WorldWideScience

Sample records for engineering vascularized tissues

  1. Vascularization Tissue Engineering

    NARCIS (Netherlands)

    Rouwkema, Jeroen; Rivron, N.C.; van Blitterswijk, Clemens

    2008-01-01

    Tissue engineering has been an active field of research for several decades now. However, the amount of clinical applications in the field of tissue engineering is still limited. One of the current limitations of tissue engineering is its inability to provide sufficient blood supply in the initial

  2. Vascularization regenerative medicine and tissue engineering

    CERN Document Server

    Brey, Eric M

    2014-01-01

    A Complex and Growing Field The study of vascularization in tissue engineering and regenerative medicine (TERM) and its applications is an emerging field that could revolutionize medical approaches for organ and tissue replacement, reconstruction, and regeneration. Designed specifically for researchers in TERM fields, Vascularization: Regenerative Medicine and Tissue Engineering provides a broad overview of vascularization in TERM applications. This text summarizes research in several areas, and includes contributions from leading experts in the field. It defines the difficulties associated with multicellular processes in vascularization and cell-source issues. It presents advanced biomaterial design strategies for control of vascular network formation and in silico models designed to provide insight not possible in experimental systems. It also examines imaging methods that are critical to understanding vascularization in engineered tissues, and addresses vascularization issues within the context of specific...

  3. [DEVELOPMENT OF CELL SHEET ENGINEERING TECHNOLOGY IN ENGINEERING VASCULARIZED TISSUE].

    Science.gov (United States)

    Chen, Jia; Ma, Dongyang; Ren, Liling

    2015-03-01

    To review the development of cell sheet engineering technology in engineering vascularized tissue. The literature about cell sheet engineering technology and engineering vascularized tissue was reviewed, analyzed, and summarized. Although there are many methods to engineer vascularized tissue, cell sheet engineering technology provides a promising potential to develop a vascularized tissue. Recently, cell sheet engineering technology has become a hot topic in engineering vascularized tissue. Co-culturing endothelial cells on a cell sheet, endothelial cells are able to form three-dimensional prevascularized networks and microvascular cavities in the cell sheet, which facilitate the formation of functional vascular networks in the transplanted tissue. Cell sheet engineering technology is a promising strategy to engineer vascularized tissue, which is still being studied to explore more potential.

  4. Applying elastic fibre biology in vascular tissue engineering

    OpenAIRE

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C. Adrian

    2007-01-01

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and pate...

  5. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  6. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...... nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122)....

  7. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  8. Applying elastic fibre biology in vascular tissue engineering.

    Science.gov (United States)

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C Adrian

    2007-08-29

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.

  9. Vascular tissue engineering by computer-aided laser micromachining.

    Science.gov (United States)

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  10. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks

    NARCIS (Netherlands)

    Rouwkema, Jeroen; Khademhosseini, A.

    2016-01-01

    Engineered tissues need a vascular network to supply cells with nutrients and oxygen after implantation. A network that can connect to the vasculature of the patient after implantation can be included during in vitro culture. For optimal integration, this network needs to be highly organized,

  11. Toward a patient-specific tissue engineered vascular graft.

    Science.gov (United States)

    Best, Cameron; Strouse, Robert; Hor, Kan; Pepper, Victoria; Tipton, Amy; Kelly, John; Shinoka, Toshiharu; Breuer, Christopher

    2018-01-01

    Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow-derived mononuclear cells. Next, our candidate's preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application.

  12. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.

    Science.gov (United States)

    Zhang, Yu Shrike; Pi, Qingmeng; van Genderen, Anne Metje

    2017-08-11

    Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.

  13. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tissue Engineering and Regenerative Strategies to Replicate Biocomplexity of Vascular Elastic Matrix Assembly

    OpenAIRE

    Bashur, Chris A.; Venkataraman, Lavanya; Ramamurthi, Anand

    2012-01-01

    Cardiovascular tissues exhibit architecturally complex extracellular matrices, of which the elastic matrix forms a major component. The elastic matrix critically maintains native structural configurations of vascular tissues, determines their ability to recoil after stretch, and regulates cell signaling pathways involved in morphogenesis, injury response, and inflammation via biomechanical transduction. The ability to tissue engineer vascular replacements that incorporate elastic matrix super...

  15. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly.

    Science.gov (United States)

    Bashur, Chris A; Venkataraman, Lavanya; Ramamurthi, Anand

    2012-06-01

    Cardiovascular tissues exhibit architecturally complex extracellular matrices, of which the elastic matrix forms a major component. The elastic matrix critically maintains native structural configurations of vascular tissues, determines their ability to recoil after stretch, and regulates cell signaling pathways involved in morphogenesis, injury response, and inflammation via biomechanical transduction. The ability to tissue engineer vascular replacements that incorporate elastic matrix superstructures unique to cardiac and vascular tissues is thus important to maintaining vascular homeostasis. However, the vascular elastic matrix is particularly difficult to tissue engineer due to the inherently poor ability of adult vascular cells to synthesize elastin precursors and organize them into mature structures in a manner that replicates the biocomplexity of elastic matrix assembly during development. This review discusses current tissue engineering materials (e.g., growth factors and scaffolds) and methods (e.g., dynamic stretch and contact guidance) used to promote cellular synthesis and assembly of elastic matrix superstructures, and the limitations of these approaches when applied to smooth muscle cells, the primary elastin-generating cell type in vascular tissues. The potential application of these methods for in situ regeneration of disrupted elastic matrix at sites of proteolytic vascular disease (e.g., abdominal aortic aneurysms) is also discussed. Finally, the review describes the potential utility of alternative cell types to elastic tissue engineering and regenerative matrix repair. Future progress in the field is contingent on developing a thorough understanding of developmental elastogenesis and then mimicking the spatiotemporal changes in the cellular microenvironment that occur during that phase. This will enable us to tissue engineer clinically applicable elastic vascular tissue replacements and to develop elastogenic therapies to restore homeostasis in

  16. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model

    Energy Technology Data Exchange (ETDEWEB)

    Dong Qingshan [Department of Oral and Maxillofacial Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070 (China); Shang Hongtao; Wu Wei [Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Chen Fulin [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi' an 710069 (China); Zhang Junrui [Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Guo Jiaping [Department of Oral and Maxillofacial Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070 (China); Mao Tianqiu, E-mail: tianqiumao@126.com [Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China)

    2012-08-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. - Highlights: Black-Right-Pointing-Pointer A modified arteriovenous loop (AVL) model in rabbit was developed in this study. Black-Right-Pointing-Pointer Axial prevascularization was induced in a larger coral block by using the AVL. Black-Right-Pointing-Pointer The prefabrication of axial vascularized coral bone is superior as vascular carrier.

  17. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model

    International Nuclear Information System (INIS)

    Dong Qingshan; Shang Hongtao; Wu Wei; Chen Fulin; Zhang Junrui; Guo Jiaping; Mao Tianqiu

    2012-01-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. - Highlights: ► A modified arteriovenous loop (AVL) model in rabbit was developed in this study. ► Axial prevascularization was induced in a larger coral block by using the AVL. ► The prefabrication of axial vascularized coral bone is superior as vascular carrier.

  18. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application.

    Science.gov (United States)

    Benrashid, Ehsan; McCoy, Christopher C; Youngwirth, Linda M; Kim, Jina; Manson, Roberto J; Otto, James C; Lawson, Jeffrey H

    2016-04-15

    Since the development of a dependable and durable synthetic non-autogenous vascular conduit in the mid-twentieth century, the field of vascular surgery has experienced tremendous growth. Concomitant with this growth, development in the field of bioengineering and the development of different tissue engineering techniques have expanded the armamentarium of the surgeon for treating a variety of complex cardiovascular diseases. The recent development of completely tissue engineered vascular conduits that can be implanted for clinical application is a particularly exciting development in this field. With the rapid advances in the field of tissue engineering, the great hope of the surgeon remains that this conduit will function like a true blood vessel with an intact endothelial layer, with the ability to respond to endogenous vasoactive compounds. Eventually, these engineered tissues may have the potential to supplant older organic but not truly biologic technologies, which are used currently. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. [Research progress of co-culture system for constructing vascularized tissue engineered bone].

    Science.gov (United States)

    Fu, Weili; Xiang, Zhou

    2014-02-01

    To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

  20. Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering.

    Science.gov (United States)

    Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2015-05-10

    Construction of three-dimensional (3D) tissues with pre-isolated cells is a promising achievement for novel medicine and drug-discovery research. Our laboratory constructs 3D tissues with an innovative and unique method for layering multiple cell sheets. Cell sheets maintain a high-efficiently regenerating function, because of the higher cell density and higher transplantation efficiency, compared to other cell-delivery methods. Cell sheets have already been applied in clinical applications for regenerative medicine in treating patients with various diseases. Therefore, in our search to develop a more efficient treatment with cell sheets, we are constructing 3D tissues by layering cell sheets. Native animal tissues and organs have an abundance of capillaries to supply oxygen and nutrients, and to remove waste molecules. In our investigation of vascularized cardiac cell sheets, we have found that endothelial cells within cell sheets spontaneously form blood vessel networks as in vivo capillaries. To construct even thicker 3D tissues by layering multiple cell sheets, it is critical to have a medium or blood flow within the vascular networks of the cell sheets. Therefore, to perfuse medium or blood in the cell sheet vascular network to maintain the viability of all cells, we developed two types of vascular beds; (1) a femoral muscle-based vascular bed, and (2) a synthetic collagen gel-based vascular bed. Both vascular beds successfully provide the critical flow of culture medium, which allows 12-layer cell sheets to survive. Such bioreactor systems, when combined with cell sheet engineering techniques, have produced functional vascularized 3D tissues. Here we explain and discuss the various processes to obtain vascular networks by properly connecting cell sheets and the engineering of 3D tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  2. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery

    Czech Academy of Sciences Publication Activity Database

    Chlupáč, Jaroslav; Filová, Elena; Bačáková, Lucie

    2009-01-01

    Roč. 58, Suppl.2 (2009), S119-S139 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510; GA AV ČR(CZ) 1QS500110564 Institutional research plan: CEZ:AV0Z50110509 Keywords : small-caliber vascular grafts * tissue engineering * dynamic bioreactor Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.430, year: 2009

  3. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days.

    Science.gov (United States)

    Gui, Liqiong; Boyle, Michael J; Kamin, Yishai M; Huang, Angela H; Starcher, Barry C; Miller, Cheryl A; Vishnevetsky, Michael J; Niklason, Laura E

    2014-05-01

    Tissue-engineered small-diameter vascular grafts have been developed as a promising alternative to native veins or arteries for replacement therapy. However, there is still a crucial need to improve the current approaches to render the tissue-engineered blood vessels more favorable for clinical applications. A completely biological blood vessel (3-mm inner diameter) was constructed by culturing a 50:50 mixture of bovine smooth muscle cells (SMCs) with neonatal human dermal fibroblasts in fibrin gels. After 30 days of culture under pulsatile stretching, the engineered blood vessels demonstrated an average burst pressure of 913.3±150.1 mmHg (n=6), a suture retention (53.3±15.4 g) that is suitable for implantation, and a compliance (3.1%±2.5% per 100 mmHg) that is comparable to native vessels. These engineered grafts contained circumferentially aligned collagen fibers, microfibrils and elastic fibers, and differentiated SMCs, mimicking a native artery. These promising mechanical and biochemical properties were achieved in a very short culture time of 30 days, suggesting the potential of co-culturing SMCs with fibroblasts in fibrin gels to generate functional small-diameter vascular grafts for vascular reconstruction surgery.

  4. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Mid-term clinical results of tissue-engineered vascular autografts

    International Nuclear Information System (INIS)

    Matsumura, Goki; Shin'oka, Toshiharu; Hibino, Narutoshi; Saito, Satoshi; Sakamoto, Takahiko; Ichihara, Yuki; Hobo, Kyoko; Miyamoto, Shin'ka; Kurosawa, Hiromi

    2007-01-01

    Prosthetic and bioprosthetic materials currently in use lack growth potential and therefore must be repeatedly replaced in pediatric patients as they grow. Tissue engineering is a new discipline that offers the potential for creating replacement structures from autologous cells and biodegradable polymer scaffolds. In May 2000, we initiated clinical application of tissue-engineered vascular grafts seeded with cultured cells. However, cell culturing is time-consuming, and xenoserum must be used. To overcome these disadvantages, we began to use bone marrow cells, readily available on the day of surgery, as a cell source. Since September 2001, tissue-engineered grafts seeded with autologous bone marrow cells have been implanted in 44 patients. The patients or their parents were fully informed and had given consent to the procedure. A 3 to 10 ml/kg specimen of bone marrow was aspirated with the patient under general anesthesia before the skin incision. The polymer tube serving as a scaffold for the cells was composed of a copolymer of lactide and ε-caprolactone (50:50) which degrades by hydrolysis. Polyglycolic or poly-l-lactic acid woven fabric was used for reinforcement. Twenty-six tissue-engineered conduits and 19 tissue-engineered patches were used for the repair of congenital heart defects. The patients' ages ranged from 1 to 24 years (median 7.4 years). All patients underwent a catheterization study, CT scan, or both, for evaluation after the operation. There were 4 late deaths due to heart failure with or without multiple organ failure or brain bleeding in this series; these were unrelated to the tissue-engineered graft function. One patient required percutaneous balloon angioplasty for tubular graft-stenosis and 4 patients for the stenosis of the patch-shaped tissue engineered material. Two patients required re-do operation; one for recurrent pulmonary stenosis and another for a resulting R-L shunt after the lateral tunnel method. Kaplan-Meier analysis in

  6. Promoting Tropoelastin Expression in Arterial and Venous Vascular Smooth Muscle Cells and Fibroblasts for Vascular Tissue Engineering.

    Science.gov (United States)

    Rothuizen, Tonia C; Kemp, Raymond; Duijs, Jacques M G J; de Boer, Hetty C; Bijkerk, Roel; van der Veer, Eric P; Moroni, Lorenzo; van Zonneveld, Anton Jan; Weiss, Anthony S; Rabelink, Ton J; Rotmans, Joris I

    2016-10-01

    Elastin, critical for its structural and regulatory functions, is a missing link in vascular tissue engineering. Several elastin-inducting compounds have previously been reported, but their relative efficiency in promoting elastogenesis by adult arterial and venous vascular smooth muscle cells (VSMCs) and fibroblasts, four main vascular and elastogenic cells, has not been described. In addition to elasto-inductive substances, microRNA-29a was recently established as a potent post-transcriptional inhibitor of elastogenesis. Here, we explored if stimulating positive regulators or blocking inhibitors of elastogenesis could maximize elastin production. We tested whether the elasto-inducing compounds IGF-1, TGF-β1, and minoxidil could indeed augment elastin production, and whether microRNA-29a antagonism could block elastin production in adult arterial and venous fibroblasts and VSMCs. The effects on elastin, lysyl oxidase, and fibrillin-1 mRNA expression levels and tropoelastin protein were determined. IGF-1 and minoxidil exerted little effect on tropoelastin mRNA expression levels in all cell types, while TGF-β1 predominantly enhanced mRNA tropoelastin levels, but this mRNA increase did not impact tropoelastin protein abundance. In contrast, microRNA29a inhibition resulted in the upregulation of tropoelastin mRNA in all cell types, but most pronounced in venous VSMCs. Importantly, microRNA-29a-antagonism also enhanced lysyl oxidase and fibrillin-1 mRNA expression, and revealed a dose-dependent increase in tropoelastin protein expression in venous VSMCs. Our studies suggest that the elastogenic potential of microRNA-29a inhibition in vascular cells is superior to that of established elastin-stimulating compounds IGF-1, TGF-β1, and minoxidil. Thus, microRNA-29a antagonism could serve as an attractive means of enhancing elastin synthesis in tissue-engineered blood vessels.

  7. Vascular Tissue Engineering: Effects of Integrating Collagen into a PCL Based Nanofiber Material

    Directory of Open Access Journals (Sweden)

    Ulf Bertram

    2017-01-01

    Full Text Available The engineering of vascular grafts is a growing field in regenerative medicine. Although numerous attempts have been made, the current vascular grafts made of polyurethane (PU, Dacron®, or Teflon® still display unsatisfying results. Electrospinning of biopolymers and native proteins has been in the focus of research to imitate the extracellular matrix (ECM of vessels to produce a small caliber, off-the-shelf tissue engineered vascular graft (TEVG as a substitute for poorly performing PU, Dacron, or Teflon prostheses. Blended poly-ε-caprolactone (PCL/collagen grafts have shown promising results regarding biomechanical and cell supporting features. In order to find a suitable PCL/collagen blend, we fabricated plane electrospun PCL scaffolds using various collagen type I concentrations ranging from 5% to 75%. We analyzed biocompatibility and morphological aspects in vitro. Our results show beneficial features of collagen I integration regarding cell viability and functionality, but also adverse effects like the loss of a confluent monolayer at high concentrations of collagen. Furthermore, electrospun PCL scaffolds containing 25% collagen I seem to be ideal for engineering vascular grafts.

  8. Human DPSCs fabricate vascularized woven bone tissue: A new tool in bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Paino, F.; Noce, M.L.; Giuliani, A.; de Rosa, A.; Mazzoni, F.; Laino, L.; Amler, Evžen; Papaccio, G.; Desiderio, V.; Tirino, V.

    2017-01-01

    Roč. 131, č. 8 (2017), s. 699-713 ISSN 0143-5221 Institutional support: RVO:68378041 Keywords : bone differentiation * bone regeneration * bone tissue engineering Subject RIV: FP - Other Medical Disciplines OBOR OECD: Orthopaedics Impact factor: 4.936, year: 2016

  9. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com [Department of Applied Mathematics and Sciences, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Christoforou, Nicolas, E-mail: nicolas.christoforou@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States); Teo, Jeremy C.M., E-mail: jeremy.teo@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates)

    2016-05-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  10. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ramiro M. Irastorza

    2015-01-01

    Full Text Available Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.. When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  11. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  12. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    Science.gov (United States)

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Fu W

    2014-05-01

    Full Text Available Wei Fu,1,2,* Zhenling Liu,1,* Bei Feng,1,2 Renjie Hu,1 Xiaomin He,1 Hao Wang,1 Meng Yin,1 Huimin Huang,1 Haibo Zhang,1 Wei Wang11Department of Pediatric Cardiothoracic Surgery, 2Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China*These authors contributed equally to this workAbstract: Electrospun hybrid nanofibers prepared using combinations of natural and synthetic polymers have been widely investigated in cardiovascular tissue engineering. In this study, electrospun gelatin/polycaprolactone (PCL and collagen/poly(l-lactic acid-co-ε-caprolactone (PLCL scaffolds were successfully produced. Scanning electron micrographs showed that fibers of both membranes were smooth and homogeneous. Water contact angle measurements further demonstrated that both scaffolds were hydrophilic. To determine cell attachment and migration on the scaffolds, both hybrid scaffolds were seeded with human umbilical arterial smooth muscle cells. Scanning electron micrographs and MTT assays showed that the cells grew and proliferated well on both hybrid scaffolds. Gross observation of the transplanted scaffolds revealed that the engineered collagen/PLCL scaffolds were smoother and brighter than the gelatin/PCL scaffolds. Hematoxylin and eosin staining showed that the engineered blood vessels constructed by collagen/PLCL electrospun membranes formed relatively homogenous vessel-like tissues. Interestingly, Young's modulus for the engineered collagen/PLCL scaffolds was greater than for the gelatin/PCL scaffolds. Together, these results indicate that nanofibrous collagen/PLCL membranes with favorable mechanical and biological properties may be a desirable scaffold for vascular tissue engineering.Keywords: electrospinning, gelatin, collagen, polycaprolactone, poly(l-lactic acid-co-ε-caprolactone

  14. Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers

    Directory of Open Access Journals (Sweden)

    P. V. Popryadukhin

    2017-01-01

    Full Text Available Tubular vascular grafts 1.1 mm in diameter based on poly(L-lactide microfibers were obtained by electrospinning. X-ray diffraction and scanning electron microscopy data demonstrated that the samples treated at T=70°C for 1 h in the fixed state on a cylindrical mandrel possessed dense fibrous structure; their degree of crystallinity was approximately 44%. Strength and deformation stability of these samples were higher than those of the native blood vessels; thus, it was possible to use them in tissue engineering as bioresorbable vascular grafts. The experiments on including implantation into rat abdominal aorta demonstrated that the obtained vascular grafts did not cause pathological reactions in the rats; in four weeks, inner side of the grafts became completely covered with endothelial cells, and fibroblasts grew throughout the wall. After exposure for 12 weeks, resorption of PLLA fibers started, and this process was completed in 64 weeks. Resorbed synthetic fibers were replaced by collagen and fibroblasts. At that time, the blood vessel was formed; its neointima and neoadventitia were close to those of the native vessel in structure and composition.

  15. A combined strategy to reduce restenosis for vascular tissue engineering applications.

    Science.gov (United States)

    Patel, Hemang J; Su, Shih-Horng; Patterson, Cam; Nguyen, Kytai T

    2006-01-01

    Biodegradable polymers including poly(l-lactic acid) (PLLA) have been used to develop cardiovascular prostheses such as vascular grafts and stents. However, implant-associated thrombosis, inflammation, and restenosis are still major obstacles for the utility of these devices. The lack of an endothelial cell (EC) lining (endothelialization) on the implants and the responses of the immune systems toward the implants have been associated with these complications. In our research strategy, we have combined the drug delivery principle with the strategies of tissue engineering, the controlled release of anti-inflammation drugs and enhanced endothelialization, to reduce the implant-associated adverse responses. We first integrated curcumin, an anti-inflammatory drug and anti-smooth muscle cell (SMC) proliferative drug, with PLLA. This curcumin-loaded PLLA material was then modified using adsorptive coating of adhesive proteins such as fibronectin, collagen-I, vitronectin, laminin, and matrigel to improve the endothelial cell (EC) adhesion and proliferation, and ECs were seeded on top of these modified surfaces. Our results showed steady drug release kinetics over the period of 50 days from curcumin-loaded PLLA materials. Additionally, integration of curcumin in PLLA increased the roughness of the scaffold at the nanometric scale using an atomic force microscopic analysis. Moreover, coating with fibronectin on curcumin-loaded PLLA surfaces gave the highest EC adhesion and proliferation compared to other adhesive proteins using PicoGreen DNA assays. The ability of our strategy to release the curcumin for producing anti-inflammation and anti-proliferation responses and to improve EC adhesion and growth after EC seeding suggests this strategy may reduce implant-associated adverse responses and be a better approach for vascular tissue engineering applications.

  16. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices

    NARCIS (Netherlands)

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    The discovery of the endothelial progenitor cell (EPC) has led to an intensive research effort into progenitor cell-based tissue engineering of (small-diameter) blood vessels. Herein, EPC are differentiated to vascular endothelial cells and serve as the inner lining of bioartificial vessels. As yet,

  17. In Vivo Collagen Remodeling in the Vascular Wall of Decellularized Stented Tissue-Engineered Heart Valves.

    Science.gov (United States)

    Ghazanfari, Samaneh; Driessen-Mol, Anita; Sanders, Bart; Dijkman, Petra E; Hoerstrup, Simon P; Baaijens, Frank P T; Bouten, Carlijn V C

    2015-08-01

    Decellularized tissue-engineered heart valves (TEHVs) are under investigation as alternative for current heart valve prostheses with the potential to rapidly repopulate with cells within the body. Ideally, these valves are stented for transapical or minimally invasive delivery. It is unclear if and how the matrix of these valves remodels under in vivo hemodynamic loading conditions and in the presence of a stent. Here, we study the evolution of collagen orientation and tissue maturation in the wall of stented decellularized TEHVs with time after implantation. In a previous study, stented TEHVs based on rapidly degrading scaffolds were cultured in bioreactors, decellularized, and transapically implanted as pulmonary valve replacement in sheep. In the present study, collagen (re)orientation in the initially isotropic valvular wall was assessed using a fluorescent collagen probe combined with confocal imaging and image analysis of explanted tissue at 8, 16, and 24 weeks following implantation. Collagen tortuosity or waviness in the explants, as a measure of matrix maturity, was quantified using a Gabor wavelet method and compared with tortuosity in native sheep vascular wall tissue. Results indicate that on the luminal side of the valvular wall, fibers became aligned in circumferential direction, while tortuosity increased with implantation time, showing striking similarities with the native collagen structure after 24 weeks. On the outside of the wall, where the engineered tissue touches the stent, collagen fibers in the vicinity of the struts aligned along the struts, whereas collagen fibers in between struts were randomly oriented. Immunohistochemistry was performed to evaluate the presence of elastin and collagen type I and III. After 8 weeks, collagen types I and III were mostly present at the luminal side of the wall, whereas at 16 and 24 weeks, a homogenous distribution of collagen I and III was observed throughout the wall. Elastin was mostly expressed at the

  18. HIGH RESOLUTION X-RAY TECHNIQUES AS NEW TOOL TO INVESTIGATE THE 3D VASCULARIZATION OF ENGINEERED-BONE TISSUE

    Directory of Open Access Journals (Sweden)

    Inna eBukreeva

    2015-09-01

    Full Text Available The understanding of structure-function relationships in normal and pathologic mammalian tissues is at the basis of tissue engineering (TE approach for the development of biological substitutes to restore or improve tissue function. In this framework it is interesting to investigate engineered bone tissue, which is formed when porous ceramic constructs are loaded with Bone Marrow Stromal Cells (BMSC and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here we used synchrotron X-ray phase contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in ectopic bone formation mouse-model. We compared samples seeded with and without BMSC as well as samples differently stained (comprising unstained samples. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different sample preparations.We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any other pre-clinical investigations where a quantitative analysis of the vascular network is required.

  19. Computationally Optimizing the Compliance of a Biopolymer Based Tissue Engineered Vascular Graft.

    Science.gov (United States)

    Harrison, Scott; Tamimi, Ehab; Uhlorn, Josh; Leach, Tim; Vande Geest, Jonathan P

    2016-01-01

    Coronary heart disease is a leading cause of death among Americans for which coronary artery bypass graft (CABG) surgery is a standard surgical treatment. The success of CABG surgery is impaired by a compliance mismatch between vascular grafts and native vessels. Tissue engineered vascular grafts (TEVGs) have the potential to be compliance matched and thereby reduce the risk of graft failure. Glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen constructs were fabricated and mechanically tested in a previous study by our research group at 2, 8, and 24 hrs of GLUT vapor exposure. The current study details a computational method that was developed to predict the material properties of our constructs for crosslinking times between 2 and 24 hrs by interpolating the 2, 8, and 24 hrs crosslinking time data. matlab and abaqus were used to determine the optimal combination of fabrication parameters to produce a compliance matched construct. The validity of the method was tested by creating a 16-hr crosslinked construct of 130 μm thickness and comparing its compliance to that predicted by the optimization algorithm. The predicted compliance of the 16-hr construct was 0.00059 mm Hg-1 while the experimentally determined compliance was 0.00065 mm Hg-1, a relative difference of 9.2%. Prior data in our laboratory has shown the compliance of the left anterior descending porcine coronary (LADC) artery to be 0.00071 ± 0.0003 mm Hg-1. Our optimization algorithm predicts that a 258-μm-thick construct that is GLUT vapor crosslinked for 8.1 hrs would match LADC compliance. This result is consistent with our previous work demonstrating that an 8-hr GLUT vapor crosslinked construct produces a compliance that is not significantly different from a porcine coronary LADC.

  20. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  1. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering.

    Science.gov (United States)

    Volz, Ann-Cathrin; Huber, Birgit; Kluger, Petra J

    2016-01-01

    The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  2. A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs.

    Science.gov (United States)

    Athirasala, Avathamsa; Lins, Fernanda; Tahayeri, Anthony; Hinds, Monica; Smith, Anthony J; Sedgley, Christine; Ferracane, Jack; Bertassoni, Luiz E

    2017-06-12

    The requirement for immediate vascularization of engineered dental pulp poses a major hurdle towards successful implementation of pulp regeneration as an effective therapeutic strategy for root canal therapy, especially in adult teeth. Here, we demonstrate a novel strategy to engineer pre-vascularized, cell-laden hydrogel pulp-like tissue constructs in full-length root canals for dental pulp regeneration. We utilized gelatin methacryloyl (GelMA) hydrogels with tunable physical and mechanical properties to determine the microenvironmental conditions (microstructure, degradation, swelling and elastic modulus) that enhanced viability, spreading and proliferation of encapsulated odontoblast-like cells (OD21), and the formation of endothelial monolayers by endothelial colony forming cells (ECFCs). GelMA hydrogels with higher polymer concentration (15% w/v) and stiffness enhanced OD21 cell viability, spreading and proliferation, as well as endothelial cell spreading and monolayer formation. We then fabricated pre-vascularized, full-length, dental pulp-like tissue constructs by dispensing OD21 cell-laden GelMA hydrogel prepolymer in root canals of extracted teeth and fabricating 500 µm channels throughout the root canals. ECFCs seeded into the microchannels successfully formed monolayers and underwent angiogenic sprouting within 7 days in culture. In summary, the proposed approach is a simple and effective strategy for engineering of pre-vascularized dental pulp constructs offering potentially beneficial translational outcomes.

  3. Fabrication of omentum-based matrix for engineering vascularized cardiac tissues.

    Science.gov (United States)

    Shevach, Michal; Soffer-Tsur, Neta; Fleischer, Sharon; Shapira, Assaf; Dvir, Tal

    2014-06-01

    Fabricating three-dimensional, biocompatible microenvironments to support functional tissue assembly remains a key challenge in cardiac tissue engineering. We hypothesized that since the omentum can be removed from patients by minimally invasive procedures, the obtained underlying matrices can be manipulated to serve as autologous scaffolds for cardiac patches. Here we initially characterized the structural, biochemical and mechanical properties of the obtained matrix, and demonstrated that cardiac cells cultivated within assembled into elongated and aligned tissues, generating a strong contraction force. Co-culture with endothelial cells resulted in the formation of blood vessel networks in the patch without affecting its function. Finally, we have validated that omental scaffolds can support mesenchymal and induced pluripotent stem cells culture, thus may serve as a platform for engineering completely autologous tissues. We envision that this approach may be suitable for treating the infarcted heart and may open up new opportunities in the broader field of tissue engineering and personalized regenerative medicine.

  4. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone.

    Science.gov (United States)

    Wang, Huaixi; Cheng, Hao; Tang, Xiangyu; Chen, Jingyuan; Zhang, Jun; Wang, Wei; Li, Wenkai; Lin, Guanlin; Wu, Hua; Liu, Chaoxu

    2018-04-01

    Large segmental bone defect repair remains a challenge in orthopedic surgeries. The tissue engineered bone graft will be a promising approach if vascularization of the graft is realized. In this study, beta-tricalcium phosphate (β-TCP) scaffold incorporated with bone forming peptide-1 (BFP-1) was fabricated. Endothelial progenitor cells (EPCs) were introduced as well. We investigated the effect of BFP-1 on the proliferation, differentiation, and angiogenic functions of EPCs. Additionally, segmental femur bone defect was created in rabbits. Prevascularized β-TCP scaffold was constructed and implanted into the bone defect. The vascularization and bone formation were evaluated after 4 and 12 weeks. The results showed that BFP-1 promoted the angiogenesis of EPCs through activating the activin receptor-like kinase-1/Smad pathway. The prevascularized tissue engineered bone graft enhanced capillary vessel in-growth and new bone formation. Significantly higher values of vascularization and radiographic grading scores were observed in groups involving EPCs and BFP-1, compared to β-TCP scaffold alone. In conclusion, the synergy between EPCs and BFP-1 improved the vascularization and new bone regeneration, which has great potentials in clinical applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1008-1021, 2018. © 2017 Wiley Periodicals, Inc.

  5. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    Science.gov (United States)

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  6. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    International Nuclear Information System (INIS)

    Pankajakshan, Divya; Krishnan, Lissy K; Krishnan V, Kalliyana

    2010-01-01

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly(ε-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  7. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Stefan; Nehl, Franziska; Ligon, S Clark; Liska, Robert [Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163MC, A-1060 Vienna (Austria); Nigisch, Anneliese; Bernhard, David [Department of Surgery, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bergmeister, Helga [Core Unit for Biomedical Research, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Stampfl, Juergen, E-mail: robert.liska@tuwien.ac.at [Institute of Material Science and Technology, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria)

    2011-10-15

    A predominant portion of mortalities in industrial countries can be attributed to diseases of the cardiovascular system. In the last decades great efforts have been undertaken to develop materials for artificial vascular constructs. However, bio-inert materials like ePTFE or PET fail as material for narrow blood vessel replacements (coronary bypasses). Therefore, we aim to design new biocompatible materials to overcome this. In this paper we investigate the use of photoelastomers for artificial vascular constructs since they may be precisely structured by means of additive manufacturing technologies. Hence, 3D computer aided design and manufacturing technologies (CAD-CAM) offer the possibility of creating cellular structures within the grafts that might favour ingrowth of tissue. Different monomer formulations were screened concerning their suitability for this application but all had drawbacks, especially concerning the suture tear resistance. Therefore, we chose to modify the original network architecture by including dithiol chain transfer agents which effectively co-react with the acrylates and reduce crosslink density. A commercial urethane diacrylate was chosen as base monomer. In combination with reactive diluents and dithiols, the properties of the photopolymers could be tailored and degradability could be introduced. The optimized photoelastomers were in good mechanical accordance with native blood vessels, showed good biocompatibility in in vitro tests, degraded similar to poly(lactic acid) and were successfully manufactured with the 3D CAD-CAM technology.

  8. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.

