Sample records for engineering treatment model

  1. The use of mathematical models in teaching wastewater treatment engineering

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Arvin, Erik; Vanrolleghem, P.


    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models...... efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available....

  2. Status of the engineering treatment model for mis-matched welds (ETM-MM) handbook

    Energy Technology Data Exchange (ETDEWEB)

    Schwalbe, K.H.; Hao, S.; Cornec, A.; Kocak, M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung


    The Engineering Treatment Model (ETM) has been extended to heterogeneous structures such as yield strength mismatched welded joints. The document ETM-MM describes four levels with increasing complexity. On the first level mismatch can be ignored if specific conditions are satisfied. The second level refers to the ETM for homogeneous structures, and mismatch is accounted for by using the lowest yield strength and hardening exponent of the weld metal and base plate, respectively. Within a specified window the third level can be used which is based on all weld metal configurations. If the mismatch yield load solution is available the fourth level can be applied which represents a solution of general validity. Some examples for validation are presented. (orig.)

  3. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.


    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  4. Diesel engine ignition modeling

    Energy Technology Data Exchange (ETDEWEB)

    Elsden, M.; Gutheil, E.; Warnatz, J.; Nehse, M.


    The ability to correctly predict the self-ignition behaviour of a compression ignition engine is extremely important when trying to model the complex fluid dynamics and chemical processes found within these engines. Correct prediction of the ignition timing and location is clearly a necessary starting point for the calculation of the fuel combustion process. However, the complex mixing processes and chemical reactions which govern ignition are not easily claculated simultaneously during the engine cycle. This paper presents, a method of coupling the detailed pre-compustion chemistry to the in-cylinder fluid dynamics occurring in the complex geometry of a modern diesel engine. The chemistry is pre-calculated for laminar conditions and linked to the CFD calculation through the use of lookup tables. Development of the radical pool, which leads to auto-ignition, is calculated for a range of pressures, temperatures and mixture fractions, using a detailed chemical mechanism (200 species, 1200 reactions). A lookup table is formed relating the concentration of a representative radical to its reaction rate. Due to the non-monotonic behaviour of this radical it is necessary to solve for a monotonic species and relate this concentration to that of the ignition tracking species. The transport equation for the species is implemented in the engine simulation code KIVA-3. Closure of the mean chemical reaction term is accemplished by integration of the laminar reaction rates, obtained from the look-up table, over PDFs for temperature, mixture fraction and radical concentration. The results are encouraging. The ignition timing is predicted well for a range of injection timing. While no direct experimental data is available for the ignition location in this engine, the predicted location agrees well with other studies. (orig.)

  5. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert


    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  6. Engineering model for body armor

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Carton, E.P.


    TNO has developed an engineering model for flexible body armor, as one of their energy based engineering models that describe the physics of projectile to target interactions (weaves, metals, ceramics). These models form the basis for exploring the possibilities for protection improvement. This

  7. An Otto Engine Dynamic Model


    Florian Ion Tiberiu Petrescu; Relly Victoria Virgil Petrescu


    Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft) with inertial masses. One uses and elastic constant of...

  8. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling (United States)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.


    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  9. Engineering workstation: Sensor modeling (United States)

    Pavel, M; Sweet, B.


    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.


    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ


    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  11. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard


    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  12. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart


    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  13. Computational Modeling in Tissue Engineering

    CERN Document Server


    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  14. Characterization of an Ovine Bilateral Critical Sized Bone Defect Iliac Wing Model to Examine Treatment Modalities Based on Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Jennifer L. Lansdowne


    Full Text Available Critical sized bone defect (CSBD animal models are used to evaluate and confirm efficacy and potency of new treatment modalities based on bone tissue engineering before the latter can be applied in clinical practice. In this study, a bilateral CSBD model in the iliac wings of sheep is described in detail. To demonstrate that this is a large animal CSBD model in sheep, bone healing within the defect left empty (negative control or filled with autologous corticocancellous bone graft (clinical gold standard, positive control was assessed using micro-CT, histology, histomorphometric, and fluorochrome analysis. After three months, new bone into the defect site was formed across the whole defect in the positive controls but limited to the edge of the defects in the negative controls. Bone volume in the positive controls was statistically higher than in the negative controls, with the latter having less than 10% new bone growth. There were no intraoperative or postoperative complications. The model described here represents a reliable and reproducible bilateral CSBD in sheep with low morbidity that can be used for in vivo evaluation of new treatment modalities based on bone tissue engineering.

  15. Modeling Diesel Engine Injector Flows

    National Research Council Canada - National Science Library

    Heister, S


    Models have been developed to assess flow fields inside diesel injector orifice passages in order to increase our understanding of the spray formation process which governs performance and emissions in these engines...

  16. Complex systems models: engineering simulations


    Polack, Fiona A. C.; Hoverd, Tim; Sampson, Adam T.; Stepney, Susan; Timmis, Jon,


    As part of research towards the CoSMoS unified infrastructure for modelling and simulating complex systems, we review uses of definitional and descriptive models in natural science and computing, and existing integrated platforms. From these, we identify requirements for engineering models of complex systems, and consider how some of the requirements could be met, using state-of-the-art model management and a mobile, process-oriented computing paradigm.

  17. Conceptual Models for Search Engines (United States)

    Hendry, D. G.; Efthimiadis, E. N.

    Search engines have entered popular culture. They touch people in diverse private and public settings and thus heighten the importance of such important social matters as information privacy and control, censorship, and equitable access. To fully benefit from search engines and to participate in debate about their merits, people necessarily appeal to their understandings for how they function. In this chapter we examine the conceptual understandings that people have of search engines by performing a content analysis on the sketches that 200 undergraduate and graduate students drew when asked to draw a sketch of how a search engine works. Analysis of the sketches reveals a diverse range of conceptual approaches, metaphors, representations, and misconceptions. On the whole, the conceptual models articulated by these students are simplistic. However, students with higher levels of academic achievement sketched more complete models. This research calls attention to the importance of improving students' technical knowledge of how search engines work so they can be better equipped to develop and advocate policies for how search engines should be embedded in, and restricted from, various private and public information settings.

  18. Mean Value Engine Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Müller, Martin; Chevalier, Alain


    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models what are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas...... Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experimental engine...

  19. Stirling Engine Dynamic System Modeling (United States)

    Nakis, Christopher G.


    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  20. An Otto Engine Dynamic Model

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu


    Full Text Available Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses. One uses and elastic constant of the crank shaft, k. Calculations should be made for an engine with a single cylinder. Finally it makes a dynamic analysis of the mechanism with discussion and conclusions. The ratio between the crank length r and the length of the connecting-rod l is noted with landa. When landa increases the mechanism dynamics is deteriorating. For a proper operation is necessary the reduction of the ratio landa, especially if we want to increase the engine speed. We can reduce the acceleration values by reducing the dimensions r and l.

  1. Multiscale modeling in food engineering

    NARCIS (Netherlands)

    Ho, Q.T.; Carmeliet, J.; Datta, A.K.; Defraeye, T.; Delele, M.A.; Herremans, E.; Opara, L.; Ramon, H.; Tijskens, E.; Sman, van der R.G.M.; Liedekerke, Van P.; Verboven, P.; Nicolai, B.M.


    Since many years food engineers have attempted to describe physical phenomena such as heat and mass transfer that occur in food during unit operations by means of mathematical models. Foods are hierarchically structured and have features that extend from the molecular scale to the food plant scale.

  2. Model-Driven Useware Engineering (United States)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  3. Transforming System Engineering through Model-Centric Engineering (United States)


    sensible about cost The Engineering Data Requirements Agreement Plan (E/DRAP) is another essential artifact that is used in flight readiness...Grogan, O. de Weck, Interactive Model- Cent ic Systems Engineering (IMCSE), Phase One Technical Report SERC-2014-TR-048-1, Systems Engineering

  4. Modelling skill competencies in engineering companies.


    Coates, G.; Thompson, C. M.; Duffy, A.H.B.; Hills, W; Whitfield, R.I.


    Engineering companies across many industrial sectors have recognised that their engineers' skills and competencies provide the greatest force for economic competitiveness. More specifi cally, the effective utilisation of a company's engineers, through the most appropriate application of their skills and competencies, can improve organisational performance, thus aiding competitiveness. Prior to enabling the effective utilisation of their engineers, companies need to model their skills competen...

  5. Engineering graphic modelling a workbook for design engineers

    CERN Document Server

    Tjalve, E; Frackmann Schmidt, F


    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  6. Modeling the internal combustion engine (United States)

    Zeleznik, F. J.; Mcbride, B. J.


