performed in 13 SDH gene-mutated tumours (SDHB: n=3; SDHC: n=1; SDHD: n=9) and 16 wild-type tumours. Protein expression by western blot analysis and enzymatic activity were also assessed. Tumours harbouring SDH gene mutations demonstrated a significant reduction in enzymatic activity and protein expression when compared to wild-type tumours. SDHB immunostaining detected 76.9% of SDH mutated PCCs/PGLs (3/3 SDHB-mutated samples; 1/1 SDHC-mutated sample; 6/9 SDHD-mutated samples). In three SDHD-related tumours with the same mutation (p.Pro81Leu), positive (n=2) or weakly diffuse (n=1) SDHB staining was observed. All wild-type PCCs/PGLs exhibited SDHB immunoreactivity, while immunostaining for SDHA was positive in 93.8% cases and weakly diffuse in one (6.2%). SDHA protein expression was preserved in all tumours with mutations. SDHA and SDHB immunohistochemistry should be interpreted with caution, due to possible false-positive or false-negative results, and ideally in the setting of quality assurance provided by molecular testing. In SDHD mutation, weak non-specific cytoplasmic staining occurs commonly, and this pattern of staining can be difficult to interpret with certainty. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Enhanced production of nattokinase from UV mutated Bacillus sp.

    Directory of Open Access Journals (Sweden)

    V Mohanasrinivasan

    2013-06-01

    Full Text Available In the recent years, nattokinase is one of the most-often employed among the several thrombolytic agents used clinically, particularly because of its lower cost comparing to other thrombolytic agents. In the present research work, Bacillus sp. was isolated from the heterogeneous microbial population present in the soil sample and screened for the production of nattokinase. The production of the enzyme was carried out using two different media (with and without shrimp shell substrate. Nattokinase activity (clot buster was determined by using a modified Holmstorm method. The production strain SFN01 was improved by random mutagenesis (UV radiation and the enzyme activity was checked with the enzyme produced by wild strain. The mutated strains had exhibited a higher clot lysis activity in which 1 unit of the enzyme completely lyses 1 mL of human blood when compared to the wild strain. Nattokinase produced by SFN showed a retention time of 10.6 min in RP-HPLC chromatogram.

  13. Two Types of Etiological Mutation in the Limb-Specific Enhancer of Shh

    Directory of Open Access Journals (Sweden)

    Takanori Amano

    2017-09-01

    Full Text Available An enhancer named MFCS1 regulates Sonic hedgehog (Shh expression in the posterior mesenchyme of limb buds. Several mutations in MFCS1 induce ectopic Shh expression in the anterior limb bud, and these result in preaxial polydactyly (PPD. However, the molecular basis of ectopic Shh expression remains elusive, although some mutations are known to disrupt the negative regulation of Shh expression in the anterior limb bud. Here, we analyzed the molecular mechanism of ectopic Shh expression in PPD including in a mouse mutation—hemimelic extra toes (Hx—and in other MFCS1 mutations in different species. First, we generated transgenic mouse lines with a LacZ reporter cassette flanked with tandem repeats of 40 bp MFCS1 fragments harboring a mutation. The transgenic mouse line with the Hx-type fragment showed reporter expression exclusively in the anterior, but not in the posterior margins of limb buds. In contrast, no specific LacZ expression was observed in lines carrying the MFCS1 fragment with other mutations. Yeast one-hybrid assays revealed that the msh-like homeodomain protein, MSX1, bound specifically to the Hx sequence of MFCS1. Thus, PPD caused by mutations in MFCS1 has two major types of molecular etiology: loss of a cis-motif for negative regulation of Shh, and acquisition of a new cis-motif binding to a preexisting transcription factor, as represented by the Hx mutation.

  14. Including total EGFR staining in scoring improves EGFR mutations detection by mutation-specific antibodies and EGFR TKIs response prediction.

    Directory of Open Access Journals (Sweden)

    Shang-Gin Wu

    Full Text Available Epidermal growth factor receptor (EGFR is a novel target for therapy in subsets of non-small cell lung cancer, especially adenocarcinoma. Tumors with EGFR mutations showed good response to EGFR tyrosine kinase inhibitors (TKIs. We aimed to identify the discriminating capacity of immunohistochemical (IHC scoring to detect L858R and E746-A750 deletion mutation in lung adenocarcinoma patients and predict EGFR TKIs response. Patients with surgically resected lung adenocarcinoma were enrolled. EGFR mutation status was genotyped by PCR and direct sequencing. Mutation-specific antibodies for L858R and E746-A750 deletion were used for IHC staining. Receiver operating characteristic (ROC curves were used to determine the capacity of IHC, including intensity and/or quickscore (Q score, in differentiating L858R and E746-A750 deletion. We enrolled 143 patients during September 2000 to May 2009. Logistic-regression-model-based scoring containing both L858R Q score and total EGFR expression Q score was able to obtain a maximal area under the curve (AUC: 0.891 to differentiate the patients with L858R. Predictive model based on IHC Q score of E746-A750 deletion and IHC intensity of total EGFR expression reached an AUC of 0.969. The predictive model of L858R had a significantly higher AUC than L858R intensity only (p = 0.036. Of the six patients harboring complex EGFR mutations with classical mutation patterns, five had positive IHC staining. For EGFR TKI treated cancer recurrence patients, those with positive mutation-specific antibody IHC staining had better EGFR TKI response (p = 0.008 and longer progression-free survival (p = 0.012 than those without. In conclusion, total EGFR expression should be included in the IHC interpretation of L858R. After adjusting for total EGFR expression, the scoring method decreased the false positive rate and increased diagnostic power. According to the scoring method, the IHC method is useful to predict the

  15. Keratin 1 gene mutation detected in epidermal nevus with epidermolytic hyperkeratosis.

    Science.gov (United States)

    Tsubota, Akiko; Akiyama, Masashi; Sakai, Kaori; Goto, Maki; Nomura, Yukiko; Ando, Satomi; Abe, Masataka; Sawamura, Daisuke; Shimizu, Hiroshi

    2007-06-01

    Since 1994, four cases of epidermal nevus with epidermolytic hyperkeratosis (EH) caused by keratin 10 gene mutations have been reported, although no keratin 1 (K1) gene mutation has yet been reported. We detected a K1 gene (KRT1) mutation in epidermal nevus with EH in a 10-year-old Japanese male. The patient showed well-demarcated verrucous, hyperkeratotic plaques mainly on the trunk, covering 15% of the entire body surface. No hyperkeratosis was seen on the palms or soles. He had no family history of skin disorders. His lesional skin showed typical granular degeneration and, ultrastructurally, clumped keratin filaments were observed in the upper epidermis. Direct sequence analysis of genomic DNA extracted from lesional skin revealed a heterozygous 5' donor splice site mutation c.591+2T>A in KRT1. This mutation was not detected in genomic DNA samples from the patient's peripheral blood leukocytes or those of other family members. The identical splice mutation was previously reported in a family with palmoplantar keratoderma and mild ichthyosis, and was demonstrated to result in a 22 amino-acid deletion p.Val175_Lys196del in the H1 and 1A domains of K1. To our knowledge, the present patient is the first reported case of epidermal nevus associated with EH caused by a K1 gene mutation in a mosaic pattern.

  16. A Novel Class of Tests for the Detection of Mitochondrial DNA–Mutation Involvement in Diseases

    OpenAIRE

    Sun, Fengzhu; Cui, Jing; Gavras, Haralambos; Schwartz, Faina

    2003-01-01

    We develop a novel class of tests to detect mitochondrial DNA (mtDNA)–mutation involvement in complex diseases by the study of affected pedigree members. For a pedigree, affected individuals are first considered and are then connected through their relatives. We construct a reduced pedigree from an original pedigree. Each configuration of a reduced pedigree is given a score, with high scores given to configurations that are consistent with mtDNA-mutation involvement and low scores given to co...

  17. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Jae [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Jang, Yo Han [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Paul; Lee, Yun Ha; Lee, Young Jae [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of); Byun, Young Ho; Lee, Kwang-Hee; Kim, Kyusik [Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Seong, Baik Lin, E-mail: blseong@yonsei.ac.kr [Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Vaccine Translational Research Center, Yonsei University, Seoul (Korea, Republic of)

    2016-04-15

    In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response. - Highlights: • Cold-adaptation process induced four amino acid mutations in the HA of X-31 virus. • The four mutations in the HA also contributed to attenuation of the X-31ca virus • N81K mutation was the most significant marker for the attenuation of X-31ca virus. • Introduction of N81K mutation into H3N2 LAIV further attenuated the vaccine. • This approach provides a useful guideline for enhancing the safety of the LAIVs.

  18. Enzyme-Free Detection of Mutations in Cancer DNA Using Synthetic Oligonucleotide Probes and Fluorescence Microscopy.

    Science.gov (United States)

    Miotke, Laura; Maity, Arindam; Ji, Hanlee; Brewer, Jonathan; Astakhova, Kira

    2015-01-01

    Rapid reliable diagnostics of DNA mutations are highly desirable in research and clinical assays. Current development in this field goes simultaneously in two directions: 1) high-throughput methods, and 2) portable assays. Non-enzymatic approaches are attractive for both types of methods since they would allow rapid and relatively inexpensive detection of nucleic acids. Modern fluorescence microscopy is having a huge impact on detection of biomolecules at previously unachievable resolution. However, no straightforward methods to detect DNA in a non-enzymatic way using fluorescence microscopy and nucleic acid analogues have been proposed so far. Here we report a novel enzyme-free approach to efficiently detect cancer mutations. This assay includes gene-specific target enrichment followed by annealing to oligonucleotides containing locked nucleic acids (LNAs) and finally, detection by fluorescence microscopy. The LNA containing probes display high binding affinity and specificity to DNA containing mutations, which allows for the detection of mutation abundance with an intercalating EvaGreen dye. We used a second probe, which increases the overall number of base pairs in order to produce a higher fluorescence signal by incorporating more dye molecules. Indeed we show here that using EvaGreen dye and LNA probes, genomic DNA containing BRAF V600E mutation could be detected by fluorescence microscopy at low femtomolar concentrations. Notably, this was at least 1000-fold above the potential detection limit. Overall, the novel assay we describe could become a new approach to rapid, reliable and enzyme-free diagnostics of cancer or other associated DNA targets. Importantly, stoichiometry of wild type and mutant targets is conserved in our assay, which allows for an accurate estimation of mutant abundance when the detection limit requirement is met. Using fluorescence microscopy, this approach presents the opportunity to detect DNA at single-molecule resolution and directly

  19. Late gadolinium enhanced cardiovascular magnetic resonance of lamin A/C gene mutation related dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Peuhkurinen Keijo

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to identify early features of lamin A/C gene mutation related dilated cardiomyopathy (DCM with cardiovascular magnetic resonance (CMR. We characterise myocardial and functional findings in carriers of lamin A/C mutation to facilitate the recognition of these patients using this method. We also investigated the connection between myocardial fibrosis and conduction abnormalities. Methods Seventeen lamin A/C mutation carriers underwent CMR. Late gadolinium enhancement (LGE and cine images were performed to evaluate myocardial fibrosis, regional wall motion, longitudinal myocardial function, global function and volumetry of both ventricles. The location, pattern and extent of enhancement in the left ventricle (LV myocardium were visually estimated. Results Patients had LV myocardial fibrosis in 88% of cases. Segmental wall motion abnormalities correlated strongly with the degree of enhancement. Myocardial enhancement was associated with conduction abnormalities. Sixty-nine percent of our asymptomatic or mildly symptomatic patients showed mild ventricular dilatation, systolic failure or both in global ventricular analysis. Decreased longitudinal systolic LV function was observed in 53% of patients. Conclusions Cardiac conduction abnormalities, mildly dilated LV and depressed systolic dysfunction are common in DCM caused by a lamin A/C gene mutation. However, other cardiac diseases may produce similar symptoms. CMR is an accurate tool to determine the typical cardiac involvement in lamin A/C cardiomyopathy and may help to initiate early treatment in this malignant familiar form of DCM.

  20. Utility of ultra-deep sequencing for detection of varicella-zoster virus antiviral resistance mutations.

    Science.gov (United States)

    Mercier-Darty, Mélanie; Boutolleau, David; Lepeule, Raphaël; Rodriguez, Christophe; Burrel, Sonia

    2018-01-12

    -associated diseases target the viral DNA polymerase (Pol). Acyclovir (ACV) and its prodrug valacyclovir (VACV) are considered as the first-line therapy, whereas foscarnet (FOS) or cidofovir (CDV) constitute alternative options. After primophosphorylation by the viral thymidine kinase (TK), ACV targets the viral DNA polymerase and inhibits the viral genome replication by a chain termination mechanism. According to this mechanism of action, viral mutations conferring resistance to ACV have been mapped both in TK and Pol encoding genes. Viral mutations conferring resistance to FOS and CDV are only detected in Pol gene. VZV ACV-resistance is mostly mediated by TK alterations, consisting in either translational frameshifts, sometimes associated with premature stop codon, or amino acid substitutions. In the remaining cases, amino acid substitutions are detected within Pol (De et al., 2015; Piret and Boivin, 2014). Classically, Sanger sequencing has been recognized as the gold standard for the detection of drug resistance mutations (DRMs) within VZV TK and Pol genes (Perrier et al., 2016; Piret and Boivin, 2014). However, this approach cannot detect minor variants present at a frequency below 20%. Ultra-deep sequencing (UDS) has an enhanced sensitivity compared to Sanger method and allows quantitative evaluation of the viral mutants (Chin et al., 2013). We report here a case of VZV resistant infection in an HT recipient. Our retrospective study aimed at showing the utility of UDS for DRM detection as a complement of Sanger method. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing.

    Directory of Open Access Journals (Sweden)

    Andreas M Kist

    Full Text Available Gain-of-function mutations in the tetrodotoxin (TTX sensitive voltage-gated sodium channel (Nav Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences.

  2. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    Science.gov (United States)

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation AnalysisPhouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.<...

  3. Mitochondrial D-loop mutations can be detected in sporadic malignant tumours in dogs

    Directory of Open Access Journals (Sweden)

    Ślaska Brygida

    2014-12-01

    Full Text Available The aim of this study was to identify mutations in the D-loop region of mtDNA in head, neck, and limb tumours in dogs, and determination of their relationship with the process of neoplastic transformation. Blood and tumour tissue samples from 19 dogs with diagnosed sporadic malignant tumours were analysed. DNA extraction, amplification, and sequencing of the mtDNA D-loop, and bioinformatic analyses were performed. Five mutations and 19 polymorphisms were observed in 68.42% of all tumours. Polymorphic variants were noted in 42.86% of the head and neck tumours and in 58.33% of the limb tumours. Mutations were observed in 21.05% of dogs. The mutations were found in 28.57% of the head and neck tumours and in 16.66% of the limb tumours. The mutations were identified in 50% of the studied epithelial cancers. In the mesenchymal tumours, no mutations in the D-loop region were observed. Mitochondrial haplotype A17 was found in over 40% cases of limb tumours. No association between the age, breed, sex, type of tumour, and detected polymorphic variants were observed. Different mutational changes in the D-loop sequences of mtDNA identified in the blood and tumour tissues may indicate a relationship between the type of tumour and individual changes in the D-loop nucleotide sequences of mtDNA.

  4. Childhood adrenocortical carcinoma as a sentinel cancer for detecting families with germline TP53 mutations.

    Science.gov (United States)

    Choong, S S; Latiff, Z A; Mohamed, M; Lim, L L W; Chen, K S; Vengidasan, L; Razali, H; Abdul Rahman, E J; Ariffin, H

    2012-12-01

    Li-Fraumeni syndrome (LFS) is a highly penetrant, autosomal dominant disorder where affected individuals carry a 50% risk of developing cancer before 30 years of age. It is most commonly associated with mutations in the tumour suppressor gene, TP53. Adrenocortical carcinoma (ACC) is a very rare paediatric cancer, and up to 80% of affected children are found to carry germline TP53 mutations. Hence, we propose using childhood ACC incidence as selection criteria for referral for TP53 mutation testing, independent of familial cancer history. Under the auspices of the Malaysian Society of Paediatric Haematology-Oncology, four eligible children diagnosed with ACC over a 30-month study period were referred for mutation testing. Three had a germline TP53 mutation. Subsequent TP53 testing in relatives showed two inherited mutations and one de novo mutation. These findings strongly support paediatric ACC as a useful sentinel cancer for initiating a germline TP53/LFS detection programme, particularly in countries where the lack of structured oncogenetic practice precludes the identification of families with LFS features. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  5. Development of a feasible assay for the detection of GAA mutations in patients with Pompe disease.

    Science.gov (United States)

    Er, Tze-Kiong; Chen, Chih-Chieh; Chien, Yin-Hsiu; Liang, Wen-Chen; Kan, Tzu-Min; Jong, Yuh-Jyh

    2014-02-15

    Pompe disease is an inherited autosomal recessive deficiency of acid α-glucosidase (GAA) and is due to pathogenic sequence variants in the corresponding GAA gene. While the analysis of enzyme activity remains the diagnostic test of choice for individuals with Pompe disease, mutation analysis remains for establishing a definitive diagnosis. High resolution melting (HRM) analysis was performed to screen GAA mutations. Genomic DNA was extracted from peripheral blood samples of the two patients with Pompe disease and 250 normal controls. Exons 2 through 20 of the GAA gene were screened by the HRM analysis. The results were subsequently confirmed by direct sequencing. This assay proved to be feasible in detecting seven known (c.2T>C, c.1726G>A, c.1845G>A, c.1935C>A, c.1958C>A, c.2238G>C, and c.2815_2816del) GAA mutations. Each mutation could be readily and accurately identified in the difference plot curves. We estimated the carrier frequency of the most common mutation, c.1935G>A (p.D645E), in the Taiwanese population to be 0.2%. In clinical practice, we suggest that HRM analysis is assumed as a fast and reliable method for screening GAA gene mutations especially the most common mutations which are responsible for Pompe disease among the Taiwanese populations. © 2013.

  6. High-resolution melting analysis for detection of MYH9 mutations.

    Science.gov (United States)

    Provaznikova, Dana; Kumstyrova, Tereza; Kotlin, Roman; Salaj, Peter; Matoska, Vaclav; Hrachovinova, Ingrid; Rittich, Simon

    2008-09-01

    May-Hegglin anomaly (MHA), Sebastian (SBS), Fechtner (FTNS) and Epstein (EPS) syndromes are rare autosomal dominant disorders with giant platelets and thrombocytopenia. Other manifestations of these disorders are combinations of the presence of granulocyte inclusions and deafness, cataracts and renal failure. Currently, MHA, SBS, FTNS and EPS are considered to be distinct clinical manifestation of a single illness caused by mutations of the MYH9 gene encoding the heavy chain of non-muscle myosin IIA (NMMHC-IIA). As the MYH9 gene has a high number of exons, it takes much time and material to use this method for the detection of MYH9 mutations. Recently, a new method has been introduced for scanning DNA mutations without the need for direct sequencing: high-resolution melting analysis (HRMA). Mutation detection with HRMA relies on the intercalation of the specific dye (LC Green plus) in double-strand DNA and fluorescence monitoring of PCR product melting profiles. In our study, we optimized the conditions and used HRMA for rapid screening of mutations in all MYH9 exons in seven affected individuals from four unrelated families with suspected MYH9 disorders. Samples identified by HRMA as positive for the mutation were analysed by direct sequencing. HRMA saved us over 85% of redundant sequencing.

  7. Detection of mutations in genes by specific LNA primers

    DEFF Research Database (Denmark)

    2001-01-01

    The present invention relates to a method of detecting variant nucleic acid whose nucleotide sequence differs from one another at a single (or more) position(s). The method uses a set of chimeric oligonucleotides containing DNA monomers and monomers of a novel class of DNA analogues, locked nucle...

  8. MLPA mutation detection in Argentine HNPCC and FAP families

    NARCIS (Netherlands)

    Gomez, Laura C.; Marzese, Diego M.; Adi, Jose; Bertani, Diego; Ibarra, Jorge; Mol, Bart; Vos, Ivonne Johanna; De Marchi, Gabriela; Roque, Maria

    Colorectal cancer (CC) is the secondary cause of death in the Western countries of which approximately 15% are considered to be hereditary. The hereditary forms are Familial Adenomatous Polyposis (FAP) and Hereditary Non Polyposis Colorectal Cancer (HNPCC) which is the commonest form. The detection

  9. [Detection of BCR-ABL gene mutations in chronic myeloid leukemia using biochips].

    Science.gov (United States)

    Ikonnikova, A Yu; Yatsenko, Yu E; Kremenetskaya, O S; Vinogradova, O V; Fesenko, D O; Abramov, I S; Ovsepyan, V A; Nasedkina, T V

    2016-01-01

    A biochip-based method was developed to identify the BCR-ABL mutations that affect the thyrosine kinase domain and determine resistance to targeted therapy with thyrosine kinase inhibitors. The method is based on RT-PCR followed by allele-specific hybridization on a biochip with immobilized oligonucleotide probes. The biochip addresses 11 mutations, which are responsible for up to 85% of imatinib resistance cases. A method to decect the clinically significant mutation T315I was designed on the basis of LNA-clamped PCR and proved highly sensitive, detecting the mutation in clinical samples with a leukemic cell content of 5% or higher. The method was validated using clinical samples from chronic myeloid leukemia (CML) patients with acquired resistance to imatinib. The results of hybridization on biochip were verified by Sanger sequencing.

  10. Document forgery detection using distortion mutation of geometric parameters in characters

    Science.gov (United States)

    Shang, Shize; Kong, Xiangwei; You, Xingang

    2015-03-01

    Tampering related to document forgeries is often accomplished by copy-pasting or add-printing. These tampering methods introduce character distortion mutation in documents. We present a method of exposing document forgeries using distortion mutation of geometric parameters. We estimate distortion parameters, which consist of translation and rotation distortions, through image matching for each character. Detection of tampered characters with distortion mutation occurs based on a distortion probability, which is calculated from character distortion parameters. The introduction of a visualized probability map describes the degree of distortion mutation for a full page. The proposed method exposes the forgeries based on individual characters and applies to English and Chinese document examinations. Experimental results demonstrate the effectiveness of our method on low JPEG compression quality and low resolution.

  11. Sonar Image Enhancements for Improved Detection of Sea Mines

    DEFF Research Database (Denmark)

    Jespersen, Karl; Sørensen, Helge Bjarup Dissing; Zerr, Benoit

    1999-01-01

    in the processing chain gives a precise measure of the performance of the enhancement stage. The test is performed using a sonar image database with images ranging from very simple to very complex. The result of the comparison indicates that the new enhancement approaches improve the detection performance.......In this paper, five methods for enhancing sonar images prior to automatic detection of sea mines are investigated. Two of the methods have previously been published in connection with detection systems and serve as reference. The three new enhancement approaches are variance stabilizing log...... transform, nonlinear filtering, and pixel averaging for speckle reduction. The effect of the enhancement step is tested by using the full prcessing chain i.e. enhancement, detection and thresholding to determine the number of detections and false alarms. Substituting different enhancement algorithms...

  12. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of). Radioisotope Research Div.

    2016-04-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with {sup 125}I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  13. Microarray-based mutation detection and phenotypic characterization in Korean patients with retinitis pigmentosa

    Science.gov (United States)

    Kim, Cinoo; Kim, Kwang Joong; Bok, Jeong; Lee, Eun-Ju; Kim, Dong-Joon; Oh, Ji Hee; Park, Sung Pyo; Shin, Joo Young; Lee, Jong-Young

    2012-01-01

    Purpose To evaluate microarray-based genotyping technology for the detection of mutations responsible for retinitis pigmentosa (RP) and to perform phenotypic characterization of patients with pathogenic mutations. Methods DNA from 336 patients with RP and 360 controls was analyzed using the GoldenGate assay with microbeads containing 95 previously reported disease-associated mutations from 28 RP genes. Mutations identified by microarray-based genotyping were confirmed by direct sequencing. Segregation analysis and phenotypic characterization were performed in patients with mutations. The disease severity was assessed by visual acuity, electroretinography, optical coherence tomography, and kinetic perimetry. Results Ten RP-related mutations of five RP genes (PRP3 pre-mRNA processing factor 3 homolog [PRPF3], rhodopsin [RHO], phosphodiesterase 6B [PDE6B], peripherin 2 [PRPH2], and retinitis pigmentosa 1 [RP1]) were identified in 26 of the 336 patients (7.7%) and in six of the 360 controls (1.7%). The p.H557Y mutation in PDE6B, which was homozygous in four patients and heterozygous in nine patients, was the most frequent mutation (2.5%). Mutation segregation was assessed in four families. Among the patients with missense mutations, the most severe phenotype occurred in patients with p.D984G in RP1; less severe phenotypes occurred in patients with p.R135W in RHO; a relatively moderate phenotype occurred in patients with p.T494M in PRPF3, p.H557Y in PDE6B, or p.W316G in PRPH2; and a mild phenotype was seen in a patient with p.D190N in RHO. Conclusions The results reveal that the GoldenGate assay may not be an efficient method for molecular diagnosis in RP patients with rare mutations, although it has proven to be reliable and efficient for high-throughput genotyping of single-nucleotide polymorphisms. The clinical features varied according to the mutations. Continuous effort to identify novel RP genes and mutations in a population is needed to improve the efficiency and

  14. Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay

    Science.gov (United States)

    Zhou, Huijuan; Wu, Baoyan

    2008-12-01

    The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.

  15. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies.

    Science.gov (United States)

    Qu, Yan-Gang; Zhang, Qian; Pan, Qi; Zhao, Xian-Da; Huang, Yan-Hua; Chen, Fu-Chun; Chen, Hong-Lei

    2014-01-01

    Epidermal growth factor receptor (EGFR) mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC) patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R) have been developed, EGFR mutation detection by immunohistochemistry (IHC) is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC), to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS). EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas. Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30); the specificity for both antibodies was 100.0% (26/26). IHC sensitivity was 80.0% (24/30) and the specificity was 92.31% (24/26). When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ  =0.882; Pmutations (κ  =0.826; Pmutations with its high sensitivity and specificity, as compared with real-time polymerase chain reaction. In addition, the development of specific antibodies against EGFR mutation proteins might be useful for the diagnosis and treatment of lung cancer.

  16. Microarray-based optimization to detect genomic deletion mutations

    Directory of Open Access Journals (Sweden)

    Eric J. Belfield

    2014-12-01

    Full Text Available We performed array comparative genome hybridization (aCGH analyses of five Arabidopsis thaliana mutants with genomic deletions ranging in size from 4 bp to >5 kb. We used the Roche NimbleGen Arabidopsis CGH 3 × 720 K whole genome custom tiling array to optimize deletion detection. Details of the microarray design and hybridization data have been deposited at the NCBI GEO repository with accession number GSE55327.

  17. Microarray-based optimization to detect genomic deletion mutations.

    Science.gov (United States)

    Belfield, Eric J; Brown, Carly; Gan, Xiangchao; Jiang, Caifu; Baban, Dilair; Mithani, Aziz; Mott, Richard; Ragoussis, Jiannis; Harberd, Nicholas P

    2014-12-01

    We performed array comparative genome hybridization (aCGH) analyses of five Arabidopsis thaliana mutants with genomic deletions ranging in size from 4 bp to > 5 kb. We used the Roche NimbleGen Arabidopsis CGH 3 × 720 K whole genome custom tiling array to optimize deletion detection. Details of the microarray design and hybridization data have been deposited at the NCBI GEO repository with accession number GSE55327.

  18. Efficient detection of factor IX mutations by denaturing high-performance liquid chromatography in Taiwanese hemophilia B patients, and the identification of two novel mutations

    Directory of Open Access Journals (Sweden)

    Pei-Chin Lin

    2014-04-01

    Full Text Available Hemophilia B (HB is an X-linked recessive disorder characterized by mutations in the clotting factor IX (FIX gene that result in FIX deficiency. Previous studies have shown a wide variation of FIX gene mutations in HB. Although the quality of life in HB has greatly improved mainly because of prophylactic replacement therapy with FIX concentrates, there exists a significant burden on affected families and the medical care system. Accurate detection of FIX gene mutations is critical for genetic counseling and disease prevention in HB. In this study, we used denaturing high-performance liquid chromatography (DHPLC, which has proved to be a highly informative and practical means of detecting mutations, for the molecular diagnosis of our patients with HB. Ten Taiwanese families affected by HB were enrolled. We used the DHPLC technique followed by direct sequencing of suspected segments to detect FIX gene mutations. In all, 11 FIX gene mutations (8 point mutations, 2 small deletions/insertions, and 1 large deletion, including two novel mutations (exon6 c.687–695, del 9 mer and c.460–461, ins T were found. According to the HB pedigrees, 25% and 75% of our patients were defined as familial and sporadic HB cases, respectively. We show that DHPLC is a highly sensitive and cost-effective method for FIX gene analysis and can be used as a convenient system for disease prevention.

  19. DETECTION OF RECESSIVE MUTATIONS (CVM, BLAD AND RED FACTOR INHOLSTEIN BULLS IN SLOVENIA

    Directory of Open Access Journals (Sweden)

    Betka LOGAR

    2008-07-01

    Full Text Available Detection of recessive mutations that causes complex vertebral malformation (CVM and bovine leukocyte adhesion defi ciency (BLAD in Holstein cattle is especially required for bulls, which are used for artifi cial insemination (A.I.; these enable elimination of carriers from the A.I. programs and therefore prevent transmission of unwanted mutations to a large number of offspring. Some breeders are also interested in the identifi cation of carriers of recessive allele for red and white coat colour (Red factor. Here, we performed genetic tests for detection of mutations associated with CVM, BLAD and Red factor using methods previously reported or modifi ed methods. Analysis of Holstein bulls, which were recommended for A.I in Slovenia in the years 2007 and 2008, revealed four (10 % carriers of CVM, and two (5.4 % carriers of red gene, while all bulls were non-carriers of BLAD.

  20. DNA-Mutation Inventory to Refine and Enhance Cancer Treatment (DIRECT): a catalog of clinically relevant cancer mutations to enable genome-directed anticancer therapy.

    Science.gov (United States)

    Yeh, Paul; Chen, Heidi; Andrews, Jenny; Naser, Riyad; Pao, William; Horn, Leora

    2013-04-01

    Tumor gene mutation status is becoming increasingly important in the treatment of patients with cancer. A comprehensive catalog of tumor gene-response outcomes from individual patients is needed, especially for actionable mutations and rare variants. We created a proof-of-principle database [DNA-mutation Inventory to Refine and Enhance Cancer Treatment (DIRECT)], starting with lung cancer-associated EGF receptor (EGFR) mutations, to provide a resource for clinicians to prioritize treatment decisions based on a patient's tumor mutations at the point of care. A systematic search of literature published between June 2005 and May 2011 was conducted through PubMed to identify patient-level, mutation-drug response in patients with non-small cell lung cancer (NSCLC) with EGFR mutant tumors. Minimum inclusion criteria included patient's EGFR mutation, corresponding treatment, and an associated radiographic outcome. A total of 1,021 patients with 1,070 separate EGFR tyrosine kinase inhibitor therapy responses from 116 different publications were included. About 188 unique EGFR mutations occurring in 207 different combinations were identified: 149 different mutation combinations were associated with disease control and 42 were associated with disease progression. Four secondary mutations, in 16 different combinations, were associated with acquired resistance. As tumor sequencing becomes more common in oncology, this comprehensive electronic catalog can enable genome-directed anticancer therapy. DIRECT will eventually encompass all tumor mutations associated with clinical outcomes on targeted therapies. Users can make specific queries at http://www.mycancergenome.org/about/direct to obtain clinically relevant data associated with various mutations. ©2013 AACR.

  1. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability.

    Directory of Open Access Journals (Sweden)

    Sam F Greenbury

    2016-03-01

    Full Text Available Mutational neighbourhoods in genotype-phenotype (GP maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps-a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure-to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i If a particular (non-neutral phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i and ii reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii may instead facilitate evolutionary exploration

  2. Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability.

    Science.gov (United States)

    Greenbury, Sam F; Schaper, Steffen; Ahnert, Sebastian E; Louis, Ard A

    2016-03-01

    Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps-a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure-to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so

  3. Mutation detection in glycogen storage disease type II by RT-PCR and automated sequencing

    NARCIS (Netherlands)

    M.M.P. Hermans (Monique); D. van Leenen (Dik); M.A. Kroos (Marian); A.J.J. Reuser (Arnold)

    1997-01-01

    textabstractA new method is described for detection of mutations in the lysosomal a-glucosidase gene (GAA) leading to Glycogen Storage Disease type II (GSDII). A key feature of the method is isolation and reverse transcription of mRNA followed by PCR amplification of lysosomal a-glucosidase cDNA

  4. A framework for the detection of de novo mutations in family-based sequencing data

    NARCIS (Netherlands)

    L.C. Francioli (Laurent); M. Cretu-Stancu (Mircea); K.V. Garimella (Kiran); M. Fromer (Menachem); W.P. Kloosterman (Wigard); Genome of the Netherlands Consortium; K. Samocha (Kaitlin); B. Neale (Benjamin); M.J. Daly (Mark); E. Banks (Eric); M.A. DePristo (Mark); P.I.W. de Bakker (Paul)

    2017-01-01

    textabstractGermline mutation detection from human DNA sequence data is challenging due to the rarity of such events relative to the intrinsic error rates of sequencing technologies and the uneven coverage across the genome. We developed PhaseByTransmission (PBT) to identify de novo single

  5. A framework for the detection of de novo mutations in family-based sequencing data

    NARCIS (Netherlands)

    Francioli, Laurent C.; Cretu-Stancu, Mircea; Garimella, Kiran V.; Fromer, Menachem; Kloosterman, Wigard P.|info:eu-repo/dai/nl/304076953; Samocha, Kaitlin E.; Neale, Benjamin M.; Daly, Mark J.; Banks, Eric; DePristo, Mark A.; de Bakker, Paul IW|info:eu-repo/dai/nl/342957082

    2016-01-01

    Germline mutation detection from human DNA sequence data is challenging due to the rarity of such events relative to the intrinsic error rates of sequencing technologies and the uneven coverage across the genome. We developed PhaseByTransmission (PBT) to identify de novo single nucleotide variants

  6. Detecting adenosine triphosphatase 6 (PfATP6) point mutations that ...

    African Journals Online (AJOL)

    Detecting adenosine triphosphatase 6 (PfATP6) point mutations that may be associated with Plasmodium falciparum resistance to artemisinin: prevalence at baseline, before policy change in Uganda. ... For the important codons 260, 263 and 769, methods using engineered restriction sites were employed. We did not find ...

  7. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte

    2013-01-01

    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...

  8. [Detection of epidermal growth factor receptor gene mutations in different types of non-small cell lung cancer by droplet digital PCR and amplification refractory mutation system].

    Science.gov (United States)

    Li, R; Ye, S B; He, Y; Wang, X; Wu, N; Xia, Q Y; Shen, Q; Shi, S S

    2017-11-08

    Objective: To compare amplification refractory mutation system(ARMS) and droplet digital PCR (ddPCR) in the detection of epidermal growth factor receptor (EGFR) gene mutations in patients with non-small cell lung cancer (NSCLC), and to investigate the clinical value of ddPCR. Methods: A total of 79 specimens of NSCLC, including 22 cases of cell block, 18 cases of surgical specimens, 12 cases of biopsy specimens and 27 cases of plasma samples, were analyzed for the mutation status of EGFR gene by ARMS and droplet digital PCR method. Results: In 18 cases of surgical specimens and 12 cases of biopsy specimens, the detection results by the two methods were identical with positive rates of 9/18 and 5/12, respectively. In 22 cases of effusion cell blocks, ARMS detected 19-del and L858R of EGFR gene in two cases, in which droplet digital PCR detected 19-del+ T790M mutations in one case and L858R+ T790M mutation in another. L858R mutation was detected by droplet digital PCR in one case but ARMS assay was negative. The remaining 19 cases were consistent by the two methods. In blood samples, the positive rate was 33.3%(9/27) by ARMS and 37.0%(10/27) by droplet digital PCR. Two cases showed L858R and 19-del+ T790M mutation by droplet digital PCR but ARMS assay detected only 19-del. The remaining 25 cases were consistent by the two methods. Conclusion: Droplet digital PCR method is more sensitive and accurate than ARMS for the detection of EGFR mutations in pleural fluid and blood samples, can be used in clinical test.

  9. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population.

    Science.gov (United States)

    Colasuonno, Pasqualina; Incerti, Ornella; Lozito, Maria Luisa; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2016-02-17

    Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85% ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, β-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions

  10. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  11. A multiplex method for detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations.

    Science.gov (United States)

    Zhang, L; Yang, Y; Liu, R; Li, Q; Yang, F; Ma, L; Liu, H; Chen, X; Yang, Z; Cui, L; He, Y

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect caused by G6PD gene mutations. This study aimed to develop a cost-effective, multiplex, genotyping method for detecting common mutations in the G6PD gene. We used a SNaPshot approach to genotype multiple G6PD mutations that are common to human populations in South-East Asia. This assay is based on multiplex PCR coupled with primer extension reactions. Different G6PD gene mutations were determined by peak retention time and colors of the primer extension products. We designed PCR primers for multiplex amplification of the G6PD gene fragments and for primer extension reactions to genotype 11 G6PD mutations. DNA samples from a total of 120 unrelated G6PD-deficient individuals from the China-Myanmar border area were used to establish and validate this method. Direct sequencing of the PCR products demonstrated 100% concordance between the SNaPshot and the sequencing results. The SNaPshot method offers a specific and sensitive alternative for simultaneously interrogating multiple G6PD mutations. © 2015 John Wiley & Sons Ltd.

  12. DNMT3A GENE POINT MUTATIONS DETECTION IN ACUTE MYELOID LEUKEMIA PATIENTS USING SEQUENCING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    A. V. Vinogradov

    2015-01-01

    Full Text Available Aim: to estimate the frequency of DNMT3A gene exons 18–26 point mutations in acute myeloid leukemia (AML patients (pts using target automatic sequencing technique.Material and Methods. Bone marrow and peripheral blood samples were obtained from 34 AML pts aged 21 to 64, who were treated in Sverdlovsk Regional Hematological Centre (Ekaterinburg during the period 2012–2014. Distribution of the pts according to FAB-classification was as follows: AML M0 – 3, M1 – 1, M2 – 12, M3 – 3, M4 – 10, M5 – 2, M6 – 1, M7 – 1, blastic plasmacytoid dendritic cell neoplasm – 1. Total RNA was extracted from leukemic cells and subjected to reverse transcription. DNMT3A gene exons 18–26 were amplified by PCR. Detection of mutations in DNMT3A gene was performed by direct sequencing. Sequencing was realized using an automatic genetic analyzer ABI Prism 310.Results. The average frequency of functionally significant point mutations in DNMT3A gene exons 18– 26 among the treated AML pts was 5.9%. They were detected in morphological subgroups M2 and M4(according to WHO classification. The average frequency of DNMT3A gene exons 18–26 point mutations among the AML M2 and M4 pts without chromosomal aberrations and TP53 gene point mutations was 14.3%. In both cases there were samples in which DNMT3A gene mutations were accompanied by molecular lesions of NPM1, KRAS and WT1 genes. AML pts with DNMT3A gene exons 18–26 point mutations characterized by poor response to standard chemotherapeutic regimens and unfavorable prognosis.

  13. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer.

    Science.gov (United States)

    Kinugasa, Hideaki; Nouso, Kazuhiro; Miyahara, Koji; Morimoto, Yuki; Dohi, Chihiro; Tsutsumi, Koichiro; Kato, Hironari; Matsubara, Takehiro; Okada, Hiroyuki; Yamamoto, Kazuhide

    2015-07-01

    Cell-free circulating tumor DNA (ctDNA) in serum has been considered to be a useful candidate for noninvasive cancer diagnosis. The current study was designed to estimate the clinical usefulness of genetic analysis for ctDNA by digital polymerase chain reaction in patients with pancreatic cancer. The authors compared K-ras mutations detected in endoscopic ultrasound-guided fine-needle aspiration biopsy tissue DNA and in ctDNA from 75 patients with pancreatic cancer. K-ras mutations in the serum of 66 independent, consecutive patients with pancreatic cancer were also analyzed and the authors compared the results with survival rates. The frequencies of the mutations in tissue samples at G12V, G12D, and G12R in codon 12 were 28 of 75 samples (37.3%), 22 of 75 samples (29.3%), and 6 of 75 samples (8.0%), respectively. Conversely, the rates of the mutations in ctDNA were 26 of 75 samples (34.6%), 29 of 75 samples (38.6%), and 4 of 75 samples (5.3%), respectively. Overall, the K-ras mutation rates in tissue and ctDNA were 74.7% and 62.6%, respectively, and the concordance rate between them was 58 of 75 samples (77.3%). Survival did not appear to differ by the presence of K-ras mutations in tissue DNA, but the survival of patients with K-ras mutations in ctDNA was significantly shorter than that of patients without mutations in both a development set (P = .006) and an independent validation set (P = .002). The difference was especially evident in cases with a G12V mutation. Analysis of ctDNA is a new useful procedure for detecting mutations in patients with pancreatic cancer. This noninvasive method may have great potential as a new strategy for the diagnosis of pancreatic cancer as well as for predicting survival. © 2015 American Cancer Society.

  14. Molecular platforms utilized to detect BRAF V600E mutation in melanoma.

    Science.gov (United States)

    Curry, Jonathan L; Torres-Cabala, Carlos A; Tetzlaff, Michael T; Bowman, Christopher; Prieto, Victor G

    2012-12-01

    Metastatic melanoma (MM) is a deadly skin disease refractory to standard chemotherapy. Despite numerous clinical and pathological parameters derived to guide patient management, clinical outcomes in melanoma patients remain difficult to predict. There is a critical need to delineate the important biomarkers typical of this disease. These biomarkers will ideally illuminate those key biochemical pathways responsible for the aggressive behavior of melanoma and, in the process, unveil new opportunities for the design of rational therapeutic interventions in high-risk patients. The most common recurring mutation in cutaneous melanoma is the prooncogenic BRAF V600E mutation that drives melanoma cell proliferation. The development of RAF inhibitors targeted against BRAF V600E mutant melanoma cells has revolutionized the treatment of MM. Clinical trials with BRAF inhibitor vemurafenib have shown objective clinical response and improved survival in patients with MM; therefore, knowledge of the molecular signature of melanoma in patients will be important in directing management decisions. Several molecular platforms exist to analyze the mutation status of melanoma. These include Sanger sequencing, pyrosequencing, allele-specific reverse transcriptase polymerase chain reaction, mass spectrometry base sequencing (Sequenom), high-resolution melting curve analysis, and next-generation sequencing methods using microfluidics technology. The Food and Drug Administration has approved the cobas BRAF V600 Mutation Test developed by Roche to analyze BRAF mutation status in formalin-fixed paraffin-embedded tumor samples. The cobas Mutation Test has been designed specifically to detect BRAF V600E mutations, and the analytic performance of this assay has demonstrated >99% sensitivity in the detection of BRAF V600E mutation when compared with the Sanger sequencing method and confirmed with the next-generation sequencing 454-pyrosequencing technology. The lower limit of detection of the

  15. Tumor Protein 53 Gene Mutations Without 17p13 Deletion Have No Significant Clinical Implications in Chronic Lymphocytic Leukemia. Detection of a New Mutation.

    Science.gov (United States)

    Diamantopoulos, Panagiotis T; Samara, Stavroula; Kollia, Panagoula; Giannakopoulou, Nefeli; Sofotasiou, Maria; Kalala, Fani; Kodandreopoulou, Elina; Zervakis, Panagiotis; Vassilakopoulos, Theodoros; Siakantaris, Marina; Mantzourani, Marina; Angelopoulou, Maria; Kyrtshonis, Marie-Christine; Korkolopoulou, Penelope; Patsouris, Efstathios; Viniou, Nora-Athina

    2017-05-01

    The tumor protein p53 (TP53) gene may be inactivated through 17p13 deletion, somatic mutations, or both. In chronic lymphocytic leukemia (CLL) although 17p13 deletion is correlated with poor prognosis, the role of sole TP53 mutations remains controversial. We carried out a mutation analysis of TP53 gene in 72 patients with CLL. Seventy-one (98.6%) patients carried the polymorphic site c.215C>G, p.Pro72Arg, but its presence was not correlated with overall survival (OS). Moreover, 19 (26.4%) patients carried a mutation of TP53. Among the eight detected mutations, to our knowledge, one (c.587G>A) has never been reported in the past. There was a correlation of the mutation burden with the stage of the disease (p=0.022), but not with OS. None of the detected mutations was individually correlated with OS. The clinical significance of TP53 mutations is still a matter of debate and larger studies and meta-analyses are required to reach an unequivocal conclusion. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis.

    Science.gov (United States)

    Starita, Lea M; Pruneda, Jonathan N; Lo, Russell S; Fowler, Douglas M; Kim, Helen J; Hiatt, Joseph B; Shendure, Jay; Brzovic, Peter S; Fields, Stanley; Klevit, Rachel E

    2013-04-02

    Although ubiquitination plays a critical role in virtually all cellular processes, mechanistic details of ubiquitin (Ub) transfer are still being defined. To identify the molecular determinants within E3 ligases that modulate activity, we scored each member of a library of nearly 100,000 protein variants of the murine ubiquitination factor E4B (Ube4b) U-box domain for auto-ubiquitination activity in the presence of the E2 UbcH5c. This assay identified mutations that enhance activity both in vitro and in cellular p53 degradation assays. The activity-enhancing mutations fall into two distinct mechanistic classes: One increases the U-box:E2-binding affinity, and the other allosterically stimulates the formation of catalytically active conformations of the E2∼Ub conjugate. The same mutations enhance E3 activity in the presence of another E2, Ube2w, implying a common allosteric mechanism, and therefore the general applicability of our observations to other E3s. A comparison of the E3 activity with the two different E2s identified an additional variant that exhibits E3:E2 specificity. Our results highlight the general utility of high-throughput mutagenesis in delineating the molecular basis of enzyme activity.

  17. Current guidelines for BRCA testing of breast cancer patients are insufficient to detect all mutation carriers.

    Science.gov (United States)

    Grindedal, Eli Marie; Heramb, Cecilie; Karsrud, Inga; Ariansen, Sarah Louise; Mæhle, Lovise; Undlien, Dag Erik; Norum, Jan; Schlichting, Ellen

    2017-06-21

    Identification of BRCA mutations in breast cancer (BC) patients influences treatment and survival and may be of importance for their relatives. Testing is often restricted to women fulfilling high-risk criteria. However, there is limited knowledge of the sensitivity of such a strategy, and of the clinical aspects of BC caused by BRCA mutations in less selected BC cohorts. The aim of this report was to address these issues by evaluating the results of BRCA testing of BC patients in South-Eastern Norway. 1371 newly diagnosed BC patients were tested with sequencing and Multi Ligation Probe Amplification (MLPA). Prevalence of mutations was calculated, and BC characteristics among carriers and non-carriers compared. Sensitivity and specificity of common guidelines for BRCA testing to identify carriers was analyzed. Number of identified female mutation positive relatives was evaluated. A pathogenic BRCA mutation was identified in 3.1%. Carriers differed from non-carriers in terms of age at diagnosis, family history, grade, ER/PR-status, triple negativity (TNBC) and Ki67, but not in HER2 and TNM status. One mutation positive female relative was identified per mutation positive BC patient. Using age of onset below 40 or TNBC as criteria for testing identified 32-34% of carriers. Common guidelines for testing identified 45-90%, and testing all below 60 years identified 90%. Thirty-seven percent of carriers had a family history of cancer that would have qualified for predictive BRCA testing. A Variant of Uncertain Significance (VUS) was identified in 4.9%. Mutation positive BC patients differed as a group from mutation negative. However, the commonly used guidelines for testing were insufficient to detect all mutation carriers in the BC cohort. Thirty-seven percent had a family history of cancer that would have qualified for predictive testing before they were diagnosed with BC. Based on our combined observations, we suggest it is time to discuss whether all BC patients

  18. Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection

    Science.gov (United States)

    Su, Qiang; Zhou, Xiaoming

    2008-12-01

    Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

  19. An ECL-PCR method for quantitative detection of point mutation

    Science.gov (United States)

    Zhu, Debin; Xing, Da; Shen, Xingyan; Chen, Qun; Liu, Jinfeng

    2005-04-01

    A new method for identification of point mutations was proposed. Polymerase chain reaction (PCR) amplification of a sequence from genomic DNA was followed by digestion with a kind of restriction enzyme, which only cut the wild-type amplicon containing its recognition site. Reaction products were detected by electrochemiluminescence (ECL) assay after adsorption of the resulting DNA duplexes to the solid phase. One strand of PCR products carries biotin to be bound on a streptavidin-coated microbead for sample selection. Another strand carries Ru(bpy)32+ (TBR) to react with tripropylamine (TPA) to emit light for ECL detection. The method was applied to detect a specific point mutation in H-ras oncogene in T24 cell line. The results show that the detection limit for H-ras amplicon is 100 fmol and the linear range is more than 3 orders of magnitude, thus, make quantitative analysis possible. The genotype can be clearly discriminated. Results of the study suggest that ECL-PCR is a feasible quantitative method for safe, sensitive and rapid detection of point mutation in human genes.

  20. High Resolution Melting Analysis for Detecting p53 Gene Mutations in Patients with Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Zhihong CHEN

    2011-10-01

    Full Text Available Background and objective It has been proven that p53 gene was related to many human cancers. The mutations in p53 gene play an important role in carcinogensis and mostly happened in exon 5-8. The aim of this study is to establish a high resolution melting (HRM assay to detect p53 mutations from patients with non-small cell lung cancer (NSCLC, to investigate the characteristics of p53 gene mutations, and to analyze the relationship between p53 mutations and evolution regularity of pathogenesis. Methods p53 mutations in exon 5-8 were detected by HRM assay on DNA insolated from 264 NSCLC samples derived from tumor tissues and 54 control samples from pericancerous pulmonary tissues. The mutation samples by the HRM assay were confirmed by sequencing technique. Samples which were positive by HRM but wild type by sequencing were further confirmed by sub-clone and sequencing. Results No mutation was found in 54 pericancerous pulmonary samples by HRM assay. 104 of the 264 tumor tissues demonstrated mutation curves by HRM assay, 102 samples were confirmed by sequencing, including 95 point mutations and 7 frame shift mutations by insertion or deletion. The mutation rate of p53 gene was 39.4%. The mutation rate from exon 5-8 were 11.7%, 8%, 12.5% and 10.6%, respectively and there was no statistically significant difference between them (P=0.35. p53 mutations were significantly more frequent in males than that in females, but not related to the other clinicopathologic characteristics. Conclusion The results indicate that HRM is a sensitive in-tube methodology to detect for mutations in clinical samples. The results suggest that the arising p53 mutations in NSCLC may be due to spontaneous error in DNA synthesis and repair.

  1. Molecular diagnostics for detecting pyrethroid and abamectin resistance mutations in Tetranychus urticae.

    Science.gov (United States)

    Ilias, Aris; Vassiliou, Vassilis A; Vontas, John; Tsagkarakou, Anastasia

    2017-01-01

    Avermectin and pyrethroid resistance mutations (the G314D and the G326E in the glutamate gated chloride channels, and the F1538I in the voltage gated sodium channel) have been reported in the spider mite Tetranychus urticae, one of the most devastating pests of protected and open field crops worldwide. We developed three TaqMan molecular diagnostic assays for monitoring the presence and frequency of these mutations in T. urticae field populations. The TaqMan assays were validated against known genotypes and subsequently used to monitor the frequency of the resistance mutations in eleven T. urticae populations from Greece and Cyprus, with variable history of avermectin and pyrethroids applications. The frequency of the F1538I pyrethroid resistance mutation largely varied among samples, with highest frequencies (75%-97%) detected in four populations derived from protected and open field crops from Crete and Peloponnesus, low frequencies in three populations (2.5%-11%) from Attiki, Cyprus and Crete and not detected in four populations from Crete, Peloponnesus and Cyprus. The frequency of the abamectin resistance mutations G314D and G326E also varied across populations (from 0 to 100%), showing fixation in two populations (>97.5% for the G314D and 100% for the G326E), originating from rose greenhouses from Greece, low frequencies in three populations (5%-12.5%) also originating from rose greenhouses (Crete, Peloponnesus and Cyprus) and not detected in six populations from protected and open field vegetable crops. The TaqMan diagnostics showed higher resolution in detecting specific alleles in low frequency, compared to massive quantitative sequencing approaches previously employed. They can be used, together with classical bioassays, to support evidence - based insecticide resistance management strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. [Detection of TSC1/TSC2 gene mutations among patients with tuberous sclerosis complex by Ion Torrent semiconductor sequencing].