    Science.gov (United States)

    Schmidt, Dörthe; Dijkman, Petra E; Driessen-Mol, Anita; Stenger, Rene; Mariani, Christine; Puolakka, Arja; Rissanen, Marja; Deichmann, Thorsten; Odermatt, Bernhard; Weber, Benedikt; Emmert, Maximilian Y; Zund, Gregor; Baaijens, Frank P T; Hoerstrup, Simon P

    2010-08-03

    The aim of this study was to demonstrate the feasibility of combining the novel heart valve replacement technologies of: 1) tissue engineering; and 2) minimally-invasive implantation based on autologous cells and composite self-expandable biodegradable biomaterials. Minimally-invasive valve replacement procedures are rapidly evolving as alternative treatment option for patients with valvular heart disease. However, currently used valve substitutes are bioprosthetic and as such have limited durability. To overcome this limitation, tissue engineering technologies provide living autologous valve replacements with regeneration and growth potential. Trileaflet heart valves fabricated from biodegradable synthetic scaffolds, integrated in self-expanding stents and seeded with autologous vascular or stem cells (bone marrow and peripheral blood), were generated in vitro using dynamic bioreactors. Subsequently, the tissue engineered heart valves (TEHV) were minimally-invasively implanted as pulmonary valve replacements in sheep. In vivo functionality was assessed by echocardiography and angiography up to 8 weeks. The tissue composition of explanted TEHV and corresponding control valves was analyzed. The transapical implantations were successful in all animals. The TEHV demonstrated in vivo functionality with mobile but thickened leaflets. Histology revealed layered neotissues with endothelialized surfaces. Quantitative extracellular matrix analysis at 8 weeks showed higher values for deoxyribonucleic acid, collagen, and glycosaminoglycans compared to native valves. Mechanical profiles demonstrated sufficient tissue strength, but less pliability independent of the cell source. This study demonstrates the principal feasibility of merging tissue engineering and minimally-invasive valve replacement technologies. Using adult stem cells is successful, enabling minimally-invasive cell harvest. Thus, this new technology may enable a valid alternative to current bioprosthetic devices

  9. Development of mechanically expanded gelatin-AAc-PLLA/PLCL nanofibers for vascular tissue engineering by radiation-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Oh; Jeong, Sung In; Seo, Da Eun; Park, Jong Seok; Gwon, Hui Jeong; Ahn, Sung Jun; Lim, Youn Mook [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Shin, Young Min [Dept. of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Vascular tissue engineering has been accessed to mimic the natural composition of the blood vessel containing inmate, media, and adventitia layers. We fabricated mechanically expanded PLLA/PLCL nanofibers using electrospinning and UTM. The pore size of the meshes was increased the gelatin immobilized AAc-PLLA/PLCL nanofibers (203.30±49.62 microns) than PLLA/PLCL nanofibers (59.99±8.66 microns) after mechanical expansion. To increase the cell adhesion and proliferation, we introduced carboxyl group, and gelatin was conjugated on them. The properties of the PLLA/PLCL nanofibers were analyzed with SEM, ATR-FTIR, TBO staining, and water contact angle measurement, general cell responses on the PLLA/PLCL nanofibers such as adhesion, proliferation, and infiltration were also investigated using smooth muscle cell (SMC). During the SMC culture, the initial viability of the cells was significantly increased on the gelatin immobilized AAc-PLLA/PLCL nanofibers, and infiltration of the cells was also enhanced on them. Therefore, gelatin immobilized AAc-PLLA/PLCL nanofibers and mechanically expanded meshes may be a good tool for vascular tissue engineering application.

  10. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  11. A novel comprehensive approach for human vascular allografts cryopreservation and radiation sterilization for the tissue engineering industry

    Directory of Open Access Journals (Sweden)

    Lauk-Dubitsky S.E.

    2015-12-01

    Full Text Available Aim: to verify new techniques for human cadaveric vascular allografts cryopreservation, thawing and sterilization for the tissue engineering purposes. We use polydimethylsiloxane (PDMS as a well-known, promising coolant. This allowed us to completely omit any cryoprotective or vitrifying solutions. Using of PDMS also makes possible an applying these allografts directly after freezing and decellularization and also it will also provide an opportunity to develop secure protocols of tissue— engineered vascular conduits cryopreservation. Matherial and methods. After mathematical modeling of cooling process and its validation the experiment for sealed (isolated freezing at low temperature conditions of 30 femoral arterial segments has been conducted. The segments were at least 10 cm in length and taken from 15 cadaveric donors in the age of 65-85 years. The freezing process was carried out using the abovementioned coolant— PDMS, and then physico-mechanical properties of these allografts were evaluated with the special Instron machine. According to the results obtained, a modeling of their sterilization conditions was conducted (the grafts were freezed. Results. By physico-mechanical properties validation and restricted histological analysis it was shown that there was an accordance between freezed/thawed allografts properties and native vessels. Conclusion. The abovementioned approach for allografts cryopreservation and thawing was efficient enough for further work in this direction.

  12. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue

    Directory of Open Access Journals (Sweden)

    AM Müller

    2010-03-01

    Full Text Available Grafts generated by cultivation of progenitor cells from the stromal vascular fraction of human adipose tissue have been proven to have osteogenic and vasculogenic properties in vivo. However, in vitro manufacture of such implants is challenged by complex, impractical and expensive processes, and requires implantation in a separate surgery. This study investigates the feasibility of an intraoperative approach to engineer cell-based bone grafts with tissue harvest, cell isolation, cell seeding onto a scaffold and subsequent implantation within a few hours. Freshly isolated adipose tissue cells from a total of 11 donors, containing variable fractions of mesenchymal and endothelial progenitors, were embedded at different densities in a fibrin hydrogel, which was wrapped around bone substitute materials based on beta-tricalcium phosphate (ChronOS®, hydroxyapatite (Engipore®, or acellular xenograft (Bio-Oss®. The resulting constructs, generated within 3 hours from biopsy harvest, were immediately implanted ectopically in nude mice and analysed after eight weeks. All explants contained blood vessels formed by human endothelial cells, functionally connected to the recipient’s vasculature. Human origin cells were also found within osteoid structures, positively immunostained for bone sialoprotein and osteocalcin. However, even with the highest loaded cell densities, no frank bone tissue was detected, independently of the material used. These results provide a proof-of-principle that an intraoperative engineering of autologous cell-based vasculogenic bone substitutes is feasible, but highlight that – in the absence of in vitro commitment – additional cues (e.g., low dose of osteogenic factors or orthotopic environmental conditions are likely needed to support complete osteoblastic cell differentiation and bone tissue generation.

  13. Engineering functional bladder tissues.

    Science.gov (United States)

    Horst, Maya; Madduri, Srinivas; Gobet, Rita; Sulser, Tullio; Milleret, Vinzent; Hall, Heike; Atala, Anthony; Eberli, Daniel

    2013-07-01

    End stage bladder disease can seriously affect patient quality of life and often requires surgical reconstruction with bowel tissue, which is associated with numerous complications. Bioengineering of functional bladder tissue using tissue-engineering techniques could provide new functional tissues for reconstruction. In this review, we discuss the current state of this field and address different approaches to enable physiologic voiding in engineered bladder tissues in the near future. In a collaborative effort, we gathered researchers from four institutions to discuss the current state of functional bladder engineering. A MEDLINE® and PubMed® search was conducted for articles related to tissue engineering of the bladder, with special focus on the cells and biomaterials employed as well as the microenvironment, vascularisation and innervation strategies used. Over the last decade, advances in tissue engineering technology have laid the groundwork for the development of a biological substitute for bladder tissue that can support storage of urine and restore physiologic voiding. Although many researchers have been able to demonstrate the formation of engineered tissue with a structure similar to that of native bladder tissue, restoration of physiologic voiding using these constructs has never been demonstrated. The main issues hindering the development of larger contractile tissues that allow physiologic voiding include the development of correct muscle alignment, proper innervation and vascularization. Tissue engineering of a construct that will support the contractile properties that allow physiologic voiding is a complex process. The combination of smart scaffolds with controlled topography, the ability to deliver multiple trophic factors and an optimal cell source will allow for the engineering of functional bladder tissues in the near future. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Adipose-derived perivascular mesenchymal stromal/stem cells promote functional vascular tissue engineering for cardiac regenerative purposes.

    Science.gov (United States)

    Morrissette-McAlmon, Justin; Blazeski, Adriana; Somers, Sarah; Kostecki, Geran; Tung, Leslie; Grayson, Warren L

    2018-02-01

    Cardiac tissue engineering approaches have the potential to regenerate functional myocardium with intrinsic vascular networks. This study compared the relative effects of human adipose-derived stem/stromal cells (hASCs) and human dermal fibroblasts (hDFs) in cocultures with neonatal rat ventricular cardiomyocytes (NRVCMs) and human umbilical vein endothelial cells (HUVECs). At the same ratios of NRVCM:hASC and NRVCM:hDF, the hASC cocultures displayed shorter action potentials and maintained capture at faster pacing rates. Similarly, in coculture with HUVECs, hASC:HUVEC exhibited superior ability to support vascular capillary network formation relative to hDF:HUVEC. Based on these studies, a range of suitable cell ratios were determined to develop a triculture system. Six seeding ratios of NRVCM:hASC:HUVEC were tested and it was found that a ratio of 500:50:25 cells (i.e. 250,000:25,000:12,500 cells/cm 2 ) resulted in the formation of robust vascular networks while retaining action potential durations and propagation similar to pure NRVCM cultures. Tricultures in this ratio exhibited an average conduction velocity of 20 ± 2 cm/s, action potential durations at 80% repolarization (APD 80 ) and APD 30 of 122 ± 5 ms and 59 ± 4 ms, respectively, and maximum capture rate of 7.4 ± 0.6 Hz. The NRVCM control groups had APD 80 and APD 30 of 120 ± 9 ms and 51 ± 5 ms, with a maximum capture rate of 7.3 ± 0.2 Hz. In summary, the combination of hASCs in the appropriate ratios with NRVCMs and HUVECs can facilitate the formation of densely vascularized cardiac tissues that appear not to impact the electrophysiological function of cardiomyocytes negatively. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. In vivo tissue engineering of musculoskeletal tissues.

    Science.gov (United States)

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evaluation of decellularized human umbilical vein (HUV) for vascular tissue engineering - comparison with endothelium-denuded HUV.

    Science.gov (United States)

    Mangold, Silvia; Schrammel, Siegfried; Huber, Georgine; Niemeyer, Markus; Schmid, Christof; Stangassinger, Manfred; Hoenicka, Markus

    2015-01-01

    Human umbilical vessels have been recognized as a valuable and widely available resource for vascular tissue engineering. Whereas endothelium-denuded human umbilical veins (HUVs) have been successfully seeded with a patient-derived neoendothelium, decellularized vessels may have additional advantages, due to their lower antigenicity. The present study investigated the effects of three different decellularization procedures on the histological, mechanical and seeding properties of HUVs. Vessels were decellularized by detergent treatment (Triton X-100, sodium deoxycholate, IGEPAL-CA630), osmotic lysis (3 m NaCl, distilled water) and peroxyacetic acid treatment. In all cases, nuclease treatments were required to remove residual nucleic acids. Decellularization resulted in a partial loss of fibronectin and laminin staining in the subendothelial layer and affected the appearance of elastic fibres. In addition to removing residual nucleic acids, nuclease treatment weakened all stainings and substantially altered surface properties, as seen in scanning electron micrographs, indicating additional non-specific effects. Detergent treatment and osmotic lysis caused failure stresses to decrease significantly. Although conditioned medium prepared from decellularized HUV did not severely affect endothelial cell growth, cells seeded on decellularized HUV did not remain viable. This may be attributed to the partial removal of essential extracellular matrix components as well as to changes of surface properties. Therefore, decellularized HUVs appear to require additional modifications in order to support successful cell seeding. Replacing the vessels' endothelium may thus be a superior alternative to decellularization when creating tissue-engineered blood vessels with non-immunogenic luminal interfaces. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Novotná, Katarína; Pařízek, Martin

    2014-01-01

    Roč. 63, Suppl.1 (2014), S29-S47 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP108/12/1168; GA MZd(CZ) NT13297; GA ČR(CZ) GAP108/11/1857 Institutional support: RVO:67985823 Keywords : natural polymers * bioartificial tissue replacements * cell carriers and therapy * regenerative medicine Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.293, year: 2014

  18. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    Science.gov (United States)

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. THE USE OF A NOVEL ALDEHYDE-FUNCTIONALIZED CHITOSAN HYDROGEL TO PREPARE POROUS TUBULAR SCAFFOLDS FOR VASCULAR TISSUE ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Eduardo P. Azevedo

    Full Text Available In this work, porous tubular scaffolds were prepared from a novel water soluble aldehyde-functionalized chitosan (ALDCHIT hydrogel, which was obtained by dissolving this chitosan derivative in water and using oxidized dextrose (OXDEXT as the crosslinking agent at different ALDCHIT:OXDEXT mole ratios (10:1, 10:2 and 10:4. By increasing the amount of OXDEXT in respect to ALDCHIT the hydrogels became more rigid and could absorb more than 200% of its weight in water. Since the ALDCHIT:OXDEXT 10:4 was the most stable hydrogel, its ability to form porous tubular scaffolds was investigated. The tubular scaffolds were prepared by the lyophilization method, where the orientation of the pores was controlled by exposing either the internal or the external surface of the frozen hydrogel during the sublimation step. When only the inner surface of the frozen hydrogel was exposed, tubular scaffolds with a highly porous lumen and a sealed outer surface were obtained, where the orientation of the pores, their sizes and interconnectivity seem to be optimum for vascular tissue engineering application.

  20. Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering

    International Nuclear Information System (INIS)

    Wang, Heyun; Feng, Yakai; Fang, Zichen; Yuan, Wenjie; Khan, Musammir

    2012-01-01

    adhesion. ► The hybrid scaffolds could support HUVECs attachment and proliferation. ► The hybrid scaffold was potential candidates for tissue engineering blood vessel.

  1. Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering

    Directory of Open Access Journals (Sweden)

    A. Yazdanpanah

    2015-10-01

    Full Text Available In this study, a new design of graded tubular scaffolds have been developed for the performance enhancement in vascular tissue engineering. The graded poly-L-lactide (PLLA and gelatin fibrous scaffolds produced by electrospining were then characterized. The morphology, degradability, porosity, pore size and mechanical properties of four tubular scaffolds (graded PLLA/gelatin, layered PLLA/gelatin, PLLA and gelatin scaffolds have been investigated. The tensile tests demonstrated that the mechanical strength and also the estimated burst pressure of the graded scaffolds were significantly increased in comparison with the layered and gelatin scaffolds. This new design, resulting in an increase in the mechanical properties, suggested the widespread use of these scaffolds in vascular tissue engineering in order to prepare more strengthened vessels.

  2. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture.

    Science.gov (United States)

    Ye, Lin; Cao, Jie; Chen, Lamei; Geng, Xue; Zhang, Ai-Ying; Guo, Lian-Rui; Gu, Yong-Quan; Feng, Zeng-Guo

    2015-12-01

    A continuous electrospinning technique was applied to fabricate double layer tubular tissue engineering vascular graft (TEVG) scaffold. The luminal layer was made from poly(ɛ-caprolac-tone)(PCL) ultrafine fibers via common single axial electrospinning followed by the outer layer of core-shell structured nanofibers via coaxial electrospinning. For preparing the outer layernano-fibers, the PCL was electrospun into the shell and both bovine serum albumin (BSA) and tetrapeptide val-gal-pro-gly (VAPG) were encapsulated into the core. The core-shell structure in the outer layer fibers was observed by transmission electron microscope (TEM). The in vitro release tests exhibited the sustainable release behavior of BSA and VAPG so that they provided a better cell growth environment in the interior of tubular scaffold wall. The in vitro culture of smooth muscle cells (SMCs) demonstrated their potential to penetrate into the scaffold wall for the 3D cell culture. Subsequently, 3D cell coculture was conducted. First, SMCs were seeded on the luminal surface of the scaffold and cultured for 5 days, and then endothelial cells (ECs) were also seeded on the luminal surface and cocultured with SMCs for another 2 days. After stained with antibodies, 3D cell distribution on the scaffold was revealed by confocal laser scanning microscopy (CLSM) where ECs were mainly located on the luminal surface whereas SMCs penetrated into the surface and distributed inside the scaffold wall. This double layer tubular scaffold with 3D cell distribution showed the promise to develop it into a novel TEVG for clinical trials in the near future. © 2015 Wiley Periodicals, Inc.

  3. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  4. Acellular Endocardium as a Novel Biomaterial for the Intima of Tissue-Engineered Small-Caliber Vascular Grafts.

    Science.gov (United States)

    Wang, Feng; Guan, Xin; Wu, TianYi; Qiao, JianOu; Han, ZhaoQing; Wu, JinLong; Yu, XiaoWei; You, QingJun

    2016-12-01

    We aimed to investigate whether acellular endocardium can be used as a useful biomaterial for the intima of engineered small-caliber vascular grafts. Fresh endocardium was harvested from the swine left atrium and was decellularized by digestion with the decellularization solution of Triton X-100 and SDS containing DNase I and RNase A. Surface morphological characteristics and Young's modulus were evaluated. To analyze the effect of mechanical characteristics on cell adhesion, the decellularized endocardium was stiffened with 2.5% glutaraldehyde. Small-caliber vascular grafts were constructed using decellularized endocardium treated with or without glutaraldehyde as the intima. CD34+ cells were seeded onto the luminal surface of the vascular grafts and linked to bioreactors that simulate a pulsatile blood stream. Acellular endocardium had distinct surface morphological characteristics, which were quite different from those of other materials. The compliance of acellular endocardium was higher than that of other materials tested by Young's modulus. CD34+ cells formed a monolayer structure and adhered to the inner face of the acellular endocardium. The glutaraldehyde treatment stiffened the acellular endocardium but had little impact on the surface morphological characteristics or static adhesiveness of the cells. Data from the bioreactor study showed that the detachment of the cells from the surface of glutaraldehyde-treated acellular endocardium increased dramatically when the pressure was equal or higher than 40 mm Hg, while the cells on the untreated acellular endocardium remained well and formed confluent monolayers and tight junctions under the same pressure. Acellular endocardium has distinct structures and mechanical characteristics that are beneficial for CD34+ cell adhesion and retention under dynamic fluid perfusion. Thus, it can be used as a useful biomaterial for the construction of the intima of engineered small-caliber vascular grafts. Copyright © 2016

  5. Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications.

    Science.gov (United States)

    Rath, Subha N; Arkudas, Andreas; Lam, Christopher Xf; Olkowski, Radoslaw; Polykandroitis, Elias; Chróscicka, Anna; Beier, Justus P; Horch, Raymund E; Hutmacher, Dietmar W; Kneser, Ulrich

    2012-09-01

    Hyaluronic acid (HA) and fibrin glue (FG) are effective hydrogels for tissue engineering applications as they support tissue in-growth, retain growth factors, and release them slowly with time. The scaffolds, in combination with a hydrogel, effectuate a successful graft. However, the survival of a graft entirely depends upon a functional vascular supply. Therefore, hydrogels must support the in-growing vasculature. To study and compare the vascular patterns, HA and FG hydrogel-containing PLDLLA-TCP-PCL scaffolds were implanted in the groin of male Lewis rats and supplied with a micro-surgically prepared arterio-venous (A-V) loop. The rats were perfused with a vascular contrast media after 4 and 8 weeks and sacrificed for further analysis. The specimens were scanned with micro-CT to find the vascular growth patterns. Corrosion casting of blood vessels followed by SEM demonstrated a high vascular density near the parent blood vessels. Histologically, HA and FG implanted animal groups showed significant angiogenetic activity, especially within the pores of the scaffold. However, formation of new blood vessels was more conspicuously observed at 4 weeks in FG than HA implants. Furthermore, by 8 weeks, the number and pattern of blood vessels were comparable between them. At this time, HA was still present indicating its slow degradation. The finding was confirmed by histomorphometric analysis. This experimental study demonstrates that HA containing composite scaffold systems permit stabile in-growth of blood vessels due to sustained degradation over 8 weeks. HA is a potential matrix for a tissue engineered composite graft.

  6. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Y. [Advanced Materials Group, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lekakou, C., E-mail: C.Lekakou@surrey.ac.uk [Advanced Materials Group, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Labeed, F. [Centre of Biomedical Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Tomlins, P. [National Physical Laboratory (NPL), Teddington, Middlesex TW11 0LW (United Kingdom)

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell–matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8–1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively. - Highlights: • Novel crosslinked electrospun gelatin scaffolds of specific fibre layer orientation • These scaffolds have compliance equivalent to that of coronary

  7. The use of microtechnology and nanotechnology in fabricating vascularized tissues.

    Science.gov (United States)

    Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu

    2014-01-01

    Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.

  8. Engineered vascularized bone grafts

    OpenAIRE

    Tsigkou, Olga; Pomerantseva, Irina; Spencer, Joel A.; Redondo, Patricia A.; Hart, Alison R.; O’Doherty, Elisabeth; Lin, Yunfeng; Friedrich, Claudia C.; Daheron, Laurence; Lin, Charles P.; Sundback, Cathryn A.; Vacanti, Joseph P.; Neville, Craig

    2010-01-01

    Clinical protocols utilize bone marrow to seed synthetic and decellularized allogeneic bone grafts for enhancement of scaffold remodeling and fusion. Marrow-derived cytokines induce host neovascularization at the graft surface, but hypoxic conditions cause cell death at the core. Addition of cellular components that generate an extensive primitive plexus-like vascular network that would perfuse the entire scaffold upon anastomosis could potentially yield significantly higher-quality grafts. W...

  9. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Sánchez-Palencia, Diana M; D'Amore, Antonio; González-Mancera, Andrés; Wagner, William R; Briceño, Juan C

    2014-08-22

    In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  11. Leaf hydraulics II: vascularized tissues.

    Science.gov (United States)

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-07

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. © 2013 Published by Elsevier Ltd. All rights reserved.

  12. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    Science.gov (United States)

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  13. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.

    Science.gov (United States)

    Hu, Jin-Jia; Chao, Wei-Chih; Lee, Pei-Yuan; Huang, Chih-Hao

    2012-09-01

    Based on a postulate that the microstructure of a scaffold can influence that of the resulting tissue and hence its mechanical behavior, we fabricated a small-diameter tubular scaffold (∼3 mm inner diameter) that has a microstructure similar to the arterial media using a scaffold membrane approach. Scaffold membranes that contain randomly oriented, moderately aligned, or highly aligned fibers were fabricated by collecting electrospun poly([epsilon]-caprolactone) fibers on a grounded rotating drum at three different drum rotation speeds (250, 1000, and 1500 rpm). Membranes of each type were wrapped around a small-diameter mandrel to form the tubular scaffolds. Particularly, the tubular scaffolds with three different off-axis fiber angles (30, 45, and 60 degree) were formed using membranes that contain aligned fibers. These scaffolds were subjected to biaxial mechanical testing to examine the effects of fiber directions as well as the distribution of fiber orientations on their mechanical properties. The circumferential elastic modulus of the tubular scaffold was closely related to the fiber directions; the larger the off-axis fiber angle the greater the circumferential elastic modulus. The distribution of fiber orientations, on the other hand, manifested itself in the mechanical behavior via the Poisson effect. Similar to cell sheet-based vascular tissue engineering, tubular cell-seeded constructs were prepared by wrapping cell-seeded scaffold membranes, alleviating the difficulty associated with cell seeding in electrospun scaffolds. Histology of the construct illustrated that cells were aligned to the fiber directions in the construct, demonstrating the potential to control the microstructure of tissue-engineered vascular grafts using the electrospun scaffold membrane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    “Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  15. Investigating the Vascularization of Tissue-Engineered Bone Constructs Using Dental Pulp Cells and 45S5 Bioglass® Scaffolds

    Science.gov (United States)

    El-Gendy, Reem; Kirkham, Jennifer; Newby, Phillipa J.; Mohanram, Yamuna; Boccaccini, Aldo Roberto

    2015-01-01

    Identification of a suitable cell source combined with an appropriate 3D scaffold is an essential prerequisite for successful engineering of skeletal tissues. Both osteogenesis and angiogenesis are key processes for bone regeneration. This study investigated the vascularization potential of a novel combination of human dental pulp stromal cells (HDPSCs) with 45S5 Bioglass® scaffolds for tissue-engineered mineral constructs in vivo and in vitro. 45S5 Bioglass scaffolds were produced by the foam replication technique with the standard composition of 45 wt% SiO2, 24.5 wt% Na2O, 24.5 wt% CaO, and 6 wt% P2O5. HDPSCs were cultured in monolayers and on porous 45S5 Bioglass scaffolds under angiogenic and osteogenic conditions for 2–4 weeks. HDPSCs expressed endothelial gene markers (CD34, CD31/PECAM1, and VEGFR2) under both conditions in the monolayer. A combination of HDPSCs with 45S5 Bioglass enhanced the expression of these gene markers. Positive immunostaining for CD31/PECAM1 and VEGFR2 and negative staining for CD34 supported the gene expression data, while histology revealed evidence of endothelial cell-like morphology within the constructs. More organized tubular structures, resembling microvessels, were seen in the constructs after 8 weeks of implantation in vivo. In conclusion, this study suggests that the combination of HDPSCs with 45S5 Bioglass scaffolds offers a promising strategy for regenerating vascularized bone grafts. PMID:25923923

  16. Tissue engineering in dentistry.

    Science.gov (United States)

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the

  17. Bone tissue engineering in osteoporosis.

    Science.gov (United States)

    Jakob, Franz; Ebert, Regina; Ignatius, Anita; Matsushita, Takashi; Watanabe, Yoshinobu; Groll, Juergen; Walles, Heike

    2013-06-01

    Osteoporosis is a polygenetic, environmentally modifiable disease, which precipitates into fragility fractures of vertebrae, hip and radius and also confers a high risk of fractures in accidents and trauma. Aging and the genetic molecular background of osteoporosis cause delayed healing and impair regeneration. The worldwide burden of disease is huge and steadily increasing while the average life expectancy is also on the rise. The clinical need for bone regeneration applications, systemic or in situ guided bone regeneration and bone tissue engineering, will increase and become a challenge for health care systems. Apart from in situ guided tissue regeneration classical ex vivo tissue engineering of bone has not yet reached the level of routine clinical application although a wealth of scaffolds and growth factors has been developed. Engineering of complex bone constructs in vitro requires scaffolds, growth and differentiation factors, precursor cells for angiogenesis and osteogenesis and suitable bioreactors in various combinations. The development of applications for ex vivo tissue engineering of bone faces technical challenges concerning rapid vascularization for the survival of constructs in vivo. Recent new ideas and developments in the fields of bone biology, materials science and bioreactor technology will enable us to develop standard operating procedures for ex vivo tissue engineering of bone in the near future. Once prototyped such applications will rapidly be tailored for compromised conditions like vitamin D and sex hormone deficiencies, cellular deficits and high production of regeneration inhibitors, as they are prevalent in osteoporosis and in higher age. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Tissue engineered aortic valve

    OpenAIRE

    Dohmen, P M

    2012-01-01

    Several prostheses are available to replace degenerative diseased aortic valves with unique advantages and disadvantages. Bioprotheses show excellent hemodynamic behavior and low risk of thromboembolic complications, but are limited by tissue deterioration. Mechanical heart valves have extended durability, but permanent anticoagulation is mandatory. Tissue engineering created a new generation heart valve, which overcome limitations of biological and mechanical heart valves due to remodelling,...

  19. Tissue engineering; strategies, tissues, and biomaterials.

    Science.gov (United States)

    Bakhshandeh, Behnaz; Zarrintaj, Payam; Oftadeh, Mohammad Omid; Keramati, Farid; Fouladiha, Hamideh; Sohrabi-Jahromi, Salma; Ziraksaz, Zarrintaj

    2017-10-01

    Current tissue regenerative strategies rely mainly on tissue repair by transplantation of the synthetic/natural implants. However, limitations of the existing strategies have increased the demand for tissue engineering approaches. Appropriate cell source, effective cell modification, and proper supportive matrices are three bases of tissue engineering. Selection of appropriate methods for cell stimulation, scaffold synthesis, and tissue transplantation play a definitive role in successful tissue engineering. Although the variety of the players are available, but proper combination and functional synergism determine the practical efficacy. Hence, in this review, a comprehensive view of tissue engineering and its different aspects are investigated.

  20. An evaluation of Admedus' tissue engineering process-treated (ADAPT) bovine pericardium patch (CardioCel) for the repair of cardiac and vascular defects.

    Science.gov (United States)

    Strange, Geoff; Brizard, Christian; Karl, Tom R; Neethling, Leon

    2015-03-01

    Tissue engineers have been seeking the 'Holy Grail' solution to calcification and cytotoxicity of implanted tissue for decades. Tissues with all of the desired qualities for surgical repair of congenital heart disease (CHD) are lacking. An anti-calcification tissue engineering process (ADAPT TEP) has been developed and applied to bovine pericardium (BP) tissue (CardioCel, AdmedusRegen Pty Ltd, Perth, WA, Australia) to eliminate cytotoxicity, improve resistance to acute and chronic inflammation, reduce calcification and facilitate controlled tissue remodeling. Clinical data in pediatric patients, and additional pre-market authorized prescriber data demonstrate that CardioCel performs extremely well in the short term and is safe and effective for a range of congenital heart deformations. These data are supported by animal studies which have shown no more than normal physiologic levels of calcification, with good durability, biocompatibility and controlled healing.

  1. Perivascular cells and tissue engineering: Current applications and untapped potential.

    Science.gov (United States)

    Avolio, Elisa; Alvino, Valeria V; Ghorbel, Mohamed T; Campagnolo, Paola

    2017-03-01

    The recent development of tissue engineering provides exciting new perspectives for the replacement of failing organs and the repair of damaged tissues. Perivascular cells, including vascular smooth muscle cells, pericytes and other tissue specific populations residing around blood vessels, have been isolated from many organs and are known to participate to the in situ repair process and angiogenesis. Their potential has been harnessed for cell therapy of numerous pathologies; however, in this Review we will discuss the potential of perivascular cells in the development of tissue engineering solutions for healthcare. We will examine their application in the engineering of vascular grafts, cardiac patches and bone substitutes as well as other tissue engineering applications and we will focus on their extensive use in the vascularization of engineered constructs. Additionally, we will discuss the emerging potential of human pericytes for the development of efficient, vascularized and non-immunogenic engineered constructs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  3. Transformation of nonvascular acellular tissue matrices into durable vascular conduits.

    Science.gov (United States)

    Clarke, D R; Lust, R M; Sun, Y S; Black, K S; Ollerenshaw, J D

    2001-05-01

    Prosthetic grafts commonly used for vascular reconstruction are limited to synthetics and cross-linked tissue grafts. Within these devices, graft infections are common, compliance mismatch is significant, and handling qualities are poor. Natural biological tissues that are unfixed have been shown to resist infections and be durable and compliant. A natural biological matrix that could be remodeled appropriately after implantation would be a desirable graft for vascular reconstruction. SynerGraft tissue engineering strategies have been used to minimize antigenicity and produce stable unfixed vascular grafts from nonvascular bovine tissues. These grafts have replaced the abdominal aortas of 8 dogs that have been followed for up to 10 months. Early evaluation indicates rapid recellularization by recipient smooth muscle actin positive cells, which become arranged circumferentially, into the media. Arterioles were present in the adventitial areas and endothelial cells were seen to cover lumenal surfaces. After 10 months, grafts were patent and not aneurysmal. These data indicate that SynerGraft processing of animal tissues is capable of producing stable vascular conduits that exhibit long-term functionality in other species.

  4. Connective tissue: Vascular and hematological (blood) support.

    Science.gov (United States)

    Calvino, Nick

    2003-01-01

    Connective Tissue (CT) is a ubiquitous component of all major tissues and structures of the body (50% of all body protein is CT), including that of the blood, vascular, muscle, tendon, ligament, fascia, bone, joint, IVD's (intervertebral discs) and skin. Because of its ubiquitous nature, CT is an often overlooked component of any essential nutritional program that may address the structure, and/or function of these tissues. The central role of CT in the health of a virtually all cells, tissues, organs, and organ systems, is discussed. General nutritional CT support strategies, as well as specific CT support strategies that focus on blood, vascular, structural system (eg, muscles, tendons, ligaments, fascia, bone, and joints), integument (skin) and inflammatory and immune mediation will be discussed here and will deal with connective tissue dynamics and dysfunction. An overview of the current scientific understanding and possible options for naturally enhancing the structure and function of CT through the application of these concepts will be discussed in this article, with specific attention on the vascular and hematological systems.

  5. Fundamentals of bladder tissue engineering

    African Journals Online (AJOL)

    W. Mahfouz

    Stem cells;. Bladder tissue engineering;. Decellularization;. Bladder acellular matrix. Abstract. A wide range of injuries could affect the bladder and lead to eventual loss ... Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on scaffolds and lastly ..... Clinical trials in bladder tissue engineering.

  6. [Tissue engineering and osteoarthritis].

    Science.gov (United States)

    Ibarra, Clemente; Garciadiego, David; Martínez, Valentín; Velasquillo, Cristina

    2007-10-01

    Articular cartilage lesions predispose to the development of early osteoarthritis. Most current surgical techniques give rise to the formation of fibrocartilage with biochemical and biomechanical properties inferior to those or articular cartilage. Tissue engineering could offer a modern alternative to the treatment of these lesions and in this way, prevent the development of early osteoarthritis in young active patients. Different tissue engineering approaches rely on the current use of autologous chondrocytes, or the potential use of mesenchymal stem cells. Other variables rely on the type of scaffold to use such as synthetic biodegradable polymers, fibrin or collagen-derived scaffolds of different sources, bovine, porcine, rat tail, etc, in the form of gels, sponges, mesh, etc, and all of these with or without growth factors. The use of autologous chondrocytes is a reality at the present time, whether injected under a periosteum patch or seeded on collagen. However, most investigators and biotech companies are in search of onestep surgical procedures, for which reason stem cells have to be kept in mind, as well as systems that will allow arthroscopic implantation. Copyright © 2007 Elsevier España S.L Barcelona. Published by Elsevier Espana. All rights reserved.

  7. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  8. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  9. Tissue bionics: examples in biomimetic tissue engineering.

    Science.gov (United States)

    Green, David W

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  10. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  11. Bone Tissue Engineering: Recent Advances and Challenges

    Science.gov (United States)

    Amini, Ami R.; Laurencin, Cato T.; Nukavarapu, Syam P.