    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  7. Tasks and Ontologies in Engineering Modelling

    NARCIS (Netherlands)

    Top, J.L.; Top, Jan; Akkermans, J.M.; Akkermans, Hans


    Constructing models of physical systems is a recurring activity in engineering problem solving. This paper presents a generic knowledge-level analysis of the task of engineering modelling. Starting from the premise that modelling is a design-like activity, it proposes the Specify-Construct-Assess

  8. Model-Based Systems Engineering in Concurrent Engineering Centers (United States)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman


    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  9. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan


    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  10. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan


    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  11. Genetically Engineered Mouse Models in Cancer Research (United States)

    Walrath, Jessica C.; Hawes, Jessica J.; Van Dyke, Terry; Reilly, Karlyne M.


    Mouse models of human cancer have played a vital role in understanding tumorigenesis and answering experimental questions that other systems cannot address. Advances continue to be made that allow better understanding of the mechanisms of tumor development, and therefore the identification of better therapeutic and diagnostic strategies. We review major advances that have been made in modeling cancer in the mouse and specific areas of research that have been explored with mouse models. For example, although there are differences between mice and humans, new models are able to more accurately model sporadic human cancers by specifically controlling timing and location of mutations, even within single cells. As hypotheses are developed in human and cell culture systems, engineered mice provide the most tractable and accurate test of their validity in vivo. For example, largely through the use of these models, the microenvironment has been established to play a critical role in tumorigenesis, since tumor development and the interaction with surrounding stroma can be studied as both evolve. These mouse models have specifically fueled our understanding of cancer initiation, immune system roles, tumor angiogenesis, invasion, and metastasis, and the relevance of molecular diversity observed among human cancers. Currently, these models are being designed to facilitate in vivo imaging to track both primary and metastatic tumor development from much earlier stages than previously possible. Finally, the approaches developed in this field to achieve basic understanding are emerging as effective tools to guide much needed development of treatment strategies, diagnostic strategies, and patient stratification strategies in clinical research. PMID:20399958

  12. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  13. Mean Value Modelling of Turbocharged SI Engines

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.


    The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented.......The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented....

  14. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail:; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail:


    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  15. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen


    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  16. Thrust modeling for hypersonic engines (United States)

    Riggins, D. W.; Mcclinton, C. R.


    Expressions for the thrust losses of a scramjet engine are developed in terms of irreversible entropy increases and the degree of incomplete combustion. A method is developed which allows the calculation of the lost vehicle thrust due to different loss mechanisms within a given flow-field. This analysis demonstrates clearly the trade-off between mixing enhancement and resultant increased flow losses in scramjet combustors. An engine effectiveness parameter is defined in terms of thrust loss. Exergy and the thrust-potential method are related and compared.

  17. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.


    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  18. Measuring Model Rocket Engine Thrust Curves (United States)

    Penn, Kim; Slaton, William V.


    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  19. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus


    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and implementing abstractions will improve the applicability of model checking in practice....

  20. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent


    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  1. Statistical models of petrol engines vehicles dynamics (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.


    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive–Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  2. Control of Stirling engine. Simplified, compressible model (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.


    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  3. Mathematical Model For Engineering Analysis And Optimization (United States)

    Sobieski, Jaroslaw


    Computational support for engineering design process reveals behavior of designed system in response to external stimuli; and finds out how behavior modified by changing physical attributes of system. System-sensitivity analysis combined with extrapolation forms model of design complementary to model of behavior, capable of direct simulation of effects of changes in design variables. Algorithms developed for this method applicable to design of large engineering systems, especially those consisting of several subsystems involving many disciplines.

  4. A Simple HCCI Engine Model for Control

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N; Aceves, S; Flowers, D; Krstic, M


    The homogeneous charge compression ignition (HCCI) engine is an attractive technology because of its high efficiency and low emissions. However, HCCI lacks a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios, and engine speeds. The model provides an estimate of the combustion timing on a cycle-by-cycle basis. An ignition threshold, which is a function of the in-cylinder motored temperature and pressure is used to predict start of combustion. This model allows the synthesis of nonlinear control laws, which can be utilized for control of an HCCI engine during transients.

  5. Combustion modeling in internal combustion engines (United States)

    Zeleznik, F. J.


    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  6. Modelling and Simulation of Search Engine (United States)

    Nasution, Mahyuddin K. M.


    The best tool currently used to access information is a search engine. Meanwhile, the information space has its own behaviour. Systematically, an information space needs to be familiarized with mathematics so easily we identify the characteristics associated with it. This paper reveal some characteristics of search engine based on a model of document collection, which are then estimated the impact on the feasibility of information. We reveal some of characteristics of search engine on the lemma and theorem about singleton and doubleton, then computes statistically characteristic as simulating the possibility of using search engine. In this case, Google and Yahoo. There are differences in the behaviour of both search engines, although in theory based on the concept of documents collection.


    Directory of Open Access Journals (Sweden)

    K.G. Durga Prasad


    Full Text Available Cost engineering helps the firms in decision-making with respect to product development. It is primarily concerned with cost estimation and cost control. Decisions made during the design phase have a significant influence on development and life cycle costs. The effective cost management during the design phase of a product is essential to develop a product with minimum cost and desired quality of the customer. In this paper a mathematical model is established by incorporating cost engineering techniques such as Target Costing (TC and Value Engineering (VE with Quality Function Deployment (QFD to develop a product. An illustrative example is also presented.

  8. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek


    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  9. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  10. Mathematical modeling a chemical engineer's perspective

    CERN Document Server

    Rutherford, Aris


    Mathematical modeling is the art and craft of building a system of equations that is both sufficiently complex to do justice to physical reality and sufficiently simple to give real insight into the situation. Mathematical Modeling: A Chemical Engineer's Perspective provides an elementary introduction to the craft by one of the century's most distinguished practitioners.Though the book is written from a chemical engineering viewpoint, the principles and pitfalls are common to all mathematical modeling of physical systems. Seventeen of the author's frequently cited papers are reprinted to illus

  11. Mathematicals Models in Science and Engineering


    Quarteroni, Alfio


    Mathematical models, along with scientific theory and practical experiments, are a crucial part of modern engineering and science. The author takes a look at the role mathematical models play in topics ranging from vascular simulation to weather forecasting to designing America's Cup sailboats.

  12. Software Engineering Tools for Scientific Models (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike


    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  13. Antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants

    CSIR Research Space (South Africa)

    Musee, N


    Full Text Available ). With the increasing number of applications and uses of ENMs comes an increasing likelihood of nanoscale materials posing potential risks to the environment and engineered technical systems such as wastewater treatment plants (WWTPs). Recent scientific data suggests...

  14. Modeling student success in engineering education (United States)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering


    National Research Council Canada - National Science Library

    M R Shukri; M M Rahman; D Ramasamy; K Kadirgama


      This paper presents a study of engine performance using a mixture of palm oil methyl ester blends with diesel oil as biodiesel in a diesel engine, and optimizes the engine performance using artificial neural network (ANN) modeling...

  16. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.


    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  17. 76 FR 25648 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine... (United States)


    ... Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... design features include ] engine size and the potential torque load imposed by sudden engine stoppage... application date to September 28, 2006. The Gulfstream Model GVI airplane will be an all-new, two- engine jet...

  18. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf


    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  19. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel


    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  20. New engineering treatment of bovine pericardium confers outstanding resistance to calcification in mitral and pulmonary implantations in a juvenile sheep model. (United States)

    Brizard, Christian P; Brink, Johann; Horton, Steven B; Edwards, Glenn Anthony; Galati, John C; Neethling, William M L


    To conduct a test of noninferiority for CardioCel (Admedus, Brisbane, Australia), a chemically engineered bovine pericardium over autologous pericardium treated intraoperatively with glutaraldehyde in a chronic juvenile sheep model of pulmonary valve (PV) and mitral valve (MV) reconstruction. We replaced the posterior leaflet of the MV and of 1 PV cusp with patches in ewes aged 10 months. There were 2 groups: CardioCel (n = 6) and control (n = 4). All valves were competent. Echocardiography was performed before euthanasia. The collected data were function, macroscopy, histology, and calcium contents. The primary end points were thickening and calcium content. All animals survived until sacrifice after 7 months. The valves had normal echo. The macroscopic aspect of the valves was excellent. Examination of the slides for both groups revealed a continuous endothelium on both sides of the patch and a layer of new collagen developed on both sides between patch and endothelium and interstitial cells and smooth muscle cell in these layers. The patch had not thickened but the 2 layers of new collagen for the PV showed a median thickening of 37% in the CardioCel group and 111% in the control group (P = .01), and for the MV a thickening of 108% and 251%, respectively, was seen (P = .01). The median calcium content in the PV was 0.24 μg/mg (range, 0.19-0.30) in the CardioCel group versus 0.34 μg/mg (range, 0.24-0.62) in controls (P = .20). In the MV it was 0.46 μg/mg (range, 0.30-1.0) in the CardioCel group and 0.47 μg/mg (range, 0.29-1.9) in controls (P = 1.0). In this growing lamb model the CardioCel patch allowed accurate valve repair at both systemic and pulmonary pressure. The mechanical properties of CardioCel after 7 months were preserved with a more controlled healing than the treated autologous pericardium and without calcification. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  1. I. c. engine fuel treatment device

    Energy Technology Data Exchange (ETDEWEB)

    Deadman, L.L.F.; Deadman, J.E.