    Science.gov (United States)

    Wang, Yuguo; Lin, Ying; Luo, Chunyu; Liang, Dong; Ji, Xiuqing; Jiang, Tao; Ma, Dingyuan; Xu, Zhengfeng

    2016-04-01

    To develop and validate a method for mutation screening and prenatal diagnosis of TSC1/TSC2 mutations among patients with tuberous sclerosis complex (TSC) by Ion Torrent semiconductor sequencing. Potential mutations of SC1/TSC2 gene was detected in 2 TSC families and 1 sporadic TSC patient using an Ion Torrent PGM sequencer. Candidate variants were validated by Sanger sequencing. The corresponding site of TSC2 in the fetus of family 2 was also detected with Sanger sequencing. Ion Torrent semiconductor sequencing has identified a probably pathogenic TSC2 mutation (c.311-312insGCTG) in the patient from family 1, and a probably pathogenic TSC2 mutation (c.1790A>G) in the patient of family 2. Targeted Ion Torrent PGM sequencing is an accurate and efficient method to detect TSC1/TSC2 mutations in TSC.

  3. Detection of resistance mutations and CD4 slopes in individuals experiencing sustained virological failure

    DEFF Research Database (Denmark)

    Schultze, Anna; Paredes, Roger; Sabin, Caroline

    2014-01-01

    mutations on CD4 slopes in patients undergoing episodes of viral failure. MATERIALS AND METHODS: Patients from the EuroSIDA and UK CHIC cohorts undergoing at least one episode of virological failure (>3 consecutive RNA measurements >500 on ART) with at least three CD4 measurements and a resistance test...... during the episode were included. Mutations were identified using the IAS-US (2013) list, and were presumed to be present from detection until the end of an episode. Multivariable linear mixed models with a random intercept and slope adjusted for age, baseline CD4 count, hepatitis C, drug type, RNA (log......-scale), risk group and subtype were used to estimate CD4 slopes. Individual mutations with a population prevalence of >10% were tested for their effect on the CD4 slope. RESULTS: A total of 2731 patients experiencing a median of 1 (range 1-4) episodes were included in this analysis. The prevalence of any...

  4. Exon 44 nonsense mutation in two-Duchenne muscular dystrophy brothers detected by heteroduplex analysis.

    Science.gov (United States)

    Prior, T W; Papp, A C; Snyder, P J; Burghes, A H; Sedra, M S; Western, L M; Bartolo, C; Mendell, J R

    1993-01-01

    Utilizing a heteroduplex method, we screened the dystrophin exon 43-45 region for point mutations, including small deletions and insertions. The method depends upon the formation of a heteroduplex between wild-type and mutant DNA PCR products. DNA specimens from one hundred and four DMD patients without detected deletions or duplications were multiplexed amplified for exons 43, 44, and 45. The PCR products were mixed with the PCR products from nonaffected controls, electrophoresed, and examined for the presence of altered mobility heteroduplex bands. An exon 44 nonsense mutation in two DMD brothers and a common intron 44 polymorphism were identified using this approach. Although the exon 44-45 region is a hotspot for deletion breakpoints, it does not appear to be prone to point mutations. The technique is extremely useful for screening several exons simultaneously and it allowed us to screen a large number of patients.

  5. Enhancing community detection by local structural information

    CERN Document Server

    Xiang, Ju; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-01-01

    Many real-world networks such as the gene networks, protein-protein interaction networks and metabolic networks exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have positive effect on community detection in the networks. Here, various local similarity measures are used to extract the local structural information and then are applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial to the improvement for the community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and the applied community detection methods.

  6. Detection of fetal mutations causing hemoglobinopathies by non-invasive prenatal diagnosis from maternal plasma.

    Science.gov (United States)

    D'Souza, E; Sawant, P M; Nadkarni, A H; Gorakshakar, A; Ghosh, K; Colah, R B

    2013-01-01

    Prenatal diagnosis of hemoglobinopathies enables couples at risk to have a healthy child. Currently used fetal sampling procedures are invasive with some risk of miscarriage. A non-invasive approach to obtain fetal deoxyribonucleic acid (DNA) for diagnosis would eliminate this risk. To develop and evaluate a non-invasive prenatal diagnostic approach for hemoglobinopathies using cell-free fetal DNA circulating in the maternal plasma. Couples referred to us for prenatal diagnosis of hemoglobinopathies where the maternal and paternal mutations were different were included in the study. Maternal peripheral blood was collected at different periods of gestation before the invasive fetal sampling procedure was done. The blood was centrifuged to isolate the plasma and prepare DNA. A size separation approach was used to isolate fetal DNA. Nested polymerase chain reaction (PCR)-based protocols were developed for detection of the presence or absence of the paternal mutation. There were 30 couples where the parental mutations were different. Of these, in 14 cases the paternal mutation was absent and in 16 cases it was present in the fetus. Using cell-free fetal DNA from maternal plasma, the absence of the paternal mutation was accurately determined in 12 of the 14 cases and the presence of the paternal mutation was correctly identified in 12 of the 16 cases. Thus, this non-invasive approach gave comparable results to those obtained by the conventional invasive fetal sampling methods in 24 cases giving an accuracy of 80.0%. Although the nested PCR approach enabled amplification of small quantities of cell-free DNA from maternal plasma at different periods of gestation after size separation to eliminate the more abundant maternal DNA, an accurate diagnosis of the presence or absence of the paternal mutation in the fetus was not possible in all cases to make it clinically applicable.

  7. Detection of Lung Cancer and EGFR Mutation by Electronic Nose System.

    Science.gov (United States)

    Shlomi, Dekel; Abud, Manal; Liran, Ori; Bar, Jair; Gai-Mor, Naomi; Ilouze, Maya; Onn, Amir; Ben-Nun, Alon; Haick, Hossam; Peled, Nir

    2017-10-01

    Early detection of lung cancer (LC) has been well established as a significant key point in patient survival and prognosis. New highly sensitive nanoarray sensors for exhaled volatile organic compounds that have been developed and coupled with powerful statistical programs may be used when diseases such as LC are suspected. Detection of genetic aberration mutation by nanoarray sensors is the next target. Breath samples were taken from patients who were evaluated for suspicious pulmonary lesions. Patients were classified as those with benign nodules, as patients with LC with or without the EGFR mutation, and according to their smoking status. Breath prints were recognized by nanomaterial-based sensor array, and pattern recognition methods were used. A total of 119 patients participated in this study, 30 patients with benign nodules and 89 patients with LC (16 with early disease and 73 with advanced disease). Patients with LC who harbored the EGFR mutation (n = 19) could be discriminated from those with wild-type EGFR (n = 34) with an accuracy of 83%, sensitivity of 79%, and specificity of 85%. Discrimination of early LC from benign nodules had 87% accuracy and positive and negative predictive values of 87.7 and 87.5% respectively. Moderate discrimination (accuracy of 76%) was found between LC of heavy smokers and that of never-smokers or distant past light smokers. Breath analysis could discriminate patients with LC who harbor the EGFR mutation from those with wild-type EGFR and those with benign pulmonary nodules from those patients with early LC. A positive breath print for the EGFR mutation may be used in treatment decisions if tissue sampling does not provide adequate material for definitive mutation analysis. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  8. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs.

    Directory of Open Access Journals (Sweden)

    Dana S Mosher

    2007-05-01

    Full Text Available Double muscling is a trait previously described in several mammalian species including cattle and sheep and is caused by mutations in the myostatin (MSTN gene (previously referred to as GDF8. Here we describe a new mutation in MSTN found in the whippet dog breed that results in a double-muscled phenotype known as the "bully" whippet. Individuals with this phenotype carry two copies of a two-base-pair deletion in the third exon of MSTN leading to a premature stop codon at amino acid 313. Individuals carrying only one copy of the mutation are, on average, more muscular than wild-type individuals (p = 7.43 x 10(-6; Kruskal-Wallis Test and are significantly faster than individuals carrying the wild-type genotype in competitive racing events (Kendall's nonparametric measure, tau = 0.3619; p approximately 0.00028. These results highlight the utility of performance-enhancing polymorphisms, marking the first time a mutation in MSTN has been quantitatively linked to increased athletic performance.

  9. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia.

    Science.gov (United States)

    Bhatia, Shipra; Bengani, Hemant; Fish, Margaret; Brown, Alison; Divizia, Maria Teresa; de Marco, Riccardo; Damante, Guiseppe; Grainger, Robert; van Heyningen, Veronica; Kleinjan, Dirk A

    2013-12-05

    The strictly regulated expression of most pleiotropic developmental control genes is critically dependent on the activity of long-range cis-regulatory elements. This was revealed by the identification of individuals with a genetic condition lacking coding-region mutations in the gene commonly associated with the disease but having a variety of nearby chromosomal abnormalities, collectively described as cis-ruption disease cases. The congenital eye malformation aniridia is caused by haploinsufficiency of the developmental regulator PAX6. We discovered a de novo point mutation in an ultraconserved cis-element located 150 kb downstream from PAX6 in an affected individual with intact coding region and chromosomal locus. The element SIMO acts as a strong enhancer in developing ocular structures. The mutation disrupts an autoregulatory PAX6 binding site, causing loss of enhancer activity, resulting in defective maintenance of PAX6 expression. These findings reveal a distinct regulatory mechanism for genetic disease by disruption of an autoregulatory feedback loop critical for maintenance of gene expression through development. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Enhanced Fitness of Adult Spermatogonial Stem Cells Bearing a Paternal Age-Associated FGFR2 Mutation

    Directory of Open Access Journals (Sweden)

    Laura A. Martin

    2014-08-01

    Full Text Available Pathogenic de novo mutations increase with fathers’ age and could be amplified through competition between genetically distinct subpopulations of spermatogonial stem cells (SSCs. Here, we tested the fitness of SSCs bearing wild-type human FGFR2 or an Apert syndrome mutant, FGFR2 (S252W, to provide experimental evidence for SSC competition. The S252W allele conferred enhanced FGFR2-mediated signaling, particularly at very low concentrations of ligand, and also subtle changes in gene expression. Mutant SSCs exhibited improved competitiveness in vitro and increased stem cell activity in vivo upon transplantation. The fitness advantage in vitro only occurred in low concentrations of fibroblast growth factor (FGF, was independent of FGF-driven proliferation, and was accompanied by increased response to glial cell line-derived neurotrophic factor (GDNF. Our studies provide experimental evidence of enhanced stem cell fitness in SSCs bearing a paternal age-associated mutation. Our model will be useful for interrogating other candidate mutations in the future to reveal mechanisms of disease risk.

  11. Magnetic Resonance Spectroscopy for Detection of 2-Hydroxyglutarate as a Biomarker for IDH Mutation in Gliomas

    Science.gov (United States)

    Leather, Thomas; Jenkinson, Michael D.; Das, Kumar; Poptani, Harish

    2017-01-01

    Mutations in the isocitrate dehydrogenase (IDH)1/2 genes are highly prevalent in gliomas and have been suggested to play an important role in the development and progression of the disease. Tumours harbouring these mutations exhibit a significant alteration in their metabolism resulting in the aberrant accumulation of the oncometabolite 2-hydroxygluarate (2-HG). As well as being suggested to play an important role in tumour progression, 2-HG may serve as a surrogate indicator of IDH status through non-invasive detection using magnetic resonance spectroscopy (MRS). In this review, we describe the recent efforts in developing MRS methods for detection and quantification of 2-HG in vivo and provide an assessment of the role of the 2-HG in gliomagenesis and patient prognosis. PMID:28629182

  12. Microelectronic DNA assay for the detection of BRCA1 gene mutations

    Science.gov (United States)

    Chen, Hua; Han, Jie; Li, Jun; Meyyappan, Meyya

    2004-01-01

    Mutations in BRCA1 are characterized by predisposition to breast cancer, ovarian cancer and prostate cancer as well as colon cancer. Prognosis for this cancer survival depends upon the stage at which cancer is diagnosed. Reliable and rapid mutation detection is crucial for the early diagnosis and treatment. We developed an electronic assay for the detection of a representative single nucleotide polymorphism (SNP), deletion and insertion in BRCA1 gene by the microelectronics microarray instrumentation. The assay is rapid, and it takes 30 minutes for the immobilization of target DNA samples, hybridization, washing and readout. The assay is multiplexing since it is carried out at the same temperature and buffer conditions for each step. The assay is also highly specific, as the signal-to-noise ratio is much larger than recommended value (72.86 to 321.05 vs. 5) for homozygotes genotyping, and signal ratio close to the perfect value 1 for heterozygotes genotyping (1.04).

  13. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy.

    Science.gov (United States)

    Liu, Zhidai; Zhang, Penghui; He, Xiaoyan; Liu, Shan; Tang, Shi; Zhang, Rong; Wang, Xinbin; Tan, Junjie; Peng, Bin; Jiang, Li; Hong, Siqi; Zou, Lin

    2016-08-17

    Spinal muscular atrophy (SMA) is the most common autosomal recessive disease in children, and the diagnosis is complicated and difficult, especially at early stage. Early diagnosis of SMA is able to improve the outcome of SMA patients. In our study, Real-time PCR was developed to measure the gene mutation or deletion of key genes for SMA and to further analyse genotype-phenotype correlation. The multiple real-time PCR for detecting the mutations of survival of motor neuron (SMN), apoptosis inhibitory protein (NAIP) and general transcription factor IIH, polypeptide 2 gene (GTF2H2) was established and confirmed by DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). The diagnosis and prognosis of 141 hospitalized children, 100 normal children and further 2000 cases of dry blood spot (DBS) samples were analysed by this multiple real-time PCR. The multiple real-time PCR was established and the accuracy of it to detect the mutations of SMN, NAIP and GTF2H2 was at least 98.8 % comparing with DNA sequencing and MLPA. Among 141 limb movement disorders children, 75 cases were SMA. 71 cases of SMA (94.67 %) were with SMN c.840 mutation, 9 cases (12 %) with NAIP deletion and 3 cases (4 %) with GTF2H2 deletion. The multiple real-time PCR was able to diagnose and predict the prognosis of SMA patients. Simultaneously, the real-time PCR was applied to detect trace DNA from DBS and able to make an early diagnosis of SMA. The clinical and molecular characteristics of SMA in Southwest of China were presented. Our work provides a novel way for detecting SMA in children by using real-time PCR and the potential usage in newborn screening for early diagnosis of SMA.

  14. Hyperspectral anomaly detection using enhanced global factors

    Science.gov (United States)

    Paciencia, Todd J.; Bauer, Kenneth W.

    2016-05-01

    Dimension reduction techniques have become one popular unsupervised approach used towards detecting anomalies in hyperspectral imagery. Although demonstrating promising results in the literature on specific images, these methods can become difficult to directly interpret and often require tuning of their parameters to achieve high performance on a specific set of images. This lack of generality is also compounded by the need to remove noise and atmospheric absorption spectral bands from the image prior to detection. Without a process for this band selection and to make the methods adaptable to different image compositions, performance becomes difficult to maintain across a wider variety of images. Here, we present a framework that uses factor analysis to provide a robust band selection and more meaningful dimension reduction with which to detect anomalies in the imagery. Measurable characteristics of the image are used to create an automated decision process that allows the algorithm to adjust to a particular image, while maintaining high detection performance. The framework and its algorithms are detailed, and results are shown for forest, desert, sea, rural, urban, anomaly-sparse, and anomaly-dense imagery types from different sensors. Additionally, the method is compared to current state-of-the-art methods and is shown to be computationally efficient.

  15. Microfluidic immunomagnetic separation for enhanced bacterial detection

    DEFF Research Database (Denmark)

    Hoyland, James; Kunstmann-Olsen, Casper; Ahmed, Shakil

    Salmonella from samples artificially contaminated with a concentration range of 10^2 to 10^7 mL-1 and the captured Salmonella were then detected and quantified flow cytometrically after vital staining. The results showed that on-chip IMS could effectively discriminate a bacterial contamination of 10^4/ml...

  16. Nanoroughened plasmonic films for enhanced biosensing detection.

    Science.gov (United States)

    Le Moal, Eric; Lévêque-Fort, Sandrine; Potier, Marie-Claude; Fort, Emmanuel

    2009-06-03

    Although fluorescence is the prevailing labeling technique in biosensing applications, sensitivity improvement is still a striving challenge. We show that coating standard microscope slides with nanoroughened silver films provides a high fluorescence signal enhancement due to plasmonic interactions. As a proof of concept, we applied these films with tailored plasmonic properties to DNA microarrays. Using common optical scanning devices, we achieved signal amplifications of more than 40-fold.

  17. Cornelia de Lange individuals with new and recurrent SMC1A mutations enhance delineation of mutation repertoire and phenotypic spectrum.

    Science.gov (United States)

    Gervasini, Cristina; Russo, Silvia; Cereda, Anna; Parenti, Ilaria; Masciadri, Maura; Azzollini, Jacopo; Melis, Daniela; Aravena, Teresa; Doray, Bérénice; Ferrarini, Alessandra; Garavelli, Livia; Selicorni, Angelo; Larizza, Lidia

    2013-11-01

    We report on the clinical and molecular characterization of eight patients, one male and seven females, with clinical diagnosis of Cornelia de Lange syndrome (CdLS), who were found to carry distinct mutations of the SMC1A gene. Five of the eight mutations are novel, with two involving amino acid residues previously described as altered in a different way. The other three have been reported each in a single case. Comparison of pairs of individuals with the same mutation indicates only partial overlap of their clinical phenotypes. The following novel missense mutations, all affecting highly conserved amino acid residues, were found: p.R398G in the N-terminal coiled-coil domain, p.V651M in the C-terminal coiled-coil/hinge junction, p.R693G in the C-terminal coiled-coil, and p.N1166T and p.L1189F in the C-terminal ABC cassette. The latter is localized in the H-loop, and represents the first mutation involving a functional motif of SMC1A protein. The effect of the mutations on SMC1A protein function has been predicted using four bioinformatic tools. All mutations except p.V651M were scored as pathogenic by three or four of the tools. p.V651M was found in the only male individual of our cohort, who presented with the most severe phenotype. This raises the issue of gender effect when addressing mutation-phenotype correlation for genes such as SMC1A, which incompletely escapes X-inactivation. Our clinical and molecular findings expand the total number of characterized SMC1A-mutated patients (from 44 to 52) and the restricted repertoire of SMC1A mutations (from 29 to 34), contributing to the molecular and clinical signature of SMC1A-based CdLS. © 2013 Wiley Periodicals, Inc.

  18. The G11778A LHON mutation does not enhance ethambutol cytotoxicity in a cybrid model.

    Science.gov (United States)

    Pommer, R; Schoeler, S; Mawrin, C; Szibor, R; Kirches, E

    2008-01-01

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder, leading to a selective loss of retinal ganglion cells (RGC) and degeneration of the optic nerve, which results in severe visual impairment or even blindness. The primary causes are point mutations of the mitochondrial DNA (mtDNA), associated with aminoacid exchanges in complex I of the electron transport chain (ETC), which are thought to disturb oxidative ATP generation in the mitochondria. The major side effect of the antibiotic ethambutol, commonly used in tuberculosis therapy, is a retinopathy, which may lead to selective RGC loss, if not detected in an early stage. Moreover, LHON was reported to be elicited by ethambutol in some mutation carriers. The present study intended to measure a possible synergism between mitochondrial dysfunction, caused by the most common LHON mutation (G11778A) and caused by ethambutol, which may lead to a higher cytotoxicity of the drug in LHON cells. An NT2/D1 teratoma-derived LHON cybrid line and the parental cells. Determination of ethambutol toxicity in both lines, using a microtiter tetrazolium assay, luminometric measurement of ATP/ADP ratios and determination of mtDNA copy numbers by Real-time PCR. Short-term ethambutol toxicity occurred only at micromolar concentrations, far beyond the estimated plasma peak concentrations of patients under antibiotic therapy. No significant difference occurred between both cell lines. The ATP/ADP ratios in the cybrids were surprisingly low, but showed no correlation with the mutational status of drug-treated cells. The mtDNA copy number of treated LHON and parental cells did not differ significantly. Ethambutol shows no synergism with the most common primary LHON mutation with respect to mitochondrial energy production or mtDNA replication in cybrid cells, although the issue of ATP decline should be further addressed in neuronally differentiated cybrids with complete OXPHOS dependency.

  19. Recombinant nucleases CEL I from celery and SP I from spinach for mutation detection

    Directory of Open Access Journals (Sweden)

    Chen Yibai

    2007-06-01

    Full Text Available Abstract Background The detection of unknown mutations is important in research and medicine. For this purpose, a mismatch-specific endonuclease CEL I from celery has been established as a useful tool in high throughput projects. Previously, CEL I-like activities were described only in a variety of plants and could not be expressed in an active form in bacteria. Results We describe expression of active recombinant plant mismatch endonucleases and modification of their activities. We also report the cloning of a CEL I ortholog from Spinacia oleracea (spinach which we termed SP I nuclease. Active CEL I and SP I nucleases were expressed as C-terminal hexahistidine fusions and affinity purified from the cell culture media. Both recombinant enzymes were active in mutation detection in BRCA1 gene of patient-derived DNA. Native SP nuclease purified from spinach is unable to incise at single-nucleotide substitutions and loops containing a guanine nucleotide, but the recombinant SP I nuclease can cut at these sites. Conclusion The insect cell-expressed CEL I orthologs may not be identical to their native counterparts purified from plant tissues. The present expression system should facilitate further development of CEL I-based mutation detection technologies.

  20. Detection and Analysis of EGFR and KRAS Mutations 
in the Patients with Lung Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2015-10-01

    Full Text Available Background and objective Activating mutations in epidermal growth factor receptor (EGFR and KRAS are important markers in non-small cell lung cancer. However, EGFR and KRAS gene mutations in lung squamous cell carcinoma are rarely reported. The aim of this study was to analyze EGFR and KRAS gene mutation rate and their relationship with clinical features in patients with lung squamous cell carcinomas. Methods A total of 139 patients undergoing treatment for naïve lung squamous cell carcinomas with tumor tissue samples available for testing were recruited. EGFR and KRAS mutation statuses of the tumor samples were detected using a mutant enriched liquid chip. Results Of the 139 cases of lung squamous cell carcinoma, EGFR mutations were detected in 25 cases (18%, KRAS mutations were detected in 7 cases (5%, and the presence of both EGFR and KRAS mutations was detected in 1 case (0.7%. EGFR mutations occurred more often in females than in males (33.3% vs 16.5% and in patients that never smoked than in those who smoke (29.6% vs 16.1%. However, the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, and different biopsy type. KRAS mutations occurred more often in males than in females (5.5% vs 0%, but the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, different biopsy type, and smoking status (P>0.05. Conclusion EGFR and KRAS mutations were low in lung squamous cell carcinomas, and had no significant correlation with clinical features. Before using tyrosine kinase inhibitor targeted therapy, EGFR and KRAS mutations should be detected in patients with lung squamous cell carcinomas.

  1. Impact of Different Methodologies on the Detection of Point Mutations in Routine Air-dried Fine Needle Aspiration (FNA) Smears

    DEFF Research Database (Denmark)

    Rehfeld, C; Münz, S; Krogdahl, A

    2013-01-01

    promising approach for molecular FNA diagnostics. The objective of this methodological study was to evaluate the feasibility of detecting BRAF, NRAS, HRAS, and KRAS mutations from routine air-dried thyroid FNA smears, and to find an optimal method for detecting these mutations in FNA samples. DNA...... using hybridization probes and fluorescence melting curve analysis. The high-resolution melting-PCRs revealed a significantly lower number of PCR failures and questionable results, and detected more mutations than the PCRs using hybridization probes. The number of PCR failures ranging from 14...

  2. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye

    Science.gov (United States)

    Xie, Liping; Wang, Tongzhou; Huang, Tianqi; Hou, Wei; Huang, Guoliang; Du, Yanan

    2014-09-01

    A novel label-free method based on breathing-induced vapor condensation was developed for detection of genetic point mutation. The dew-inspired detection was realized by integration of target-induced DNA ligation with rolling circle amplification (RCA). The vapor condensation induced by breathing transduced the RCA-amplified variances in DNA contents into visible contrast. The image could be recorded by a cell phone for further or even remote analysis. This green assay offers a naked-eye-reading method potentially applied for point-of-care liver cancer diagnosis in resource-limited regions.

  3. Estimation and enhancement of real-time software reliability through mutation analysis

    Science.gov (United States)

    Geist, Robert; Offutt, A. J.; Harris, Frederick C., Jr.

    1992-01-01

    A simulation-based technique for obtaining numerical estimates of the reliability of N-version, real-time software is presented. An extended stochastic Petri net is employed to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. Test results utilizing specifications for NASA's planetary lander control software indicate that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions.

  4. Development of Multiplex-Mismatch Amplification Mutation-PCR Assay for Simultaneous Detection of Campylobacter jejuni and Mutation in gyrA Gene Related to Fluoroquinolone Resistance.

    Science.gov (United States)

    Cui, Mingquan; Wu, Chenbin; Zhang, Peng; Wu, Congming

    2016-11-01

    Campylobacter jejuni, a foodborne pathogen, is the major cause of enteritis in humans worldwide, however, its increasing resistance to fluoroquinolones reported recently is of a major concern. In the present study, multiplex-mismatch amplification mutation assay-polymerase chain reaction (MMAMA-PCR) was developed for the first time with the aim to quickly identify C. jejuni and to detect the single nucleotide mutation (C-257 to T) frequently observed in gyrA gene, associated with the acquisition of resistance to fluoroquinolones. In this assay, mismatch amplification mutation primers for the detection of gyrA mutation in C. jejuni were coupled with primers for the hip gene encoding for hippuricase and 16S rRNA gene of C. jejuni, respectively, in the multiplex PCR assay. The specificity and accuracy of this method were analyzed by the use of 78 C. jejuni strains with previously confirmed resistance phenotypes and the mutation (C-257 to T) in gyrA gene, as well as 107 clinical isolates of various bacterial species, including 29 C. jejuni isolates. This study indicates that MMAMA-PCR is a promising assay for the rapid identification of C. jejuni with a specific mutation in gyrA gene, responsible for the resistance to fluoroquinolones.

  5. Direct detection of common and rare inversion mutations in the genetic diagnosis of severe hemophilia A

    Energy Technology Data Exchange (ETDEWEB)

    Windsor, A.S.; Lillicrap, D.P.; Taylor, S.A.M. [Queen`s Univ., Ontario (Canada)

    1994-09-01

    Approximately 50% of the cases of severe hemophilia A (factor VIII:C < 0.01 units/ml) may be due to gross rearrangements of the factor VIII gene. The mutation involves homologous sequences upstream of the factor VIII locus and within intron 22 in an intrachromosomal recombination, inversion, event. The rearrangements can readily be detected on a Southern blot using a probe that is complementary to sequences from within intron 22. We describe here the analysis of this mutation in 71 severe hemophilia A patients. Thirty two of the patients (45%) showed evidence of a rearrangement. Five different patterns of rearrangements were seen, two of which have previously been described and account for the majority of cases (pattern 1, 70% and pattern 2, 16%). Three other abnormal patterns were observed. The inversion mechanism does not usually result in the loss or gain of any genetic material, but in one patient, in whom a unique rearrangement pattern was observed (pattern 3), we have previously documented a gross deletion which removes exons 1-22 of the factor VII gene as well as sequences 5{prime} to the gene. In another individual a fourth pattern in which an extra 19.0 kb band is present was detected. In this case it is unclear as to whether the rearrangement is responsible for the disease or is simply coincident normal variation. A fifth pattern, in which an extra 16.0 kb band was detected, was observed in a family with a new mutation causing hemophilia A. The affected individual and his mother inherited a de novo rearrangement of the factor VIII gene from his unaffected grandfather, implicating it as the cause of the disease. In conclusion, testing for the factor VIII inversion mutation was positive in approximately 45% of severe hemophiliacs, 72% of whom were isolated cases, and as such should constitute the initial stage in the genetic testing protocol for these patients` families.

  6. Optimization of nonmuscle invasive bladder cancer recurrence detection using a urine based FGFR3 mutation assay.

    Science.gov (United States)

    Zuiverloon, Tahlita C M; Tjin, Stephen S; Busstra, Martijn; Bangma, Chris H; Boevé, Egbert R; Zwarthoff, Ellen C

    2011-08-01

    FGFR3 mutations occur in 70% of nonmuscle invasive bladder tumors. Although urine based FGFR3 mutation analysis can detect recurrence, its sensitivity may be limited if samples have few or no tumor cells. We determined whether test sensitivity depends on tumor size and the time point of urine collection, and how to increase sensitivity. A total of 440 urine samples from 18 patients with a suspicious bladder lesion at cystoscopy were collected during 6 days before surgery. Eight patients (300 samples) had an FGFR3 mutant tumor, including 4 each with a tumor greater than 3 and less than 1.5 cm. Polymerase chain reaction based FGFR3 analysis was done on all tumors and urine samples. FGFR3 mutations were detected in 257 of the 300 urine samples (86%) from patients with an FGFR3 mutant tumor. Assay sensitivity was 100% for tumors greater than 3 cm and 75% for tumors less than 1.5 cm. It increased to 100% in patients with a less than 1.5 cm tumor when samples were pooled during 24 hours. Sensitivity was not influenced by the time of urine collection. All urine samples from patients with an FGFR3 wild-type tumor were negative for FGFR3 mutation. The sensitivity of tumor detection increased with tumor size. FGFR3 assay sensitivity depends on the number of shed tumor cells and improves by increasing urine volume. These findings suggest that there is an upper limit to the sensitivity of the FGFR3 assay when 1 urine sample is analyzed. This may also apply to other DNA or RNA based assays. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  8. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives molecu...

  9. Optimization of heteroduplex analysis for the detection of BRCA mutations and SNPs

    Directory of Open Access Journals (Sweden)

    Lucian Negura

    2011-02-01

    Full Text Available BRCA1 and BRCA2 are tumour suppressor genes whose mutant phenotypes predispose to breast and ovarian cancer. Screening for mutations in these genes is now standard practice for hereditary breast and ovarian cancer (HBOC cases in Europe, and permits medical follow-up and genetic counselling adapted to the needs of individuals in such families. Currently, most laboratories performing diagnostic analysis of the BRCA genes use PCR of exons and intron-exon boundaries coupled to a pre-screening step to identify anomalous amplicons. The techniques employed for the detection of mutations and SNPs have evolved over time and vary in sensitivity, specificity and cost-effectiveness. As a variant for pre-screening techniques, we chose the recently developed Surveyor® heteroduplex cleavage method as a sensitive and specific technique to reveal anomalous amplicons of the BRCA genes, using only basic laboratory equipment and agarose gel electrophoresis. Here we present the detection of either mutations or SNPs within the BRCA1 exon 7, using heteroduplex analysis (HA by mismatch-specific endonuclease, confirmed by dideoxy sequencing.

  10. Detection of candidate nectin gene mutations in infertile men with severe teratospermia.

    Science.gov (United States)

    Bronson, Richard; Mikhailik, Anatoly; Schwedes, John; Gnatenko, Dimitri; Hatchwell, Eli

    2017-10-01

    Approximately 40% of infertile men have an abnormal semen analysis, resulting from either abnormalities of sperm production (defective spermatogenesis) or sperm shape (defective spermiogenesis). This latter process is dependent upon the function of Sertoli cells, which maintain specialized junctional complexes with germ cells. Nectins, members of the immunoglobulin superfamily, participate in formation of these dynamic complexes. Male mice in which the nectin-2 or nectin-3 gene is knocked out are sterile. Their spermatozoa exhibit severe teratospermia, altered motility, and an impaired ability to fertilize eggs. We asked whether mutations in the protein coding regions of the nectin-2 (aka PVRL2) and nectin-3 (aka PVRL3) genes could be detected in men from infertile couples whose semen analysis revealed unimpaired sperm production, judged by normal sperm concentration, but severe abnormalities in sperm shape. Ejaculates were snap frozen in liquid nitrogen and later submitted for Sanger analysis of these two genes, to detect mutations in their protein coding regions. Eighty-nine of 455 ejaculates (19.5%) met the inclusion criteria for study. Two of the 56 samples that were successfully analyzed for nectin-2 (3.6%) and one of 73 (1.3%) analyzed for nectin-3 possessed possibly damaging mutations. Despite the small-scale nature of the study, at least two low-frequency deleterious variants were identified. These results suggest the need for a larger-scale study of sequence variants in the nectins in severe teratospermia.

  11. Detection of five rare cystic fibrosis mutations peculiar to Southern Italy: implications in screening for the disease and phenotype characterization for patients with homozygote mutations.

    Science.gov (United States)

    Castaldo, G; Fuccio, A; Cazeneuve, C; Picci, L; Salvatore, D; Raia, V; Scarpa, M; Goossens, M; Salvatore, F

    1999-07-01

    The search for the eight most frequent mutations (i.e., DeltaF508, G542X, W1282X, N1303K, 1717-1G-->A, R553X, 2183AA-->G, and I148T) by allele-specific oligonucleotide dot-blot analysis revealed 78% of 396 cystic fibrosis alleles in Southern Italy. The observation of frequent haplotypes on the unidentified cystic fibrosis alleles suggested that a few mutations could account for a large number of unidentified alleles. We screened most of the coding sequence of the cystic fibrosis transmembrane regulator gene by denaturing gradient gel electrophoresis to determine the spectrum of these mutations in 68 unrelated cystic fibrosis patients bearing one or both unidentified mutations. The screening revealed five mutations, R1158X, 711+1G-->T, 4016insT, L1065P, and G1244E, each of which had a frequency of 1.3-1.8% (7% collectively). The 7% increase in the detection rate (85% vs 78%) reduces by >50% the residual risk of being cystic fibrosis carriers for couples who had tested negative by molecular analysis. We therefore designed a second allele-specific oligonucleotide set to analyze the five mutations. Among the patients analyzed, one patient homozygous for the L1065P mutation expressed a mild pulmonary and intestinal form of the disease with pancreatic insufficiency. Two other patients, homozygous for mutations R1158X and 4016insT, both expressed a severe cystic fibrosis phenotype. Five cystic fibrosis mutations are peculiar to patients from Southern Italy. The method described for their analysis is efficient, inexpensive, and can be semi-automated by use of a robotic workstation. The results obtained in patients from Southern Italy may have an impact on laboratories in other countries, given the large migrations of populations from Southern Italy to other countries in the last two centuries.

  12. Enhanced multi-attribute trust protocol for malicious node detection ...

    Indian Academy of Sciences (India)

    This paper proposes a trust-based intrusion detection that uses multi-attribute trust metrics to improve detection accuracy. It uses an enhanced distributive trust calculation algorithm that involves monitoring neighbouring nodes and trust calculation using the trust metrics message success rate (MSR), elapsed time at node ...

  13. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors.

    Science.gov (United States)

    Woerner, Stefan M; Tosti, Elena; Yuan, Yan P; Kloor, Matthias; Bork, Peer; Edelmann, Winfried; Gebert, Johannes

    2015-11-01

    Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis. © 2014 Wiley Periodicals, Inc.

  14. Lateral flow strip for visual detection of K-ras mutations based on allele-specific PCR.

    Science.gov (United States)

    Wang, Cong; Chen, Xiaomin; Wu, Yuying; Li, Hao; Wang, Yu; Pan, Xiaofu; Tang, Tingting; Liu, Ziying; Li, Xiaokun

    2016-10-01

    To develop a convenient and sensitive point-of-care test for detecting gene mutations based on allele-specific PCR. To develop a lateral flow strip for visual detection of K-ras mutations based on a modified PCR, a specific DNA tag was covalently linked to the 5'-end of each primer by a nine-carbon linker to produce a sticky end. One of the sticky ends of the PCR products bound to gold nano-particles, while the other sticky end was captured onto a nitrocellulose membrane of lateral flow strips. The lateral flow strip showed a great sensitivity, which detected mutations in as low as 10 tumor cells. The positive rate and accuracy of the lateral flow strip for blood samples were over 92 and 96 %, respectively. The lateral flow strip provides an easy method for sensitive detection of gene mutations based on allele specific-PCR.

  15. Detection of epidermal growth factor receptor mutation in lung cancer by droplet digital polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Xu Q

    2015-06-01

    Full Text Available Qing Xu,1,* Yazhen Zhu,2,* Yali Bai,1 Xiumin Wei,1 Xirun Zheng,2 Mao Mao,1 Guangjuan Zheng21Translational Bioscience and Diagnostics, WuXi AppTec, Shanghai, 2Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People’s Republic of China*These authors contributed equally to this workBackground: Two types of epidermal growth factor receptor (EGFR mutations in exon 19 and exon 21 (ex19del and L858R are prevalent in lung cancer patients and sensitive to targeted EGFR inhibition. A resistance mutation in exon 20 (T790M has been found to accompany drug treatment when patients relapse. These three mutations are valuable companion diagnostic biomarkers for guiding personalized treatment. Quantitative polymerase chain reaction (qPCR-based methods have been widely used in the clinic by physicians to guide treatment decisions. The aim of this study was to evaluate the technical and clinical sensitivity and specificity of the droplet digital polymerase chain reaction (ddPCR method in detecting the three EGFR mutations in patients with lung cancer.Methods: Genomic DNA from H1975 and PC-9 cells, as well as 92 normal human blood specimens, was used to determine the technical sensitivity and specificity of the ddPCR assays. Genomic DNA of formalin-fixed, paraffin-embedded specimens from 78 Chinese patients with lung adenocarcinoma were assayed using both qPCR and ddPCR.Results: The three ddPCR assays had a limit of detection of 0.02% and a wide dynamic range from 1 to 20,000 copies measurement. The L858R and ex19del assays had a 0% background level in the technical and clinical settings. The T790M assay appeared to have a 0.03% technical background. The ddPCR assays were robust for correct determination of EGFR mutation status in patients, and the dynamic range appeared to be better than qPCR methods. The ddPCR assay for T790M could detect

  16. Detection of Novel Mutation in Ccm3 Causes Familial Cerebral Cavernous Malformations.

    Science.gov (United States)

    Scimone, Concetta; Bramanti, Placido; Ruggeri, Alessia; Katsarou, Zoe; Donato, Luigi; Sidoti, Antonina; D'Angelo, Rosalia

    2015-11-01

    Cerebral cavernous malformations are vascular lesions that usually involve brain micro-vessels. They can occur both in a sporadic form and familial one. Causes of familial forms are mutations at three loci: CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. Here, we describe a novel CCM3 missense mutation (c.422T>G) detected in two Greek brothers showing multiple lesions at magnetic resonance imaging; to date, only the youngest is symptomatic. Bioinformatics tools showed this novel variant causes a loss of function in Pdcd10 protein due to its localization in the eighth helix and, particularly, affects Leu141, a highly conserved amino acid. Roles of Pdcd10 in angiogenesis regulation and its association with early development of cerebral cavernous malformations were also considered.

  17. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness

    Directory of Open Access Journals (Sweden)

    Greinwald John H

    2009-01-01

    Full Text Available Abstract Background South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population. Methods A multiplex method using the SNaPshot technique was used to screen for five mutations in the MT-RNR1 gene: A1555G, C1494T, T1095C, 961delT+C(n and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations. Results A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants. Conclusion The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will

  18. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness.

    Science.gov (United States)

    Bardien, Soraya; Human, Hannique; Harris, Tashneem; Hefke, Gwynneth; Veikondis, Rene; Schaaf, H Simon; van der Merwe, Lize; Greinwald, John H; Fagan, Johan; de Jong, Greetje

    2009-01-13

    South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB) in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population. A multiplex method using the SNaPshot technique was used to screen for five mutations in the MT-RNR1 gene: A1555G, C1494T, T1095C, 961delT+C(n) and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations. A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n) variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants. The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n) variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will continue to be used routinely and are accompanied with very

  19. Hungarian surveillance of germinal mutations. Lack of detectable increase in indicator conditions caused by germinal mutations following the Chernobyl accident.

    Science.gov (United States)

    Czeizel, A

    1989-07-01

    The Hungarian surveillance of germinal mutations is based on three indicator conditions seen in offspring, i.e., 15 sentinel anomalies, Down syndrome and component anomaly pairs of unidentified multiple congenital anomalies. It is an "opportunistic program," because the necessary data are available from the Hungarian Congenital Malformation Registry. This system is described and the criteria of a good registry are summarized. The analysis of indicator conditions caused by germinal mutations did not reveal any measurable mutagenic effects in Hungary following the accident at the Chernobyl nuclear power plant. The pros and cons of germinal mutation surveillance are discussed.

  20. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

    Science.gov (United States)

    Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte

    2012-01-01

    Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.

  1. Development and characterization of a microheater array device for real-time DNA mutation detection

    Science.gov (United States)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-04-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  2. X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA-binding site mutations

    OpenAIRE

    Campagna, D.R.; Bie, C.I. De; Schmitz-Abe, K.; Sweeney, M.; Sendamarai, A.K.; Schmidt, P.J.; Heeney, M.M.; Yntema, H.G.; Kannengiesser, C.; Grandchamp, B.; Niemeyer, C.M.; Knoers, N.V.A.M.; Swart, S.; Marron, G.; Wijk, R. van

    2014-01-01

    X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia. In affected males, it is uniformly associated with partial loss-of-function missense mutations in the erythroid-specific heme biosynthesis protein 5-aminolevulinate synthase 2 (ALAS2). Here, we report five families with XLSA owing to mutations in a GATA transcription factor binding site located in a transcriptional enhancer element in intron 1 of the ALAS2 gene. As such, this study defines a new c...

  3. X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA-binding site mutations.

    Science.gov (United States)

    Campagna, Dean R; de Bie, Charlotte I; Schmitz-Abe, Klaus; Sweeney, Marion; Sendamarai, Anoop K; Schmidt, Paul J; Heeney, Matthew M; Yntema, Helger G; Kannengiesser, Caroline; Grandchamp, Bernard; Niemeyer, Charlotte M; Knoers, Nine V A M; Swart, Sonia; Marron, Gordon; van Wijk, Richard; Raymakers, Reinier A; May, Alison; Markianos, Kyriacos; Bottomley, Sylvia S; Swinkels, Dorine W; Fleming, Mark D

    2014-03-01

    X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia. In affected males, it is uniformly associated with partial loss-of-function missense mutations in the erythroid-specific heme biosynthesis protein 5-aminolevulinate synthase 2 (ALAS2). Here, we report five families with XLSA owing to mutations in a GATA transcription factor binding site located in a transcriptional enhancer element in intron 1 of the ALAS2 gene. As such, this study defines a new class of mutations that should be evaluated in patients undergoing genetic testing for a suspected diagnosis of XLSA. Copyright © 2013 Wiley Periodicals, Inc.

  4. X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA binding site mutations

    Science.gov (United States)

    Campagna, Dean R.; de Bie, Charlotte I.; Schmitz-Abe, Klaus; Sweeney, Marion; Sendamarai, Anoop K.; Schmidt, Paul J.; Heeney, Matthew M.; Yntema, Helger G.; Kannengiesser, Caroline; Grandchamp, Bernard; Niemeyer, Charlotte M.; Knoers, Nine V.A.M.; Swart, Sonia; Marron, Gordon; van Wijk, Richard; Raymakers, Reinier A.; May, Alison; Markianos, Kyriacos; Bottomley, Sylvia S.; Swinkels, Dorine W.; Fleming, Mark D.

    2014-01-01

    X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia. In affected males, it is uniformly associated with partial loss-of-function missense mutations in the erythroid-specific heme biosynthesis protein 5-aminolevulinate synthase 2 (ALAS2). Here, we report five families with XLSA due to mutations in a GATA transcription factor binding site located in a transcriptional enhancer element in intron 1 of the ALAS2 gene. As such, this study defines a new class of mutations that should be evaluated in patients undergoing genetic testing for a suspected diagnosis of XLSA. PMID:24166784

  5. Detection of HIV cDNA Point Mutations with Rolling-Circle Amplification Arrays

    Directory of Open Access Journals (Sweden)

    Zhongwei Wu

    2010-01-01

    Full Text Available In this paper we describe an isothermal rolling-circle amplification (RCA protocol to detect gene point mutations on chips. The method is based on an allele-specific oligonucleotide circularization mediated by a special DNA ligase. The probe is circularized when perfect complementary sequences between the probe oligonucleotide and HIV cDNA gene. Mismatches around the ligation site can prevent probe circularization. The circularized probe (C-probe can be amplified by rolling circle amplification to generate multimeric singlestranded DNA (ssDNA under isothermal conditions. There are four sequence regions to bind respectively with fluorescent probe, RCA primer, solid probe and HIV cDNA template in the C-probe which we designed. These ssDNA products are hybridized with fluorescent probes and solid probes which are immobilized on a glass slide composing a regular microarray pattern. The fluorescence signals can be monitored by a scanner in the presence of HIV cDNA templates, whereas the probes cannot be circularized and signal of fluorescence cannot be found. The RCA array has capability of high-throughput detection of the point mutation and the single-nucleotide polymorphism (SNP.The development of C-probe-based technologies offers a promising prospect for situ detection, microarray, molecular diagnosis, single nucleotide polymorphism, and whole genome amplification.

  6. A resonance light scattering sensor based on methylene blue-sodium dodecyl benzene sulfonate for ultrasensitive detection of guanine base associated mutations.

    Science.gov (United States)

    Chen, Zhanguang; Qian, Sihua; Chen, Junhui; Chen, Xi; Zheng, Liwen; Liu, Jinbin

    2012-10-01

    A resonance light scattering (RLS) sensor for guanine base associated mutations has been developed on the basis of the high selectivity of methylene blue (MB) for guanine bases in the presence of sodium dodecyl benzene sulfonate (SDBS). MB, when bound to SDBS, underwent a dramatic enhancement of its RLS intensity. However, the addition of double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) caused the strong RLS intensity of MB-SDBS to decrease, and the RLS intensity of MB-SDBS-ssDNA was much lower than that of MB-SDBS-dsDNA. Consequently, it can be concluded that the binding abilities of MB-SDBS with ssDNA and dsDNA were different. Besides, the experimental results showed that MB-SDBS could bind specifically to oligonucleotides rich in guanine bases. Short DNA targets with sequences related to β-thalassaemia, thrombophilia and psoriasis, all of which are guanine base relevant mutations, were synthesized. It was found that MB-SDBS could recognize the single-base mismatches in the mutational DNA, followed by different RLS signal changes between MB-SDBS-normal DNA systems and MB-SDBS-mutational DNA systems. The ultrasensitive sensor allows simple, rapid, sensitive and selective detection of guanine base associated mutations, indicating its potential application in the medical field.

  7. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Timothy M. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Lambert, Iain B. [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Williams, Andrew [Biostatistics and Epidemiology Division, Safe Environments Programme, 6604B, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Douglas, George R. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Yauk, Carole L. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada)]. E-mail: carole_yauk@hc-sc.gc.ca

    2006-06-25

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.

  8. Detection of induced male germline mutation: correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays.

    Science.gov (United States)

    Singer, Timothy M; Lambert, Iain B; Williams, Andrew; Douglas, George R; Yauk, Carole L

    2006-06-25

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently--the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.

  9. Few molecule SERS detection using nanolens based plasmonic nanostructure: application to point mutation detection

    KAUST Repository

    Das, Gobind

    2016-10-27

    Advancements in nanotechnology fabrication techniques allow the possibility to design and fabricate a device with a minimum gap (<10 nm) between the composing nanostructures in order to obtain better control over the creation and spatial definition of plasmonic hot-spots. The present study is intended to show the fabrication of nanolens and their application to single/few molecules detection. Theoretical simulations were performed on different designs of real structures, including comparison of rough and smooth surfaces. Various molecules (rhodamine 6G, benzenethiol and BRCA1/BRCT peptides) were examined in this regard. Single molecule detection was possible for synthetic peptides, with a possible application in early detection of diseases. © The Royal Society of Chemistry.

  10. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain

    KAUST Repository

    Coluccio, M. L.

    2015-09-04

    Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers. The method allows detection of single point mutations in peptides composing the BRCA1 protein. The sensitivity demonstrated falls in the picomolar (10−12 M) range. The success of this approach is a result of accurate design and fabrication control. The residual roughness introduced by fabrication was taken into account in optical modeling and was a further contributing factor in plasmon localization, increasing the sensitivity and selectivity of the sensors. This methodology developed for breast cancer detection can be considered a general strategy that is applicable to various pathologies and other chemical analytical cases where complex mixtures have to be resolved in their constitutive components.

  11. Bi-directional dideoxy fingerprinting (Bi-ddF): a rapid method for quantitative detection of mutations in genomic regions of 300-600 bp.

    Science.gov (United States)

    Liu, Q; Feng, J; Sommer, S S

    1996-01-01

    There is a great need for rapid screening methods that detect essentially all mutations. Dideoxy fingerprinting (ddF) is a highly sensitive screening method that is performed by electrophoresing one lane of a Sanger dideoxy termination reaction through a nondenaturing gel. Mutations may produce an extra segment or eliminate a segment from the termination products (informative dideoxy component). In addition, mutations can be detected by the altered mobility of one or more termination segments (informative SSCP component). To screen larger segments with virtually 100% sensitivity, bi-directional ddF (Bi-ddF) was developed. Bi-ddF is a 'second generation ddF' in which the dideoxy termination reaction is performed simultaneously with two opposing primers. Bi-ddF has two important advantages over ddF: (i) the dideoxy component can detect 10 of the 12 types of possible single-base substitutions; and (ii) the SSCP component is enhanced because alterations of mobility can be detected in either the downstream or upstream direction. As a result, Bi-ddF can screen larger regions of genomic DNA with virtually 100% sensitivity. Bi-ddF detected 100% of 28 single-base substitutions in a 494 bp segment containing exons B and C of the human factor IX gene and 100% of 42 single-base substitutions and one microdeletion present in a 577 bp region containing exon H. In a blinded analysis in which 39 wildtype samples were randomly mixed with 51 mutant samples, all mutations were detected with no false positives. Bi-ddF requires essentially the same effort as ddF, yet twofold more DNA sequence can be screened reliably per unit effort.

  12. Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: Impact on WHO classification.

    Science.gov (United States)

    Pasqualucci, Laura; Liso, Arcangelo; Martelli, Maria Paola; Bolli, Niccolò; Pacini, Roberta; Tabarrini, Alessia; Carini, Manola; Bigerna, Barbara; Pucciarini, Alessandra; Mannucci, Roberta; Nicoletti, Ildo; Tiacci, Enrico; Meloni, Giovanna; Specchia, Giorgina; Cantore, Nicola; Di Raimondo, Francesco; Pileri, Stefano; Mecucci, Cristina; Mandelli, Franco; Martelli, Massimo Fabrizio; Falini, Brunangelo

    2006-12-15

    Because of a lack of specific clonality markers, information on lineage involvement and cell of origin of acute myeloid leukemia with normal karyotype (AML-NK), is missing. Because Nucleophosmin (NPM) gene is frequently mutated in AML-NK and causes aberrant NPM cytoplasmic localization (NPMc+), it was used as an AML lineage clonality marker. Clonal NPM exon 12 mutations were detected in myeloid, monocytic, erythroid, and megakaryocytic cells but not in fibroblasts or endothelia that were laser-microdissected from 3 patients with NPMc+ AML. Aberrant cytoplasmic expression of mutated NPM proteins was identified with anti-NPM antibodies in 2 or more myeloid hemopoietic cell lineages in 99 (61.5%) of 161 of NPMc+ AML paraffin-embedded bone marrow biopsies; lymphoid involvement was excluded in 3 investigated cases. These findings suggest that NPMc+ AML derives from either a common myeloid or earlier progenitor. Immunohistochemical studies show that varying combinations and ratios of NPMc+ leukemic cells from distinct lineages are responsible for heterogeneity within each French-American-British (FAB) classification type and for NPMc+ AML falling into different FAB categories. These findings question the value of FAB criteria in subdividing the WHO category of "AML not otherwise characterized" and suggest that, for clinical use, NPMc+ AML be provisionally regarded as a separate AML with prognostic significance.