    2013-01-01

    The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field. PMID:23339648

  12. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  13. Trends in Tissue Engineering for Blood Vessels

    Science.gov (United States)

    Nemeno-Guanzon, Judee Grace; Lee, Soojung; Berg, Johan Robert; Jo, Yong Hwa; Yeo, Jee Eun; Nam, Bo Mi; Koh, Yong-Gon; Lee, Jeong Ik

    2012-01-01

    Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient's conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering. PMID:23251085

  14. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  15. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    Science.gov (United States)

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  16. Tissue engineering of reproductive tissues and organs.

    Science.gov (United States)

    Atala, Anthony

    2012-07-01

    Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Transcatheter tissue engineered heart valves.

    Science.gov (United States)

    Emmert, Maximilian Y; Weber, Benedikt; Falk, Volkmar; Hoerstrup, Simon P

    2014-01-01

    Valvular heart disease represents a leading cause of mortality worldwide. Transcatheter heart valve replacement techniques have been recently introduced into the clinical routine expanding the treatment options for affected patients. However, despite this technical progress toward minimally invasive, transcatheter strategies, the available heart valve prostheses for these techniques are bioprosthetic and associated with progressive degeneration. To overcome such limitations, the concept of heart valve tissue engineering has been repeatedly suggested for future therapy concepts. Ideally, a clinically relevant heart valve tissue engineering concept would combine minimally invasive strategies for both, living autologous valve generation as well as valve implantation. Therefore, merging transcatheter techniques with living tissue engineered heart valves into a trascatheter tissue engineered heart valve concept could significantly improve current treatment options for patients suffering from valvular heart disease. This report provides an overview on transcatheter tissue engineered heart valves and summarizes available pre-clinical data.

  18. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  19. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    Science.gov (United States)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Adipose tissue-derived stem cells in oral mucosa tissue engineering ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... urethral reconstruction. Specifically, tissue-engineered oral mucosa holds great prospect for urethroplasty. Mesenchymal stem cells within the stromal-vascular fraction of subcutaneous adipose tissue, that is, adipose tissue-derived stem cells (ADSCs), have been used in skin repair with satisfactory results.

  1. Tissue Engineering in Vesical Reconstruction

    African Journals Online (AJOL)

    mn

    Azhar University, Assiut, Egypt. ABSTRACT. Objectives: This review summarizes the basic principles of tissue engineering (TE) and describes the possible future clinical application in bladder reconstruction. Material and Methods: This review ...

  2. Commercial considerations in tissue engineering.

    Science.gov (United States)

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  3. A simple tissue model for practicing ultrasound guided vascular ...

    African Journals Online (AJOL)

    Introduction: The use of ultrasound in anaesthetic practice continues to be more established and the use of ultrasound guidance in establishing vascular access is recommended by various groups. We have developed a tissue model for the practice and skills development in ultrasound vascular access. Method: The tissue ...

  4. Tissue engineering of the meniscus.

    NARCIS (Netherlands)

    Buma, P.; Ramrattan, N.N.; Tienen, T. van; Veth, R.P.H.

    2004-01-01

    Meniscus lesions are among the most frequent injuries in orthopaedic practice and they will inevitably lead to degeneration of the knee articular cartilage. The fibro-cartilage-like tissue of the meniscus is notorious for its limited regenerative capacity. Tissue engineering could offer new

  5. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    Science.gov (United States)

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue

  6. Tissue Engineering Initiative

    Science.gov (United States)

    2002-08-01

    connective tissue, the extracellular matrix of hypertrophic cartilage and the lacunae of osteocytes resembling cortical bone [54]. In the long shaft of...cells. Canadian Journal of Cardiology 12(3): 231-236, 1996. 9. Oakes BW, Batty AC, Handley CJ, Sandberg LB. The synthesis of elastin, collagen, and

  7. Micro- and nanotechnology in cardiovascular tissue engineering.

    Science.gov (United States)

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  8. Advances in Meniscal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Meniscal tears are the most common knee injuries and have a poor ability of healing. In the last few decades, several techniques have been increasingly used to optimize meniscal healing. Current research efforts of tissue engineering try to combine cell-based therapy, growth factors, gene therapy, and reabsorbable scaffolds to promote healing of meniscal defects. Preliminary studies did not allow to draw definitive conclusions on the use of these techniques for routine management of meniscal lesions. We performed a review of the available literature on current techniques of tissue engineering for the management of meniscal tears.

  9. Multiphoton tomography for tissue engineering

    Science.gov (United States)

    König, Karsten

    2008-02-01

    Femtosecond laser multiphoton tomography has been employed in the field of tissue engineering to perform 3D high-resolution imaging of the extracellular matrix proteins elastin and collagen as well as of living cells without any fixation, slicing, and staining. Near infrared 80 MHz picojoule femtosecond laser pulses are able to excite the endogenous fluorophores NAD(P)H, flavoproteins, melanin, and elastin via a non-resonant two-photon excitation process. In addition, collagen can be imaged by second harmonic generation. Using a two-PMT detection system, the ratio of elastin to collagen was determined during optical sectioning. A high submicron spatial resolution and 50 picosecond temporal resolution was achieved using galvoscan mirrors and piezodriven focusing optics as well as a time-correlated single photon counting module with a fast microchannel plate detector and fast photomultipliers. Multiphoton tomography has been used to optimize the tissue engineering of heart valves and vessels in bioincubators as well as to characterize artificial skin. Stem cell characterization and manipulation are of major interest for the field of tissue engineering. Using the novel sub-20 femtosecond multiphoton nanoprocessing laser microscope FemtOgene, the differentiation of human stem cells within spheroids has been in vivo monitored with submicron resolution. In addition, the efficient targeted transfection has been demonstrated. Clinical studies on the interaction of tissue-engineered products with the natural tissue environment can be performed with in vivo multiphoton tomograph DermaInspect.

  10. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Extensive characterization and comparison of endothelial cells derived from dermis and adipose tissue : Potential use in tissue engineering

    NARCIS (Netherlands)

    Monsuur, H.N.; Weijers, E.M.; Niessen, F.B.; Gefen, A.; Koolwijk, P.; Gibbs, S.; van den Broek, L.J.

    2016-01-01

    Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells

  12. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Science.gov (United States)

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  13. Genetic and hormonal control of vascular tissue proliferation

    NARCIS (Netherlands)

    Smet, Wouter; Rybel, De Bert

    2016-01-01

    The plant vascular system develops from a handful of provascular initial cells in the early embryo into a whole range of different cell types in the mature plant. In order to account for such proliferation and to generate this kind of diversity, vascular tissue development relies on a large

  14. Fundamentals of bladder tissue engineering

    African Journals Online (AJOL)

    W. Mahfouz

    promote angiogenesis and neurogenesis of the regenerated organs. The choice of the scaffold and the type of cells is a crucial and fundamental step in regenerative medicine. In this review article, we demonstrated these three crucial factors of bladder tissue engineering, with the pros and cons of each scaffold type and.

  15. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering

    NARCIS (Netherlands)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A. M.; Poot, Andre A.; Harmsen, Martin C.

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived

  16. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering

    NARCIS (Netherlands)

    Parvizi, M.; Bolhuis-Versteeg, Lydia A.M.; Poot, Andreas A.; Harmsen, M.C.

    2016-01-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived

  17. Endochondral Priming: A Developmental Engineering Strategy for Bone Tissue Regeneration.

    Science.gov (United States)

    Freeman, Fiona E; McNamara, Laoise M

    2017-04-01

    Tissue engineering and regenerative medicine have significant potential to treat bone pathologies by exploiting the capacity for bone progenitors to grow and produce tissue constituents under specific biochemical and physical conditions. However, conventional tissue engineering approaches, which combine stem cells with biomaterial scaffolds, are limited as the constructs often degrade, due to a lack of vascularization, and lack the mechanical integrity to fulfill load bearing functions, and as such are not yet widely used for clinical treatment of large bone defects. Recent studies have proposed that in vitro tissue engineering approaches should strive to simulate in vivo bone developmental processes and, thereby, imitate natural factors governing cell differentiation and matrix production, following the paradigm recently defined as "developmental engineering." Although developmental engineering strategies have been recently developed that mimic specific aspects of the endochondral ossification bone formation process, these findings are not widely understood. Moreover, a critical comparison of these approaches to standard biomaterial-based bone tissue engineering has not yet been undertaken. For that reason, this article presents noteworthy experimental findings from researchers focusing on developing an endochondral-based developmental engineering strategy for bone tissue regeneration. These studies have established that in vitro approaches, which mimic certain aspects of the endochondral ossification process, namely the formation of the cartilage template and the vascularization of the cartilage template, can promote mineralization and vascularization to a certain extent both in vitro and in vivo. Finally, this article outlines specific experimental challenges that must be overcome to further exploit the biology of endochondral ossification and provide a tissue engineering construct for clinical treatment of large bone/nonunion defects and obviate the need for

  18. Injectable gels for tissue engineering.

    Science.gov (United States)

    Gutowska, A; Jeong, B; Jasionowski, M

    2001-08-01

    Recently, tissue engineering approaches using injectable, in situ gel forming systems have been reported. In this review, the gelation processes and several injectable systems that exhibit in situ gel formation at physiological conditions are discussed. Applications of selected injectable systems (alginate, chitosan, hyaluronan, polyethylene oxide/polypropylene oxide) in tissue engineering are also described. Injectable polymer formulation can gel in vivo in response to temperature change (thermal gelation), pH change, ionic cross-linking, or solvent exchange. Kinetics of gelation is directly affected by its mechanism. Injectable formulations offer specific advantages over preformed scaffolds such as: possibility of a minimally invasive implantation, an ability to fill a desired shape, and easy incorporation of various therapeutic agents. Several factors need to be considered before an injectable gel can be selected as a candidate for tissue engineering applications. Apart from tissue-specific cell-matrix interactions, the following gel properties need to be considered: gelation kinetics, matrix resorption rate, possible toxicity of degradation products and their elimination routes, and finally possible interference of the gel matrix with histogenesis. Copyright 2001 Wiley-Liss, Inc.

  19. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  20. Engineered Muscle Actuators: Cells and Tissues

    National Research Council Canada - National Science Library

    Dennis, Robert G; Herr, Hugh; Parker, Kevin K; Larkin, Lisa; Arruda, Ellen; Baar, Keith

    2007-01-01

    .... Our primary objectives were to engineer living skeletal muscle actuators in culture using integrated bioreactors to guide tissue development and to maintain tissue contractility, to achieve 50...

  1. Scientific and industrial status of tissue engineering ...

    African Journals Online (AJOL)

    Tissue engineering is a newly emerging field targeting many unresolved health problems. So far, the achievements of this technology in the production of different tissue engineered substitutes were promising. This review is intended to describe, briefly and in a simple language, what tissue engineering is, what the ...

  2. Scientific and industrial status of tissue engineering

    African Journals Online (AJOL)

    SERVER

    2007-12-28

    Dec 28, 2007 ... Tissue engineering is a newly emerging field targeting many unresolved health problems. So far, the achievements of this technology in the production of different tissue engineered substitutes were promising. This review is intended to describe, briefly and in a simple language, what tissue engineering is ...

  3. Engineering a 3D vascular network in hydrogel for mimicking a nephron.

    Science.gov (United States)

    Mu, Xuan; Zheng, Wenfu; Xiao, Le; Zhang, Wei; Jiang, Xingyu

    2013-04-21

    Engineering functional vascular networks in vitro is critical for tissue engineering and a variety of applications. There is still a general lack of straightforward approaches for recapitulating specific structures and functions of vasculature. This report describes a microfluidic method that utilizes fibrillogenesis of collagen and a liquid mold to engineer three-dimensional vascular networks in hydrogel. The well-controlled vascular network demonstrates both mechanical stability for perfusing solutions and biocompatibility for cell adhesion and coverage. This technique enables the mimicry of passive diffusion in a nephron one of the main routes transferring soluble organic molecules. This approach could be used for in vitro modelling of mass transfer-involved physiology in vasculature-rich tissues and organs for regeneration and drug screening.

  4. Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison

    Directory of Open Access Journals (Sweden)

    Karoline Pill

    2015-01-01

    Full Text Available Tissue-engineered constructs are promising to overcome shortage of organ donors and to reconstruct at least parts of injured or diseased tissues or organs. However, oxygen and nutrient supply are limiting factors in many tissues, especially after implantation into the host. Therefore, the development of a vascular system prior to implantation appears crucial. To develop a functional vascular system, different cell types that interact with each other need to be co-cultured to simulate a physiological environment in vitro. This review provides an overview and a comparison of the current knowledge of co-cultures of human endothelial cells (ECs with human adipose tissue-derived stem/stromal cells (ASCs or bone marrow-mesenchymal stem cells (BMSCs in three dimensional (3D hydrogel matrices. Mesenchymal stem cells (MSCs, BMSCs or ASCs, have been shown to enhance vascular tube formation of ECs and to provide a stabilizing function in addition to growth factor delivery and permeability control for ECs. Although phenotypically similar, MSCs from different tissues promote tubulogenesis through distinct mechanisms. In this report, we describe differences and similarities regarding molecular interactions in order to investigate which of these two cell types displays more favorable characteristics to be used in clinical applications. Our comparative study shows that ASCs as well as BMSCs are both promising cell types to induce vascularization with ECs in vitro and consequently are promising candidates to support in vivo vascularization.

  5. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Tissue engineering skeletal muscle for orthopaedic applications

    Science.gov (United States)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  7. Tissue engineering scheming by artificial intelligence.

    Science.gov (United States)

    Xu, J; Ge, H; Zhou, X; Yang, D

    2005-01-01

    Tissue engineers are often confused when seeking the most effective, economical and secure scheme for tissue engineering. The aim of this study is to generate tissue engineering schemes with artificial intelligence instead of human intelligence. The experimental data of tissue engineered cartilage were integrated and standardized with a centralized database, and a scheme engine was developed using artificial intelligent methods (artificial neural networks and decision trees). The scheme engine was trained with existing cases in the database, and then was used to generate tissue engineering schemes for new experimental animals. Following the schemes generated by the artificial intelligent system, we cured 18 of the 20 experimental animals. In conclusion, artificial intelligence is a powerful method for decision making in the tissue engineering realm.

  8. Nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography.

    Science.gov (United States)

    Blery, P; Pilet, P; Bossche, A Vanden-; Thery, A; Guicheux, J; Amouriq, Y; Espitalier, F; Mathieu, N; Weiss, P

    2016-04-01

    Vascularization is essential for many tissues and is a main requisite for various tissue-engineering strategies. Different techniques are used for highlighting vasculature, in vivo and ex vivo, in 2-D or 3-D including histological staining, immunohistochemistry, radiography, angiography, microscopy, computed tomography (CT) or micro-CT, both stand-alone and synchrotron system. Vascularization can be studied with or without a contrast agent. This paper presents the results obtained with the latest Skyscan micro-CT (Skyscan 1272, Bruker, Belgium) following barium sulphate injection replacing the bloodstream in comparison with results obtained with a Skyscan In Vivo 1076. Different hard and soft tissues were perfused with contrast agent and were harvested. Samples were analysed using both forms of micro-CT, and improved results were shown using this new micro-CT. This study highlights the vasculature using micro-CT methods. The results obtained with the Skyscan 1272 are clearly defined compared to results obtained with Skyscan 1076. In particular, this instrument highlights the high number of small vessels, which were not seen before at lower resolution. This new micro-CT opens broader possibilities in detection and characterization of the 3-D vascular tree to assess vascular tissue engineering strategies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. Tissue Engineering in Regenerative Dental Therapy

    OpenAIRE

    Hiral Jhaveri-Desai; Shaleen Khetarpal

    2011-01-01

    Tissue engineering is amongst the latest exciting technologies having impacted the field of dentistry. Initially considered as a futuristic approach, tissue engineering is now being successfully applied in regenerative surgery. This article reviews the important determinants of tissue engineering and how they contribute to the improvement of wound healing and surgical outcomes in the oral region. Furthermore, we shall address the clinical applications of engineering involving oral and maxillo...

  11. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  12. Hypoxia and Matrix Manipulation for Vascular Engineering

    Science.gov (United States)

    Abaci, Hasan E.; Hanjaya-Putra, Donny; Gerecht, Sharon

    The great majority of cell types are known to be capable of sensing changes in O2 tension and in the extracellular matrix (ECM), resulting in various responses depending on the cell type and other factors in the microenvironment, such as cell-cell interactions. A growing body of evidence suggests that hypoxia greatly influences the processes of angiogenesis/vasculogenesis through the transcription of several genes, including vascular endothelial growth factor (VEGF), the major regulatory protein of angiogenesis/vasculogenesis. At the same time, the spatial and temporal distribution of ECM components affects ECM properties and growth factor (GF) availability, which, in turn, regulates vascular development. This chapter will discuss how hypoxia and the ECM influence vascular morphogenesis. It seeks a better understanding of vascular development by considering recent research and emerging technologies focused on controlling O2 tension and manipulating ECM properties. The first part of the chapter focuses on the influences of O2 tension and ECM distribution on vascular formation. The second part presents strategies for manipulating the microenvironment using synthetic biomaterials. Control over O2 in three-dimensional (3D) microenvironments is thoroughly highlighted, along with the currently available O2 measurement techniques and mathematical models that are necessary to monitor O2 gradients in 3D microenvironments. Finally, the chapter discusses the state-of-the-art technology in microfluidics and smart biomaterials to provide insight into its future direction.

  13. Recent insights on applications of pullulan in tissue engineering.

    Science.gov (United States)

    Singh, Ram Sarup; Kaur, Navpreet; Rana, Vikas; Kennedy, John F

    2016-11-20

    Tissue engineering is a recently emerging line of act which assists the regeneration of damaged tissues, unable to self-repair themselves and in turn, enhances the natural healing potential of patients. The repair of injured tissue can be induced with the help of some artificially created polymer scaffolds for successful tissue regeneration. The pullulan composite scaffolds can be used to enhance the proliferation and differentiation of cells for tissue regeneration. The unique pattern of pullulan with α-(1→4) and α-(1→6) linkages along with the presence of nine hydroxyl groups on its surface, endows the polymer with distinctive physical features required for tissue engineering. Pullulan can be used for vascular engineering, bone repair and skin tissue engineering. Pullulan composite scaffolds can also be used for treatment of injured femoral condyle bone, skull bone and full thickness skin wound of murine models, transversal mandibular and tibial osteotomy in goat, etc. This review article highlights the latest developments on applications of pullulan and its derivatives in tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cell sheet approach for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Matsuura, Katsuhisa; Utoh, Rie; Nagase, Kenichi; Okano, Teruo

    2014-09-28

    After the biotech medicine era, regenerative medicine is expected to be an advanced medicine that is capable of curing patients with difficult-to-treat diseases and physically impaired function. Our original scaffold-free cell sheet-based tissue engineering technology enables transplanted cells to be engrafted for a long time, while fully maintaining their viability. This technology has already been applied to various diseases in the clinical setting, including the cornea, esophagus, heart, periodontal ligament, and cartilage using autologous cells. Transplanted cell sheets not only replace the injured tissue and compensate for impaired function, but also deliver growth factors and cytokines in a spatiotemporal manner over a prolonged period, which leads to promotion of tissue repair. Moreover, the integration of stem cell biology and cell sheet technology with sufficient vascularization opens possibilities for fabrication of human three-dimensional vascularized dense and intact tissue grafts for regenerative medicine to parenchymal organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Engineering Biology by Controlling Tissue Folding.

    Science.gov (United States)

    Hookway, Tracy A

    2018-04-01

    Achieving complex self-organization in vitro has remained a fundamental challenge in tissue engineering. A recent study in Developmental Cell by Hughes and colleagues uses computational and experimental approaches to understand and control the morphogenic process of tissue folding. These approaches provide an engineering framework to reproducibly control tissue shape. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Tissue engineering of parathyroid gland].

    Science.gov (United States)

    Iovino, F; Armano, G; Auriemma, P P; Sergio, R; De Sena, G; Capuozzo, V; Rosso, F; Marino, G; Papale, F; Grimaldi, A; Barbarisi, A

    2010-01-01

    The postoperative hypoparathyroidism is a not rare complication after total thyroidectomy and/or total parathyroidectomy. Attempts to transplant parathyroid tissue began in 1975 with the work of Wells, but still today results are disappointing. However, with the development of tissue engineering techniques, some experimental approaches to build artificial parathyroid are been made. Bioengineered device, actively secreting PTH, for transplant in patients with iatrogenic hypoparathyroidism is unavailable. Parathyroid cells were obtained from three chronic uremic patients in hemodialysis, operated for secondary hyperparathyroidism. Cell cultures in RPMI medium were subsequently seeded on collagen scaffold (three-dimensional matrix with slow biodegradation). Collagen is the major component of the extracellular matrix and thus is a good substrate for cell adhesion and growth. Culture media, with a low calcium concentration, were optimised to physiologically stimulate parathyroid hormone secretion. Cell cultures were morphologically observed in optical and electron (ESEM) microscopy and metabolically assayed by MTT method until the tenth week. Besides, concentration of parathyroid hormone in the culture medium has been measured for several weeks. After 24 hours of culture in RPMI, cells extracted from human parathyroid glands were nearly all adherent and organised in clusters to resemble the glandular organization. The cellular population consisted predominantly of parathyroid cells (90-95%). On collagen scaffolds, cells maintains an epithelial-like morphology also after 10 weeks, colonizing the scaffold surface and keeping a good proliferative rate with a discrete production of parathyroid hormone. The use of parathyroid cells extracted from patients with secondary hyperparathyroidism was certainly an appropriate choice that enabled us to achieve these results, that albeit partial bode well for the experimental in vivo animal model. The bioengineered scaffolds when

  17. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering...... therefore involves a melange of approaches encompassing developmental biology, tissue mechanics, medicine, cell differentiation and survival biology, mechanostransduction and nano-fabrication technology. The central tissue of interest in this review is cartilage. Traumatic injuries, congenital abnormalities...... engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes widely...

  18. Tumor Engineering: The Other Face of Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    cancer, the training grounds have largely consisted of small rodents, despite marked differences between human and mouse physiology, or plastic dishes, even though just like our tissues and organs most tumors exist within three-dimensional proteinacious milieus. One could argue that this is comparable to training for a desert war in the arctic. In this special issue of tissue engineering, Fischbach-Teschl and colleagues build a strong case for engineering complex cultures analogous to normal organs to tractably model aspects of the human tumor microenvironment that simply cannot be reproduced with traditional two-dimensional cell culture techniques and that cannot be studied in a controlled fashion in vivo. This idea has gained considerable traction of late as concepts presented and convincingly shown years ago have only now begun to be appreciated. Perhaps, then, it is time to organize those who wish to build complex tumor models to study cancer biology under a common umbrella. Accordingly, we propose that tumor engineering be defined as the construction of complex culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. Inherent in this definition is the collaboration that must occur between physical and life scientists to guide the design of patterning techniques, materials, and imaging modalities for the study of cancer from the subcellular to tissue level in physiologically relevant contexts. To date, the most successful tissue engineering approaches have employed methods that recapitulate the composition, architecture, and/or chemical presentation of native tissue. For instance, induction of blood vessel growth for therapeutic purposes has been achieved with sequential release of vascular endothelial growth factor (VEGF) and platelet derived growth factor to induce and stabilize blood vessels. This approach imitates that which occurs during physiological

  19. The influence of perivascular adipose tissue on vascular homeostasis

    Directory of Open Access Journals (Sweden)

    Szasz T

    2013-03-01

    Full Text Available Theodora Szasz,1 Gisele Facholi Bomfim,2 R Clinton Webb1 1Department of Physiology, Georgia Regents University, Augusta, USA; 2Department of Pharmacology, University of São Paulo, São Paulo, Brazil Abstract: The perivascular adipose tissue (PVAT is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT. Keywords: adipokines

  20. Adipose and mammary epithelial tissue engineering.

    Science.gov (United States)

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  1. Biomechanics and mechanobiology in functional tissue engineering.

    Science.gov (United States)

    Guilak, Farshid; Butler, David L; Goldstein, Steven A; Baaijens, Frank P T

    2014-06-27

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of "functional tissue engineering" has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cells for tissue engineering of cardiac valves.

    Science.gov (United States)

    Jana, Soumen; Tranquillo, Robert T; Lerman, Amir

    2016-10-01

    Heart valve tissue engineering is a promising alternative to prostheses for the replacement of diseased or damaged heart valves, because tissue-engineered valves have the ability to remodel, regenerate and grow. To engineer heart valves, cells are harvested, seeded onto or into a three-dimensional (3D) matrix platform to generate a tissue-engineered construct in vitro, and then implanted into a patient's body. Successful engineering of heart valves requires a thorough understanding of the different types of cells that can be used to obtain the essential phenotypes that are expressed in native heart valves. This article reviews different cell types that have been used in heart valve engineering, cell sources for harvesting, phenotypic expression in constructs and suitability in heart valve tissue engineering. Natural and synthetic biomaterials that have been applied as scaffold systems or cell-delivery platforms are discussed with each cell type. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The influence of perivascular adipose tissue on vascular homeostasis

    OpenAIRE

    Szasz T; Bomfim GF; Webb RC

    2013-01-01

    Theodora Szasz,1 Gisele Facholi Bomfim,2 R Clinton Webb1 1Department of Physiology, Georgia Regents University, Augusta, USA; 2Department of Pharmacology, University of São Paulo, São Paulo, Brazil Abstract: The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle...

  4. Keratoconus: Tissue Engineering and Biomaterials

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    2014-09-01

    Full Text Available Keratoconus (KC is a bilateral, asymmetric, corneal disorder that is characterized by progressive thinning, steepening, and potential scarring. The prevalence of KC is stated to be 1 in 2000 persons worldwide; however, numbers vary depending on size of the study and regions. KC appears more often in South Asian, Eastern Mediterranean, and North African populations. The cause remains unknown, although a variety of factors have been considered. Genetics, cellular, and mechanical changes have all been reported; however, most of these studies have proven inconclusive. Clearly, the major problem here, like with any other ocular disease, is quality of life and the threat of vision loss. While most KC cases progress until the third or fourth decade, it varies between individuals. Patients may experience periods of several months with significant changes followed by months or years of no change, followed by another period of rapid changes. Despite the major advancements, it is still uncertain how to treat KC at early stages and prevent vision impairment. There are currently limited tissue engineering techniques and/or “smart” biomaterials that can help arrest the progression of KC. This review will focus on current treatments and how biomaterials may hold promise for the future.

  5. Tissue-engineered heart valves.

    Science.gov (United States)

    Filová, E; Straka, F; Mirejovský, T; Masín, J; Bacáková, L

    2009-01-01

    Currently-used mechanical and biological heart valve prostheses have several disadvantages. Mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation treatment, and their usage often leads to adverse reactions, e.g. thromboembolic complications and endocarditis. Xenogenous and allogenous biological prostheses are associated with immune reaction, thrombosis and degeneration, and thus they have a high rate of reoperation. Biological prostheses of autologous origin, such as pulmonary autografts, often burden the patient with a complicated surgery and the risk of reoperation. Therefore, efforts are being made to prepare bioartificial heart valves with an autologous biological component by methods of tissue engineering. They should be biocompatible, durable, endowed with appropriate mechanical properties and able to grow with a child. For this purpose, scaffolds composed of synthetic materials, such as poly(lactic acid), poly(caprolactone), poly(4-hydroxybutyrate), hydrogels or natural polymers, e.g. collagen, elastin, fibrin or hyaluronic acid, have been seeded with autologous differentiated, progenitor or stem cells. Promising results have been obtained with nanostructured scaffolds, and also with cultivation in special dynamic bioreactors prior to implantation of the bioartificial grafts into an animal organism.

  6. Biomimetic strategies for engineering composite tissues.

    Science.gov (United States)

    Lee, Nancy; Robinson, Jennifer; Lu, Helen

    2016-08-01

    The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    Science.gov (United States)

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  8. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    Science.gov (United States)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  9. Single domain antibodies in tissue engineering

    OpenAIRE

    Rodrigues, E.D.

    2014-01-01

    The aim of this thesis is to demonstrate the potential of VHH in tissue engineering applications, with a focus on bone and cartilage tissue regeneration. After a general introduction to this thesis in chapter 1, the selection of VHH targeting growth factors is described in chapter 2. VHH were selected to target growth factors relevant in skeletal tissue engineering and VHH were found to modulate BMP activity with high affinity. Chapter 3 describes the immobilization of VHH and its potential t...

  10. Myocardial Tissue Engineering for Regenerative Applications.

    Science.gov (United States)

    Fujita, Buntaro; Zimmermann, Wolfram-Hubertus

    2017-09-01

    This review provides an overview of the current state of tissue-engineered heart repair with a special focus on the anticipated modes of action of tissue-engineered therapy candidates and particular implications as to transplant immunology. Myocardial tissue engineering technologies have made tremendous advances in recent years. Numerous different strategies are under investigation and have reached different stages on their way to clinical translation. Studies in animal models demonstrated that heart repair requires either remuscularization by delivery of bona fide cardiomyocytes or paracrine support for the activation of endogenous repair mechanisms. Tissue engineering approaches result in enhanced cardiomyocyte retention and sustained remuscularization, but may also be explored for targeted paracrine or mechanical support. Some of the more advanced tissue engineering approaches are already tested clinically; others are at late stages of pre-clinical development. Process optimization towards cGMP compatibility and clinical scalability of contractile engineered human myocardium is an essential step towards clinical translation. Long-term allograft retention can be achieved under immune suppression. HLA matching may be an option to enhance graft retention and reduce the need for comprehensive immune suppression. Tissue-engineered heart repair is entering the clinical stage of the translational pipeline. Like in any effective therapy, side effects must be anticipated and carefully controlled. Allograft implantation under immune suppression is the most likely clinical scenario. Strategies to overcome transplant rejection are evolving and may further boost the clinical acceptance of tissue-engineered heart repair.

  11. Negating Tissue Contracture Improves Volume Maintenance and Longevity of In Vivo Engineered Tissues.

    Science.gov (United States)

    Lytle, Ian F; Kozlow, Jeffrey H; Zhang, Wen X; Buffington, Deborah A; Humes, H David; Brown, David L

    2015-10-01

    Engineering large, complex tissues in vivo requires robust vascularization to optimize survival, growth, and function. Previously, the authors used a "chamber" model that promotes intense angiogenesis in vivo as a platform for functional three-dimensional muscle and renal engineering. A silicone membrane used to define the structure and to contain the constructs is successful in the short term. However, over time, generated tissues contract and decrease in size in a manner similar to capsular contracture seen around many commonly used surgical implants. The authors hypothesized that modification of the chamber structure or internal surface would promote tissue adherence and maintain construct volume. Three chamber configurations were tested against volume maintenance. Previously studied, smooth silicone surfaces were compared to chambers modified for improved tissue adherence, with multiple transmembrane perforations or lined with a commercially available textured surface. Tissues were allowed to mature long term in a rat model, before analysis. On explantation, average tissue masses were 49, 102, and 122 mg; average volumes were 74, 158 and 176 μl; and average cross-sectional areas were 1.6, 6.7, and 8.7 mm for the smooth, perforated, and textured groups, respectively. Both perforated and textured designs demonstrated significantly greater measures than the smooth-surfaced constructs in all respects. By modifying the design of chambers supporting vascularized, three-dimensional, in vivo tissue engineering constructs, generated tissue mass, volume, and area can be maintained over a long time course. Successful progress in the scale-up of construct size should follow, leading to improved potential for development of increasingly complex engineered tissues.

  12. Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    2006-11-01

    Others Excretion of proteins/ hormones Menopause (estrogen) Diabetes (insulin) Parkinson’s (L-Dopa) Testosterone Stem Cells A stem cell can become...organs -> Solid Organs Urology : Bladder - 9 years ; Urethra – 7 years; Penis - in progress Gynecology: Uterus - 7 years; Vagina - 5 years Vascular: Blood

  13. In Situ Cardiovascular Tissue Engineering

    NARCIS (Netherlands)

    Talacua, H

    2016-01-01

    In this thesis, the feasibility of in situ TE for vascular and valvular purposes were tested with the use of different materials, and animal models. First, the feasibility of a decellularized biological scaffold (pSIS-ECM) as pulmonary heart valve prosthesis is examined in sheep (Chapter 2). Next,

  14. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  15. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    Science.gov (United States)

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  16. [Intraoperative monitoring of oxygen tissue pressure: Applications in vascular neurosurgery].

    Science.gov (United States)

    Arikan, Fuat; Vilalta, Jordi; Torne, Ramon; Chocron, Ivette; Rodriguez-Tesouro, Ana; Sahuquillo, Juan

    2014-01-01

    Ischemic lesions related to surgical procedures are a major cause of postoperative morbidity in patients with cerebral vascular disease. There are different systems of neuromonitoring to detect intraoperative ischemic events, including intraoperative monitoring of oxygen tissue pressure (PtiO2). The aim of this article was to describe, through the discussion of 4 cases, the usefulness of intraoperative PtiO2 monitoring during vascular neurosurgery. In presenting these cases, we demonstrate that monitoring PtiO2 is a reliable way to detect early ischemic events during surgical procedures. Continuous monitoring of PtiO2 in an area at risk allows the surgeon to resolve the cause of the ischemic event before it evolves to an established cerebral infarction. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  17. Aloe Vera for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Shekh Rahman

    2017-02-01

    Full Text Available Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  18. Aloe Vera for Tissue Engineering Applications.

    Science.gov (United States)

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  19. Aloe Vera for Tissue Engineering Applications

    Science.gov (United States)

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-01-01

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers. PMID:28216559

  20. Scaffolds for tissue engineering of cardiac valves.

    Science.gov (United States)

    Jana, S; Tefft, B J; Spoon, D B; Simari, R D

    2014-07-01

    Tissue engineered heart valves offer a promising alternative for the replacement of diseased heart valves avoiding the limitations faced with currently available bioprosthetic and mechanical heart valves. In the paradigm of tissue engineering, a three-dimensional platform - the so-called scaffold - is essential for cell proliferation, growth and differentiation, as well as the ultimate generation of a functional tissue. A foundation for success in heart valve tissue engineering is a recapitulation of the complex design and diverse mechanical properties of a native valve. This article reviews technological details of the scaffolds that have been applied to date in heart valve tissue engineering research. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.

    Science.gov (United States)

    Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza

    2011-11-01

    Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.

  2. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.