    This invention consists of devices incorporating a magnet in close proximity to a ferrous metal core on which is wound in physical contact a coil of wire consisting essentially of tin, or tin in conjunction with other specified metals. The effect is enhanced by enclosing the devices in a case containing metal dissimilar to the other metals present. The devices provide an array of magnetic, electro-chemical and catalytic processes, which singly or in combination, enable unleaded fuels to be used instead of leaded fuels without substantial modification to the ignition timing or valve metallurgy of the engine and may be inserted into the fuel line, used to treat fuel in bulk, or be incorporated into the carburettor or other metering mechanism. It is a further feature that the devices promote the more complete combustion of internal combustion engine fuels, whether of the ''petrol'' variety or the ''diesel'' variety, thus increasing the distance travelled from a given amount of fuel and reducing the emission of unoxidised fuel. (Author).

  2. Ethical Issues in Engineering Models : Personal Reflections

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.


    I start this contribution with an overview of my personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; these case studies employ simulation models. Next, I present an overview of the recent literature on ethical issues in

  3. 75 FR 68179 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines (United States)


    ... Model E4 Diesel Piston Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule...) None. Applicability (c) This AD applies to Austro Engine GmbH model E4 diesel piston engines. These.... Contact Austro Engine GmbH, Rudolf-Diesel- Strasse 11, A-2700 Weiner Neustadt, Austria, telephone: +43...

  4. 76 FR 56637 - Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines (United States)


    ...-21-AD; Amendment 39-16791; AD 2011-18-09] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... model IO-720-A1B Lycoming Engines reciprocating engines. This AD requires a crankshaft inspection for...

  5. 76 FR 42609 - Airworthiness Directives; Lycoming Engines Model TIO 540-A Series Reciprocating Engines (United States)


    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Model TIO 540-A Series Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... directive (AD) for Lycoming Engines model TIO 540-A series reciprocating engines. The existing AD, AD 71-13...

  6. Qualitative models for space system engineering (United States)

    Forbus, Kenneth D.


    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  7. AADL and Model-based Engineering (United States)


    Quality Attribute Analysis Security •Intrusion •Integrity •Confidentiality Safety & Reliability •MTBF • FMEA •Hazard analysis Real-time...Actuator & Wings Safety Analysis (FHA, FMEA ) Reliability Analysis (MTTF) Aircraft system: (Tier 1) Engine, Landing Gear, Cockpit, … Weight...various declarations. System Component Subsystem Capture FMEA model Capture hazards Capture risk mitigation architecture Error Model Annex can be

  8. Mechanics, Models and Methods in Civil Engineering

    CERN Document Server

    Maceri, Franco


    „Mechanics, Models and Methods in Civil Engineering” collects leading papers dealing with actual Civil Engineering problems. The approach is in the line of the Italian-French school and therefore deeply couples mechanics and mathematics creating new predictive theories, enhancing clarity in understanding, and improving effectiveness in applications. The authors of the contributions collected here belong to the Lagrange Laboratory, an European Research Network active since many years. This book will be of a major interest for the reader aware of modern Civil Engineering.

  9. Building Information Modeling in engineering teaching

    DEFF Research Database (Denmark)

    Andersson, Niclas; Andersson, Pernille Hammar


    in this case is represented by adopting Building Information Modelling, BIM, for construction management purposes. Course evaluations, a questionnaire and discussions with students confirm a genuinely positive attitude towards the role-play simulation and interaction with industry professionals. The students...... to operate the ICT systems properly. This study takes on the challenge of using ICT in engineering education without diminishing the body of technical disciplinary knowledge and the understanding of the engineering context in which it is taught, practiced, and learned. The objective of the study...... is to describe and review an extensive role play simulation where students interact with real professional engineers. The role play simulation aims at providing a realistic learning context for the students in order to facilitate the learning objectives of the disciplinary knowledge of the course, which...

  10. Genome-scale modeling for metabolic engineering. (United States)

    Simeonidis, Evangelos; Price, Nathan D


    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  11. Model based systems engineering for astronomical projects (United States)

    Karban, R.; Andolfato, L.; Bristow, P.; Chiozzi, G.; Esselborn, M.; Schilling, M.; Schmid, C.; Sommer, H.; Zamparelli, M.


    Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)

  12. Nano-engineered microcapsules boost the treatment of persistent pain (United States)

    Kopach, Olga; Zheng, Kayiu; Dong, Luo; Sapelkin, Andrei; Voitenko, Nana; Sukhorukov, Gleb B.; Rusakov, Dmitri A.


    Abstract Persistent pain remains a major health issue: common treatments relying on either repeated local injections or systemic drug administration are prone to concomitant side-effects. It is thought that an alternative could be a multifunctional cargo system to deliver medicine to the target site and release it over a prolonged time window. We nano-engineered microcapsules equipped with adjustable cargo release properties and encapsulated the sodium-channel blocker QX-314 using the layer-by-layer (LbL) technology. First, we employed single-cell electrophysiology to establish in vitro that microcapsule application can dampen neuronal excitability in a controlled fashion. Secondly, we used two-photon excitation imaging to monitor and adjust long-lasting release of encapsulated cargo in target tissue in situ. Finally, we explored an established peripheral inflammation model in rodents to find that a single local injection of QX-314-containing microcapsules could provide robust pain relief lasting for over a week. This was accompanied by a recovery of the locomotive deficit and the amelioration of anxiety in animals with persistent inflammation. Post hoc immunohistology confirmed biodegradation of microcapsules over a period of several weeks. The overall remedial effect lasted 10–20 times longer than that of a single focal drug injection. It depended on the QX-314 encapsulation levels, involved TRPV1-channel-dependent cell permeability of QX-314, and showed no detectable side-effects. Our data suggest that nano-engineered encapsulation provides local drug delivery suitable for prolonged pain relief, which could be highly advantageous compared to existing treatments. PMID:29383961

  13. On science versus engineering in hydrological modelling (United States)

    Melsen, Lieke


    It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.

  14. 3D Modeling Engine Representation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang


    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  15. 76 FR 33660 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines (United States)


    ... Model E4 Diesel Piston Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... 2010-23-09, Amendment 39-16498 (75 FR 68179, November 5, 2010), for Austro Engine GmbH model E4 diesel... 2011-0039, dated March 8, 2011, adding a terminating action on Austro Engine GmbH model E4 diesel...

  16. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel (United States)

    Rahim, M. F. Abdul; Rahman, M. M.; Bakar, R. A.


    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  17. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars


    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  18. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  19. Finite element modeling for materials engineers using Matlab

    CERN Document Server

    Oluwole, Oluleke


    Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.

  20. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems: Advanced Search. Journal Home > Journal of Modeling, Design and Management of Engineering Systems: Advanced Search. Log in or Register to get access to full text downloads.


    Energy Technology Data Exchange (ETDEWEB)



    Seismic modeling is a core component of petroleum exploration and production today. Potential applications include modeling the influence of dip on anisotropic migration; source/receiver placement in deviated-well three-dimensional surveys for vertical seismic profiling (VSP); and the generation of realistic data sets for testing contractor-supplied migration algorithms or for interpreting AVO (amplitude variation with offset) responses. This project was designed to extend the use of a finite-difference modeling package, developed at Lawrence Berkeley Laboratories, to the advanced applications needed by industry. The approach included a realistic, easy-to-use 2-D modeling package for the desktop of the practicing geophysicist. The feasibility of providing a wide-ranging set of seismic modeling engines was fully demonstrated in Phase I. The technical focus was on adding variable gridding in both the horizontal and vertical directions, incorporating attenuation, improving absorbing boundary conditions and adding the optional coefficient finite difference methods.