  13. Artifactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications.

    Science.gov (United States)

    Arbeithuber, Barbara; Makova, Kateryna D; Tiemann-Boege, Irene

    2016-12-01

    The need in cancer research or evolutionary biology to detect rare mutations or variants present at very low frequencies (DNA lesions introduce important error sources in ultrasensitive technologies such as single molecule PCR (smPCR) applications (e.g. droplet-digital PCR), or next-generation sequencing (NGS) based methods. Using templates with known amplifiable lesions (8-oxoguanine, deaminated 5-methylcytosine, uracil, and DNA heteroduplexes), we assessed with smPCR and duplex sequencing that templates with these lesions were amplified very efficiently by proofreading polymerases (except uracil), leading to G->T, and to a lesser extent, to unreported G->C substitutions at 8-oxoguanine lesions, and C->T transitions in amplified uracil containing templates. Long heat incubations common in many DNA extraction protocols significantly increased the number of G->T substitutions. Moreover, in ∼50-80% smPCR reactions we observed the random amplification preference of only one of both DNA strands explaining the known 'PCR jackpot effect', with the result that a lesion became indistinguishable from a true mutation or variant. Finally, we showed that artifactual mutations derived from uracil and 8-oxoguanine could be significantly reduced by DNA repair enzymes. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. A framework for the detection of de novo mutations in family-based sequencing data

    Science.gov (United States)

    Francioli, Laurent C; Cretu-Stancu, Mircea; Garimella, Kiran V; Fromer, Menachem; Kloosterman, Wigard P; Wijmenga, Cisca; Investigator, Principal; Swertz, Morris A; van Duijn, Cornelia M; Boomsma, Dorret I; Slagboom, PEline; van Ommen, Gertjan B; de Bakker, Paul IW; Swertz, Morris A; Francioli, Laurent C; van Dijk, Freerk; Menelaou, Androniki; Neerincx, Pieter BT; Pulit, Sara L; Deelen, Patrick; Elbers, Clara C; Francesco Palamara, Pier; Pe'er, Itsik; Abdellaoui, Abdel; Kloosterman, Wigard P; van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen FJ; Stoneking, Mark; de Knijff, Peter; Kayser, Manfred; Veldink, Jan H; van den Berg, Leonard H; Byelas, Heorhiy; den Dunnen, Johan T; Dijkstra, Martijn; Amin, Najaf; van der Velde, K Joeri; Hottenga, Jouke Jan; van Setten, Jessica; van Leeuwen, Elisabeth M; Kanterakis, Alexandros; Kattenberg, Mathijs; Karssen, Lennart C; van Schaik, Barbera DC; Bot, Jan; Nijman, Isaäc J; Renkens, Ivo; van Enckevort, David; Mei, Hailiang; Koval, Vyacheslav; Estrada, Karol; Medina-Gomez, Carolina; Ye, Kai; Lameijer, Eric-Wubbo; Moed, Matthijs H; Hehir-Kwa, Jayne Y; Handsaker, Robert E; McCarroll, Steven A; Sunyaev, Shamil R; Polak, Paz; Vuzman, Dana; Sohail, Mashaal; Hormozdiari, Fereydoun; Marschall, Tobias; Schönhuth, Alexander; Guryev, Victor; de Bakker, Paul IW; Slagboom, P Eline; Beekman, Marian B; de Craen, Anton JM; Suchiman, H Eka D; Hofman, Albert; van Duijn, Cornelia M; Oostra, Ben; Isaacs, Aaron; Amin, Najaf; Rivadeneira, Fernando; Uitterlinden, André G; Boomsma, Dorret I; Willemsen, Gonneke; Platteel, Mathieu; Pitts, Steven J; Potluri, Shobha; Sundar, Purnima; Cox, David R; Li, Qibin; Li, Yingrui; Du, Yuanping; Chen, Ruoyan; Cao, Hongzhi; Li, Ning; Cao, Sujie; Wang, Jun; Bovenberg, Jasper A; Brandsma, Margreet; Samocha, Kaitlin E; Neale, Benjamin M; Daly, Mark J; Banks, Eric; DePristo, Mark A; de Bakker, Paul IW

    2017-01-01

    Germline mutation detection from human DNA sequence data is challenging due to the rarity of such events relative to the intrinsic error rates of sequencing technologies and the uneven coverage across the genome. We developed PhaseByTransmission (PBT) to identify de novo single nucleotide variants and short insertions and deletions (indels) from sequence data collected in parent-offspring trios. We compute the joint probability of the data given the genotype likelihoods in the individual family members, the known familial relationships and a prior probability for the mutation rate. Candidate de novo mutations (DNMs) are reported along with their posterior probability, providing a systematic way to prioritize them for validation. Our tool is integrated in the Genome Analysis Toolkit and can be used together with the ReadBackedPhasing module to infer the parental origin of DNMs based on phase-informative reads. Using simulated data, we show that PBT outperforms existing tools, especially in low coverage data and on the X chromosome. We further show that PBT displays high validation rates on empirical parent-offspring sequencing data for whole-exome data from 104 trios and X-chromosome data from 249 parent-offspring families. Finally, we demonstrate an association between father's age at conception and the number of DNMs in female offspring's X chromosome, consistent with previous literature reports. PMID:27876817

  15. Detection of multiple mutations in urinary exfoliated cells from male bladder cancer patients at diagnosis and during follow-up.

    Science.gov (United States)

    Critelli, Rossana; Fasanelli, Francesca; Oderda, Marco; Polidoro, Silvia; Assumma, Manuela Bianca; Viberti, Clara; Preto, Mirko; Gontero, Paolo; Cucchiarale, Giuseppina; Lurkin, Irene; Zwarthoff, Ellen C; Vineis, Paolo; Sacerdote, Carlotta; Matullo, Giuseppe; Naccarati, Alessio

    2016-10-11

    Most bladder cancer (BC) patients need life-long, invasive and expensive monitoring and treatment, making it a serious burden on the health system. Thus, there is a pressing need for an accurate test to assist diagnosis and surveillance of BC as an alternative to cystoscopy. Mutations in human TERT, FGFR3, PIK3CA, and RAS genes have been proposed as potential molecular markers in bladder tumor. Their concomitant presence in urine samples has not been fully explored.We investigated a panel of mutations in DNA from exfoliated urinary cells of 255 BC patients at diagnosis. Forty-one mutations in TERT, FGFR3, PIK3CA, and RAS were analyzed by SNaPshot assay in relation to clinical outcome. In 81 of these patients under surveillance, the same set of mutations was screened in additional 324 samples prospectively collected.The most common mutations detected in urine at diagnosis were in the TERT promoter. In non-invasive BC, these mutations were related to high risk and grade (pFGFR3 mutations were observed in low-grade BC (p=0.02) and patients with recurrences (p=0.05). Stronger associations were observed for combined TERT and FGFR3 mutations and number of recurrences (OR: 4.54 95% CI: 1.23-16.79, p=0.02). Analyses of the area under the curve for combinations of mutations detected at diagnosis and follow-up showed an accuracy of prediction of recurrence of 0.80 (95% CI: 0.71-0.89).Mutations in urine of BC patients may represent reliable biomarkers. In particular, TERT and FGFR3 mutations have a good accuracy of recurrence prediction.

  16. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females

    Energy Technology Data Exchange (ETDEWEB)

    Pegoraro, E.; Wessel, H.B.; Schwartz, L.; Hoffman, E.P. (Univ. of Pittsburgh, PA (United States)); Schimke, R.N. (Kansas Univ. Medical Center, Kansas City (United States)); Arahata, Kiichi; Hayashi, Yukiko (National Institute of Neurosciences, Tokyo (Japan)); Stern, H. (Children' s National Medical Center, Washington, DC (United States)); Marks, H. (A.I. duPont Institute, Wilmington (United States)); Glasberg, M.R. (Henry Ford Hospital, Detroit, MI (United States)) (and others)

    1994-06-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limb-girdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carries who show preferential inactivation of the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here the authors study X-inactivation patterns of 13 female dystrophinopathy patients - 10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. They show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in the assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, the results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. The results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. 58 refs., 7 figs., 2 tabs.

  17. A Biofunctional Molecular Beacon for Detecting Single Base Mutations in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haiyan Dong

    2016-01-01

    Full Text Available The development of a convenient and sensitive biosensing system to detect specific DNA sequences is an important issue in the field of genetic disease therapy. As a classic DNA detection technique, molecular beacon (MB is often used in the biosensing system. However, it has intrinsic drawbacks, including high assay cost, complicated chemical modification, and operational complexity. In this study, we developed a simple and cost-effective label-free multifunctional MB (LMMB by integrating elements of polymerization primer, template, target recognition, and G-quadruplex into one entity to detect target DNA. The core technique was accomplished by introducing a G-hairpin that features fragments of both G-quadruplex and target DNA recognition in the G-hairpin stem. Hybridization between LMMB and target DNA triggered conformational change between the G-hairpin and the common C-hairpin, resulting in significant SYBR-green signal amplification. The hybridization continues to the isothermal circular strand-displacement polymerization and accumulation of the double-stranded fragments, causing the uninterrupted extension of the LMMB without a need of chemical modification and other assistant DNA sequences. The novel and programmable LMMB could detect target DNA with sensitivity at 250 pmol/l with a linear range from 2 to 100 nmol/l and the relative standard deviation of 7.98%. The LMMB could sense a single base mutation from the normal DNA, and polymerase chain reaction (PCR amplicons of the mutant-type cell line from the wild-type one. The total time required for preparation and assaying was only 25 minutes. Apparently, the LMMB shows great potential for detecting DNA and its mutations in biosamples, and therefore it opens up a new prospect for genetic disease therapy.

  18. Enhanced Differential Evolution Based on Adaptive Mutation and Wrapper Local Search Strategies for Global Optimization Problems

    Directory of Open Access Journals (Sweden)

    Chun-Liang Lu

    2014-12-01

    Full Text Available Differential evolution (DE is a simple, powerful optimization algorithm, which has been widely used in many areas. However, the choices of the best mutation and search strategies are difficult for the specific issues. To alleviate these drawbacks and enhance the performance of DE, in this paper, the hybrid framework based on the adaptive mutation and Wrapper Local Search (WLS schemes, is proposed to improve searching ability to efficiently guide the evolution of the population toward the global optimum. Furthermore, the effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA that we previously published is applied to always produce feasible candidate solutions for solving the Flexible Job-shop Scheduling Problem (FJSP. Experiments were conducted on comprehensive set of complex benchmarks including the unimodal, multimodal and hybrid composition function, to validate performance of the proposed method and to compare with other state-of-the art DE variants such as jDE, JADE, MDE_pBX etc. Meanwhile, the hybrid DE model incorporating PSOMA is used to solve different representative instances based on practical data for multi-objective FJSP verifications. Simulation results indicate that the proposed method performs better for the majority of the single-objective scalable benchmark functions in terms of the solution accuracy and convergence rate. In addition, the wide range of Pareto-optimal solutions and more Gantt chart decision-makings can be provided for the multi-objective FJSP combinatorial optimizations.

  19. A Rapid and Sensitive Method for Detection of the T790M Mutation of EGFR in Plasma DNA.

    Science.gov (United States)

    Kimura, Hideharu; Nishikawa, Shingo; Koba, Hayato; Yoneda, Taro; Sone, Takashi; Kasahara, Kazuo

    2016-01-01

    Epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors' (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The aims of this study are to develop a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients, using PointMan™ EGFR DNA Enrichment Kit which is a novel method for selective amplification of genotype specific sequences.Pairs of blood samples and tumor tissues were collected from NSCLC patients with an EGFR activating mutation and who were resistant to EGFR-TKI treatment. EGFR T790M mutation in plasma DNA were detected using the PointMan™ EGFR DNA Enrichment Kit. The concentrations of plasma DNA were determined using quantitative real-time PCR.Of the 52 patients enrolled in this study, 41 of the patients' plasma samples were collected at post EGFR-TKIs. Nineteen (46.3 %) of the 41 patients had an EGFR T790M mutation in their plasma DNA as detected using the PointMan™ EGFR DNA Enrichment Kit after disease progression to EFGR-TKI. Of 11 cases with a detected T790M mutation from tumor tissues, 10 (90.9 %) also had a detectable T790M mutation in the plasma DNA. There was no difference in the progression-free survival between patients with T790M and those without T790M.The PointMan™ proved to be a useful method for determining plasma EGFR T790M mutation status.

  20. Evaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study.

    Science.gov (United States)

    Gu, Jincui; Zang, Wanchun; Liu, Bing; Li, Lei; Huang, Lixia; Li, Shaoli; Rao, Guanhua; Yu, Yang; Zhou, Yanbin

    2017-09-15

    Emerging evidence has indicated that circulating tumor DNA (ctDNA) from plasma could be used to analyze EGFR mutation status for NSCLC patients; however, due to the low level of ctDNA in plasma, highly sensitive approaches are required to detect low frequency mutations. In addition, the cutoff for the mutation abundance that can be detected in tumor tissue but cannot be detected in matched ctDNA is still unknown. To assess a highly sensitive method, we evaluated the use of digital PCR in the detection of EGFR mutations in tumor tissue from 47 advanced lung adenocarcinoma patients through comparison with NGS and ARMS. We determined the degree of concordance between tumor tissue DNA and paired ctDNA and analyzed the mutation abundance relationship between them. Digital PCR and Proton had a high sensitivity (96.00% vs. 100%) compared with that of ARMS in the detection of mutations in tumor tissue. Digital PCR outperformed Proton in identifying more low abundance mutations. The ctDNA detection rate of digital PCR was 87.50% in paired tumor tissue with a mutation abundance above 5% and 7.59% in paired tumor tissue with a mutation abundance below 5%. When the DNA mutation abundance of tumor tissue was above 3.81%, it could identify mutations in paired ctDNA with a high sensitivity. Digital PCR will help identify alternative methods for detecting low abundance mutations in tumor tissue DNA and plasma ctDNA.

  1. Detection of MPLW515L/K Mutations and Determination of Allele Frequencies with a Single-Tube PCR Assay

    Science.gov (United States)

    Takei, Hiraku; Morishita, Soji; Araki, Marito; Edahiro, Yoko; Sunami, Yoshitaka; Hironaka, Yumi; Noda, Naohiro; Sekiguchi, Yuji; Tsuneda, Satoshi; Ohsaka, Akimichi; Komatsu, Norio

    2014-01-01

    A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner. PMID:25144224

  2. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Directory of Open Access Journals (Sweden)

    Hiraku Takei

    Full Text Available A gain-of-function mutation in the myeloproliferative leukemia virus (MPL gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs. The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5% of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  3. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  4. Contrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters

    Directory of Open Access Journals (Sweden)

    Hajar Moradmand

    2014-08-01

    Full Text Available Introduction Breast cancer is one of the most common types of cancer among women.  Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially the presence of MCCs. In order to improve cancer detection, image enhancement methods are often used to aid radiologists. In this paper, a new enhancement method was presented for the accurate and early detection of MCCs in mammograms. Materials and Methods The proposed system consisted of four main steps including: 1 image scaling;2 breast region segmentation;3 noise cancellation using a filter, which is sensitive to MCCs; and 4 contrast enhancement of mammograms using Contrast-Limited Adaptive Histogram Equalization (CLAHE and wavelet transform. To evaluate this method, 120 clinical mammograms were used. Results To evaluate the performance of the image enhancement algorithm, contrast improvement index (CII was used. The proposed enhancement method in this research achieved the highest CII in comparison with other methods applied in this study. The Validity of the results was confirmed by an expert radiologist through visual inspection. Conclusion Detection of MCCs significantly improved in contrast-enhanced mammograms. The proposed method could be helpful for radiologists to easily detect MCCs; it could also decrease the number of biopsies and reduce the frequency of clinical misdiagnosis. Moreover, it could be useful prior to segmentation or classification stages.

  5. Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI.

    Science.gov (United States)

    Zhang, Xi; Tian, Qiang; Wang, Liang; Liu, Yang; Li, Baojuan; Liang, Zhengrong; Gao, Peng; Zheng, Kaizhong; Zhao, Bofeng; Lu, Hongbing

    2018-02-02

    Noninvasive detection of isocitrate dehydrogenase (IDH) and TP53 mutations are meaningful for molecular stratification of lower-grade gliomas (LrGG). To explore potential MRI features reflecting IDH and TP53 mutations of LrGG, and propose a radiomics strategy for detecting them. Retrospective, radiomics. A total of 103 LrGG patients were separated into development (n = 73) and validation (n = 30) cohorts. T 1 -weighted (before and after contrast-enhanced), T 2 -weighted, and fluid-attenuation inversion recovery images from 1.5T (n = 37) or 3T (n = 66) scanners. After data preprocessing, high-throughput features were derived from patients' volumes of interests of different sequences. The support vector machine-based recursive feature elimination (SVM-RFE) was adopted to find the optimal features for IDH and TP53 mutation detection. SVM models were trained and tested on development and validation cohort. The commonly used metric was used for assessing the efficiency. One-way analysis of variance (ANOVA), chi-square, or Fisher's exact test were applied on clinical characteristics to confirm whether significant differences exist between three molecular subtypes decided by IDH and TP53 status. Intraclass correlation coefficients were calculated to assess the robustness of the radiomics features. The constituent ratio of histopathologic subtypes was significantly different among three molecular subtypes (P = 0.017). SVM models for detecting IDH and TP53 mutation were established using 12 and 22 optimal features selected by SVM-RFE. The accuracies and area under the curves for IDH and TP53 mutations on the development cohort were 84.9%, 0.830, and 92.0%, 0.949, while on the validation cohort were 80.0%, 0.792, and 85.0%, 0.869, respectively. Furthermore, the stratified accuracies of three subtypes were 72.8%, 71.9%, and 70%, respectively. Using a radiomics approach integrating SVM model and multimodal MRI features, molecular subtype stratification of

  6. Intestinal tissues induce an SNP mutation in Pseudomonas aeruginosa that enhances its virulence: possible role in anastomotic leak.

    Directory of Open Access Journals (Sweden)

    Andrea D Olivas

    Full Text Available The most feared complication following intestinal resection is anastomotic leakage. In high risk areas (esophagus/rectum where neoadjuvant chemoradiation is used, the incidence of anastomotic leaks remains unacceptably high (≈ 10% even when performed by specialist surgeons in high volume centers. The aims of this study were to test the hypothesis that anastomotic leakage develops when pathogens colonizing anastomotic sites become in vivo transformed to express a tissue destroying phenotype. We developed a novel model of anastomotic leak in which rats were exposed to pre-operative radiation as in cancer surgery, underwent distal colon resection and then were intestinally inoculated with Pseudomonas aeruginosa, a common colonizer of the radiated intestine. Results demonstrated that intestinal tissues exposed to preoperative radiation developed a significant incidence of anastomotic leak (>60%; p<0.01 when colonized by P. aeruginosa compared to radiated tissues alone (0%. Phenotype analysis comparing the original inoculating strain (MPAO1- termed P1 and the strain retrieved from leaking anastomotic tissues (termed P2 demonstrated that P2 was altered in pyocyanin production and displayed enhanced collagenase activity, high swarming motility, and a destructive phenotype against cultured intestinal epithelial cells (i.e. apoptosis, barrier function, cytolysis. Comparative genotype analysis between P1 and P2 revealed a single nucleotide polymorphism (SNP mutation in the mexT gene that led to a stop codon resulting in a non-functional truncated protein. Replacement of the mutated mexT gene in P2 with mexT from the original parental strain P1 led to reversion of P2 to the P1 phenotype. No spontaneous transformation was detected during 20 passages in TSB media. Use of a novel virulence suppressing compound PEG/Pi prevented P. aeruginosa transformation to the tissue destructive phenotype and prevented anastomotic leak in rats. This work demonstrates that

  7. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer

    Science.gov (United States)

    Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu

    2015-01-01

    The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410

  8. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer.

    Directory of Open Access Journals (Sweden)

    Weiming Hao

    Full Text Available The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels, and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach.

  9. Metallic Nanomaterials for Sensitivity Enhancement of Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Fang Xie

    2007-02-01

    Full Text Available Utrasensitive detection of trace analytes by fluorescence benefits forfluorescence amplifying substrates. We review here our recent work concerned withunderstanding of enhancement mechanisms and formation of three such substrates: silverfractals, silver coated gold nanoparticles deposited on glass and fluorescence enhancinggold colloids.

  10. Novel polymeric biochips for enhanced detection of infectious diseases

    CERN Document Server

    Hosseini, Samira

    2016-01-01

    This book focuses on the creation and development of polymeric platforms (different compositions) from a specific polymer system. This system can be used as an adaptive technique for producing sensitive analytical devices, or for simple integration into existing bioanalytical tools in order to enhance the detection signal.

  11. Sentinel node detection in melanomas using contrast-enhanced ultrasound

    DEFF Research Database (Denmark)

    Nielsen, K. Rue; Klyver, H.; Chakera, A. Hougaard

    2009-01-01

    BACKGROUND: Sentinel node (SN) biopsy has proven to be a useful clinical method based on the combination of radionuclide tracer principles and the dye technique. Contrast-enhanced ultrasound (CEUS) has been used successfully for detection of SN in animals, but the use of CEUS has not been reported...

  12. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  13. A dual discrimination mode for improved specificity towards let-7a detection via a single-base mutated padlock probe-based exponential rolling circle amplification.

    Science.gov (United States)

    Li, Ruixue; Wang, Yinan; Wang, Pei; Lu, Jianzhong

    2017-07-07

    MicroRNA (miRNA) family members are usually highly homologous sequences, and it is a challenging task to selectively detect one miRNA member from other family members in medical diagnosis. Here, we describe the design of a dual discrimination mode for improved specificity towards let-7a detection over the other members of the let-7 family, in which an intentional base mutation was introduced into the padlock probe of an exponential rolling circle amplification. The inherent discrimination power of the padlock probe and the introduced base mutation constituted a dual discrimination mode, which provided enhanced specificity for let-7a, even over single-base mismatched family sequences. Furthermore, the assay enabled the quantitative detection of let-7a in a dynamic range from 200 amol to 100 fmol. This technique has also been successfully applied to real small RNA samples extracted from human lung cancers. For the first time, through intentionally mutating one base on the padlock probe of the exponential rolling circle amplification (RCA), we improved the discrimination capability for let-7 family members, while maintaining adequate sensitivity. Overall, this dual discrimination mode and the high amplification strategy have the potential to be extended to other short, but highly homologous, miRNA sequences. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut

    DEFF Research Database (Denmark)

    Pipek, Orsolya; Ribli, Dezső; Molnar, Janos

    2017-01-01

    in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out......Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms...

  15. Entanglement enhanced thermometry in the detection of the Unruh effect

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zehua, E-mail: zehuatian@126.com [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Wang, Jieci [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunn.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Dragan, Andrzej, E-mail: dragan@fuw.edu.pl [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2017-02-15

    We show how the use of entanglement can enhance the precision of the detection of the Unruh effect with an accelerated probe. We use a two-level atom interacting relativistically with a quantum field as the probe, and treat it as an open quantum system to derive the master equation governing its evolution. By means of quantum state discrimination, we detect the accelerated motion of the atom by examining its time evolving state. It turns out that the optimal strategy for the detection of the Unruh effect, to which the accelerated atom is sensitive, involves letting the atom-thermometer equilibrate with the thermal bath. However, introducing initial entanglement between the detector and an external degree of freedom leads to an enhancement of the sensitivity of the detector. Also, the maximum precision is attained within finite time, before equilibration takes place.

  16. Entanglement enhanced thermometry in the detection of the Unruh effect

    Science.gov (United States)

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2017-02-01

    We show how the use of entanglement can enhance the precision of the detection of the Unruh effect with an accelerated probe. We use a two-level atom interacting relativistically with a quantum field as the probe, and treat it as an open quantum system to derive the master equation governing its evolution. By means of quantum state discrimination, we detect the accelerated motion of the atom by examining its time evolving state. It turns out that the optimal strategy for the detection of the Unruh effect, to which the accelerated atom is sensitive, involves letting the atom-thermometer equilibrate with the thermal bath. However, introducing initial entanglement between the detector and an external degree of freedom leads to an enhancement of the sensitivity of the detector. Also, the maximum precision is attained within finite time, before equilibration takes place.

  17. Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes.

    Science.gov (United States)

    Wilmott, James S; Field, Matthew A; Johansson, Peter A; Kakavand, Hojabr; Shang, Ping; De Paoli-Iseppi, Ricardo; Vilain, Ricardo E; Pupo, Gulietta M; Tembe, Varsha; Jakrot, Valerie; Shang, Catherine A; Cebon, Jonathan; Shackleton, Mark; Fitzgerald, Anna; Thompson, John F; Hayward, Nicholas K; Mann, Graham J; Scolyer, Richard A

    2015-12-01

    Whole genome sequencing (WGS) of cancer patients' tumours offers the most comprehensive method of identifying both novel and known clinically-actionable genomic targets. However, the practicalities of performing WGS on clinical samples are poorly defined.This study was designed to test sample preparation, sequencing specifications and bioinformatic algorithms for their effect on accuracy and cost-efficiency in a large WGS analysis of human melanoma samples.WGS was performed on melanoma cell lines (n = 15) and melanoma fresh frozen tumours (n = 222). The appropriate level of coverage and the optimal mutation detection algorithm for the project pipeline were determined.An incremental increase in sequencing coverage from 36X to 132X in melanoma tissue samples and 30X to 103X for cell lines only resulted in a small increase (1-2%) in the number of mutations detected, and the quality scores of the additional mutations indicated a low probability that the mutations were real. The results suggest that 60X coverage for melanoma tissue and 40X for melanoma cell lines empower the detection of 98-99% of informative single nucleotide variants (SNVs), a sensitivity level at which clinical decision making or landscape research projects can be carried out with a high degree of confidence in the results. Likewise the bioinformatic mutation analysis methodology strongly influenced the number and quality of SNVs detected. Detecting mutations in the blood genomes separate to the tumour genomes generated 41% more SNVs than if the blood and melanoma tissue genomes were analysed simultaneously. Therefore, simultaneous analysis should be employed on matched melanoma tissue and blood genomes to reduce errors in mutation detection.This study provided valuable insights into the accuracy of SNV with WGS at various coverage levels in human clinical cancer specimens. Additionally, we investigated the accuracy of the publicly available mutation detection algorithms to detect cancer

  18. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    Science.gov (United States)

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enhancement of visual motion detection thresholds in early deaf people.

    Directory of Open Access Journals (Sweden)

    Martha M Shiell

    Full Text Available In deaf people, the auditory cortex can reorganize to support visual motion processing. Although this cross-modal reorganization has long been thought to subserve enhanced visual abilities, previous research has been unsuccessful at identifying behavioural enhancements specific to motion processing. Recently, research with congenitally deaf cats has uncovered an enhancement for visual motion detection. Our goal was to test for a similar difference between deaf and hearing people. We tested 16 early and profoundly deaf participants and 20 hearing controls. Participants completed a visual motion detection task, in which they were asked to determine which of two sinusoidal gratings was moving. The speed of the moving grating varied according to an adaptive staircase procedure, allowing us to determine the lowest speed necessary for participants to detect motion. Consistent with previous research in deaf cats, the deaf group had lower motion detection thresholds than the hearing. This finding supports the proposal that cross-modal reorganization after sensory deprivation will occur for supramodal sensory features and preserve the output functions.

  20. Detection of the MYD88 mutation by the combination of the allele-specific PCR and quenching probe methods.

    Science.gov (United States)

    Nogami, S; Kawaguchi-Ihara, N; Shiratori, E; Ohtaka, M; Itoh, M; Tohda, S

    2017-04-01

    The MYD88 missense mutation c.794T>C, p.Leu265Pro, is found in patients with Waldenstörm's macroglobulinemia and lymphoma. Direct sequencing, allele-specific PCR (AS-PCR), PCR-restriction fragment length polymorphism (PCR-RFLP), and high-resolution melting analysis (HRM) are currently used to detect the mutation; however, they are either time-consuming or have low detection sensitivity. Here, we developed a novel highly sensitive and rapid detection method based on the quenching probe (QP) technique and AS-PCR. A lymphoma cell line heterozygous for the MYD88 mutation, two wild-type cell lines, and two samples from Waldenstörm's macroglobulinemia patients were analyzed by AS-PCR, PCR-RFLP, HRM, and QP, and their detection sensitivity was examined using the mixtures of the mutant and wild-type DNA. For mutation-carrying heterozygous samples, the QP method produced W-shaped melting profiles presenting curves derived from the wild-type and mutant alleles. The QP analysis was performed in 2 h and demonstrated the detection limit of 5%, which was similar to that of the other methods. However, the combination of AS-PCR and QP (AS-QP) improved the sensitivity to 0.62% of the mutant allele. The AS-QP analysis is rapid and minimally improves detection sensitivity compared to the AS-PCR. © 2016 John Wiley & Sons Ltd.

  1. Optical Detection Technique Using Quartz-Enhanced Photoacoustic Spectrum

    Science.gov (United States)

    Wu, Hongpeng; Zhang, Dongdong; Dong, Lei; Zheng, Huadan; Liu, Yanyan; Yin, Wangbao; Ma, Weiguang; Zhang, Lei; Jia, Suotang

    2015-06-01

    A new optical detection approach based on quartz-enhanced photoacoustic spectroscopy (QEPAS) to detect gases is developed. The new method not only employs a modulated laser to excite acoustic wave, as the general QEPAS does, but also adds an extra laser beam without modulation as the detection source to transform the prong vibration into a laser intensity change. Due to the mechanical vibration of the prongs, the intensity of the reflection laser beam is modulated. Thus, the information of the target gas (composition, concentration, etc.) is obtained by demodulating the reflected light. The achieved sensitivity of is inter-compared to the sensitivity of the conventional QEPAS. Further developments of the new optical detection approach are also discussed in detail.

  2. Key differences between 13 KRAS mutation detection technologies and their relevance for clinical practice

    Science.gov (United States)

    Sherwood, James L; Brown, Helen; Rettino, Alessandro; Schreieck, Amelie; Clark, Graeme; Claes, Bart; Agrawal, Bhuwnesh; Chaston, Ria; Kong, Benjamin S G; Choppa, Paul; Nygren, Anders O H; Deras, Ina L; Kohlmann, Alexander

    2017-01-01

    Introduction This study assessed KRAS mutation detection and functional characteristics across 13 distinct technologies and assays available in clinical practice, in a blinded manner. Methods Five distinct KRAS-mutant cell lines were used to study five clinically relevant KRAS mutations: p.G12C, p.G12D, p.G12V, p.G13D and p.Q61H. 50 cell line admixtures with low (50 and 100) mutant KRAS allele copies at 20%, 10%, 5%, 1% and 0.5% frequency were processed using quantitative PCR (qPCR) (n=3), matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) (n=2), next-generation sequencing (NGS) (n=6), digital PCR (n=1) and Sanger capillary sequencing (n=1) assays. Important performance differences were revealed, particularly assay sensitivity and turnaround time. Results Overall 406/728 data points across all 13 technologies were identified correctly. Successful genotyping of admixtures ranged from 0% (Sanger sequencing) to 100% (NGS). 5/6 NGS platforms reported similar allelic frequency for each sample. One NGS assay detected mutations down to a frequency of 0.5% and correctly identified all 56 samples (Oncomine Focus Assay, Thermo Fisher Scientific). One qPCR (Idylla, Biocartis) and MALDI-TOF (UltraSEEK, Agena Bioscience) assay identified 96% (all 100 copies and 23/25 at 50 copies input) and 92% (23/25 at 100 copies and 23/25 at 50 copies input) of samples, respectively. The digital PCR assay (KRAS PrimePCR ddPCR, Bio-Rad Laboratories) identified 60% (100 copies) and 52% (50 copies) of samples correctly. Turnaround time from sample to results ranged from ~2 hours (Idylla CE-IVD) to 2 days (TruSight Tumor 15 and Sentosa CE-IVD), to 2 weeks for certain NGS assays; the level of required expertise ranged from minimal (Idylla CE-IVD) to high for some technologies. Discussion This comprehensive parallel assessment used high molecular weight cell line DNA as a model system to address key questions for a laboratory when implementing routine

  3. Molecular analysis using DHPLC of cystic fibrosis: increase of the mutation detection rate among the affected population in Central Italy

    Directory of Open Access Journals (Sweden)

    Nardone Anna

    2004-04-01

    Full Text Available Abstract Background Cystic fibrosis (CF is a multisystem disorder characterised by mutations of the CFTR gene, which encodes for an important component in the coordination of electrolyte movement across of epithelial cell membranes. Symptoms are pulmonary disease, pancreatic exocrine insufficiency, male infertility and elevated sweat concentrations. The CFTR gene has numerous mutations (>1000 and functionally important polymorphisms (>200. Early identification is important to provide appropriate therapeutic interventions, prognostic and genetic counselling and to ensure access to specialised medical services. However, molecular diagnosis by direct mutation screening has proved difficult in certain ethnic groups due to allelic heterogeneity and variable frequency of causative mutations. Methods We applied a gene scanning approach using DHPLC system for analysing specifically all CFTR exons and characterise sequence variations in a subgroup of CF Italian patients from the Lazio region (Central Italy characterised by an extensive allelic heterogeneity. Results We have identified a total of 36 different mutations representing 88% of the CF chromosomes. Among these are two novel CFTR mutations, including one missense (H199R and one microdeletion (4167delCTAAGCC. Conclusion Using this approach, we were able to increase our standard power rate of mutation detection of about 11% (77% vs. 88%.

  4. Mutation detection of type II hair cortex keratin gene KRT86 in a Chinese Han family with congenital monilethrix.

    Science.gov (United States)

    Ye, Zhen-zhen; Nan, Xu; Zhao, Hong-shan; Chen, Xue-rong; Song, Qing-hua

    2013-08-01

    Monilethrix is an autosomal dominant hair disorder characterized clinically by alopecia and follicular papules. In this study, we collected a Han monilethrix family to detect the mutations in patients and investigated the correlation between the genotype and phenotype of monilethrix. In this study, we identified a Chinese family with monilethrix through light microscopic and scanning electron microscopic (SEM) examination. Genomic DNA from peripheral blood samples was prepared. DNA samples from controls and monilethrix patients were subject to polymerase chain reaction (PCR) amplification. Two pairs of primers were used to amplify the seventh exon of KRT86. Mutation screening of the PCR products was detected using direct sequencing. Light microscopic examination showed a regular alternate enlargement and narrow area. SEM examination showed that part of the cuticle of the nodules shed and disappeared gradually in the narrow area with granular protrusions on the surface similar to the erosion-like structure. Parallel longitudinal ridge and groovepattern appeared, and the ridges varied in width, like dead wood. A heterozygous transversion mutation c.1204G > A (p.E402K) in the seventh exon of KRT86 was identified in both patients. The mutation of extron 7 of KRT86 identified plays a major role in the pathogenesis of this pedigree with monilethrix, and is a mutation hot spot of KRT86. Further research is needed to explore the relationship between the phenotype and the mutation of the type II hair keratin gene KRT86 of monilethrix.

  5. An Enhanced SAR-Based Tsunami Detection System

    OpenAIRE

    Jean-Pierre Dubois; Jihad S. Daba; H. Karam; J. Abdallah

    2014-01-01

    Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated...

  6. Unexpected Coexisting Myocardial Infarction Detected by Delayed Enhancement MRI

    Directory of Open Access Journals (Sweden)

    Edouard Gerbaud

    2009-01-01

    Full Text Available We report a case of an unexpected coexisting anterior myocardial infarction detected by delayed enhancement MRI in a 41-year-old man following a presentation with a first episode of chest pain during inferior acute myocardial infarction. This second necrotic area was not initially suspected because there were no ECG changes in the anterior leads and the left descending coronary artery did not present any significant stenoses on emergency coronary angiography. Unrecognised myocardial infarction may carry important prognostic implications. CMR is currently the best imaging technique to detect unexpected infarcts.

  7. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  8. Detection with Enhanced Energy Windowing Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Bass, David A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Enders, Alexander L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    This document reviews the progress of Phase I of the Detection with Enhanced Energy Windowing (DEEW) project. The DEEW project is the implementation of software incorporating an algorithm which reviews data generated by radiation portal monitors and utilizes advanced and novel techniques for detecting radiological and fissile material while not alarming on Naturally Occurring Radioactive Material. Independent testing indicated that the Enhanced Energy Windowing algorithm showed promise at reducing the probability of alarm in the stream of commerce compared to existing algorithms and other developmental algorithms, while still maintaining adequate sensitivity to threats. This document contains a brief description of the project, instructions for setting up and running the applications, and guidance to help make reviewing the output files and source code easier.

  9. Insufficiency of peripheral blood as a substitute tissue for detecting EGFR mutations in lung cancer: a meta-analysis.

    Science.gov (United States)

    Li, Zhijun; Zhang, Yongjun; Bao, Wenlong; Jiang, Chuming

    2014-12-01

    The detection of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer tissues is necessary for effective treatment with EGFR tyrosine kinase inhibitors. However, tumor tissues may not be available in all situations. Studies have evaluated the potential use of serum or plasma for detecting the EGFR mutation status, but the results have been inconclusive. Here, a meta-analysis was performed to determine whether blood samples could serve as substitutes for tissue specimens in detecting the EGFR mutation status. Databases, including PubMed and Embase, were searched for relevant studies published from 2005 to 2013 that included true-positive, false-positive, true-negative, and false-negative values of the EGFR mutation status of the blood compared with tissue specimens. Summary receiver operating characteristic curves were developed to explore the threshold effect. Spearman's correlation coefficient was calculated to analyze the heterogeneity between studies. Pooled sensitivity and specificity were evaluated using Meta-DiSc version 1.4. Thirteen articles involving 1,591 cases were enrolled, with a pooled sensitivity and specificity of 64.5 % (95 % CI = 0.605-0.683) and 88.5 % (95 % CI = 0.863-0.904), respectively. Heterogeneity among the studies was caused by factors other than threshold effect. The findings were influenced by test method (p = 0.0354). Blood samples had a high specificity and relatively low sensitivity for detecting EGFR mutations compared to tumor tissues. The results of this meta-analysis suggest that peripheral blood is insufficient as a substitute for tumor tissues in detecting EGFR mutations in clinical practice.

  10. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    Science.gov (United States)

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome.

    Directory of Open Access Journals (Sweden)

    Timothy J Dahlem

    Full Text Available The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish. Briefly, double-strand DNA breaks are induced at a locus of interest by synthetic nucleases, called TALENs. Subsequent host repair of the DNA lesions leads to the generation of insertion and deletion mutations at the targeted locus. To detect the induced DNA sequence alterations at targeted loci, genomes are examined using High Resolution Melt Analysis, an efficient and sensitive method for detecting the presence of newly arising sequence polymorphisms. As the DNA binding specificity of a TALEN is determined by a custom designed array of DNA recognition modules, each of which interacts with a single target nucleotide, TALENs with very high target sequence specificities can be easily generated. Using freely accessible reagents and Web-based software, and a very simple cloning strategy, a TALEN that uniquely recognizes a specific pre-determined locus in the zebrafish genome can be generated within days. Here we develop and test the activity of four TALENs directed at different target genes. Using the experimental approach described here, every embryo injected with RNA encoding a TALEN will acquire targeted mutations. Multiple independently arising mutations are produced in each growing embryo, and up to 50% of the host genomes may acquire a targeted mutation. Upon reaching adulthood, approximately 90% of these animals transmit targeted mutations to their progeny. Results presented here indicate the TALENs are highly sequence-specific and produce minimal off-target effects. In all, it takes about two weeks to create a target-specific TALEN and generate growing embryos that harbor an array of germ line

  12. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    Science.gov (United States)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  13. Pyrosequencing-Based Assays for Rapid Detection of HER2 and HER3 Mutations in Clinical Samples Uncover an E332E Mutation Affecting HER3 in Retroperitoneal Leiomyosarcoma.

    Science.gov (United States)

    González-Alonso, Paula; Chamizo, Cristina; Moreno, Víctor; Madoz-Gúrpide, Juan; Carvajal, Nerea; Daoud, Lina; Zazo, Sandra; Martín-Aparicio, Ester; Cristóbal, Ion; Rincón, Raúl; García-Foncillas, Jesús; Rojo, Federico

    2015-08-17

    Mutations in Human Epidermal Growth Factor Receptors (HER) are associated with poor prognosis of several types of solid tumors. Although HER-mutation detection methods are currently available, such as Next-Generation Sequencing (NGS), alternative pyrosequencing allow the rapid characterization of specific mutations. We developed specific PCR-based pyrosequencing assays for identification of most prevalent HER2 and HER3 mutations, including S310F/Y, R678Q, L755M/P/S/W, V777A/L/M, 774-776 insertion, and V842I mutations in HER2, as well as M91I, V104M/L, D297N/V/Y, and E332E/K mutations in HER3. We tested 85 Formalin Fixed and Paraffin Embbeded (FFPE) samples and we detected three HER2-V842I mutations in colorectal carcinoma (CRC), ovarian carcinoma, and pancreatic carcinoma patients, respectively, and a HER2-L755M mutation in a CRC specimen. We also determined the presence of a HER3-E332K mutation in an urothelial carcinoma sample, and two HER3-D297Y mutations, in both gastric adenocarcinoma and CRC specimens. The D297Y mutation was previously detected in breast and gastric tumors, but not in CRC. Moreover, we found a not-previously-described HER3-E332E synonymous mutation in a retroperitoneal leiomyosarcoma patient. The pyrosequencing assays presented here allow the detection and characterization of specific HER2 and HER3 mutations. These pyrosequencing assays might be implemented in routine diagnosis for molecular characterization of HER2/HER3 receptors as an alternative to complex NGS approaches.

  14. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke

    2016-01-01

    and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed......Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue...... a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2...

  15. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing

    DEFF Research Database (Denmark)

    Skovgaard, Ole; Bak, Mads; Løbner-Olesen, Anders

    2011-01-01

    Whole-genome sequencing (WGS) with new short-read sequencing technologies has recently been applied for genome-wide identification of mutations. Genomic rearrangements have, however, often remained undetected by WGS, and additional analyses are required for their detection. Here, we have applied...... a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA...... inversion, and one was a large chromosomal duplication. The latter two mutations could not be detected solely by WGS, validating the present approach for identification of genomic rearrangements. We further suggest the use of copy number analysis in combination with WGS for validation of newly assembled...

  16. Detection of a novel mutation in the GAA gene in an Iranian child with glycogen storage disease type II.

    Science.gov (United States)

    Galehdari, Hamid; Emami, Mozhgan; Mohammadian, Gholamreza; Khodadadi, Ali; Azmoon, Somayeh; Baradaran, Masumeh

    2013-02-01

    Glycogen storage disease II (GSDII or Pompe disease, OMIM # 232300) is an autosomal recessive hereditary lysosomal disorder. Mutations in the GAA gene usually lead to reduced acid α-glucosidase (acid maltase, GAA, OMIM *606800, EC 3.1.26.2) activity, which results in impaired degradation and subsequent accumulation of glycogen within lysosomes. We present an Iranian boy, who was diagnosed with GSDII based upon clinical and biochemical findings. A single adenine insertion (insA) was detected at codon 693 that leads to a predicted premature stop codon at codon 736 in the GAA gene. The parents were heterozygous for the same change. According to the human genome mutation database (www.hgmd.org) and lecture reviews, the detected change is a novel mutation. We suppose that the discovered insertion in the GAA gene might lead to a reduced activity of the gene product. This assumption is in agreement with biochemical and clinical signs in the patient.

  17. ENHANCED COMPONENT DETECTION ALGORITHM OF FULL-WAVEFORM LIDAR DATA

    Directory of Open Access Journals (Sweden)

    M. Zhou

    2013-05-01

    Full Text Available When full-waveform LiDAR (FW-LiDAR data are applied to extract the component feature information of interest targets, there exist a problem of components lost during the waveform decomposition procedure, which severely constrains the performance of subsequent targets information extraction. Focusing on the problem above, an enhance component detection algorithm, which combines Finite Mixed Method (FMM, Levenberg-Marquardt (LM algorithm and Penalized Minimum Matching Distance (PMMD,is proposed in this paper. All of the algorithms for parameters initialization, waveform decomposition and missing component detection have been improved, which greatly increase the precision of component detection, and guarantee the precision of waveform decomposition that could help the weak information extraction of interest targets. The effectiveness of this method is verified by the experimental results of simulation and measured data.

  18. High-throughput detection of induced mutations and natural variation using KeyPoint technology.

    Directory of Open Access Journals (Sweden)

    Diana Rigola

    Full Text Available Reverse genetics approaches rely on the detection of sequence alterations in target genes to identify allelic variants among mutant or natural populations. Current (pre- screening methods such as TILLING and EcoTILLING are based on the detection of single base mismatches in heteroduplexes using endonucleases such as CEL 1. However, there are drawbacks in the use of endonucleases due to their relatively poor cleavage efficiency and exonuclease activity. Moreover, pre-screening methods do not reveal information about the nature of sequence changes and their possible impact on gene function. We present KeyPoint technology, a high-throughput mutation/polymorphism discovery technique based on massive parallel sequencing of target genes amplified from mutant or natural populations. KeyPoint combines multi-dimensional pooling of large numbers of individual DNA samples and the use of sample identification tags ("sample barcoding" with next-generation sequencing technology. We show the power of KeyPoint by identifying two mutants in the tomato eIF4E gene based on screening more than 3000 M2 families in a single GS FLX sequencing run, and discovery of six haplotypes of tomato eIF4E gene by re-sequencing three amplicons in a subset of 92 tomato lines from the EU-SOL core collection. We propose KeyPoint technology as a broadly applicable amplicon sequencing approach to screen mutant populations or germplasm collections for identification of (novel allelic variation in a high-throughput fashion.

  19. Mdm2 RING mutation enhances p53 transcriptional activity and p53-p300 interaction.

    Directory of Open Access Journals (Sweden)

    Hilary V Clegg

    Full Text Available The p53 transcription factor and tumor suppressor is regulated primarily by the E3 ubiquitin ligase Mdm2, which ubiquitinates p53 to target it for proteasomal degradation. Aside from its ubiquitin ligase function, Mdm2 has been believed to be capable of suppressing p53's transcriptional activity by binding with and masking the transactivation domain of p53. The ability of Mdm2 to restrain p53 activity by binding alone, without ubiquitination, was challenged by a 2007 study using a knockin mouse harboring a single cysteine-to-alanine point mutation (C462A in Mdm2's RING domain. Mouse embryonic fibroblasts with this mutation, which abrogates Mdm2's E3 ubiquitin ligase activity without affecting its ability to bind with p53, were unable to suppress p53 activity. In this study, we utilized the Mdm2(C462A mouse model to characterize in further detail the role of Mdm2's RING domain in the control of p53. Here, we show in vivo that the Mdm2(C462A protein not only fails to suppress p53, but compared to the complete absence of Mdm2, Mdm2(C462A actually enhances p53 transcriptional activity toward p53 target genes p21/CDKN1A, MDM2, BAX, NOXA, and 14-3-3σ. In addition, we found that Mdm2(C462A facilitates the interaction between p53 and the acetyltransferase CBP/p300, and it fails to heterodimerize with its homolog and sister regulator of p53, Mdmx, suggesting that a fully intact RING domain is required for Mdm2's inhibition of the p300-p53 interaction and for its interaction with Mdmx. These findings help us to better understand the complex regulation of the Mdm2-p53 pathway and have important implications for chemotherapeutic agents targeting Mdm2, as they suggest that inhibition of Mdm2's E3 ubiquitin ligase activity may be sufficient for increasing p53 activity in vivo, without the need to block Mdm2-p53 binding.

  20. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  1. Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine

    NARCIS (Netherlands)

    B.W. van Rhijn (Bas); I. Lurkin (Irene); D.K. Chopin; W.J. Kirkels (Wim); J.P. Thiery (Joachim); Th.H. van der Kwast (Theo); F. Radvanyi (Franois); E.C. Zwarthoff (Ellen)

    2003-01-01

    textabstractPURPOSE: Fibroblast growth factor receptor 3 (FGFR3) mutations were reported recently at a high frequency in low-grade urothelial cell carcinoma (UCC). We investigated the feasibility of combining microsatellite analysis (MA) and the FGFR3 status for the detection of

  2. A DNA microarray for the detection of point mutations and copy number variation causing familial hypercholesterolemia in Europe

    NARCIS (Netherlands)

    Stef, Marianne A.; Palacios, Lourdes; Olano-Martín, Estibaliz; Foe-A-Man, Carolyn; van de Kerkhof, Laura; Klaaijsen, Lisette N.; Molano, Araitz; Schuurman, Ellen J.; Tejedor, Diego; Defesche, Joep C.

    2013-01-01

    To facilitate genetic cascade screening for familial hypercholesterolemia (FH) in Europe, two versions (7 and 9) of a DNA microarray were developed to detect the most frequent point mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase

  3. Enhanced Detection of Cancer Biomarkers in Blood-Borne Extracellular Vesicles Using Nanodroplets and Focused Ultrasound.

    Science.gov (United States)

    Paproski, Robert J; Jovel, Juan; Wong, Gane Ka-Shu; Lewis, John D; Zemp, Roger J

    2017-01-01

    The feasibility of personalized medicine approaches will be greatly improved by the development of noninvasive methods to interrogate tumor biology. Extracellular vesicles shed by solid tumors into the bloodstream have been under recent investigation as a source of tumor-derived biomarkers such as proteins and nucleic acids. We report here an approach using submicrometer perfluorobutane nanodroplets and focused ultrasound to enhance the release of extracellular vesicles from specific locations in tumors into the blood. The released extracellular vesicles were enumerated and characterized using micro flow cytometry. Only in the presence of nanodroplets could ultrasound release appreciable levels of tumor-derived vesicles into the blood. Sonication of HT1080-GFP tumors did not increase the number of circulating tumor cells or the metastatic burden in the tumor-bearing embryos. A variety of biological molecules were successfully detected in tumor-derived extracellular vesicles, including cancer-associated proteins, mRNAs, and miRNAs. Sonication of xenograft HT1080 fibrosarcoma tumors released extracellular vesicles that contained detectable RAC1 mRNA with the highly tumorigenic N92I mutation known to exist in HT1080 cells. Deep sequencing serum samples of embryos with sonicated tumors allowed the identification of an additional 13 known heterozygous mutations in HT1080 cells. Applying ultrasound to HT1080 tumors increased tumor-derived DNA in the serum by two orders of magnitude. This work is the first demonstration of enhanced extracellular vesicle release by ultrasound stimulation and suggests that nanodroplets/ultrasound offers promise for genetic profiling of tumor phenotype and aggressiveness by stimulating the release of extracellular vesicles. Cancer Res; 77(1); 3-13. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Germline and somatic mutations in homologous recombination genes among Chinese ovarian cancer patients detected using next-generation sequencing.

    Science.gov (United States)

    Zhao, Qianying; Yang, Jiaxin; Li, Lei; Cao, Dongyan; Yu, Mei; Shen, Keng

    2017-07-01

    To define genetic profiling of homologous recombination (HR) deficiency in Chinese ovarian cancer patients. we have applied next-generation sequencing to detect deleterious mutations through all exons in 31 core HR genes. Paired whole blood and frozen tumor samples from 50 Chinese women diagnosed with epithelial ovarian carcinomas were tested to identify both germline and somatic variants. Deleterious germline HR-mutations were identified in 36% of the ovarian cancer patients. Another 5 patients had only somatic mutations. BRCA2 was most frequently mutated. Three out of the 5 somatic mutations were in RAD genes and a wider distribution of other HR genes was involved in non-serous carcinomas. BRCA1/2-mutation carriers had favorable platinum sensitivity (relative risk, 1.57, pgenes predicted poor prognosis. However, multivariate analysis demonstrated that platinum sensitivity and optimal cytoreduction were the independent impact factors influencing survival (hazards ratio, 0.053) and relapse (hazards ratio, 0.247), respectively. our results suggest that a more comprehensive profiling of HR defect than merely BRCA1/2 could help elucidate tumor heterogeneity and lead to better stratification of ovarian cancer patients for individualized clinical management.