    Science.gov (United States)

    Brugmans, Marieke M C P; Soekhradj-Soechit, R Sarita; van Geemen, Daphne; Cox, Martijn; Bouten, Carlijn V C; Baaijens, Frank P T; Driessen-Mol, Anita

    2016-01-01

    Synthetic polymers are widely used to fabricate porous scaffolds for the regeneration of cardiovascular tissues. To ensure mechanical integrity, a balance between the rate of scaffold absorption and tissue formation is of high importance. A higher rate of tissue formation is expected in fast-degrading materials than in slow-degrading materials. This could be a result of synthetic cells, which aim to compensate for the fast loss of mechanical integrity of the scaffold by deposition of collagen fibers. Here, we studied the effect of fast-degrading polyglycolic acid scaffolds coated with poly-4-hydroxybutyrate (PGA-P4HB) and slow-degrading poly-ɛ-caprolactone (PCL) scaffolds on amount of tissue, composition, and mechanical characteristics in time, and compared these engineered values with values for native human heart valves. Electrospun PGA-P4HB and PCL scaffolds were either kept unseeded in culture or were seeded with human vascular-derived cells. Tissue formation, extracellular matrix (ECM) composition, remaining scaffold weight, tissue-to-scaffold weight ratio, and mechanical properties were analyzed every week up to 6 weeks. Mass of unseeded PCL scaffolds remained stable during culture, whereas PGA-P4HB scaffolds degraded rapidly. When seeded with cells, both scaffold types demonstrated increasing amounts of tissue with time, which was more pronounced for PGA-P4HB-based tissues during the first 2 weeks; however, PCL-based tissues resulted in the highest amount of tissue after 6 weeks. This study is the first to provide insight into the tissue-to-scaffold weight ratio, therewith allowing for a fair comparison between engineered tissues cultured on scaffolds as well as between native heart valve tissues. Although the absolute amount of ECM components differed between the engineered tissues, the ratio between ECM components was similar after 6 weeks. PCL-based tissues maintained their shape, whereas the PGA-P4HB-based tissues deformed during culture. After 6 weeks

  4. Pericyte-targeting drug delivery and tissue engineering

    Directory of Open Access Journals (Sweden)

    Kang E

    2016-05-01

    Full Text Available Eunah Kang,1 Jong Wook Shin2 1School of Chemical Engineering and Material Science, 2Division of Allergic and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, South Korea Abstract: Pericytes are contractile mural cells that wrap around the endothelial cells of capillaries and venules. Depending on the triggers by cellular signals, pericytes have specific functionality in tumor microenvironments, properties of potent stem cells, and plasticity in cellular pathology. These features of pericytes can be activated for the promotion or reduction of angiogenesis. Frontier studies have exploited pericyte-targeting drug delivery, using pericyte-specific peptides, small molecules, and DNA in tumor therapy. Moreover, the communication between pericytes and endothelial cells has been applied to the induction of vessel neoformation in tissue engineering. Pericytes may prove to be a novel target for tumor therapy and tissue engineering. The present paper specifically reviews pericyte-specific drug delivery and tissue engineering, allowing insight into the emerging research targeting pericytes. Keywords: pericytes, pericyte-targeting drug delivery, tissue engineering, platelet-derived growth factor, angiogenesis, vascular remodeling

  5. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  6. Engineering of blood vessel patterns by angio-morphogens [angiotropins]: non-mitogenic copper-ribonucleoprotein cytokins [CuRNP ribokines] with their metalloregulated constituents of RAGE-binding S100-EF-hand proteins and extracellular RNA bioaptamers in vascular remodeling of tissue and angiogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wissler, J.H. [ARCONS Applied Research, Bad Nauheim (Germany)

    2001-12-01

    Tissue vascularization is requisite to successful cell-based therapies, biomaterial design and implant integration. Thus, known problems in ossointegration of avascular implants in connection with the generation of bone tissue reflect arrays of general problems of socio-economic relevance existing in reparative medicine still waiting for to be solved. For this purpose, morphogenesis and remodeling of endothelial angio-architectures in tissue and in vitro by isolated non-mitogenic angio-morphogens [angiotropins] are considered in terms of their structure, function and action mechanisms. Extracellular angiotropins are secreted by activated leukocytes/monocytes/macrophages. They are a family of cytokines with morphogen bioactivity selectively directed to endothelial cells. Their structure was deciphered as metalloregulated copper-ribonucleoproteins [CuRNP ribokines]. They are built up of angiotropin-related S100-EF-hand protein [ARP] and highly modified and edited 5'end-phosphorylated RNA [ARNA], complexed together by copper ions. Oxidant-sensitive ARNA and their precursors represent novel types in a RNA world: They are the first isolated and sequenced forms of extracellular RNA [eRNA], may act as cytokine and bioaptamer, contain isoguanosine [crotonoside] as modified nucleoside and show up copper as RNA-structuring transition metal ion. By metalloregulated bioaptamer functions, ARNA impart novel biofunctions to RAGE-binding S100-EF-hand proteins. Angiotropin morphogens were shown suitable for neointiation and remodeling of blood vessel patterns in different, adult, embryonal and artificial tissues. These neovascular patterns manifest regulated hemodynamics for preventing tissue necrosis, supporting tissue functions and promoting wound healing. As evaluated in skin and muscle vascularization, the neovascular patterns are integrated into homeostatic control mechanisms of tissue. Thus, the morphogens show up beneficial perspectives and are suggested useful tools

  7. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  8. Tissue Engineering in Regenerative Dental Therapy

    Directory of Open Access Journals (Sweden)

    Hiral Jhaveri-Desai

    2011-01-01

    Full Text Available Tissue engineering is amongst the latest exciting technologies having impacted the field of dentistry. Initially considered as a futuristic approach, tissue engineering is now being successfully applied in regenerative surgery. This article reviews the important determinants of tissue engineering and how they contribute to the improvement of wound healing and surgical outcomes in the oral region. Furthermore, we shall address the clinical applications of engineering involving oral and maxillofacial surgical and periodontal procedures along with other concepts that are still in experimental phase of development. This knowledge will aid the surgical and engineering researchers to comprehend the collaboration between these fields leading to extounding dental applications and to ever-continuing man-made miracles in the field of human science.

  9. Introduction to tissue engineering applications and challenges

    CERN Document Server

    Birla, Ravi

    2014-01-01

    Covering a progressive medical field, Tissue Engineering describes the innovative process of regenerating human cells to restore or establish normal function in defective organs. As pioneering individuals look ahead to the possibility of generating entire organ systems, students may turn to this textbook for a comprehensive understanding and preparation for the future of regenerative medicine. This book explains chemical stimulations, the bioengineering of specific organs, and treatment plans for chronic diseases. It is a must-read for tissue engineering students and practitioners.

  10. Enhancing engineered vascular networks in vitro and in vivo: The effects of IGF1 on vascular development and durability.

    Science.gov (United States)

    Friedrich, Claudia C; Lin, Yunfeng; Krannich, Alexander; Wu, Yinan; Vacanti, Joseph P; Neville, Craig M

    2018-02-01

    Creation of functional, durable vasculature remains an important goal within the field of regenerative medicine. Engineered biological vasculature has the potential to restore or improve human tissue function. We hypothesized that the pleotropic effects of insulin-like growth factor 1 (IGF1) would enhance the engineering of capillary-like vasculature. The impact of IGF1 upon vasculogenesis was examined in in vitro cultures for a period of up to 40 days and as subcutaneous implants within immunodeficient mice. Co-cultures of human umbilical vein endothelial cells and human bone marrow-derived mesenchymal stem cells in collagen-fibronectin hydrogels were supplemented with either recombinant IGF1 protein or genetically engineered cells to provide sustained IGF1. Morphometric analysis was performed on the vascular networks that formed in four concentrations of IGF1. IGF1 supplementation significantly enhanced de novo vasculogenesis both in vitro and in vivo. Effects were long-term as they lasted the duration of the study period, and included network density, vessel length, and diameter. Bifurcation density was not affected. However, the highest concentrations of IGF1 tested were either ineffective or even deleterious. Sustained IGF1 delivery was required in vivo as the inclusion of recombinant IGF1 protein had minimal impact. IGF1 supplementation can be used to produce neovasculature with significantly enhanced network density and durability. Its use is a promising methodology for engineering de novo vasculature to support regeneration of functional tissue. © 2017 John Wiley & Sons Ltd.

  11. Hard-Soft Tissue Interface Engineering.

    Science.gov (United States)

    Armitage, Oliver E; Oyen, Michelle L

    2015-01-01

    The musculoskeletal system is comprised of three distinct tissue categories: structural mineralized tissues, actuating muscular soft tissues, and connective tissues. Where connective tissues - ligament, tendon and cartilage - meet with bones, a graded interface in mechanical properties occurs that allows the transmission of load without creating stress concentrations that would cause tissue damage. This interface typically occurs over less than 1 mm and contains a three order of magnitude difference in elastic stiffness, in addition to changes in cell type and growth factor concentrations among others. Like all engineered tissues, the replication of these interfaces requires the production of scaffolds that will provide chemical and mechanical cues, resulting in biologically accurate cellular differentiation. For interface tissues however, the scaffold must provide spatially graded chemical and mechanical cues over sub millimetre length scales. Naturally, this complicates the manufacture of the scaffolds and every stage of their subsequent cell seeding and growth, as each region has different optimal conditions. Given the higher degree of difficulty associated with replicating interface tissues compared to surrounding homogeneous tissues, it is likely that the development of complex musculoskeletal tissue systems will continue to be limited by the engineering of connective tissues interfaces with bone.

  12. Single domain antibodies in tissue engineering

    NARCIS (Netherlands)

    Rodrigues, E.D.

    2014-01-01

    The aim of this thesis is to demonstrate the potential of VHH in tissue engineering applications, with a focus on bone and cartilage tissue regeneration. After a general introduction to this thesis in chapter 1, the selection of VHH targeting growth factors is described in chapter 2. VHH were

  13. Gradient polymers for tissue engineering

    NARCIS (Netherlands)

    Klein Gunnewiek, Michel

    2015-01-01

    With increasing life expectancy, there is an constant demand for finding solutions to restore damaged or diseased tissues and organs. Regenerative medicine holds the promise to create continuous body-part replacements through the combination of cells, biological factors, and synthetic scaffolds.

  14. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  15. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  16. Variation in tissue outcome of ovine and human engineered heart valve constructs: relevance for tissue engineering.

    Science.gov (United States)

    van Geemen, Daphne; Driessen-Mol, Anita; Grootzwagers, Leonie G M; Soekhradj-Soechit, R Sarita; Riem Vis, Paul W; Baaijens, Frank P T; Bouten, Carlijn V C

    2012-01-01

    Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and tissue properties of ovine (n = 8) and human (n = 7) tissue engineered heart valve constructs to quantify variations in tissue outcome within species, study the differences between species and determine possible indicators of tissue outcome. Tissue constructs consisted of polyglycolic acid/poly-4-hydroxybutyrate scaffolds, seeded with myofibroblasts obtained from the jugular vein (sheep) or the saphenous vein (from humans undergoing cardiac surgery) and cultured under static conditions. Prior to seeding, protein expression of α-smooth muscle actin, vimentin, nonmuscle myosin heavy chain and heat shock protein 47 were determined to identify differences at an early stage of the tissue engineering process. After 4 weeks of culture, tissue composition and mechanical properties were quantified as indicators of tissue outcome. After 4 weeks of tissue culture, tissue properties of all ovine constructs were comparable, while there was a larger variation in the properties of the human constructs, especially the elastic modulus and collagen content. In addition, ovine constructs differed in composition from the human constructs. An increased number of α-smooth muscle actin-positive cells before seeding was correlated with the collagen content in the engineered heart valve constructs. Moreover, tissue stiffness increased with increasing collagen content. The results suggest that the culture process of ovine tissues can be controlled, whereas the mechanical properties, and hence functionality, of tissues originating from human material are more difficult to control. On-line evaluation of tissue properties during culture or more early cellular markers to predict the properties of autologous

  17. Glycogen storage in tissue-engineered cartilage.

    Science.gov (United States)

    Suits, Jocelyne M T; Khan, Aasma A; Waldman, Stephen D

    2008-08-01

    Recent focus in cartilage tissue engineering has been to develop functional tissue that can survive after implantation. One such determinant is the ability of the engineered tissue to be able to sustain its metabolic activity post-implantation. In vivo, chondrocytes contain stores of intracellular glycogen to support metabolism and it is unknown whether these cells can store glycogen during tissue growth in vitro. Thus, the purpose of this study was to determine the appropriate nutrient conditions to elicit glycogen storage in tissue-engineered cartilage. Isolated bovine articular chondrocytes were seeded in scaffold-free, 3D culture and grown under different nutrient conditions (glucose concentrations and media volumes) for 4 weeks. Intracellular glycogen storage, glucose utilization and extracellular matrix (ECM) accumulation of the engineered tissues were then evaluated. Glucose concentration (5-10 mM) and media volume (1-4 ml) had no apparent effect on cartilaginous tissue formation. However, glucose consumption by the cells increased in proportion to the volume of medium provided. Lactate production was similarly affected but in direct proportion to the glucose consumed, indicating a change in glucose utilization. Similarly, under elevated medium volume, engineered tissues stained positive for intracellular glycogen, which was also confirmed biochemically (1 ml, 1 +/- 2; 2 ml, 13 +/- 4; 4 ml, 13 +/- 3 microg/construct). The storage of intracellular glycogen in engineered cartilage can be elicited by culturing the constructs in elevated volumes of medium (>or=1 ml medium/million cells), which might help to ensure appropriate metabolic function after implantation. (c) 2008 John Wiley & Sons, Ltd.

  18. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method.

    Science.gov (United States)

    Pinnock, Cameron B; Xu, Zhengfan; Lam, Mai T

    2017-03-27

    Coronary artery disease remains a leading cause of death, affecting millions of Americans. With the lack of autologous vascular grafts available, engineered grafts offer great potential for patient treatment. However, engineered vascular grafts are generally not easily scalable, requiring manufacture of custom molds or polymer tubes in order to customize to different sizes, constituting a time-consuming and costly practice. Human arteries range in lumen diameter from about 2.0-38 mm and in wall thickness from about 0.5-2.5 mm. We have created a method, termed the "Ring Stacking Method," in which variable size rings of tissue of the desired cell type, demonstrated here with vascular smooth muscle cells (SMCs), can be created using guides of center posts to control lumen diameter and outer shells to dictate vessel wall thickness. These tissue rings are then stacked to create a tubular construct, mimicking the natural form of a blood vessel. The vessel length can be tailored by simply stacking the number of rings required to constitute the length needed. With our technique, tissues of tubular forms, similar to a blood vessel, can be readily manufactured in a variety of dimensions and lengths to meet the needs of the clinic and patient.

  19. Integrating soft and hard tissues via interface tissue engineering.

    Science.gov (United States)

    Patel, Sahishnu; Caldwell, Jon-Michael; Doty, Stephen B; Levine, William N; Rodeo, Scott; Soslowsky, Louis J; Thomopoulos, Stavros; Lu, Helen H

    2017-11-17

    The enthesis, or interface between bone and soft tissues such as ligament and tendon, is prone to injury and often does not heal, even post surgical intervention. Interface tissue engineering represents an integrative strategy for regenerating the native enthesis by functionally connecting soft and hard tissues and thereby improving clinical outcome. This review focuses on integrative and cell-instructive scaffold designs that target the healing of the two most commonly injured soft tissue-bone junctions: tendon-bone interface (e.g., rotator cuff) and ligament-bone interface (e.g., anterior cruciate ligament). The inherent connectivity between soft and hard tissues is instrumental for musculoskeletal motion and is therefore a key design criterion for soft tissue regeneration. To this end, scaffold design for soft tissue regeneration have progressed from single tissue systems to the emerging focus on pre-integrated and functional composite tissue units. Specifically, a multifaceted, bioinspired approach has been pursued wherein scaffolds are tailored to stimulate relevant cell responses using spatially patterned structural and chemical cues, growth factors, and/or mechanical stimulation. Moreover, current efforts to elucidate the essential scaffold design criteria via strategic biomimicry are emphasized as these will reduce complexity in composite tissue regeneration and ease the related burden for clinical translation. These innovative studies underscore the clinical relevance of engineering connective tissue integration and have broader impact in the formation of complex tissues and total joint regeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. The Expanding World of Tissue Engineering: The Building Blocks and New Applications of Tissue Engineered Constructs

    Science.gov (United States)

    Zorlutuna, Pinar; Vrana, Nihal Engin; Khademhosseini, Ali

    2013-01-01

    The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications. PMID:23268388

  1. Engineering complex orthopaedic tissues via strategic biomimicry.

    Science.gov (United States)

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  2. Engineering Complex Orthopaedic Tissues via Strategic Biomimicry

    Science.gov (United States)

    Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.

    2014-01-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  3. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be

  4. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Klar, Agnes S; Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  5. Angiographic findings of congenital vascular malformation in soft tissue

    International Nuclear Information System (INIS)

    Choi, Dae Seob; Park, Jae Hyung; Han, Joon Koo; Chung, Jin Wook; Moon, Woo Kyung; Han, Man Chung

    1994-01-01

    We evaluated the clinical, plain radiographic, and angiographic findings of congenital vascular malformation of the soft tissue. Retrospective analysis was performed in 36 patients. Pathological diagnosis was done in 25 patients by surgery and the others were clinically and angiographically diagnosed. On the basis of angiographic findings, we classified the lesions to three groups as arteriovenous malformation (AVM), hemangioma, and venous malformation. In pathologically proven 25 cases, we compared the angiographic diagnosis with the pathologic diagnosis. By angiographic classification, AVM was 13 cases, hemangioma 16 cases, and venous malformation 7 cases. The locations of the lesions were upper extremities in 14 cases, lower extremities in 20 cases, both extremities in 1 case, and back in 1 case. Clinical findings were bruit and thrill in 13 cases(12 AVMs,1 hemangioma) and varicosities in 16 cases(11 AVMs, 3 hemangiomas and 2 venous malformations). The varicosities in AVM were pulsating nature, but not in hemangioma and venous malformation. The concordance rate of the angiographic and pathologic diagnosis was 100%(6/6) in AVM, 71%(10/14) in hemangioma and 60% (3/5) in venous malformation. We think that angiography is an essential study for accurate diagnosis and appropriate treatment of congenital vascular malformation

  6. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  7. The materials used in bone tissue engineering

    Science.gov (United States)

    Tereshchenko, V. P.; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M.

    2015-11-01

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  8. Tissue-engineered autologous grafts for facial bone reconstruction.

    Science.gov (United States)

    Bhumiratana, Sarindr; Bernhard, Jonathan C; Alfi, David M; Yeager, Keith; Eton, Ryan E; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M; Lopez, Mandi J; Eisig, Sidney B; Vunjak-Novakovic, Gordana

    2016-06-15

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. Copyright © 2016, American Association for the Advancement of Science.

  9. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  10. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    Directory of Open Access Journals (Sweden)

    Bressan Eriberto

    2012-01-01

    Full Text Available Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering.

  12. Oriented Collagen Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shohta Kodama

    2012-03-01

    Full Text Available Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the orientation has a special role for the function of human organs, the developed various types of three-dimensional oriented collagen scaffolds are expected to be useful biomaterials for tissue engineering and regenerative medicines.

  13. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  14. Soft tissue engineering with micronized-gingival connective tissues.

    Science.gov (United States)

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2018-01-01

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm 3 ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.

  15. Bioactive polymeric scaffolds for tissue engineering

    Science.gov (United States)

    Stratton, Scott; Shelke, Namdev B.; Hoshino, Kazunori; Rudraiah, Swetha; Kumbar, Sangamesh G.

    2016-01-01

    A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D) scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined. PMID:28653043

  16. A Hybrid Tissue-Engineered Heart Valve.

    Science.gov (United States)

    Alavi, S Hamed; Kheradvar, Arash

    2015-06-01

    This study describes the efforts to develop and test the first hybrid tissue-engineered heart valve whose leaflets are composed of an extra-thin superelastic Nitinol mesh tightly enclosed by uniform tissue layers composed of multiple cell types. The trileaflet Nitinol mesh scaffolds underwent three-dimensional cell culture with smooth muscle and fibroblast/myofibroblast cells enclosing the mesh, which were finally covered by an endothelial cell layer. Quantitative and qualitative assays were performed to analyze the microstructure of the tissues. A tissue composition almost similar to that of natural heart valve leaflets was observed. The function of the valves and their Nitinol scaffolds were tested in a heart flow simulator that confirmed the trileaflet valves open and close robustly under physiologic flow conditions with an effective orifice area of 75%. The tissue-metal attachment of the leaflets once exposed to physiologic flow rates was tested and approved. Our preliminary results indicate that the novel hybrid approach with nondegradable scaffold for engineering heart valves is viable and may address the issues associated with current tissue-engineered valves developed with degradable scaffolds. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  18. Bioreactor Technology in Cardiovascular Tissue Engineering

    Science.gov (United States)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  19. Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages.

    Science.gov (United States)

    DuRaine, Grayson D; Brown, Wendy E; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    This review explores scaffold-free methods as an additional paradigm for tissue engineering. Musculoskeletal cartilages-for example articular cartilage, meniscus, temporomandibular joint disc, and intervertebral disc-are characterized by low vascularity and cellularity, and are amenable to scaffold-free tissue engineering approaches. Scaffold-free approaches, particularly the self-assembling process, mimic elements of developmental processes underlying these tissues. Discussed are various scaffold-free approaches for musculoskeletal cartilage tissue engineering, such as cell sheet engineering, aggregation, and the self-assembling process, as well as the availability and variety of cells used. Immunological considerations are of particular importance as engineered tissues are frequently of allogeneic, if not xenogeneic, origin. Factors that enhance the matrix production and mechanical properties of these engineered cartilages are also reviewed, as the fabrication of biomimetically suitable tissues is necessary to replicate function and ensure graft survival in vivo. The concept of combining scaffold-free and scaffold-based tissue engineering methods to address clinical needs is also discussed. Inasmuch as scaffold-based musculoskeletal tissue engineering approaches have been employed as a paradigm to generate engineered cartilages with appropriate functional properties, scaffold-free approaches are emerging as promising elements of a translational pathway not only for musculoskeletal cartilages but for other tissues as well.

  20. Multiscale Characterization of Engineered Cardiac Tissue Architecture.

    Science.gov (United States)

    Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna

    2016-11-01

    In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.

  1. Fundamentals of bladder tissue engineering | Mahfouz | African ...

    African Journals Online (AJOL)

    Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on scaffolds and lastly the environmental conditions, including growth factors, cytokines and extracellular matrix (ECM) which promote angiogenesis and neurogenesis of the regenerated organs. The choice of the scaffold and the type of ...

  2. Hype and expectations in tissue engineering

    NARCIS (Netherlands)

    Oerlemans, A.J.M.; Hoek, M.E. van; Leeuwen, E. van; Dekkers, W.J.M.

    2014-01-01

    Scientific progress and the development of new technologies often incite enthusiasm, both in scientists and the public at large, and this is especially apparent in discussions of emerging medical technologies, such as tissue engineering (TE). Future-oriented narratives typically discuss potential

  3. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    In spite of some good successes and excellent materials, there are still serious limitations to the performance of implants today, and the paper explains these limitations and develops this theme in order to describe the recent innovations in tissue engineering, which involves a different approach to reconstruction of the body.

  4. New trends in spinal cord tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka

    2015-01-01

    Roč. 10, č. 2 (2015), s. 129-145 ISSN 1479-6708 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : biomaterial * cell therapy * regenerative medicine * spinal cord injury * stem cells scaffold * tissue engineering Subject RIV: FH - Neurology

  5. Principles of Tissue Engineering for Food

    NARCIS (Netherlands)

    Post, M.; Weele, van der Cor

    2014-01-01

    The technology required for tissue-engineering food is the same as for medical applications, and in fact is derived from it. There are major differences in the implementation of those technologies, primarily related to the enormous scale required for food production and the different economical

  6. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  7. Experimental comparison study of the tissue characteristics in transjugular intrahepatic portosystemic shunt and vascular stent

    International Nuclear Information System (INIS)

    Lu Qin; An Yanli; Deng Gang; Fang Wen; Zhu Guangyu; Niu Huanzhang; Yu Hui; Li Guozhao; Teng Gaojun; Wang Zhen; Wei Xiaoying

    2009-01-01

    Objective: To investigate the tissue characteristics within vascular stent and transjugular intrahepatic portosystemic shunt(TIPS) on swine and to provide more information for the understanding and prevention of vascular stent and TIPS restenosis. Methods: Animal models for TIPS were built in 6 swine and vascular stents were implanted in iliac veins simultaneously. 14-28 days after the operation, the 6 swine were killed to remove the TIPS and vascular stent and the pathological examinations were performed on the tissues within the shunt and stent. The similarities and differences of the tissues within the shunt and stent were analyzed with Krttskal Wallis test. Results: Restenosis of TIPS occurred in 4 models and complete occlusion were seen in 2, while all vascular stents were patent and coated with a thin layer of intimal tissue. Electron microscopic results showed that the tissues in restenotic TIPS were loose and with more extra matrix and fibers, and less smooth muscle, fibroblastic and myofibroblastic cells with different and irregular shape and rich secretory granules. The tissues in patent TIPS contained more extra fibers, smooth muscle and fibroblastic cells with normal organelle. The intimal tissues in vascular stent contained more fibers and fibroblasts cells, less smooth muscle cells. On immunohistochemical staining, the tissues in restenotic and patent TIPS as well as the intimal tissues in vascular stent had strong positive expression for anti-SMC- actin-α, the expression were gradually weakened for PCNA, the intimal tissues in vascular stent had a strong positive expression for vimentin, while the expression of the tissues in restenotic and patent TIPS were weakened gradually. For myoglobulin, the tissues in restenotic TIPS had weakly positive expression, the expression in patent TIPS and vascular stent were almost negative. Western blot results for TGF-β showed that the absorbance ratios of the intima tissues in vascular stent, normal vascular

  8. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo.

    Science.gov (United States)

    Geelhoed, Wouter J; Moroni, Lorenzo; Rotmans, Joris I

    2017-04-01

    It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV's) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic options such as polytetrafluoroethylene (PTFE) or Dacron. The generation of in vivo TEBV's involves utilizing the host reaction to an implanted biomaterial for the generation of completely autologous tissues. Essentially this approach to the development of TEBV's makes use of the foreign body response to biomaterials for the construction of the entire vascular replacement tissue within the patient's own body. In this review we will discuss the method of developing in vivo TEBV's, and debate the approaches of several research groups that have implemented this method.

  9. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... of a hydrogel to create an additional interpenetrating network (IPN) of hydrogel nanodeposits. Biocompatible IPNs of silicone elastomer with poly(2-hydroxyethyl methacrylate) (pHEMA) and Poly(ethylene glycol) methylether acrylate (PEGMEA) hydrogel 3D scaffolds were produced in this way. The model drug...... of hiPSC-derived DE cells cultured for 25 days in a 3D perfusion bioreactor system with an array of 16 small-scale tissue-bioreactors with integrated dual-pore pore scaffolds and flow rates. Hepatic differentiation and functionality of hiPSC-derived hepatocytes were successfully assessed and compared...

  10. Designing Smart Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ferdous Khan

    2017-12-01

    Full Text Available The engineering of human tissues to cure diseases is an interdisciplinary and a very attractive field of research both in academia and the biotechnology industrial sector. Three-dimensional (3D biomaterial scaffolds can play a critical role in the development of new tissue morphogenesis via interacting with human cells. Although simple polymeric biomaterials can provide mechanical and physical properties required for tissue development, insufficient biomimetic property and lack of interactions with human progenitor cells remain problematic for the promotion of functional tissue formation. Therefore, the developments of advanced functional biomaterials that respond to stimulus could be the next choice to generate smart 3D biomimetic scaffolds, actively interacting with human stem cells and progenitors along with structural integrity to form functional tissue within a short period. To date, smart biomaterials are designed to interact with biological systems for a wide range of biomedical applications, from the delivery of bioactive molecules and cell adhesion mediators to cellular functioning for the engineering of functional tissues to treat diseases.

  11. Multiphasic Scaffolds for Periodontal Tissue Engineering

    Science.gov (United States)

    Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.

    2014-01-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362

  12. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.

    Science.gov (United States)

    Dilley, Rodney J; Morrison, Wayne A

    2014-11-01

    Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  14. Cardiovascular Tissue Engineering: Preclinical Validation to Bedside Application

    Science.gov (United States)

    Best, Cameron; Onwuka, Ekene; Pepper, Victoria; Sams, Malik; Breuer, Jake

    2015-01-01

    Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use. PMID:26661524

  15. Advances and perspectives in tooth tissue engineering.

    Science.gov (United States)

    Monteiro, Nelson; Yelick, Pamela C

    2017-09-01

    Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Development and evaluation of in vivo tissue engineered blood vessels in a porcine model.

    Science.gov (United States)

    Rothuizen, Tonia C; Damanik, Febriyani F R; Lavrijsen, Tom; Visser, Michel J T; Hamming, Jaap F; Lalai, Reshma A; Duijs, Jacques M G J; van Zonneveld, Anton Jan; Hoefer, Imo E; van Blitterswijk, Clemens A; Rabelink, T J; Moroni, Lorenzo; Rotmans, Joris I

    2016-01-01

    There's a large clinical need for novel vascular grafts. Tissue engineered blood vessels (TEBVs) have great potential to improve the outcome of vascular grafting procedures. Here, we present a novel approach to generate autologous TEBV in vivo. Polymer rods were engineered and implanted, evoking an inflammatory response that culminates in encapsulation by a fibrocellular capsule. We hypothesized that, after extrusion of the rod, the fibrocellular capsule differentiates into an adequate vascular conduit once grafted into the vasculature. Rods were implanted subcutaneously in pigs. After 4 weeks, rods with tissue capsules grown around it were harvested. Tissue capsules were grafted bilaterally as carotid artery interposition. One and 4-week patency were evaluated by angiography whereupon pigs were sacrificed. Tissue capsules before and after grafting were evaluated on tissue remodeling using immunohistochemistry, RNA profiling and mechanical testing. Rods were encapsulated by thick, well-vascularized tissue capsules, composed of circumferentially aligned fibroblasts, collagen and few leukocytes, with adequate mechanical strength. Patency was 100% after 1 week and 87.5% after 4 weeks. After grafting, tissue capsules remodeled towards a vascular phenotype. Gene profiles of TEBVs gained more similarity with carotid artery. Wall thickness and αSMA-positive area significantly increased. Interestingly, a substantial portion of (myo)fibroblasts present before grafting expressed smooth muscle cell markers. While leukocytes were hardly present anymore, the lumen was largely covered with endothelial cells. Burst pressure remained stable after grafting. Autologous TEBVs were created in vivo with sufficient mechanical strength enabling vascular grafting. Grafts differentiated towards a vascular phenotype upon grafting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture.

    Science.gov (United States)

    Morgan, Kathy Ye; Sklaviadis, Demetra; Tochka, Zachary L; Fischer, Kristin M; Hearon, Keith; Morgan, Thomas D; Langer, Robert; Freed, Lisa E

    2016-08-23

    Multi-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores was created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Pre-fabricated polymer templates were cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses showed that the primary pores guided heart cell alignment and enabled robust perfusion while the secondary pores increased heart cell retention and reduced polymer volume fraction.

  18. Mesenchymal cells for skeletal tissue engineering.

    Science.gov (United States)

    Panetta, N J; Gupta, D M; Quarto, N; Longaker, M T

    2009-03-01

    Today, surgical intervention remains the mainstay of treatment to intervene upon a multitude of skeletal deficits and defects attributable to congenital malformations, oncologic resection, pathologic degenerative bone destruction, and post-traumatic loss. Despite this significant demand, the tools with which surgeons remain equipped are plagued with a surfeit of inadequacies, often resulting in less than ideal patient outcomes. The failings of current techniques largely arise secondary to their inability to produce a regenerate which closely resembles lost tissue. As such, focus has shifted to the potential of mesenchymal stem cell (MSC)-based skeletal tissue engineering. The successful development of such techniques would represent a paradigm shift from current approaches, carrying with it the potential to regenerate tissues which mimic the form and function of endogenous bone. Lessons learned from investigations probing the endogenous regenerative capacity of skeletal tissues have provided direction to early studies investigating the osteogenic potential of MSC. Additionally, increasing attention is being turned to the role of targeted molecular manipulations in augmenting MSC osteogenesis, as well as the development of an ideal scaffold ''vehicle'' with which to deliver progenitor cells. The following discussion presents the authors' current working knowledge regarding these critical aspects of MSC application in cell-based skeletal tissue engineering strategies, as well as provides insight towards what future steps must be taken to make their clinical translation a reality.

  19. Tissue engineering applications in periodontics: Alternate god

    Directory of Open Access Journals (Sweden)

    Samir Chugh

    2014-01-01

    Full Text Available "Tissue engineering" also referred as regenerative medicine indicates a new interdisciplinary initiative, which has the goal of growing tissues or organs directly from a single cell taken from an individual. Originally coined to denote the construction in the laboratory of a device containing viable cells and biologic mediators in a synthetic or biologic matrix that could be implanted in patients to facilitate regeneration. However, the term has crept into clinical armory of periodontists and has attained certain halo and glamour even when used in mundane and prosaic situations. Thus, this paper critically evaluates its role and application in clinical scenario.

  20. Tubular heart valves from decellularized engineered tissue.

    Science.gov (United States)

    Syedain, Zeeshan H; Meier, Lee A; Reimer, Jay M; Tranquillo, Robert T

    2013-12-01

    A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting "leaflets." The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially aligned tube on a mandrel, and matured using a bioreactor system that applied cyclic distension. Following decellularization, the resulting tissue possessed tensile mechanical properties, mechanical anisotropy, and collagen content that were comparable to native pulmonary valve leaflets. When mounted on a custom frame and tested within a pulse duplicator system, the tubular TEHV displayed excellent function under both aortic and pulmonary conditions, with minimal regurgitant fractions and transvalvular pressure gradients at peak systole, as well as well as effective orifice areas exceeding those of current commercially available valve replacements. Short-term fatigue testing of one million cycles with pulmonary pressure gradients was conducted without significant change in mechanical properties and no observable macroscopic tissue deterioration. This study presents an attractive potential alternative to current tissue valve replacements due to its avoidance of chemical fixation and utilization of a tissue conducive to recellularization by host cell infiltration.