  2. Generomak: Fusion physics, engineering and costing model

    Energy Technology Data Exchange (ETDEWEB)

    Delene, J.G.; Krakowski, R.A.; Sheffield, J.; Dory, R.A.


    A generic fusion physics, engineering and economics model (Generomak) was developed as a means of performing consistent analysis of the economic viability of alternative magnetic fusion reactors. The original Generomak model developed at Oak Ridge by Sheffield was expanded for the analyses of the Senior Committee on Environmental Safety and Economics of Magnetic Fusion Energy (ESECOM). This report describes the Generomak code as used by ESECOM. The input data used for each of the ten ESECOM fusion plants and the Generomak code output for each case is given. 14 refs., 3 figs., 17 tabs.

  3. Introducing Water-Treatment Subjects into Chemical Engineering Education. (United States)

    Caceres, L.; And Others


    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  4. 76 FR 54373 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines (United States)


    ...; AD 2011-18-19] RIN 2120-AA64 Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston...: For service information identified in this AD, contact Austro Engine GmbH, Rudolf-Diesel-Strasse 11, A... estimate that this AD will affect about 32 model E4 diesel piston engines, installed on airplanes of US...

  5. Engineered miniaturized models of musculoskeletal diseases. (United States)

    Bersini, Simone; Arrigoni, Chiara; Lopa, Silvia; Bongio, Matilde; Martin, Ivan; Moretti, Matteo


    The musculoskeletal system is an incredible machine that protects, supports and moves the human body. However, several diseases can limit its functionality, compromising patient quality of life. Designing novel pathological models would help to clarify the mechanisms driving such diseases, identify new biomarkers and screen potential drug candidates. Miniaturized models in particular can mimic the structure and function of basic tissue units within highly controlled microenvironments, overcoming the limitations of traditional macroscale models and complementing animal studies, which despite being closer to the in vivo situation, are affected by species-specific differences. Here, we discuss the miniaturized models engineered over the past few years to analyze osteochondral and skeletal muscle pathologies, demonstrating how the rationale design of novel systems could provide key insights into the pathological mechanisms behind diseases of the musculoskeletal system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Intensive treatment models and coercion

    DEFF Research Database (Denmark)

    Ohlenschlaeger, Johan; Thorup, Anne; Petersen, Lone


    -spectrum disorders estimated to benefit from long-term hospitalization were included consecutively from the Copenhagen OPUS-trial and randomized to the three treatment models. At 1-year follow-up, Hospital-based Rehabilitation and Integrated Treatment had better scores on symptoms in the negative dimension....... Hospital-based Rehabilitation, an intensified inpatient treatment model, Integrated Treatment, an intensified model of Assertive Community Treatment, and standard treatment were compared for patients with first-episode schizophrenia-spectrum disorders. Ninety-four patients with first-episode schizophrenia...... and on client satisfaction. Integrated Treatment had fewer bed-days, more patients living in non-supervised accommodation, and better score on quality of life. No differences were found as to the use of coercion. This study adds to the evidence that intensified treatment models are superior to standard...

  7. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine (United States)


    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  8. Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine (United States)


    Distribution is unlimited. MODELING OF ENGINE PARAMETERS FOR CONDITION-BASED MAINTENANCE OF THE MTU SERIES 2000 DIESEL ENGINE Siew Peng Yue... maintenance only when needed to save on resources and cost. Formulating a model that reflects the behavior of the marine diesel engine in its “normal...program that provides high availability of the main engine. Corrective maintenance requires the performance of maintenance only when a failure occurs

  9. Academic program models for undergraduate biomedical engineering. (United States)

    Krishnan, Shankar M


    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  10. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Publisher. Department of Chemical Engineering, University of Port Harcourt. Sponsors. The Journal of Modeling, Design & Management of Engineering Systems is published by. Dialetique Publishers. ISSN: 1596-3497. AJOL African Journals Online.

  11. Mars 2020 Model Based Systems Engineering Pilot (United States)

    Dukes, Alexandra Marie


    The pilot study is led by the Integration Engineering group in NASA's Launch Services Program (LSP). The Integration Engineering (IE) group is responsible for managing the interfaces between the spacecraft and launch vehicle. This pilot investigates the utility of Model-Based Systems Engineering (MBSE) with respect to managing and verifying interface requirements. The main objectives of the pilot are to model several key aspects of the Mars 2020 integrated operations and interface requirements based on the design and verification artifacts from Mars Science Laboratory (MSL) and to demonstrate how MBSE could be used by LSP to gain further insight on the interface between the spacecraft and launch vehicle as well as to enhance how LSP manages the launch service. The method used to accomplish this pilot started through familiarization of SysML, MagicDraw, and the Mars 2020 and MSL systems through books, tutorials, and NASA documentation. MSL was chosen as the focus of the model since its processes and verifications translate easily to the Mars 2020 mission. The study was further focused by modeling specialized systems and processes within MSL in order to demonstrate the utility of MBSE for the rest of the mission. The systems chosen were the In-Flight Disconnect (IFD) system and the Mass Properties process. The IFD was chosen as a system of focus since it is an interface between the spacecraft and launch vehicle which can demonstrate the usefulness of MBSE from a system perspective. The Mass Properties process was chosen as a process of focus since the verifications for mass properties occur throughout the lifecycle and can demonstrate the usefulness of MBSE from a multi-discipline perspective. Several iterations of both perspectives have been modeled and evaluated. While the pilot study will continue for another 2 weeks, pros and cons of using MBSE for LSP IE have been identified. A pro of using MBSE includes an integrated view of the disciplines, requirements, and

  12. Requirements Engineering Model: Role Based Goal Oriented Model

    Directory of Open Access Journals (Sweden)



    Full Text Available Requirements engineering approach through intentional perspective is one of the arguments that appear in the field of requirement engineering. That approach can explain the characteristics of the behavior of an actor. The usage Goal Based Workflow and KAOS method in iStar modeling might help the system analyst to gain knowledge about the internal process inside each of actor sequentially, such that the whole sequential activity to achieve the goal are exposed clearly in those actor’s internal process. The adoption of the concept of the role of RACI diagram on Role Based Goal Oriented Model system analyst gain complete knowledge about requirements of actor who involve in a system. System analyst might also distinguish the dependency between each actor in each process. Those dependencies are exhibited in strategic dependency model. In addition, the internal activities of the actor are also shown in strategic rationale model.

  13. Loss terms in free-piston Stirling engine models (United States)

    Gordon, Lloyd B.


    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  14. Engineering models for merging wakes in wind farm optimization applications

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Murcia Leon, Juan Pablo


    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake ...

  15. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Focus and Scope. The Journal of Modeling, Design & Management of Engineering Systems publishes original research reports, short communications, and critical reviews in any branch of engineering and allied fields such as applied mathematics, applied physics, applied chemistry and management sciences.


    Zeleznik, F. J.


    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  17. Cognitive engineering models in space systems (United States)

    Mitchell, Christine M.


    , the PDRS was identified as the most accessible system for the demonstration. Pursuant to this a PDRS simulation was obtained from the HCIL and an initial knowledge engineering effort was conducted to understand the operator's tasks in the PDRS application. The preliminary results of the knowledge engineering effort and an initial formulation of an operator function model (OFM) are contained in the appendices.

  18. Software Engineering Laboratory (SEL) cleanroom process model (United States)

    Green, Scott; Basili, Victor; Godfrey, Sally; Mcgarry, Frank; Pajerski, Rose; Waligora, Sharon


    The Software Engineering Laboratory (SEL) cleanroom process model is described. The term 'cleanroom' originates in the integrated circuit (IC) production process, where IC's are assembled in dust free 'clean rooms' to prevent the destructive effects of dust. When applying the clean room methodology to the development of software systems, the primary focus is on software defect prevention rather than defect removal. The model is based on data and analysis from previous cleanroom efforts within the SEL and is tailored to serve as a guideline in applying the methodology to future production software efforts. The phases that are part of the process model life cycle from the delivery of requirements to the start of acceptance testing are described. For each defined phase, a set of specific activities is discussed, and the appropriate data flow is described. Pertinent managerial issues, key similarities and differences between the SEL's cleanroom process model and the standard development approach used on SEL projects, and significant lessons learned from prior cleanroom projects are presented. It is intended that the process model described here will be further tailored as additional SEL cleanroom projects are analyzed.

  19. Mean Value Modelling of a Turbocharged SI Engine

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.


    An important paradigm for the modelling of naturallly aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines...... but not the cycle-by-cycle behavior. In principle such models are also physically based,are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple...... physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has...

  20. Modeling as an Engineering Habit of Mind and Practice (United States)

    Lammi, Matthew D.; Denson, Cameron D.