  5. Mutation in an exonic splicing enhancer site causing chronic granulomatous disease

    NARCIS (Netherlands)

    de Boer, Martin; van Leeuwen, Karin; Geissler, Judy; Belohradsky, Bernd H.; Kuijpers, Taco W.; Roos, Dirk

    2017-01-01

    In a male patient suffering from X-linked chronic granulomatous disease (CGD) we found a c. 389G > T mutation in exon 5 of the CYBB gene. We have analyzed why 95% of the transcripts of this gene lacked exon 5, leading to a frameshift and premature termination codon. The mutation was located in a

  6. Node Attribute-enhanced Community Detection in Complex Networks.

    Science.gov (United States)

    Jia, Caiyan; Li, Yafang; Carson, Matthew B; Wang, Xiaoyang; Yu, Jian

    2017-05-25

    Community detection involves grouping the nodes of a network such that nodes in the same community are more densely connected to each other than to the rest of the network. Previous studies have focused mainly on identifying communities in networks using node connectivity. However, each node in a network may be associated with many attributes. Identifying communities in networks combining node attributes has become increasingly popular in recent years. Most existing methods operate on networks with attributes of binary, categorical, or numerical type only. In this study, we introduce kNN-enhance, a simple and flexible community detection approach that uses node attribute enhancement. This approach adds the k Nearest Neighbor (kNN) graph of node attributes to alleviate the sparsity and the noise effect of an original network, thereby strengthening the community structure in the network. We use two testing algorithms, kNN-nearest and kNN-Kmeans, to partition the newly generated, attribute-enhanced graph. Our analyses of synthetic and real world networks have shown that the proposed algorithms achieve better performance compared to existing state-of-the-art algorithms. Further, the algorithms are able to deal with networks containing different combinations of binary, categorical, or numerical attributes and could be easily extended to the analysis of massive networks.

  7. Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer.

    Science.gov (United States)

    Arsenic, Ruza; Treue, Denise; Lehmann, Annika; Hummel, Michael; Dietel, Manfred; Denkert, Carsten; Budczies, Jan

    2015-01-01

    Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PIK3CA, is one of the most frequently mutated genes in breast cancer, and the mutation status of PIK3CA has clinical relevance related to response to therapy. The aim of our study was to investigate the mutation status of PIK3CA gene and to evaluate the concordance between NGS and SGS for the most important hotspot regions in exon 9 and 20, to investigate additional hotspots outside of these exons using NGS, and to correlate the PIK3CA mutation status with the clinicopathological characteristics of the cohort. In the current study, next-generation sequencing (NGS) and Sanger Sequencing (SGS) was used for the mutational analysis of PIK3CA in 186 breast carcinomas. Altogether, 64 tumors had PIK3CA mutations, 55 of these mutations occurred in exons 9 and 20. Out of these 55 mutations, 52 could also be detected by Sanger sequencing resulting in a concordance of 98.4 % between the two sequencing methods. The three mutations missed by SGS had low variant frequencies below 10 %. Additionally, 4.8 % of the tumors had mutations in exons 1, 4, 7, and 13 of PIK3CA that were not detected by SGS. PIK3CA mutation status was significantly associated with hormone receptor-positivity, HER2-negativity, tumor grade, and lymph node involvement. However, there was no statistically significant association between the PIK3CA mutation status and overall survival. Based on our study, NGS is recommended as follows: 1) for correctly assessing the mutation status of PIK3CA in breast cancer, especially for cases with low tumor content, 2) for the detection of subclonal mutations, and 3) for simultaneous mutation detection in multiple exons.

  8. Detection of somatic TP53 mutations in tampons of patients with high-grade serous ovarian cancer.

    Science.gov (United States)

    Erickson, Britt K; Kinde, Isaac; Dobbin, Zachary C; Wang, Yuxuan; Martin, Jovana Y; Alvarez, Ronald D; Conner, Michael G; Huh, Warner K; Roden, Richard B S; Kinzler, Kenneth W; Papadopoulos, Nickolas; Vogelstein, Bert; Diaz, Luis A; Landen, Charles N

    2014-11-01

    To investigate whether tumor cells could be detected in the vagina of women with serous ovarian cancer through TP53 analysis of DNA samples collected by placement of a vaginal tampon. Women undergoing surgery for a pelvic mass were identified in the gynecologic oncology clinic. They placed a vaginal tampon before surgery, which was removed in the operating room. Cells were isolated and DNA was extracted from both the cells trapped within the tampon and the primary tumor. In patients with serous carcinoma, the DNA was interrogated for the presence of TP53 mutations using a method capable of detecting rare mutant alleles in a mixture of mutant and wild-type DNA. Thirty-three patients were enrolled. Eight patients with advanced serous ovarian cancer were included for analysis. Three had a prior tubal ligation. TP53 mutations were identified in all eight tumor samples. Analysis of the DNA from the tampons revealed mutations in three of the five patients with intact tubes (sensitivity 60%) and in none of the three patients with tubal ligation. In all three participants with mutation detected in the tampon specimen, the tumor and the vaginal DNA harbored the exact same TP53 mutation. The fraction of DNA derived from exfoliated tumor cells ranged from 0.01% to 0.07%. In this pilot study, DNA derived from tumor was detected in the vaginas of 60% of patients with ovarian cancer with intact fallopian tubes. With further development, this approach may hold promise for the early detection of this deadly disease.

  9. Detection of the BRAF V600E mutation in colon carcinoma: critical evaluation of the imunohistochemical approach.

    Science.gov (United States)

    Lasota, Jerzy; Kowalik, Artur; Wasag, Bartosz; Wang, Zeng-Feng; Felisiak-Golabek, Anna; Coates, Tiffany; Kopczynski, Janusz; Gozdz, Stanislaw; Miettinen, Markku

    2014-09-01

    Recently BRAF V600E mutant-specific antibody (clone VE1) became available to immunohistochemically pinpoint the occurrence of these BRAF-mutant proteins in different tumors, such as colon carcinoma. Detection of BRAF mutations is important for the accurate application of targeted therapy against BRAF serine-threonine kinase activation. In this study, we evaluated 113 colon carcinomas including 95 primary and 27 metastatic tumors with the VE1 antibody using Leica Bond-Max automated immunohistochemistry. To ensure comprehensive BRAF V600E mutation detection, all cases were evaluated using 4 molecular methods (Sanger sequencing, the Cobas 4800 BRAF V600 Mutation Test, BRAF V600 allele-specific polymerase chain reaction, and BRAF V600 quantitative polymerase chain reaction) with nearly 100% concordance. Molecular and immunohistochemical studies were blinded. Furthermore, all cases were evaluated for KRAS and NRAS mutations as parameters mutually exclusive with BRAF mutations offering parallel evidence for BRAF mutation status. Strong to moderate VE1 positivity was seen in 34 tumors. Twelve colon carcinomas showed weak VE1 immunohistochemical staining, and 67 were entirely negative. An identical c.1799T>A single nucleotide substitution leading to the BRAF V600E mutation was identified in 27 of 113 (24%) colon carcinomas. A majority of BRAF-mutant tumors were located in the right side of the colon and had mismatch-repair deficiency. V600E mutation-negative carcinomas were more often sigmoid tumors and usually showed intact mismatch-repair proteins and KRAS or NRAS mutations. The sensitivity and specificity of positive results (strong to moderate staining) of VE1 immunohistochemistry were 85% and 68%, respectively. If any positivity would be considered, then the specificity declined to 51% with no significant improvement of sensitivity. Therefore, only strong positivity should be considered when using the VE1 antibody and Leica Bond-Max automated immunohistochemistry with

  10. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice.

    Directory of Open Access Journals (Sweden)

    Wenfei Zhu

    Full Text Available Influenza A virus can infect a wide variety of animal species with illness ranging from mild to severe, and is a continual cause for concern. Genetic mutations that occur either naturally or during viral adaptation in a poorly susceptible host are key mechanisms underlying the evolution and virulence of influenza A virus. Here, the variants containing PA-A36T or PB2-H357N observed in the mouse-adapted descendants of 2009 pandemic H1N1 virus (pH1N1, A/Sichuan/1/2009 (SC, were characterized. Both mutations enhanced polymerase activity in mammalian cells. These effects were confirmed using recombinant SC virus containing polymerase genes with wild type (WT or mutant PA or PB2. The PA-A36T mutant showed enhanced growth property compared to the WT in both human A549 cells and porcine PK15 cells in vitro, without significant effect on viral propagation in murine LA-4 cells and pathogenicity in mice; however, it did enhance the lung virus titer. PB2-H357N variant demonstrated growth ability comparable to the WT in A549 cells, but replicated well in PK15, LA-4 cells and in mice with an enhanced pathogenic phenotype. Despite such mutations are rare in nature, they could be observed in avian H5 and H7 subtype viruses which were currently recognized to pose potential threat to human. Our findings indicated that pH1N1 may adapt well in mammals when acquiring these mutations. Therefore, future molecular epidemiological surveillance should include scrutiny of both markers because of their potential impact on pathogenesis.

  11. Structural plasticity of green fluorescent protein to amino acid deletions and fluorescence rescue by folding-enhancing mutations.

    Science.gov (United States)

    Liu, Shu-su; Wei, Xuan; Dong, Xue; Xu, Liang; Liu, Jia; Jiang, Biao

    2015-07-25

    Green fluorescent protein (GFP) and its derivative fluorescent proteins (FPs) are among the most commonly used reporter systems for studying gene expression and protein interaction in biomedical research. Most commercially available FPs have been optimized for their oligomerization state to prevent potential structural constraints that may interfere with the native function of fused proteins. Other approach to reducing structural constraints may include minimizing the structure of GFPs. Previous studies in an enhanced GFP variant (EGFP) identified a series of deletions that can retain GFP fluorescence. In this study, we interrogated the structural plasticity of a UV-optimized GFP variant (GFP(UV)) to amino acid deletions, characterized the effects of deletions and explored the feasibility of rescuing the fluorescence of deletion mutants using folding-enhancing mutations. Transposon mutagenesis was used to screen amino acid deletions in GFP that led to fluorescent and nonfluorescent phenotypes. The fluorescent GFP mutants were characterized for their whole-cell fluorescence and fraction soluble. Fluorescent GFP mutants with internal deletions were purified and characterized for their spectral and folding properties. Folding-ehancing mutations were introduced to deletion mutants to rescue their compromised fluorescence. We identified twelve amino acid deletions that can retain the fluorescence of GFP(UV). Seven of these deletions are either at the N- or C- terminus, while the other five are located at internal helices or strands. Further analysis suggested that the five internal deletions diminished the efficiency of protein folding and chromophore maturation. Protein expression under hypothermic condition or incorporation of folding-enhancing mutations could rescue the compromised fluorescence of deletion mutants. In addition, we generated dual deletion mutants that can retain GFP fluorescence. Our results suggested that a "size-minimized" GFP may be developed by

  12. Impact prediction by looming visual stimuli enhances tactile detection.

    Science.gov (United States)

    Cléry, Justine; Guipponi, Olivier; Odouard, Soline; Wardak, Claire; Ben Hamed, Suliann

    2015-03-11

    From an ecological point of view, approaching objects are potentially more harmful than receding objects. A predator, a dominant conspecific, or a mere branch coming up at high speed can all be dangerous if one does not detect them and produce the appropriate escape behavior fast enough. And indeed, looming stimuli trigger stereotyped defensive responses in both monkeys and human infants. However, while the heteromodal somatosensory consequences of visual looming stimuli can be fully predicted by their spatiotemporal dynamics, few studies if any have explored whether visual stimuli looming toward the face predictively enhance heteromodal tactile sensitivity around the expected time of impact and at its expected location on the body. In the present study, we report that, in addition to triggering a defensive motor repertoire, looming stimuli toward the face provide the nervous system with predictive cues that enhance tactile sensitivity on the face. Specifically, we describe an enhancement of tactile processes at the expected time and location of impact of the stimulus on the face. We additionally show that a looming stimulus that brushes past the face also enhances tactile sensitivity on the nearby cheek, suggesting that the space close to the face is incorporated into the subjects' body schema. We propose that this cross-modal predictive facilitation involves multisensory convergence areas subserving the representation of a peripersonal space and a safety boundary of self. Copyright © 2015 the authors 0270-6474/15/354179-11$15.00/0.

  13. Detection and clinical significance of intratumoral EGFR mutational heterogeneity in Chinese patients with advanced non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available PURPOSE: This study evaluated occurrence and potential clinical significance of intratumoral EGFR mutational heterogeneity in Chinese patients with non-small cell lung cancer (NSCLC. MATERIALS AND METHODS: Eighty-five stage IIIa-IV NSCLC patients who had undergone palliative surgical resection were included in this study. Of these, 45 patients carried EGFR mutations (group-M and 40 patients were wild-type (group-W. Each tumor sample was microdissected to yield 28-34 tumor foci and Intratumoral EGFR mutation were determined using Denaturing High Performance Liquid Chromatography (DHPLC and Amplification Refractory Mutation System (ARMS. EGFR copy numbers were measured using fluorescence in situ hybridization (FISH. RESULTS: Microdissection yielded 1,431 tumor foci from EGFR mutant patients (group-M and 1,238 foci from wild-type patients (group-W. The EGFR mutant frequencies in group-M were 80.6% (1,154/1,431 and 87.1% (1,247/1,431 using DHPLC and ARMS, respectively. A combination of EGFR-mutated and wild-type cells was detected in 32.9% (28/85 of samples by DHPLC and 28.2% (24/85 by ARMS, supporting the occurrence of intratumoral heterogeneity. Thirty-one patients (36.5% were identified as EGFR FISH-positive. Patients harboring intratumoral mutational heterogeneity possessed lower EGFR copy numbers than those tumors contained mutant cells alone (16.7% vs. 71.0%, P<0.05. Among 26 patients who had received EGFR-TKIs, the mean EGFR mutation content was higher in patients showing partial response (86.1% or stable disease (48.7% compared with patients experiencing progressive disease (6.0% (P = 0.001. There also showed relationship between progression-free survival (PFS and different content of EGFR mutation groups (pure wild type EGFR, EGFR mutation with heterogeneity and pure mutated EGFR (P = 0.001. CONCLUSION: Approximately 30% of patients presented intratumoral EGFR mutational heterogeneity, accompanying with relatively low EGFR copy

  14. Sensitivity and Frequencies of Dystrophin Gene Mutations in Thai DMD/BMD Patients As Detected by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Thanyachai Sura

    2008-01-01

    Full Text Available Background: Duchenne muscular dystrophy (DMD, a lethal X-linked disease affecting 1 in 3500 male births, and its more benign variant, Becker muscular dystrophy (BMD, are caused by mutations in the dystrophin gene. Because of its large size, analysing the whole gene is impractical. Methods have been developed to detect the commonest mutations i.e. the deletions of the exons. Although these tests are highly specific, their sensitivity is inherently limited by the prevalence of deletions, which differs among different populations.

  15. Assessment of mass detection performance in contrast enhanced digital mammography

    Science.gov (United States)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  16. Combining COLD-PCR and high-resolution melt analysis for rapid detection of low-level, rifampin-resistant mutations in Mycobacterium tuberculosis.

    Science.gov (United States)

    Pang, Yu; Liu, Guan; Wang, Yufeng; Zheng, Suhua; Zhao, Yan-Lin

    2013-04-01

    Multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis) remains a serious threat to public health. Mutational analysis of the gene encoding the beta subunit of RNA polymerase (rpoB) is an established and widely used surrogate marker for multidrug-resistant tuberculosis (MDR-TB). The rpoB-based drug-resistant assay requires relatively less time to detect drug resistance in M. tuberculosis, yet it fails to detect low-level mutations in wild-type DNA. Here, we describe a low-level mutation detection method that combines co-amplification at lower denaturation temperature polymerase chain reaction (COLD-PCR) with high-resolution melting (HRM) analysis, aimed at detecting low-level, rifampin-resistant mutations in M. tuberculosis. Compared to conventional polymerase chain reaction (PCR), dilution experiments demonstrated a four- to eightfold improvement in selectivity using COLD-PCR/HRM to detect low-level, rifampin-resistant mutations. The mutation detection limit of conventional PCR/HRM was approximately 20%, whereas COLD-PCR/HRM had a mutation detection limit of 2.5%. Using traditional PCR/HRM and DNA sequencing, we found rpoB mutation in 110 rifampin-resistant isolates. The use of COLD-PCR/HRM allowed us to detect 10 low-level, rifampin-resistant mutations in 16 additional drug-resistant isolates. The sensitivity of COLD-PCR/HRM (95.2%) is significantly higher than that of PCR/HRM (87.3%). Our findings demonstrate that combined use of COLD-PCR with HRM can provide a sensitivity of at least 5% in detecting rpoB-mutated populations in a wild-type background, decreasing the delay in drug-resistant TB diagnosis and leading to faster, cheaper, more efficient, and more personalized antibiotic treatment, especially for low-level drug resistance mutations among the excess wild-type DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Enhanced auditory temporal gap detection in listeners with musical training.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  18. Image enhancement using thermal-visible fusion for human detection

    Science.gov (United States)

    Zaihidee, Ezrinda Mohd; Hawari Ghazali, Kamarul; Zuki Saleh, Mohd

    2017-09-01

    An increased interest in detecting human beings in video surveillance system has emerged in recent years. Multisensory image fusion deserves more research attention due to the capability to improve the visual interpretability of an image. This study proposed fusion techniques for human detection based on multiscale transform using grayscale visual light and infrared images. The samples for this study were taken from online dataset. Both images captured by the two sensors were decomposed into high and low frequency coefficients using Stationary Wavelet Transform (SWT). Hence, the appropriate fusion rule was used to merge the coefficients and finally, the final fused image was obtained by using inverse SWT. From the qualitative and quantitative results, the proposed method is more superior than the two other methods in terms of enhancement of the target region and preservation of details information of the image.

  19. Zinc(II)-cyclen polyacrylamide gel electrophoresis for detection of mutations in short Ade/Thy-rich DNA fragments.

    Science.gov (United States)

    Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Harada, Naoko; Koike, Tohru

    2011-01-15

    We describe an improved gel-based method with an additive Zn(2+)-cyclen complex (cyclen, 1,4,7,10-tetraazacyclododecane), Zn(2+)-cyclen-PAGE, for mutation detection in DNA fragments by PCR that contain more than 65% Ade/Thy bases and fewer than 100base pairs (bp). Existing techniques have a problem in analyzing such short Ade/Thy-rich fragments because the duplexes are disrupted and are not detectable due to binding of Zn(2+)-cyclen to Thy bases. In this strategy using a PCR primer with a Gua/Cyt-lined sequence attached at its 5'-end, we successfully detected a mutation in an 86-bp Ade/Thy-rich region of the BRCA1 gene from formalin-fixed paraffin-embedded breast cancer-tissue sections. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Detection of low frequency FGFR3 mutations in the urine of bladder cancer patients using next-generation deep sequencing

    Directory of Open Access Journals (Sweden)

    Millholl

    2012-06-01

    Full Text Available John M Millholland, Shuqiang Li, Cecilia A Fernandez, Anthony P ShuberPredictive Biosciences Inc, Lexington, MA, USAAbstract: Biological fluid-based noninvasive biomarker assays for monitoring and diagnosing disease are clinically powerful. A major technical hurdle for developing these assays is the requirement of high analytical sensitivity so that biomarkers present at very low levels can be consistently detected. In the case of biological fluid-based cancer diagnostic assays, sensitivities similar to those of tissue-based assays are difficult to achieve with DNA markers due to the high abundance of normal DNA background present in the sample. Here we describe a new urine-based assay that uses ultradeep sequencing technology to detect single mutant molecules of fibroblast growth factor receptor 3 (FGFR3 DNA that are indicative of bladder cancer. Detection of FGFR3 mutations in urine would provide clinicians with a noninvasive means of diagnosing early-stage bladder cancer. The single-molecule assay detects FGFR3 mutant DNA when present at as low as 0.02% of total urine DNA and results in 91% concordance with the frequency that FGFR3 mutations are detected in bladder cancer tumors, significantly improving diagnostic performance. To our knowledge, this is the first practical application of next-generation sequencing technology for noninvasive cancer diagnostics.Keywords: FGFR3, mutation, urine, single molecule, sequencing, bladder cancer

  1. Mitochondrial resequencing arrays detect tumor-specific mutations in salivary rinses of patients with head and neck cancer.

    Science.gov (United States)

    Mithani, Suhail K; Smith, Ian M; Zhou, Shaoyu; Gray, Andrew; Koch, Wayne M; Maitra, Anirban; Califano, Joseph A

    2007-12-15

    Alterations of the mitochondrial genome have been identified in multiple solid tumors and in many head and neck squamous cell carcinomas (HNSCC). Identification of mitochondrial mutations in the salivary rinses of patients with HNSCC has potential application in disease detection. In this study, we used the MitoChip v2.0 mitochondrial genome resequencing array to detect minor populations of mitochondrial DNA in salivary rinses of patients with HNSCC. Salivary rinses from 13 patients with HNSCC, whose tumors carried mitochondrial mutations, were collected before surgical resection. DNA isolated from salivary rinses and serial dilutions of DNA derived from HNSCC-derived cell lines with known mitochondrial mutations were sequenced using the MitoChip, and analyzed using a quantitative algorithm which we developed to detect minor populations of mitochondrial DNA from MitoChip probe intensity data. We detected heteroplasmic populations of mitochondrial DNA up to a 1:200 dilution using MitoChip v2.0 and our analysis algorithm. A logarithmic relationship between the magnitude of assay intensity and concentration of minor mitochondrial populations was shown. This technique was able to identify tumor-specific mitochondrial mutations in salivary rinses from 10 of 13 (76.9%) patients with head and neck cancer. Minor populations of mitochondrial DNA and disease-specific mitochondrial mutations in salivary rinses of patients with HNSCC can be successfully identified using the MitoChip resequencing array and the algorithm which we have developed. This technique has potential application in the surveillance of patients after resection and may have applicability in the surveillance of body fluids in other tumor types.

  2. Local correlation detection with linearity enhancement in streaming data

    KAUST Repository

    Xie, Qing

    2013-01-01

    This paper addresses the challenges in detecting the potential correlation between numerical data streams, which facilitates the research of data stream mining and pattern discovery. We focus on local correlation with delay, which may occur in burst at different time in different streams, and last for a limited period. The uncertainty on the correlation occurrence and the time delay make it diff cult to monitor the correlation online. Furthermore, the conventional correlation measure lacks the ability of ref ecting visual linearity, which is more desirable in reality. This paper proposes effective methods to continuously detect the correlation between data streams. Our approach is based on the Discrete Fourier Transform to make rapid cross-correlation calculation with time delay allowed. In addition, we introduce a shape-based similarity measure into the framework, which ref nes the results by representative trend patterns to enhance the signif cance of linearity. The similarity of proposed linear representations can quickly estimate the correlation, and the window sliding strategy in segment level improves the eff ciency for online detection. The empirical study demonstrates the accuracy of our detection approach, as well as more than 30% improvement of eff ciency. Copyright 2013 ACM.

  3. Enhanced detection performance in electrosense through capacitive sensing.

    Science.gov (United States)

    Bai, Yang; Neveln, Izaak D; Peshkin, Michael; MacIver, Malcolm A

    2016-08-08

    Weakly electric fish emit an AC electric field into the water and use thousands of sensors on the skin to detect field perturbations due to surrounding objects. The fish's active electrosensory system allows them to navigate and hunt, using separate neural pathways and receptors for resistive and capacitive perturbations. We have previously developed a sensing method inspired by the weakly electric fish to detect resistive perturbations and now report on an extension of this system to detect capacitive perturbations as well. In our method, an external object is probed by an AC field over multiple frequencies. We present a quantitative framework that relates the response of a capacitive object at multiple frequencies to the object's composition and internal structure, and we validate this framework with an electrosense robot that implements our capacitive sensing method. We define a metric for comparing the electrosensory range of different underwater electrosense systems. For detecting non-conductive objects, we show that capacitive sensing performs better than resistive sensing by almost an order of magnitude using this measure, while for conductive objects there is a four-fold increase in performance. Capacitive sensing could therefore provide electric fish with extended sensing range for capacitive objects such as prey, and gives artificial electrolocation systems enhanced range for targets that are capacitive.

  4. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine

    DEFF Research Database (Denmark)

    Kandimalla, Raju; Masius, Roy; Beukers, Willemien

    2013-01-01

    Purpose: DNA methylation is associated with bladder cancer and these modifications could serve as useful biomarkers. FGFR3 mutations are present in 60% to 70% of non–muscle invasive bladder cancer (NMIBC). Low-grade bladder cancer recurs in more than 50% of patients. The aim of this study......, and nonmalignant urines (n = 130). Results: The 3-plex assay identified recurrent bladder cancer in voided urine with a sensitivity of 74% in the validation set. In combination with the FGFR3 mutation assay, a sensitivity of 79% was reached (specificity of 77%). Sensitivity of FGFR3 and cytology was 52% and 57......%, respectively. Conclusion: The combination of methylation and FGFR3 assays efficiently detects recurrent bladder cancer without the need for stratification of patients regarding methylation/mutation status of the primary tumor. We conclude that the sensitivity of this combination is in the same range...

  5. Detection of quinolone-resistance mutations in Salmonella spp. strains of epidemic and poultry origin

    OpenAIRE

    Roberta Barreiros de Souza; Marciane Magnani; Rafaela Gomes Ferrari; Luciana Bill Mikito Kottwitz; Daniele Sartori; Maria Cristina Bronharo Tognim; Tereza Cristina R.M. de Oliveira

    2011-01-01

    Mutations into codons Aspartate-87 (62%) and Serine-83 (38%) in QRDR of gyrA were identified in 105 Salmonella strains resistant to nalidixic acid (94 epidemic and 11 of poultry origin). The results show a high incidence of mutations associated to quinolone resistance but suggest association with others mechanisms of resistance.

  6. Detection of quinolone-resistance mutations in Salmonella spp. strains of epidemic and poultry origin

    Directory of Open Access Journals (Sweden)

    Roberta Barreiros de Souza

    2011-03-01

    Full Text Available Mutations into codons Aspartate-87 (62% and Serine-83 (38% in QRDR of gyrA were identified in 105 Salmonella strains resistant to nalidixic acid (94 epidemic and 11 of poultry origin. The results show a high incidence of mutations associated to quinolone resistance but suggest association with others mechanisms of resistance.

  7. K137R mutation on adeno-associated viral capsids had minimal effect on enhancing gene delivery in vivo.

    Science.gov (United States)

    Qiao, Chunping; Li, Chengwen; Zhao, Chunxia; Li, Jianbin; Bian, Tao; Grieger, Joshua; Li, Juan; Samulski, R Jude; Xiao, Xiao

    2014-02-01

    The adeno-associated viral (AAV) vector has emerged as an attractive vector for gene therapy applications. Development of AAV vectors with enhanced gene transduction efficiency is important to ease the burden of AAV production and minimize potential immune responses. Rational mutations on AAV capsids have gained attention as a simple method of enhancing AAV transduction efficiency. A single-amino acid mutation, K137R, on AAV1 and AAV8 was recently reported to increase liver transgene expression by 5-10-fold. To determine whether the same mutation on other AAV serotypes would result in similar gene enhancement effects, K137R mutants were generated on AAV7, AAV8, and AAV9, and their effects were evaluated in vivo. Two reporter genes were utilized: the nuclear LacZ gene driven by the cytomegalovirus promoter and the luciferase gene driven by the CB promoter. Surprisingly, we found no difference in luciferase gene expression in the liver or other tissues using either the wild-type AAV8 capsid or AAV8-K137R. LacZ gene expression in the liver by AAV8-K137R was about onefold higher than that of wild-type AAV8. However, no difference was found in other tissues, such as skeletal muscle and cardiac muscle. In addition, no difference was found in transgene expression with either AAV7-K137R or AAV9-K137R mutants. Our results indicated that the K137R mutation on AAV7, AAV8, and AAV9 had minimal to no effect on transduction efficiency in vivo.

  8. High Sensitivity Surface Enhanced Raman Scattering Detection of Tryptophan

    Science.gov (United States)

    Kandakkathara, Archana

    Raman spectroscopy has the capability of providing detailed information about molecular structure, but the extremely small cross section of Raman scattering prevents this technique from applications requiring high sensitivity. Surface enhanced Raman scattering (SERS) on the other hand provides strongly increased Raman signal from molecules attached to metallic nanostructures. SERS is thus a promising technique for high sensitivity analytical applications. One particular area of interest is the application of such techniques for the analysis of the composition of biological cells. However, there are issues which have to be addressed in order to make SERS a reliable technique such as the optimization of conditions for any given analyte, understanding the kinetic processes of binding of the target molecules to the nanostructures and understanding the evolution and coagulation of the nanostructures, in the case of colloidal solutions. The latter processes introduce a delay time for the observation of maximum enhancement factors which must be taken into account for any given implementation of SERS. In the present thesis the goal was to develop very sensitive SERS techniques for the measurement of biomolecules of interest for analysis of the contents of cells. The techniques explored could be eventually be applicable to microfluidic systems with the ultimate goal of analyzing the molecular constituents of single cells. SERS study of different amino acids and organic dyes were performed during the course of this thesis. A high sensitivity detection system based on SERS has been developed and spectrum from tryptophan (Trp) amino acid at very low concentration (10-8 M) has been detected. The concentration at which good quality SERS spectra could be detected from Trp is 4 orders of magnitude smaller than that previously reported in literature. It has shown that at such low concentrations the SERS spectra of Trp are qualitatively distinct from the spectra commonly reported in

  9. Proposition of a Silica Nanoparticle-Enhanced Hybrid Spin-Microcantilever Sensor Using Nonlinear Optics for Detection of DNA in Liquid.

    Science.gov (United States)

    Wu, Wen-Hao; Zhu, Ka-Di

    2015-09-25

    We theoretically propose a method based on the combination of a nonlinear optical mass sensor using a hybrid spin-microcantilever and the nanoparticle-enhanced technique, to detect and monitor DNA mutations. The technique theoretically allows the mass of external particles (ssDNA) landing on the surface of a hybrid spin-microcantilever to be detected directly and accurately at 300 K with a mass responsivity 0.137 Hz/ag in situ in liquid. Moreover, combined with the nanoparticle-enhanced technique, even only one base pair mutation in the target DNA sequence can be identified in real time accurately, and the DNA hybridization reactions can be monitored quantitatively. Furthermore, in situ detection in liquid and measurement of the proposed nonlinear optical spin resonance spectra will minimize the experimental errors.

  10. Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation.

    Science.gov (United States)

    Guillaume, Carole; Delobel, Pierre; Sablayrolles, Jean-Marie; Blondin, Bruno

    2007-04-01

    Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Delta strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.

  11. Novel multiplex bead-based assay for detection of IDH1 and IDH2 mutations in myeloid malignancies.

    Directory of Open Access Journals (Sweden)

    Velizar Shivarov

    Full Text Available Isocitrate dehydrogenase 1 and 2 (IDH mutations are frequently found in various cancer types such as gliomas, chondrosarcomas and myeloid malignancies. Their molecular detection has recently gained wide recognition in the diagnosis and prognosis of these neoplasms. For that purpose various molecular approaches have been used but a universally accepted method is still lacking. In this study we aimed to develop a novel bead-based liquid assay using Locked nucleic acids (LNA-modified oligonucleotide probes for multiplexed detection of the most frequent IDH1 (p.R132C, p.R132G, p.R132H, p.R132L, p.R132S and IDH2 (p.R140Q, p.R172K mutations. The method includes four steps: 1 PCR amplification of the targeted fragments with biotinylated primers; 2 Direct hybridization to barcoded microbeads with specific LNA-modified oligonucleotide probes; 3 Incubation with phycoerythrin coupled streptavidin; 4 Acquisition of fluorescent intensities of each set of beads on a flow platform (LuminexCorp., USA. We tested the performance of the assay on both artificial plasmid constructs and on clinical samples from 114 patients with known or suspected myeloid malignancies. The method appeared to be superior to direct sequencing having a much higher sensitivity of 2.5% mutant alleles. Applying this method to patients' samples we identified a total of 9 mutations (one IDH1 p.R132C, seven IDH2 p.R140Q and one IDH2 p.R172K. In conclusion, this method could be successfully implemented in the diagnostic work-up for various tumors known to harbor IDH1/2 mutations (e.g. myeloid malignancies, gliomas, etc.. International initiatives are needed to validate the different existing methods for detection of IDH1/2 mutations in clinical settings.

  12. A nanoparticle-based sensor for visual detection of multiple mutations

    Science.gov (United States)

    Elenis, Dimitrios S.; Ioannou, Penelope C.; Christopoulos, Theodore K.

    2011-04-01

    Disposable dipstick-type DNA biosensors in the form of lateral flow strips are particularly useful for genotyping in a small laboratory or for field testing due to their simplicity, low cost and portability. Their unique advantage is that they enable visual detection in minutes without the use of instruments. In addition, the dry-reagent format minimizes the pipetting, incubation and washing steps. In this work, we significantly enhance the multiplexing capabilities of lateral flow strip biosensors without compromising their simplicity. Multiplex genotyping is carried out by polymerase chain reaction (PCR) followed by a single primer extension reaction for all target alleles, in which a primer is extended and biotin is incorporated only if it is perfectly complementary to the target. Multiallele detection is achieved by multiple test spots on the membrane of the sensor, each comprising a suspension of polystyrene microspheres functionalized with capture probes. The products of the primer extension reaction hybridize, through specific sequence tags, to the capture probes and are visualized by using antibiotin-conjugated gold nanoparticles. This design enables accommodation of multiple spots in a small area because the microspheres are trapped in the fibres of the membrane and remain fixed in site without any diffusion. Furthermore, the detectability is improved because the hybrids are exposed on the surface of the trapped microspheres rather than inside the pores of the membrane. We demonstrate the specificity and performance of the biosensor for multiallele genotyping.

  13. Enhanced signal detectability in comodulated noise introduced by compression.

    Science.gov (United States)

    Buschermöhle, Michael; Feudel, Ulrike; Freund, Jan A

    2008-12-01

    Many examples of natural noise show common amplitude modulations at different frequency regions. This kind of noise has been termed comodulated noise and is widely examined in hearing research, where an enhanced detectability of pure tones and narrow noise bands in comodulated noise compared to unmodulated noise is well known as the CMR or CDD effects, respectively. Here it is shown that only one signal processing step, a compressive nonlinearity motivated by the peripheral auditory system, is sufficient to explain a considerable contribution to these effects. Using an analytical approach, the influence of compression on the detectability of periodic and narrow band signals in the presence of unmodulated and comodulated noise is investigated. This theoretical treatment allows for identifying the mechanism leading to improved signal detection. The compressive nonlinearity constitutes an adaptive gain which selectively boosts a stimulus during time spans of inherently increased signal-to-noise ratio and attenuates it during time spans dominated by noise. On average, these time spans are more pronounced in stimuli with comodulated noise than with unmodulated noise, thus giving rise to the observed CMR and CDD effects.

  14. Enhanced neuroinflammation and pain hypersensitivity after peripheral nerve injury in rats expressing mutated superoxide dismutase 1

    Directory of Open Access Journals (Sweden)

    Lavand'homme Patricia

    2011-04-01

    Full Text Available Abstract Background Neuroinflammation and nitroxidative stress are implicated in the pathophysiology of neuropathic pain. In view of both processes, microglial and astroglial activation in the spinal dorsal horn play a predominant role. The present study investigated the severity of neuropathic pain and the degree of glial activation in an inflammatory- and nitroxidative-prone animal model. Methods Transgenic rats expressing mutated superoxide dismutase 1 (hSOD1G93A are classically used as a model for amyotrophic lateral sclerosis (ALS. Because of the associated inflammatory- and nitroxidative-prone properties, this model was used to study thermal and mechanical hypersensitivity following partial sciatic nerve ligation (PSNL. Next to pain hypersensitivity assessment, microglial and astroglial activation states were moreover characterized, as well as inflammatory marker gene expression and the glutamate clearance system. Results PSNL induced thermal and mechanical hypersensitivity in both wild-type (WT and transgenic rats. However, the degree of thermal hypersensitivity was found to be exacerbated in transgenic rats while mechanical hypersensitivity was only slightly and not significantly increased. Microglial Iba1 expression was found to be increased in the ipsilateral dorsal horn of the lumbar spinal cord after PSNL but such Iba1 up-regulation was enhanced in transgenic rats as compared WT rats, both at 3 days and at 21 days after injury. Moreover, mRNA levels of Nox2, a key enzyme in microglial activation, but also of pro-inflammatory markers (IL-1β and TLR4 were not modified in WT ligated rats at 21 days after PSNL as compared to WT sham group while transgenic ligated rats showed up-regulated gene expression of these 3 targets. On the other hand, the PSNL-induced increase in GFAP immunoreactivity spreading that was evidenced in WT rats was unexpectedly found to be attenuated in transgenic ligated rats. Finally, GLT-1 gene expression and

  15. Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations

    Science.gov (United States)

    Marzouka, Nour al Dain; Hebrard, Maxime; Manes, Gaël; Sénéchal, Audrey; Meunier, Isabelle; Hamel, Christian P.

    2013-01-01

    Purpose Autosomal recessive retinitis pigmentosa (arRP) is a genetically heterogeneous disease resulting in progressive loss of photoreceptors that leads to blindness. To date, 36 genes are known to cause arRP, rendering the molecular diagnosis a challenge. The aim of this study was to use homozygosity mapping to identify the causative mutation in a series of inbred families with arRP. Methods arRP patients underwent standard ophthalmic examination, Goldman perimetry, fundus examination, retinal OCT, autofluorescence measurement, and full-field electroretinogram. Fifteen consanguineous families with arRP excluded for USH2A and EYS were genotyped on 250 K SNP arrays. Homozygous regions were listed, and known genes within these regions were PCR sequenced. Familial segregation and mutation analyzes were performed. Results We found ten mutations, seven of which were novel mutations in eight known genes, including RP1, IMPG2, NR2E3, PDE6A, PDE6B, RLBP1, CNGB1, and C2ORF71, in ten out of 15 families. The patients carrying RP1, C2ORF71, and IMPG2 mutations presented with severe RP, while those with PDE6A, PDE6B, and CNGB1 mutations were less severely affected. The five families without mutations in known genes could be a source of identification of novel genes. Conclusions Homozygosity mapping combined with systematic screening of known genes results in a positive molecular diagnosis in 66.7% of families. PMID:24339724

  16. Detection of Deafness-Causing Mutations in the Greek Mitochondrial Genome

    Directory of Open Access Journals (Sweden)

    Haris Kokotas

    2011-01-01

    Full Text Available Mitochondrion harbors its own DNA, known as mtDNA, encoding certain essential components of the mitochondrial respiratory chain and protein synthesis apparatus. mtDNA mutations have an impact on cellular ATP production and many of them are undoubtedly a factor that contributes to sensorineural deafness, including both syndromic and non-syndromic forms. Hot spot regions for deafness mutations are the MTRNR1 gene, encoding the 12S rRNA, the MTTS1 gene, encoding the tRNA for Ser(UCN, and the MTTL1 gene, encoding the tRNA for Leu(UUR. We investigated the impact of mtDNA mutations in the Greek hearing impaired population, by testing a cohort of 513 patients suffering from childhood onset prelingual or postlingual, bilateral, sensorineural, syndromic or non-syndromic hearing loss of any degree for six mitochondrial variants previously associated with deafness. Screening involved the MTRNR1 961delT/insC and A1555G mutations, the MTTL1 A3243G mutation, and the MTTS1 A7445G, 7472insC and T7510C mutations. Although two patients were tested positive for the A1555G mutation, we failed to identify any subject carrying the 961delT/insC, A3243G, A7445G, 7472insC, or T7510C mutations. Our findings strongly support our previously raised conclusion that mtDNA mutations are not a major risk factor for sensorineural deafness in the Greek population.

  17. Enhanced environmental detection of uranyl compounds based on luminescence characterization

    Science.gov (United States)

    Nelson, Jean Dennis

    Uranium (U) contamination can be introduced to the environment as a result of mining and manufacturing activities related to nuclear power, detonation of U-containing munitions (DoD), or nuclear weapons production/processing (DOE facilities). In oxidizing environments such as surface soils, U predominantly exists as U(VI), which is highly water soluble and very mobile in soils. U(VI) compounds typically contain the UO22+ group (uranyl compounds). The uniquely structured and long-lived green luminescence (fluorescence) of the uranyl ion (under UV radiation) has been studied and remained a strong topic of interest for two centuries. The presented research is distinct in its objective of improving capabilities for remotely sensing U contamination by understanding what environmental conditions are ideal for detection and need to be taken into consideration. Specific focuses include: (1) the accumulation and fluorescence enhancement of uranyl compounds at soil surfaces using distributed silica gel, and (2) environmental factors capable of influencing the luminescence response, directly or indirectly. In a complex environmental system, matrix effects co-exist from key soil parameters including moisture content (affected by evaporation, temperature and humidity), soil texture, pH, CEC, organic matter and iron content. Chapter 1 is a review of pertinent background information and provides justification for the selected key environmental parameters. Chapter 2 presents empirical investigations related to the fluorescence detection and characterization of uranyl compounds in soil and aqueous samples. An integrative experimental design was employed, testing different soils, generating steady-state fluorescence spectra, and building a comprehensive dataset which was then utilized to simultaneously test three hypotheses: The fluorescence detection of uranyl compounds is dependent upon (1) the key soil parameters, (2) the concentration of U contamination, and (3) time of analysis

  18. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    Science.gov (United States)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  19. A combination of immunohistochemistry and molecular approaches improves highly sensitive detection of BRAF mutations in papillary thyroid cancer.

    Science.gov (United States)

    Martinuzzi, Claudia; Pastorino, Lorenza; Andreotti, Virginia; Garuti, Anna; Minuto, Michele; Fiocca, Roberto; Bianchi-Scarrà, Giovanna; Ghiorzo, Paola; Grillo, Federica; Mastracci, Luca

    2016-09-01

    The optimal method for BRAF mutation detection remains to be determined despite advances in molecular detection techniques. The aim of this study was to compare, against classical Sanger sequencing, the diagnostic performance of two of the most recently developed, highly sensitive methods: BRAF V600E immunohistochemistry (IHC) and peptide nucleic-acid (PNA)-clamp qPCR. BRAF exon 15 mutations were searched in formalin-fixed paraffin-embedded tissues from 86 papillary thyroid carcinoma using the three methods. The limits of detection of Sanger sequencing in borderline or discordant cases were quantified by next generation sequencing. BRAF mutations were found in 74.4 % of cases by PNA, in 71 % of cases by IHC, and in 64 % of cases by Sanger sequencing. Complete concordance for the three methods was observed in 80 % of samples. Better concordance was observed with the combination of two methods, particularly PNA and IHC (59/64) (92 %), while the combination of PNA and Sanger was concordant in 55 cases (86 %). Sensitivity of the three methods was 99 % for PNA, 94.2 % for IHC, and 89.5 % for Sanger. Our data show that IHC could be used as a cost-effective, first-line method for BRAF V600E detection in daily practice, followed by PNA analysis in negative or uninterpretable cases, as the most efficient method. PNA-clamp quantitative PCR is highly sensitive and complementary to IHC as it also recognizes other mutations besides V600E and it is suitable for diagnostic purposes.

  20. Method and apparatus for enhanced detection of toxic agents

    Science.gov (United States)

    Greenbaum, Elias; Rodriguez, Jr., Miguel; Wu, Jie Jayne; Qi, Hairong

    2013-10-01

    A biosensor based detection of toxins includes enhancing a fluorescence signal by concentrating a plurality of photosynthetic organisms in a fluid into a concentrated region using biased AC electro-osmosis. A measured photosynthetic activity of the photosynthetic organisms is obtained in the concentrated region, where chemical, biological or radiological agents reduce a nominal photosynthetic activity of the photosynthetic organisms. A presence of the chemical, biological and/or radiological agents or precursors thereof, is determined in the fluid based on the measured photosynthetic activity of the concentrated plurality of photosynthetic organisms. A lab-on-a-chip system is used for the concentrating step. The presence of agents is determined from feature vectors, obtained from processing a time dependent signal using amplitude statistics and/or time-frequency analysis, relative to a control signal. A linear discriminant method including support vector machine classification (SVM) is used to identify the agents.

  1. Network community-detection enhancement by proper weighting.

    Science.gov (United States)

    Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin

    2011-04-01

    In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.

  2. Adaptive detection and enhancement pre-processor for tracking

    Science.gov (United States)

    Scott, Douglas; Mise, Olegs

    2009-05-01

    An adaptive image pre-processor has been developed as a high-performance front-end for a next-generation multi-target tracking (MTT) system. The tracking system is designed to track targets across potentially multiple and distributed electro-optic video sensors. Typically a pre-processor operates to enhance targets and assist the tracking. However, they frequently rely on expert knowledge to configure the algorithm for the particular application and hence do not cope adequately given unexpected variations or generic application. The pre-processor developed for our MTT system achieves a significantly improved and robust performance by using an adaptive approach based on wavelet decomposition and a "supporting-classifier" method. It is capable of detecting and dynamically maintaining a target-definition optimized for tracking, whilst maximally suppressing non-related clutter. This paper presents an overview of the architecture and demonstrates its performance on real video scenes.

  3. Detection of explosives based on surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wackerbarth, Hainer; Salb, Christian; Gundrum, Lars; Niederkrüger, Matthias; Christou, Konstantin; Beushausen, Volker; Viöl, Wolfgang

    2010-08-10

    In this study we present a device based on surface-enhanced Raman scattering (SERS) for the detection of airborne explosives. The explosives are resublimated on a cooled nanostructured gold substrate. The explosives trinitrotoluene (TNT) and triacetone triperoxide (TATP) are used. The SERS spectrum of the explosives is analyzed. Thus, TNT is deposited from an acetonitrile solution on the gold substrate. In the case of TATP, first the bulk TATP Raman spectrum was recorded and compared with the SERS spectrum, generated by deposition out of the gas phase. The frequencies of the SERS spectrum are hardly shifted compared to the spectrum of bulk TATP. The influence of the nanostructured gold substrate temperature on the signals of TATP was studied. A decrease in temperature up to 200 K increased the intensities of the TATP bands in the SERS spectrum; below 200 K, the TATP fingerprint disappeared.

  4. Whole exome sequencing identifies driver mutations in asymptomatic computed tomography-detected lung cancers with normal karyotype.

    Science.gov (United States)

    Belloni, Elena; Veronesi, Giulia; Rotta, Luca; Volorio, Sara; Sardella, Domenico; Bernard, Loris; Pece, Salvatore; Di Fiore, Pier Paolo; Fumagalli, Caterina; Barberis, Massimo; Spaggiari, Lorenzo; Pelicci, Pier Giuseppe; Riva, Laura

    2015-04-01

    The efficacy of curative surgery for lung cancer could be largely improved by non-invasive screening programs, which can detect the disease at early stages. We previously showed that 18% of screening-identified lung cancers demonstrate a normal karyotype and, following high-density genome scanning, can be subdivided into samples with 1) numerous; 2) none; and 3) few copy number alterations. Whole exome sequencing was applied to the two normal karyotype, screening-detected lung cancers, constituting group 2, as well as normal controls. We identified mutations in both tumors, including KEAP1 (commonly mutated in lung cancers) in one, and TP53, PMS1, and MSH3 (well-characterized DNA-repair genes) in the other. The two normal karyotype screening-detected lung tumors displayed a typical lung cancer mutational profile that only next generation sequencing could reveal, which offered an additional contribution to the over-diagnosis bias concept hypothesized within lung cancer screening programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Biochemical mutations detected in the children of A-bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Chiyoko; Goriki, Kazuaki; Asakawa, Jun-ichi; Fujita, Mikio; Takahashi, Norio; Hazama, Ryuji; Neel, J.V.

    1988-03-01

    This is a report of the results of a study of biochemical mutations in children of A-bomb survivors. An electrophoretic examination of a series of 30 proteins, undertaken in 13,052 children in the exposed group and 10,609 children in the non-exposed control group, yielded three mutations in each group. These mutations altered the electrophoretic mobility for glutamic pyruvic transaminase, phosphoglucomutase-2, and nucleosidephospholilase in the exposed group; and for haptoglobin, adenosinedeaminase, and 6-phosphogluconate dehydrogenase in the control group. An examination of enzyme activity for 4,989 children in the exposed group yielded one mutation for triose phosphate isomerase; no mutations were encountered in any of the 5,026 children in the control group. Summarizing the results of the two series, the mutation rates observed in the exposed and control groups are thus 0.60 x 10/sup -5/ and 0.64 x 10/sup -5/, respectively, per locus per generation, with 95 % confidence limits of 0.2 - 1.5 x 10/sup -5/ and 0.1 - 1.9 x 10/sup -5/, respectively. (Namekawa, K.).

  6. MGB probe assay for rapid detection of mtDNA11778 mutation in the Chinese LHON patients by real-time PCR*

    OpenAIRE

    Wang, Jian-yong; Gu, Yang-shun; Wang, Jing; Tong, Yi; Wang, Ying; Shao, Jun-bing; Qi, Ming

    2008-01-01

    Objective: Leber’s hereditary optic neuropathy (LHON) is a maternally inherited degeneration of the optic nerve caused by point mutations of mitochondrial DNA (mtDNA). Many unsolved questions regarding the penetrance and pathophysiological mechanism of LHON demand efficient and reliable mutation testing. This study aims to develop a minor groove binder (MGB) probe assay for rapid detection of mtDNA11778 mutation and heteroplasmy in Chinese LHON patients by real-time polymerase chain reaction ...

  7. MSH6 Mutations are Frequent in Hereditary Nonpolyposis Colorectal Cancer Families With Normal pMSH6 Expression as Detected by Immunohistochemistry

    DEFF Research Database (Denmark)

    Okkels, Henrik; Larsen, K.L.; Thorlacius-Ussing, O.

    2012-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant condition accounting for 2% to 4% of all colorectal cancer cases worldwide. Families with germ line mutations in 1 of 6 mismatch repair genes are known as Lynch syndrome families. The largest number of mutations has been...... detected in the mismatch repair genes MLH1 and MSH2, but several mutations in MSH6 have also been demonstrated....

  8. Sensitive detection of KRAS mutations in archived formalin-fixed paraffin-embedded tissue using mutant-enriched PCR and reverse-hybridization.

    Science.gov (United States)

    Ausch, Christoph; Buxhofer-Ausch, Veronika; Oberkanins, Christian; Holzer, Barbara; Minai-Pour, Michael; Jahn, Stephan; Dandachi, Nadia; Zeillinger, Robert; Kriegshäuser, Gernot

    2009-11-01

    Recently, evidence has emerged indicating that assessment of KRAS mutations before anti-epidermal growth factor receptor therapy improves outcome in patients with metastatic colorectal cancer (CRC). We report here a novel reverse-hybridization (RH) assay to screen for KRAS mutations in formalin-fixed paraffin-embedded colorectal tissue samples. We combined mutant-enriched PCR based on peptide nucleic acid clamping and RH of amplification products to nitrocellulose test strips that contained a parallel array of oligonucleotide probes targeting 10 frequent mutations in codons 12 and 13 of the KRAS gene. DNA mixing experiments, which included eight different tumor cell lines with known KRAS mutations, were performed to examine the sensitivity of mutation detection. All KRAS mutations present in tumor cell lines were unambiguously identified by the RH assay with 1% of each cell line DNA diluted in normal DNA. RH was then used to screen for KRAS mutations in 74 colorectal tumor and 4 normal control samples. Twenty-six (35%) of the 74 tumor samples showed KRAS mutations. No mutation was found in the four samples of normal colorectal tissue. DNA sequencing without previous mutant enrichment, however, failed to detect four (15%) out of 26 KRAS-positive formalin-fixed paraffin-embedded samples (FFPE). This finding suggests that even after microdissection, mutant sequences in a given DNA isolate can be rare and more sensitive methods are needed for mutation analysis.