  1. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  2. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering

    NARCIS (Netherlands)

    Guduric, Vera; Metz, Carole; Siadous, Robin; Bareille, Reine; Levato, Riccardo; Engel, Elisabeth; Fricain, Jean-Christophe; Devillard, Raphaël; Luzanin, Ognjan; Catros, Sylvain

    2017-01-01

    The conventional tissue engineering is based on seeding of macroporous scaffold on its surface ("top-down" approach). The main limitation is poor cell viability in the middle of the scaffold due to poor diffusion of oxygen and nutrients and insufficient vascularization. Layer-by-Layer (LBL)

  3. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    Science.gov (United States)

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering.

  4. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S.; Brazile, Bryn; Butler, J. Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2016-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications. PMID:27480586

  5. Electrospun Nanofibrous Materials for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2011-02-01

    Full Text Available The use of biomaterials processed by the electrospinning technique has gained considerable interest for neural tissue engineering applications. The tissue engineering strategy is to facilitate the regrowth of nerves by combining an appropriate cell type with the electrospun scaffold. Electrospinning can generate fibrous meshes having fiber diameter dimensions at the nanoscale and these fibers can be nonwoven or oriented to facilitate neurite extension via contact guidance. This article reviews studies evaluating the effect of the scaffold’s architectural features such as fiber diameter and orientation on neural cell function and neurite extension. Electrospun meshes made of natural polymers, proteins and compositions having electrical activity in order to enhance neural cell function are also discussed.

  6. Concept and strategies of bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Đorđević Ljubiša B.

    2016-01-01

    Full Text Available In contemporary clinical practice bone substitutes such as implants are used in reconstructive orthopedics and maxillofacial surgery. Judging from physical and chemical properties each implant has some advantages and disadvantages. The idea of bone tissue engineering is to simulate the formation of bone to implants as carriers in combination with osteogenic cells and osteo-stimulative factors (osteoinduction. The design of the implant itself in terms of the chosen carrier with its own characteristics, the type of cells that have been implanted, the type and combination of stimulative factors play an important role in the behavior of the implanted material within a body. Tissue engineering looks promising, however a lot of obstacles have to be surmounted in order to consider it a proper alternative.

  7. Transplantation of three-dimensional artificial human vascular tissues fabricated using an extracellular matrix nanofilm-based cell-accumulation technique.

    Science.gov (United States)

    Asano, Yoshiya; Shimoda, Hiroshi; Okano, Daisuke; Matsusaki, Michiya; Akashi, Mitsuru

    2017-04-01

    We have established a novel three-dimensional (3D) tissue-constructing technique, referred to as the 'cell-accumulation method', which is based on the self-assembly of cultured human cells. In this technique, cells are coated with fibronectin and gelatin to construct extracellular matrix (ECM) nanofilms and cultured to form multi-layers in vitro. By using this method, we have successfully fabricated artificial tissues with vascular networks constructed by co-cultivation of human umbilical vein-derived vascular endothelial cells between multi-layers of normal human dermal fibroblasts. In this study, to assess these engineered vascular tissues as therapeutic implants, we transplanted the 3D human tissues with microvascular networks, fabricated based on the cell-accumulation method, onto the back skin of nude mice. After the transplantation, we found vascular networks with perfusion of blood in the transplanted graft. At the boundary between host and implanted tissue, connectivity between murine and human vessels was found. Transmission electron microscopy of the implanted artificial vascular tubules demonstrated the ultrastructural features of blood capillaries. Moreover, maturation of the vascular tissues after transplantation was shown by the presence of pericyte-like cells and abundant collagen fibrils in the ECM surrounding the vasculature. These results demonstrated that artificial human vascular tissues constructed by our method were engrafted and matured in animal skin. In addition, the implanted artificial human vascular networks were connected with the host circulatory system by anastomosis. This method is an attractive technique for engineering prevascularized artificial tissues for transplantation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  9. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering.

    Science.gov (United States)

    Wang, Lina; Johnson, Joshua A; Zhang, Qixu; Beahm, Elisabeth K

    2013-11-01

    Repair of soft tissue defects resulting from lumpectomy or mastectomy has become an important rehabilitation process for breast cancer patients. This study aimed to provide an adipose tissue engineering platform for soft tissue defect repair by combining decellularized human adipose tissue extracellular matrix (hDAM) and human adipose-derived stem cells (hASCs). To derive hDAM incised human adipose tissues underwent a decellularization process. Effective cell removal and lipid removal were proved by immunohistochemical analysis and DNA quantification. Scanning electron microscopic examination showed a three-dimensional nanofibrous architecture in hDAM. The hDAM included collagen, sulfated glycosaminoglycan, and vascular endothelial growth factor, but lacked major histocompatibility complex antigen I. hASC viability and proliferation on hDAM were proven in vitro. hDAM implanted subcutaneously in Fischer rats did not cause an immunogenic response, and it underwent remodeling, as indicated by host cell infiltration, neovascularization, and adipose tissue formation. Fresh fat grafts (Coleman technique) and engineered fat grafts (hDAM combined with hASCs) were implanted subcutaneously in nude rats. The implanted engineered fat grafts maintained their volume for 8 weeks, and the hASCs contributed to adipose tissue formation. In summary, the combination of hDAM and hASCs provides not only a clinically translatable platform for adipose tissue engineering, but also a vehicle for elucidating fat grafting mechanisms. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue.

    Science.gov (United States)

    Roberts, Meredith A; Tran, Dominic; Coulombe, Kareen L K; Razumova, Maria; Regnier, Michael; Murry, Charles E; Zheng, Ying

    2016-04-01

    Cardiac tissue engineering is a strategy to replace damaged contractile tissue and model cardiac diseases to discover therapies. Current cardiac and vascular engineering approaches independently create aligned contractile tissue or perfusable vasculature, but a combined vascularized cardiac tissue remains to be achieved. Here, we sought to incorporate a patterned microvasculature into engineered heart tissue, which balances the competing demands from cardiomyocytes to contract the matrix versus the vascular lumens that need structural support. Low-density collagen hydrogels (1.25 mg/mL) permit human embryonic stem cell-derived cardiomyocytes (hESC-CMs) to form a dense contractile tissue but cannot support a patterned microvasculature. Conversely, high collagen concentrations (density ≥6 mg/mL) support a patterned microvasculature, but the hESC-CMs lack cell-cell contact, limiting their electrical communication, structural maturation, and tissue-level contractile function. When cocultured with matrix remodeling stromal cells, however, hESC-CMs structurally mature and form anisotropic constructs in high-density collagen. Remodeling requires the stromal cells to be in proximity with hESC-CMs. In addition, cocultured cardiac constructs in dense collagen generate measurable active contractions (on the order of 0.1 mN/mm(2)) and can be paced up to 2 Hz. Patterned microvascular networks in these high-density cocultured cardiac constructs remain patent through 2 weeks of culture, and hESC-CMs show electrical synchronization. The ability to maintain microstructural control within engineered heart tissue enables generation of more complex features, such as cellular alignment and a vasculature. Successful incorporation of these features paves the way for the use of large scale engineered tissues for myocardial regeneration and cardiac disease modeling.

  11. The Application of Tissue Engineering Procedures to Repair the Larynx

    Science.gov (United States)

    Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.

    2006-01-01

    The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…

  12. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  13. Bone Tissue Engineering: Past-Present-Future.

    Science.gov (United States)

    Quarto, Rodolfo; Giannoni, Paolo

    2016-01-01

    Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.

  14. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  15. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.

    Science.gov (United States)

    Vinatier, C; Guicheux, J

    2016-06-01

    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Vascular Tissue Reaction to Acute Malapposition in Human Coronary Arteries Sequential Assessment With Optical Coherence Tomography

    NARCIS (Netherlands)

    Gutiérrez-Chico, Juan Luis; Wykrzykowska, Joanna; Nüesch, Eveline; van Geuns, Robert Jan; Koch, Karel T.; Koolen, Jacques J.; Di Mario, Carlo; Windecker, Stephan; van Es, Gerrit-Anne; Gobbens, Pierre; Jüni, Peter; Regar, Evelyn; Serruys, Patrick W.

    2012-01-01

    Background-The vascular tissue reaction to acute incomplete stent apposition (ISA) is not well known. The aim of this study was to characterize the vascular response to acute ISA in vivo and to look for predictors of incomplete healing. Methods and Results-Optical coherence tomography studies of 66

  17. Vascular tissue reaction to acute malapposition in human coronary arteries sequential assessment with optical coherence tomography

    NARCIS (Netherlands)

    J.L. Gutiérrez-Chico; J.J. Wykrzykowska (Joanna); E. Nüesch (Eveline); R.J.M. van Geuns (Robert Jan); K. Koch (Karel); J.J. Koolen (Jacques); C. di Mario (Carlo); S.W. Windecker (Stephan); G.A. van Es (Gerrit Anne); P. Gobbens (Pierre); P. Jüni (Peter); E.S. Regar (Eveline); P.W.J.C. Serruys (Patrick)

    2012-01-01

    textabstractBackground-The vascular tissue reaction to acute incomplete stent apposition (ISA) is not well known. The aim of this study was to characterize the vascular response to acute ISA in vivo and to look for predictors of incomplete healing. Methods and Results-Optical coherence tomography

  18. Heating in vascular tissue and flow-through tissue phantoms induced by focused ultrasound

    Science.gov (United States)

    Huang, Jinlan

    High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one's ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis

  19. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  20. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    National Research Council Canada - National Science Library

    Xia, Mengna; Liu, Hanli

    2007-01-01

    Objective/Hypothesis: By monitoring global and local vascular oxygenation and tissue oxygen tension in breast tumors under HBO exposure with several different gas interventions, we wish to prove the following two hypotheses: that 1...

  1. Combined additive manufacturing approaches in tissue engineering.

    Science.gov (United States)

    Giannitelli, S M; Mozetic, P; Trombetta, M; Rainer, A

    2015-09-01

    Advances introduced by additive manufacturing (AM) have significantly improved the control over the microarchitecture of scaffolds for tissue engineering. This has led to the flourishing of research works addressing the optimization of AM scaffolds microarchitecture to optimally trade-off between conflicting requirements (e.g. mechanical stiffness and porosity level). A fascinating trend concerns the integration of AM with other scaffold fabrication methods (i.e. "combined" AM), leading to hybrid architectures with complementary structural features. Although this innovative approach is still at its beginning, significant results have been achieved in terms of improved biological response to the scaffold, especially targeting the regeneration of complex tissues. This review paper reports the state of the art in the field of combined AM, posing the accent on recent trends, challenges, and future perspectives. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  3. Biocompatibility Issue Of Tissue Engineered Heart Valves

    Directory of Open Access Journals (Sweden)

    Wilczek P.

    2015-09-01

    Full Text Available Tissue engineering is a new field of knowledge which creates the possibilities for producing bioactive cardiac prostheses that will characterize by biomechanical and morphological properties similar to native tissue. It is expected that it will be characterized by high durability, which is very important from the social and clinical point of view. The aim of the study was to compare the cytotoxic effect of enzymatic and detergent acellularization methods commonly used for the biological scaffold preparation. It seems that the use of enzymatic methods, allows efficient donor cells removal while maintaining the ability to autologous cell seeding. Heart valves bioprosthesis created using these techniques, may be a good alternative to the currently used prostheses.

  4. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  5. Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering.

    Science.gov (United States)

    Lowenthal, Justin; Gerecht, Sharon

    2016-05-06

    Proper blood vessel networks are necessary for constructing and re-constructing tissues, promoting wound healing, and delivering metabolic necessities throughout the body. Conversely, an understanding of vascular dysfunction has provided insight into the pathogenesis and progression of diseases both common and rare. Recent advances in stem cell-based regenerative medicine - including advances in stem cell technologies and related progress in bioscaffold design and complex tissue engineering - have allowed rapid advances in the field of vascular biology, leading in turn to more advanced modeling of vascular pathophysiology and improved engineering of vascularized tissue constructs. In this review we examine recent advances in the field of stem cell-derived vasculature, providing an overview of stem cell technologies as a source for vascular cell types and then focusing on their use in three primary areas: studies of vascular development and angiogenesis, improved disease modeling, and the engineering of vascularized constructs for tissue-level modeling and cell-based therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Arrangement of vascular tissues in the peduncle of avocado (Persea americana Mill.

    Directory of Open Access Journals (Sweden)

    Amando Espinosa-Flores

    2014-01-01

    Full Text Available In all three investigated cultivars, the thin part of the peduncle which originates from the inflorescence axes contained a continuous cylinder of vascular tissue interrupted only occasionally by the gaps accompanying the traces of already abscised ramifications of the inflorescence. In the cvs. Principe Negro and Fuerte, the most distal, "thick" part of the peduncle (where the tepal traces separate contained the vascular cylinder transformed into a group of concentric or semicircular bundles. These bundles joined anew at the point where the peduncle united with the fruit, forming once more a continuous cylinder of vascular tissues. Within the fruit, the vascular cylinder divided into numerous bundles penetrating the pulp. In cv. Hass the vascular cylinder was continuous in a11 parts of the peduncle, and was interrupted only occasionally by gaps.

  7. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  8. An overview of recent patents on musculoskeletal interface tissue engineering.

    Science.gov (United States)

    Rao, Rohit T; Browe, Daniel P; Lowe, Christopher J; Freeman, Joseph W

    2016-01-01

    Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues, e.g., between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article, we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose.

  9. A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering

    Science.gov (United States)

    Webber, Matthew J.; Khan, Omar F.; Sydlik, Stefanie A.; Tang, Benjamin C.; Langer, Robert

    2016-01-01

    Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine. PMID:25201605

  10. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  11. Scaffoldless tissue-engineered dental pulp cell constructs for endodontic therapy.

    Science.gov (United States)

    Syed-Picard, F N; Ray, H L; Kumta, P N; Sfeir, C

    2014-03-01

    A major cause of apical periodontitis after endodontic treatment is the bacterial infiltration which could have been challenged by the presence of a vital pulp. In this study, self-assembled, scaffoldless, three-dimensional (3D) tissues were engineered from dental pulp cells (DPCs) and assessed as a device for pulp regeneration. These engineered tissues were placed into the canal space of human tooth root segments that were capped on one end with calcium phosphate cement, and the entire system was implanted subcutaneously into mice. Histological staining indicated that after three- and five-month implantations, tooth roots containing 3D scaffoldless engineered tissues maintained a cellular, fibrous tissue throughout, whereas empty tooth roots remained predominantly empty. Immunostaining indicated that the tissue found in the root canals containing scaffoldless DPC engineered tissues was vascular, as characterized by the expression of CD31, and contained odontoblast-like cells organized along the length of the root wall as assessed by immunostaining for dentin sialoprotein. This study shows that 3D self-assembled scaffoldless DPC engineered tissues can regenerate a vital dental pulp-like tissue in a tooth root canal system and are therefore promising for endodontic therapy.

  12. Biodegradable Polymers in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Leon E. Govaert

    2009-07-01

    Full Text Available The use ofdegradable polymers in medicine largely started around the mid 20th century with their initial use as in vivo resorbing sutures. Thorough knowledge on this topic as been gained since then and the potential applications for these polymers were, and still are, rapidly expanding. After improving the properties of lactic acid-based polymers, these were no longer studied only from a scientific point of view, but also for their use in bone surgery in the 1990s. Unfortunately, after implanting these polymers, different foreign body reactions ranging from the presence of white blood cells to sterile sinuses with resorption of the original tissue were observed. This led to the misconception that degradable polymers would, in all cases, lead to inflammation and/or osteolysis at the implantation site. Nowadays, we have accumulated substantial knowledge on the issue of biocompatibility of biodegradable polymers and are able to tailor these polymers for specific applications and thereby strongly reduce the occurrence of adverse tissue reactions. However, the major issue of biofunctionality, when mechanical adaptation is taken into account, has hitherto been largely unrecognized. A thorough understanding of how to improve the biofunctionality, comprising biomechanical stability, but also visualization and sterilization of the material, together with the avoidance of fibrotic tissue formation and foreign body reactions, may greatly enhance the applicability and safety of degradable polymers in a wide area of tissue engineering applications. This review will address our current understanding of these biofunctionality factors, and will subsequently discuss the pitfalls remaining and potential solutions to solve these problems.

  13. Assessment of tissue ingrowth rates in polyurethane scaffolds for tissue engineering

    NARCIS (Netherlands)

    Ramrattan, Navin N.; Heijkants, Ralf G.J.C.; Tienen, Tony G. van; Schouten, Arend Jan; Veth, Rene P.H.; Buma, Pieter; Ramrattan, [No Value

    The continuous development of new biomaterials for tissue engineering and the enhancement of tissue ingrowth into existing scaffolds, using growth factors, create the necessity for developing adequate tools to assess tissue ingrowth rates into porous biomaterials. Current histomorphometric

  14. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems.

    Science.gov (United States)

    Liu, Yuchun; Chan, Jerry K Y; Teoh, Swee-Hin

    2015-02-01

    Poor angiogenesis within tissue-engineered grafts has been identified as a main challenge limiting the clinical introduction of bone tissue-engineering (BTE) approaches for the repair of large bone defects. Thick BTE grafts often exhibit poor cellular viability particularly at the core, leading to graft failure and lack of integration with host tissues. Various BTE approaches have been explored for improving vascularisation in tissue-engineered constructs and are briefly discussed in this review. Recent investigations relating to co-culture systems of endothelial and osteoblast-like cells have shown evidence of BTE efficacy in increasing vascularization in thick constructs. This review provides an overview of key concepts related to bone formation and then focuses on the current state of engineered vascularized co-culture systems using bone repair as a model. It will also address key questions regarding the generation of clinically relevant vascularized bone constructs as well as potential directions and considerations for research with the objective of pursuing engineered co-culture systems in other disciplines of vascularized regenerative medicine. The final objective is to generate serious and functional long-lasting vessels for sustainable angiogenesis that will enable enhanced cellular survival within thick voluminous bone grafts, thereby aiding in bone formation and remodelling in the long term. However, more evidence about the quality of blood vessels formed and its associated functional improvement in bone formation as well as a mechanistic understanding of their interactions are necessary for designing better therapeutic strategies for translation to clinical settings. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Tissue engineering scaffolds electrospun from cotton cellulose.

    Science.gov (United States)

    He, Xu; Cheng, Long; Zhang, Ximu; Xiao, Qiang; Zhang, Wei; Lu, Canhui

    2015-01-22

    Nonwovens of cellulose nanofibers were fabricated by electrospinning of cotton cellulose in its LiCl/DMAc solution. The key factors associated with the electrospinning process, including the intrinsic properties of cellulose solutions, the rotating speed of collector and the applied voltage, were systematically investigated. XRD data indicated the electrospun nanofibers were almost amorphous. When increasing the rotating speed of the collector, preferential alignment of fibers along the drawing direction and improved molecular orientation were revealed by scanning electron microscope and polarized FTIR, respectively. Tensile tests indicated the strength of the nonwovens along the orientation direction could be largely improved when collected at a higher speed. In light of the excellent biocompatibility and biodegradability as well as their unique porous structure, the nonwovens were further assessed as potential tissue engineering scaffolds. Cell culture experiments demonstrated human dental follicle cells could proliferate rapidly not only on the surface but also in the entire scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  17. Fibre-reinforced hydrogels for tissue engineering

    Science.gov (United States)

    Waters, Sarah; Byrne, Helen; Chen, Mike; Dias Castilho, Miguel; Kimpton, Laura; Please, Colin; Whiteley, Jonathan

    2017-11-01

    Tissue engineers aim to grow replacement tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. One approach is to seed cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres, cast in a hydrogel, and subject the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how this applied load is distributed throughout the construct to the mechanosensitive cells. To address this, we exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions). The fibres are treated as a linear elastic material and the hydrogel as a poroelastic material. We employ homogenisation theory to derive equations governing the material properties of a periodic, elastic-poroelastic composite. To validate the mobel, model solutions are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings, and the local mechanical environment experienced by cells embedded within the construct is determined. Funded by the European Union Seventh Framework Programme (FP7/2007-2013).

  18. Functional tissue engineering of ligament healing

    Directory of Open Access Journals (Sweden)

    Hsu Shan-Ling

    2010-05-01

    Full Text Available Abstract Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL and medial collateral ligament (MCL of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

  19. Intravenous iloprost in the combination therapy of vascular disorders in patients with systemic connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Aleksandr Vitalyevich Volkov

    2013-01-01

    Full Text Available Systemic connective tissue diseases, systemic scleroderma in particular, constitute a group of diseases in which vascular disorders underlying diverse clinical manifestations are one of the pathogenetic components. Raynaud 's syndrome and ulceration are the most common symptoms of these diseases, which influence quality of life in patients and require constant drug therapy. The paper discusses the authors' clinical experience with intravenous iloprost used in the combination therapy of the vascular manifestations of systemic scleroderma and systemic lupus erythematosus.

  20. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  1. Patterning of Cells on Bioresist for Tissue Engineering Applications

    National Research Council Canada - National Science Library

    Umar, Yusif; Thiyagarajan, Muthiah; Halberstadt, Craig; Gonsalves, Kenneth E

    2005-01-01

    .... The field of tissue engineering hinges on developing degradable polymeric scaffolds that promote cell proliferation and expression of desired physiological behaviors through careful control of the polymer surface...

  2. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review.

    Science.gov (United States)

    Chaudhari, Atul A; Vig, Komal; Baganizi, Dieudonné Radé; Sahu, Rajnish; Dixit, Saurabh; Dennis, Vida; Singh, Shree Ram; Pillai, Shreekumar R

    2016-11-25

    Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.

  3. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Atul A. Chaudhari

    2016-11-01

    Full Text Available Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL, and poly-ethylene-glycol (PEG, etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.

  4. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    Science.gov (United States)

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate

  5. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  6. Tissue engineering and biotechnology in general thoracic surgery.

    Science.gov (United States)

    Molnar, Tamas F; Pongracz, Judit E

    2010-06-01

    Public interest in the recent progress of tissue engineering, a special line of biotechnology, makes the current review on thoracic surgery highly relevant. In this article, techniques, materials and cellular processes are discussed alongside their potential applications in tissue repair. Different applications of tissue engineering in tracheo-bronchial replacement, lung tissue cultures and chest-wall reconstruction are also summarised in the article. Potential tissue engineering-based solutions for destructive, chronic lung-injury-related conditions and replacement of tubular structures in the central airways are also examined. Copyright 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  7. Utilizing stem cells for three-dimensional neural tissue engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Cho, Yongku; Li, Xue-Jun; Khademhosseini, Ali; Tasoglu, Savas

    2016-05-26

    Three-dimensional neural tissue engineering has made great strides in developing neural disease models and replacement tissues for patients. However, the need for biomimetic tissue models and effective patient therapies remains unmet. The recent push to expand 2D neural tissue engineering into the third dimension shows great potential to advance the field. Another area which has much to offer to neural tissue engineering is stem cell research. Stem cells are well known for their self-renewal and differentiation potential and have been shown to give rise to tissues with structural and functional properties mimicking natural organs. Application of these capabilities to 3D neural tissue engineering may be highly useful for basic research on neural tissue structure and function, engineering disease models, designing tissues for drug development, and generating replacement tissues with a patient's genetic makeup. Here, we discuss the vast potential, as well as the current challenges, unique to integration of 3D fabrication strategies and stem cells into neural tissue engineering. We also present some of the most significant recent achievements, including nerve guidance conduits to facilitate better healing of nerve injuries, functional 3D biomimetic neural tissue models, physiologically relevant disease models for research purposes, and rapid and effective screening of potential drugs.

  8. [Research progress of cell sheet technology in oral tissue engineering].

    Science.gov (United States)

    Liu, Ying; Wang, Daqing; Mo, Jinlong; Li, Binzhong

    2014-09-01

    Cell sheet technology (CST) demonstrates the innovation and advantage by overcoming some immanent shortcomings of traditional tissue engineering. To review the research progress of CST in oral tissue engineering. The related home and abroad literature about CST and its application in stomatology was extensively reviewed and analyzed. Compared to the traditional tissue engineering technology, CST has the features of high seeding density, abundant matrix, good biological compatibility, and perfect operability, which can improve the survival rate of cell transplantation and promote functional reconstruction. It is reported that CST has been successfully used in the following fields, repair and reconstruction of periodontium, soft tissues of oral mucosa, and bones in maxillofacial region. With the development of CST and combined with the traditional tissue engineering technologies, it will promote the tissue engineering further progress in stomatology.

  9. Injectable hydrogels for cartilage and bone tissue engineering

    Science.gov (United States)

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  10. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    Science.gov (United States)

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  11. Tissue engineering and surgery: from translational studies to human trials

    Directory of Open Access Journals (Sweden)

    Vranckx Jan Jeroen

    2017-06-01

    Full Text Available Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.

  12. Bioreactors Drive Advances in Tissue Engineering

    Science.gov (United States)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both

  13. Scaffolding in tissue engineering: general approaches and tissue-specific considerations.

    Science.gov (United States)

    Chan, B P; Leong, K W

    2008-12-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.

  14. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  15. Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Arend Jan Schouten

    2011-10-01

    Full Text Available Polycaprolactone (PCL polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5–3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn. The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold.

  16. Applications and Degradation of Proteins Used as Tissue Engineering Materials

    Directory of Open Access Journals (Sweden)

    Hua-Jie Wang

    2009-05-01

    Full Text Available This article provides an up-to-date review on the applications of natural polymers, i.e., proteins, as materials for tissue engineering. Proteins are one of the important candidates for tissue engineering materials based on their superior biocompatibility, biodegradation, bioresorbability, and so on. However, their inferior mechanical properties limit their broad application. Currently-available proteins for application in tissue engineering or drug delivery systems, such as fibrin, collagen, zein, silk fibroin, keratin, casein and albumin, and the biodegradation of tissue-engineered substitutes based on proteins are presented. Techniques of scaffold fabrication are also mentioned. Problems and future possibilities for development of protein-based tissue-engineered substitutes are also introduced in this review.

  17. Clinical translation of controlled protein delivery systems for tissue engineering.

    Science.gov (United States)

    Spiller, Kara L; Vunjak-Novakovic, Gordana

    2015-04-01

    Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.

  18. The surrounding tissue modifies the placental stem villous vascular responses

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn; Forman, Axel; Aalkjær, Christian

    2014-01-01

    or endotheline-1. These differences partly disappeared in the presence of L-NAME. Conclusion: The perivascular tissue significantly reduces sensitivity and force development of stem villous arteries, partly due to release of NO This represents a new mechanism for control of human stem villous artery tone.......46619, 5-HT and endothelin-1 were significantly lower in preparations with intact trophoblast compared to preparations where the trophoblast had been removed. Moreover, maximal force development (Emax) was lower in arteries with intact trophoblast after stimulation with high extracellular [K+], PGF2α...

  19. Bioreactor Development for Lung Tissue Engineering

    Science.gov (United States)

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  20. Low oxygen concentrations impair tissue development in tissue-engineered cardiovascular constructs

    NARCIS (Netherlands)

    Vlimmeren, M.A.A. van; Driessen-Mol, A.; Oomens, C.W.J.; Broek, M. van den; Stoop, R.; Bouten, C.V.C.; Baaijens, F.P.T.

    2012-01-01

    Cardiovascular tissue engineering has shown considerable progress, but in vitro tissue conditioning to stimulate the development of a functional extracellular matrix still needs improvement. We investigated the environmental factor oxygen concentration for its potential to increase the amount of

  1. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Boerboom, R.A.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of

  2. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    Science.gov (United States)

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Large-scale identification of human cerebrovascular proteins: Inter-tissue and intracerebral vascular protein diversity.

    Directory of Open Access Journals (Sweden)

    Soo Jung Lee

    Full Text Available The human cerebrovascular system is responsible for regulating demand-dependent perfusion and maintaining the blood-brain barrier (BBB. In addition, defects in the human cerebrovasculature lead to stroke, intracerebral hemorrhage, vascular malformations, and vascular cognitive impairment. The objective of this study was to discover new proteins of the human cerebrovascular system using expression data from the Human Protein Atlas, a large-scale project which allows public access to immunohistochemical analysis of human tissues. We screened 20,158 proteins in the HPA and identified 346 expression patterns correlating to blood vessels in human brain. Independent experiments showed that 51/52 of these distributions could be experimentally replicated across different brain samples. Some proteins (40% demonstrated endothelial cell (EC-enriched expression, while others were expressed primarily in vascular smooth muscle cells (VSMC; 18%; 39% of these proteins were expressed in both cell types. Most brain EC markers were tissue oligospecific; that is, they were expressed in endothelia in an average of 4.8 out of 9 organs examined. Although most markers expressed in endothelial cells of the brain were present in all cerebral capillaries, a significant number (21% were expressed only in a fraction of brain capillaries within each brain sample. Among proteins found in cerebral VSMC, virtually all were also expressed in peripheral VSMC and in non-vascular smooth muscle cells (SMC. Only one was potentially brain specific: VHL (Von Hippel-Lindau tumor suppressor. HRC (histidine rich calcium binding protein and VHL were restricted to VSMC and not found in non-vascular tissues such as uterus or gut. In conclusion, we define a set of brain vascular proteins that could be relevant to understanding the unique physiology and pathophysiology of the human cerebrovasculature. This set of proteins defines inter-organ molecular differences in the vasculature and

  4. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  5. Mineralization/Anti-Mineralization Networks in the Skin and Vascular Connective Tissues

    OpenAIRE

    Li, Qiaoli; Uitto, Jouni

    2013-01-01

    Ectopic mineralization has been linked to several common clinical conditions with considerable morbidity and mortality. The mineralization processes, both metastatic and dystrophic, affect the skin and vascular connective tissues. There are several contributing metabolic and environmental factors that make uncovering of the precise pathomechanisms of these acquired disorders exceedingly difficult. Several relatively rare heritable disorders share phenotypic manifestations similar to those in ...

  6. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  7. Synthetic Versus Tissue-Engineered Implants for Joint Replacement

    Directory of Open Access Journals (Sweden)

    Duncan E. T. Shepherd

    2007-01-01

    Full Text Available Human synovial joints are remarkable as they can last for a lifetime. However, they can be affected by disease that may lead to destruction of the joint surface. The most common treatment in the advanced stages of joint disease is artificial joint replacement, where the diseased synovial joint is replaced with an artificial implant made from synthetic materials, such as metals and polymers. A new technique for repairing diseased synovial joints is tissue engineering where cells are used to grow replacement tissue. This paper explores the relative merits of synthetic and tissue-engineered implants, using joint replacement as an example. Synthetic joint replacement is a well-established procedure with the advantages of early mobilisation, pain relief and high patient satisfaction. However, synthetic implants are not natural tissues; they can cause adverse reactions to the body and there could be a mismatch in mechanical properties compared to natural tissues. Tissue-engineered implants offer great potential and have major advantages over synthetic implants as they are natural tissue, which should ensure that they are totally biocompatible, have the correct mechanical properties and integrate well with the existing tissue. However, there are still many limitations to be addressed in tissue engineering such as scaling up for production, bioreactor design, appropriate regulation and the potential for disease to attack the new tissue-engineered implant.

  8. Piezoelectric polymers as biomaterials for tissue engineering applications.

    Science.gov (United States)

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-08-01

    Full Text Available Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells.

  11. An examination of the genetic control of Douglas-fir vascular tissue phytochemicals: implications for black bear foraging.

    Science.gov (United States)

    Bruce A. Kimball; G.R. Johnson; Dale L. Nolte; Doreen L. Griffin

    1999-01-01

    Silvicultural practices can influence black bear (Ursus americanus) foraging preferences for Douglas-fir (Pseudotsuga menziesii) cambial-zone vascular tissues, but little is known about the role of genetics. To study the impact of genetic selection, vascular tissue samples were collected from Douglas-fir trees in six half-sib families from five...

  12. Ethical Considerations in Tissue Engineering Research: Case Studies in Translation

    Science.gov (United States)

    Baker, Hannah B.; McQuilling, John P.

    2016-01-01

    Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of “modest translational distance” and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. PMID:26282436

  13. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  14. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  15. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  16. Exploring the Islamic Perspective on Tissue Engineering Principles and Practice

    Directory of Open Access Journals (Sweden)

    Munirah, S.

    2014-12-01

    Full Text Available Tissue engineering is related to the replacement, restoration, repair and/or regeneration of tissues/organs that are tailored to the needs of the individual patient. The potential applications of tissue engineering are being unveiled with much hype and expectations among the scientists and the public at large. The demand for engineered tissues may increase considerably, but the progress has been slow due to scientific and technical challenges that linked to moral, religious, philosophical, political and economic aspects. There are ongoing debates on certain aspects that seem to indicate that scientists maybe “playing God”. This article briefly analyses tissue engineering principles and the discourse surrounding it. Subsequently, the author briefly reflects on the Islamic perspectives, both for and against the technology. The discussions serve to provide a platform on how best to achieve a consensus that adequately deals with the scientific reality and the Islamic moral and legal jurisprudence that surrounds the technology.

  17. Advancing cartilage tissue engineering: the application of stem cell technology.

    Science.gov (United States)

    Raghunath, Joanne; Salacinski, Henryk J; Sales, Kevin M; Butler, Peter E; Seifalian, Alexander M

    2005-10-01

    The treatment of cartilage pathology and trauma face the challenges of poor regenerative potential and inferior repair. Nevertheless, recent advances in tissue engineering indicate that adult stem cells could provide a source of chondrocytes for tissue engineering that the isolation of mature chondrocytes has failed to achieve. Various adjuncts to their propagation and differentiation have been explored, such as biomaterials, bioreactors and growth hormones. To date, all tissue engineered cartilage has been significantly mechanically inferior to its natural counterparts and further problems in vivo relate to poor integration and deterioration of tissue quality over time. However, adult stem cells--with their high rate of proliferation and ease of isolation--are expected to greatly further the development and usefulness of tissue engineered cartilage.

  18. A Multistep Procedure To Prepare Pre-Vascularized Cardiac Tissue Constructs Using Adult Stem Sells, Dynamic Cell Cultures And Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    Stefania ePagliari

    2014-06-01

    Full Text Available The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs are stimulated in vitro to obtain their commitment towards the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment.