    In this paper we examine a case study of a pedagogical strategy that focuses on the teaching of modeling as a habit of mind and practice for novice designers engaged in engineering design challenges. In an engineering design course, pre-service teachers created modeling artifacts in the form of conceptual models, graphical models, mathematical…

  1. Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models (United States)

    Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.


    A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).

  2. [The microencapsulated genetic engineering cells: a new platform on treatment of cancer instead of genetic engineering drugs]. (United States)

    Pan, Yuelong; Zheng, Shu


    The microencapsulated genetic cells may be a new platform instead of genetic engineering drugs, as they can overcome the genetic engineering drugs' shortages such as short half-life in vivo, low activity, and incomplete elimination of organic solvent. This article reviews and summarizes the advantages, possible problems and solution and the feasibility of using microencapsulated genetic engineering cells in the treatment of cancer.

  3. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty


    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  4. Diagrammatic Models in the Engineering Sciences.

    NARCIS (Netherlands)

    Boon, Mieke


    This paper is concerned with scientific reasoning in the engineering sciences. Engineering sciences aim at explaining, predicting and describing physical phenomena occurring in technological devices. The focus of this paper is on mathematical description. These mathematical descriptions are

  5. Social Engineering Attack Detection Model: SEADMv2

    CSIR Research Space (South Africa)

    Mouton, F


    Full Text Available and is only able to cater for social engineering attacks that use bidirectional communication. Previous research discovered that social engineering attacks can be classified into three different categories, namely attacks that utilise bidirectional...

  6. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.


    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  7. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.


    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  8. Modeling Hepatitis C treatment policy.

    Energy Technology Data Exchange (ETDEWEB)

    Kuypers, Marshall A.; Lambert, Gregory Joseph; Moore, Thomas W.; Glass, Robert John,; Finley, Patrick D.; Ross, David; Chartier, Maggie


    Chronic infection with Hepatitis C virus (HCV) results in cirrhosis, liver cancer and death. As the nations largest provider of care for HCV, US Veterans Health Administration (VHA) invests extensive resources in the diagnosis and treatment of the disease. This report documents modeling and analysis of HCV treatment dynamics performed for the VHA aimed at improving service delivery efficiency. System dynamics modeling of disease treatment demonstrated the benefits of early detection and the role of comorbidities in disease progress and patient mortality. Preliminary modeling showed that adherence to rigorous treatment protocols is a primary determinant of treatment success. In depth meta-analysis revealed correlations of adherence and various psycho-social factors. This initial meta-analysis indicates areas where substantial improvement in patient outcomes can potentially result from VA programs which incorporate these factors into their design.

  9. Intensive treatment models and coercion

    DEFF Research Database (Denmark)

    Ohlenschlaeger, Johan; Thorup, Anne; Petersen, Lone


    Little evidence exists concerning the optimal treatment for patients with first-episode schizophrenia-spectrum disorders and the effect on traditional outcomes. The aim was to investigate whether optimal treatment models have an effect on the level of use of coercion and on traditional outcomes. ...

  10. Integrating Surface Modeling into the Engineering Design Graphics Curriculum (United States)

    Hartman, Nathan W.


    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  11. Survey of Traceability Approaches in Model-Driven Engineering

    NARCIS (Netherlands)

    Galvao, I.; Göknil, Arda


    Models have been used in various engineering fields to help managing complexity and represent information in different abstraction levels, according to specific notations and stakeholder's viewpoints. Model-Driven Engineering (MDE) gives the basic principles for the use of models as primary

  12. Transforming System Engineering through Model-Centric Engineering (United States)


    fit into the model? We initially developed (as a straw man) an example model in System Modeling Language (SysML) that represented the Integrated...strain transitions from elastic to plastic deformation, etc.) will give erroneous results Mechanical or electro-mechanical control and isolation

  13. Mean Value Modelling of an SI Engine with EGR

    DEFF Research Database (Denmark)

    Føns, Michael; Muller, Martin; Chevalier, Alain


    Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR......). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, ver fast manifold pressure, manifold temperature, port and EGR mass flow sensores. Reasonable agreement has been obtained on an experimental engine, mounted on a dynamometer....

  14. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami


    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  15. Introducing Model Based Systems Engineering Transforming System Engineering through Model-Based Systems Engineering (United States)


    BPMN ).  This  is  when  a  model-­‐centric   approach.     The   AGM   was   developed   using   the   iGrafx6   tool   with   BPMN   [12... BPMN  notation  as  shown  in  Figure  14.  It   provides  a  time-­‐sequenced  perspective  on  the  process

  16. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)


    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  17. A Model for Sustainable Humanitarian Engineering Projects

    Directory of Open Access Journals (Sweden)

    Evan Thomas


    Full Text Available The engineering profession should embrace a new mission statement—to contribute to the building of a more sustainable, stable, and equitable world. Recently, engineering students and professionals in the United States have shown strong interest in directly addressing the needs of developing communities worldwide. That interest has taken the form of short-and medium-term international trips through Engineers Without Borders—USA and similar organizations. There are also several instances where this kind of outreach work has been integrated into engineering education at various US institutions such as the University of Colorado at Boulder. This paper addresses the challenges and opportunities associated with balancing two goals in engineering for humanitarian development projects: (i effective sustainable community development, and (ii meaningful education of engineers. Guiding principles necessary to meet those two goals are proposed.

  18. A Control Engineering Approach for Designing an Optimized Treatment Plan for Fibromyalgia. (United States)

    Deshpande, Sunil; Nandola, Naresh N; Rivera, Daniel E; Younger, Jarred


    Control engineering offers a systematic and efficient means for optimizing the effectiveness of behavioral interventions. In this paper, we present an approach to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone as treatment for a chronic pain condition known as fibromyalgia. We apply system identification techniques to develop models from daily diary reports completed by participants of a naltrexone intervention trial. The dynamic model serves as the basis for applying model predictive control as a decision algorithm for automated dosage selection of naltrexone in the face of the external disturbances. The categorical/discrete nature of the dosage assignment creates a need for hybrid model predictive control (HMPC) schemes. Simulation results that include conditions of significant plant-model mismatch demonstrate the performance and applicability of hybrid predictive control for optimized adaptive interventions for fibromyalgia treatment involving naltrexone.

  19. Model-Based Engineering mit Industriesteuerungen


    Hofmann, Andreas; Menager, Nils; Schweig, Stephan; Mikelsons, Lars


    Das durchgängige Engineering über den gesamten Lebenszyklus ist neben der horizontalen und vertikalen Vernetzung die dritte Säule von Industrie 4.0. Durchgängigkeit im Engineering bedeutet dabei insbesondere Wiederverwendung von Modellen aus vorherigen Entwicklungsphasen. Beispiele hierfür sind die virtuelle Inbetriebnahme sowie die Codegenerierung. Dieser Beitrag stellt dar, wie diese modernen Engineering-Methoden bei der Verwendung von Rexroth Komponenten angewendet werden können. Die Koste...

  20. Practical Techniques for Modeling Gas Turbine Engine Performance (United States)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.


    The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.

  1. Modeling of hybrid vehicle fuel economy and fuel engine efficiency (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  2. Modelling and Inverse-Modelling: Experiences with O.D.E. Linear Systems in Engineering Courses (United States)

    Martinez-Luaces, Victor


    In engineering careers courses, differential equations are widely used to solve problems concerned with modelling. In particular, ordinary differential equations (O.D.E.) linear systems appear regularly in Chemical Engineering, Food Technology Engineering and Environmental Engineering courses, due to the usefulness in modelling chemical kinetics,…

  3. Modeling Engineered Nanomaterials (ENMs) Fate and ... (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  4. Human factors engineering program review model

    Energy Technology Data Exchange (ETDEWEB)


    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element.

  5. Modelling and Simulation of Gas Engines Using Aspen HYSYS

    Directory of Open Access Journals (Sweden)

    M. C. Ekwonu


    Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.

  6. Engineering teacher training models and experiences (United States)

    González-Tirados, R. M.


    Education Area, we renewed the programme, content and methodology, teaching the course under the name of "Initial Teacher Training Course within the framework of the European Higher Education Area". Continuous Training means learning throughout one's life as an Engineering teacher. They are actions designed to update and improve teaching staff, and are systematically offered on the current issues of: Teaching Strategies, training for research, training for personal development, classroom innovations, etc. They are activities aimed at conceptual change, changing the way of teaching and bringing teaching staff up-to-date. At the same time, the Institution is at the disposal of all teaching staff as a meeting point to discuss issues in common, attend conferences, department meetings, etc. In this Congress we present a justification of both training models and their design together with some results obtained on: training needs, participation, how it is developing and to what extent students are profiting from it.