  9. Development of a clinical assay for detection of GAA mutations and characterization of the GAA mutation spectrum in a Canadian cohort of individuals with glycogen storage disease, type II.

    Science.gov (United States)

    McCready, M E; Carson, N L; Chakraborty, P; Clarke, J T R; Callahan, J W; Skomorowski, M A; Chan, A K J; Bamforth, F; Casey, R; Rupar, C A; Geraghty, M T

    2007-12-01

    Glycogen storage disease, type II (GSDII; Pompe disease; acid maltase deficiency) is an autosomal recessive disease caused by mutations of the GAA gene that lead to deficient acid alpha-glucosidase enzyme activity and accumulation of lysosomal glycogen. Although measurement of acid alpha-glucosidase enzyme activity in fibroblasts remains the gold standard for the diagnosis of GSDII, analysis of the GAA gene allows confirmation of clinical or biochemical diagnoses and permits predictive and prenatal testing of individuals at risk of developing GSDII. We have developed a clinical molecular test for the detection of GAA mutations based on cycle sequencing of the complete coding region. GAA exons 2-20 are amplified in six independent PCR using intronic primers. The resulting products were purified and sequenced. Preliminary studies using this protocol were conducted with DNA from 21 GSDII-affected individuals from five centers across Canada. In total, 41 of 42 mutations were detected (96.7% detection rate). Mutations spanned intron 1 through exon 19 and included nine novel mutations. Haplotype analysis of recurrent mutations further suggested that three of these mutations are likely to have occurred independently at least twice. Additionally, we report the identification of the c.-32-13T>G GAA mutation in an individual with infantile variant GSDII, despite reports of this mutation being associated almost exclusively with late-onset forms of the disease. The development of a clinical molecular test provides an important tool for the management and counseling of families and individuals with GSDII, and has provided useful information about the GAA mutation spectrum in Canada.

  10. Enhancing Time-Series Detection Algorithms for Automated Biosurveillance

    Science.gov (United States)

    Burkom, Howard; Xing, Jian; English, Roseanne; Bloom, Steven; Cox, Kenneth; Pavlin, Julie A.

    2009-01-01

    BioSense is a US national system that uses data from health information systems for automated disease surveillance. We studied 4 time-series algorithm modifications designed to improve sensitivity for detecting artificially added data. To test these modified algorithms, we used reports of daily syndrome visits from 308 Department of Defense (DoD) facilities and 340 hospital emergency departments (EDs). At a constant alert rate of 1%, sensitivity was improved for both datasets by using a minimum standard deviation (SD) of 1.0, a 14–28 day baseline duration for calculating mean and SD, and an adjustment for total clinic visits as a surrogate denominator. Stratifying baseline days into weekdays versus weekends to account for day-of-week effects increased sensitivity for the DoD data but not for the ED data. These enhanced methods may increase sensitivity without increasing the alert rate and may improve the ability to detect outbreaks by using automated surveillance system data. PMID:19331728

  11. Contrast-Enhanced Ultrasound Imaging Based on Bubble Region Detection

    Directory of Open Access Journals (Sweden)

    Yurong Huang

    2017-10-01

    Full Text Available The study of ultrasound contrast agent imaging (USCAI based on plane waves has recently attracted increasing attention. A series of USCAI techniques have been developed to improve the imaging quality. Most of the existing methods enhance the contrast-to-tissue ratio (CTR using the time-frequency spectrum differences between the tissue and ultrasound contrast agent (UCA region. In this paper, a new USCAI method based on bubble region detection was proposed, in which the frequency difference as well as the dissimilarity of tissue and UCA in the spatial domain was taken into account. A bubble wavelet based on the Doinikov model was firstly constructed. Bubble wavelet transformation (BWT was then applied to strengthen the UCA region and weaken the tissue region. The bubble region was thereafter detected by using the combination of eigenvalue and eigenspace-based coherence factor (ESBCF. The phantom and rabbit in vivo experiment results suggested that our method was capable of suppressing the background interference and strengthening the information of UCA. For the phantom experiment, the imaging CTR was improved by 10.1 dB compared with plane wave imaging based on delay-and-sum (DAS and by 4.2 dB over imaging based on BWT on average. Furthermore, for the rabbit kidney experiment, the corresponding improvements were 18.0 dB and 3.4 dB, respectively.

  12. Stochastic Resonance algorithms to enhance damage detection in bearing faults

    Directory of Open Access Journals (Sweden)

    Castiglione Roberto

    2015-01-01

    Full Text Available Stochastic Resonance is a phenomenon, studied and mainly exploited in telecommunication, which permits the amplification and detection of weak signals by the assistance of noise. The first papers on this technique are dated early 80 s and were developed to explain the periodically recurrent ice ages. Other applications mainly concern neuroscience, biology, medicine and obviously signal analysis and processing. Recently, some researchers have applied the technique for detecting faults in mechanical systems and bearings. In this paper, we try to better understand the conditions of applicability and which is the best algorithm to be adopted for these purposes. In fact, to get the methodology profitable and efficient to enhance the signal spikes due to fault in rings and balls/rollers of bearings, some parameters have to be properly selected. This is a problem since in system identification this procedure should be as blind as possible. Two algorithms are analysed: the first exploits classical SR with three parameters mutually dependent, while the other uses Woods-Saxon potential, with three parameters yet but holding a different meaning. The comparison of the performances of the two algorithms and the optimal choice of their parameters are the scopes of this paper. Algorithms are tested on simulated and experimental data showing an evident capacity of increasing the signal to noise ratio.

  13. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  14. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  15. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2017-08-16

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  16. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice.

    Science.gov (United States)

    Sakurai, Takayuki; Watanabe, Satoshi; Kamiyoshi, Akiko; Sato, Masahiro; Shindo, Takayuki

    2014-07-21

    Microinjection of clustered regulatory interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-related RNA and DNA into fertilized eggs is a novel approach for creating gene-modified mice. Blastocysts obtained just before implantation may be appropriate for testing the fidelity of CRIPSR/Cas9-mediated genome editing because they can be individually handled in vitro and obtained 3days after microinjection, thus allowing researchers to check mutations rapidly. However, it is not known whether indel mutations caused by the CRISPR/Cas9 system can be reproducibly detected in embryos. In this study, we assessed the detection of CRISPR/Cas9-induced mutations in embryos. T7 endonuclease I was more effective than Surveyor nuclease for detecting mutations in annealed fragments derived from 2 plasmids, which contained nearly identical sequences. Mouse fertilized eggs were microinjected with CRISPR/Cas9-related RNA/DNA to examine whether non-homologous end joining-mediated knockout and homologous recombination-mediated knockin occurred in the endogenous receptor (G protein-coupled) activity modifying protein 2 (Ramp2) gene. Individual blastocysts were lysed to obtain crude DNA solutions, which were used for polymerase chain reaction (PCR) assays. T7 endonuclease I-based PCR and sequencing analysis demonstrated that 25-100% of the embryos were knockout embryos and 7-57% of the embryos were knockin embryos. Our results also established that crude DNA from a single blastocyst was an appropriate template for Whole genome amplification and subsequent assessment by PCR and the T7 endonuclease I-based assay. The single blastocyst-based assay was useful for determining whether CRISPR/Cas9-mediated genome editing worked in murine embryos.

  17. Improved detection of the KIT D816V mutation in patients with systemic mastocytosis using a quantitative and highly sensitive real-time qPCR assay

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Vestergaard, Hanne; Møller, Michael Boe

    2011-01-01

    relevance of the assay by identifying as little as 0.03% mutation-positive cells in bone marrow aspirates from SM patients and calculate the analytical sensitivity of negative samples to determine the reliability of the result. We further demonstrate that this method also detects the KIT D816V mutation...

  18. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme

    DEFF Research Database (Denmark)

    Bross, P; Jespersen, C; Jensen, T G

    1995-01-01

    We have used expression of human medium chain acyl-CoA dehydrogenase (MCAD) in Escherichia coli as a model system for dissecting the molecular effects of two mutations detected in patients with MCAD deficiency. We demonstrate that the R28C mutation predominantly affects polypeptide folding. The a...

  19. MR Imaging-derived Oxygen Metabolism and Neovascularization Characterization for Grading and IDH Gene Mutation Detection of Gliomas.

    Science.gov (United States)

    Stadlbauer, Andreas; Zimmermann, Max; Kitzwögerer, Melitta; Oberndorfer, Stefan; Rössler, Karl; Dörfler, Arnd; Buchfelder, Michael; Heinz, Gertraud

    2017-06-01

    Purpose To explore the diagnostic performance of physiological magnetic resonance (MR) imaging of oxygen metabolism and neovascularization activity for grading and characterization of isocitrate dehydrogenase (IDH) gene mutation status of gliomas. Materials and Methods This retrospective study had institutional review board approval; written informed consent was obtained from all patients. Eighty-three patients with histopathologically proven glioma (World Health Organization [WHO] grade II-IV) were examined with quantitative blood oxygen level-dependent imaging and vascular architecture mapping. Biomarker maps of neovascularization activity (microvessel radius, microvessel density, and microvessel type indicator [MTI]) and oxygen metabolism (oxygen extraction fraction [OEF] and cerebral metabolic rate of oxygen [CMRO 2 ]) were calculated. Receiver operating characteristic analysis was used to determine diagnostic performance for grading and detection of IDH gene mutation status. Results Low-grade (WHO grade II) glioma showed areas with increased OEF (+18%, P < .001, n = 20), whereas anaplastic glioma (WHO grade III) and glioblastoma (WHO grade IV) showed decreased OEF when compared with normal brain tissue (-54% [P < .001, n = 21] and -49% [P < .001, n = 41], respectively). This allowed clear differentiation between low- and high-grade glioma (area under the receiver operating characteristic curve [AUC], 1) for the patient cohort. MTI had the highest diagnostic performance (AUC, 0.782) for differentiation between gliomas of grades III and IV among all biomarkers. CMRO 2 was decreased (P = .037) in low-grade glioma with a mutated IDH gene, and MTI was significantly increased in glioma grade III with IDH mutation (P = .013) when compared with the IDH wild-type counterparts. CMRO 2 showed the highest diagnostic performance for IDH gene mutation detection in low-grade glioma (AUC, 0.818) and MTI in high-grade glioma (AUC, 0.854) and for all WHO grades (AUC, 0

  20. Detection of induced mutations in CaFAD2 genes by next-generation sequencing leading to the production of improved oil composition in Crambe abyssinica.

    Science.gov (United States)

    Cheng, Jihua; Salentijn, Elma M J; Huang, Bangquan; Denneboom, Christel; Qi, Weicong; Dechesne, Annemarie C; Krens, Frans A; Visser, Richard G F; van Loo, Eibertus N

    2015-05-01

    Crambe abyssinica is a hexaploid oil crop for industrial applications. An increase of erucic acid (C22:1) and reduction of polyunsaturated fatty acid (PUFA) contents in crambe oil is a valuable improvement. An increase in oleic acid (C18:1), a reduction in PUFA and possibly an increase in C22:1 can be obtained by down-regulating the expression of fatty acid desaturase2 genes (CaFAD2), which code for the enzyme that converts C18:1 into C18:2. We conducted EMS-mutagenesis in crambe, followed by Illumina sequencing, to screen mutations in three expressed CaFAD2 genes. Two novel analysis strategies were used to detect mutation sites. In the first strategy, mutation detection targeted specific sequence motifs. In the second strategy, every nucleotide position in a CaFAD2 fragment was tested for the presence of mutations. Seventeen novel mutations were detected in 1100 one-dimensional pools (11 000 individuals) in three expressed CaFAD2 genes, including non-sense mutations and mis-sense mutations in CaFAD2-C1, -C2 and -C3. The homozygous non-sense mutants for CaFAD2-C3 resulted in a 25% higher content of C18:1 and 25% lower content of PUFA compared to the wild type. The mis-sense mutations only led to small changes in oil composition. Concluding, targeted mutation detection using NGS in a polyploid was successfully applied and it was found that a non-sense mutation in even a single CaFAD2 gene can lead to changes in crambe oil composition. Stacking the mutations in different CaFAD2 may gain additional changes in C18:1 and PUFA contents. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing.

    Directory of Open Access Journals (Sweden)

    Degui Zhi

    Full Text Available Recently, whole-genome sequencing, especially exome sequencing, has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases. However, it is unclear whether this approach can be generalized and effectively applied to other Mendelian diseases with high locus heterogeneity. Moreover, the current exome sequencing approach has limitations such as false positive and false negative rates of mutation detection due to sequencing errors and other artifacts, but the impact of these limitations on experimental design has not been systematically analyzed. To address these questions, we present a statistical modeling framework to calculate the power, the probability of identifying truly disease-causing genes, under various inheritance models and experimental conditions, providing guidance for both proper experimental design and data analysis. Based on our model, we found that the exome sequencing approach is well-powered for mutation detection in recessive, but not dominant, Mendelian diseases with high locus heterogeneity. A disease gene responsible for as low as 5% of the disease population can be readily identified by sequencing just 200 unrelated patients. Based on these results, for identifying rare Mendelian disease genes, we propose that a viable approach is to combine, sequence, and analyze patients with the same disease together, leveraging the statistical framework presented in this work.

  2. SPA enhanced FPIA-based detection of pesticide residue with ppb/ppt level detection limit.

    Science.gov (United States)

    Korrapati, Swathi; Pullela, Phani Kumar; Vijayalakshmi, Uthirapathy

    2017-02-01

    Pesticide residue in fruits & vegetables is one of the key issues affecting the export of rural products in India. Pesticide exposure or intake causes major nervous system problems in children. The solutions to quantitate them in field are rare and the pesticide residue detection in the parts per billion (ppb) ranges is challenging. Except ELISA, none of the existing methods can detect pesticide residues in ppb range in the field. We employed a new approach of concentrating field samples and used sodium polyacrylate (SPA) as water absorbing material. The SPA beads concentrate the field samples and obtained a sub ppb range detection using an existing FPIA system and could improve overall sensitivity by 10-100 fold. The developed assay can be done in few seconds. We have used three pesticides 2,4-D, atrazine and methyl parathion with 0.1, 0.5 and 3 ppb detection limit respectively. We developed a simple field ready FPIA device and used sodium poly acrylate (SPA) in this biochemical FPIA to enhance sensitivity. Our tests with spiked field samples offers a possibility of using SPA concentration assisted FPIA in field. This study will have far reaching applications of both qualitative & quantitative analysis chemical analytes in field samples.

  3. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations.

    Directory of Open Access Journals (Sweden)

    Thomas Pietschmann

    2009-06-01

    Full Text Available With the advent of subgenomic hepatitis C virus (HCV replicons, studies of the intracellular steps of the viral replication cycle became possible. These RNAs are capable of self-amplification in cultured human hepatoma cells, but save for the genotype 2a isolate JFH-1, efficient replication of these HCV RNAs requires replication enhancing mutations (REMs, previously also called cell culture adaptive mutations. These mutations cluster primarily in the central region of non-structural protein 5A (NS5A, but may also reside in the NS3 helicase domain or at a distinct position in NS4B. Most efficient replication has been achieved by combining REMs residing in NS3 with distinct REMs located in NS4B or NS5A. However, in spite of efficient replication of HCV genomes containing such mutations, they do not support production of infectious virus particles. By using the genotype 1b isolate Con1, in this study we show that REMs interfere with HCV assembly. Strongest impairment of virus formation was found with REMs located in the NS3 helicase (E1202G and T1280I as well as NS5A (S2204R, whereas a highly adaptive REM in NS4B still allowed virus production although relative levels of core release were also reduced. We also show that cells transfected with the Con1 wild type genome or the genome containing the REM in NS4B release HCV particles that are infectious both in cell culture and in vivo. Our data provide an explanation for the in vitro and in vivo attenuation of cell culture adapted HCV genomes and may open new avenues for the development of fully competent culture systems covering the therapeutically most relevant HCV genotypes.

  4. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291.

    Science.gov (United States)

    Thress, Kenneth S; Brant, Roz; Carr, T Hedley; Dearden, Simon; Jenkins, Suzanne; Brown, Helen; Hammett, Tracey; Cantarini, Mireille; Barrett, J Carl

    2015-12-01

    To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may

  5. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity

    Science.gov (United States)

    Salvat, Regina S.; Parker, Andrew S.; Kirsch, Jack R.; Brooks, Seth A.

    2017-01-01

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide–MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 109 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening. PMID:28607051

  6. Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

    Science.gov (United States)

    Salvat, Regina S; Verma, Deeptak; Parker, Andrew S; Kirsch, Jack R; Brooks, Seth A; Bailey-Kellogg, Chris; Griswold, Karl E

    2017-06-27

    Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 9 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

  7. A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs

    OpenAIRE

    Mosher, Dana S.; Pascale Quignon; Carlos D. Bustamante; Sutter, Nathan B; Mellersh, Cathryn S; Heidi G Parker; Ostrander, Elaine A.

    2007-01-01

    Author Summary An individual's genetic profile can play a role in defining their natural skills and talents. The canine species presents an excellent system in which to find such associative genes. The purebred dog has a long history of selective breeding, which has produced specific breeds of extraordinary strength, intelligence, and speed. We have discovered a mutation in the canine myostatin gene, a negative regulator of muscle mass, which affects muscle composition, and hence racing speed...

  8. Interlaboratory development and validation of a HRM method applied to the detection of JAK2 exon 12 mutations in polycythemia vera patients.

    Directory of Open Access Journals (Sweden)

    Valerie Ugo

    Full Text Available BACKGROUND: Myeloproliferative disorders are characterized by clonal expansion of normal mature blood cells. Acquired mutations giving rise to constitutive activation of the JAK2 tyrosine kinase has been shown to be present in the majority of patients. Since the demonstration that the V617F mutation in the exon 14 of the JAK2 gene is present in about 90% of patients with Polycythemia Vera (PV, the detection of this mutation has become a key tool for the diagnosis of these patients. More recently, additional mutations in the exon 12 of the JAK2 gene have been described in 5 to 10% of the patients with erythrocytosis. According to the updated WHO criteria the presence of these mutations should be looked for in PV patients with no JAK2 V617F mutation. Reliable and accurate methods dedicated to the detection of these highly variable mutations are therefore necessary. METHODS/FINDINGS: For these reasons we have defined the conditions of a High Resolution DNA Melting curve analysis (HRM method able to detect JAK2 exon 12 mutations. After having validated that the method was able to detect mutated patients, we have verified that it gave reproducible results in repeated experiments, on DNA extracted from either total blood or purified granulocytes. This HRM assay was further validated using 8 samples bearing different mutant sequences in 4 different laboratories, on 3 different instruments. CONCLUSION: The assay we have developed is thus a valid method, adapted to routine detection of JAK2 exon 12 mutations with highly reproducible results.

  9. Genetic analysis in nine unrelated Italian patients affected by OTC deficiency: detection of novel mutations in the OTC gene.

    Science.gov (United States)

    Bisanzi, S; Morrone, A; Donati, M A; Pasquini, E; Spada, M; Strisciuglio, P; Parenti, G; Parini, R; Papadia, F; Zammarchi, E

    2002-06-01

    Ornithine transcarbamylase deficiency (OTCD) is an X-linked urea cycle disorder due to a defect of the mithocondrial enzyme ornithine transcarbamylase (OTC). Genetic analysis in nine unrelated Italian patients affected by OTCD (one male patient and eight female manifesting carriers) led to the detection of three novel mutations and six previously reported mutations in the OTC gene. The analysis was performed by direct sequencing of OTC cDNA, OTC exons, and intron-exon boundaries and enzymatic restriction analysis on the patients' genomic DNA and total RNA isolated from peripheral blood lymphocytes. In the male patient the new mutation S132P due to the nucleotide change c.394T>C was identified. In a manifesting carrier the nucleotide change c.292G>A that leads to the novel amino acid substitution E98K was identified; this mutation is close to the OTC protein's carbamyl phospate binding site. In another manifesting carrier the OTC cDNA analysis revealed the normally spliced transcript and an aberrant transcript with an insertion of two nucleotides (c.77-78insAG). In the patient's genomic DNA we identified a new transvertion IVS1-3C>G at the heterozygous state; this nucleotide change generates a new splice acceptor site in intron 1 that induces an RNA splicing defect. This insertion causes a frame shift in OTC cDNA ORF and leads to a premature stop codon. The previously described mutations N161S, R141Q, T178M, R92X, A208T, M268T were identified in the other six manifesting carriers. (c) 2002 Elsevier Science (USA).

  10. Phosphomimetic Mutations Enhance Oligomerization of Phospholemman and Modulate Its Interaction with the Na/K-ATPase*

    Science.gov (United States)

    Song, Qiujing; Pallikkuth, Sandeep; Bossuyt, Julie; Bers, Donald M.; Robia, Seth L.

    2011-01-01

    Na/K-ATPase (NKA) activity is dynamically regulated by an inhibitory interaction with a small transmembrane protein, phospholemman (PLM). Inhibition is relieved upon PLM phosphorylation. Phosphorylation may alter how PLM interacts with NKA and/or itself, but details of these interactions are unknown. To address this, we quantified FRET between PLM and its regulatory target NKA in live cells. Phosphorylation of PLM was mimicked by mutation S63E (PKC site), S68E (PKA/PKC site), or S63E/S68E. The dependence of FRET on protein expression in live cells yielded information about the structure and binding affinity of the PLM-NKA regulatory complex. PLM phosphomimetic mutations altered the quaternary structure of the regulatory complex and reduced the apparent affinity of the PLM-NKA interaction. The latter effect was likely due to increased oligomerization of PLM phosphomimetic mutants, as suggested by PLM-PLM FRET measurements. Distance constraints obtained by FRET suggest that phosphomimetic mutations slightly alter the oligomer quaternary conformation. Photon-counting histogram measurements revealed that the major PLM oligomeric species is a tetramer. We conclude that phosphorylation of PLM increases its oligomerization into tetramers, decreases its binding to NKA, and alters the structures of both the tetramer and NKA regulatory complex. PMID:21220422

  11. Phosphomimetic mutations enhance oligomerization of phospholemman and modulate its interaction with the Na/K-ATPase.

    Science.gov (United States)

    Song, Qiujing; Pallikkuth, Sandeep; Bossuyt, Julie; Bers, Donald M; Robia, Seth L

    2011-03-18

    Na/K-ATPase (NKA) activity is dynamically regulated by an inhibitory interaction with a small transmembrane protein, phospholemman (PLM). Inhibition is relieved upon PLM phosphorylation. Phosphorylation may alter how PLM interacts with NKA and/or itself, but details of these interactions are unknown. To address this, we quantified FRET between PLM and its regulatory target NKA in live cells. Phosphorylation of PLM was mimicked by mutation S63E (PKC site), S68E (PKA/PKC site), or S63E/S68E. The dependence of FRET on protein expression in live cells yielded information about the structure and binding affinity of the PLM-NKA regulatory complex. PLM phosphomimetic mutations altered the quaternary structure of the regulatory complex and reduced the apparent affinity of the PLM-NKA interaction. The latter effect was likely due to increased oligomerization of PLM phosphomimetic mutants, as suggested by PLM-PLM FRET measurements. Distance constraints obtained by FRET suggest that phosphomimetic mutations slightly alter the oligomer quaternary conformation. Photon-counting histogram measurements revealed that the major PLM oligomeric species is a tetramer. We conclude that phosphorylation of PLM increases its oligomerization into tetramers, decreases its binding to NKA, and alters the structures of both the tetramer and NKA regulatory complex.

  12. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  13. Mutation of the doublecortin gene in male patients with double cortex syndrome: somatic mosaicism detected by hair root analysis.

    Science.gov (United States)

    Kato, M; Kanai, M; Soma, O; Takusa, Y; Kimura, T; Numakura, C; Matsuki, T; Nakamura, S; Hayasaka, K

    2001-10-01

    The molecular basis of double cortex syndrome was investigated in 2 male patients. Magnetic resonance imaging of the patients' heads showed diffuse subcortical band heterotopia, as is seen in female patients. We found a heterozygous mutation for Asp50Lys or Arg39Stop in both patients. Microsatellite polymorphism analysis revealed that both patients had inherited a single X chromosome from their mothers. Restriction enzyme analysis using DNA extracted from the hair roots of each patient showed four different patterns in the combination of cells carrying wild and mutant alleles, which strongly suggest somatic mosaicism. We conclude that somatic mosaic mutations in the doublecortin gene in male patients can cause subcortical band heterotopia, and that molecular analysis using hair roots is a useful method for detecting somatic mosaicism.

  14. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays.

    Science.gov (United States)

    Weber, Britta; Meldgaard, Peter; Hager, Henrik; Wu, Lin; Wei, Wen; Tsai, Julie; Khalil, Azza; Nexo, Ebba; Sorensen, Boe S

    2014-04-28

    Lung cancer patients with mutations in the epidermal growth factor receptor (EGFR) are primary candidates for EGFR-targeted therapy. Reliable analyses of such mutations have previously been possible only in tumour tissue. Here, we demonstrate that mutations can be detected in plasma samples with allele-specific PCR assays. Pairs of the diagnostic biopsy and plasma obtained just prior to start of erlotinib treatment were collected from 199 patients with adenocarcinoma of non-small-cell lung cancer. DNA from both sample types was isolated and examined for the presence of mutations in exons 18-21 of the EGFR gene, employing the cobas(®) EGFR Tissue Test and cobas(®) EGFR Blood Test (in development, Roche Molecular Systems, Inc., CA, USA). Test results were obtained in all 199 (100%) plasma samples and 196/199 (98%) of the biopsies. EGFR-activating mutations were identified in 24/199 (12%) plasma samples and 28/196 (14%) biopsy samples, and 17/196 (9%) matched pairs contained the same mutation. Six EGFR mutations were present only in plasma samples but not in the biopsy samples. The overall concordance of the EGFR gene mutations detected in plasma and biopsy tissue was 179/196 (91%) (kappa value: 0.621). Mutational analysis of the EGFR gene in plasma samples is feasible with allele-specific PCR assays and represents a non-invasive supplement to biopsy analysis. M-20080012 from March 10, 2008 and reported to ClinicalTrials.gov: NCT00815971.

  15. PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    Directory of Open Access Journals (Sweden)

    Dash Aditya P

    2009-07-01

    Full Text Available Abstract Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR, an Amplification Refractory Mutation System (ARMS and Primer Introduced Restriction Analysis-PCR (PIRA-PCR were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method

  16. Combining GWAS and RNA-Seq Approaches for Detection of the Causal Mutation for Hereditary Junctional Epidermolysis Bullosa in Sheep.

    Directory of Open Access Journals (Sweden)

    Aroa Suárez-Vega

    Full Text Available In this study, we demonstrate the use of a genome-wide association mapping together with RNA-seq in a reduced number of samples, as an efficient approach to detect the causal mutation for a Mendelian disease. Junctional epidermolysis bullosa is a recessive genodermatosis that manifests with neonatal mechanical fragility of the skin, blistering confined to the lamina lucida of the basement membrane and severe alteration of the hemidesmosomal junctions. In Spanish Churra sheep, junctional epidermolysis bullosa (JEB has been detected in two commercial flocks. The JEB locus was mapped to Ovis aries chromosome 11 by GWAS and subsequently fine-mapped to an 868-kb homozygous segment using the identical-by-descent method. The ITGB4, which is located within this region, was identified as the best positional and functional candidate gene. The RNA-seq variant analysis enabled us to discover a 4-bp deletion within exon 33 of the ITGB4 gene (c.4412_4415del. The c.4412_4415del mutation causes a frameshift resulting in a premature stop codon at position 1472 of the integrin β4 protein. A functional analysis of this deletion revealed decreased levels of mRNA in JEB skin samples and the absence of integrin β4 labeling in immunohistochemical assays. Genotyping of c.4412_4415del showed perfect concordance with the recessive mode of the disease phenotype. Selection against this causal mutation will now be used to solve the problem of JEB in flocks of Churra sheep. Furthermore, the identification of the ITGB4 mutation means that affected sheep can be used as a large mammal animal model for the human form of epidermolysis bullosa with aplasia cutis. Our approach evidences that RNA-seq offers cost-effective alternative to identify variants in the species in which high resolution exome-sequencing is not straightforward.

  17. Urothelial carcinoma of the upper urinary tract diagnosed via FGFR3 mutation detection in urine: a case report

    Directory of Open Access Journals (Sweden)

    Silverberg Daniel M

    2012-08-01

    Full Text Available Abstract Background Upper urinary tract cancer is typically diagnosed with urine cytology and imaging techniques. These assays can be limited by sensitivity, specificity, or technical issues making some diagnoses difficult. Case presentation A 73-year old man presented to the clinic with a right renal pelvis filling defect that was detected by a CT-scan performed for unrelated reasons. Urine cytology was negative. Cystoscopy, retrograde pyelogram, and partial ureteroscopy were unable to visualize the lesion resulting in an indeterminate diagnosis. A subsequent CT scan confirmed the renal lesion which appeared to have become larger and was consistent with urothelial carcinoma. A urine based genetic assay was used to test for the presence of urothelial carcinoma. This assay evaluates the presence of mutations in fibroblast growth factor receptor 3 (FGFR3. Mutations in FGFR3 are known to be associated with urothelial carcinoma and have a positive predictive value of 95% when detected in patients with no history of TCC. A mutation in exon 10 (Y375C of FGFR3 was identified. Nephroureterectomy was performed and the subsequent pathology confirmed urothelial carcinoma. In addition, PCR analysis on isolated tumor tissue indicated the tumor carried the same FGFR3 mutation as that of the DNA isolated from urine, consistent with the tumor being the origin of the mutant DNA. Conclusion This study indicates that the FGFR3 urine assay, which was originally developed to monitor bladder cancer, is also a useful tool for diagnosing upper urinary tract cancer in a real-life setting.

  18. FABP9 Mutations Are Not Detected in Cases of Infertility due to Sperm Morphological Defects in Iranian Men

    Directory of Open Access Journals (Sweden)

    Javad Jamshidi

    2014-01-01

    Full Text Available Background: Fatty acid binding proteins (FABPs are members of the intracellular lipid binding protein (iLBPs family and most of them show tissue specific expression. FABP9/PERF15 (Perforatorial15 is the male germ cell-specific fatty acid-binding protein. It was first identified as the major constituent of the murine sperm perforatorium and perinuclear theca. To date, investigations in mice have demonstrated that this protein has a role in the male reproductive system, especially in spermatogenesis. Also, it has been reported that FABP9 can protect sperm fatty acids from oxidative damage. Recently it was shown that it can affect sperm morphology in mice. Based on these findings, we designed a study to evaluate if mutations of this gene can affect sperm morphology in humans. Materials and Methods: In this case-control study, DNA was extracted from peripheral blood of 100 infertile males with normal sperm count but with a number of morphologically abnormal sperms in their semen that was above normal. Four exons and one intron of the FABP9 gene were amplified by polymerase chain reaction (PCR, re-sequenced and then analyzed for mutation detection. Results: We did not detect any mutation in any area of the four exons, intron 3 and splice sites of FABP9 gene in any of the studied 100 samples. Conclusion: There was no mutation in the exonic regions and the poor sperm morphology. However, we didn’t analyze the promoter, intron 1 and 2 to establish conclusions regarding the association of these genic regions and sperm dysmorphology.

  19. Imprinting mutations in Angelman syndrome detected by Southern blotting using a probe containing exon {alpha} of SNRPN

    Energy Technology Data Exchange (ETDEWEB)

    Beuten, J.; Sutcliffe, J.S.; Nakao, M. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy (UPD), or other mutations. The SNRPN gene maps in this region, is paternally expressed, and is a candidate gene for PWS. Southern blotting using methylation-sensitive enzymes and a genomic DNA probe from the CpG island containing exon {alpha} of the SNRPN gene reveals methylation specific for the maternal allele. In cases of the usual deletions or UPD, the probe detects absence of an unmethylated allele in PWS and absence of a methylated allele in AS. We have analyzed 21 nondeletion/nonUPD AS patients with this probe and found evidence for an imprinting mutation (absence of a methylated allele) in 3 patients. Southern blotting with methylation-sensitive enzymes using the exon {alpha} probe, like use of the PW71 probe, should detect abnormalities in all known PWS cases and in 3 of the 4 forms of AS: deletion, UPD and imprinting mutations. This analysis provides a valuable diagnostic approach for PWS and AS. In efforts to localize the imprinting mutations in AS, one patient was found with failure to inherit a dinucleotide repeat polymorphism near probe 189-1 (D15S13). Analysis of this locus in AS families and CEPH families demonstrates a polymorphism that impairs amplification and a different polymorphism involving absence of hybridization to the 189-1 probe. The functional significance, if any, of deletion of the 189-1 region is unclear.

  20. Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma.

    Science.gov (United States)

    Metz, Claudia Hd; Scheulen, Max; Bornfeld, Norbert; Lohmann, Dietmar; Zeschnigk, Michael

    2013-04-01

    Elevated levels of cell-free DNA (cfDNA) are frequently observed in tumor patients. Activating mutations in exon 4 (R183) and exon 5 (Q209) of GNAQ and GNA 11 are almost exclusively found in uveal melanoma, thus providing a highly specific marker for the presence of circulating tumor DNA (ctDNA). To establish a reliable, noninvasive assay that might allow early detection and monitoring of metastatic disease, we determined the proportion of GNAQ or GNA 11 mutant reads in cfDNA of uveal melanoma patients by ultradeep sequencing. Cell-free DNA from 28 uveal melanoma patients with metastases or extraocular growth was isolated and quantified by real-time polymerase chain reaction (PCR) (7-1550 ng DNA/mL plasma). GNAQ and GNA 11 regions of interest were amplified in 22 of 28 patients and ultradeep sequencing of amplicons was performed to detect even low proportions of mutant reads. We detected Q209 mutations (2-38% mutant reads) in either GNAQ or GNA 11 in the plasma of 9 of 22 metastasized patients. No correlation between the proportion of mutant reads and the concentration of cfDNA could be detected. Among the nine ctDNA-positive patients, four had metastases in bone, whereas no metastases were detected in the 13 ctDNA-negative patients at this location (P = 0.025). Furthermore, ctDNA-positive patients tended to be younger at initial diagnosis and show larger metastases. The results show that ultradeep amplicon sequencing can be used to detect tumor DNA in plasma of metastasized uveal melanoma patients. It remains to be shown if this approach can be used for early detection of disseminated tumor disease.

  1. Adaptive mutations in the nuclear export protein of human-derived H5N1 strains facilitate a polymerase activity-enhancing conformation

    NARCIS (Netherlands)

    P. Reuther (Peter); S. Giese (Sebastian); H.M. Götz (Hannelore); N. Kilb (Normann); B. Mänz (Benjamin); L. Brunotte (Linda); M. Schwemmle (Martin)

    2014-01-01

    textabstractThe nuclear export protein (NEP) (NS2) of the highly pathogenic human-derived H5N1 strain A/Thailand/1(KAN-1)/2004 with the adaptive mutation M16I greatly enhances the polymerase activity in human cells in a concentration-dependent manner. While low NEP levels enhance the polymerase

  2. Development and validation of a novel PCR-RFLP based method for the detection of 3 primary mitochondrial mutations in Leber's hereditary optic neuropathy patients.

    Science.gov (United States)

    Eustace Ryan, Siobhan; Ryan, Fergus; Barton, David; O'Dwyer, Veronica; Neylan, Derek

    2015-01-01

    Leber's Hereditary Optic Neuropathy (LHON; MIM 535000) is one of the most commonly inherited optic neuropathies and it results in significant visual morbidity among young adults with a peak age of onset between the ages of 15-30. The worldwide incidence of LHON is approximately 1 in 31,000. 95 % of LHON patients will have one of 3 primary mitochondrial mutations, G3460A (A52T of ND1), G11778A (R340H of ND4) and T14484C (M64V of ND6). There is incomplete penetrance and a marked gender bias in the development of visual morbidity with approximately 50 % of male carriers and 10 % of female carriers developing optic neuropathy. Visual recovery can occur but is dependent on the mutation present with the highest level of visual recovery seen in patients who have the T14484C mutation. The 3 primary mutations are typically identified by individual end-point PCR-restriction fragment length polymorphism (RFLP) or individual targeted bi-directional Sanger sequencing reactions. The purpose of this study was to design a simple multiplex PCR-RFLP that could detect these 3 primary LHON mutations in one assay. PCR primers were designed to incorporate a MaeIII restriction site in the presence of 3460A and 14484C mutations with the 11778A mutation naturally incorporating a MaeIII site. A multiplex PCR-RFLP assay was developed to detect the 3 common mutations in a single assay. Synthetic LHON controls based on the mitochondrial genome harbouring the 3 common mutations were synthesized and cloned into plasmids to act as reliable assay controls. DNA from previously tested patients and the synthetic LHON controls were subjected to the multiplex PCR-RFLP assay. The RFLP products were detected by agarose gel electrophoresis. The novel PCR-RFLP assay accurately detects the 3 primary mutations both in patient DNA and in synthesized DNA control samples with a simple visual mutation detection procedure. The synthesized DNA was demonstrated to be a robust control for the detection of LHON

  3. A Comparison Between Denaturing Gradient Gel Electrophoresis and Denaturing High Performance Liquid Chromatography in Detecting Mutations in Genes Associated with Hereditary Non-Polyposis Colorectal Cancer (HNPCC and the Identification of 9 New Mutations Previously Unidentified by DGGE

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff J

    2003-12-01

    Full Text Available Abstract Denaturing high performance liquid chromatography is a relatively new method by which heteroduplex structures formed during the PCR amplification of heterozygote samples can be rapidly identified. The use of this technology for mutation detection in hereditary non-polyposis colorectal cancer (HNPCC has the potential to appreciably shorten the time it takes to analyze genes associated with this disorder. Prior to acceptance of this method for screening genes associated with HNPCC, assessment of the reliability of this method should be performed. In this report we have compared mutation and polymorphism detection by denaturing gradient gel electrophoresis (DGGE with denaturing high performance liquid chromatography (DHPLC in a set of 130 families. All mutations/polymorphisms representing base substitutions, deletions, insertions and a 23 base pair inversion were detected by DHPLC whereas DGGE failed to identify four single base substitutions and a single base pair deletion. In addition, we show that DHPLC has been used for the identification of 5 different mutations in exon 7 of hMSH2 that could not be detected by DGGE. From this study we conclude that DHPLC is a more effective and rapid alternative to the detection of mutations in hMSH2 and hMLH1 with the same or better accuracy than DGGE. Furthermore, this technique offers opportunities for automation, which have not been realised for the majority of other methods of gene analysis.

  4. Genetic etiology of hereditary colorectal cancer: new mechanisms and advanced mutation detection techniques

    NARCIS (Netherlands)

    Gazzoli, I.

    2006-01-01

    The human DNA mismatch repair (MMR) system functions to repair mispaired bases in DNA that result from DNA replication errors and thereby prevents the accumulation of mutations due to such replication errors. Hereditary nonpolyposis colorectal cancer (HNPCC), the most common form of inherited colon

  5. Early detection of breast and ovarian cancer in families with BRCA mutations

    NARCIS (Netherlands)

    Vasen, HFA; Tesfay, E; Mourits, MJE; Rutgers, E; Verheyen, R; Oosterwijk, J; Beex, L; Boonstra, J.

    Women at risk of breast and ovarian cancer due to a genetic predisposition may opt for preventive surgery or surveillance. The aim of this study was to determine the effectiveness of surveillance in families with a BRCA mutation. Sixty-eight BRCA-families underwent surveillance using annual

  6. Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen Lise Garm; Pallisgaard, Niels; Andersen, Rikke Fredslund

    2015-01-01

    with chemotherapy refractory mCRC and 100 healthy individuals. Plasma was obtained from an EDTA blood-sample, and the total number of DNA alleles and KRAS mutated alleles were assessed using an in-house ARMS-qPCR as previously described. RESULTS: Median cfDNA levels were higher in mCRC compared to controls (p

  7. Detection of mutations in the gyrA of clinical Salmonella spp.

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... and extended-spectrum ß-lactam resistance among Salmonella spp. Key words: Quinolone resistance, mutations in gyrA. INTRODUCTION. In gram-negative bacteria the principal target of quinolone including fluoroquinolone activity is the type II topoisomerase, DNA gyrAse. DNA gyrAse is a tetramer.

  8. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness

    NARCIS (Netherlands)

    Bardien, Soraya; Human, Hannique; Harris, Tashneem; Hefke, Gwynneth; Veikondis, Rene; Schaaf, H. Simon; van der Merwe, Lize; Greinwald, John H.; Fagan, Johan; de Jong, Greetje

    2009-01-01

    Background: South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB) in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to

  9. High mutation detection rate in the COL4A5 collagen gene in suspected Alport syndrome using PCR and direct DNA sequencing

    DEFF Research Database (Denmark)

    Martin, P; Heiskari, N; Zhou, J

    1998-01-01

    -amplified and sequenced from DNA of 50 randomly chosen patients with suspected Alport syndrome. Mutations were found in 41 patients, giving a mutation detection rate of 82%. Retrospective analysis of clinical data revealed that two of the cases might be autosomal. Although it could not be determined whether the remaining...... seven cases (14%) were autosomal or X chromosome-linked, it is likely that some of them were autosomal. It is concluded that PCR amplification and direct DNA sequencing of the promoter and exons is currently the best procedure to detect mutations in COL4A5 in Alport syndrome....

  10. Detection of Hb E mutation (beta(26), GAG-AAG, Glu-Lys) using allelic discrimination analysis.

    Science.gov (United States)

    Sangkitporn, S; Sangkitporn, S K; Sangnoi, A; Duangruang, S

    2009-02-01

    A method for detection of hemoglobin (Hb) E mutation was developed based on allelic discrimination analysis. Two probes labeled with different fluorescent reporter dyes were designed to specifically detect variation of a single nucleic acid polymorphism (SNP) site in the target template sequence. Polymerase chain reaction (PCR) products of normal allele and mutant allele were detected directly by analyzing fluorescent signal of each probe. This method was validated in term of accuracy (by comparing with sequence analysis) and reproducibility. The % CV between run precision was 5.16-8.86%. The narrow scatter of the results confirmed the reproducibility of the assay. This technique is a rapid, reliable and cost-effective method to differentiate Hb E homozygosity from beta(0)-thalassemia/Hb E in populations with a high frequency of beta-thalassemia and Hb E.

  11. Replication Errors Made During Oogenesis Lead to Detectable De Novo mtDNA Mutations in Zebrafish Oocytes with a Low mtDNA Copy Number.

    Science.gov (United States)

    Otten, Auke B C; Stassen, Alphons P M; Adriaens, Michiel; Gerards, Mike; Dohmen, Richard G J; Timmer, Adriana J; Vanherle, Sabina J V; Kamps, Rick; Boesten, Iris B W; Vanoevelen, Jo M; Muller, Marc; Smeets, Hubert J M

    2016-12-01

    Of all pathogenic mitochondrial DNA (mtDNA) mutations in humans, ∼25% is de novo, although the occurrence in oocytes has never been directly assessed. We used next-generation sequencing to detect point mutations directly in the mtDNA of 3-15 individual mature oocytes and three somatic tissues from eight zebrafish females. Various statistical and biological filters allowed reliable detection of de novo variants with heteroplasmy ≥1.5%. In total, we detected 38 de novo base substitutions, but no insertions or deletions. These 38 de novo mutations were present in 19 of 103 mature oocytes, indicating that ∼20% of the mature oocytes carry at least one de novo mutation with heteroplasmy ≥1.5%. This frequency of de novo mutations is close to that deducted from the reported error rate of polymerase gamma, the mitochondrial replication enzyme, implying that mtDNA replication errors made during oogenesis are a likely explanation. Substantial variation in the mutation prevalence among mature oocytes can be explained by the highly variable mtDNA copy number, since we previously reported that ∼20% of the primordial germ cells have a mtDNA copy number of ≤73 and would lead to detectable mutation loads. In conclusion, replication errors made during oogenesis are an important source of de novo mtDNA base substitutions and their location and heteroplasmy level determine their significance. Copyright © 2016 by the Genetics Society of America.

  12. Detection of heterozygous c.1708C>T and c.1978C>G thyroid peroxidase (TPO) mutations in Iraqi patients with toxic and nontoxic goiter.

    Science.gov (United States)

    Al-Faisal, A H M; Al-Ramahi, I J; Abudl-Hassan, I A; Hamdan, A T; Barusrux, S

    2014-01-01

    Sixty-three Arabic patients (16 males and 47 females) with thyroid toxic and nontoxic goiter who attended the endocrinologist in Nuclear Medicine Hospital and Al Yarmok Nuclear Medicine Department in Baghdad, Iraq were examined for thyroid peroxidase (TPO) gene mutations. A total of ten heterozygous mutations have been identified in the human TPO gene associated with thyroid toxic and nontoxic goiter. These mutations involved transition or transversion of cysteine either by thymine or guanine at the position 1708 of the exon 10 (c.1708C>T) and the position 1978 of the exon 11 (c.1978C>G). From a total of ten detected mutations, two c.1978C>G mutations were detected in nontoxic goiter patients and eight (two c.1708C>T and six c.1978C>G mutations) were detected in toxic goiter. In conclusion, this study identified ten TPO mutations associated with toxic and nontoxic goiter that have not been yet reported in Iraq, and most of them are detected among females (90 %) and adults age between 30 and 50 years old (80 %).

  13. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    Directory of Open Access Journals (Sweden)

    Alison A Williams

    Full Text Available Methyl-CpG binding protein 2 (MeCP2 is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X, a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80 and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  14. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion.

    Directory of Open Access Journals (Sweden)

    Matthew P Wood

    Full Text Available Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.

  15. Value of Immunohistochemical Methods in Detecting EML4-ALK Fusion Mutations: 
A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Chang LIU

    2016-01-01

    Full Text Available Background and objective The fusion between echinoderm microtubule-associated protein 4 (EML4 and anaplastic lymphatic tumor kinase (ALK rearrangement is present in approximately 5% of non-small cell lung cancer (NSCLC patients. It has been regarded as another new target gene after epidermal growth factor receptor (EGFR and K-ras. Figures showed that the disease control rate could reach up to 80% in NSCLC patients with EML4-ALK fusion gene after treated with ALK inhibitors. Thus, exploring an accurate and rapid detecting method is the key in screening NSCLC patients with EML4-ALK expressions. The aim of this study is to analyze the specificity and sensitivity of IHC in detecting EML4-ALK fusion mutations. To evaluate the accuracy and clinical value of this method, and then provide basis for individual molecular therapy of NSCLC patients. Methods Using Pubmed database to search all documents required. The deadline of retrieval was February 25, 2015. Then further screening the articles according to the inclusion and exclusion criteria. Using diagnostic test meta-analysis methods to analyze the sensitivity and specificity of the immunohistochemistry (IHC method compared with fluorescence in situ hybridization (FISH method. Results Eleven literatures were added into the meta analysis, there were 3,234 of total cases. The diagnositic odds ratio (DOR was 1,135.00 (95%CI: 337.10-3,821.46; the area under curve (AUC of summary receiver operating characteristic curve (SROC curve was 0.992,3 (SEAUC=0.003,2, the Q* was 0.964,4 (SEQ*=0.008,7. Conclusion Immunohistochemical detection of EML4-ALK fusion gene mutation with specific antibody is feasible. It has high sensitivity and specificity. IHC can be a simple and rapid way in screening EML4-ALK fusion gene mutation and exhibits important clinical values.

  16. Evaluation of molecular diagnostic approaches for the detection of BRAF p.V600E mutations in papillary thyroid cancer: Clinical implications.

    Directory of Open Access Journals (Sweden)

    Artur Kowalik

    Full Text Available Differentiated papillary thyroid cancer (PTC is the most common cancer of the endocrine system. PTC has a very good prognosis and a high 5 year survival rate; however, some patients are unresponsive to treatment, and their diagnosis eventually results in death. Recent efforts have focused on searching for prognostic and predictive factors that may enable treatment personalization and monitoring across the course of the disease. The presence of the BRAF mutation is considered to contribute to the risk of poor clinical course, according to American Thyroid Association (ATA recommendations. The method used for genotyping can impact the predicted mutation frequency; however, ATA recommendations do not address this issue. We evaluated the molecular diagnostic (BRAF p.V600E mutation results of 410 patients treated for PTC. We thoroughly analyzed the impact of three different BRAF mutation detection methods, Sanger Sequencing (Seq, allele-specific amplification PCR (ASA-PCR, and quantitative PCR (qPCR, on the frequency of mutation detection in 399 patients. Using Seq, we detected the BRAF mutation in 37% of patients; however, we were able to detect BRAF mutations in 57% and 60% of patients using the more sensitive ASA-PCR and qPCR technologies, respectively. Differences between methods were particularly marked in the thyroid papillary microcarcinoma group; BRAF p.V600E mutations were found in 37% of patients using Seq and 63% and 66% of patients using ASA-PCR and qPCR, respectively. We also evaluated how these different diagnostic methods were impacted by DNA quality. Applying methods with different sensitivities to the detection of BRAF p.V600E mutations may result in different results for the same patient; such data can influence stratification of patients into different risk groups, leading to alteration of treatment and follow-up schemes.

  17. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    Directory of Open Access Journals (Sweden)

    Zhiyuan Wu

    Full Text Available BACKGROUND: JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. METHODOLOGY/PRINCIPAL FINDINGS: Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. CONCLUSIONS: With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  18. Tumor volume determines the feasibility of cell-free DNA sequencing for mutation detection in non-small cell lung cancer.

    Science.gov (United States)

    Ohira, Tatsuo; Sakai, Kazuko; Matsubayashi, Jun; Kajiwara, Naohiro; Kakihana, Masatoshi; Hagiwara, Masaru; Hibi, Masaaki; Yoshida, Koichi; Maeda, Junichi; Ohtani, Keishi; Nagao, Toshitaka; Nishio, Kazuto; Ikeda, Norihiko

    2016-11-01

    Next-generation sequencing (NGS) and digital PCR technologies allow analysis of the mutational profile of circulating cell-free DNA (cfDNA) in individuals with advanced lung cancer. We have now evaluated the feasibility of cfDNA sequencing for mutation detection in patients with non-small cell lung cancer at earlier stages. A total of 150 matched tumor and serum samples were collected from non-small cell lung cancer patients at stages IA-IIIA. Amplicon sequencing with DNA extracted from tumor tissue detected frequent mutations in EGFR (37% of patients), TP53 (39%), and KRAS (10%), consistent with previous findings. In contrast, NGS of cfDNA identified only EGFR, TP53, and PIK3CA mutations in three, five, and one patient, respectively, even though adequate amounts of cfDNA were extracted (median of 4936 copies/mL serum). Next-generation sequencing showed a high accuracy (98.8%) compared with droplet digital PCR for cfDNA mutation detection, suggesting that the low frequency of mutations in cfDNA was not due to a low assay sensitivity. Whereas the yield of cfDNA did not differ among tumor stages, the cfDNA mutations were detected in seven patients at stages IIA-IIIA and at T2b or T3. Tumor volume was significantly higher in the cfDNA mutation-positive patients than in the negative patients at stages T2b-T4 (159.1 ± 58.0 vs. 52.5 ± 9.9 cm(3) , P = 0.014). Our results thus suggest that tumor volume is a determinant of the feasibility of mutation detection with cfDNA as the analyte. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy neuron survival in the mouse anorexia (anx mutation

    Directory of Open Access Journals (Sweden)

    Dennis Y. Kim

    2017-05-01

    Full Text Available Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS. Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy and agouti-related peptide (Agrp in adult mice or in mice homozygous for the anorexia (anx mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T that converts an arginine to a tryptophan (R7W in the TYRO3 protein tyrosine kinase 3 (Tyro3 gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3−/− mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19. The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo. Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions

  20. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA from Patients with Non-Small Cell Lung Cancer (NSCLC.