  19. Articular cartilage tissue engineering: the role of signaling molecules

    Science.gov (United States)

    Kwon, Heenam; Paschos, Nikolaos K.; Hu, Jerry C.; Athanasiou, Kyriacos

    2017-01-01

    Effective early disease modifying options for osteoarthritis remain lacking. Tissue engineering approach to generate cartilage in vitro has emerged as a promising option for articular cartilage repair and regeneration. Signaling molecules and matrix modifying agents, derived from knowledge of cartilage development and homeostasis, have been used as biochemical stimuli toward cartilage tissue engineering and have led to improvements in the functionality of engineered cartilage. Clinical translation of neocartilage faces challenges, such as phenotypic instability of the engineered cartilage, poor integration, inflammation, and catabolic factors in the arthritic environment; these can all contribute to failure of implanted neocartilage. A comprehensive understanding of signaling molecules involved in osteoarthritis pathogenesis and their actions on engineered cartilage will be crucial. Thus, while it is important to continue deriving inspiration from cartilage development and homeostasis, it has become increasing necessary to incorporate knowledge from osteoarthritis pathogenesis into cartilage tissue engineering. PMID:26811234

  20. Vascularized Thymosternal Composite Tissue Allo- and Xenotransplantation in Nonhuman Primates: Initial Experience

    Science.gov (United States)

    Sendil, Selin; Diaconu, Silviu C.; O’Neill, Natalie A.; Burdorf, Lars; Tatarov, Ivan; Parsell, Dawn M.; Azimzadeh, Agnes M.; Pierson, Richard N.

    2017-01-01

    Background: Vascularized composite allotransplantation is constrained by complications associated with standard immunosuppressive strategies. Vascularized thymus and bone marrow have been shown to promote prolonged graft survival in composite organ and soft-tissue vascularized composite allotransplantation models. We report development of a nonhuman primate vascularized thymosternal composite tissue transplant model as a platform to address donor-specific immune tolerance induction strategies. Methods: Vascularized thymosternal allograft (skin, muscle, thymus, sternal bone) was transplanted between MHC-mismatched rhesus monkeys (feasibility studies) and baboons (long-term survival studies), with end-to-side anastomoses of the donor aorta and SVC to the recipient common femoral vessels. A male allograft was transplanted to a female’s lower abdominal wall, and clinically applicable immunosuppression was given. Skin biopsies and immunological assays were completed at regular intervals, and chimerism was quantified using polymerase chain reaction specific for baboon Y chromosome. Results: Four allo- and 2 xenotransplants were performed, demonstrating consistent technical feasibility. In 1 baboon thymosternal allograft recipient treated with anti-CD40–based immunosuppression, loss of peripheral blood microchimerism after day 5 was observed and anticipated graft rejection at 13 days. In the second allograft, when cutaneous erythema and ecchymosis with allograft swelling was treated with anti-thymocyte globulin starting on day 6, microchimerism persisted until immunosuppression was reduced after the first month, and the allograft survived to 87 days, 1 month after cessation of immunosuppression treatment. Conclusions: We established both allo- and xeno- composite vascularized thymosternal transplant preclinical models, which will be useful to investigate the role of primarily vascularized donor bone marrow and thymus.

  1. Reconstruction with vascularized composite tissue in patients with excessive injury following surgery and irradiation

    International Nuclear Information System (INIS)

    Serafin, D.; DeLand, M.; Lesesne, C.B.; Smith, P.J.; Noell, K.T.; Georgiade, N.

    1982-01-01

    The biological effects of a single high dose of radiation are examined. Both cellular injury and repair are reviewed during early, intermediate, and late phases. Anticipated composite tissue morbidity is detailed for therapeutic radiation doses administered to the head and neck, breast and thorax, and perineum. Patients who demonstrated excessive time-dose fractionation values were irradiated with lower x-ray energies. Those in whom there was an overlap of treatment fields presented a serious challenge to the reconstructive surgeon. Judicious selection of well-vascularized composite tissue outside the portals of irradiation, preferably with a long vascular pedicle, facilitated reconstruction. When possible, both donor and recipient vasculature should be outside the irradiated area to ensure uninterrupted blood flow to the transferred or transplanted tissue

  2. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    Science.gov (United States)

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li

    2015-10-21

    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  3. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    Science.gov (United States)

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  4. Tissue-Engineering for the Study of Cardiac Biomechanics

    Science.gov (United States)

    Ma, Stephen P.; Vunjak-Novakovic, Gordana

    2016-01-01

    The notion that both adaptive and maladaptive cardiac remodeling occurs in response to mechanical loading has informed recent progress in cardiac tissue engineering. Today, human cardiac tissues engineered in vitro offer complementary knowledge to that currently provided by animal models, with profound implications to personalized medicine. We review here recent advances in the understanding of the roles of mechanical signals in normal and pathological cardiac function, and their application in clinical translation of tissue engineering strategies to regenerative medicine and in vitro study of disease. PMID:26720588

  5. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  6. Design Strategies for Tissue Engineering Scaffolds

    NARCIS (Netherlands)

    Papenburg, B.J.

    2009-01-01

    This thesis focuses on various aspects involved in scaffold design and the cell-scaffold interaction. The ultimate goal is to design a scaffold that supports functional tissue formation, resembling in vivo tissue organization, combined with good nutrient supply to the cells. In our concept 3D

  7. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates.

    Science.gov (United States)

    Takahashi, Hironobu; Okano, Teruo

    2015-11-18

    In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biodegradable and biocompatible polymers for tissue engineering application: a review.

    Science.gov (United States)

    Asghari, Fatemeh; Samiei, Mohammad; Adibkia, Khosro; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-03-01

    Since so many years ago, tissue damages that are caused owing to various reasons attract scientists' attention to find a practical way to treat. In this regard, many studies were conducted. Nano scientists also suggested some ways and the newest one is called tissue engineering. They use biodegradable polymers in order to replace damaged structures in tissues to make it practical. Biodegradable polymers are dominant scaffolding materials in tissue engineering field. In this review, we explained about biodegradable polymers and their application as scaffolds.

  9. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  10. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.

    Science.gov (United States)

    Roseti, Livia; Parisi, Valentina; Petretta, Mauro; Cavallo, Carola; Desando, Giovanna; Bartolotti, Isabella; Grigolo, Brunella

    2017-09-01

    This review is intended to give a state of the art description of scaffold-based strategies utilized in Bone Tissue Engineering. Numerous scaffolds have been tested in the orthopedic field with the aim of improving cell viability, attachment, proliferation and homing, osteogenic differentiation, vascularization, host integration and load bearing. The main traits that characterize a scaffold suitable for bone regeneration concerning its biological requirements, structural features, composition, and types of fabrication are described in detail. Attention is then focused on conventional and Rapid Prototyping scaffold manufacturing techniques. Conventional manufacturing approaches are subtractive methods where parts of the material are removed from an initial block to achieve the desired shape. Rapid Prototyping techniques, introduced to overcome standard techniques limitations, are additive fabrication processes that manufacture the final three-dimensional object via deposition of overlying layers. An important improvement is the possibility to create custom-made products by means of computer assisted technologies, starting from patient's medical images. As a conclusion, it is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval. PUBMED search terms utilized to write this review were: "Bone Tissue Engineering", "regenerative medicine", "bioactive scaffolds", "biomimetic scaffolds", "3D printing", "3D bioprinting", "vascularization" and "dentistry". Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Primo Vascular System: An Endothelial-to-Mesenchymal Potential Transitional Tissue Involved in Gastric Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    An Ping

    2015-01-01

    Full Text Available Gastric cancer is the fourth commonest cancer in the world and the second leading cause of cancer-related death. Investigation of gastric cancer metastasis is one of the hottest and major focuses in cancer research. Growing evidence manifested that primo vascular system (PVS is a new kind of circulatory system beyond vascular and lymphatic system. Previous researches revealed that PVS is a specific tissue between endothelium and mesenchyme and is involved in cancer, especially in tumor metastasis and regeneration. In current study, we investigated the role of primo vessels in gastric cancer metastasis and its possible relationship to vascular vessels formation. Our results indicated that primo vessels were involved in gastric cancer metastasis. We observed blood vessel-mediated metastasis, primo vessel-mediated metastasis, and an intermediate state between them. We deduced that primo vessels may be precursors of blood vessels. These results possibly provided a thoroughly new theoretic development in cancer metastasis.

  12. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.

    Science.gov (United States)

    Weinberger, Florian; Mannhardt, Ingra; Eschenhagen, Thomas

    2017-04-28

    Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair. © 2017 American Heart Association, Inc.

  13. Tissue engineering skin: a paradigm shift in wound care.

    Science.gov (United States)

    Mason, C

    2005-12-01

    Tissue-engineered skin for the treatment of burns and ulcers is a clinical success, but making it commercially viable is more problematic. This article examines the industry, its techniques and suggests the way forward.

  14. The combination of meltblown and electrospinning for bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Erben, J.; Pilařová, K.; Sanetrník, F.; Chvojka, J.; Jenčová, V.; Blažková, L.; Havlíček, J.; Novák, O.; Mikeš, P.; Prosecká, Eva; Lukáš, D.; Kuželová Kostaková, E.

    2015-01-01

    Roč. 143, mar 15 (2015), s. 172-176 ISSN 0167-577X Institutional support: RVO:68378041 Keywords : meltblown * electrospinning * tissue engineering * polycaprolactone Subject RIV: JI - Composite Material s Impact factor: 2.437, year: 2015

  15. Production of extracellular matrix powder for tissue engineering

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2014-09-01

    Conclusion: The results show that our decellularization method produced an adipose ECM scaffold rich of collagen fibers, suitable and effective substrate for use in soft tissue engineering and regenerative medicine.

  16. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  17. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  18. 3D Nanoprinting Technologies for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    2015-01-01

    Full Text Available Tissue engineering recovers an original function of tissue by replacing the damaged part with a new tissue or organ regenerated using various engineering technologies. This technology uses a scaffold to support three-dimensional (3D tissue formation. Conventional scaffold fabrication methods do not control the architecture, pore shape, porosity, or interconnectivity of the scaffold, so it has limited ability to stimulate cell growth and to generate new tissue. 3D printing technologies may overcome these disadvantages of traditional fabrication methods. These technologies use computers to assist in design and fabrication, so the 3D scaffolds can be fabricated as designed and standardized. Particularly, because nanofabrication technology based on two-photon absorption (2PA and on controlled electrospinning can generate structures with submicron resolution, these methods have been evaluated in various areas of tissue engineering. Recent combinations of 3D nanoprinting technologies with methods from molecular biology and cell dynamics have suggested new possibilities for improved tissue regeneration. If the interaction between cells and scaffold system with biomolecules can be understood and controlled and if an optimal 3D environment for tissue regeneration can be realized, 3D nanoprinting will become an important tool in tissue engineering.

  19. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Galbo, H

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging....... Adipose tissue fluxes of glycerol, non-esterified fatty acids (NEFA), triacylglycerol and glucose were measured by Fick's principle after catherisation of a radial artery and a vein draining the abdominal, subcutaneous adipose tissue.Results:ATBF increased similarly in both groups during the adrenaline...

  20. Low-intensity pulsed ultrasound in dentofacial tissue engineering.

    Science.gov (United States)

    Tanaka, Eiji; Kuroda, Shingo; Horiuchi, Shinya; Tabata, Akira; El-Bialy, Tarek

    2015-04-01

    Oral and maxillofacial diseases affect millions of people worldwide and hence tissue engineering can be considered an interesting and clinically relevant approach to regenerate orofacial tissues after being affected by different diseases. Among several innovations for tissue regeneration, low-intensity pulsed ultrasound (LIPUS) has been used extensively in medicine as a therapeutic, operative, and diagnostic tool. LIPUS is accepted to promote bone fracture repair and regeneration. Furthermore, the effect of LIPUS on soft tissues regeneration has been paid much attention, and many studies have performed to evaluate the potential use of LIPUS to tissue engineering soft tissues. The present article provides an overview about the status of LIPUS stimulation as a tool to be used to enhance regeneration/tissue engineering. This review consists of five parts. Part 1 is a brief introduction of the acoustic description of LIPUS and mechanical action. In Part 2, biological problems in dentofacial tissue engineering are proposed. Part 3 explores biologic mechanisms of LIPUS to cells and tissues in living body. In Part 4, the effectiveness of LIPUS on cell metabolism and tissue regeneration in dentistry are summarized. Finally, Part 5 relates the possibility of clinical application of LIPUS in orthodontics. The present review brings out better understanding of the bioeffect of LIPUS therapy on orofacial tissues which is essential to the successful integration of management remedies for tissue regeneration/engineering. To develop an evidence-based approach to clinical management and treatment of orofacial degenerative diseases using LIPUS, we would like to be in full pursuit of LIPUS biotherapy. Still, there are many challenges for this relatively new strategy, but the up to date achievements using it promises to go far beyond the present possibilities.

  1. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts.

    Science.gov (United States)

    Fleischer, Sharon; Feiner, Ron; Dvir, Tal

    2017-04-01

    The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.

  2. Fabrication of scaffolds in tissue engineering: A review

    Science.gov (United States)

    Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng

    2018-03-01

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

  3. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  4. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2016-09-01

    Full Text Available Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  5. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  6. The role of perivascular adipose tissue in vascular smooth muscle cell growth.

    Science.gov (United States)

    Miao, Chao-Yu; Li, Zhi-Yong

    2012-02-01

    Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1-7, reactive oxygen species, complement component 3, NO and H(2) S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http

  7. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

    Science.gov (United States)

    Duffy, Rebecca M; Feinberg, Adam W

    2014-01-01

    Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. © 2013 Wiley Periodicals, Inc.

  9. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets.

    Science.gov (United States)

    Akoumianakis, Ioannis; Tarun, Akansha; Antoniades, Charalambos

    2017-10-01

    Adipose tissue (AT) is an active endocrine organ with the ability to dynamically secrete a wide range of adipocytokines. Importantly, its secretory profile is altered in various cardiovascular disease states. AT surrounding vessels, or perivascular AT (PVAT), is recognized in particular as an important local regulator of vascular function and dysfunction. Specifically, PVAT has the ability to sense vascular paracrine signals and respond by secreting a variety of vasoactive adipocytokines. Due to the crucial role of PVAT in regulating many aspects of vascular biology, it may constitute a novel therapeutic target for the prevention and treatment of vascular disease pathogenesis. Signalling pathways in PVAT, such as those using adiponectin, H 2 S, glucagon-like peptide 1 or pro-inflammatory cytokines, are among the potential novel pharmacological therapeutic targets of PVAT. This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc. © 2016 The British Pharmacological Society.

  10. The Role of Perivascular Adipose Tissue in Non-atherosclerotic Vascular Disease

    Directory of Open Access Journals (Sweden)

    Tetsuo Horimatsu

    2017-11-01

    Full Text Available Perivascular adipose tissue (PVAT surrounds most large blood vessels and plays an important role in vascular homeostasis. PVAT releases various chemokines and adipocytokines, functioning in an endocrine and paracrine manner to regulate vascular signaling and inflammation. Mounting evidence suggests that PVAT plays an important role in atherosclerosis and hypertension; however, the role of PVAT in non-atherosclerotic vascular diseases, including neointimal formation, aortic aneurysm, arterial stiffness and vasculitis, has received far less attention. Increasing evidence suggests that PVAT responds to mechanical endovascular injury and regulates the subsequent formation of neointima via factors that promote smooth muscle cell growth, adventitial inflammation and neovascularization. Circumstantial evidence also links PVAT to the pathogenesis of aortic aneurysms and vasculitic syndromes, such as Takayasu's arteritis, where infiltration and migration of inflammatory cells from PVAT into the vascular wall may play a contributory role. Moreover, in obesity, PVAT has been implicated to promote stiffness of elastic arteries via the production of reactive oxygen species. This review will discuss the growing body of data and mechanisms linking PVAT to the pathogenesis of non-atherosclerotic vascular diseases in experimental animal models and in humans.

  11. Stratified scaffold design for engineering composite tissues.

    Science.gov (United States)

    Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H

    2015-08-01

    A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Use of Human Vascular Tissue Microarrays for Measurement of Advanced Glycation Endproducts

    Science.gov (United States)

    Halushka, Marc K.; Selvin, Elizabeth; Lu, Jie; Macgregor, Anne M.; Cornish, Toby C.

    2009-01-01

    Advanced glycation endproducts (AGEs) are present in the vasculature and are associated with vascular disease. We determined levels of AGEs in eight distinct adult vascular tissues using tissue microarray (TMA) technology and associated these levels with clinical characteristics. Medium-to-large caliber blood vessels were harvested from 100 adult autopsies to create 17 TMAs. AGE levels were evaluated by IHC using a polyclonal anti-AGE antibody on over 700 unique blood vessels. Slides were digitally scanned, and quantitative analysis was performed using a color deconvolution image analysis technique. Medial AGE staining was strongly correlated between all eight blood vessels. In the media, AGE staining levels were significantly higher at older ages (p=0.009), in white subjects (pcontains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 57:559–566, 2009) PMID:19223295

  13. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model

  14. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  15. Tissue Engineering in Hand Surgery: A Technology Update.

    Science.gov (United States)

    Lui, Hayman; Vaquette, Cedryck; Bindra, Randip

    2017-09-01

    The field of hand surgery is constantly evolving to meet the challenges of repairing intricate anatomical structures with limited availability of donor tissue. The past 10 years have seen an exponential growth in tissue engineering, which has broadened the perspectives of tackling these age-old problems. Various fabrication techniques such as melt electrospinning and fused deposition modelling have been employed to synthesize 3-dimensional bioscaffolds that can be used to replace lost tissue. These bioscaffolds with strategic biomimicry have been shown to allow for integrative and functional repair of tissue injuries. This review article summarizes the most current advances in tissue engineering and its applications in the field of hand surgery. It outlines the current tissue engineering techniques commonly used for tackling musculoskeletal problems and highlights the most promising approaches according to clinical evidence. In particular, the paper explores regenerative medicine concepts applied to specific tissues including nerve, bone, cartilage, tendon, ligament, and vessels. In the face of innovative and pioneering research, tissue engineering will undoubtedly play a key role in reconstructive hand surgery in the not too distant future. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  16. Fabrication of nanofibrous scaffolds for tissue engineering applications

    NARCIS (Netherlands)

    Chen, H.; Truckenmüller, R.K.; van Blitterswijk, Clemens; Moroni, Lorenzo; Gaharwar, A.K.; Sant, S.; Hancock, M.J.; Hacking, A.A.

    2013-01-01

    Nanofibrous scaffolds which mimic the structural features of a natural extracellular matrix (ECM) can be appealing scaffold candidates for tissue engineering as they provide similar physical cues to the native environment of the targeted tissue to regenerate. This chapter discusses different

  17. Hypoxia-Inducible Factor-1α: A Potential Factor for the Enhancement of Osseointegration between Dental Implants and Tissue-Engineered Bone

    Directory of Open Access Journals (Sweden)

    Duohong Zou

    2011-07-01

    Full Text Available Introduction: Tissue-engineered bones are widely utilized to protect healthy tissue, reduce pain, and increase the success rate of dental implants. one of the most challenging obstacles lies in obtaining effective os-seointegration between dental implants and tissue-engineered structures. Deficiencies in vascularization, osteogenic factors, oxygen, and other nutrients inside the tissue-engineered bone during the early stages following implantation all inhibit effective osseointe-gration. Oxygen is required for aerobic metabolism in bone and blood vessel tissues, but oxygen levels inside tissue-engineered bone are not suf-ficient for cell proliferation. HIF-1α is a pivotal regulator of hypoxic and ischemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and osteogenesis.The hypothesis: Hypoxia-Inducible Factor-1α seems a potential factor for the enhancement of osseointegration between dental implants and tissue-engineered bone.Evaluation of the hypothesis: Enhancement of HIF-1α protein expression is recognized as the most promising approach for angiogenesis, because it can induce multiple angiogenic targets in a coordinated manner. Therefore, it will be a novel potential therapeutic methods targeting HIF-1α expression to enhance osseointegration be-tween dental implants and tissue-engineered bone.

  18. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    OpenAIRE

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especial...

  19. [Tissue engineering of heart valves: new opportunities and challenges].

    Science.gov (United States)

    Bobylev, D O; Chebotar', S; Tudorake, I; Khaverikh, A

    2011-01-01

    Replacement of heart valves appears to be prevailing method of surgical correction of end stage valvular heart defects. Main drawback of contemporary artificial valves is lack of growth, potential for remodeling, and inclination to degeneration. To overcome these limitations the modern science in the last decade focuses on tissue engineering of valves as an alternative to their prostheses. Basic idea of the technique is the use of decellularized xenogenic allogenic matrix or biopolymers seeded with autologous cells under special conditions created in bioreactor. This literature review is devoted to a novel direction in experimental cardiosurgery - tissue engineering of heart valves which in a unique way combines biological, engineering, and technological achievements.

  20. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits.

    Directory of Open Access Journals (Sweden)

    Achim von Bomhard

    Full Text Available The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE three-dimensional (3D cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps

  1. Powder-based 3D printing for bone tissue engineering.

    Science.gov (United States)

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Biomaterial based cardiac tissue engineering and its applications

    Science.gov (United States)

    Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939

  3. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    Science.gov (United States)

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  4. Flow characteristics of soft-tissue vascular anomalies evaluated by direct puncture scintigraphy

    International Nuclear Information System (INIS)

    Inoue, Yusuke; Ohtake, Tohru; Wakita, Shinichi; Yoshioka, Naoki; Furuya, Fujio; Nishikawa, Junichi; Sasaki, Yasuhito; Harii, Kiyonori

    1997-01-01

    We have developed a new method, direct puncture scintigraphy, to evaluate in detail the haemodynamics of vascular anomalies under conditions simulating sclerotherapy. Twenty-six soft-tissue vascular anomalies in 21 patients were studied. After 30 MBq of technetium-99m Sn colloid was injected percutaneously into the intravascular space of the lesion, dynamic imaging was performed for 5 min. A time-activity curve for the lesion was generated, with the infiltrated activity on injection subtracted. A monoexponential curve was fitted to the declining phase of the time-activity curve, and mean vascular transit time (MTT) was obtained. The lesions were classified into high-flow and low-flow lesions based on radionuclide angiography with intravenous injection of 99m Tc-labelled red blood cells, and estimates of MTT in the two groups were compared. The imaging procedures were carried out with no major complications, and broad intralesional diffusion of 99m Tc-Sn colloid was achieved in most lesions. The high-flow lesions (six lesions) had a short MTT, ranging from 1.6 to 3.4 s, while the low-flow lesions (20 lesions) had a longer MTT, with no overlap between the groups. MTT showed a wide range in low-flow lesions: it was less than 30 s in six lesions and more than 10 min in five other lesions. Direct puncture scintigraphy provides a quantitative indicator of the flow characteristics of soft-tissue vascular anomalies, and may aid in determining treatment strategies for patients with vascular anomalies. (orig./VHE). With 4 figs

  5. Endothelial and Perivascular Adipose Tissue Abnormalities in Obesity-Related Vascular Dysfunction: Novel Targets for Treatment.

    Science.gov (United States)

    Schinzari, Francesca; Tesauro, Manfredi; Cardillo, Carmine

    2017-06-01

    The heavy impact of obesity on the development and progression of cardiovascular disease has sparked sustained efforts to uncover the mechanisms linking excess adiposity to vascular dysfunction. In addition to its well-established role in maintaining vascular homeostasis, the endothelium has been increasingly recognized as a key player in modulating healthy adipose tissue expansion in response to excess calories by providing adipocyte precursors and driving angiogenesis. When this increased storage need is unmet, excessive deposition of fat occurs at ectopic locations, including perivascular adipose tissue (PVAT). PVAT is in intimate contact with the vessel wall, hence affecting vascular function and structure. In lean individuals, PVAT exerts anticontractile and anti-inflammatory activities to protect the vasculature. In obesity, instead, these beneficial properties are lost and PVAT releases inflammatory mediators, promotes oxidative stress, and contributes to vascular dysfunction. The underlying mechanisms elicited by these outside-in signals include resistance to the vasodilator actions of insulin and activation of endothelin (ET)-1-mediated vasoconstriction. A number of adipokines and gut hormones, which are important modulators of food intake, energy balance, glucose and lipid metabolism, insulin sensitivity, and inflammation, have also positive vascular actions. This feature makes them promising tools for targeting both the metabolic and cardiovascular complications of obesity, a view supported by recent large-scale clinical trials indicating that novel drugs for type 2 diabetes with cardiovascular potential may translate into clinically significant benefits. There is, therefore, real hope that unleashing the power of fat- and gut-derived substances might provide effective dual-action therapies for obesity and its complications.

  6. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. The Application of Sheet Technology in Cartilage Tissue Engineering.

    Science.gov (United States)

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.

  8. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects.

    Directory of Open Access Journals (Sweden)

    Xiaoning He

    Full Text Available Current clinical therapies for critical-sized bone defects (CSBDs remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2 gene-modified MSCs and endothelial progenitor cells (EPCs could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.

  9. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  10. Current approaches to electrospun nanofibers for tissue engineering

    International Nuclear Information System (INIS)

    Rim, Nae Gyune; Shin, Heungsoo; Shin, Choongsoo S

    2013-01-01

    The ultimate goal of tissue engineering is to replace damaged tissues by applying engineering technology and the principles of life sciences. To successfully engineer a desirable tissue, three main elements of cells, scaffolds and growth factors need to be harmonized. Biomaterial-based scaffolds serve as a critical platform both to support cell adhesion and to deliver growth factors. Various methods of fabricating scaffolds have been investigated. One recently developed method that is growing in popularity is called electrospinning. Electrospinning is known for its capacity to make fibrous and porous structures that are similar to natural extracellular matrix (ECM). Other advantages to electrospinning include its ability to create relatively large surface to volume ratios, its ability to control fiber size from micro- to nano-scales and its versatility in material choice. Although early work with electrospun fibers has shown promise in the regeneration of certain types of tissues, further modification of their chemical, biological and mechanical properties would permit future advancements. In this paper, current approaches to the development of modular electrospun fibers as scaffolds for tissue engineering are discussed. Their chemical and physical characteristics can be tuned for the regeneration of specific target tissues by co-spinning of multiple materials and by post-modification of the surface of electrospun fibers. In addition, topology or structure can also be controlled to elicit specific responses from cells and tissues. The selection of proper polymers, suitable surface modification techniques and the control of the dimension and arrangement of the fibrous structure of electrospun fibers can offer versatility and tissue specificity, and therefore provide a blueprint for specific tissue engineering applications. (paper)

  11. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    Science.gov (United States)

    Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo

    2016-01-01

    Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777

  12. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Jessica Ratajczak

    2016-01-01

    Full Text Available Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.

  13. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  14. Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease

    NARCIS (Netherlands)

    Boezeman, Reinout P E; Moll, Frans L.; Ünlü, Çağdaş; de Vries, Jean Paul P M

    2016-01-01

    Background: The use of wavelengths of the near-infrared region by near-infrared spectroscopy (NIRS) has been studied for several applications in vascular disease. This systematic review aims to explore the clinical relevance of monitoring muscle tissue oxygenation in vascular disease with NIRS.

  15. Treatment of Vascular Soft Tissue Sarcomas With Razoxane, Vindesine, and Radiation

    International Nuclear Information System (INIS)

    Rhomberg, Walter; Wink, Anna; Pokrajac, Boris; Eiter, Helmut; Hackl, Arnulf; Pakisch, Brigitte; Ginestet, Angela; Lukas, Peter; Poetter, Richard Prof.

    2009-01-01

    Purpose: In previous studies, razoxane and vindesine together with radiotherapy was proved to be effective in soft tissue sarcomas (STS). Because razoxane leads to a redifferentiation of pathological tumor blood vessels, it was of particular interest to study the influence of this drug combination in vascular soft tissue sarcomas. Methods and Materials: This open multicenter Phase II study was performed by the Austrian Society of Radiooncology. Among 13 evaluable patients (10 angiosarcomas and 3 hemangio-pericytomas), 9 had unresectable measurable disease, 3 showed microscopic residuals, and 1 had a resection with clear margins. They received a basic treatment with razoxane and vindesine supported by radiation therapy. Outcome measures were objective response rates, survival time, and the incidence of distant metastases. Results: In nine patients with measurable vascular soft tissue sarcomas (eight angiosarcomas and one hemangiopericytoma), 6 complete remissions, 2 partial remissions, and 1 minor remission were achieved, corresponding to a major response rate of 89%. A maintenance therapy with razoxane and vindesine of 1 year or longer led to a suppression of distant metastases. The median survival time from the start of the treatment is 23+ months (range, 3-120+) for 12 patients with macroscopic and microscopic residual disease. The progression-free survival at 6 months was 75%. The combined treatment was associated with a low general toxicity, but attention must be given to increased normal tissue reactions. Conclusions: This trimodal treatment leads to excellent response rates, and it suppresses distant metastases when given as maintenance therapy.

  16. Tissue-engineered heart valve: future of cardiac surgery.

    Science.gov (United States)

    Rippel, Radoslaw A; Ghanbari, Hossein; Seifalian, Alexander M

    2012-07-01

    Heart valve disease is currently a growing problem, and demand for heart valve replacement is predicted to increase significantly in the future. Existing "gold standard" mechanical and biological prosthesis offers survival at a cost of significantly increased risks of complications. Mechanical valves may cause hemorrhage and thromboembolism, whereas biologic valves are prone to fibrosis, calcification, degeneration, and immunogenic complications. A literature search was performed to identify all relevant studies relating to tissue-engineered heart valve in life sciences using the PubMed and ISI Web of Knowledge databases. Tissue engineering is a new, emerging alternative, which is reviewed in this paper. To produce a fully functional heart valve using tissue engineering, an appropriate scaffold needs to be seeded using carefully selected cells and proliferated under conditions that resemble the environment of a natural human heart valve. Bioscaffold, synthetic materials, and preseeded composites are three common approaches of scaffold formation. All available evidence suggests that synthetic scaffolds are the most suitable material for valve scaffold formation. Different cell sources of stem cells were used with variable results. Mesenchymal stem cells, fibroblasts, myofibroblasts, and umbilical blood stem cells are used in vitro tissue engineering of heart valve. Alternatively scaffold may be implanted and then autoseeded in vivo by circulating endothelial progenitor cells or primitive circulating cells from patient's blood. For that purpose, synthetic heart valves were developed. Tissue engineering is currently the only technology in the field with the potential for the creation of tissues analogous to a native human heart valve, with longer sustainability, and fever side effects. Although there is still a long way to go, tissue-engineered heart valves have the capability to revolutionize cardiac surgery of the future.

  17. Hydrogel based approaches for cardiac tissue engineering.

    Science.gov (United States)

    Saludas, Laura; Pascual-Gil, Simon; Prósper, Felipe; Garbayo, Elisa; Blanco-Prieto, María

    2017-05-25

    Heart failure still represents the leading cause of death worldwide. Novel strategies using stem cells and growth factors have been investigated for effective cardiac tissue regeneration and heart function recovery. However, some major challenges limit their translation to the clinic. Recently, biomaterials have emerged as a promising approach to improve delivery and viability of therapeutic cells and proteins for the regeneration of the damaged heart. In particular, hydrogels are considered one of the most promising vehicles. They can be administered through minimally invasive techniques while maintaining all the desirable characteristics of drug delivery systems. This review discusses recent advances made in the field of hydrogels for cardiac tissue regeneration in detail, focusing on the type of hydrogel (conventional, injectable, smart or nano- and micro-gel), the biomaterials used for its manufacture (natural, synthetic or hybrid) and the therapeutic agent encapsulated (stem cells or proteins). We expect that these novel hydrogel-based approaches will open up new possibilities in drug delivery and cell therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  19. From stem to roots: Tissue engineering in endodontics

    Science.gov (United States)

    Kala, M.; Banthia, Priyank; Banthia, Ruchi

    2012-01-01

    The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528

  20. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Yi, Sheng; Ding, Fei; Gong, Leiiei; Gu, Xiaosong

    2017-01-01

    The extracellular matrix is produced by the resident cells in tissues and organs, and secreted into the surrounding medium to provide biophysical and biochemical support to the surrounding cells due to its content of diverse bioactive molecules. Recently, the extracellular matrix has been used as a promising approach for tissue engineering. Emerging studies demonstrate that extracellular matrix scaffolds are able to create a favorable regenerative microenvironment, promote tissue-specific remodeling, and act as an inductive template for the repair and functional reconstruction of skin, bone, nerve, heart, lung, liver, kidney, small intestine, and other organs. In the current review, we will provide a critical overview of the structure and function of various types of extracellular matrix, the construction of three-dimensional extracellular matrix scaffolds, and their tissue engineering applications, with a focus on translation of these novel tissue engineered products to the clinic. We will also present an outlook on future perspectives of the extracellular matrix in tissue engineering and regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  2. Engineering Vascularized Bone Grafts by Integrating a Biomimetic Periosteum and β-TCP Scaffold

    Science.gov (United States)

    2015-01-01

    Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration. PMID:24858072

  3. 23Na+- and 39K+-NMR studies of cation-polyanion interactions in vascular connective tissue

    International Nuclear Information System (INIS)

    Siegel, G.; Walter, A.; Bostanjoglo, M.