  7. Using cognitive modeling for requirements engineering in anesthesiology

    NARCIS (Netherlands)

    Pott, C; le Feber, J


    Cognitive modeling is a complexity reducing method to describe significant cognitive processes under a specified research focus. Here, a cognitive process model for decision making in anesthesiology is presented and applied in requirements engineering. Three decision making situations of

  8. An algebraic approach to modeling in software engineering

    Energy Technology Data Exchange (ETDEWEB)

    Loegel, G.J. [Superconducting Super Collider Lab., Dallas, TX (United States)]|[Michigan Univ., Ann Arbor, MI (United States); Ravishankar, C.V. [Michigan Univ., Ann Arbor, MI (United States)


    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ``computer science`` objects like abstract data types, but in practice software errors are often caused because ``real-world`` objects are improperly modeled. There is a large semantic gap between the customer`s objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form.

  9. Improvement of biomaterials used in tissue engineering by an ageing treatment. (United States)

    Acevedo, Cristian A; Díaz-Calderón, Paulo; Enrione, Javier; Caneo, María J; Palacios, Camila F; Weinstein-Oppenheimer, Caroline; Brown, Donald I


    Biomaterials based on crosslinked sponges of biopolymers have been extensively used as scaffolds to culture mammal cells. It is well known that single biopolymers show significant change over time due to a phenomenon called physical ageing. In this research, it was verified that scaffolds used for skin tissue engineering (based on gelatin, chitosan and hyaluronic acid) express an ageing-like phenomenon. Treatments based on ageing of scaffolds improve the behavior of skin-cells for tissue engineering purposes. Physical ageing of dry scaffolds was studied by differential scanning calorimetry and was modeled with ageing kinetic equations. In addition, the physical properties of wet scaffolds also changed with the ageing treatments. Scaffolds were aged up to 3 weeks, and then skin-cells (fibroblasts) were seeded on them. Results indicated that adhesion, migration, viability, proliferation and spreading of the skin-cells were affected by the scaffold ageing. The best performance was obtained with a 2-week aged scaffold (under cell culture conditions). The cell viability inside the scaffold was increased from 60% (scaffold without ageing treatment) to 80%. It is concluded that biopolymeric scaffolds can be modified by means of an ageing treatment, which changes the behavior of the cells seeded on them. The ageing treatment under cell culture conditions might become a bioprocess to improve the scaffolds used for tissue engineering and regenerative medicine.

  10. Assessing multiparametric drug response in tissue engineered tumor microenvironment models. (United States)

    Harris, Alexandra R; Yuan, Jessica X; Munson, Jennifer M


    The tumor microenvironment is important in promoting treatment resistance of tumor cells via multiple mechanisms. However, studying this interaction often proves difficult. In vivo animal models are costly, time-consuming, and often fail to adequately predict human response to treatment. Conversely, testing drug response on human tumor cells in vitro in 2D cell culture excludes the important contribution of stromal cells and biophysical forces seen in the in vivo tumor microenvironment. Here, we present tissue-engineered models of both human brain and breast tumor microenvironments incorporating key stromal cell populations for assessing multiple mechanisms of therapeutic response using flow cytometry. We show our physiologically-relevant systems used to interrogate a variety of parameters associated with chemotherapeutic efficacy, including cell death, proliferation, drug uptake, and invasion of cancer and stromal cell populations. The use of flow cytometry allows for single cell, quantitative, and fast assessments of multiple outcomes affecting anti-tumor therapy failure. Our system can be modified to add and remove cellular components with ease, thereby enabling the study of individual cellular contributions in the tumor microenvironment. Together, our models and analysis methods illustrate the importance of developing fast, cost-effective, and reproducible methods to model complex human systems in a physiologically-relevant manner that may prove useful for drug screening efforts in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Thermal treatment technology at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hillary, J.M. [EG and G Idaho Inc., Idaho Falls, ID (United States)


    Recent surveys of mixed wastes in interim storage throughout the 30-site Department of Energy complex indicate that only 12 of those sites account for 98% of such wastes by volume. Current inventories at the Idaho National Engineering Laboratory (INEL) account for 38% of total DOE wastes in interim storage, the largest of any single site. For a large percentage of these waste volumes, as well as the substantial amounts of buried and currently generated wastes, thermal treatment processes have been designated as the technologies of choice. Current facilities and a number of proposed strategies exist for thermal treatment of wastes of this nature at the INEL. High-level radioactive waste is solidified in the Waste Calciner Facility at the Idaho Central Processing Plant. Low-level solid wastes until recently have been processed at the Waste Experimental Reduction Facility (WERF), a compaction, size reduction, and controlled air incineration facility. WERF is currently undergoing process upgrading and RCRA Part B permitting. Recent systems studies have defined effective strategies, in the form of thermal process sequences, for treatment of wastes of the complex and heterogeneous nature in the INEL inventory. This presentation reviews the current status of operating facilities, active studies in this area, and proposed strategies for thermal treatment of INEL wastes.

  12. Compact and Accurate Turbocharger Modelling for Engine Control

    DEFF Research Database (Denmark)

    Sorenson, Spencer C; Hendricks, Elbert; Magnússon, Sigurjón


    (Engine Control Unit) as a table. This method uses a great deal of memory space and often requires on-line interpolation and thus a large amount of CPU time. In this paper a more compact, accurate and rapid method of dealing with the compressor modelling problem is presented and is applicable to all......With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great díffuculty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU...

  13. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper


    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  14. Application for certification 1993 model year heavy-duty diesel engines - Cummins Engine Company

    Energy Technology Data Exchange (ETDEWEB)


    Each year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement or compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  15. Predictive modeling and reducing cyclic variability in autoignition engines (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob


    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  16. An Object Model for a Rocket Engine Numerical Simulator (United States)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.


    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  17. Modelo de tratamiento en ingeniería ortoconductual para la resocialización penitenciaria: Propuesta para Michoacán, México/Treatment model in ortoconductual engineering for prison resocialization: Proposal for Michoacan, Mexico

    Directory of Open Access Journals (Sweden)

    Agustín Salgado García


    Full Text Available The study of offenders requires a multidisciplinary intervention because it is a multifactorial phenomenon; resulting logical offender treatment resulting from a variety of analysis by the ortoconductual Engineering, which in its application Ortoconducta strategies, involving various sciences and scientific disciplines in charge of the study of behavior (from different areas, criminology, psychology, psychiatry, andragogy, pedagogy, sociology, philosophy, neurophysiology and endocrinology, to name just a few, which are complement to the same end: The social reintegration. Our prison system is aimed at crime prevention (secondary prevention, which must be achieved rehabilitate the offender, later to reintegrate into the community.

  18. Underwater striling engine design with modified one-dimensional model

    Directory of Open Access Journals (Sweden)

    Daijin Li


    Full Text Available Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA. The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  19. Economic modeling of HIV treatments. (United States)

    Simpson, Kit N


    To review the general literature on microeconomic modeling and key points that must be considered in the general assessment of economic modeling reports, discuss the evolution of HIV economic models and identify models that illustrate this development over time, as well as examples of current studies. Recommend improvements in HIV economic modeling. Recent economic modeling studies of HIV include examinations of scaling up antiretroviral (ARV) in South Africa, screening prior to use of abacavir, preexposure prophylaxis, early start of ARV in developing countries and cost-effectiveness comparisons of specific ARV drugs using data from clinical trials. These studies all used extensively published second-generation Markov models in their analyses. There have been attempts to simplify approaches to cost-effectiveness estimates by using simple decision trees or cost-effectiveness calculations with short-time horizons. However, these approaches leave out important cumulative economic effects that will not appear early in a treatment. Many economic modeling studies were identified in the 'gray' literature, but limited descriptions precluded an assessment of their adherence to modeling guidelines, and thus to the validity of their findings. There is a need for developing third-generation models to accommodate new knowledge about adherence, adverse effects, and viral resistance.

  20. Control Engineering Methods for the Design of Robust Behavioral Treatments. (United States)

    Bekiroglu, Korkut; Lagoa, Constantino; Murphy, Suzan A; Lanza, Stephanie T


    In this paper, a robust control approach is used to address the problem of adaptive behavioral treatment design. Human behavior (e.g., smoking and exercise) and reactions to treatment are complex and depend on many unmeasurable external stimuli, some of which are unknown. Thus, it is crucial to model human behavior over many subject responses. We propose a simple (low order) uncertain affine model subject to uncertainties whose response covers the most probable behavioral responses. The proposed model contains two different types of uncertainties: uncertainty of the dynamics and external perturbations that patients face in their daily life. Once the uncertain model is defined, we demonstrate how least absolute shrinkage and selection operator (lasso) can be used as an identification tool. The lasso algorithm provides a way to directly estimate a model subject to sparse perturbations. With this estimated model, a robust control algorithm is developed, where one relies on the special structure of the uncertainty to develop efficient optimization algorithms. This paper concludes by using the proposed algorithm in a numerical experiment that simulates treatment for the urge to smoke.