    Directory of Open Access Journals (Sweden)

    James L Sherwood

    Full Text Available Non-invasive mutation testing using circulating tumour DNA (ctDNA is an attractive premise. This could enable patients without available tumour sample to access more treatment options.Peripheral blood and matched tumours were analysed from 45 NSCLC patients. We investigated the impact of pre-analytical variables on DNA yield and/or KRAS mutation detection: sample collection tube type, incubation time, centrifugation steps, plasma input volume and DNA extraction kits.2 hr incubation time and double plasma centrifugation (2000 x g reduced overall DNA yield resulting in lowered levels of contaminating genomic DNA (gDNA. Reduced "contamination" and increased KRAS mutation detection was observed using cell-free DNA Blood Collection Tubes (cfDNA BCT (Streck, after 72 hrs following blood draw compared to EDTA tubes. Plasma input volume and use of different DNA extraction kits impacted DNA yield.This study demonstrated that successful ctDNA recovery for mutation detection in NSCLC is dependent on pre-analytical steps. Development of standardised methods for the detection of KRAS mutations from ctDNA specimens is recommended to minimise the impact of pre-analytical steps on mutation detection rates. Where rapid sample processing is not possible the use of cfDNA BCT tubes would be advantageous.

  1. A single-tube allele specific-polymerase chain reaction to detect T315I resistant mutation in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Auewarakul Chirayu U

    2011-02-01

    Full Text Available Abstract Background BCR-ABL kinase domain (KD mutation is the major mechanism contributing to suboptimal response to tyrosine kinase inhibitors (TKI in BCR-ABL-positive chronic myeloid leukemia (CML patients. T315I mutation, as one of the most frequent KD mutations, has been shown to be strongly associated with TKI resistance and subsequent therapeutic failure. A simple and sensitive method is thus required to detect T315I mutation at the earliest stage. Methods A single-tube allele specific-polymerase chain reaction (AS-PCR method was developed to detect T315I mutation in a mixture of normal and mutant alleles of varying dilutions. Denaturing high performance liquid chromatography (DHPLC and direct sequencing were performed as a comparison to AS-PCR. Results T315I mutant bands were observed in the mixtures containing as low as 0.5-1% of mutant alleles by AS-PCR. The detection sensitivity of DHPLC was around 1.5-3% dilution whereas sequencing analysis was unable to detect below 6.25% dilution. Conclusion A single-tube AS-PCR is a rapid and sensitive screening method for T315I mutation. Detection of the most resistant leukemic clone in CML patients undergoing TKI therapy should be feasible with this simple and inexpensive method.

  2. Functional Analysis of Thyroid Peroxidase Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

    Directory of Open Access Journals (Sweden)

    Srikanta Guria

    2014-01-01

    Full Text Available Thyroid peroxidase (TPO is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. 200 hypothyroid patients (case and their corresponding sex and age matched 200 normal individuals (control were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14 was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

  3. Mutation Detection with Next-Generation Resequencing through a Mediator Genome

    Energy Technology Data Exchange (ETDEWEB)

    Wurtzel, Omri; Dori-Bachash, Mally; Pietrokovski, Shmuel; Jurkevitch, Edouard; Sorek, Rotem; Ben-Jacob, Eshel

    2010-12-31

    The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WT and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes.

  4. Detection and characterization of two novel mutations in the HNF4A gene in maturity-onset diabetes of the young type 1 in two Japanese families.

    Science.gov (United States)

    Fujiwara, Makoto; Namba, Noriyuki; Miura, Kohji; Kitaoka, Taichi; Hirai, Haruhiko; Kondou, Hiroki; Shimotsuji, Tsunesuke; Numakura, Chikahiko; Ozono, Keiichi

    2013-01-01

    Maturity-onset diabetes of the young (MODY) is a subgroup of monogenic diabetes mellitus, of which MODY1, caused by HNF4A mutations, accounts for only 5% or less and has been rarely reported in East Asian countries. Here we report two novel HNF4A mutations in two Japanese families with MODY1. Proband 1 is an 8-year-old girl and proband 2 is a 14-year-old girl. Both were nonobese, demonstrated elevated HbA1c and negative serum anti-glutamic acid decarboxylase antibodies, and had a family history of diabetes. We directly sequenced HNF4A and performed functional analysis of the detected missense mutation. Proband 1 had a heterozygous missense mutation, c.824A>G (p.Asn275Ser). Luciferase assay demonstrated a significant reduction in transcriptional activity. A heterozygous frame shift mutation, c.692-695delAGGA (p.Lys231ThrfsX5), was detected in proband 2. Affected family members shared the same mutations, showing high penetrance. Both mutations reside in the HNF4α dimerization domain and the corresponding amino acids are well conserved between species. These two mutations are most likely the cause of MODY1 in these families. Considering the effectiveness of sulfonylureas, it is important to correctly diagnose MODY1. Copyright © 2013 S. Karger AG, Basel.

  5. Ergonomics for enhancing detection of machine abnormalities.

    Science.gov (United States)

    Illankoon, Prasanna; Abeysekera, John; Singh, Sarbjeet

    2016-10-17

    Detecting abnormal machine conditions is of great importance in an autonomous maintenance environment. Ergonomic aspects can be invaluable when detection of machine abnormalities using human senses is examined. This research outlines the ergonomic issues involved in detecting machine abnormalities and suggests how ergonomics would improve such detections. Cognitive Task Analysis was performed in a plant in Sri Lanka where Total Productive Maintenance is being implemented to identify sensory types that would be used to detect machine abnormalities and relevant Ergonomic characteristics. As the outcome of this research, a methodology comprising of an Ergonomic Gap Analysis Matrix for machine abnormality detection is presented.

  6. A fragile X mosaic male with a cryptic full mutation detected in epithelium but not in blood

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, A.; Yadvish, K.N.; Spence, W.C. [Genetics and IVF Institute, Fairfax, VA (United States)] [and others

    1996-08-09

    Individuals with developmental delay who are found to have only fragile X premutations present an interpretive dilemma. The presence of the premutation could be an unrelated coincidence, or it could be a sign of mosaicism involving a full mutation in other tissues. To investigate three cases of this type, buccal epithelium was collected on cytology brushes for Southern blot analysis. In one notable case, the blood specimen of a boy with developmental delay was found to have a premutation of 0.1 extra kb, which was shown by PCR to be an allele of 60 {+-} 3 repeats. There was no trace of a full mutation. Mosaicism was investigated as an explanation for his developmental delay, although the condition was confounded by prematurity and other factors. The cheek epithelium DNA was found to contain the premutation, plus a methylated full mutation with expansions of 0.9 and 1.5 extra kb. The three populations were nearly equal in frequency but the 1.5 kb expansion was the most prominent. Regardless of whether this patient has clinical signs of fragile X syndrome, he illustrates that there can be gross tissue-specific differences in molecular subpopulations in mosaic individuals. Because brain and epithelium are more closely related embryonically than are brain and blood, cryptic full mutations in affected individuals may be evident in epithelial cells while being absent or difficult to detect in blood. This phenomenon may explain some typical cases of the fragile X phenotype associated with premutations or near-normal DNA findings. 21 refs., 1 fig., 1 tab.

  7. A Method for Next-Generation Sequencing of Paired Diagnostic and Remission Samples to Detect Mitochondrial DNA Mutations Associated with Leukemia.

    Science.gov (United States)

    Pagani, Ilaria S; Kok, Chung H; Saunders, Verity A; Van der Hoek, Mark B; Heatley, Susan L; Schwarer, Anthony P; Hahn, Christopher N; Hughes, Timothy P; White, Deborah L; Ross, David M

    2017-09-01

    Somatic mitochondrial DNA (mtDNA) mutations have been identified in many human cancers, including leukemia. To identify somatic mutations, it is necessary to have a control tissue from the same individual for comparison. When patients with leukemia achieve remission, the remission peripheral blood may be a suitable and easily accessible control tissue, but this approach has not previously been applied to the study of mtDNA mutations. We have developed and validated a next-generation sequencing approach for the identification of leukemia-associated mtDNA mutations in 26 chronic myeloid leukemia patients at diagnosis using either nonhematopoietic or remission blood samples as the control. The entire mt genome was amplified by long-range PCR and sequenced using Illumina technology. Variant caller software was used to detect mtDNA somatic mutations, and an empirically determined threshold of 2% was applied to minimize false-positive results because of sequencing errors. Mutations were called against both nonhematopoietic and remission controls: the overall concordance between the two approaches was 81% (73/90 mutations). Some discordant results were because of the presence of somatic mutations in remission samples, because of either minimal residual disease or nonleukemic hematopoietic clones. This method could be applied to study somatic mtDNA mutations in leukemia patients who achieve minimal residual disease, and in patients with nonhematopoietic cancers who have a matched uninvolved tissue available. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes.

    Science.gov (United States)

    Badar, Talha; Patel, Keyur P; Thompson, Philip A; DiNardo, Courtney; Takahashi, Koichi; Cabrero, Monica; Borthakur, Gautam; Cortes, Jorge; Konopleva, Marina; Kadia, Tapan; Bohannan, Zach; Pierce, Sherry; Jabbour, Elias J; Ravandi, Farhad; Daver, Naval; Luthra, Raja; Kantarjian, Hagop; Garcia-Manero, Guillermo

    2015-12-01

    The molecular events that drive the transformation from myelodysplastic syndromes (MDS) to acute myeloid leukemia (AML) have yet to be fully characterized. We hypothesized that detection of these mutations at the time of transformation from MDS to AML may lead to poorer outcomes. We analyzed 102 MDS patients who were admitted to our institution between 2004 and 2013, had wild-type (wt) FLT3-ITD and RAS at diagnosis, progressed to AML, and had serial mutation testing at both the MDS and AML stages. We detected FLT3-ITD and/or RAS mutations in twenty-seven (26%) patients at the time of transformation to AML. Twenty-two patients (81%) had RAS mutations and five (19%) had FLT3-ITD mutations. The median survival after leukemia transformation in patients who had detectable RAS and/or FLT3-ITD mutations was 2.4 months compared to 7.5 months in patients who retained wt RAS and FLT3-ITD (hazard ratio [HR]: 3.08, 95% confidence interval [CI]: 1.9-5.0, p<0.0001). In multivariate analysis, FLT3-ITD and RAS mutations had independent prognostic significance for poor outcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Detection of breast abnormalities on enhanced chest CT: Correlation with breast composition on mammography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Mi; Kang, Hee; Shin, Young Gyung; Yun, Jong Hyouk; Oh, Kyung Seung [Dept. of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of)

    2017-02-15

    To investigate the capability of enhanced chest computed tomography (CT) for detecting breast abnormalities and to assess the influence of breast composition on this detectability. From 2000 to 2013, 75 patients who underwent mammography, breast sonography, and enhanced chest CT within one month and had abnormalities on sonography were included. Detection rate of breast abnormality on enhanced chest CT was compared among 4 types of breast composition by the Breast Imaging Reporting and Data System. Contribution of breast composition, size and enhancement of target lesions to detectability of enhanced chest CT was assessed using logistic regression and chi-square test. Of the 75 target lesions, 34 (45.3%) were detected on enhanced chest CT, corresponding with those on breast sonography; there were no significantly different detection rates among the 4 types of breast composition (p = 0.078). Breast composition [odds ratio (OR) = 1.07, p = 0.206] and enhancement (OR = 21.49, p = 0.998) had no significant effect, but size (OR = 1.23, p = 0.004) was a significant contributing factor influencing the detectability of enhanced chest CT for breast lesions. About half of the cases (45.3%) demonstrated breast lesions on chest CT corresponding with target lesions on sonography. Breast composition defined on mammography did not affect the detectability of enhanced chest CT for breast lesions.

  10. MGB probe assay for rapid detection of mtDNA11778 mutation in the Chinese LHON patients by real-time PCR*

    Science.gov (United States)

    Wang, Jian-yong; Gu, Yang-shun; Wang, Jing; Tong, Yi; Wang, Ying; Shao, Jun-bing; Qi, Ming

    2008-01-01

    Objective: Leber’s hereditary optic neuropathy (LHON) is a maternally inherited degeneration of the optic nerve caused by point mutations of mitochondrial DNA (mtDNA). Many unsolved questions regarding the penetrance and pathophysiological mechanism of LHON demand efficient and reliable mutation testing. This study aims to develop a minor groove binder (MGB) probe assay for rapid detection of mtDNA11778 mutation and heteroplasmy in Chinese LHON patients by real-time polymerase chain reaction (PCR). Methods: Forty-eight patients suspected of having LHON and their maternal relatives underwent a molecular genetic evaluation, with 20 normal individuals as a control group at the same time. A real-time PCR involving two MGB probes was used to detect the mtDNA11778 mutation and heteroplasmy. A linear standard curve was obtained by pUCmLHONG and pUCmLHONA clones. Results: All 48 LHON patients and their maternal relatives were positive for mtDNA11778 mutation in our assay, 27 heteroplasmic and 21 homoplasmic. Eighteen cases did not show an occurrence of the disease, while 9 developed the disease among the 27 heteroplasmic mutation cases. Eleven did not show an occurrence of the disease, while 10 cases developed the disease among 21 homoplasmic mutation cases. There was a significant difference in the incidence between the heteroplasmic and the homoplasmic mutation types. The time needed for running a real-time PCR assay was only 80 min. Conclusion: This real-time PCR assay is a rapid, reliable method for mtDNA mutation detection as well as heteroplasmy quantification. Detecting this ratio is very important for predicting phenotypic expression of unaffected carriers. PMID:18763310

  11. MGB probe assay for rapid detection of mtDNA11778 mutation in the Chinese LHON patients by real-time PCR.

    Science.gov (United States)

    Wang, Jian-yong; Gu, Yang-shun; Wang, Jing; Tong, Yi; Wang, Ying; Shao, Jun-bing; Qi, Ming

    2008-08-01

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited degeneration of the optic nerve caused by point mutations of mitochondrial DNA (mtDNA). Many unsolved questions regarding the penetrance and pathophysiological mechanism of LHON demand efficient and reliable mutation testing. This study aims to develop a minor groove binder (MGB) probe assay for rapid detection of mtDNA11778 mutation and heteroplasmy in Chinese LHON patients by real-time polymerase chain reaction (PCR). Forty-eight patients suspected of having LHON and their maternal relatives underwent a molecular genetic evaluation, with 20 normal individuals as a control group at the same time. A real-time PCR involving two MGB probes was used to detect the mtDNA11778 mutation and heteroplasmy. A linear standard curve was obtained by pUCmLHONG and pUCmLHONA clones. All 48 LHON patients and their maternal relatives were positive for mtDNA11778 mutation in our assay, 27 heteroplasmic and 21 homoplasmic. Eighteen cases did not show an occurrence of the disease, while 9 developed the disease among the 27 heteroplasmic mutation cases. Eleven did not show an occurrence of the disease, while 10 cases developed the disease among 21 homoplasmic mutation cases. There was a significant difference in the incidence between the heteroplasmic and the homoplasmic mutation types. The time needed for running a real-time PCR assay was only 80 min. This real-time PCR assay is a rapid, reliable method for mtDNA mutation detection as well as heteroplasmy quantification. Detecting this ratio is very important for predicting phenotypic expression of unaffected carriers.

  12. [Detection of mtDNA*LHON G11778A mutation by real-time polymerase chain reaction using TaqMan-MGB probe technology].

    Science.gov (United States)

    Li, Yu-min; Wang, Jian-yong; Chen, Yu; Shao, Jun-bin; Wang, Jing; Tong, Yi

    2006-08-01

    To develop a simple, rapid and reliable real-time PCR assay based on TaqMan technology using a new MGB probe for detecting mtDNA(*)LHON G11778A mutation and heteroplasmy directly. Twenty patients with suspicion of Leber hereditary optic neuropathy (LHON) and their maternal relatives had undergone molecular genetic evaluation. Seventeen normal individuals were used as the controls. A real-time PCR involved two MGB probes (wild-type and mutation-type) in a single tube on the iCycler IQ real-time detection system was used to detect the mtDNA(*)LHON G11778A mutation. The results were then compared with the DNA sequence analysis of the PCR products. A linear standard curve was obtained by pUCm LHON-G and pUCm LHON-A clone. In the controls (wild type), the reaction of VIC-labeled MGB probe was positive and the channel of FAM reaction was negative, the DNA sequence was 100% matched to previously published data. In 20 LHON patients and their maternal relatives, 12 cases showed mutations in DNA sequence analysis, all of them were LHON mtDNA mutation. While 5 other cases showed the combination of LHON mtDNA mutation and wide type gene phenotype, the rate of Ct value in wild type versus gene mutation was over 25%. DNA sequence analysis showed 8 of LHON mtDNA belonged to wild types and 3 cases were heteroplasmy, and the rate of Ct value in gene mutation versus wild type was lower than 25%. This real-time PCR assay is a simple, rapid and reliable method for the detection of genotyping mtDNA mutations as well as for quantifying heteroplasmy.

  13. Detection of ESR1 mutations in circulating cell-free DNA from patients with metastatic breast cancer treated with palbociclib and letrozole.

    Science.gov (United States)

    Gyanchandani, Rekha; Kota, Karthik J; Jonnalagadda, Amruth R; Minteer, Tanya; Knapick, Beth A; Oesterreich, Steffi; Brufsky, Adam M; Lee, Adrian V; Puhalla, Shannon L

    2017-09-15

    ESR1 mutations are frequently acquired in hormone-resistant metastatic breast cancer (MBC). CDK4/6 inhibition along with endocrine therapy is a promising strategy in hormone receptor-positive MBC. However, the incidence and impact of ESR1 mutations on clinical outcome in patients treated with CDK4/6 inhibitors have not been defined. In this study, we evaluated the frequency of ESR1 mutations in cfDNA from 16 patients with MBC undergoing palbociclib and letrozole therapy. Four common ESR1 mutations (D538G, Y537C, Y537N, and Y537S) were analyzed in serial blood draws using ddPCR. Mutation rate was 31.3% (5/16) (n=3; de novo, n=2; acquired). D538G was the most frequent mutation (n=3), followed by Y537N and Y537S (n=2). One patient showed multiple ESR1 mutations. Mutations were enriched during therapy. Progression-free survival (PFS) and overall survival (OS) were similar in patients with and without mutation detected at any given time during treatment. However, PFS was significantly shorter in patients with ESR1 mutation at initial blood draw (3.3 versus 9.0 months, P-value=0.038). In conclusion, ESR1 mutation prevalence is consistent with recent studies in hormone-refractory breast cancer. Further, treatment with palbociclib and letrozole does not prevent selection of ESR1 mutations in later lines of therapy. Larger studies are warranted to validate these findings.

  14. Effectiveness of circulating tumor DNA for detection of KRAS gene mutations in colorectal cancer patients: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Hao Y

    2017-02-01

    Full Text Available Yi-Xin Hao,1,* Qiang Fu,2,* Yan-Yan Guo,1 Ming Ye,1 Hui-Xia Zhao,1 Qi Wang,1 Xiu-Mei Peng,1 Qiu-Wen Li,1 Ru-Liang Wang,1 Wen-Hua Xiao1 1Department of Oncology, First Affiliated Hospital, 2Department of Anesthesiology, People’s Liberation Army General Hospital, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Circulating tumor DNA (ctDNA can be identified in the peripheral blood of patients and harbors the genomic alterations found in tumor tissues, which provides a noninvasive approach for detection of gene mutations. We conducted this meta-analysis to investigate whether ctDNA can be used for monitoring KRAS gene mutations in colorectal cancer (CRC patients. Medline, Embase, Cochrane Library and Web of Science were searched for the included eligible studies in English, and data were extracted for statistical analysis according to the numbers of true-positive (TP, true-negative (TN, false-positive (FP and false-negative (FN cases. Sensitivity, specificity and diagnostic odds ratio (DOR were calculated, and the area under the receiver operating characteristic curve (AUROC was used to evaluate the diagnostic performance. After independent searching and reviewing, 21 studies involving 1,812 cancer patients were analyzed. The overall sensitivity, specificity and DOR were 0.67 (95% confidence interval [CI] =0.55–0.78, 0.96 (95% CI =0.93–0.98 and 53.95 (95% CI =26.24–110.92, respectively. The AUROC was 0.95 (95% CI =0.92–0.96, which indicated the high diagnostic accuracy of ctDNA. After stratified analysis, we found the higher diagnostic accuracy in subgroup of patients detected in blood sample of plasma. The ctDNA may be an ideal source for detection of KRAS gene mutations in CRC patients with high specificity and diagnostic value. Keywords: cancer, KRAS, mutation, circulating tumor DNA

  15. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance.

    Science.gov (United States)

    Mao, Chanjuan; Xie, Hongjie; Chen, Shiguo; Valverde, Bernal E; Qiang, Sheng

    2017-09-01

    Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana. However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore, LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and 422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in recombinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-transformed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thaliana was about 5.4 fold and 2-fold resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. Therefore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resistant crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Direct functional consequences of ZRS enhancer mutation combine with secondary long range SHH signalling effects to cause preaxial polydactyly.

    Science.gov (United States)

    Johnson, Edward J; Neely, David M; Dunn, Ian C; Davey, Megan G

    2014-08-15

    Sonic hedgehog (SHH) plays a central role in patterning numerous embryonic tissues including, classically, the developing limb bud where it controls digit number and identity. This study utilises the polydactylous Silkie (Slk) chicken breed, which carries a mutation in the long range limb-specific regulatory element of SHH, the ZRS. Using allele specific SHH expression analysis combined with quantitative protein analysis, we measure allele specific changes in SHH mRNA and concentration of SHH protein over time. This confirms that the Slk ZRS enhancer mutation causes increased SHH expression in the posterior leg mesenchyme. Secondary consequences of this increased SHH signalling include increased FGF pathway signalling and growth as predicted by the SHH/GREM1/FGF feedback loop and the Growth/Morphogen models. Manipulation of Hedgehog, FGF signalling and growth demonstrate that anterior-ectopic expression of SHH and induction of preaxial polydactyly is induced secondary to increased SHH signalling and Hedgehog-dependent growth directed from the posterior limb. We predict that increased long range SHH signalling acts in combination with changes in activation of SHH transcription from the Slk ZRS allele. Through analysis of the temporal dynamics of anterior SHH induction we predict a gene regulatory network which may contribute to activation of anterior SHH expression from the Slk ZRS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein.

    Science.gov (United States)

    Arpino, James A J; Rizkallah, Pierre J; Jones, D Dafydd

    2014-08-01

    Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP(D190Δ) containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP(A227Δ) revealed that a `flipping' mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  18. Gray-scale contrast-enhanced utrasonography in detecting sentinel lymph nodes: An animal study

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuexiang, E-mail: wangyuexiang1999@sina.co [Department of Ultrasound, Chinese People' s Liberation Army General Hospital, 28 Fuxing Road, Beijing 100853 (China); Cheng Zhigang, E-mail: qlczg@sina.co [Department of Ultrasound, Chinese People' s Liberation Army General Hospital, 28 Fuxing Road, Beijing 100853 (China); Li Junlai, E-mail: junlai555@sina.co [Department of Ultrasound, Chinese People' s Liberation Army General Hospital, 28 Fuxing Road, Beijing 100853 (China); Tang Jie, E-mail: txiner@vip.sina.co [Department of Ultrasound, Chinese People' s Liberation Army General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2010-06-15

    Objective: To investigate the usefulness of gray-scale contrast-enhanced ultrasonography for detecting sentinel lymph nodes. Methods: Contrast-enhanced ultrasonography was performed in five normal dogs (four female and one male) after subcutaneous administration of a sonographic contrast agent (Sonovue, Bracco, Milan, Italy). Four distinct regions in each animal were examined. After contrast-enhanced ultrasonography, 0.8 ml of blue dye was injected into the same location as Sonovue and the sentinel lymph nodes were detected by surgical dissection. The findings of contrast-enhanced ultrasonography were compared with those of the blue dye. Results: Twenty-one sentinel lymph nodes were detected by contrast-enhanced ultrasonography while 23 were identified by blue dye with surgical dissection. Compared with the blue dye, the detection rate of enhanced ultrasonography for the sentinel lymph nodes is 91.3% (21/23). Two patterns of enhancement in the sentinel lymph nodes were observed: complete enhancement (5 sentinel lymph nodes) and partial enhancement (16 sentinel lymph nodes). The lymphatic channels were demonstrated as hyperechoic linear structures leading from the injection site and could be readily followed to their sentinel lymph nodes. Histopathologic examination showed proliferation of lymphatic follicles or lymphatic sinus in partial enhanced sentinel lymph nodes while normal lymphatic tissue was demonstrated in completely enhanced sentinel lymph nodes. Conclusions: Sonovue combined with gray-scale contrast-enhanced ultrasonography may provide a feasible method for detecting sentinel lymph nodes.

  19. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine.

    Science.gov (United States)

    Kandimalla, Raju; Masius, Roy; Beukers, Willemien; Bangma, Chris H; Orntoft, Torben F; Dyrskjot, Lars; van Leeuwen, Nikki; Lingsma, Hester; van Tilborg, Angela A G; Zwarthoff, Ellen C

    2013-09-01

    DNA methylation is associated with bladder cancer and these modifications could serve as useful biomarkers. FGFR3 mutations are present in 60% to 70% of non-muscle invasive bladder cancer (NMIBC). Low-grade bladder cancer recurs in more than 50% of patients. The aim of this study is to determine the sensitivity and specificity of a urine assay for the diagnosis of recurrences in patients with a previous primary NMIBC G1/G2 by using cystoscopy as the reference standard. We selected eight CpG islands (CGI) methylated in bladder cancer from our earlier genome-wide study. Sensitivity of the CGIs for recurrences detection was investigated on a test set of 101 preTUR urines. Specificity was determined on 70 urines from healthy males aged more than 50 years. A 3-plex assay for the best combination was developed and validated on an independent set of 95 preTUR, recurrence free, and nonmalignant urines (n=130). The 3-plex assay identified recurrent bladder cancer in voided urine with a sensitivity of 74% in the validation set. In combination with the FGFR3 mutation assay, a sensitivity of 79% was reached (specificity of 77%). Sensitivity of FGFR3 and cytology was 52% and 57%, respectively. The combination of methylation and FGFR3 assays efficiently detects recurrent bladder cancer without the need for stratification of patients regarding methylation/mutation status of the primary tumor. We conclude that the sensitivity of this combination is in the same range as cystoscopy and paves the way for a subsequent study that investigates a modified surveillance protocol consisting of the urine test followed by cystoscopy only when the urine test is positive. ©2013 AACR.

  20. Analysis of the influence of nine occult HBV infection-related S-gene mutations on HBsAg detection

    Directory of Open Access Journals (Sweden)

    Kai ZHANG

    2017-11-01

    Full Text Available Objective To determine the reactivity of occult HBV infection (OBI-related S-gene mutations to various anti-HBs antibodies (Abs and HBsAg detection reagents. Methods Nine representative S-gene mutations M1–M9 (including 5 novel mutations M1–M5 from 1 OBI patient and 3 OBI blood donors were investigated. S-gene recombinant plasmids harboring 9 mutants or wild-type sequences constructed before were transfected into Chinese hamster ovary (CHO cells, respectively. HBsAg expression levels and reactivity with various anti-HBs Abs and regular HBsAg detection reagents of all the mutants were analyzed. Results Compared to wild-type strain, intracellular HBsAg levels of the 9 mutants were obviously reduced upon Roche quantitative Elecsys assay. In contrast, analysis of the same samples using anti-His-tag Ab showed that the levels of HBsAg-His- tag fusion protein were significantly reduced only in mutants M1, M6, and M7. The results of reactivity of mutant HBsAg against 6 anti-HBs Abs (S/CO values showed that poor reactivity was observed for most mutants. Specifically, M1-, M4-, M7-, and M9- produced HBsAg with Ab4, and M9-produced HBsAg with Ab6 had the worst reactivity (S/CO<1 compared to the wild-type. The results of reactivity of mutant HBsAg with 6 commercial HBsAg detection reagents showed that the reactivity for most mutants was significantly lower than that of the wild-type (P<0.05. The miss rates of ELISA reagents D, E, and F were 11.1%, 22.2%, and 55.6%, respectively. Conclusions Lower-affinity of studied mutant HBsAg with anti-HBs is one of the major causes of OBI presentation. The regular HBsAg detection reagents used currently in clinic show a significant deficiency in detection of the mutant HBsAg and thus need to be improved. DOI: 10.11855/j.issn.0577-7402.2017.10.05

  1. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes.

    NARCIS (Netherlands)

    Ruijs, M.W.; Verhoef, S.; Rookus, M.A.; Pruntel, R.; Hout, A.H. van der; Hogervorst, F.B.L.; Kluijt, I.; Sijmons, R.H.; Aalfs, C.M.; Wagner, A.; Ausems, M.G.E.M.; Hoogerbrugge-van der Linden, N.; Asperen, C.J. van; Gomez Garcia, E.B.; Meijers-Heijboer, H.; Kate, L.P. Ten; Menko, F.H.; Veer, L.J. van 't

    2010-01-01

    BACKGROUND Li-Fraumeni syndrome (LFS) is a rare autosomal dominant cancer predisposition syndrome. Most families fulfilling the classical diagnostic criteria harbour TP53 germline mutations. However, TP53 germline mutations may also occur in less obvious phenotypes. As a result, different criteria

  2. Mutation detection in the aspartoacylase gene in 17 patients with Canavan disease: four new mutations in the non-Jewish population

    NARCIS (Netherlands)

    Sistermans, E. A.; de Coo, R. F.; van Beerendonk, H. M.; Poll-The, B. T.; Kleijer, W. J.; van Oost, B. A.

    2000-01-01

    Canavan disease is a severe progressive autosomal recessive disorder, which is characterised by spongy degeneration of the brain. The disease is caused by mutations in the aspartoacylase gene. Two different mutations were reported on 98% of the alleles of Ashkenazi Jewish patients, in which

  3. Comparative Analysis of Methods for Detecting Isocitrate Dehydrogenase 1 and 2 Mutations and Their Metabolic Consequence, 2-Hydroxyglutarate, in Different Neoplasms.

    Science.gov (United States)

    Babakoohi, Shahab; Lapidus, Rena G; Faramand, Rawan; Sausville, Edward A; Emadi, Ashkan

    Isocitrate dehydrogenase (IDH) mutations have been recognized in a few neoplasms including glioma, acute myeloid leukemia, chondrosarcoma, cholangiocarcinoma, and angioimmunoblastic T-cell lymphoma. The direct methods to detect IDH mutations include DNA sequencing, immunohistochemistry (IHC), or by measuring its byproduct, 2-hydroxyglutarate (2-HG), in the blood or urine. Moreover, conventional magnetic resonance imaging can be modified to magnetic resonance spectroscopy (MRS) to measure 2-HG in tumor. By conducting a search in Medline/PubMed and ISI/Web of Science for the published articles in English related to the methods for detection of IDH mutations and its byproduct 2-HG, we compared different methodologies to detect these mutations and discuss advantages and limitations of each method. Studies in which a methodology of detection was compared with another modality were included. Multiple studies have shown that both DNA sequencing and IHC are reliable methods for detecting IDH mutations in glioma and other solid neoplasms. IHC appeared to be less costly, easier to perform, and may be slightly more accurate than DNA sequencing. 2-HG has also been measured in bone marrow aspirate, serum and urine of patients with mutant IDH acute myeloid leukemia, and correlated very well with sequencing and IHC. Lastly, in some glioma patients, MRS detected IDH mutations noninvasively and reliably with excellent correlations with other modalities such as IHC and sequencing. In conclusion, IHC, MRS, and 2-HG detection all are clinically useful and comparable with DNA sequencing in identifying IDH mutations in different neoplasms. 2-HG and MRS can be utilized for monitoring treatment response in a variety of neoplasms.

  4. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.

    Science.gov (United States)

    Heler, Robert; Wright, Addison V; Vucelja, Marija; Bikard, David; Doudna, Jennifer A; Marraffini, Luciano A

    2017-01-05

    CRISPR loci and their associated (Cas) proteins encode a prokaryotic immune system that protects against viruses and plasmids. Upon infection, a low fraction of cells acquire short DNA sequences from the invader. These sequences (spacers) are integrated in between the repeats of the CRISPR locus and immunize the host against the matching invader. Spacers specify the targets of the CRISPR immune response through transcription into short RNA guides that direct Cas nucleases to the invading DNA molecules. Here we performed random mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide enhanced immunity against viral infection. We identified a mutation, I473F, that increases the rate of spacer acquisition by more than two orders of magnitude. Our results highlight the role of Cas9 during CRISPR immunization and provide a useful tool to study this rare process and develop it as a biotechnological application. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. DNMT3A GENE POINT MUTATIONS DETECTION IN ACUTE MYELOID LEUKEMIA PATIENTS USING SEQUENCING TECHNIQUE

    OpenAIRE

    A. V. Vinogradov; A. V. Rezaykin; A. G. Sergeev

    2015-01-01

    Aim: to estimate the frequency of DNMT3A gene exons 18–26 point mutations in acute myeloid leukemia (AML) patients (pts) using target automatic sequencing technique.Material and Methods. Bone marrow and peripheral blood samples were obtained from 34 AML pts aged 21 to 64, who were treated in Sverdlovsk Regional Hematological Centre (Ekaterinburg) during the period 2012–2014. Distribution of the pts according to FAB-classification was as follows: AML M0 – 3, M1 – 1, M2 – 12, M3 – 3, M4 – 10, M...

  6. Detection of the mtDNA 14484 mutation on an African-specific haplotype: Implications about its role in causing Leber hereditary optic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Torroni, A.; Petrozzi, M.; Terracina, M. [Universita` di Roma (Italy)] [and others

    1996-07-01

    Leber hereditary optic neuropathy (LHON) is a maternally transmitted disease whose primary clinical manifestation is acute or subacute bilateral loss of central vision leading to central scotoma and blindness. To date, LHON has been associated with 18 mtDNA missense mutations, even though, for many of these mutations, it remains unclear whether they cause the disease, contribute to the pathology, or are nonpathogenic mtDNA polymorphisms. On the basis of numerous criteria, which include the specificity for LHON, the frequency in the general population, and the penetrance within affected pedigrees, the detection of associated defects in the respiratory chain, mutations at three nucleotide positions (nps), 11778 (G{r_arrow}A), 3460 (G{r_arrow}A), and 14484 (T{r_arrow}C) have been classified as high-risk and primary LHON mutations. Overall, these three mutations encompass {ge}90% of the LHON cases. 29 refs., 1 fig.

  7. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays

    DEFF Research Database (Denmark)

    Weber, Britta; Meldgaard, Peter; Hager, Henrik

    2014-01-01

    samples with allele-specific PCR assays. METHODS: Pairs of the diagnostic biopsy and plasma obtained just prior to start of erlotinib treatment were collected from 199 patients with adenocarcinoma of non-small-cell lung cancer. DNA from both sample types was isolated and examined for the presence...... of mutations in exons 18-21 of the EGFR gene, employing the cobas(®) EGFR Tissue Test and cobas(®) EGFR Blood Test (in development, Roche Molecular Systems, Inc., CA, USA). RESULTS: Test results were obtained in all 199 (100%) plasma samples and 196/199 (98%) of the biopsies. EGFR-activating mutations were...... identified in 24/199 (12%) plasma samples and 28/196 (14%) biopsy samples, and 17/196 (9%) matched pairs contained the same mutation. Six EGFR mutations were present only in plasma samples but not in the biopsy samples. The overall concordance of the EGFR gene mutations detected in plasma and biopsy tissue...

  8. Synthetic Circulating Cell-free DNA as Quality Control Materials for Somatic Mutation Detection in Liquid Biopsy for Cancer.

    Science.gov (United States)

    Zhang, Rui; Peng, Rongxue; Li, Ziyang; Gao, Peng; Jia, Shiyu; Yang, Xin; Ding, Jiansheng; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2017-09-01

    Detection of somatic genomic alterations in tumor-derived cell-free DNA (cfDNA) in the plasma is challenging owing to the low concentrations of cfDNA, variable detection methods, and complex workflows. Moreover, no proper quality control materials are available currently. We developed a set of synthetic cfDNA quality control materials (SCQCMs) containing spike-in cfDNA on the basis of micrococcal nuclease digestion carrying somatic mutations as simulated cfDNA and matched genomic DNA as genetic background to emulate paired tumor-normal samples in real clinical tests. Site-directed mutagenesis DNA that contained 1500-2000 bases with single-nucleotide variants or indels and genomic DNA from CRISPR/Cas9 edited cells with EML4-ALK rearrangements was fragmented, quantified, and added into micrococcal nuclease-digested DNA derived from HEK293T cells. To prove their suitability, the SCQCMs were compared with patient-derived plasma samples and validated in a collaborative study that encompassed 11 laboratories. The results of SCQCM analysis by next-generation sequencing showed strong agreement with those of patient-derived plasma samples, including the size profile of cfDNA and the quality control metrics of the sequencing data. More than 95% of laboratories correctly detected the SCQCMs with EGFR T790M, L858R, KRAS G12D, and a deletion in exon 19, as well as with EML4-ALK variant 2. The SCQCMs were successfully applied in a broad range of settings, methodologies, and informatics techniques. We conclude that SCQCMs can be used as optimal quality controls in test performance assessments for circulating tumor DNA somatic mutation detection. © 2017 American Association for Clinical Chemistry.

  9. Quartz-Enhanced Photoacoustic Detection for Aerosol Optical Characterization

    Science.gov (United States)

    Hollinger, M.; Black, N.; Mazzoleni, C.

    2010-12-01

    Particulate matter emitted by anthropogenic and natural sources strongly affect the radiative budget of the Earth. Non-absorbing aerosols have a negative radiative forcing effect, acting to cool the planet and thereby masking the warming caused by greenhouse gases. Absorbing aerosols including black carbon, dust and brown carbon can provide positive radiative forcing at the top of the atmosphere depending on their optical properties. Due to its short atmospheric lifetime, black carbon can have a strong regional effect (e.g. in Himalaya and in the Arctic, where surface albedo is high). How much aerosols affect the Earth’s climate however remains highly uncertain. Providing accurate, widespread and unbiased measurements of aerosol optical properties is important for understanding how aerosols will affect the future climate system. However, in depth studies on aerosol optical properties, and in particular absorption, are still lacking. Photoacoustic spectrometry has been recently employed to measure aerosol absorption. The technique is more fundamental and unbiased then traditional filter-based techniques. This type of spectrometry exploits the photoacoustic effect, which is the production of an acoustic wave from the excitation of a particle absorbing a photon. Currently available commercial spectrometers are very useful for laboratory and field experiments, but due to their typical size, they are unpractical for studies employing small payload aircrafts (e.g. unmanned aircrafts) or balloons. A recent development in photoacoustic spectrometry reported by Kosterev et al. in 2002 is the use of a quartz tuning fork for the detection, termed Quartz-Enhanced Photoacoustic Spectrometry (QEPAS). Due to the high resonance frequency (~32 KHz) of the tuning fork, QEPAS has good potential for the miniaturization of a photoacoustic spectrometry system. The quartz tuning fork is piezoelectric, and a signal is generated only when the tines of the tuning fork move in opposite

  10. Rapid Discovery of De Novo Deleterious Mutations in Cattle Enhances the Value of Livestock as Model Species.

    Science.gov (United States)

    Bourneuf, E; Otz, P; Pausch, H; Jagannathan, V; Michot, P; Grohs, C; Piton, G; Ammermüller, S; Deloche, M-C; Fritz, S; Leclerc, H; Péchoux, C; Boukadiri, A; Hozé, C; Saintilan, R; Créchet, F; Mosca, M; Segelke, D; Guillaume, F; Bouet, S; Baur, A; Vasilescu, A; Genestout, L; Thomas, A; Allais-Bonnet, A; Rocha, D; Colle, M-A; Klopp, C; Esquerré, D; Wurmser, C; Flisikowski, K; Schwarzenbacher, H; Burgstaller, J; Brügmann, M; Dietschi, E; Rudolph, N; Freick, M; Barbey, S; Fayolle, G; Danchin-Burge, C; Schibler, L; Bed'Hom, B; Hayes, B J; Daetwyler, H D; Fries, R; Boichard, D; Pin, D; Drögemüller, C; Capitan, A

    2017-09-13

    In humans, the clinical and molecular characterization of sporadic syndromes is often hindered by the small number of patients and the difficulty in developing animal models for severe dominant conditions. Here we show that the availability of large data sets of whole-genome sequences, high-density SNP chip genotypes and extensive recording of phenotype offers an unprecedented opportunity to quickly dissect the genetic architecture of severe dominant conditions in livestock. We report on the identification of seven dominant de novo mutations in CHD7, COL1A1, COL2A1, COPA, and MITF and exploit the structure of cattle populations to describe their clinical consequences and map modifier loci. Moreover, we demonstrate that the emergence of recessive genetic defects can be monitored by detecting de novo deleterious mutations in the genome of bulls used for artificial insemination. These results demonstrate the attractiveness of cattle as a model species in the post genomic era, particularly to confirm the genetic aetiology of isolated clinical case reports in humans.

  11. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.

    Science.gov (United States)

    Mandelker, Diana; Zhang, Liying; Kemel, Yelena; Stadler, Zsofia K; Joseph, Vijai; Zehir, Ahmet; Pradhan, Nisha; Arnold, Angela; Walsh, Michael F; Li, Yirong; Balakrishnan, Anoop R; Syed, Aijazuddin; Prasad, Meera; Nafa, Khedoudja; Carlo, Maria I; Cadoo, Karen A; Sheehan, Meg; Fleischut, Megan H; Salo-Mullen, Erin; Trottier, Magan; Lipkin, Steven M; Lincoln, Anne; Mukherjee, Semanti; Ravichandran, Vignesh; Cambria, Roy; Galle, Jesse; Abida, Wassim; Arcila, Marcia E; Benayed, Ryma; Shah, Ronak; Yu, Kenneth; Bajorin, Dean F; Coleman, Jonathan A; Leach, Steven D; Lowery, Maeve A; Garcia-Aguilar, Julio; Kantoff, Philip W; Sawyers, Charles L; Dickler, Maura N; Saltz, Leonard; Motzer, Robert J; O'Reilly, Eileen M; Scher, Howard I; Baselga, Jose; Klimstra, David S; Solit, David B; Hyman, David M; Berger, Michael F; Ladanyi, Marc; Robson, Mark E; Offit, Kenneth

    2017-09-05

    Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue ("tumor-normal sequencing") compared with genetic test results based on current guidelines. From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of

  12. Frequent detection of K-ras mutation in stool samples of colorectal carcinoma patients after improved DNA extraction: comparison with tissue samples.

    Science.gov (United States)

    Ito, Yasushi; Kobayashi, Susumu; Taniguchi, Tetsushi; Kainuma, Osamu; Hara, Tsuyosi; Ochiai, Takenori

    2002-06-01

    Fecal occult blood testing is widely used in the clinical screening of colorectal tumors. However, this method has so frequent false-positive results that more accurate screening-strategy should be established. Although the molecular screening using K-ras gene mutation in stools has been attempted to improve the results, the low rate of DNA extraction from stools leaves this measurement under utility value. In this study, we investigated whether or not our applied DNA extraction method from stools could produce enough DNA for the molecular screening of colorectal tumors by K-ras gene mutations in stools. We applied cetyltrimethylammonium bromide (CTAB) solution to improve human DNA extraction from stools and a mutant-allele-sensitive amplification (MASA) method to detect K-ras mutation within codon 12. We were able to confirm the stool DNA by identifying K-ras fragments in all the 20 patients. Tissue K-ras mutation was identified in 4 (2 cancers and 2 adenomas) of 20 patients. Stool K-ras mutations were found in 6 patients, 3 tissue K-ras mutation positive patients (2 cancers and an adenoma) and 3 tissue K-ras mutation negative patients. These results indicate that it is possible to extract enough DNA from human stool samples of all patients with colorectal tumors for K-ras mutation studies. K-ras mutations are more frequently detected in stools than in resected colorectal tumors. This study indicates that K-ras mutation screening in stools for colorectal cancer may include not only a primary colorectal cancer but also precancerous lesions in all parts of a gastrointestinal tract.

  13. The Influence of Image Enhancement Filters on a Watermark Detection Rate

    Directory of Open Access Journals (Sweden)

    Ante Poljicak

    2011-12-01

    Full Text Available In this paper is evaluated the effect of image enhancement filters on the watermark detection rate. State-of-the-art watermarking methods are still very sensitive to complex degradation attack such as print-scan process, so the detection rate of a watermark method decreases considerably after such an attack on a watermarked image. Therefore, to improve the detection rate, the degradation of the image is reduced by using image enhancement filters. A dataset of 1000 images was watermarked, printed and scanned for the experiment. Scanned images were enhanced by means of an unsharp filter and blind deconvolution filter. The watermark detection rate was measured and compared before and after the enhancement. The results show that the enhancement filtering improves the watermark detection rate by almost 10 %.  

  14. Detection of EML4-ALK fusion genes in non-small cell lung cancer patients with clinical features associated with EGFR mutations.

    Science.gov (United States)

    Shaozhang, Zhou; Xiaomei, Lin; Aiping, Zeng; Jianbo, He; Xiangqun, Song; Qitao, Yu

    2012-10-01

    EML4-ALK fusion genes have been recognized as novel "driver mutations" in a small subset of non-small cell lung cancers (NSCLC). The frequency of EML4-ALK fusions in NSCLC patients who have clinical characteristics related to EGFR mutation remains unknown. We screened 102 Chinese patients with NSCLC based on one or more of the following characteristics: female, no or light smoking history, and adenocarcinoma histology. EML4-ALK fusion genes were identified by RT-PCR, whereas EGFR (Exons 18-21) and KRAS (Exons 1 and 2) mutations were detected by DNA sequencing. Eight specimens (8%) were positive for EML4-ALK fusions, with seven being Variant 1 and one Variant 2. There were 44 (43%) and 17 (16%) patients harboring EGFR and KRAS mutations, respectively. Thirty-one (31%) cases were wild type for EML4-ALK, EGFR, and KRAS mutations. Of the eight patients with EML4-ALK, none had an EGFR mutation, whereas a KRAS mutation was detected in one patient. Histologically, five of the EML4-ALK positive tumors were adenocarcinoma and two were mixed adenosquamous carcinoma; only one was a squamous carcinoma. Our data support the conclusion that the EML4-ALK fusion gene defines a new molecular subset of NSCLC with distinct pathologic features. Copyright © 2012 Wiley Periodicals, Inc.

  15. Mutations in SH3BP2, the cherubism gene, were not detected in central or peripheral giant cell tumours of the jaw.

    Science.gov (United States)

    Idowu, Bernadine D; Thomas, Garreth; Frow, Richard; Diss, Timothy C; Flanagan, Adrienne M

    2008-04-01

    Giant cell granulomas of the jaw (GCGJ) are non-familial, generally unilateral osteoclast-rich lesions that are histopathologically indistinguishable from cherubism. Cherubism is an autosomal dominant disease that is characterised by bilateral radiolucencies of the jaw, and caused by mutations that occur in SH3BP2 exon 10. The aim of the study was to screen lesional GCGJ tissue for SH3BP2 mutations. Lesional mononuclear stromal or spindle cells were microdissected from paraffin-embedded tissue from GCGJ, and DNA was then extracted and sequenced for SH3BP2 mutations associated with cherubism. No mutations were detected in 26 GCGJ (15 central, 11 peripheral), which indicated that people with GCGJ do not harbour cherubism-related germline SH3BP2 mutations, and that GCGJ do not harbour somatic SH3BP2 mutations. This suggests that cherubism and GCGJ arise on a different genetic background, and therefore detection of SH3BP2 mutations can be a useful means of distinguishing between them.

  16. Direct real-time PCR-based detection of Neisseria gonorrhoeae 23S rRNA mutations associated with azithromycin resistance.

    Science.gov (United States)

    Trembizki, Ella; Buckley, Cameron; Donovan, Basil; Chen, Marcus; Guy, Rebecca; Kaldor, John; Lahra, Monica M; Regan, David G; Smith, Helen; Ward, James; Whiley, David M

    2015-12-01

    Surveillance for Neisseria gonorrhoeae azithromycin resistance is of growing importance given increasing use of ceftriaxone and azithromycin dual therapy for gonorrhoea treatment. In this study, we developed two real-time PCR methods for direct detection of two key N. gonorrhoeae 23S rRNA mutations associated with azithromycin resistance. The real-time PCR assays, 2611-PCR and 2059-PCR, targeted the gonococcal 23S rRNA C2611T and A2059G mutations, respectively. A major design challenge was that gonococcal 23S rRNA sequences have high sequence homology with those of commensal Neisseria species. To limit the potential for cross-reaction, 'non-template' bases were utilized in primer sequences. The performance of the methods was initially assessed using a panel of gonococcal (n = 70) and non-gonococcal (n = 28) Neisseria species. Analytical specificity was further assessed by testing N. gonorrhoeae nucleic acid amplification test (NAAT)-negative clinical samples (n = 90), before being applied to N. gonorrhoeae NAAT-positive clinical samples (n = 306). Cross-reactions with commensal Neisseria strains remained evident for both assays; however, cycle threshold (Ct) values were significantly delayed, indicating reduced sensitivity for non-gonococcal species. For the N. gonorrhoeae NAAT-negative clinical samples, 7/21 pharyngeal samples provided evidence of cross-reaction (Ct values >40 cycles); however, the remaining urogenital and rectal swab samples were negative. In total, the gonococcal 2611 and 2059 23S rRNA nucleotides were both successfully characterized in 266/306 (87%) of the N. gonorrhoeae NAAT-positive clinical specimens. Real-time PCR detection of gonococcal 23S rRNA mutations directly from clinical samples is feasible and may enhance culture- and non-culture-based N. gonorrhoeae resistance surveillance. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved

  17. ACE: an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data.

    Science.gov (United States)

    Guo, Dianhao; Luo, Jiapeng; Zhou, Yuenan; Xiao, Huamei; He, Kang; Yin, Chuanlin; Xu, Jianhua; Li, Fei

    2017-07-10

    Insecticide resistance is a substantial problem in controlling agricultural and medical pests. Detecting target site mutations is crucial to manage insecticide resistance. Though PCR-based methods have been widely used in this field, they are time-consuming and inefficient, and typically have a high false positive rate. Acetylcholinesterases (Ace) is the neural target of the widely used organophosphate (OP) and carbamate insecticides. However, there is not any software available to detect insecticide resistance associated mutations in RNA-Seq data at present. A computational pipeline ACE was developed to detect resistance mutations of ace in insect RNA-Seq data. Known ace resistance mutations were collected and used as a reference. We constructed a Web server for ACE, and the standalone software in both Linux and Windows versions is available for download. ACE was used to analyse 971 RNA-Seq data from 136 studies in 7 insect pests. The mutation frequency of each RNA-Seq dataset was calculated. The results indicated that the resistance frequency was 30%-44% in an eastern Ugandan Anopheles population, thus suggesting this resistance-conferring mutation has reached high frequency in these mosquitoes in Uganda. Analyses of RNA-Seq data from the diamondback moth Plutella xylostella indicated that the G227A mutation was positively related with resistance levels to organophosphate or carbamate insecticides. The wasp Nasonia vitripennis had a low frequency of resistant reads (ace reads in the 30 B. tabaci RNA-Seq data were resistant reads, suggesting that insecticide resistance has spread to very high frequency in B. tabaci. To the best of our knowledge, the ACE pipeline is the first tool to detect resistance mutations from RNA-Seq data, and it facilitates the full utilization of large-scale genetic data obtained by using next-generation sequencing.

  18. Multiplex SNaPshot for detection of BRCA1/2 common mutations in Spanish and Spanish related breast/ovarian cancer families

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2007-06-01

    Full Text Available Abstract Background It is estimated that 5–10% of all breast cancer are hereditary and attributable to mutations in the highly penetrance susceptibility genes BRCA1 and BRCA2. The genetic analysis of these genes is complex and expensive essentially because their length. Nevertheless, the presence of recurrent and founder mutations allows a pre-screening for the identification of the most frequent mutations found in each geographical region. In Spain, five mutations in BRCA1 and other five in BRCA2 account for approximately 50% of the mutations detected in Spanish families. Methods We have developed a novel PCR multiplex SNaPshot reaction that targets all ten recurrent and founder mutations identified in BRCA1 and BRCA2 in Spain to date. Results The SNaPshot reaction was performed on samples previously analyzed by direct sequencing and all mutations were concordant. This strategy permits the analysis of approximately 50% of all mutations observed to be responsible for breast/ovarian cancer in Spanish families using a single reaction per patient sample. Conclusion The SNaPshot assay developed is sensitive, rapid, with minimum cost per sample and additionally can be automated for high-throughput genotyping. The SNaPshot assay outlined here is not only useful for analysis of Spanish breast/ovarian cancer families, but also e.g. for populations with Spanish ancestry, such as those in Latin America.