    1987-01-01

    The ion binding properties of vascular connective tissue as well as of substances derived therefrom were studied in dependence on cation concentration by NMR and atomic absorption techniques. 16 refs.; 8 figs

  4. Design and in-vitro evaluation of a tissue engineered large vessel prosthesis

    Science.gov (United States)

    Mahmood, Ayesha

    Tissue engineering of large diameter blood vessels can offer a promising long-term solution to the large population suffering from congenital vascular defects and other vascular disease. In this report design, assembly, in vitro maturation and evaluation of a large diameter, chitosan-based prosthesis is described. To facilitate cell adhesion and proliferation, collagen was included as a scaffold component to a chitosan scaffold. In vitro studies evaluated the role of collagen content, crosslinker type and crosslinking density on degradation kinetics, mechanical properties and cellular interactions. Finally, the vessel scaffold (ID = 12 mm, OD = 15 mm) was fabricated from a moderately cross-linked, 90%/10% chitosan/collagen material. A tubular scaffold with gradient porosity and interconnected pores was generated by controlled freezing and lyophilization of the polymer. For graft culture laminar and pulsatile flow systems were designed and porous scaffolds were seeded with vascular cells under static conditions. Laminar system grafts were seeded and cultured/analyzed over an 8 week period (15ml/min). For the pulsatile system SMC were seeded and after 2 weeks of pulsatile flow culture (360ml/min, 82 beats/min) microvascular EC were seeded lumenally to initiate a microvascular network followed by aortic EC seeding at 3 weeks. For both systems, cell viability at different culture periods showed the formation of high density of cell within few weeks of graft culture. However, the pulsatile flow system graft showed a significant increase in mechanical properties and ECM protein (collagen and elastin) deposition overtime. This novel chitosan based tissue engineered vascular graft shows promising results for large vessel replacements.

  5. Identification of Primo-Vascular System in Abdominal Subcutaneous Tissue Layer of Rats

    Directory of Open Access Journals (Sweden)

    Chae Jeong Lim

    2015-01-01

    Full Text Available The primo-vascular system (PVS is a novel network identified in various animal tissues. However, the PVS in subcutaneous tissue has not been well identified. Here, we examined the putative PVS on the surface of abdominal subcutaneous tissue in rats. Hemacolor staining revealed dark blue threadlike structures consisting of nodes and vessels, which were frequently observed bundled with blood vessels. The structure was filled with various immune cells including mast cells and WBCs. In the structure, there were inner spaces (20–60 µm with low cellularity. Electron microscopy revealed a bundle structure and typical cytology common with the well-established organ surface PVS, which were different from those of the lymphatic vessel. Among several subcutaneous (sc PVS tissues identified on the rat abdominal space, the most outstanding was the scPVS aligned along the ventral midline. The distribution pattern of nodes and vessels in the scPVS closely resembled that of the conception vessel meridian and its acupoints. In conclusion, our results newly revealed that the PVS is present in the abdominal subcutaneous tissue layer and indicate that the scPVS tissues are closely correlated with acupuncture meridians. Our findings will help to characterize the PVS in the other superficial tissues and its physiological roles.

  6. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering

    Science.gov (United States)

    Samorezov, Julia E.; Alsberg, Eben

    2015-01-01

    Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719

  7. Electrospun nanofibers for neural tissue engineering

    Science.gov (United States)

    Xie, Jingwei; MacEwan, Matthew R.; Schwartz, Andrea G.; Xia, Younan

    2010-01-01

    Biodegradable nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. We begin with a brief discussion on the electrospinning of nanofibers and methods for controlling the structure, porosity, and alignment of the electrospun nanofibers. The methods include control of the nanoscale morphology and microscale alignment of the nanofibers, as well as the fabrication of macroscale, three-dimensional tubular structures. We then highlight recent studies that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this feature article is to provide valuable insights into methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.

  8. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  9. Synthetic biodegradable functional polymers for tissue engineering: a brief review.

    Science.gov (United States)

    BaoLin, Guo; Ma, Peter X

    2014-04-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.

  10. Osteoblasts and their applications in bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Rupani A

    2012-05-01

    Full Text Available Asha Rupani1, Richard Balint2, Sarah H Cartmell1,21Institute of Science and Technology in Medicine, Keele University, Hartshill, Stoke-on-Trent, UK; 2Materials Science Centre, The University of Manchester, Manchester, UKAbstract: Tissue engineering is an emerging therapy that offers a new solution to patients suffering from bone loss. It utilizes cells derived from such sources as a patient's own bone or bone marrow, which are laboratory-isolated, grown (so they multiply in number, and placed onto a degradable material, or scaffold, that has mechanical/chemical properties appropriate to the bone section that it is replacing. The cells plus the scaffold are then grown in a container, or bioreactor, which is necessary as it provides the correct environment required for the cells to proliferate, differentiate, and to produce extracellular matrix. The following review focuses on the use of osteoblasts for bone tissue engineering.Keywords: osteoblast, bone, tissue engineering, regenerative medicine, orthopaedic

  11. Current Concepts in Scaffolding for Bone Tissue Engineering.

    Science.gov (United States)

    Ghassemi, Toktam; Shahroodi, Azadeh; Ebrahimzadeh, Mohammad H; Mousavian, Alireza; Movaffagh, Jebraeel; Moradi, Ali

    2018-03-01

    Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bone tissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials and functional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissue engineering. While osteoconductive materials such as hydroxyapatite and tricalcium phosphate ceramics as well as some biodegradable polymers are suggested, much interest has recently focused on the use of osteoinductive materials like demineralized bone matrix or bone derivatives. However, physiochemical modifications in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, mineralization and osteogenic differentiation are required. This paper reviews studies on bone tissue engineering from the biomaterial point of view in scaffolding. Level of evidence: I.

  12. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model.

    Science.gov (United States)

    Ismail, Tarek; Osinga, Rik; Todorov, Atanas; Haumer, Alexander; Tchang, Laurent A; Epple, Christian; Allafi, Nima; Menzi, Nadia; Largo, René D; Kaempfen, Alexandre; Martin, Ivan; Schaefer, Dirk J; Scherberich, Arnaud

    2017-11-01

    Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This

  13. Outlines on nanotechnologies applied to bladder tissue engineering.

    Science.gov (United States)

    Alberti, C

    2012-01-01

    Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to

  14. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissues

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Thakur, Ashish; Pennisi, Christian Pablo

    2017-01-01

    , mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle......Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs...

  15. Physical non-viral gene delivery methods for tissue engineering.

    Science.gov (United States)

    Mellott, Adam J; Forrest, M Laird; Detamore, Michael S

    2013-03-01

    The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.

  16. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Saeid Kargozar

    2017-12-01

    Full Text Available Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers, in regards to repair and regenerate injured tissues of cardiac and pulmonary systems.

  17. Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering

    Science.gov (United States)

    Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.

    2009-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486

  18. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  19. An economic survey of the emerging tissue engineering industry.

    Science.gov (United States)

    Lysaght, M J; Nguy, N A; Sullivan, K

    1998-01-01

    The contemporary scope of worldwide tissue engineering research and development was estimated by totaling the relevant annual spending and other economic parameters of firms involved the field. Operating expenses allocated to tissue engineering in 1997 exceed $450 million and fund the activities of nearly 2,500 scientists and support personnel. Growth rate is 22.5% per annum. Most activity is centered in the United States. Government spending in this field represents investment and valuation represents a remarkable act of faith in the future of a technology yet to produce its first significant revenue-generating product.

  20. Peptide based hydrogels for bone tissue engineering

    International Nuclear Information System (INIS)

    Ranny, H.R.; Schneider, J.P.

    2007-01-01

    Peptide hydrogels are potentially ideal scaffolds for tissue repair and regeneration due to their ability to mimic natural extra cellular matrix. The 20 amino acid peptide HPL8 (H2N- VKVKVKVKVDPP TKVKVKVKV-CONH2), has been shown to fold and self-assemble into a rigid hydrogel based on Environmental cues such as pH, salt, and temperature. Due to its environmental responsiveness, hydrogel assembly can be induced by cell culture media, allowing for 3D encapsulation of osteogenic cells. Initially, 20 cultures of MC3T3 cells proved that the hydrogel is nontoxic and sustains cellular attachment in the absence of serum proteins without altering the physical properties of the hydrogel. The cell-material structure relationship in normal and pathological conditions was further investigated by 3D encapsulation. Cell were viable for 3 weeks and grew in clonogenic spheroids. Characterization of the proliferation, differentiation and constitutive expression of various osteoblastic markers was performed using spectrophotometric methods. The well-defined, fibrillar nanostructure of the hydrogel directs the attachment and attachment and growth of osteoblast cells and dictates the mineralization of hydroxyapatite in a manner similar to bone. This study will enable control over the interaction of cellular systems with the peptide hydrogel with designs for biomedical applications of bone repair. (author)

  1. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  2. Cardiac Tissue Slice Transplantation as a Model to Assess Tissue-Engineered Graft Thickness, Survival, and Function

    Science.gov (United States)

    Riegler, Johannes; Gillich, Astrid; Shen, Qi; Gold, Joseph D.; Wu, Joseph C.

    2015-01-01

    Background Cell therapies offer the potential to improve cardiac function after myocardial infarction. Although injection of single-cell suspensions has proven safe, cell retention and survival rates are low. Tissue-engineered grafts allow cell delivery with minimal initial cell loss and mechanical support to the heart. However, graft performance cannot be easily compared, and optimal construct thickness, vascularization, and survival kinetics are unknown. Methods and Results Cardiac tissue slices (CTS) were generated by sectioning mouse hearts (n=40) expressing firefly luciferase and green fluorescent protein into slices of defined size and thickness using a vibrating blade microtome. Bioluminescence imaging of CTS transplanted onto hearts of immunodeficient mice demonstrated survival of ≤30% of transplanted cells. Cardiac slice perfusion was re-established within 3 days, likely through anastomosis of pre-existing vessels with the host vasculature and invasion of vessels from the host. Immunofluorescence showed a peak in cell death 3 days after transplantation and a gradual decline thereafter. MRI revealed preservation of contractile function and an improved ejection fraction 1 month after transplantation of CTS (28±2% CTS versus 22±2% control; P=0.05). Importantly, this effect was specific to CTS because transplantation of skeletal muscle tissue slices led to faster dilative remodeling and higher animal mortality. Conclusions In summary, this is the first study to use CTS as a benchmark to validate and model tissue-engineered graft studies. CTS transplantation improved cell survival, established reperfusion, and enhanced cardiac function after myocardial infarction. These findings also confirm that dilative remodeling can be attenuated by topical transplantation of CTS but not skeletal muscle tissue grafts. PMID:25200059

  3. Outlook for tissue engineering of the tympanic membrane

    Directory of Open Access Journals (Sweden)

    Maria A. Villar-Fernandez

    2015-01-01

    Full Text Available Tympanic membrane perforation is a common problem leading to hearing loss. Despite the autoregenerative activity of the eardrum, chronic perforations require surgery using different materials, from autologous tissue - fascia, cartilage, fat or perichondrium - to paper patch. However, both, surgical procedures (myringoplasty or tympanoplasty and the materials employed, have a number of limitations. Therefore, the advances in this field are incorporating the principles of tissue engineering, which includes the use of scaffolds, biomolecules and cells. This discipline allows the development of new biocompatible materials that reproduce the structure and mechanical properties of the native tympanic membrane, while it seeks to implement new therapeutic approaches that can be performed in an outpatient setting. Moreover, the creation of an artificial tympanic membrane commercially available would reduce the duration of the surgery and costs. The present review analyzes the current treatment of tympanic perforations and examines the techniques of tissue engineering, either to develop bioartificial constructs, or for tympanic regeneration by using different scaffold materials, bioactive molecules and cells. Finally, it considers the aspects regarding the design of scaffolds, release of biomolecules and use of cells that must be taken into account in the tissue engineering of the eardrum. The possibility of developing new biomaterials, as well as constructs commercially available, makes tissue engineering a discipline with great potential, capable of overcoming the drawbacks of current surgical procedures.

  4. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    Science.gov (United States)

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  5. Cryopreservation of Cell/Scaffold Tissue-Engineered Constructs

    Science.gov (United States)

    Costa, Pedro F.; Dias, Ana F.; Reis, Rui L.

    2012-01-01

    The aim of this work was to study the effect of cryopreservation over the functionality of tissue-engineered constructs, analyzing the survival and viability of cells seeded, cultured, and cryopreserved onto 3D scaffolds. Further, it also evaluated the effect of cryopreservation over the properties of the scaffold material itself since these are critical for the engineering of most tissues and in particular, tissues such as bone. For this purpose, porous scaffolds, namely fiber meshes based on a starch and poly(caprolactone) blend were seeded with goat bone marrow stem cells (GBMSCs) and cryopreserved for 7 days. Discs of the same material seeded with GBMSCs were also used as controls. After this period, these samples were analyzed and compared to samples collected before the cryopreservation process. The obtained results demonstrate that it is possible to maintain cell viability and scaffolds properties upon cryopreservation of tissue-engineered constructs based on starch scaffolds and goat bone marrow mesenchymal cells using standard cryopreservation methods. In addition, the outcomes of this study suggest that the greater porosity and interconnectivity of scaffolds favor the retention of cellular content and cellular viability during cryopreservation processes, when compared with nonporous discs. These findings indicate that it might be possible to prepare off-the-shelf engineered tissue substitutes and preserve them to be immediately available upon request for patients' needs. PMID:22676448

  6. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications.

    Science.gov (United States)

    Misra, Superb K; Valappil, Sabeel P; Roy, Ipsita; Boccaccini, Aldo R

    2006-08-01

    Polyhydroxyalkanoates are emerging as a class of biodegradable polymers for applications in tissue engineering. Members of the polyhydroxyalkanoates family encompass a wide variety of materials, from hard and brittle materials to soft and elastomeric. Over the years, efforts have been made to extend the group of polyhydroxyalkanoates and to investigate their use in numerous biomedical applications, such as sutures, cardiovascular patches, wound dressings, guided tissue repair/regeneration devices, and tissue engineering scaffolds. Along with the development of polyhydroxyalkanoates, researchers have looked into the possibility of designing composites in combination with inorganic phases to further improve the mechanical properties, rate of degradation, and also impart bioactivity. Poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) are some of the polymers which have been studied extensively to fabricate composites in combination with hydroxyapatite, bioactive glass, and glass-ceramic fillers or coatings. This paper reviews international research carried out toward development of polyhydroxyalkanoates/inorganic phase composites in terms of systems investigated, microstructures, properties achieved, and applications, with special focus on tissue engineering scaffolds. A comparison between different composite systems developed in the past few years is presented. The paper also addresses the prospect of potential further development of polyhydroxyalkanoates/inorganic phase composites with optimized microstructure and properties for improved tissue engineering scaffolds.

  7. [Tissue engineering of urinary bladder using acellular matrix].

    Science.gov (United States)

    Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M

    2017-04-01

    Tissue engineering has become a new promising strategy for repairing damaged organs of the urinary system, including the bladder. The basic idea of tissue engineering is to integrate cellular technology and advanced bio-compatible materials to replace or repair tissues and organs. of the study is the objective reflection of the current trends and advances in tissue engineering of the bladder using acellular matrix through a systematic search of preclinical and clinical studies of interest. Relevant studies, including those on methods of tissue engineering of urinary bladder, was retrieved from multiple databases, including Scopus, Web of Science, PubMed, Embase. The reference lists of the retrieved review articles were analyzed for the presence of the missing relevant publications. In addition, a manual search for registered clinical trials was conducted in clinicaltrials.gov. Following the above search strategy, a total of 77 eligible studies were selected for further analysis. Studies differed in the types of animal models, supporting structures, cells and growth factors. Among those, studies using cell-free matrix were selected for a more detailed analysis. Partial restoration of urothelium layer was observed in most studies where acellular grafts were used for cystoplasty, but no the growth of the muscle layer was observed. This is the main reason why cellular structures are more commonly used in clinical practice.

  8. Carbohydrate-related genes and cell wall biosynthesis in vascular tissues of loblolly pine (Pinus taeda).

    Science.gov (United States)

    Nairn, Campbell J; Lennon, Denise M; Wood-Jones, Alicia; Nairn, Alison V; Dean, Jeffrey F D

    2008-07-01

    Loblolly pine (Pinus taeda L.), the most widely planted tree species in the United States, is an important source of wood and wood fibers for a multitude of consumer products. Wood fibers are primarily composed of secondary cell walls, and cellulose, hemicelluloses and lignin are major components of wood. Fiber morphology and cell wall composition are important determinants of wood properties. We used comparative genomics to identify putative genes for cellulose and hemicellulose synthesis in loblolly pine that are homologous to genes implicated in cell wall synthesis in angiosperms. Sequences encoding putative secondary cell wall cellulose synthase genes, cellulose synthase-like genes, a membrane-bound endoglucanase gene, a sucrose synthase gene, a UDP-glucose pyrophosphorylase gene and GDP-mannose pyrophosphorylase genes were identified in expressed sequence tag (EST) collections from loblolly pine. Full-length coding sequences were obtained from cDNA clones isolated from a library constructed from developing xylem. Phylogenetic relationships between the genes from loblolly pine and angiosperm taxa were examined and transcriptional profiling in vascular tissues was conducted by real-time quantitative, reverse transcriptase-polymerase chain reaction. The putative cell wall synthesis genes were expressed at high levels in vascular tissues and a subset was differentially regulated in xylem and phloem tissues. Inferred phylogenetic relationships and expression patterns for the genes from loblolly pine were consistent with roles in synthesis of complex carbohydrates of the cell wall. These studies suggest functional conservation of homologous wood formation genes in gymnosperm and angiosperm taxa.

  9. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  10. Bioreactors as Engineering Support to Treat Cardiac Muscle and Vascular Disease

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2013-01-01

    Full Text Available Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.

  11. Repair of osteochondral defects with allogeneic tissue engineered cartilage implants.

    Science.gov (United States)

    Schreiber, R E; Ilten-Kirby, B M; Dunkelman, N S; Symons, K T; Rekettye, L M; Willoughby, J; Ratcliffe, A

    1999-10-01

    The objective of this study was to evaluate the effect of allogeneic tissue engineered cartilage implants on healing of osteochondral defects. Rabbit chondrocytes were cultured in monolayer, then seeded onto biodegradable, three-dimensional polyglycolic acid meshes. Cartilage constructs were cultured hydrodynamically to yield tissue with relatively more (mature) or less (immature) hyalinelike cartilage, as compared with adult rabbit articular cartilage. Osteochondral defects in the patellar grooves of both stifle joints either were left untreated or implanted with allogeneic tissue engineered cartilage. Histologic samples from in and around the defect sites were examined 3, 6, 9, and 12, and 24 months after surgery. By 9 months after surgery, defects sites treated with cartilage implants contained significantly greater amounts of hyalinelike cartilage with high levels of proteoglycan, and had a smooth, nonfibrillated articular surface as compared to untreated defects. In contrast, the repair tissue formed in untreated defects had fibrillated articular surfaces, significant amounts of fibrocartilage, and negligible proteoglycan. These differences between treated and untreated defects persisted through 24 months after surgery. The results of this study suggest that the treatment of osteochondral lesions with allogenic tissue engineered cartilage implants may lead to superior repair tissue than that found in untreated osteochondral lesions.

  12. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves.

    Science.gov (United States)

    Dijkman, Petra E; Driessen-Mol, Anita; de Heer, Linda M; Kluin, Jolanda; van Herwerden, Lex A; Odermatt, Berhard; Baaijens, Frank P T; Hoerstrup, Simon P

    2012-09-01

    Living tissue-engineered heart valves (TEHVs) based on rapidly degrading scaffolds and autologous cells might overcome the limitations of today's valve substitutes. Following minimally invasive trans-apical implantation into an ovine model, TEHVs showed adequate in-vivo functionality, but a thickening of the leaflets was observed. In order to evaluate the impact of the substantial tissue deformations of TEHVs associated with the crimping procedure during minimally invasive delivery, trans-apical and conventional implantation technologies were compared in an ovine model. Trileaflet heart valves (n=11) based on PGA/P4HB-scaffolds, integrated into self-expandable stents, were engineered from autologous ovine vascular-derived cells. After in-vitro culture, the TEHVs were either implanted surgically (n=5), replacing the native pulmonary valve, or delivered trans-apically (n=6) into the orthotopic pulmonary valve position. In-vivo functionality was assessed by echocardiography and by angiography for up to eight weeks. The tissue compositions of the explanted TEHVs and corresponding control valves were analyzed. TEHV implantations were successful in all cases. Independent of the implantation method, the explants demonstrated a comparable layered tissue formation with thickening and deposited fibrous layers. Active remodeling of these layers was evident in the explants, as indicated by vascularization of the walls, invasion of the host cells, and the formation of a luminal endothelial layer on the TEHV leaflets. This direct comparison of trans-apical and conventional surgical implantation techniques showed that crimping had no adverse effect on the integrity or functional outcome of TEHVs. This suggests that a thickening of TEHVs in vivo is neither caused by nor enhanced by the crimping procedure, but represents a functional tissue remodeling process.

  13. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  14. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    Science.gov (United States)

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  15. Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction.

    Science.gov (United States)

    Lucaciu, Ondine; Băciuţ, Mihaela; Băciuţ, G; Câmpian, R; Soriţău, Olga; Bran, S; Crişan, B; Crişan, Liana

    2010-01-01

    This research was developed in order to demonstrate the tissue engineering method as an alternative to conventional methods for bone reconstruction, in order to overcome the frequent failures of alloplastic commercial biomaterials, allografts and autografts. Tissue engineering is an in vitro method used to obtain cell based osteoinductive bone grafts. This study evaluated the feasibility of creating tissue-engineered bone using mesenchymal cells seeded on a scaffold obtained from the deciduous red deer antler. We have chosen mesenchymal stem cells because they are easy to obtain, capable to differentiate into cells of mesenchymal origin (osteoblasts) and to produce tissue such as bone. As scaffold, we have chosen the red deer antler because it has a high level of porosity. We conducted a case control study, on three groups of mice type CD1--two study groups (n=20) and a control group (n=20). For the study groups, we obtained bone grafts through tissue engineering, using mesenchymal stem cells seeded on the scaffold made of deciduous red deer antler. Bone defects were surgically induced on the left parietal bone of all subjects. In the control group, we grafted the bone defects with commercial biomaterials (OsteoSet, Wright Medical Technology, Inc., Arlington, Federal USA). Subjects were sacrificed at two and four months, the healing process was morphologically and histologically evaluated using descriptive histology and the golden standard - histological scoring. The grafts obtained in vivo through tissue engineering using adult stem cell, seeded on the scaffold obtained from the red deer antler using osteogenic medium have proven their osteogenic properties.

  16. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK

    2009-01-01

    growth of human keratinocyte stem cells capable of producing epithelia for large-scale grafting in burns and maintain long-term functionality as a self-renewing tissue. The normal functioning of such an in vitro constructed graft under long-term artificial growth conditions is limited by the difficulties of maintaining the epidermal stem cell compartment. An apparent answer to this problem of stem cell depletion during autograft preparation would be to start with a pure population of progenitor stem cells and derive sustainable autograft from them. We have been aiming to this solution and currently attempting to isolate a pool of epidermal progenitor cells using Mebiol gel, which is a Thermo-Reversible Gelation polymer and was shown by others to support the growth of multi-potent skin-derived epithelial progenitor-1 cells. Additionally, the usefulness of Mebiol gel in maintaining epidermal stem cell compartment without FBS and/or animal origin feeder cells is being investigated by our group.

  17. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    Science.gov (United States)

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering

  18. The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    KAUST Repository

    O’Dea, R. D.

    2012-09-18

    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation. In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (1) differential interactions between cells and the supporting scaffold and their associated ECM, (2) scaffold degradation, and (3) mechanotransduction-regulated cell proliferation and ECM deposition. Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of

  19. Periodontal tissue engineering strategies based on nonoral stem cells.

    Science.gov (United States)

    Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima

    2014-01-01

    Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  20. Tissue engineering with the aid of inkjet printers.

    Science.gov (United States)

    Campbell, Phil G; Weiss, Lee E

    2007-08-01

    Tissue engineering holds the promise to create revolutionary new therapies for tissue and organ regeneration. This emerging field is extremely broad and eclectic in its various approaches. However, all strategies being developed are based on the therapeutic delivery of one or more of the following types of tissue building-blocks: cells; extracellular matrices or scaffolds; and hormones or other signaling molecules. So far, most work has used essentially homogenous combinations of these components, with subsequent self-organization to impart some level of tissue functionality occurring during in vitro culture or after transplantation. Emerging 'bioprinting' methodologies are being investigated to create tissue engineered constructs initially with more defined spatial organization, motivated by the hypothesis that biomimetic patterns can achieve improved therapeutic outcomes. Bioprinting based on inkjet and related printing technologies can be used to fabricate persistent biomimetic patterns that can be used both to study the underlying biology of tissue regeneration and potentially be translated into effective clinical therapies. However, recapitulating nature at even the most primitive levels such that printed cells, extracellular matrices and hormones become integrated into hierarchical, spatially organized three-dimensional tissue structures with appropriate functionality remains a significant challenge.

  1. A review of rapid prototyping techniques for tissue engineering purposes

    NARCIS (Netherlands)

    Peltola, Sanna M.; Melchels, Ferry P. W.; Grijpma, Dirk W.; Kellomaki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of

  2. Current opportunities and challenges in skeletal muscle tissue engineering

    NARCIS (Netherlands)

    Koning, Merel; Harmsen, Martin C; van Luyn, Marja J A; Werker, Paul M N

    The purpose of this article is to give a concise review of the current state of the art in tissue engineering (TE) of skeletal muscle and the opportunities and challenges for future clinical applicability. The endogenous progenitor cells of skeletal muscle, i.e. satellite cells, show a high

  3. Mechanical cues in orofacial tissue engineering and regenerative medicine

    NARCIS (Netherlands)

    Brouwer, K.M.; Lundvig, D.M.S.; Middelkoop, E.; Wagener, F.A.D.T.G.; Hoff, J.W. Von den

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of

  4. Impedance-based monitoring for tissue engineering applications

    DEFF Research Database (Denmark)

    Canali, Chiara; Heiskanen, Arto; Martinsen, Ø.G.

    2015-01-01

    Impedance is a promising technique for sensing the overall process of tissue engineering. Different electrode configurations can be used to characterize the scaffold that supports cell organization in terms of hydrogel polymerization and degree of porosity, monitoring cell loading, cell prolifera...

  5. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes.

    Science.gov (United States)

    Reimer, Jay M; Syedain, Zeeshan H; Haynie, Bee H T; Tranquillo, Robert T

    2015-09-01

    Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous matrix, which was subsequently decellularized. Previously, these engineered tubes became extensively recellularized following implantation into the sheep femoral artery. Thus, a tubular valve made from these tubes may be amenable to recellularization and, ideally, somatic growth. The suture line pattern generated three equi-spaced leaflets in the inner tube, which collapsed inward when exposed to back pressure, per tubular valve design. Valve testing was performed in a pulse duplicator system equipped with a secondary flow loop to allow for root distention. All tissue-engineered valves exhibited full leaflet opening and closing, minimal regurgitation (Valve performance was maintained under various trans-root pressure gradients and no tissue damage was evident after 2 million cycles of fatigue testing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An overview of inverted colloidal crystal systems for tissue engineering.

    Science.gov (United States)

    João, Carlos Filipe C; Vasconcelos, Joana Marta; Silva, Jorge Carvalho; Borges, João Paulo

    2014-10-01

    Scaffolding is at the heart of tissue engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a tissue engineering application is somewhat limited. Inverted colloidal crystals (ICCs) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packed long-range crystals. The literature on ICC systems has grown enormously in the past 20 years, driven by the need to find organized macroporous structures. Although replicating the structure of packed colloidal crystals (CCs) into solid structures has produced a wide range of advanced materials (e.g., photonic crystals, catalysts, and membranes) only in recent years have ICCs been evaluated as devices for medical/pharmaceutical and tissue engineering applications. The geometry, size, pore density, and interconnectivity are features of the scaffold that strongly affect the cell environment with consequences on cell adhesion, proliferation, and differentiation. ICC scaffolds are highly geometrically ordered structures with increased porosity and connectivity, which enhances oxygen and nutrient diffusion, providing optimum cellular development. In comparison to other types of scaffolds, ICCs have three major unique features: the isotropic three-dimensional environment, comprising highly uniform and size-controllable pores, and the presence of windows connecting adjacent pores. Thus far, this is the only technique that guarantees these features with a long-range order, between a few nanometers and thousands of micrometers. In this review, we present the current development status of ICC scaffolds for tissue engineering applications.

  7. The importance of new processing techniques in tissue engineering

    Science.gov (United States)

    Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1996-01-01

    The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.

  8. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct.

    Science.gov (United States)

    Rouwkema, Jeroen; de Boer, Jan; Van Blitterswijk, Clemens A

    2006-09-01

    To engineer tissues with clinically relevant dimensions, one must overcome the challenge of rapidly creating functional blood vessels to supply cells with oxygen and nutrients and to remove waste products. We tested the hypothesis that endothelial cells, cocultured with osteoprogenitor cells, can organize into a prevascular network in vitro. When cultured in a spheroid coculture model with human mesenchymal stem cells, human umbilical vein endothelial cells (HUVECs) form a 3-dimensional prevascular network within 10 days of in vitro culture. The formation of the prevascular network was promoted by seeding 2% or fewer HUVECs. Moreover, the addition of endothelial cells resulted in a 4-fold upregulation of the osteogenic marker alkaline phosphatase. The addition of mouse embryonic fibroblasts did not result in stabilization of the prevascular network. Upon implantation, the prevascular network developed further and structures including lumen could be seen regularly. However, anastomosis with the host vasculature was limited. We conclude that endothelial cells are able to form a 3-dimensional (3D) prevascular network in vitro in a bone tissue engineering setting. This finding is a strong indication that in vitro prevascularization is a promising strategy to improve implant vascularization in bone tissue engineering.

  9. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Bing Song

    2016-01-01

    Full Text Available Dental pulp stem cells (DPSCs are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1. After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.

  10. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering.

    Science.gov (United States)

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.

  11. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement.

    Science.gov (United States)

    Moreira, Ricardo; Neusser, Christine; Kruse, Magnus; Mulderrig, Shane; Wolf, Frederic; Spillner, Jan; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra

    2016-08-01

    The mechanical properties of tissue-engineered heart valves still need to be improved to enable their implantation in the systemic circulation. The aim of this study is to develop a tissue-engineered valve for the aortic position - the BioTexValve - by exploiting a bio-inspired composite textile scaffold to confer native-like mechanical strength and anisotropy to the leaflets. This is achieved by multifilament fibers arranged similarly to the collagen bundles in the native aortic leaflet, fixed by a thin electrospun layer directly deposited on the pattern. The textile-based leaflets are positioned into a 3D mould where the components to form a fibrin gel containing human vascular smooth muscle cells are introduced. Upon fibrin polymerization, a complete valve is obtained. After 21 d of maturation by static and dynamic stimulation in a custom-made bioreactor, the valve shows excellent functionality under aortic pressure and flow conditions, as demonstrated by hydrodynamic tests performed according to ISO standards in a mock circulation system. The leaflets possess remarkable burst strength (1086 mmHg) while remaining pliable; pronounced extracellular matrix production is revealed by immunohistochemistry and biochemical assay. This study demonstrates the potential of bio-inspired textile-reinforcement for the fabrication of functional tissue-engineered heart valves for the aortic position. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Management of Vascular Anomalies and Related Conditions Using Suction-Assisted Tissue Removal.

    Science.gov (United States)

    Couto, Javier A; Maclellan, Reid A; Greene, Arin K

    2015-10-01

    Vascular anomalies and related conditions cause overgrowth of tissues. The purpose of this study was to determine the efficacy and safety of liposuction techniques for pediatric overgrowth diseases. Patients treated between 2007 and 2015 who had follow-up were reviewed. Seventeen patients were included; the median age was 12.7 years. The causes of overgrowth included infiltrating lipomatosis (n = 7), capillary malformation (n = 6), hemihypertrophy (n = 1), infantile hemangioma (n = 1), lipedema (n = 1), and macrocephaly-capillary malformation (n = 1). Forty-seven percent had enlargement of an extremity, 41 percent had facial hypertrophy, and 12 percent had expansion of the trunk. All subjects had a reduction in the size of the overgrown area and improved quality of life. Suction-assisted tissue removal is an effective technique for reducing the volume of the subcutaneous compartment for patients with pediatric overgrowth diseases. Therapeutic, IV.

  13. Additive manufacturing techniques for the production of tissue engineering constructs.

    Science.gov (United States)

    Mota, Carlos; Puppi, Dario; Chiellini, Federica; Chiellini, Emo

    2015-03-01

    'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt-extrusion-based techniques, solution/slurry extrusion-based techniques, and tissue and organ printing) employed for the development of tissue-engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  15. Nanotopography-guided tissue engineering and regenerative medicine☆

    Science.gov (United States)

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2017-01-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841

  16. Donor-recipient human leukocyte antigen matching practices in vascularized composite tissue allotransplantation: a survey of major transplantation centers.

    Science.gov (United States)

    Ashvetiya, Tamara; Mundinger, Gerhard S; Kukuruga, Debra; Bojovic, Branko; Christy, Michael R; Dorafshar, Amir H; Rodriguez, Eduardo D

    2014-07-01

    Vascularized composite tissue allotransplant recipients are often highly sensitized to human leukocyte antigens because of multiple prior blood transfusions and other reconstructive operations. The use of peripheral blood obtained from dead donors for crossmatching may be insufficient because of life support measures taken for the donor before donation. No study has been published investigating human leukocyte antigen matching practices in this field. A survey addressing human leukocyte antigen crossmatching methods was generated and sent to 22 vascularized composite tissue allotransplantation centers with active protocols worldwide. Results were compiled by center and compared using two-tailed t tests. Twenty of 22 centers (91 percent) responded to the survey. Peripheral blood was the most commonly reported donor sample for vascularized composite tissue allotransplant crossmatching [78 percent of centers (n=14)], with only 22 percent (n=4) using lymph nodes. However, 56 percent of the 18 centers (n=10) that had performed vascularized composite tissue allotransplantation reported that they harvested lymph nodes for crossmatching. Of responding individuals, 62.5 percent (10 of 16 individuals) felt that lymph nodes were the best donor sample for crossmatching. A slight majority of vascularized composite tissue allotransplant centers that have performed clinical transplants have used lymph nodes for human leukocyte antigen matching, and centers appear to be divided on the utility of lymph node harvest. The use of lymph nodes may offer a number of potential benefits. This study highlights the need for institutional review board-approved crossmatching protocols specific to vascularized composite tissue allotransplantation, and the need for global databases for sharing of vascularized composite tissue allotransplantation experiences.

  17. High-resolution vascular tissue characterization in mice using 55 MHz ultrasound hybrid imaging

    Science.gov (United States)

    Mahmoud, Ahmed M.; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B.; Martin, Karen H.; Mustafa, S. Jamal; Mukdadi, Osama M.