  1. Mean Value SI Engine Model for Control Studies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Sorenson, Spencer C


    This paper presents a mathematically simple nonlinear three state (three differential equation) dynamic model of an SI engine which has the same steady state accuracy as a typical dynamometer measurement of the engine over its entire speed/load operating range (± 2.0%). The model's accuracy...... for large, fast transients is of the same order in the same operating region. Because the model is mathematically compact, it has few adjustable parameters and is thus simple to fit to a given engine either on the basis of measurements or given the steady state results of a larger cycle simulation package...

  2. Propulsion Controls Modeling for a Small Turbofan Engine (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin


    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  3. A Compositional Knowledge Level Process Model of Requirements Engineering

    NARCIS (Netherlands)

    Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.


    In current literature few detailed process models for Requirements Engineering are presented: usually high-level activities are distinguished, without a more precise specification of each activity. In this paper the process of Requirements Engineering has been analyzed using knowledge-level

  4. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. Journal Homepage Image. The Journal of Modeling, Design & Management of Engineering Systems publishes original research reports, short communications, and critical reviews in any branch of engineering and allied fields such as ...

  5. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server


    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  6. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe


    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  7. Multidisciplinary Engineering Models: Methodology and Case Study in Spreadsheet Analytics


    Birch, D.; Liang, H.; Ko, J.; Kelly, P; Field, A.; Mullineux, G; Simondetti, A


    This paper demonstrates a methodology to help practitioners maximise the utility of complex multidisciplinary engineering models implemented as spreadsheets, an area presenting unique challenges. As motivation we investigate the expanding use of Integrated Resource Management(IRM) models which assess the sustainability of urban masterplan designs. IRM models reflect the inherent complexity of multidisciplinary sustainability analysis by integrating models from many disciplines. This complexit...

  8. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage. (United States)

    Stephenson, Makeda K; Farris, Ashley L; Grayson, Warren L


    While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.

  9. Perspectives on modelling micropollutants in wastewater treatment plants

    DEFF Research Database (Denmark)

    Clouzot, Ludiwine; Cloutier, Frédéric; Vanrolleghem, Peter A.


    Models for predicting the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs) have been developed to provide engineers and decision-makers with tools that they can use to improve their understanding of, and evaluate how to optimize, the removal of MPs and determine their impact...... on the receiving waters. This paper provides an overview of such models, and discusses the impact of regulation, engineering practice and research on model development. A review of the current status of MP models reveals that a single model cannot represent the wide range of MPs that are present in wastewaters......) addressing advancements in WWTP treatment technologies, (iii) making use of common approaches to data acquisition for model calibration and (iv) integrating ecotoxicological effects of MPs in receiving waters....


    African Journals Online (AJOL)


    Jun 30, 2013 ... principal mechanisms of formation of the various pollutants are of thermal nature, it was necessary to ... unburnt residues, progressive combustion, the heat transfer and propagation of flame in the study of the ... An experimental research into the use of LPG in spark-ignition outboard engines is presented.


    African Journals Online (AJOL)


    Jun 30, 2013 ... ABSTRACT. The internal combustion engines are under development remarkable these last decades, but they represent, currently, a very important source of polluting gas emissions. The nitrogen oxides (NOx) form part of these polluting emissions, and have a harmful effect on human health, as well as the ...

  12. Gamified Requirements Engineering: Model and Experimentation

    NARCIS (Netherlands)

    Lombriser, Philipp; Dalpiaz, Fabiano; Lucassen, Garm; Brinkkemper, Sjaak


    [Context & Motivation] Engaging stakeholders in requirements engineering (RE) influences the quality of the requirements and ultimately of the system to-be. Unfortunately, stakeholder engagement is often insufficient, leading to too few, low-quality requirements. [Question/problem] We aim to

  13. The Engineer Model Improvement Program Plan (United States)


    that combat results are inextricably bound to the terrain, whether engineer modified or not (e.g., Kursk, Monte Casino, North Africa, and Market Garden...34 " ’ - - - - - ALBE ,--BA -- Hi E-1-2 !! Army DTD Production in Costa Rica Quad No. Quad Name 32451 Barranca 3245IV Golfo 3246111 Chomes 3246 IV

  14. Modeling uncertainty in requirements engineering decision support (United States)

    Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.


    One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.

  15. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model. (United States)

    Bairaktarova, Diana; Woodcock, Anna


    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  16. Engine System Model Development for Nuclear Thermal Propulsion (United States)

    Nelson, Karl W.; Simpson, Steven P.


    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  17. A quantum heat engine based on Tavis-Cummings model (United States)

    Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng


    This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

  18. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  19. Solving Engineering, Project, and Production Management Problems through Modeling


    Chien-Ho Ko


    This issue presents five papers covering engineering management, project management, and production management. While distinct, these three fields frequently overlap and share common managerial concepts, e.g. solving problems through modeling.

  20. Implementing model based systems engineering in South Africa

    CSIR Research Space (South Africa)

    Oosthuizen, Rudolph


    Full Text Available of the system may be structured and organized into an architecture. The conceptual models may assist design by understanding the relationship between the system as a whole and its parts to enable deriving possible emergent properties (Buede 2000, Ramos et al... for systems engineering and include concepts such as interface and flow specifications, system concepts, parametric, and integrated requirements. SysML aims to provide a standard modelling language for systems engineering to analyze, specify, design...

  1. Model-driven and software product line engineering

    CERN Document Server

    Royer, Jean-Claude


    Many approaches to creating Software Product Lines have emerged that are based on Model-Driven Engineering. This book introduces both Software Product Lines and Model-Driven Engineering, which have separate success stories in industry, and focuses on the practical combination of them. It describes the challenges and benefits of merging these two software development trends and provides the reader with a novel approach and practical mechanisms to improve software development productivity.The book is aimed at engineers and students who wish to understand and apply software product lines

  2. Engine panel seals for hypersonic engine applications: High temperature leakage assessments and flow modelling (United States)

    Steinetz, Bruce M.; Mutharasan, Rajakkannu; Du, Guang-Wu; Miller, Jeffrey H.; Ko, Frank


    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating horizontal engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the seal concept design and development of two new seal classes that show promise of meeting these demands will be presented. These seals include the ceramic wafer seal and the braided ceramic rope seal. Presented are key elements of leakage flow models for each of these seal types. Flow models such as these help designers to predict performance-robbing parasitic losses past the seals, and estimate purge coolant flow rates. Comparisons are made between measured and predicted leakage rates over a wide range of engine simulated temperatures and pressures, showing good agreement.

  3. Genetically Engineered ERα positive breast cancer mouse models (United States)

    Dabydeen, Sarah A.; Furth, Priscilla A.


    The majority of human breast cancers are ER+ but this has proven challenging to model in genetically engineered mice. This review summarizes information on twenty-one mouse models that develop ER+ mammary cancer. Where available, information on cancer pathology and gene expression profiles is referenced to assist in understanding which histological subtype of ER+ human cancer each model might represent. Esr1, Ccdn1, prolactin, TGFα, AIB1, Espl1, and Wnt1 over-expression, Pik3ca gain of function, as well as loss of p53 or loss of Stat1 are associated with ER+ mammary cancer. Treatment with the PPARγ agonist efatutazone in a mouse with Brca1 and p53 deficiency and DMBA exposure in combination with an activated myristoylated form of AKT1 also induce ER+ mammary cancer. A spontaneous mutant in nude mice that develops metastatic ER+ mammary cancer is included. Age of cancer development ranges from three to 26 months and the percentages of cancers that are ER+ vary from 21% to 100%. Not all models are characterized as to their estrogen dependency and/or response to anti-hormonal therapy. Strain backgrounds include C57Bl/6, FVB, BALB/c, 129S6/SvEv, CB6F1 and NIH nude. Most models have only been studied on one strain background. In summary while a range of models is available for studies of pathogenesis and therapy of ER+ breast cancers, many could benefit from further characterization and opportunity for development of new models remains. PMID:24481326