  19. A novel germline TP53 mutation p.Pro190Arg detected in a patient with lung and bilateral breast cancers.

    Science.gov (United States)

    Krześniak, Małgorzata; Butkiewicz, Dorota; Rachtan, Jadwiga; Matuszczyk, Iwona; Grzybowska, Ewa; Rusin, Marek

    2017-09-01

    Li-Fraumeni syndrome (LFS) is a rare genetic disease with strong predispositions to multiple early-onset neoplasms, mostly sarcomas, breast cancers, brain tumors and adrenocortical carcinomas (LFS core cancers). In most LFS families the germline mutations of TP53 tumor suppressor gene were found. Lung cancer does not belong to the core cancers of LFS, however its higher incidence is observed in families with TP53 mutations. Our aim was to search for TP53 mutations in female lung cancer patients whose clinico-demographic characteristics suggested a probable genetic predisposition to the disease. The coding region of TP53 from blood DNA was sequenced using Sanger method. The functioning of detected mutation was tested by luciferase reporter assay. We found a nucleotide substitution c.569C>G, p.Pro190Arg, which was not described in the TP53 germline mutation database (http://p53.iarc.fr/TP53GermlineMutations.aspx). The mutation destroys the ability of p53 to transactivate BAX promoter and significantly reduces transactivation potential of p53 toward the promoter of MDM2 gen. We identified novel germline mutation of TP53. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  20. Genomic characterization of high-count MBL cases indicates that early detection of driver mutations and subclonal expansion are predictors of adverse clinical outcome.

    Science.gov (United States)

    Barrio, S; Shanafelt, T D; Ojha, J; Chaffee, K G; Secreto, C; Kortüm, K M; Pathangey, S; Van-Dyke, D L; Slager, S L; Fonseca, R; Kay, N E; Braggio, E

    2017-01-01

    High-count monoclonal B-cell lymphocytosis (MBL) is an asymptomatic expansion of clonal B cells in the peripheral blood without other manifestations of chronic lymphocytic leukemia (CLL). Yearly, 1% of MBLs evolve to CLL requiring therapy; thus being critical to understand the biological events that determine which MBLs progress to intermediate/advanced CLL. In this study, we performed targeted deep sequencing on 48 high-count MBLs, 47 of them with 2-4 sequential samples analyzed, exploring the mutation status of 21 driver genes and evaluating clonal evolution. We found somatic non-synonymous mutations in 25 MBLs (52%) at the initial time point analyzed, including 12 (25%) with >1 mutated gene. In cases that subsequently progressed to CLL, mutations were detected 41 months (median) prior to progression. Excepting NOTCH1, TP53 and XPO1, which showed a lower incidence in MBL, genes were mutated with a similar prevalence to CLL, indicating the early origin of most driver mutations in the MBL/CLL continuum. MBLs with mutations at the initial time point analyzed were associated with shorter time-to-treatment (TTT). Furthermore, MBLs showing subclonal expansion of driver mutations on sequential evaluation had shorter progression time to CLL and shorter TTT. These findings support that clonal evolution has prognostic implications already at the pre-malignant MBL stage, anticipating which individuals will progress earlier to CLL.

  1. Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene

    Science.gov (United States)

    Qadri, Syed M; Mahmud, Hasan; Lang, Elisabeth; Gu, Shuchen; Bobbala, Diwakar; Zelenak, Christine; Jilani, Kashif; Siegfried, Alexandra; Föller, Michael; Lang, Florian

    2012-01-01

    Abstract Loss-of-function mutations in human adenomatous polyposis coli (APC) lead to multiple colonic adenomatous polyps eventually resulting in colonic carcinoma. Similarly, heterozygous mice carrying defective APC (apcMin/+) suffer from intestinal tumours. The animals further suffer from anaemia, which in theory could result from accelerated eryptosis, a suicidal erythrocyte death triggered by enhanced cytosolic Ca2+ activity and characterized by cell membrane scrambling and cell shrinkage. To explore, whether APC-deficiency enhances eryptosis, we estimated cell membrane scrambling from annexin V binding, cell size from forward scatter and cytosolic ATP utilizing luciferin–luciferase in isolated erythrocytes from apcMin/+ mice and wild-type mice (apc+/+). Clearance of circulating erythrocytes was estimated by carboxyfluorescein-diacetate-succinimidyl-ester labelling. As a result, apcMin/+ mice were anaemic despite reticulocytosis. Cytosolic ATP was significantly lower and annexin V binding significantly higher in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Glucose depletion enhanced annexin V binding, an effect significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Extracellular Ca2+ removal or inhibition of Ca2+ entry with amiloride (1 mM) blunted the increase but did not abrogate the genotype differences of annexin V binding following glucose depletion. Stimulation of Ca2+-entry by treatment with Ca2+-ionophore ionomycin (10 μM) increased annexin V binding, an effect again significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Following retrieval and injection into the circulation of the same mice, apcMin/+ erythrocytes were more rapidly cleared from circulating blood than apc+/+ erythrocytes. Most labelled erythrocytes were trapped in the spleen, which was significantly enlarged in apcMin/+ mice. The observations point to accelerated eryptosis and subsequent clearance of apcMin/+ erythrocytes

  2. Point mutations in the paramyxovirus F protein that enhance fusion activity shift the mechanism of complement-mediated virus neutralization.

    Science.gov (United States)

    Johnson, John B; Schmitt, Anthony P; Parks, Griffith D

    2013-08-01

    Parainfluenza virus 5 (PIV5) activates and is neutralized by the alternative pathway (AP) in normal human serum (NHS) but not by heat-inactivated (HI) serum. We have tested the relationship between the fusion activity within the PIV5 F protein, the activation of complement pathways, and subsequent complement-mediated virus neutralization. Recombinant PIV5 viruses with enhanced fusion activity were generated by introducing point mutations in the F fusogenic peptide (G3A) or at a distal site near the F transmembrane domain (S443P). In contrast to wild-type (WT) PIV5, the mutant G3A and S443P viruses were neutralized by both NHS and HI serum. Unlike WT PIV5, hyperfusogenic G3A and S443P viruses were potent C4 activators, C4 was deposited on NHS-treated mutant virions, and the mutants were neutralized by factor B-depleted serum but not by C4-depleted serum. Antibodies purified from HI human serum were sufficient to neutralize both G3A and S443P viruses in vitro but were ineffective against WT PIV5. Electron microscopy data showed greater deposition of purified human antibodies on G3A and S443P virions than on WT PIV5 particles. These data indicate that single amino acid changes that enhance the fusion activity of the PIV5 F protein shift the mechanism of complement activation in the context of viral particles or on the surface of virus-infected cells, due to enhanced binding of antibodies. We present general models for the relationship between enhanced fusion activity in the paramyxovirus F protein and increased susceptibility to antibody-mediated neutralization.

  3. Molecular analysis of a mutated FSH receptor detected in a patient with spontaneous ovarian hyperstimulation syndrome.

    Directory of Open Access Journals (Sweden)

    Sayaka Uchida

    Full Text Available Spontaneous ovarian hyperstimulation syndrome (sOHSS is a rare event that may result from a FSH-producing pituitary adenoma (FSHoma, activating mutations of the FSH receptor (FSHR, and cross-reactivity of the FSHR to elevated hCG and TSH in the setting of pregnancy or hypothyroidism. The objective of this study was to investigate whether an aberrant FSHR was present in a woman with sOHSS and a non-surgically diagnosed FSHoma whose serum FSH levels and FSH bioactivity were nearly normal. Sequencing of the patient's FSHR gene revealed a heterozygous novel missense mutation c. 1536G>A resulting in an amino acid substitution M512I. We asked whether this mutant FSHR affected FSHR-mediated signaling pathways involving cAMP/protein kinase A (PKA, phosphatidylinositol-3 kinase (PI3K/protein kinase B (AKT and v-src sarcoma (Schmidt-Ruppin A-2 viral oncogene homolog kinase (SRC/ p42/p44 extracellular signal-regulated protein kinases (ERK1/2. Thus, 293T cells expressing wild-type (FSHRwt, the mutant FSHR (FSHRmt, or both (FSHRwt/mt were treated with FSH and subjected to measurements of intracellular cAMP, cAMP-induced CRE (cAMP response element-mediated luciferase assays and immunoblot analyses of phosphorylated PI3K and ERK1/2. There were no differences in luciferase activities or phosphorylation levels of ERK1/2 among FSHRwt, FSHRmt cells and FSHwt/mt cells. However, FSHRmt cells showed a significant reduction in both cAMP production and PI3K phosphorylation levels with unchanged phosphorylation of ERK1/2 upon FSH stimulation in comparison to FSHwt cells. Also, FSH treatment did not provoke PI3K phosphorylation in FSHwt/mt cells. These results indicate that the novel missense M512I FSHR mutation identified herein did not participate in hyperactivation of FSHR-mediated signaling pathways but rather in hypoactivation of the FSH-mediated PI3K/AKT pathway. Thus, this study demonstrates a new functional property of this novel mutatnt FSHR, which, however

  4. Enhancement of CO detection in Al doped graphene

    OpenAIRE

    Ao, Z. M.; Yang, J.; Li, S; Jiang, Q.

    2008-01-01

    A principle of enhancement CO adsorption was developed theoretically by using density functional theory through doping Al into graphene. The results show that the Al doped graphene has strong chemisorption of CO molecule by forming Al-CO bond, where CO onto intrinsic graphene remains weak physisorption. Furthermore, the enhancement of CO sensitivity in the Al doped graphene is determined by a large electrical conductivity change after adsorption, where CO absorption leads to increase of elect...

  5. Specific detection of dengue and Zika virus antibodies using envelope proteins with mutations in the conserved fusion loop.

    Science.gov (United States)

    Rockstroh, Alexandra; Moges, Beyene; Barzon, Luisa; Sinigaglia, Alessandro; Palù, Giorgio; Kumbukgolla, Widuranga; Schmidt-Chanasit, Jonas; Sarno, Manoel; Brites, Carlos; Moreira-Soto, Andres; Drexler, Jan Felix; Ferreira, Orlando C; Ulbert, Sebastian

    2017-11-08

    Detection of antibodies is widely used for the diagnosis of infections with arthropod-borne flaviviruses including dengue (DENV) and Zika virus (ZIKV). Due to the emergence of ZIKV in areas endemic for DENV, massive co-circulation is observed and methods to specifically diagnose these infections and differentiate them from each other are mandatory. However, serological assays for flaviviruses in general, and for DENV and ZIKV in particular, are compromised by the high degree of similarities in their proteins which can lead to cross-reacting antibodies and false-positive test results. Cross-reacting flavivirus antibodies mainly target the highly conserved fusion loop (FL) domain in the viral envelope (E-) protein, and we and others have shown previously that recombinant E-proteins bearing FL-mutations strongly reduce cross-reactivity. Here we investigate whether such mutant E-proteins can be used to specifically detect antibodies against DENV and ZIKV in an ELISA-format. IgM antibodies against DENV and ZIKV virus were detected with 100% and 94.2% specificity and 90.7% and 87.5% sensitivity, respectively. For IgG the mutant E-proteins showed cross-reactivity, which was overcome by pre-incubation of the sera with the heterologous antigen. This resulted in specificities of 97.1% and 97.9% and in sensitivities of 100% and 100% for the DENV and ZIKV antigens, respectively. Our results suggest that E-proteins bearing mutations in the FL-domain have a high potential for the development of serological DENV and ZIKV tests with high specificity.

  6. mRNA-based detection of rare CFTR mutations improves genetic diagnosis of cystic fibrosis in populations with high genetic heterogeneity.

    Science.gov (United States)

    Felício, V; Ramalho, A S; Igreja, S; Amaral, M D

    2017-03-01

    Even with advent of next generation sequencing complete sequencing of large disease-associated genes and intronic regions is economically not feasible. This is the case of cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible for cystic fibrosis (CF). Yet, to confirm a CF diagnosis, proof of CFTR dysfunction needs to be obtained, namely by the identification of two disease-causing mutations. Moreover, with the advent of mutation-based therapies, genotyping is an essential tool for CF disease management. There is, however, still an unmet need to genotype CF patients by fast, comprehensive and cost-effective approaches, especially in populations with high genetic heterogeneity (and low p.F508del incidence), where CF is now emerging with new diagnosis dilemmas (Brazil, Asia, etc). Herein, we report an innovative mRNA-based approach to identify CFTR mutations in the complete coding and intronic regions. We applied this protocol to genotype individuals with a suspicion of CF and only one or no CFTR mutations identified by routine methods. It successfully detected multiple intronic mutations unlikely to be detected by CFTR exon sequencing. We conclude that this is a rapid, robust and inexpensive method to detect any CFTR coding/intronic mutation (including rare ones) that can be easily used either as primary approach or after routine DNA analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Polymorphism of PfATPase in Niger: detection of three new point mutations

    Directory of Open Access Journals (Sweden)

    Adam Hassane

    2009-02-01

    Full Text Available Abstract Background Plasmodium falciparum resistance to drugs remains a major public health issue in Niger. The therapeutic failure index for chloroquine and sulphadoxine-pyrimethamine are, respectively 20% and 21.9%. In December 2005, the National Malaria Control Programme promoted the use of artemisinin combination therapy (ACT as first-line treatment of the uncomplicated malaria cases. Recently, studies have shown a relationship between the SERCA PfATPase6 gene and artemisinin efficacy, and pointed it out as a potential molecular marker for resistance. The goal of this work was to describe the baseline polymorphism of PfATPase6 gene in Niger, at a time when the national implementation of the ACT policy had just begun. Materials and methods The DNA polymorphism of the PfATPase6 gene of 87 P. falciparum samples from Niger was analysed by sequencing. The links between the mutation occurrence and environment and human host factors were tested by bivariate analysis. Results The P. falciparum PfATPase6 gene presented polymorphisms at codons 537, 561, 569, 630, 639, 716 levels. All the mutations found were rare, except the PfATPaseN569K found in 17.2% of samples. No associated factor has been observed. Conclusion The P. falciparum PfATPase gene is polymorphic at the 569 codon. As ACT is getting more and more used, the PfATPase6 gene polymorphism needs to be monitored in association with phenotypic – in vivo and/or in vitro – drug efficacy tests.

  8. Osimertinib benefit in EGFR-mutant NSCLC patients with T790M-mutation detected by circulating tumour DNA.

    Science.gov (United States)

    Remon, J; Caramella, C; Jovelet, C; Lacroix, L; Lawson, A; Smalley, S; Howarth, K; Gale, D; Green, E; Plagnol, V; Rosenfeld, N; Planchard, D; Bluthgen, M V; Gazzah, A; Pannet, C; Nicotra, C; Auclin, E; Soria, J C; Besse, B

    2017-04-01

    Approximately 50% of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs) will acquire resistance by the T790M mutation. Osimertinib is the standard of care in this situation. The present study assesses the efficacy of osimertinib when T790M status is determined in circulating cell-free tumour DNA (ctDNA) from blood samples in progressing advanced EGFR-mutant NSCLC patients. ctDNA T790M mutational status was assessed by Inivata InVision™ (eTAm-Seq™) assay in 48 EGFR-mutant advanced NSCLC patients with acquired resistance to EGFR TKIs without a tissue biopsy between April 2015 and April 2016. Progressing T790M-positive NSCLC patients received osimertinib (80 mg daily). The objectives were to assess the response rate to osimertinib according to Response Evaluation Criteria in Solid Tumours (RECIST) 1.1, the progression-free survival (PFS) on osimertinib, and the percentage of T790M positive in ctDNA. The ctDNA T790M mutation was detected in 50% of NSCLC patients. Among assessable patients, osimertinib gave a partial response rate of 62.5% and a stable disease rate of 37.5%. All responses were confirmed responses. After median follow up of 8 months, median PFS by RECIST criteria was not achieved (95% CI: 4-NA), with 6- and 12-months PFS of 66.7% and 52%, respectively. ctDNA from liquid biopsy can be used as a surrogate marker for T790M in tumour tissue.

  9. scnRCA: a novel method to detect consistent patterns of translational selection in mutationally-biased genomes.

    Directory of Open Access Journals (Sweden)

    Patrick K O'Neill

    Full Text Available Codon usage bias (CUB results from the complex interplay between translational selection and mutational biases. Current methods for CUB analysis apply heuristics to integrate both components, limiting the depth and scope of CUB analysis as a technique to probe into the evolution and optimization of protein-coding genes. Here we introduce a self-consistent CUB index (scnRCA that incorporates implicit correction for mutational biases, facilitating exploration of the translational selection component of CUB. We validate this technique using gene expression data and we apply it to a detailed analysis of CUB in the Pseudomonadales. Our results illustrate how the selective enrichment of specific codons among highly expressed genes is preserved in the context of genome-wide shifts in codon frequencies, and how the balance between mutational and translational biases leads to varying definitions of codon optimality. We extend this analysis to other moderate and fast growing bacteria and we provide unified support for the hypothesis that C- and A-ending codons of two-box amino acids, and the U-ending codons of four-box amino acids, are systematically enriched among highly expressed genes across bacteria. The use of an unbiased estimator of CUB allows us to report for the first time that the signature of translational selection is strongly conserved in the Pseudomonadales in spite of drastic changes in genome composition, and extends well beyond the core set of highly optimized genes in each genome. We generalize these results to other moderate and fast growing bacteria, hinting at selection for a universal pattern of gene expression that is conserved and detectable in conserved patterns of codon usage bias.

  10. Contrast-enhanced dedicated breast CT detection of invasive breast cancer preceding mammographic diagnosis

    Directory of Open Access Journals (Sweden)

    Nicolas D. Prionas, MD, PhD

    2015-01-01

    Full Text Available Dedicated breast computed tomography (bCT generates high-resolution, three-dimensional images of the pendent uncompressed breast. Intravenous iodinated contrast during bCT provides additional physiologic information. In this case, a 10.0-mm invasive ductal carcinoma was visualized using contrast-enhanced breast CT one year before mammographic detection. Mammography four months before bCT was negative. The bCT contrast enhancement pattern closely matched the dynamic contrast-enhanced MRI obtained after diagnosis. Lesion enhancement at contrast-enhanced breast CT matched previously published enhancement values of breast cancer. Contrast-enhanced dedicated bCT provided high-resolution tomographic images and physiologic contrast enhancement data that facilitated the detection of an early breast cancer.

  11. Mutagenic Effects of Ribavirin on Hepatitis E Virus—Viral Extinction versus Selection of Fitness-Enhancing Mutations

    Science.gov (United States)

    Todt, Daniel; Walter, Stephanie; Brown, Richard J. P.; Steinmann, Eike

    2016-01-01

    Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis. PMID:27754363

  12. Mutagenic Effects of Ribavirin on Hepatitis E Virus-Viral Extinction versus Selection of Fitness-Enhancing Mutations.

    Science.gov (United States)

    Todt, Daniel; Walter, Stephanie; Brown, Richard J P; Steinmann, Eike

    2016-10-13

    Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis.

  13. Multiple epitope tagging of expressed proteins for enhanced detection.

    Science.gov (United States)

    Hernan, R; Heuermann, K; Brizzard, B

    2000-04-01

    Three FLAG epitopes have been incorporated into the mammalian expression vector pCMV-5 to create a transient expression vector, p3XFLAG-CMV-7. The vector was designed to express FLAG fusion proteins that can be detected at tenfold lower expression levels than the current FLAG fusion protein expression system. The usefulness of this expression and detection system was demonstrated by expression of bacterial alkaline phosphatase in COS-7 cells. In addition, 3XFLAG bacterial alkaline phosphatase was expressed in Escherichia coli, purified on anti-FLAG M2 affinity gel, and detection of 500 pg of purified protein by Western blot analysis is demonstrated.

  14. Prospective Validation of Rapid Plasma Genotyping for the Detection of EGFR and KRAS Mutations in Advanced Lung Cancer.

    Science.gov (United States)

    Sacher, Adrian G; Paweletz, Cloud; Dahlberg, Suzanne E; Alden, Ryan S; O'Connell, Allison; Feeney, Nora; Mach, Stacy L; Jänne, Pasi A; Oxnard, Geoffrey R

    2016-08-01

    Plasma genotyping of cell-free DNA has the potential to allow for rapid noninvasive genotyping while avoiding the inherent shortcomings of tissue genotyping and repeat biopsies. To prospectively validate plasma droplet digital PCR (ddPCR) for the rapid detection of common epidermal growth factor receptor (EGFR) and KRAS mutations, as well as the EGFR T790M acquired resistance mutation. Patients with advanced nonsquamous non-small-cell lung cancer (NSCLC) who either (1) had a new diagnosis and were planned for initial therapy or (2) had developed acquired resistance to an EGFR kinase inhibitor and were planned for rebiopsy underwent initial blood sampling and immediate plasma ddPCR for EGFR exon 19 del, L858R, T790M, and/or KRAS G12X between July 3, 2014, and June 30, 2015, at a National Cancer Institute-designated comprehensive cancer center. All patients underwent biopsy for tissue genotyping, which was used as the reference standard for comparison; rebiopsy was required for patients with acquired resistance to EGFR kinase inhibitors. Test turnaround time (TAT) was measured in business days from blood sampling until test reporting. Plasma ddPCR assay sensitivity, specificity, and TAT. Of 180 patients with advanced NSCLC (62% female; median [range] age, 62 [37-93] years), 120 cases were newly diagnosed; 60 had acquired resistance. Tumor genotype included 80 EGFR exon 19/L858R mutants, 35 EGFR T790M, and 25 KRAS G12X mutants. Median (range) TAT for plasma ddPCR was 3 (1-7) days. Tissue genotyping median (range) TAT was 12 (1-54) days for patients with newly diagnosed NSCLC and 27 (1-146) days for patients with acquired resistance. Plasma ddPCR exhibited a positive predictive value of 100% (95% CI, 91%-100%) for EGFR 19 del, 100% (95% CI, 85%-100%) for L858R, and 100% (95% CI, 79%-100%) for KRAS, but lower for T790M at 79% (95% CI, 62%-91%). The sensitivity of plasma ddPCR was 82% (95% CI, 69%-91%) for EGFR 19 del, 74% (95% CI, 55%-88%) for L858R, and 77% (95% CI, 60

  15. Enhanced detection of terrestrial gamma-ray flashes by AGILE

    CERN Document Server

    Marisaldi, M; Ursi, A; Gjesteland, T; Fuschino, F; Labanti, C; Galli, M; Tavani, M; Pittori, C; Verrecchia, F; D'Amico, F; Østgaard, N; Mereghetti, S; Campana, R; Cattaneo, P W; Bulgarelli, A; Colafrancesco, S; Dietrich, S; Longo, F; Gianotti, F; Giommi, P; Rappoldi, A; Trifoglio, M; Trois, A

    2016-01-01

    At the end of March 2015 the onboard software configuration of the AGILE satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma-Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration ($< 100 \\mathrm {\\mu s}$), and part of them has simultaneous association with lightning sferics detected by the World Wide Lightning Location Network (WWLLN). The new configuration provides the largest TGF detection rate surface density (TGFs/$\\mathrm{km^2}$/year) to date, opening prospects for improved correlation studies with lightning and atmospheric parameters on short spatial and temporal scales along the equatorial region.

  16. Enhancing Community Detection By Affinity-based Edge Weighting Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is ideal for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.

  17. Enhancing Syndromic Surveillance With Online Respondent-Driven Detection

    NARCIS (Netherlands)

    Stein, Mart L; van Steenbergen, Jim E; Buskens, Vincent; van der Heijden, Peter G M; Koppeschaar, Carl E; Bengtsson, Linus; Thorson, Anna; Kretzschmar, MEE

    OBJECTIVES: We investigated the feasibility of combining an online chain recruitment method (respondent-driven detection) and participatory surveillance panels to collect previously undetected information on infectious diseases via social networks of participants. METHODS: In 2014, volunteers from 2

  18. Enhancing syndromic surveillance with online respondent-driven detection

    NARCIS (Netherlands)

    Stein, Mart L.; Van Steenbergen, Jim E.; Buskens, Vincent; Van Der Heijden, Peter G M; Koppeschaar, Carl E.; Bengtsson, Linus; Thorson, Anna; Kretzschmar, Mirjam E E

    2015-01-01

    Objectives. We investigated the feasibility of combining an online chain recruitment method (respondent-driven detection) and participatory surveillance panels to collect previously undetected information on infectious diseases via social networks of participants. Methods. In 2014, volunteers from 2

  19. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor.

    Science.gov (United States)

    Masdor, Noor Azlina; Altintas, Zeynep; Tothill, Ibtisam E

    2016-04-15

    A quartz crystal microbalance (QCM) sensor platform was used to develop an immunosensor for the detection of food pathogen Campylobacter jejuni. Rabbit polyclonal antibodies and commercially available mouse monoclonal antibodies against C. jejuni were investigated to construct direct, sandwich and gold-nanoparticles (AuNPs) amplified sandwich assays. The performance of the QCM immunosensor developed using sandwich assay by utilising the rabbit polyclonal antibody as the capture antibody and conjugated to AuNPs as the detection antibody gave the highest sensitivity. This sensor achieved a limit of detection (LOD) of 150 colony forming unit (CFU)mL(-1) of C. jejuni in solution. The QCM sensor showed excellent sensitivity and specificity for Campylobacter detection with low cross reactivity for other foodborne pathogens such as Salmonella Typhimurium, (7%) Listeria monocytogenes (3%) and Escherichia coli (0%). The development of this biosensor would help in the sensitive detection of Campylobacter which can result in reducing pre-enrichment steps; hence, reducing assay time. This work demonstrates the potential of this technology for the development of a rapid and sensitive detection method for C. jejuni. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Amalgamation of Anomaly-Detection Indices for Enhanced Process Monitoring

    KAUST Repository

    Harrou, Fouzi

    2016-01-29

    Accurate and effective anomaly detection and diagnosis of modern industrial systems are crucial for ensuring reliability and safety and for maintaining desired product quality. Anomaly detection based on principal component analysis (PCA) has been studied intensively and largely applied to multivariate processes with highly cross-correlated process variables; howver conventional PCA-based methods often fail to detect small or moderate anomalies. In this paper, the proposed approach integrates two popular process-monitoring detection tools, the conventional PCA-based monitoring indices Hotelling’s T2 and Q and the exponentially weighted moving average (EWMA). We develop two EWMA tools based on the Q and T2 statistics, T2-EWMA and Q-EWMA, to detect anomalies in the process mean. The performances of the proposed methods were compared with that of conventional PCA-based anomaly-detection methods by applying each method to two examples: a synthetic data set and experimental data collected from a flow heating system. The results clearly show the benefits and effectiveness of the proposed methods over conventional PCA-based methods.

  1. Simultaneous detection of mutations and copy number variation of NPM1 in the acute myeloid leukemia using multiplex ligation-dependent probe amplification

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowska-Swojak, Malgorzata, E-mail: m-marcinkowska@o2.pl [European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan (Poland); Handschuh, Luiza, E-mail: luizahan@ibch.poznan.pl [European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan (Poland); Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan (Poland); Wojciechowski, Pawel, E-mail: Pawel.Wojciechowski@cs.put.poznan.pl [European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan (Poland); Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan (Poland); Goralski, Michal, E-mail: mgoralsk@ibch.poznan.pl [European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan (Poland); Tomaszewski, Kamil, E-mail: kamil.tomaszewsky@gmail.com [European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan (Poland); Kazmierczak, Maciej, E-mail: maciej.kazmierczak@onet.eu [Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan (Poland); Lewandowski, Krzysztof, E-mail: krzysztof.lewandowski@skpp.edu.pl [Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan (Poland); Komarnicki, Mieczyslaw, E-mail: mak7@pro.onet.pl [Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan (Poland); and others

    2016-04-15

    Highlights: • The NPM1 mutations were detected exclusively in AML accounting for 25% of cases. • The NPM1 gene did not reveal any copy number alterations. • The NPM1mut+ assay is a reliable test for the analysis of mutations and CNA in NPM1. - Abstract: The NPM1 gene encodes nucleophosmin, a protein involved in multiple cell functions and carcinogenesis. Mutation of the NPM1 gene, causing delocalization of the protein, is the most frequent genetic lesion in acute myeloid leukemia (AML); it is considered a founder event in AML pathogenesis and serves as a favorable prognostic marker. Moreover, in solid tumors and some leukemia cell lines, overexpression of the NPM1 gene is commonly observed. Therefore, the purpose of this study was to develop a new method for the detection of NPM1 mutations and the simultaneous analysis of copy number alterations (CNAs), which may underlie NPM1 gene expression deregulation. To address both of the issues, we applied a strategy based on multiplex ligation-dependent probe amplification (MLPA). A designed NPM1mut+ assay enables the detection of three of the most frequent NPM1 mutations: A, B and D. The accuracy of the assay was tested using a group of 83 samples from Polish patients with AML and other blood-proliferative disorders. To verify the results, we employed traditional Sanger sequencing and next-generation transcriptome sequencing. With the use of the NPM1mut+ assay, we detected mutations A, D and B in 14, 1 and 0 of the analyzed samples, respectively. All of these mutations were confirmed by complementary sequencing approaches, proving the 100% specificity and sensitivity of the proposed test. The performed sequencing analysis allowed the identification of two additional rare mutations (I and ZE). All of the mutations were identified exclusively in AML cases, accounting for 25% of those cases. We did not observe any CNAs (amplifications) of the NPM1 gene in the studied samples, either with or without the mutation. The

  2. Cross-Platform Comparison of Four Leading Technologies for Detecting EGFR Mutations in Circulating Tumor DNA from Non-Small Cell Lung Carcinoma Patient Plasma.

    Science.gov (United States)

    Xu, Ting; Kang, Xiaozheng; You, Xiaofang; Dai, Liang; Tian, Dequan; Yan, Wanpu; Yang, Yongbo; Xiong, Hongchao; Liang, Zhen; Zhao, Grace Q; Lin, Shengrong; Chen, Ke-Neng; Xu, Guobing

    2017-01-01

    Analysis of circulating tumor DNA (ctDNA) is emerging as a powerful tool for guiding targeted therapy and monitoring tumor evolution in patients with non-small cell lung cancer (NSCLC), especially when representative tissue biopsies are not available. Here, we have compared the ability of four leading technology platforms to detect epidermal growth factor receptor (EGFR) mutations (L858R, exon 19 deletion, T790M and G719X) in ctDNA from NSCLC patients. Two amplification refractory mutation systems (cobas-ARMS and ADx-ARMS), a droplet digital polymerase chain reaction (ddPCR) and a next-generation sequencing (Firefly NGS) platform were included in the comparison. Fifteen EGFR mutations across twenty NSCLC patients were identified. Firefly NGS, cobas-ARMS and ddPCR all displayed superior sensitivity while ADx-ARMS was better suited for the qualitative detection of EGFR mutations with allele frequency higher than 1% in plasma and tissue samples. We observed high coincidence between the plasma and tissue EGFR mutational profiles for three driver mutations (L858R, exon 19 deletion and G719X) that are known targets of first generation EGFR-TKI therapies among patients who relapsed. Discrepancies between tissue and plasma EGFR mutational profiles were mainly attributable to spatial and temporal tumor heterogeneity, mutation inhibition due to therapy response and drug resistance (T790M). This study illustrates the challenges associated with selection of a technology platform for EGFR ctDNA analysis in the context of treatment evaluation and drug resistance detection.

  3. Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1

    Science.gov (United States)

    Lelliott, Patrick M.; McMorran, Brendan J.; Foote, Simon J.

    2015-01-01

    The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, TfrcMRI24910, identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria. PMID:26303393

  4. Impact of "a" determinant mutations on detection of hepatitis B surface antigen (HBsAg) in HBV strains from Chinese patients with occult hepatitis B.

    Science.gov (United States)

    Huang, Xiangyan; Ma, Chenyun; Zhang, Qiang; Shi, Qingfen; Huang, Tao; Liu, Chao; Li, Jie; Hollinger, F Blaine

    2017-10-01

    This study was designed to detect mutations that occur within the "a" determinant in the S gene of the hepatitis B virus (HBV) in patients with occult hepatitis B (OHB), and to analyze the influence of these mutations on expression and reactivity of the hepatitis B surface antigen (HBsAg). Twenty-three certified OHB samples were compared to 32 HBsAg positive samples from patients with chronic hepatitis B. The median HBV DNA levels in the OHB group were significantly lower than those in the control group (P < 0.0001). Mutations within the "a" determinant were analyzed by gene amplification and sequencing. This revealed mixed infections in which clones within a sample displayed either different mutations or mutations in association with clones that exhibited wild type amino acid patterns. Sequencing analysis also showed a significant difference between the proportions of amino acid mutations observed in the OHB and control groups. Seven recombinant S (rS) proteins with corresponding OHB mutations and three wild type alleles were expressed and purified in the Pichia pastoris expression system to preserve conformational attributes, and their reactivity analyzed using six commercial HBsAg assays. The OHB sera were HBsAg nonreactive while the rS proteins with corresponding OHB mutations were universally reactive. Thus, we postulate that the reduced binding affinity between mutated HBsAg and its antibody may not be as important in defining OHB as is the effect of specific mutations in the preS/S region of the genome that affect the synthesis and secretion of the S protein and/or the virion. © 2017 Wiley Periodicals, Inc.

  5. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice.

    Directory of Open Access Journals (Sweden)

    Tetsuya Chujo

    Full Text Available WRKY transcription factors and mitogen-activated protein kinase (MAPK cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster. When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants.

  6. Enhancing Tumor Detection in IR-UWB Breast Cancer System

    Science.gov (United States)

    Ghoname, Reda; Elmahdy, Abd Elmonem; Zekry, Abd Elhalim

    2017-01-01

    An ultra-wideband (UWB) microwave system for breast cancer detection is presented. The proposed system includes monocycle pulse generator, antipodal Vivaldi antenna, breast model, and calibration algorithm for tumor detection. Firstly, our pulse generator employs transmission gate in glitch generator to achieve several advantages such as low power consumption and low ringing level. Secondly, the antipodal Vivaldi antenna is designed assuming FR4 dielectric substrate material, and developed antenna element (80 × 80 mm2) features a −10 dB return loss and bandwidth ranges from 2.3 GHz to more than 11 GHz. Thirdly, the phantom breast can be modeled as a layer of skin, fat, and then tumor is inserted in this layer. Finally, subtract and add algorithm (SAD) is used as a calibration algorithm in tumor detection system. The proposed system suggested that horizontal antenna position with 90° between transmitting and receiving antennas is localized as a suitable antenna position with different rotating location and a 0.5 cm near to phantom. The mean advantages of this localization and tracking position around breast is a high received power signal approximately around mv as a higher recognized signal in tumor detection. Using our proposed system we can detect tumor in 5 mm diameter. PMID:28421208

  7. Enhancing Tumor Detection in IR-UWB Breast Cancer System

    Directory of Open Access Journals (Sweden)

    Sara Fouad

    2017-01-01

    Full Text Available An ultra-wideband (UWB microwave system for breast cancer detection is presented. The proposed system includes monocycle pulse generator, antipodal Vivaldi antenna, breast model, and calibration algorithm for tumor detection. Firstly, our pulse generator employs transmission gate in glitch generator to achieve several advantages such as low power consumption and low ringing level. Secondly, the antipodal Vivaldi antenna is designed assuming FR4 dielectric substrate material, and developed antenna element (80×80 mm2 features a −10 dB return loss and bandwidth ranges from 2.3 GHz to more than 11 GHz. Thirdly, the phantom breast can be modeled as a layer of skin, fat, and then tumor is inserted in this layer. Finally, subtract and add algorithm (SAD is used as a calibration algorithm in tumor detection system. The proposed system suggested that horizontal antenna position with 90° between transmitting and receiving antennas is localized as a suitable antenna position with different rotating location and a 0.5 cm near to phantom. The mean advantages of this localization and tracking position around breast is a high received power signal approximately around mv as a higher recognized signal in tumor detection. Using our proposed system we can detect tumor in 5 mm diameter.

  8. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes

    Science.gov (United States)

    Zuo, Yayun; Peng, Xiong; Wang, Kang; Lin, Fangfei; Li, Yuting; Chen, Maohua

    2016-07-01

    The voltage-gated sodium channel (VGSC) is the target of sodium-channel-blocking insecticides. Traditionally, animals were thought to have only one VGSC gene comprising a α-subunit with four homologous domains (DI-DIV). The present study showed that Rhopalosiphum padi, an economically important crop pest, owned a unique heterodimeric VGSC (H1 and H2 subunits) encoded by two genes (Rpvgsc1 and Rpvgsc2), which is unusual in insects and other animals. The open reading frame (ORF) of Rpvgsc1 consisted 1150 amino acids, and the ORF of Rpvgsc2 had 957 amino acids. Rpvgsc1 showed 64.1% amino acid identity to DI-DII of Drosophila melanogaster VGSC and Rpvgsc2 showed 64.0% amino acid identity to DIII-DIV of D. melanogaster VGSC. A M918L mutation previously reported in pyrethroids-resistant strains of other insects was found in the IIS4-S6 region of R. padi field sample. The two R. padi VGSC genes were expressed at all developmental stages and showed similar expression patterns after treatment with beta-cypermethrin. Knockdown of Rpvgsc1 or Rpvgsc2 caused significant reduction in mortality rate of R. padi after exposure to beta-cypermethrin. These findings suggest that the two R. padi VGSC genes are both functional genes.

  9. Enhanced Microbial Detection Capabilities by a Rapid Portable Instrument

    Science.gov (United States)

    Morris, Heather; Monaco, Lisa; Wainwright, Norm; Steele, Andrew; Damon, Michael; Schenk, Alison; Stimpson, Eric; Maule, Jake; Effinger, Michael

    2010-01-01

    We present data describing a progression of continuing technology development - from expanding the detection capabilities of the current PTS unit to re-outfitting the instrument with a protein microarray increasing the number of detectable compounds. To illustrate the adaptability of the cartridge format, on-orbit operations data from the ISS demonstrate the detection of the fungal cell wall compound beta-glucan using applicable LOCAD-PTS cartridges. LOCAD-PTS is a handheld device consisting of a spectrophotometer, an onboard pumping mechanism, and data storage capabilities. A suite of interchangeable cartridges lined with four distinct capillaries allow a hydrated sample to mix with necessary reagents in the channels before being pumped to the optical well for spectrophotometric analysis. The reagents housed in one type of cartridge trigger a reaction based on the Limulus Amebocyte Lysate (LAL) assay, which results in the release of paranitroaniline dye. The dye is measured using a 395 nm filter. The LAL assay detects the Gram-negative bacterial cell wall molecule, endotoxin or lipopolysaccharide (LPS). The more dye released, the greater the concentration of endotoxin in the sample. Sampling, quantitative analysis, and data retrieval require less than 20 minutes. This is significantly faster than standard culture-based methods, which require at least a 24 hour incubation period.Using modified cartridges, we demonstrate the detection of Gram negative bacteria with protein microarray technology. Additionally, we provide data from multiple field tests where both standard and advanced PTS technologies were used. These tests investigate the transfer of target microbial molecules from one surface to another. Collectively, these data demonstrate that the new cartridges expand the number of compounds detected by LOCAD-PTS, while maintaining the rapid, in situ analysis characteristic of the instrument. The unit provides relevant data for verifying sterile sample collection

  10. Identification of a novel erythroid-specific enhancer for the ALAS2 gene and its loss-of-function mutation which is associated with congenital sideroblastic anemia.

    Science.gov (United States)

    Kaneko, Kiriko; Furuyama, Kazumichi; Fujiwara, Tohru; Kobayashi, Ryoji; Ishida, Hiroyuki; Harigae, Hideo; Shibahara, Shigeki

    2014-02-01

    Erythroid-specific 5-aminolevulinate synthase (ALAS2) is the rate-limiting enzyme for heme biosynthesis in erythroid cells, and a missense mutation of the ALAS2 gene is associated with congenital sideroblastic anemia. However, the gene responsible for this form of anemia remains unclear in about 40% of patients. Here, we identify a novel erythroid-specific enhancer of 130 base pairs in the first intron of the ALAS2 gene. The newly identified enhancer contains a cis-acting element that is bound by the erythroid-specific transcription factor GATA1, as confirmed by chromatin immunoprecipitation analysis in vivo and by electrophoretic mobility shift assay in vitro. A promoter activity assay in K562 human erythroleukemia cells revealed that the presence of this 130-base pair region increased the promoter activity of the ALAS2 gene by 10-15-fold. Importantly, two mutations, each of which disrupts the GATA-binding site in the enhancer, were identified in unrelated male patients with congenital sideroblastic anemia, and the lower expression level of ALAS2 mRNA in bone marrow erythroblasts was confirmed in one of these patients. Moreover, GATA1 failed to bind to each mutant sequence at the GATA-binding site, and each mutation abolished the enhancer function on ALAS2 promoter activity in K562 cells. Thus, a mutation at the GATA-binding site in this enhancer may cause congenital sideroblastic anemia. These results suggest that the newly identified intronic enhancer is essential for the expression of the ALAS2 gene in erythroid cells. We propose that the 130-base pair enhancer region located in the first intron of the ALAS2 gene should be examined in patients with congenital sideroblastic anemia in whom the gene responsible is unknown.

  11. Detection of K-ras Mutations in Predicting Efficacy of Epidermal Growth Factor Receptor Tyrosine Kinase (EGFR-TK Inhibitor in Patients with Metastatic Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Ze Li

    Full Text Available Epidermal growth factor receptor tyrosine kinase (EGFR-TK inhibitors are useful in treating different advanced human cancers; however, their clinical efficacy varies. This study detected K-ras mutations to predict the efficacy of EGFR-TK inhibitor cetuximab treatment on Chinese patients with metastatic colorectal cancer (mCRC. A total of 87 patients with metastatic colorectal cancer were treated with cetuximab for 2-16 months, in combination with chemotherapy between August 2008 and July 2012, and tissue samples were used to detect K-ras mutations. The data showed that K-ras mutation occurred in 27/87 (31%. The objective response rates and disease control rate in K-ras wild type and mutant patients were 42% (25/60 versus 11% (3/27 (p<0.05 and 60% (36/60 versus 26% (7/27 (p<0.05, respectively. Patients with the wild-type K-ras had significantly higher median survival times and progression-free survival, than patients with mutated K-ras (21 months versus 17 months, p=0.017; 10 months versus 6 months, p=0.6. These findings suggest that a high frequency of K-ras mutations occurs in Chinese mCRC patients and that K-ras mutation is required to select patients for eligibility for cetuximab therapy. Further prospective studies using a large sample size are needed to confirm these preliminary findings.

  12. Detection of mutations and polymorphisms using fluorescence-based dideoxy fingerprinting (F-ddF).

    Science.gov (United States)

    Ellison, J; Squires, G; Crutchfield, C; Goldman, D

    1994-10-01

    We have adapted the dideoxy finger-printing (ddF) technique for detecting DNA sequence variants to fluorescence detection (F-ddF) using an Applied Biosystems Model 373A DNA Sequencer equipped with GENESCAN 672 software and an external temperature control device. The fingerprints can be precisely aligned using an internal standard run in the same lanes. This facilitates location and characterization of mobility changes resulting from sequence variants. As compared to fluorescence detected single-strand conformation polymorphism analysis (F-SSCP), F-ddF is equally efficient for detection of sequence variants, and it offers additional advantages. These include information regarding location of the sequence variation, greater reliability for distinguishing one sequence variant from another and the capacity to generate large PCR fragments and analyze them in smaller subsegments. Read length and overall quality of data from F-ddF are sequence-dependent when Taq DNA polymerase is used, but reducing terminator concentration can extend read length. The strengths and weakness of F-ddF and F-SSCP are different. Thus F-ddF may work better in a given situation than F-SSCP and vice versa. A strategy for using F-ddF to circumvent limitations of F-SSCP is described.

  13. Rapid detection of single nucleotide mutation in p53 gene based on ...

    Indian Academy of Sciences (India)

    ... for the rapid detection of a specific DNA sequence related to the p53 gene is described. The structure and morphology of the synthesized graphene nanosheets and Au nanoparticles were characterized through transmission electron microscopy, UV–Vis spectroscopyand energy dispersion X-ray spectroscopy techniques.

  14. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.

    Science.gov (United States)

    Allory, Yves; Beukers, Willemien; Sagrera, Ana; Flández, Marta; Marqués, Miriam; Márquez, Mirari; van der Keur, Kirstin A; Dyrskjot, Lars; Lurkin, Irene; Vermeij, Marcel; Carrato, Alfredo; Lloreta, Josep; Lorente, José A; Carrillo-de Santa Pau, Enrique; Masius, Roy G; Kogevinas, Manolis; Steyerberg, Ewout W; van Tilborg, Angela A G; Abas, Cheno; Orntoft, Torben F; Zuiverloon, Tahlita C M; Malats, Núria; Zwarthoff, Ellen C; Real, Francisco X

    2014-02-01

    Hotspot mutations in the promoter of the gene coding for telomerase reverse transcriptase (TERT) have been described and proposed to activate gene expression. To investigate TERT mutation frequency, spectrum, association with expression and clinical outcome, and potential for detection of recurrences in urine in patients with urothelial bladder cancer (UBC). A set of 111 UBCs of different stages was used to assess TERT promoter mutations by Sanger sequencing and TERT messenger RNA (mRNA) expression by reverse transcription-quantitative polymerase chain reaction. The two most frequent mutations were investigated, using a SNaPshot assay, in an independent set of 184 non-muscle-invasive and 173 muscle-invasive UBC (median follow-up: 53 mo and 21 mo, respectively). Voided urine from patients with suspicion of incident UBC (n=174), or under surveillance after diagnosis of non-muscle-invasive UBC (n=194), was tested using a SNaPshot assay. Association of mutation status with age, sex, tobacco, stage, grade, fibroblast growth factor receptor 3 (FGFR3) mutation, progression-free survival, disease-specific survival, and overall survival. In the two series, 78 of 111 (70%) and 283 of 357 (79%) tumors harbored TERT mutations, C228T being the most frequent substitution (83% for both series). TERT mutations were not associated with clinical or pathologic parameters, but were more frequent among FGFR3 mutant tumors (p=0.0002). There was no association between TERT mutations and mRNA expression (p=0.3). Mutations were not associated with clinical outcome. In urine, TERT mutations had 90% specificity in subjects with hematuria but no bladder tumor, and 73% in recurrence-free UBC patients. The sensitivity was 62% in incident and 42% in recurrent UBC. A limitation of the study is its retrospective nature. Somatic TERT promoter mutations are an early, highly prevalent genetic event in UBC and are not associated with TERT mRNA levels or disease outcomes. A SNaPshot assay in urine may

  15. Development of techniques using DNA analysis method for detection/analysis of radiation-induced mutation. Development of an useful probe/primer and improvement of detection efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hideaki; Tsuchida, Kozo; Hashido, Kazuo; Takada, Naoko; Kameoka, Yosuke; Hirata, Makoto [National Inst. of Infectious Diseases, Tokyo (Japan)

    1999-02-01

    Previously, it was demonstrated that detection of centromere became easy and reliable through fluorescent staining by FISH method using a probe of the sequence preserved in {alpha}-satelite DNA. Since it was, however, found inappropriate to detect dicentrics based on the relative amount of DNA probe on each chromosome. A prove which allows homogeneous detection of {alpha}-satelite DNA for each chromosome was constructed. A presumed sequence specific to kinetochore, CENP-B box was amplified by PCR method and the product DNA was used as a probe. However, the variation in amounts of probe DNA among chromosomes was decreased by only about 20%. Then, a program for image processing of the results obtained from FISH using {alpha}-satelite DNA was constructed to use as a marker for centromere. When compared with detection of abnormal chromosomes stained by the conventional method, calculation efficacy for only detection of centromere was improved by the use of this program. Calculation to discriminate the normal or not was still complicated and the detection efficacy was little improved. Chromosomal abnormalities in lymphocytes were used to detect the effects of radiation. In this method, it is needed to shift the phase of cells into metaphase. The mutation induced by radiation might be often repaired during shifting. To exclude this possibility, DNA extraction was conducted at a low temperature and immediately after exposure to {sup 137}Cs, and a rapid genome detection method was established using the genome DNA. As the model genomes, the following three were used: (1) long chain repeated sequences widely dispersed over chromosome, (2) cluster genes, (3) single copy genes. The effects of radiation were detectable at 1-2 Gy for the long repeated sequences and at 7 Gy for the cluster genes, respectively, whereas no significant effects were observed at any Gy tested for the single copy genes. Amplification was marked in the cells exposed at 1-10 Gy (peak at 4 Gy), suggesting

  16. Image enhancement and moving target detection in IR image sequences

    NARCIS (Netherlands)

    Beck, W.

    1993-01-01

    Results are presented of noise reduction by motion compensated temporal filtering in a noisy IR image sequence and of moving target detection in an air-to-ground IR image sequence. In the case of motion compensated temporal filtering our approach consists of estimating the optical flow between

  17. Enhanced detection levels in a semi-automated sandwich ...

    African Journals Online (AJOL)

    A peptide nucleic acid (PNA) signal probe was tested as a replacement for a typical DNA oligonucleotidebased signal probe in a semi-automated sandwich hybridisation assay designed to detect the harmful phytoplankton species Alexandrium tamarense. The PNA probe yielded consistently higher fluorescent signal ...

  18. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity.

    Science.gov (United States)

    Carr-Schmid, A; Valente, L; Loik, V I; Williams, T; Starita, L M; Kinzy, T G

    1999-08-01

    Translation elongation factor 1beta (EF-1beta) is a member of the family of guanine nucleotide exchange factors, proteins whose activities are important for the regulation of G proteins critical to many cellular processes. EF-1beta is a highly conserved protein that catalyzes the exchange of bound GDP for GTP on EF-1alpha, a required step to ensure continued protein synthesis. In this work, we demonstrate that the highly conserved C-terminal region of Saccharomyces cerevisiae EF-1beta is sufficient for normal cell growth. This region of yeast and metazoan EF-1beta and the metazoan EF-1beta-like protein EF-1delta is highly conserved. Human EF-1beta, but not human EF-1delta, is functional in place of yeast EF-1beta, even though both EF-1beta and EF-1delta have previously been shown to have guanine nucleotide exchange activity in vitro. Based on the sequence and functional homology, mutagenesis of two C-terminal residues identical in all EF-1beta protein sequences was performed, resulting in mutants with growth defects and sensitivity to translation inhibitors. These mutants also enhance translational fidelity at nonsense codons, which correlates with a reduction in total protein synthesis. These results indicate the critical function of EF-1beta in regulating EF-1alpha activity, cell growth, translation rates, and translational fidelity.

  19. Mutations in Elongation Factor 1β, a Guanine Nucleotide Exchange Factor, Enhance Translational Fidelity

    Science.gov (United States)

    Carr-Schmid, Anne; Valente, Louis; Loik, Valerie I.; Williams, Tanishia; Starita, Lea M.; Kinzy, Terri Goss

    1999-01-01

    Translation elongation factor 1β (EF-1β) is a member of the family of guanine nucleotide exchange factors, proteins whose activities are important for the regulation of G proteins critical to many cellular processes. EF-1β is a highly conserved protein that catalyzes the exchange of bound GDP for GTP on EF-1α, a required step to ensure continued protein synthesis. In this work, we demonstrate that the highly conserved C-terminal region of Saccharomyces cerevisiae EF-1β is sufficient for normal cell growth. This region of yeast and metazoan EF-1β and the metazoan EF-1β-like protein EF-1δ is highly conserved. Human EF-1β, but not human EF-1δ, is functional in place of yeast EF-1β, even though both EF-1β and EF-1δ have previously been shown to have guanine nucleotide exchange activity in vitro. Based on the sequence and functional homology, mutagenesis of two C-terminal residues identical in all EF-1β protein sequences was performed, resulting in mutants with growth defects and sensitivity to translation inhibitors. These mutants also enhance translational fidelity at nonsense codons, which correlates with a reduction in total protein synthesis. These results indicate the critical function of EF-1β in regulating EF-1α activity, cell growth, translation rates, and translational fidelity. PMID:10409717

  20. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Kunder, Sandra; Quintanilla-Martinez, Leticia

    2007-01-01

    This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas......, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid...... showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral...