    2012-01-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (TIB), time variance (Tvar), time entropy (TE), frequency integrated backscatter (FIB), wavelet root mean square value (Wrms), and wavelet integrated backscatter (WIB). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A1 adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency = 55 MHz) and commercial array (center frequency = 40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of −10.11 ± 1.92 dB, −12.13 ± 2.13 dB, −7.54 ± 1.45 dB, −5.10 ± 1.06 dB, −5.25 ± 0.94 dB, and −10.23 ± 2.12 dB in TIB, Tvar, TE, FIB, Wrms, WIB hybrid images (n = 10, p ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into

  18. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.

    Science.gov (United States)

    Manoukian, Ohan S; Matta, Rita; Letendre, Justin; Collins, Paige; Mazzocca, Augustus D; Kumbar, Sangamesh G

    2017-01-01

    Electrospinning has emerged as a simple, elegant, and scalable technique that can be used to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetic ones have been successfully electrospun into nanofiber matrices for many biomedical applications. Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft tissues, including connective tissues, such as skin, ligament, and tendon, as well as nonconnective ones, such as vascular, muscle, and neural tissue. Electrospun nanofiber matrices show morphological similarities to the natural extracellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratios, high porosities, and variable pore-size distributions. The physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters so that they meet the requirements of a specific application.Nanostructured implants show improved biological performance over bulk materials in aspects of cellular infiltration and in vivo integration, taking advantage of unique quantum, physical, and atomic properties. Furthermore, the topographies of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical in engineering complex functional tissues with improved biocompatibility and functional performance. This chapter discusses the use of the electrospinning technique in the fabrication of polymer nanofiber scaffolds utilized for the regeneration of soft tissues. Selected scaffolds will be seeded with human mesenchymal stem cells (hMSCs), imaged using scanning electron and confocal microscopy, and then evaluated for their mechanical properties as well as their abilities to promote cell adhesion

  19. Biomechanical properties of native and tissue engineered heart valve constructs.

    Science.gov (United States)

    Hasan, Anwarul; Ragaert, Kim; Swieszkowski, Wojciech; Selimović, Seila; Paul, Arghya; Camci-Unal, Gulden; Mofrad, Mohammad R K; Khademhosseini, Ali

    2014-06-27

    Due to the increasing number of heart valve diseases, there is an urgent clinical need for off-the-shelf tissue engineered heart valves. While significant progress has been made toward improving the design and performance of both mechanical and tissue engineered heart valves (TEHVs), a human implantable, functional, and viable TEHV has remained elusive. In animal studies so far, the implanted TEHVs have failed to survive more than a few months after transplantation due to insufficient mechanical properties. Therefore, the success of future heart valve tissue engineering approaches depends on the ability of the TEHV to mimic and maintain the functional and mechanical properties of the native heart valves. However, aside from some tensile quasistatic data and flexural or bending properties, detailed mechanical properties such as dynamic fatigue, creep behavior, and viscoelastic properties of heart valves are still poorly understood. The need for better understanding and more detailed characterization of mechanical properties of tissue engineered, as well as native heart valve constructs is thus evident. In the current review we aim to present an overview of the current understanding of the mechanical properties of human and common animal model heart valves. The relevant data on both native and tissue engineered heart valve constructs have been compiled and analyzed to help in defining the target ranges for mechanical properties of TEHV constructs, particularly for the aortic and the pulmonary valves. We conclude with a summary of perspectives on the future work on better understanding of the mechanical properties of TEHV constructs. © 2013 Published by Elsevier Ltd.

  20. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  1. Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation.

    Science.gov (United States)

    Ilegems, Michael; Douet, Véronique; Meylan-Bettex, Marlyse; Uyttewaal, Magalie; Brand, Lukas; Bowman, John L; Stieger, Pia A

    2010-03-01

    Class III HD-ZIP and KANADI gene family members have complementary expression patterns in the vasculature and their gain-of-function and loss-of-function mutants have complementary vascular phenotypes. This suggests that members of the two gene families are involved in the establishment of the spatial arrangement of phloem, cambium and xylem. In this study, we have investigated the role of these two gene families in vascular tissue differentiation, in particular their interactions with the plant hormone auxin. We have analyzed the vasculature of plants that have altered expression levels of Class III HD-ZIP and KANADI transcription factors in provascular cells. Removal of either KANADI or Class III HD-ZIP expression in procambium cells led to a wider distribution of auxin in internal tissues, to an excess of procambium cell recruitment and to increased cambium activity. Ectopic expression of KANADI1 in provascular cells inhibited procambium cell recruitment due to negative effects of KANADI1 on expression and polar localization of the auxin efflux-associated protein PIN-FORMED1. Ectopic expression of Class III HD-ZIP genes promoted xylem differentiation. We propose that Class III HD-ZIP and KANADI transcription factors control cambium activity: KANADI proteins by acting on auxin transport, and Class III HD-ZIP proteins by promoting axial cell elongation and xylem differentiation.

  2. A Method for Combined Retinal Vascular and Tissue Oxygen Tension Imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Tan, Michael R; Blair, Norman P; Shahidi, Mahnaz

    2017-09-06

    The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO 2 ) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO 2 ) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO 2 ) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO 2 and tPO 2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO 2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.

  3. Suitability of Different Natural and Synthetic Biomaterials for Dental Pulp Tissue Engineering.

    Science.gov (United States)

    Galler, Kerstin M; Brandl, Ferdinand P; Kirchhof, Susanne; Widbiller, Matthias; Eidt, Andreas; Buchalla, Wolfgang; Göpferich, Achim; Schmalz, Gottfried

    2018-02-01

    Dental pulp tissue engineering is possible after insertion of pulpal stem cells combined with a scaffold into empty root canals. Commonly used biomaterials are collagen or poly(lactic) acid, which are either difficult to modify or to insert into such a narrow space. New hydrogel scaffolds with bioactive, specifically tailored functions could optimize the conditions for this approach. Different synthetic and natural hydrogels were tested for their suitability to engineer dental pulp. Two functionalized modifications of polyethylene glycol were developed in this study and compared to a self-assembling peptide, as well as to collagen and fibrin. Cell viability of dental pulp stem cells in test materials was assessed over two weeks. Cells in selected test materials laden with dentin-derived growth factors were inserted into human tooth roots and implanted subcutaneously into immunocompromised mice. In vitro cell culture exhibited distinct differences between scaffold types, where viability was significantly higher in natural compared to synthetic materials. In vivo experiments showed considerable differences regarding scaffold degradation, soft tissue formation, vascularization, and odontoblast-like cell differentiation. Fibrin appeared most suitable to enable generation of a pulp-like tissue and differentiation of cells into odontoblasts at the cell-dentin interface. In conclusion, natural materials, especially fibrin, proved to be superior compared to synthetic scaffolds regarding cell viability and dental pulp-like tissue formation.

  4. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    Science.gov (United States)

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  5. Combination of biochemical and mechanical cues for tendon tissue engineering.

    Science.gov (United States)

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Construction of vascular tissues with macro-porous nano-fibrous scaffolds and smooth muscle cells enriched from differentiated embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiang Hu

    Full Text Available Vascular smooth muscle cells (SMCs have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To address these problems, SMCs were enriched from retinoic acid induced mouse ESCs with LacZ genetic labeling under the control of SM22α promoter as the positive sorting marker in the present study. The sorted SMCs were characterized and then cultured on three-dimensional macro-porous nano-fibrous scaffolds in vitro or implanted subcutaneously into nude mice after being seeded on the scaffolds. Our data showed that the LacZ staining, which reflected the corresponding SMC marker SM22α expression level, was efficient as a positive selection marker to dramatically enrich SMCs and eliminate other cell types. After the sorted cells were seeded into the three-dimensional nano-fibrous scaffolds, continuous retinoic acid treatment further enhanced the SMC marker gene expression level while inhibited pluripotent maker gene expression level during the in vitro culture. Meanwhile, after being implanted subcutaneously into nude mice, the implanted cells maintained the positive LacZ staining within the constructs and no teratoma formation was observed. In conclusion, our results demonstrated the potential of SMCs derived from ESCs as a promising cell source for therapeutic vascular tissue engineering and disease model applications.

  7. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Objectives: To investigate FDG uptake on the sites of supraclavicular region (SR) and the lung hilum (LH) and find out the exact tissues of the uptake. Methods: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and EH. From September 2002 to March 2003, 147 consecutive clinical patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in the sites of SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Results: Of 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations, the positive rates were 2.1% and 11.3 % for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years,3.4%) showed abnormal LH FDG uptake, which were definitely localized in the vascular structure of the lung hilum by CT Conclusion: Co-registered PET/CT imaging shows that the FDG uptake been well known in the SR and LH regions are not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were

  8. Creating tissues from textiles: scalable nonwoven manufacturing techniques for fabrication of tissue engineering scaffolds.

    Science.gov (United States)

    Tuin, S A; Pourdeyhimi, B; Loboa, E G

    2016-02-23

    Electrospun nonwovens have been used extensively for tissue engineering applications due to their inherent similarities with respect to fibre size and morphology to that of native extracellular matrix (ECM). However, fabrication of large scaffold constructs is time consuming, may require harsh organic solvents, and often results in mechanical properties inferior to the tissue being treated. In order to translate nonwoven based tissue engineering scaffold strategies to clinical use, a high throughput, repeatable, scalable, and economic manufacturing process is needed. We suggest that nonwoven industry standard high throughput manufacturing techniques (meltblowing, spunbond, and carding) can meet this need. In this study, meltblown, spunbond and carded poly(lactic acid) (PLA) nonwovens were evaluated as tissue engineering scaffolds using human adipose derived stem cells (hASC) and compared to electrospun nonwovens. Scaffolds were seeded with hASC and viability, proliferation, and differentiation were evaluated over the course of 3 weeks. We found that nonwovens manufactured via these industry standard, commercially relevant manufacturing techniques were capable of supporting hASC attachment, proliferation, and both adipogenic and osteogenic differentiation of hASC, making them promising candidates for commercialization and translation of nonwoven scaffold based tissue engineering strategies.

  9. Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues

    Science.gov (United States)

    Gromnicova, Radka; Kaya, Mehmet; Romero, Ignacio A.; Williams, Phil; Satchell, Simon; Sharrack, Basil; Male, David

    2016-01-01

    The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport. PMID:27560685

  10. Structure and vascular tissue expression of duplicated TERMINAL EAR1-like paralogues in poplar.

    Science.gov (United States)

    Charon, Céline; Vivancos, Julien; Mazubert, Christelle; Paquet, Nicolas; Pilate, Gilles; Dron, Michel

    2010-02-01

    TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species).

  11. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  12. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  13. Cellular strategies to promote vascularisation in tissue engineering applications

    Directory of Open Access Journals (Sweden)

    R Costa-Almeida

    2014-07-01

    Full Text Available Vascularisation is considered to be one of the greatest challenges in tissue engineering. Different strategies exist but cell-based approaches have emerged as a promising therapy to achieve successful vascularisation. The use of endothelial cells to engineer vascularised tissues has been extensively investigated. This field of research has evolved with the discovery of endothelial progenitor cells, a subpopulation with a high regenerative potential. However, the survival of endothelial cell populations alone seems to be impaired. To overcome this problem, co-culture systems, involving supporting cells, like mural cells, fibroblasts, or more tissue-specific cells have been developed. Endothelial cells benefit from the extracellular matrix components and growth factors produced by the supporting cells, which results in neovessel stabilisation and maturation. The use of endothelial progenitor cells in co-culture systems appears to be a promising strategy to promote vascularisation in approaches of increasing complexity. Herein, the authors provide an overview of the cellular strategies that can be used for increasing vascularisation in tissue engineering and regeneration.

  14. Current Concepts in Tissue Engineering: Skin and Wound.

    Science.gov (United States)

    Tenenhaus, Mayer; Rennekampff, Hans-Oliver

    2016-09-01

    Pure regenerative healing with little to no donor morbidity remains an elusive goal for both surgeon and patient. The ability to engineer and promote the development of like tissue holds so much promise, and efforts in this direction are slowly but steadily advancing. Products selected and reviewed reflect historical precedence and importance and focus on current clinically available products in use. Emerging technologies we anticipate will further expand our therapeutic options are introduced. The topic of tissue engineering is incredibly broad in scope, and as such the authors have focused their review on that of constructs specifically designed for skin and wound healing. A review of pertinent and current clinically related literature is included. Products such as biosynthetics, biologics, cellular promoting factors, and commercially available matrices can be routinely found in most modern health care centers. Although to date no complete regenerative or direct identical soft-tissue replacement exists, currently available commercial components have proven beneficial in augmenting and improving some types of wound healing scenarios. Cost, directed specificity, biocompatibility, and bioburden tolerance are just some of the impending challenges to adoption. Quality of life and in fact the ability to sustain life is dependent on our most complex and remarkable organ, skin. Although pure regenerative healing and engineered soft-tissue constructs elude us, surgeons and health care providers are slowly gaining comfort and experience with concepts and strategies to improve the healing of wounds.

  15. Artificial urinary conduit construction using tissue engineering methods.

    Science.gov (United States)

    Kloskowski, Tomasz; Pokrywczyńska, Marta; Drewa, Tomasz

    2015-01-01

    Incontinent urinary diversion using an ileal conduit is the most popular method used by urologists after bladder cystectomy resulting from muscle invasive bladder cancer. The use of gastrointestinal tissue is related to a series of complications with the necessity of surgical procedure extension which increases the time of surgery. Regenerative medicine together with tissue engineering techniques gives hope for artificial urinary conduit construction de novo without affecting the ileum. In this review we analyzed history of urinary diversion together with current attempts in urinary conduit construction using tissue engineering methods. Based on literature and our own experience we presented future perspectives related to the artificial urinary conduit construction. A small number of papers in the field of tissue engineered urinary conduit construction indicates that this topic requires more attention. Three main factors can be distinguished to resolve this topic: proper scaffold construction along with proper regeneration of both the urothelium and smooth muscle layers. Artificial urinary conduit has a great chance to become the first commercially available product in urology constructed by regenerative medicine methods.

  16. Glycosaminoglycan entrapment by fibrin in engineered heart valve tissues.

    Science.gov (United States)

    Alfonso, Abraham R; Rath, Sasmita; Rafiee, Parvin; Hernandez-Espino, Mario; Din, Mahreen; George, Florence; Ramaswamy, Sharan

    2013-09-01

    Tissue engineered heart valves (TEHVs) may provide a permanent solution to congenital heart valve disease by permitting somatic valve growth in the pediatric patient. However, to date, TEHV studies have focused primarily on collagen, the dominant component of valve extracellular matrix (ECM). Temporal decreases in other ECM components, such as the glycosaminoglycans (GAGs), generally decrease as cells produce more collagen under mechanically loaded states; nevertheless, GAGs represent a key component of the valve ECM, providing structural stability and hydration to the leaflets. In an effort to retain GAGs within the engineered constructs, here we investigated the utility of the protein fibrin in combination with a valve-like, cyclic flexure and steady flow (flex-flow) mechanical conditioning culture process using adult human periodontal ligament cells (PLCs). We found both fibrin and flex-flow mechanical components to be independently significant (pengineered tissues. In addition, the interaction of fibrin with flex-flow was found to be significant in the case of collagen; specifically, the combination of these environments promoted PLC collagen production resulting in a significant difference compared to dynamic and statically cultured specimens without fibrin. Histological examination revealed that the GAGs were retained by fibrin entrapment and adhesion, which were subsequently confirmed by additional experiments on native valve tissues. We conclude that fibrin in the flex-flow culture of engineered heart valve tissues: (i) augments PLC-derived collagen production; and (ii) enhances retention of GAGs within the developing ECM. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  18. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2017-02-01

    Full Text Available Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.

  19. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  20. BIOTECHNOLOGICAL CONDITIONS OF VALVE PROSTHESES CREATING BY TISSUE ENGINEERING METHOD

    Directory of Open Access Journals (Sweden)

    A. G. Popandopulo

    2015-02-01

    Full Text Available Nowadays, definitive treatment for the end-stage organ failure is transplantation. Tissue engineering is an up to date solution to create the effective substitute of the defective organ. It involves the reconstitution of viable tissue with the use of autologous cells grown on connective tissue matrix, which has been acellularized before. Basis for the prothesis should be morphologically and physically nonmodified, so in case of making vessel-valvular biological prosthesises the decellularized extracellular matrix is the best variant. The xenogeneic extracellular matrix is economically and ethically more useful. The possibility of preservation of the morphological and chemical properties of matrix structure initiates the process of programmed cell death. In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis doesn’t cause the tissue damages. One of the ways of realizing the apoptosis is the usage of EDTA — chelate, which binds the Ca2+ ions.

  1. Brillouin light scattering spectroscopy for tissue engineering application

    Science.gov (United States)

    Akilbekova, Dana; Yakupov, Talgat; Ogay, Vyacheslav; Umbayev, Bauyrzhan; Yakovlev, Vladislav V.; Utegulov, Zhandos N.

    2018-02-01

    Biomechanical properties of mammalian bones, such as strength, toughness and plasticity, are essential for understanding how microscopic scale mechanical features can link to macroscale bones' strength and fracture resistance. We employ Brillouin light scattering (BLS) micro-spectroscopy for local assessment of elastic properties of bones under compression and the efficacy of the tissue engineering approach based on heparin-conjugated fibrin (HCF) hydrogels, bone morphogenic proteins (BMPs) and osteogenic stem cells in the regeneration of the bone tissues. BLS is noninvasive and label-free imaging modality for probing mechanical properties of hard tissues that can give information on structure-function properties of normal and pathological tissues. Results showed that HCF gels containing combination of all factors had the best effect with complete defect regeneration at week 9 and that the bones with fully consolidated fractures have higher values of elastic moduli compared to the bones with defects.

  2. 3D printing of functional biomaterials for tissue engineering.

    Science.gov (United States)

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    Science.gov (United States)

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  4. Today Prospects for Tissue Engineering Therapeutic Approach in Dentistry

    Directory of Open Access Journals (Sweden)

    Maurizio Bossù

    2014-01-01

    Full Text Available In dental practice there is an increasing need for predictable therapeutic protocols able to regenerate tissues that, due to inflammatory or traumatic events, may suffer from loss of their function. One of the topics arising major interest in the research applied to regenerative medicine is represented by tissue engineering and, in particular, by stem cells. The study of stem cells in dentistry over the years has shown an exponential increase in literature. Adult mesenchymal stem cells have recently been isolated and characterized from tooth-related tissues and they might represent, in the near future, a new gold standard in the regeneration of all oral tissues. The aim of our review is to provide an overview on the topic reporting the current knowledge for each class of dental stem cells and to identify their potential clinical applications as therapeutic tool in various branches of dentistry.

  5. Importance of dual delivery systems for bone tissue engineering.

    Science.gov (United States)

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ou, Keng-Liang; Mao, Chuanbin; Hosseinkhani, Hossein

    2016-03-10

    Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.

    Science.gov (United States)

    Mahmoud, Ahmed M; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B; Martin, Karen H; Mustafa, S Jamal; Mukdadi, Osama M

    2013-03-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum

  7. Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: tissue distribution and in situ hydrolysis.

    Directory of Open Access Journals (Sweden)

    Cristiani Baldo

    Full Text Available BACKGROUND: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs. The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP and BnP1 (weakly hemorrhagic SVMP using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin. In opposition, BnP1 did not accumulate in the tissues. CONCLUSIONS/SIGNIFICANCE: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the

  8. Enhancement by histamine of vascular endothelial growth factor production in granulation tissue via H2 receptors

    Science.gov (United States)

    Ghosh, Ajoy Kumar; Hirasawa, Noriyasu; Ohuchi, Kazuo

    2001-01-01

    Roles of histamine in the production of vascular endothelial growth factor (VEGF) in the carrageenin-induced granulation tissue in rats were analysed in vitro and in vivo.Incubation of the minced granulation tissue in the presence of histamine (1 and 10 μM) increased the content of VEGF protein in the conditioned medium in a time- and concentration-dependent manner. The levels of VEGF mRNA in the minced granulation tissue were also increased by histamine in a concentration-dependent manner.The increase in the content of VEGF protein in the conditioned medium by histamine (10 μM) was suppressed by the H2 receptor antagonist cimetidine (IC50 0.37 μM), but not by the H1 receptor antagonist pyrilamine maleate, the H3 receptor antagonist thioperamide or the cyclo-oxygenase inhibitor indomethacin.The histamine-induced increase in the content of VEGF protein in the conditioned medium was inhibited by the cyclic AMP antagonist Rp-cAMP (IC50 6.8 μM), and the protein kinase A inhibitor H-89 (IC50 12.5 μM), but not by the protein kinase C inhibitors Ro 31-8425 and calphostin C or the tyrosine kinase inhibitor genistein.Simultaneous injection of cimetidine (400 μg) and indomethacin (100 μg) into the air pouch of rats additively reduced the carrageenin-induced increase in VEGF protein levels and angiogenesis in the granulation tissue as assessed by using carmine dye.These findings indicate that histamine has an activity to induce VEGF production in the granulation tissue via the H2 receptor-cyclic AMP-protein kinase A pathway and augments angiogenesis in the granulation tissue. PMID:11724747

  9. Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering.

    Science.gov (United States)

    Mellott, Adam J; Shinogle, Heather E; Nelson-Brantley, Jennifer G; Detamore, Michael S; Staecker, Hinrich

    2017-02-28

    Use of decellularized tissues has become popular in tissue engineering applications as the natural extracellular matrix can provide necessary physical cues that help induce the restoration and development of functional tissues. In relation to cochlear tissue engineering, the question of whether decellularized cochlear tissue can act as a scaffold and support the incorporation of exogenous cells has not been addressed. Investigators have explored the composition of the cochlear extracellular matrix and developed multiple strategies for decellularizing a variety of different tissues; however, no one has investigated whether decellularized cochlear tissue can support implantation of exogenous cells. As a proof-of-concept study, human Wharton's jelly cells were perfused into decellularized cochleae isolated from C57BL/6 mice to determine if human Wharton's jelly cells could implant into decellularized cochlear tissue. Decellularization was verified through scanning electron microscopy. Cocheae were stained with DAPI and immunostained with Myosin VIIa to identify cells. Perfused cochleae were imaged using confocal microscopy. Features of the organ of Corti were clearly identified in the native cochleae when imaged with scanning electron microscopy and confocal microscopy. Acellular structures were identified in decellularized cochleae; however, no cellular structures or lipid membranes were present within the decellularized cochleae when imaged via scanning electron microscopy. Confocal microscopy revealed positive identification and adherence of cells in decellularized cochleae after perfusion with human Wharton's jelly cells. Some cells positively expressed Myosin VIIa after perfusion. Human Wharton's jelly cells are capable of successfully implanting into decellularized cochlear extracellular matrix. The identification of Myosin VIIa expression in human Wharton's jelly cells after implantation into the decellularized cochlear extracellular matrix suggest that

  10. The potential of prolonged tissue culture to reduce stress generation and retraction in engineered heart valve tissues.

    Science.gov (United States)

    van Vlimmeren, Marijke A A; Driessen-Mol, Anita; Oomens, Cees W J; Baaijens, Frank P T

    2013-03-01

    In tissue-engineered (TE) heart valves, cell-mediated processes cause tissue compaction during culture and leaflet retraction at time of implantation. We have quantified and correlated stress generation, compaction, retraction, and tissue quality during a prolonged culture period of 8 weeks. Polyglycolic acid/poly-4-hydroxybutyrate strips were seeded with vascular-derived cells and cultured for 4-8 weeks. Compaction in width, generated force, and stress was measured during culture. Retraction in length, generated force, and stress was measured after release of constraints at weeks 4, 6, and 8. Further, the amount of DNA, glycosaminoglycans (GAGs), collagen, and collagen cross-links was assessed. During culture, compaction and force generation increased to, respectively, 63.9% ± 0.8% and 43.7 ± 4.3 mN at week 4, after which they remained stable. Stress generation reached 27.7 ± 3.2 kPa at week 4, after which it decreased to ∼8.5 kPa. At release of constraints, tissue retraction was 44.0% ± 3.7% at week 4 and decreased to 29.2% ± 2.8% and 26.1% ± 2.2% at, respectively, 6 and 8 weeks. Generated force (8-16 mN) was lower at week 6 than at weeks 4 and 8. Generated stress decreased from 11.8 ± 0.9 kPa at week 4 to 1.4 ± 0.3 and 2.4 ± 0.4 kPa at, respectively, weeks 6 and 8. The amount of GAGs increased at weeks 6 and 8 compared to week 4 and correlated to the reduced stress and retraction. In summary, prolonged culture resulted in decreased stress generation and retraction, likely as a result of the increased amount of GAGs. These results demonstrate the potential of prolonged tissue culture in developing functional, nonretracting, TE heart valves.

  11. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  12. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    International Nuclear Information System (INIS)

    Gupta, Sweta K.; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2013-01-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering

  13. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    Science.gov (United States)

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The influence of topography on tissue engineering perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, Negar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); SamiraBagheri, E-mail: samira_bagheri@edu.um.my [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-01

    The actual in vivo tissue scaffold offers a three-dimensional (3D) structural support along with a nano-textured surfaces consist of a fibrous network in order to deliver cell adhesion and signaling. A scaffold is required, until the tissue is entirely regenerated or restored, to act as a temporary ingrowth template for cell proliferation and extracellular matrix (ECM) deposition. This review depicts some of the most significant three dimensional structure materials used as scaffolds in various tissue engineering application fields currently being employed to mimic in vivo features. Accordingly, some of the researchers' attempts have envisioned utilizing graphene for the fabrication of porous and flexible 3D scaffolds. The main focus of this paper is to evaluate the topographical and topological optimization of scaffolds for tissue engineering applications in order to improve scaffolds' mechanical performances. - Highlights: • The in vivo tissue scaffold offers a three-dimensional structural support. • Graphene can be used for fabrication of porous and flexible 3D scaffold. • Topological optimization improves scaffolds' mechanical performances.

  15. Cervical tissue engineering using silk scaffolds and human cervical cells.

    Science.gov (United States)

    House, Michael; Sanchez, Cristina C; Rice, William L; Socrate, Simona; Kaplan, David L

    2010-06-01

    Spontaneous preterm birth is a frequent complication of pregnancy and a common cause of morbidity in childhood. Obstetricians suspect abnormalities of the cervix are implicated in a significant number of preterm births. The cervix is composed of fibrous connective tissue and undergoes significant remodeling in preparation for birth. We hypothesized that a tissue engineering strategy could be used to develop three-dimensional cervical-like tissue constructs that would be suitable for investigating cervical remodeling. Cervical cells were isolated from two premenopausal women undergoing hysterectomy for a benign gynecological condition, and the cells were seeded on porous silk scaffolds in the presence or absence of dynamic culture and with 10% or 20% serum. Morphological, biochemical, and mechanical properties were measured during the 8-week culture period. Cervical cells proliferated in three-dimensions and synthesized an extracellular matrix with biochemical constituents and morphology similar to native tissue. Compared to static culture, dynamic culture was associated with significantly increased collagen deposition (p < 0.05), sulfated glycosaminoglycan synthesis (p < 0.05), and mechanical stiffness (p < 0.05). Serum concentration did not affect measured variables. Relevant human tissue-engineered cervical-like constructs constitute a novel model system for a range of fundamental and applied studies related to cervical remodeling.

  16. Tissue engineering in urology: where are we going?

    Science.gov (United States)

    Metwalli, Adam R; Colvert, James R; Kropp, Bradley P

    2003-04-01

    Tissue engineering in urology is a broad term used to describe the development of alternative tissue sources for diseased or dysfunctional native urologic tissue. This article reviews the recently published techniques involving synthetic and natural biodegradable matrices alone, known as "unseeded" scaffolds, and the latest data on "seeded" scaffolds, which are impregnated with cultured cells from urologic organs. Recent discoveries in reporter gene labeling of urologic tissue are discussed as a new method to identify and track the fates of these transplanted cells in vivo. This article also investigates how these bioengineering techniques are applied to synthetic and natural scaffolds, such as polyglycolic acid and porcine small intestine submucosa, to increase bladder capacity, repair urethral strictures, and replace corporal plaques in Peyronie's disease. Furthermore, recently published reports that these materials have been seeded with chondrocytes to create corporal rods for penile prostheses and stents for ureteral and urethral stricture disease are discussed. With these latest developments as a foundation, the future directions of tissue engineering in urology are presented.

  17. Optically Controlled Oscillators in an Engineered Bioelectric Tissue

    Directory of Open Access Journals (Sweden)

    Harold M. McNamara

    2016-07-01

    Full Text Available Complex electrical dynamics in excitable tissues occur throughout biology, but the roles of individual ion channels can be difficult to determine due to the complex nonlinear interactions in native tissue. Here, we ask whether we can engineer a tissue capable of basic information storage and processing, where all functional components are known and well understood. We develop a cell line with four transgenic components: two to enable collective propagation of electrical waves and two to enable optical perturbation and optical readout of membrane potential. We pattern the cell growth to define simple cellular ring oscillators that run stably for >2  h (∼10^{4}  cycles and that can store data encoded in the direction of electrical circulation. Using patterned optogenetic stimulation, we probe the biophysical attributes of this synthetic excitable tissue in detail, including dispersion relations, curvature-dependent wave front propagation, electrotonic coupling, and boundary effects. We then apply the biophysical characterization to develop an optically reconfigurable bioelectric oscillator. These results demonstrate the feasibility of engineering bioelectric tissues capable of complex information processing with optical input and output.

  18. Clinical results of implanted tissue engineered heart valves.

    Science.gov (United States)

    Dohmen, P M

    2012-01-01

    Since the first heterotopic implantation of a biological heart valve in 1955 by Murray, bioprostheses have been steadily improved. For allografts different methods have been evaluated and modified to stabilize and preserve the available tissue. Xenografts were fixed to cross-link the connective tissue as well as prevent immunogenic reactions. Nevertheless, gluteraldehyde fixation leads to structural deterioration, which could only be partially reduced by different kinds of anti-mineralization treatment. Due to preservation and fixation, allografts and xenografts become non-viable bioprostheses with a lack of remodelling, regeneration and growth. Tissue engineering is a possible key to overcome these disadvantages as it will provide living tissue with remodelling, regeneration and growth potential. This overview will look at the key points to provide such tissue engineered heart valves by creating an appropriate scaffold where cells can grow, either in vitro or in vivo and remodel a neo-scaffold which will lead to a functional autologous heart valve, and show initial clinical results.

  19. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.

    Science.gov (United States)

    Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi

    2017-05-01

    Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Tissue-engineering as an adjunct to pelvic reconstructive surgery

    DEFF Research Database (Denmark)

    Jangö, Hanna

    This PhD-thesis is based on animal studies and comprises three original papers and unpublished data. The studies were conducted during my employment as a research fellow at the Department of Obstetrics and Gynecology, Herlev University Hospital, Denmark. New strategies for surgical reconstruction...... functional tissue using stem cells, scaffolds and trophic factors. The aim of this thesis was to investigate the potential adjunctive use of a tissue-engineering technique for pelvic reconstructive surgery using two synthetic biodegradable materials; methoxypolyethyleneglycol-poly(lactic-co-glycolic acid...

  1. Application of computational fluid dynamics in tissue engineering.

    Science.gov (United States)

    Patrachari, Anirudh R; Podichetty, Jagdeep T; Madihally, Sundararajan V

    2012-08-01

    The process of tissue regeneration consists of a set of complex phenomena such as hydrodynamics, nutrient transfer, cell growth, and matrix deposition. Traditional cell culture and bioreactor design procedure follow trial-and-error analyses to understand the effects of varying physical, chemical, and mechanical parameters that govern the process of tissue regeneration. This trend has been changing as computational fluid dynamics (CFD) analysis can now be used to understand the effects of flow, cell proliferation, and consumption kinetics on the dynamics involved with in vitro tissue regeneration. Furthermore, CFD analyses enable understanding the influence of nutrient transport on cell growth and the effect of cell proliferation as the tissue regenerates. This is especially advantageous in improving and optimizing the design of bioreactors and tissue culture. Influence of parameters such as velocity, oxygen tension, stress, and strain on tissue growth can be effectively studied throughout the bioreactor using CFD as it becomes impractical and cumbersome to install probes at several locations in the bioreactor. Hence, CFD offers several advantages for the advancement of tissue engineering. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Biological aspects of application of nanomaterials in tissue engineering

    Directory of Open Access Journals (Sweden)

    Markovic Dejan

    2016-01-01

    Full Text Available Millions of patients worldwide need surgery to repair or replace tissue that has been damaged through trauma or disease. To solve the problem of lost tissue, a major emphasis of tissue engineering (TE is on tissue regeneration. Stem cells and highly porous biomaterials used as cell carriers (scaffolds have an essential role in the production of new tissue by TE. Cellular component is important for the generation and establishment of the extracellular matrix, while a scaffold is necessary to determine the shape of the newly formed tissue and facilitate migration of cells into the desired location, as well as their growth and differentiation. This review describes the types, characteristics and classification of stem cells. Furthermore, it includes functional features of cell carriers - biocompatibility, biodegradability and mechanical properties of biomaterials used in developing state-of-the-art scaffolds for TE applications, as well as suitability for different tissues. Moreover, it explains the importance of nanotechnology and defines the challenges and the purpose of future research in this rapidly advancing field. [Projekat Ministarstva nauke Republike Srbije, br. 41030 i br. 172026

  3. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates

    Directory of Open Access Journals (Sweden)

    Christian Claude Lachaud

    2015-08-01

    Full Text Available Tissue engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large coelomic cavities (peritoneal, pericardial and pleural and internal organs housed inside. Interestedly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic, characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable and non-immunogenic may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.

  4. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs.

    Science.gov (United States)

    Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2014-01-06

    Dental Caries affects approximately 90% of the world's population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs) have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells (MSCs) from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM) incorporated scaffold. Human periodontal ligament stem cells (PDLSCs) and human bone marrow stromal cells (HMSCs) were investigated for their ability to differentiate toward an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  5. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  6. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications.

    Science.gov (United States)

    Gupta, Sweta K; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2013-10-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analys