  1. Inspecting Targeted Deep Sequencing of Whole Genome Amplified DNA Versus Fresh DNA for Somatic Mutation Detection: A Genetic Study in Myelodysplastic Syndrome Patients.

    Science.gov (United States)

    Palomo, Laura; Fuster-Tormo, Francisco; Alvira, Daniel; Ademà, Vera; Armengol, María Pilar; Gómez-Marzo, Paula; de Haro, Nuri; Mallo, Mar; Xicoy, Blanca; Zamora, Lurdes; Solé, Francesc

    2017-08-01

    Whole genome amplification (WGA) has become an invaluable method for preserving limited samples of precious stock material and has been used during the past years as an alternative tool to increase the amount of DNA before library preparation for next-generation sequencing. Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic stem cell disorders characterized by presenting somatic mutations in several myeloid-related genes. In this work, targeted deep sequencing has been performed on four paired fresh DNA and WGA DNA samples from bone marrow of MDS patients, to assess the feasibility of using WGA DNA for detecting somatic mutations. The results of this study highlighted that, in general, the sequencing and alignment statistics of fresh DNA and WGA DNA samples were similar. However, after variant calling and when considering variants detected at all frequencies, there was a high level of discordance between fresh DNA and WGA DNA (overall, a higher number of variants was detected in WGA DNA). After proper filtering, a total of three somatic mutations were detected in the cohort. All somatic mutations detected in fresh DNA were also identified in WGA DNA and validated by whole exome sequencing.

  2. Enhanced chemosensory detection of negative emotions in congenital blindness

    DEFF Research Database (Denmark)

    Iversen, Katrine D.; Ptito, Maurice; Møller, Per

    2015-01-01

    It is generally acknowledged that congenitally blind individuals develop superior sensory abilities in order to compensate for their lack of vision. Substantial research has been done on somatosensory and auditory sensory information processing of the blind. However, relatively little information...... better in detecting disgust. Our findings reveal that congenitally blind individuals are better at identifying ecologically important emotions and provide new insights into the mechanisms of social and affective communication in blindness....... is available about compensatory plasticity in the olfactory domain. Although previous studies indicate that blind individuals have superior olfactory abilities, no studies so far have investigated their sense of smell in relation to social and affective communication. The current study compares congenitally...... blind and normal sighted individuals in their ability to discriminate and identify emotions from body odours. A group of 14 congenitally blind and 14 age- and sex-matched sighted control subjects participated in the study. We compared participants' abilities to detect and identify by smelling sweat from...

  3. A Simple Oligonucleotide Biochip Capable of Rapidly Detecting Known Mitochondrial DNA Mutations in Chinese Patients with Leber’S Hereditary Optic Neuropathy (LHON)

    Science.gov (United States)

    Du, Wei-Dong; Chen, Gang; Cao, Hui-Min; Jin, Qing-Hui; Liao, Rong-Feng; He, Xiang-Cheng; Chen, Da-Ben; Huang, Shu-Ren; Zhao, Hui; Lv, Yong-Mei; Tang, Hua-Yang; Tang, Xian-Fa; Wang, Yong-Qing; Sun, Song; Zhao, Jian-Long; Zhang, Xue-Jun

    2011-01-01

    Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disease. Clinically, no efficient assay protocols have been available. In this study, we aimed to develop an oligonucleotide biochip specialized for detection of known base substitution mutations in mitochondrial DNA causing LHON and to investigate frequencies of LHON relevant variants in Anhui region of China. Thirty-two pairs of oligonucleotide probes matched with the mutations potentially linked to LHON were covalently immobilized. Cy5-lablled targets were amplified from blood DNA samples by a multiplex PCR method. Two kinds of primary mutations 11778 G > A and 14484 T > C from six confirmed LHON patients were interrogated to validate this biochip format. Further, fourteen Chinese LHON pedigrees and twenty-five unrelated healthy individuals were investigated by the LHON biochip, direct sequencing and pyrosequencing, respectively. The biochip was found to be able efficiently to discriminate homoplasmic and heteroplasmic mtDNA mutations in LHON. Biochip analysis revealed that twelve of eighteen LHON symptomatic cases from the 14 Chinese pedigree harbored the mutations either 11778G > A, 14484T > C or 3460G > A, respectively, accounting for 66.7%. The mutation 11778G > A in these patients was homoplasmic and prevalent (55.5%, 10 of 18 cases). The mutations 3460G > A and 3394T > C were found to co-exist in one LHON case. The mutation 13708G > A appeared in one LHON pedigree. Smaller amount of sampling and reaction volume, easier target preparation, fast and high-throughput were the main advantages of the biochip over direct DNA sequencing and pyrosequencing. Our findings suggested that primary mutations of 11778G > A, 14484T > C or 3460G > A are main variants of mtDNA gene leading to LHON in China. The biochip would easily be implemented in clinical diagnosis. PMID:21694444

  4. A simple oligonucleotide biochip capable of rapidly detecting known mitochondrial DNA mutations in Chinese patients with Leber's hereditary optic neuropathy (LHON).

    Science.gov (United States)

    Du, Wei-Dong; Chen, Gang; Cao, Hui-Min; Jin, Qing-Hui; Liao, Rong-Feng; He, Xiang-Cheng; Chen, Da-Ben; Huang, Shu-Ren; Zhao, Hui; Lv, Yong-Mei; Tang, Hua-Yang; Tang, Xian-Fa; Wang, Yong-Qing; Sun, Song; Zhao, Jian-Long; Zhang, Xue-Jun

    2011-01-01

    Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disease. Clinically, no efficient assay protocols have been available. In this study, we aimed to develop an oligonucleotide biochip specialized for detection of known base substitution mutations in mitochondrial DNA causing LHON and to investigate frequencies of LHON relevant variants in Anhui region of China. Thirty-two pairs of oligonucleotide probes matched with the mutations potentially linked to LHON were covalently immobilized. Cy5-lablled targets were amplified from blood DNA samples by a multiplex PCR method. Two kinds of primary mutations 11778 G > A and 14484 T > C from six confirmed LHON patients were interrogated to validate this biochip format. Further, fourteen Chinese LHON pedigrees and twenty-five unrelated healthy individuals were investigated by the LHON biochip, direct sequencing and pyrosequencing, respectively. The biochip was found to be able efficiently to discriminate homoplasmic and heteroplasmic mtDNA mutations in LHON. Biochip analysis revealed that twelve of eighteen LHON symptomatic cases from the 14 Chinese pedigree harbored the mutations either 11778G > A, 14484T > C or 3460G A, respectively, accounting for 66.7%. The mutation 11778G > A in these patients was homoplasmic and prevalent (55.5%, 10 of 18 cases). The mutations 3460G > A and 3394T > C were found to co-exist in one LHON case. The mutation 13708G > A appeared in one LHON pedigree. Smaller amount of sampling and reaction volume, easier target preparation, fast and high-throughput were the main advantages of the biochip over direct DNA sequencing and pyrosequencing. Our findings suggested that primary mutations of 11778G > A, 14484T > C or 3460G > A are main variants of mtDNA gene leading to LHON in China. The biochip would easily be implemented in clinical diagnosis.

  5. A Simple Oligonucleotide Biochip Capable of Rapidly Detecting Known Mitochondrial DNA Mutations in Chinese Patients with Leber’S Hereditary Optic Neuropathy (LHON

    Directory of Open Access Journals (Sweden)

    Wei-Dong Du

    2011-01-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally transmitted disease. Clinically, no efficient assay protocols have been available. In this study, we aimed to develop an oligonucleotide biochip specialized for detection of known base substitution mutations in mitochondrial DNA causing LHON and to investigate frequencies of LHON relevant variants in Anhui region of China. Thirty-two pairs of oligonucleotide probes matched with the mutations potentially linked to LHON were covalently immobilized. Cy5-lablled targets were amplified from blood DNA samples by a multiplex PCR method. Two kinds of primary mutations 11778 G > A and 14484 T > C from six confirmed LHON patients were interrogated to validate this biochip format. Further, fourteen Chinese LHON pedigrees and twenty-five unrelated healthy individuals were investigated by the LHON biochip, direct sequencing and pyrosequencing, respectively. The biochip was found to be able efficiently to discriminate homoplasmic and heteroplasmic mtDNA mutations in LHON. Biochip analysis revealed that twelve of eighteen LHON symptomatic cases from the 14 Chinese pedigree harbored the mutations either 11778G > A, 14484T > C or 3460G > A, respectively, accounting for 66.7%. The mutation 11778G > A in these patients was homoplasmic and prevalent (55.5%, 10 of 18 cases. The mutations 3460G > A and 3394T > C were found to co-exist in one LHON case. The mutation 13708G > A appeared in one LHON pedigree. Smaller amount of sampling and reaction volume, easier target preparation, fast and high-throughput were the main advantages of the biochip over direct DNA sequencing and pyrosequencing. Our findings suggested that primary mutations of 11778G > A, 14484T > C or 3460G > A are main variants of mtDNA gene leading to LHON in China. The biochip would easily be implemented in clinical diagnosis.

  6. Detection of up to 65% of Precancerous Lesions of the Human Colon and Rectum by Mutation Analysis of APC, K-Ras, B-Raf and CTNNB1

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Mandy; Scholtka, Bettina, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Gottschalk, Uwe [Maria Heimsuchung Caritas-Klinik Pankow, Breite Straße 46/47, 13187 Berlin (Germany); Faiss, Siegbert [III. Medizinische Abteilung - Gastroenterologie und Hepatologie, Asklepios Klinik Barmbek, Rubenkamp 220, 22291 Hamburg (Germany); Schatz, Daniela; Berghof-Jäger, Kornelia [BIOTECON Diagnostics GmbH, Hermannswerder Haus 17, 14473 Potsdam (Germany); Steinberg, Pablo, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover (Germany)

    2010-12-29

    In the present study a recently conceived 4-gene marker panel covering the Wnt and Ras-Raf-MEK-MAPK signaling pathways was used to analyze 20 colorectal serrated lesions and 41 colorectal adenoma samples and to determine the percentage of each of the above-mentioned potentially precancerous lesions carrying at least one of the four above-mentioned genes in a mutated form. CTNNB1 and B-Raf were screened by PCR-single-strand conformation polymorphism analysis, K-Ras by restriction fragment length polymorphism analysis and the APC gene mutation cluster region (codons 1243–1567) by direct DNA sequencing. APC mutations were only detected in 10% of the serrated lesions but in 34% of the adenomas. Twenty percent of the serrated lesions and 14% of the adenomas carried a mutated K-Ras. B-Raf was found to be mutated in 50% of the serrated lesions and in 22% of the adenomas. CTNNB1 was altered in 12% of the adenomas, but not in serrated lesions. By using the above gene marker panel it could be shown that 65% of the serrated lesions and 61% of the adenomas carried at least one of the four genes in a mutated form. Based on its excellent performance in detecting mutations in sporadic preneoplastic (in this study) and neoplastic lesions (in a previous study) of the human colon and rectum, this primer combination might also be suited to efficiently and non-invasively detect genetic alterations in stool DNA of patients with early colorectal cancer.

  7. Early detection of multi-drug resistance and common mutations in Mycobacterium tuberculosis isolates from Delhi using GenoType MTBDRplus assay

    Directory of Open Access Journals (Sweden)

    R Singhal

    2015-01-01

    Full Text Available Purpose: There is scarcity of prevalence data of multi-drug-resistant tuberculosis (MDR-TB data and common mutations responsible in North India. This study aimed to detect MDR-TB among MDR-TB suspects from Delhi and mutation patterns using GenoType MTBDRplus assay. Materials and Methods: All MDR suspects in five districts of New Delhi were referred to the laboratory from 1 st October 2011 to 31 st December 2012 as per criterion defined by Programmatic Management of Drug Resistant Tuberculosis (PMDT. GenoType MTBDRplus assay was performed on 2182 samples or cultures and mutations in the rpoB gene for rifampicin (RIF and katG and inhA genes for isoniazid (INH were analyzed. Results: A total of 366 (16.8% MDR-TB cases were diagnosed. MDR rate was found to be 32%, 16.6% and 10.2% during criterion A, B and C respectively. The most common mutation detected for RIF was S531L (59.0% and for INH was S315T1 (88.3%. Mutations S531L and S315T1 occurred significantly higher in MDR strains as compared to RIF mono-resistant and INH mono-resistant strains, respectively. Average laboratory turn-around time (TAT for dispatch of result to districts for test conducted on samples was 4.4 days. Conclusion: GenoType MTBDRplus is a useful assay for rapid detection of MDR-TB. The common mutations for RIF and INH were similar to those seen in other regions. However, mutations determining MDR strains and mono-resistant strains differed significantly for both RIF and INH.

  8. Enhancing international radiation/nuclear detection training opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Booker, Paul M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Gerald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meagher, John B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siefken, Rob R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spracklen, James L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-23

    The United States has worked domestically to develop and provide radiological and nuclear detection training and education initiatives aimed at interior law enforcement, but the international community has predominantly focused efforts at border and customs officials. The interior law enforcement officials of a State play a critical role in maintaining an effective national-level nuclear detection architecture. To meet this vital need, DNDO was funded by the U.S. Department of State (DOS) to create and deliver a 1-week course at the International Law Enforcement Academy (ILEA) in Budapest, Hungary to inform interior law enforcement personnel of the overall mission, and to provide an understanding of how the participants can combat the threats of radiological and nuclear terrorism through detection efforts. Two courses, with approximately 20 students in each course, were delivered in fiscal year (FY) 2013, two were delivered in FY 2014 and FY 2015, and as of this report’s writing more are planned in FY 2016. However, while the ILEA courses produced measurable success, DNDO requested Pacific Northwest National Laboratory (PNNL) research potential avenues to further increase the course impact.In a multi-phased approach, PNNL researched and analyzed several possible global training locations and venues, and other possible ways to increase the impact of the course using an agreed-to data-gathering format.

  9. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Science.gov (United States)

    Kneipp, Katrin; Wang, Yang; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving; Dasari, Ramachandra R.; Feld, Michael S.

    1997-03-01

    By exploiting the extremely large effective cross sections ( 10-17-10-16 cm2/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2×105 W/cm2 nonresonant near-infrared excitation show a clear ``fingerprint'' of its Raman features between 700 and 1700 cm-1. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules.

  10. Mutation in ESBL Plasmid from Escherichia coli O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination

    Directory of Open Access Journals (Sweden)

    Mickaël Poidevin

    2018-02-01

    Full Text Available Conjugative plasmids are one of the main driving force of wide-spreading of multidrug resistance (MDR bacteria. They are self-transmittable via conjugation as carrying the required set of genes and cis-acting DNA locus for direct cell-to-cell transfer. IncI incompatibility plasmids are nowadays often associated with extended-spectrum beta-lactamases producing Enterobacteria in clinic and environment. pESBL-EA11 was isolated from Escherichia coli O104:H4 outbreak strain in Germany in 2011. During the previous study identifying transfer genes of pESBL-EA11, it was shown that transposon insertion at certain DNA region of the plasmid, referred to as Hft, resulted in great enhancement of transfer ability. This suggested that genetic modifications can enhance dissemination of MDR plasmids. Such ‘superspreader’ mutations have attracted little attention so far despite their high potential to worsen MDR spreading. Present study aimed to gain our understanding on regulatory elements that involved pESBL transfer. While previous studies of IncI plasmids indicated that immediate downstream gene of Hft, traA, is not essential for conjugative transfer, here we showed that overexpression of TraA in host cell elevated transfer rate of pESBL-EA11. Transposon insertion or certain nucleotide substitutions in Hft led strong TraA overexpression which resulted in activation of essential regulator TraB and likely overexpression of conjugative pili. Atmospheric Scanning Electron Microscopy observation suggested that IncI pili are distinct from other types of conjugative pili (such as long filamentous F-type pili and rather expressed throughout the cell surface. High transfer efficiency in the mutant pESBL-EA11 was involved with hyperpiliation which facilitates cell-to-cell adhesion, including autoagglutination. The capability of plasmids to evolve to highly transmissible mutant is alarming, particularly it might also have adverse effect on host pathogenicity.

  11. Enhanced Reconstitution of Human Erythropoiesis and Thrombopoiesis in an Immunodeficient Mouse Model with KitWv Mutations

    Directory of Open Access Journals (Sweden)

    Ayano Yurino

    2016-09-01

    Full Text Available In human-to-mouse xenograft models, reconstitution of human hematopoiesis is usually B-lymphoid dominant. Here we show that the introduction of homozygous KitWv mutations into C57BL/6.Rag2nullIl2rgnull mice with NOD-Sirpa (BRGS strongly promoted human multi-lineage reconstitution. After xenotransplantation of human CD34+CD38− cord blood cells, these newly generated C57BL/6.Rag2nullIl2rgnullNOD-Sirpa KitWv/Wv (BRGSKWv/Wv mice showed significantly higher levels of human cell chimerism and long-term multi-lineage reconstitution compared with BRGS mice. Strikingly, this mouse displayed a robust reconstitution of human erythropoiesis and thrombopoiesis with terminal maturation in the bone marrow. Furthermore, depletion of host macrophages by clodronate administration resulted in the presence of human erythrocytes and platelets in the circulation. Thus, attenuation of mouse KIT signaling greatly enhances the multi-lineage differentiation of human hematopoietic stem and progenitor cells (HSPCs in mouse bone marrow, presumably by outcompeting mouse HSPCs to occupy suitable microenvironments. The BRGSKWv/Wv mouse model is a useful tool to study human multi-lineage hematopoiesis.

  12. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    Science.gov (United States)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  13. Detection of three nonsense mutations and one missense mutation in the interleukin-2 receptor [gamma] chain gene in SCIDX1 that differently affect the mRNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Markiewicz, S.; Fischer, A.; Saint Basile, G. de (INSERM, Paris (France)); Subtil, A.; Dautry-Varsat, A. (Institut Pasteur, Paris (France))

    1994-05-01

    The interleukin-2 receptor [gamma] (IL-2R[gamma]) chain gene encodes a 64-kDa protein that not only composes the high-affinity form of the IL-2 binding receptor in association with the 2R [alpha] and [beta] chains, but also participates in at least the IL-4 and IL-7 receptor complexes. Mutations in this gene have recently been shown to cause X-linked severe combined immunodeficiency (SCIDX1). This disease of the immune system results from an early block of T lymphocyte and natural killer (NK) cell differentiation, which leads to a severe cellular and humoral immune defect that is lethal unless treated by bone marrow transplantation. Analysis of the IL-2R[gamma] gene in SCIDX1 patients has revealed the presence of heterogeneous mutations principally located in the extracellular domain of the molecule. We report here three intraexonic mutations and one deletion in the IL-2R[gamma] gene in four SCIDX1 patients. These mutations appear to differentially affect RNA processing, either by decreasing IL-2R[gamma] mRNA level or by the skipping of a constitutive exon. 16 refs., 1 fig.

  14. Early detection of cardiac involvement in Miyoshi myopathy: 2D strain echocardiography and late gadolinium enhancement cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Kim Byoung

    2010-05-01

    Full Text Available Abstract Background Miyoshi myopathy (MM is an autosomal recessive distal myopathy characterized by early adult onset. Cardiomyopathy is a major clinical manifestation in other muscular dystrophies and an important prognostic factor. Although dysferlin is highly expressed in cardiac muscle, the effect of dysferlin deficiency in cardiac muscle has not been studied. We hypothesized that early myocardial dysfunction could be detected by 2D strain echocardiography and late gadolinium enhancement (LGE cardiovascular magnetic resonance (CMR. Method Five consecutive MM patients (3 male in whom we detected the DYSF gene mutation and age-matched healthy control subjects were included. None of the patients had history of cardiac disease or signs and symptoms of overt heart failure. Patients were studied using 2D strain echocardiography and CMR, with 2D strain being obtained using the Automated Function Imaging technique. Results All patients had preserved left ventricular systolic function. However, segmental Peak Systolic Longitudinal Strain (PSLS was decreased in 3 patients. Global PSLS was significantly lower in patients with MM than in control subjects (p = 0.005. Basal anterior septum, basal inferior septum, mid anterior, and mid inferior septum PSLS were significantly lower in patients with MM than in control subjects (P Conclusions Patients with MM showed subclinical involvement of the heart. 2D strain and LGE are sensitive methods for detecting myocardial dysfunction prior to the development of cardiovascular symptoms. The prognostic significance of these findings warrants further longitudinal follow-up.

  15. Enhanced Fault Detection of Rolling Element Bearing Based on Cepstrum Editing and Stochastic Resonance

    Science.gov (United States)

    Zhang, Xiaofei; Hu, Niaoqing; Hu, Lei; Fan, Bin; Cheng, Zhe

    2012-05-01

    By signal pre-whitening based on cepstrum editing,the envelope analysis can be done over the full bandwidth of the pre-whitened signal, and this enhances the bearing characteristic frequencies. The bearing faults detection could be enhanced without knowledge of the optimum frequency bands to demodulate, however, envelope analysis over full bandwidth brings more noise interference. Stochastic resonance (SR), which is now often used in weak signal detection, is an important nonlinear effect. By normalized scale transform, SR can be applied in weak signal detection of machinery system. In this paper, signal pre-whitening based on cepstrum editing and SR theory are combined to enhance the detection of bearing fault. The envelope spectrum kurtosis of bearing fault characteristic components is used as indicators of bearing faults. Detection results of planted bearing inner race faults on a test rig show the enhanced detecting effects of the proposed method. And the indicators of bearing inner race faults enhanced by SR are compared to the ones without enhancement to validate the proposed method.

  16. Contrast-enhanced dedicated breast CT detection of invasive breast cancer preceding mammographic diagnosis

    OpenAIRE

    Prionas, Nicolas D.; Aminololama-Shakeri, Shadi; Yang, Kai; Martinez, Steve R.; Lindfors, Karen K.; Boone, John M.

    2015-01-01

    Dedicated breast computed tomography (bCT) generates high-resolution, three-dimensional images of the pendent uncompressed breast. Intravenous iodinated contrast during bCT provides additional physiologic information. In this case, a 10.0-mm invasive ductal carcinoma was visualized using contrast-enhanced breast CT one year before mammographic detection. Mammography four months before bCT was negative. The bCT contrast enhancement pattern closely matched the dynamic contrast-enhanced MRI obta...

  17. High-sensitivity damage detection based on enhanced nonlinear dynamics

    Science.gov (United States)

    Epureanu, Bogdan I.; Yin, Shih-Hsun; Derriso, Mark M.

    2005-04-01

    One of the most important aspects of detecting damage in the framework of structural health monitoring is increasing the sensitivity of the monitored feature to the presence, location, and extent of damage. Distinct from previous techniques of obtaining information about the monitored structure—such as measuring frequency response functions—the approach proposed herein is based on an active interrogation of the system. This interrogation approach allows for the embedding of the monitored system within a larger system by means of a nonlinear feedback excitation. The dynamics of the larger system is then analyzed in state space, and the shape of the attractor of its dynamics is used as a complex geometric feature which is very sensitive to damage. The proposed approach is implemented for monitoring the structural integrity of a panel forced by transverse loads and undergoing limit cycle oscillations and chaos. The nonlinear von Karman plate theory is used to obtain a model for the panel combined with a nonlinear feedback excitation. The presence of damage is modeled as loss of stiffness of various levels in a portion of the plate at various locations. The sensitivity of the proposed approach to parametric changes is shown to be an effective tool in detecting damages. An earlier version was presented at the SPIE 11th International Symposium on Smart Structures and Materials.

  18. Enhanced Chemosensory Detection of Negative Emotions in Congenital Blindness

    Directory of Open Access Journals (Sweden)

    Katrine D. Iversen

    2015-01-01

    Full Text Available It is generally acknowledged that congenitally blind individuals develop superior sensory abilities in order to compensate for their lack of vision. Substantial research has been done on somatosensory and auditory sensory information processing of the blind. However, relatively little information is available about compensatory plasticity in the olfactory domain. Although previous studies indicate that blind individuals have superior olfactory abilities, no studies so far have investigated their sense of smell in relation to social and affective communication. The current study compares congenitally blind and normal sighted individuals in their ability to discriminate and identify emotions from body odours. A group of 14 congenitally blind and 14 age- and sex-matched sighted control subjects participated in the study. We compared participants’ abilities to detect and identify by smelling sweat from donors who had been watching excerpts from emotional movies showing amusement, fear, disgust, or sexual arousal. Our results show that congenitally blind subjects outperformed sighted controls in identifying fear from male donors. In addition, there was a strong tendency that blind individuals were also better in detecting disgust. Our findings reveal that congenitally blind individuals are better at identifying ecologically important emotions and provide new insights into the mechanisms of social and affective communication in blindness.

  19. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. [George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)]|[Department of Physics, Technical University of Berlin, D 10623 Berlin (Germany)

    1997-03-01

    By exploiting the extremely large effective cross sections (10{sup -17}{endash}10{sup -16}cm{sup 2}/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2{times}10{sup 5}W/cm{sup 2} nonresonant near-infrared excitation show a clear {open_quotes}fingerprint{close_quotes} of its Raman features between 700 and 1700cm{sup -1}. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules. {copyright} {ital 1997} {ital The American Physical Society}

  20. Contrast-enhanced sonography for detection of secondary lymph nodes in a melanoma tumor animal model.

    Science.gov (United States)

    Liu, Ji-Bin; Merton, Daniel A; Berger, Adam C; Forsberg, Flemming; Witkiewicz, Agnieszka; Zhao, Hongjia; Eisenbrey, John R; Fox, Traci B; Goldberg, Barry B

    2014-06-01

    To investigate the use of contrast-enhanced ultrasound imaging (US) for detection of secondary lymph nodes (LNs) in a naturally occurring melanoma swine model compared to surgery and pathologic assessment. Twenty-seven Sinclair swine were studied. The perfluorobutane microbubble contrast agent Sonazoid (GE Healthcare, Oslo, Norway) was administered (1.0 mL total dose) around the melanoma, and contrast-enhanced US was used to localize contrast-enhanced sentinel lymph nodes (SLNs). Then Sonazoid (dose, 0.25-1.0 mL) was injected into the SLNs to detect contrast-enhanced efferent lymphatic channels and secondary LNs. After peritumoral injection of blue dye, a surgeon (blinded to the contrast-enhanced US results) performed a radical LN dissection. Contrast-enhanced US was used to guide removal of any enhanced secondary LNs left after radical LN dissection. Clustered conditional logistic regression analyzed the benefit of contrast-enhanced US-directed secondary LN dissection over radical LN dissection using pathologic findings as the reference standard. A total of 268 secondary LNs were resected, with 59 (22%) containing metastases. Contrast-enhanced US detected 92 secondary LNs; 248 were identified by radical LN dissection; and 68 were identified by both methods. Metastases were detected in 20% (51 of 248) and 40% (37 of 92) of the secondary LNs identified by radical LN dissection and contrast-enhanced US, respectively. Thus, secondary LNs detected by contrast-enhanced US were nearly 5 times more likely to contain metastases than secondary LNs removed by radical LN dissection (odds ratio, 4.8; P < .0001). Twenty-two of the 180 secondary LNs (12%) identified only by radical LN dissection contained metastases, whereas contrast-enhanced US identified 20 secondary LNs after the surgeon completed the radical LN dissection, of which 8 (40%) contained metastases. Secondary LNs can be detected by using contrast-enhanced US after injection of Sonazoid into SLNs. Secondary LNs

  1. Detection of pericardial inflammation with late-enhancement cardiac magnetic resonance imaging: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Andrew M. [Great Ormond Street Hospital for Children, Cardiothoracic Unit, London (United Kingdom); Gasthuisberg University Hospital, Department of Radiology, Leuven (Belgium); Dymarkowski, Steven; Bogaert, Jan [Gasthuisberg University Hospital, Department of Radiology, Leuven (Belgium); Verbeken, Eric K. [Gasthuisberg University Hospital, Department of Pathology, Leuven (Belgium)

    2006-03-15

    To examine the value of late-enhancement cardiac magnetic resonance imaging (MRI) for detection of pericardial inflammation. Late-enhancement cardiac MRI was performed in 16 patients with clinical suspicion of pericardial disease. Pericardial effusion, pericardial thickening and pericardial enhancement were assessed. MRI findings were compared with those of definitive pericardial histology (n=14) or microbiology (n=2). A control group of 12 patients with no clinical evidence of pericardial disease were also imaged with the same MRI protocol. Sensitivity and specificity for late-enhancement MRI detection of pericardial inflammation was of 100%. There was MRI late enhancement of the pericardial layers in all five patients with histological/microbiological evidence of inflammatory pericarditis. MRI demonstrated no pericardial thickening and no MRI late enhancement with or without a pericardial effusion in any of the five patients with histological evidence of a normal pericardium. MRI detected pericardial thickening in the absence of both pericardial effusion and late enhancement in all six patients with histological evidence of chronic fibrosing pericarditis. The 12 control subjects showed no evidence of pericardial MRI late enhancement. These findings demonstrate that MRI late enhancement can be used to visualize pericardial inflammation in patients with clinical suspicion of pericardial disease. (orig.)

  2. Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter.

    Science.gov (United States)

    Teramoto, Atsushi; Fujita, Hiroshi

    2013-03-01

    Existing computer-aided detection schemes for lung nodule detection require a large number of calculations and tens of minutes per case; there is a large gap between image acquisition time and nodule detection time. In this study, we propose a fast detection scheme of lung nodule in chest CT images using cylindrical nodule-enhancement filter with the aim of improving the workflow for diagnosis in CT examinations. Proposed detection scheme involves segmentation of the lung region, preprocessing, nodule enhancement, further segmentation, and false-positive (FP) reduction. As a nodule enhancement, our method employs a cylindrical shape filter to reduce the number of calculations. False positives (FPs) in nodule candidates are reduced using support vector machine and seven types of characteristic parameters. The detection performance and speed were evaluated experimentally using Lung Image Database Consortium publicly available image database. A 5-fold cross-validation result demonstrates that our method correctly detects 80 % of nodules with 4.2 FPs per case, and detection speed of proposed method is also 4-36 times faster than existing methods. Detection performance and speed indicate that our method may be useful for fast detection of lung nodules in CT images.

  3. Real-time PCR detection of 16S rRNA novel mutations associated with Helicobacter pylori tetracycline resistance in Iran.

    Science.gov (United States)

    Dadashzadeh, Kianoosh; Milani, Morteza; Rahmati, Mohammad; Akbarzadeh, Abolfazl

    2014-01-01

    Tetracycline is an antibiotic widely used for the treatment of Helicobacter pylori infection, but its effectiveness is decreasing due to increasing bacterial resistance. The aim of this study was to investigate the occurrence of 16S rRNA mutations associated with resistance or reduced susceptibility to tetracycline of Helicobacter pylori by real-time PCR (RT-PCR) assays from culture. Tetracycline susceptibility and minimal inhibition concentration (MIC) was determined by the Epsilometer test (Etest) method. A LightCycler assay developed to detect these mutations was applied to DNA extracted from culture. The 16S rRNA of these isolates was sequenced and resistance-associated mutations were identified. From 104 isolates of H. pylori examined, 11 showed resistance to tetracycline. LightCycler assay was applied to DNA extracted from 11 tetracycline-susceptible and 11 tetracycline resistance H. pylori isolates. In our study the sequencing of the H. pylori wild types in 16 s rRNA gene were AGA 926-928 with MIC (0.016 to 0.5 μg/ml), while the sequencing and MIC for resistant were GGA and AGC, (0.75 to 1.5 μg/ml), respectively. Also we found a novel mutation in 2 strains with 84° as their melting temperatures and exhibition of an A939C mutation. We conclude that real-time PCR is an excellent method for determination of H. pylori tetracycline resistance related mutations that could be used directly on biopsy specimens.

  4. Cosegregation of intragenic markers with a novel mutation that causes Crigler-Najjar syndrome type I: Implication in carrier detection and prenatal diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Moghrabi, N.; Clarke, D.J.; Burchell, B.; Boxer, M. (Univ. of Dundee (United Kingdom))

    1993-09-01

    Crigler-Najjar syndrome type I (CN-1) is a familial disorder characterized by severe unconjugated hyperbilirubinemia and jaundice and leads to kernicterus, neurological damage, and eventual death unless treated with liver transplantation. Previous reports identified mutations in the UGT1 gene complex to be the cause of the disease. The total absence of all phenol/bilirubin UGT (UDP-glucuronosyl transferase) proteins and their activities in liver homogenate of a CN-1 patient was determined by enzymological and immunochemical analysis. A novel homozygous nonsense mutation (CGA [yields] TGA) was identified in the patient by the combined techniques of PCR and direct sequenching. This mutation was located in exon 3 of the constant region in the gene complex which is common to all phenol and bilirubin UGTs. The segregation of the mutation in the patient's family was analyzed and confirmed the recessive nature of the disease. Newly developed intragenic polymorphic probes (UGT1[sup *]4 and UGT-Const) were used on Southern blots of MspI-digested genomic DNA of the patient and his family. The segregation of haplotypes with the mutation for the patient and his family revealed the allele identified by the A1-B1-C2 haplotype to be carrying the mutation. The risk of recombination occurring is negligible, because of the intragenic nature of the probes. This study demonstrates the potential usefulness of these probes in carrier detection and prenatal/presymptomatic diagnosis. 36 refs., 5 figs., 1 tab.

  5. Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry

    Science.gov (United States)

    Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Chang, Hong (Inventor); Morris, Daniel Dale (Inventor); Graf, Jodi Seaborn (Inventor)

    2016-01-01

    A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.

  6. Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions

    CERN Document Server

    Athanasiou, M; David, C; Anagnostopoulos, G

    2013-01-01

    In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

  7. Clinical results of an advanced SVT detection enhancement algorithm.

    Science.gov (United States)

    Lee, Michael A; Corbisiero, Raffaele; Nabert, David R; Coman, James A; Giudici, Michael C; Tomassoni, Gery F; Turk, Kyong T; Breiter, David J; Zhang, Yunlong

    2005-10-01

    Supraventricular tachycardia (SVT) has many characteristics that are similar to ventricular tachycardia (VT). This presents a significant challenge for the SVT-detection algorithms of an implantable cardioverter defibrillator (ICD). A newly developed ICD, which utilizes a Vector Timing and Correlation algorithm as well as interval-based conventional SVT discrimination algorithms (Rhythm ID), was evaluated in this study. This study was a prospective, multicenter trial that evaluated 96 patients implanted with an ICD at 21 U.S. centers. All patients were followed at 2 weeks, 1 month, and every 3 months post implant. A manual Rhythm ID reference vector was acquired prior to any arrhythmia induction. During testing, atrial tachyarrhythmias were induced first, followed by ventricular arrhythmia induction. Induced and spontaneous SVT and VT/ventricular fibrillation (VF) episodes recorded during the trial were annotated by physician investigators. The mean age of the patients implanted with an ICD was 67.3 +/- 10.8 years. Eighty-one percent of patients were male. The primary cardiovascular disease was coronary artery disease, and the primary tachyarrhythmia was monomorphic VT. Implementation of the Rhythm ID algorithm did not affect the VT/VF detection time. There were a total of 370 ventricular tachyarrhythmias (277 induced and 93 spontaneous) and 441 SVT episodes (168 induced and 273 spontaneous). Sensitivity for ventricular tachyarrhythmias was 100%, and specificity for SVT was 92% (94% and 91% for induced and spontaneous SVT, respectively). All patients had a successful manual Rhythm ID acquisition prior to atrial tachyarrhythmia induction. At the 1-month follow-up, the Rhythm ID references were updated automatically an average of 167.8 +/- 122.7 times. Stored Rhythm ID references correlated to patients' normally conducted rhythm 100% at 2 weeks, and 98% at 1 month. The Rhythm ID algorithm achieved 100% sensitivity for VT/VF, and 92% specificity for SVT. The manual

  8. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  9. A missense mutation in the APC tumor suppressor gene disrupts an ASF/SF2 splicing enhancer motif and causes pathogenic skipping of exon 14.

    Science.gov (United States)

    Gonçalves, Vânia; Theisen, Patrícia; Antunes, Ofélia; Medeira, Ana; Ramos, José Silva; Jordan, Peter; Isidro, Glória

    2009-03-09

    A missense mutation at codon 640 in the APC gene was identified in a familial adenomatous polyposis (FAP) patient, however, its pathological consequence remained unclear. Here we found that this missense mutation interferes at the nucleotide level with an exonic splicing regulatory element and leads to aberrant splicing of the mutant APC transcript rather than exerting its effect through the observed amino acid change. Analysis of the patient RNA revealed complete skipping of exon 14 in transcripts from the mutant APC allele, leading to a frameshift and a premature stop codon. When cloned into a splicing reporter minigene and transfected into colorectal cell lines, the exon 14 point mutation c.1918C>G (pR640G) was found sufficient to cause the observed exon skipping. Bioinformatic analysis predicted the mutation to change SRp55, hnRNP A1 or ASF/SF2 splicing factor binding sites. Using RNA interference methodology these predictions were experimentally validated and revealed that only ASF/SF2 was required for exon 14 inclusion. These research data identify APC mutation c.1918C>G (pR640G) as pathogenic and indicate a mechanism involving disruption of an ASF/SF2 exonic splicing enhancer element. The results allow genetic diagnosis of a hereditary tumour predisposition but also illustrate the need to complement in silico prediction by splicing reporter assays.

  10. Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC probes.

    Directory of Open Access Journals (Sweden)

    Velizar Shivarov

    Full Text Available Mutations in the human DNA methyl transferase 3A (DNMT3A gene are recurrently identified in several hematologic malignancies such as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN, myelodysplastic syndromes (MDS, MPN/MDS overlap syndromes and acute myeloid leukemia (AML. They have been shown to confer worse prognosis in some of these entities. Notably, about 2/3 of these mutations are missense mutations in codon R882 of the gene. We aimed at the development and validation of a novel easily applicable in routine practice method for quantitative detection of the DNMT3A p.R882C/H/R/S mutations bead-based suspension assay. Initial testing on plasmid constructs showed excellent performance of BNA(NC-modified probes with an optimal hybridization temperature of 66°C. The method appeared to be quantitative and showed sensitivity of 2.5% for different mutant alleles, making it significantly superior to direct sequencing. The assay was further validated on plasmid standards at different ratios between wild type and mutant alleles and on clinical samples from 120 patients with known or suspected myeloid malignancies. This is the first report on the quantitative detection of DNMT3A R882 mutations using bead-based suspension assay with BNA(NC-modified probes. Our data showed that it could be successfully implemented in the diagnostic work-up for patients with myeloid malignancies, as it is rapid, easy and reliable in terms of specificity and sensitivity.

  11. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    Science.gov (United States)

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E

    2017-04-01

    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP , are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  12. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    Science.gov (United States)

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-04

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Detection of explosive vapour using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Fang, X.; Ahmad, S. R.

    2009-11-01

    A commercially available nano-structured gold substrate was used for activating surface-enhanced Raman scattering (SERS). Raman spectra of the vapour of explosive material, triacetonetriperoxide (TATP), at trace concentrations produced from adsorbed molecules on such surfaces have been studied. Prominent Raman lines of the explosive molecular species were recorded at a sample temperature of ˜35°C, which is near to human body temperature. For this study, the concentration of the adsorbed TATP molecules on the nano-structured surface was varied by heating the sample to different temperatures and exposing the substrate to the sample vapour for different lengths of time. The intensities of the Raman lines have been found to increase with the increase in temperature and also with the increase in the duration of exposure for a fixed temperature. However, as expected, the Raman intensities have been found to saturate at higher temperatures and longer exposures. These saturation effects of the strengths of the Raman lines in the SERS of TATP vapour have been investigated in this paper. The results indicate that the optimisation for vapour deposition on the surface could be a crucial factor for any quantitative estimate of the concentration of the molecular species adsorbed on the nano-structured substrates.

  14. PCR-SSCP analysis of the type VII collagen gene (COL7A1): Detection of a point mutation in five patients

    Energy Technology Data Exchange (ETDEWEB)

    Dunnil, M.G.S.; Richards, A.J.; Pope, F.M. [and others

    1994-09-01

    Type VII collagen is the major component of anchoring fibrils, structures which extend below the lamina densa of the epidermal basement membrane in stratified squamous epithelia. Genetic linkage studies and two mutation reports have implicated the type VII collagen gene, COL7A1, in dystrophic epidermolysis bullosa (DEB), an inherited disorder characterized by blistering and scarring of the skin and mucous membranes after minor trauma. We have used PCR-SSCP of genomic DNA to screen exons of COL7A1 for mutations in recessive DEB patients. Band mobility shifts were detected in exon FN4-B in five patients. Sequencing revealed a C to T transition changing a codon for arginine into a stop codon, homozygous in two related patients and heterozygous in the others. We are currently searching for a second mutation in these three heterozygous patients who are presumably genetic compounds. Screening for an informative Xho I restriction site altered by the mutation showed parental heterozygosity but no evidence for the mutation in 50 normal chromosomes. Segregation of COL7A1 markers in these patients suggests that the mutation has arisen independently in at least two of our families. The premature stop mutation in the 5{prime} end of the gene predicts a severely shortened collagen VII molecule. The homozygote formation of anchoring fibrils would be impaired providing an explanation at the molecular level for the ultrastructural findings of reduced numbers or absence of anchoring fibrils in this disease. In conclusion, these data strongly suggest that this novel premature stop mutation is the cause of DEB in the homozygotes and contributes to the disease in the other patients. The important role of anchoring fibrils in dermal-epidermal adhesion is also underlined.

  15. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    Science.gov (United States)

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

    OpenAIRE

    Andreas Pohlkötter; Michael Köhring; Ulrike Willer; Wolfgang Schade

    2010-01-01

    Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS). With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sa...

  17. Dim point target enhancement and detection based on improved NL-means in complex background

    Science.gov (United States)

    Lv, Ping-Yue; Lin, Chang-Qing

    2017-07-01

    In order to achieve a single-frame enhancement and detection of dim point targets efficiently, a new method based on morphological top-hat transformation and modified non-local means (NL-means, NLM) for target enhancement is presented. After enhancing dim point targets, an estimating algorithm called local reverse entropy is applied to get candidate targets, and obtains detecting results in the end. In this model, white top-hat and black top-hat are combined to obtain pre-processed image, then the targets are enhanced for the second time through modified NL-means algorithm. The background in the residual image of enhanced image and original image is mostly suppressed, then it is regarded as the input of local reverse entropy estimation method (LREM). Detecting results can be obtained by setting proper thresholds. The 4 × 4 weak lattice targets with different brightness are superimposed on different infrared image backgrounds. The experimental results show that, when the SCR is low (SCR≈1), the detection algorithm model proposed in this paper has higher SCR gain than other target-enhancing algorithms such as TDLMS, max-median, max-mean, non-local means, etc. and the detection performance is the best.

  18. The Influence of Image Enhancement Filters on a Watermark Detection Rate

    Directory of Open Access Journals (Sweden)

    Maja Strgar Kurečić

    2012-12-01

    Full Text Available In this paper is evaluated the effect of image enhancement filters on the watermarkdetection rate. State-of-the-art watermarking methods are still very sensitiveto complex degradation attack such as print-scan process, so the detection rate of awatermark method decreases considerably after such an attack on a watermarkedimage. Therefore, to improve the detection rate, the degradation of the image isreduced by using image enhancement filters. A dataset of 1000 images was watermarked,printed and scanned for the experiment. Scanned images were enhancedby means of an unsharp filter and blind deconvolution filter. The watermark detectionrate was measured and compared before and after the enhancement. Theresults show that the enhancement filtering improves the watermark detection rateby almost 10 %.

  19. Immunohistochemical detection of the BRAF V600E mutation in papillary thyroid carcinoma. Evaluation against real-time polymerase chain reaction.

    Science.gov (United States)

    Paja Fano, Miguel; Ugalde Olano, Aitziber; Fuertes Thomas, Elena; Oleaga Alday, Amelia

    2017-02-01

    The BRAF V600E mutation is the most common genetic change in papillary thyroid carcinoma and is associated with a poorer clinical course. Usual methods for its study (DNA sequencing or molecular test based on PCR) are expensive and time-consuming. Recently, immunohistochemistry (IHC) for BRAF mutation has been introduced. To compare the results of IHC and real time PCR (RT-PCR) in the detection of BRAF V600E mutation in papillary thyroid carcinoma. Analysis of clinical and pathological differences depending on RT-PCR results is included. A prospective study was performed in 82 consecutive samples, 54 of them taken through a core needle biopsy. IHC was performed on tissue fixed for 24hours with 10% neutral formalin using the anti-BRAF V600E (VE-1) mouse monoclonal primary antibody and was rated as positive or negative. DNA was extracted from formalin-fixed, paraffin-embedded tissues by manual microdissection, and BRAF mutation was detected by RT-PCR using the Cobas® 4800 BRAF V600 mutation test (Roche). Both techniques were concordant in 81 cases, and BRAF was positive in 49. Discordance appeared in a follicular variant showing positive IHC and negative RT-PCR, attributed to histological heterogeneity. Cost of materials for IHC was less than half of the cost for RT-PCR. IHC appears to be a reliable, economical and easily available alternative to molecular biology techniques for routine detection of the BRAF V600E mutation in papillary thyroid carcinoma patients, provided optimal fixation conditions are used. It may be a useful technique in hospitals with no access to molecular biology techniques. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas.

    Science.gov (United States)

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  1. Application of plasmonic subwavelength structuring to enhance infrared detection

    Science.gov (United States)

    Peters, David W.; Davids, Paul S.; Kim, Jin K.; Leonhardt, Darin; Beechem, Thomas E.; Howell, Stephen W.; Ohta, Taisuke; Wendt, Joel R.; Montoya, John A.

    2014-02-01

    Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector.

  2. Enhanced detection of ubiquitin isopeptides using reductive methylation.

    Science.gov (United States)

    Chicooree, Navin; Connolly, Yvonne; Tan, Chong-Teik; Malliri, Angeliki; Li, Yaoyong; Smith, Duncan L; Griffiths, John R

    2013-03-01

    Identification of ubiquitination (Ub) sites is of great interest due to the critical roles that the modification plays in cellular regulation. Current methods using mass spectrometry rely upon tryptic isopeptide diglycine tag generation followed by database searching. We present a novel approach to ubiquitin detection based upon the dimethyl labeling of isopeptide N-termini glycines. Ubiquitinated proteins were digested with trypsin and the resulting peptide mixture was derivatized using formaldehyde-D2 solution and sodium cyanoborohydride. The dimethylated peptide mixtures were next separated by liquid chromatography and analyzed on a quadrupole-TOF based mass spectrometer. Diagnostic b2' and a1' ions released from the isopeptide N-terminus upon collision-induced dissociation (CID) were used to spectrally improve the identification of ubiquitinated isopeptides. Proof of principle was established by application to a ubiquitinated protein tryptic digest spiked into a six-protein mix digest background. Extracted ion chromatograms of the a1' and b2' diagnostic product ions from the diglycine tag resulted in a significant reduction in signal complexity and demonstrated a selectivity towards the identification of diglycine branched isopeptides. The method was further shown to be capable of identifying diglycine isopeptides resulting from in-gel tryptic digests of ubiquitin enriched material from a His-Ub transfected cell line. We envisage that these ions may be utilized in global ubiquitination studies with post-acquisition MS/MS (or MSe) data interrogation on high resolution hybrid mass spectrometers. ᅟ

  3. Detection of the nonsense mutation of OPA3 gene in Holstein Friesian cattle with dilated cardiomyopathy in Japan

    Science.gov (United States)

    HORIUCHI, Noriyuki; KUMAGAI, Daishiro; MATSUMOTO, Kotaro; INOKUMA, Hisashi; FURUOKA, Hidefumi; KOBAYASHI, Yoshiyasu

    2015-01-01

    Bovine dilated cardiomyopathy (DCM) is an autosomal recessive genetic disorder causing congestive heart failure and subsequent death. Recently, a nonsense mutation c.343C>T in the bovine optic atrophy 3 (OPA3) gene had been reported to cause the DCM in Holstein cattle in Switzerland. However, the mutation has not been confirmed in bovine DCM outside Switzerland. Nine Holstein Friesian cows that were macroscopically and histologically diagnosed with or suspected of DCM and 12 control cows kept in Japan were tested for the mutation. The mutation surrounding OPA3 DNA fragment was amplified by PCR and subjected to direct sequences. The homogeneous c.343C>T mutation was proved to occur in all the affected cows and not in the control cows. The present study is the first report of the mutation in the DCM affected cows outside Switzerland. PMID:25947227

  4. Fast microcalcification detection in ultrasound images using image enhancement and threshold adjacency statistics

    Science.gov (United States)

    Cho, Baek Hwan; Chang, Chuho; Lee, Jong-Ha; Ko, Eun Young; Seong, Yeong Kyeong; Woo, Kyoung-Gu

    2013-02-01

    The existence of microcalcifications (MCs) is an important marker of malignancy in breast cancer. In spite of the benefits in mass detection for dense breasts, ultrasonography is believed that it might not reliably detect MCs. For computer aided diagnosis systems, however, accurate detection of MCs has the possibility of improving the performance in both Breast Imaging-Reporting and Data System (BI-RADS) lexicon description for calcifications and malignancy classification. We propose a new efficient and effective method for MC detection using image enhancement and threshold adjacency statistics (TAS). The main idea of TAS is to threshold an image and to count the number of white pixels with a given number of adjacent white pixels. Our contribution is to adopt TAS features and apply image enhancement to facilitate MC detection in ultrasound images. We employed fuzzy logic, tophat filter, and texture filter to enhance images for MCs. Using a total of 591 images, the classification accuracy of the proposed method in MC detection showed 82.75%, which is comparable to that of Haralick texture features (81.38%). When combined, the performance was as high as 85.11%. In addition, our method also showed the ability in mass classification when combined with existing features. In conclusion, the proposed method exploiting image enhancement and TAS features has the potential to deal with MC detection in ultrasound images efficiently and extend to the real-time localization and visualization of MCs.

  5. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens

    DEFF Research Database (Denmark)

    Zankari, Ea; Allesøe, Rosa Lundbye; Joensen, Katrine Grimstrup

    2017-01-01

    enterica, Escherichia coli and Campylobacter jejuni. The web-server ResFinder-2.1 was used to identify acquired antimicrobial resistance genes and two methods, the novel PointFinder (using BLAST) and an in-house method (mapping of raw WGS reads), were used to identify chromosomal point mutations. Results...... or when mapping the reads. Conclusions PointFinder proved, with high concordance between phenotypic and predicted antimicrobial susceptibility, to be a user-friendly web tool for detection of chromosomal point mutations associated with antimicrobial resistance....

  6. Enhanced detection method for corneal protein identification using shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Schlager John J

    2009-06-01

    Full Text Available Abstract Background The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea. Results Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10-3 and peptides with a probability of 10-2 or less with at least two unique peptides isolated within

  7. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.

    Science.gov (United States)

    Iqbal, Zafar; Aleem, Aamer; Iqbal, Mudassar; Naqvi, Mubashar Iqbal; Gill, Ammara; Taj, Abid Sohail; Qayyum, Abdul; ur-Rehman, Najeeb; Khalid, Ahmad Mukhtar; Shah, Ijaz Hussain; Khalid, Muhammad; Haq, Riazul; Khan, Mahwish; Baig, Shahid Mahmood; Jamil, Abid; Abbas, Muhammad Naeem; Absar, Muhammad; Mahmood, Amer; Rasool, Mahmood; Akhtar, Tanveer

    2013-01-01

    BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML) patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48), all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid leukemia along with imatinib, all of which vary in their

  8. Sensitive Detection of Pre-Existing BCR-ABL Kinase Domain Mutations in CD34+ Cells of Newly Diagnosed Chronic-Phase Chronic Myeloid Leukem