  4. Engineered Joint Lubrication for OA Prevention and Treatment (United States)


    inflammation and promoting chondrocyte cell survival30–32. As a result, one common clinical treatment for osteoarthritis is injection ofHAdirectly...Williams, C. G., Khan, M., Manson, P. & Elisseeff, J .H. In vivo chondrogenesis of mesenchymal stem cells in photopolymerized hydrogel. Plast...reduce pain and delay surgery. 2. Translate the HA-binding technology to preclinical joint models of post-traumatic osteoarthritis . The one-step

  5. The Influence of Engineers' Training Models on Ethics and Civic Education Component in Engineering Courses in Portugal (United States)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina


    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its…

  6. Engineers' Non-Scientific Models in Technology Education (United States)

    Norstrom, Per


    Engineers commonly use rules, theories and models that lack scientific justification. Examples include rules of thumb based on experience, but also models based on obsolete science or folk theories. Centrifugal forces, heat and cold as substances, and sucking vacuum all belong to the latter group. These models contradict scientific knowledge, but…

  7. An intercausal cancellation model for Bayesian-network engineering

    NARCIS (Netherlands)

    Woudenberg, Steven P D; Van Der Gaag, Linda C.; Rademaker, Carin M A


    When constructing Bayesian networks with domain experts, network engineers often use the noisy-OR model, and causal interaction models more generally, to alleviate the burden of probability elicitation: the use of such a model serves to reduce the number of probabilities to be elicited on the one

  8. Applying Model Based Systems Engineering to NASA's Space Communications Networks (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert


    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  9. Quantum heat engine: A fully quantized model (United States)

    Youssef, M.; Mahler, G.; Obada, A.-S. F.


    Motivated by the growing interest in the nanophysics and the field of quantum thermodynamics [J. Gemmer, M. Michel, G. Mahler, Springer, 2005] we study a system consisting of two different 2-level atoms (spins) coupled to a quantum oscillator (resonator field mode), and each spin linked to a heat bath with different temperatures. We find that the energy gradient imposed on the system and the “coherent driving” of the two atoms achieved by the oscillator make this system act as a thermodynamic machine. We analyze the engine dynamics using the recently developed definitions of heat flux and power [E. Boukobza, D.J. Tannor, Phys. Rev. A. 74 (2006) 063823; H. Weimer, M.J. Henrich, F. Rempp, H. Schröder, G. Mahler, Eur. Phys. Lett. 83 (3) (2008) 30008]. The system can work as heat engine (laser) or a heat pump in a non-cyclic continuous mode. We characterize the properties of the resonator field. The concept of work and heat for this machine is discussed.

  10. Mean Line Pump Flow Model in Rocket Engine System Simulation (United States)

    Veres, Joseph P.; Lavelle, Thomas M.


    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  11. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    Energy Technology Data Exchange (ETDEWEB)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze [University of Tehran, Karaj (India)


    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  12. Complete modeling for systems of a marine diesel engine (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha


    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  13. Artificial Intelligence Software Engineering (AISE) model (United States)

    Kiss, Peter A.


    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  14. Systems metabolic engineering: Genome-scale models and beyond (United States)

    Blazeck, John; Alper, Hal


    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches – based on the data collected with high throughput technologies – to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems. PMID:20151446

  15. Systems metabolic engineering: genome-scale models and beyond. (United States)

    Blazeck, John; Alper, Hal


    The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.

  16. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis


    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  17. Space engineering modeling and optimization with case studies

    CERN Document Server

    Pintér, János


    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  18. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven


    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  19. Decision models in engineering and management

    CERN Document Server


    Providing a comprehensive overview of various methods  and applications in decision engineering, this book presents chapters written by a range experts in the field. It presents conceptual aspects of decision support applications in various areas including finance, vendor selection, construction, process management, water management and energy, agribusiness , production scheduling and control, and waste management. In addition to this, a special focus is given to methods of multi-criteria decision analysis. Decision making in organizations is a recurrent theme and is essential for business continuity.  Managers from various fields including public, private, industrial, trading or service sectors are required to make decisions. Consequently managers need the support of these structured methods in order to engage in effective decision making. This book provides a valuable resource for graduate students, professors and researchers of decision analysis, multi-criteria decision analysis and group decision analys...

  20. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.


    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  1. Software Engineering with Process Algebra: Modelling Client / Server Architectures


    Diertens, B.


    In previous work we described how the process algebra based language PSF can be used in software engineering, using the ToolBus, a coordination architecture also based on process algebra, as implementation model. We also described this software development process more formally by presenting the tools we use in this process in a CASE setting, leading to the PSF-ToolBus software engineering environment. In this article we summarize that work and describe a similar software development process ...

  2. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server


    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  3. Human Engineering Modeling and Performance Lab Study Project (United States)

    Oliva-Buisson, Yvette J.


    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  4. Potency of Animal Models in KANSEI Engineering (United States)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  5. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš


    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  6. NTP system simulation and detailed nuclear engine modeling (United States)

    Anghaie, Samim


    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  7. Human Modeling for Ground Processing Human Factors Engineering Analysis (United States)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim


    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  8. Human Modeling For Ground Processing Human Factors Engineering Analysis (United States)

    Tran, Donald; Stambolian, Damon; Henderson, Gena; Barth, Tim


    There have been many advancements and accomplishments over that last few years using human modeling for human factors engineering analysis for design of spacecraft and launch vehicles. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the different types of human modeling used currently and in the past at Kennedy Space Center (KSC) currently, and to explain the future plans for human modeling for future spacecraft designs.

  9. An engineering model for dilute riser flow.

    NARCIS (Netherlands)

    Nieuwland, J.J.; Nieuwland, J.J.; Delnoij, E.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria


    To facilitate understanding of the hydrodynamic behaviour of CFBs, a one-dimensional model for the riser tube of a CFB has been developed. The model describes steady state hydrodynamic key variables (i.e. cross-sectional averaged values of pressure, solids concentration and velocities of both

  10. Modeling and Engineering Algorithms for Mobile Data

    DEFF Research Database (Denmark)

    Blunck, Henrik; Hinrichs, Klaus; Sondern, Joëlle


    In this paper, we present an object-oriented approach to modeling mobile data and algorithms operating on such data. Our model is general enough to capture any kind of continuous motion while at the same time allowing for encompassing algorithms optimized for specific types of motion. Such motion...

  11. Performance Characteristics of Automotive Engines in the United States : Report No. 7. Mercedes Benz Model OM617 Diesel Engine. (United States)


    Experimental data were obtained in dynamometer tests of the Mercedes Benz Model OM617 diesel engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitroge, and smoke) at steady-state engine-operating modes. The o...

  12. Strategies for the Curation of CAD Engineering Models

    Directory of Open Access Journals (Sweden)

    Manjula Patel


    Full Text Available Normal 0 Product Lifecycle Management (PLM has become increasingly important in the engineering community over the last decade or so, due to the globalisation of markets and the rising popularity of products provided as services. It demands the efficient capture, representation, organisation, retrieval and reuse of product data over its entire life. Simultaneously, there is now a much greater reliance on CAD models for communicating designs to manufacturers, builders, maintenance crews and regulators, and for definitively expressing designs. Creating the engineering record digitally, however, presents problems not only for its long-term maintenance and accessibility - due in part to the rapid obsolescence of the hardware, software and file formats involved - but also for recording the evolution of designs, artefacts and products. We examine the curation and preservation requirements in PLM and suggest ways of alleviating the problems of sustaining CAD engineering models through the use of lightweight formats, layered annotation and the collection of Representation Information as defined in the Open Archival Information System (OAIS Reference Model.  We describe two tools which have been specifically developed to aid in the curation of CAD engineering models in the context of PLM: Lightweight Models with Multilayered Annotation (LiMMA and a Registry/Repository of Representation Information for Engineering (RRoRIfE.

  13. Engineering model for impact of blunt projectiles on metallic sheets

    NARCIS (Netherlands)

    Roebroeks, G.; Carton, E.P.


    At TNO mind sized engineering models are created for specific penetration conditions. The models are energy based and calculate the energy absorbed by target deformation (strain energy) and displacement (kinetic energy). The input parameters are restricted to basic target material properties

  14. Design of a Human Reliability Assessment model for structural engineering

    NARCIS (Netherlands)

    De Haan, J.; Terwel, K.C.; Al-Jibouri, S.H.S.


    It is generally accepted that humans are the “weakest link” in structural design and construction processes. Despite this, few models are available to quantify human error within engineering processes. This paper demonstrates the use of a quantitative Human Reliability Assessment model within

  15. A Team Building Model for Software Engineering Courses Term Projects (United States)

    Sahin, Yasar Guneri


    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  16. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.


    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  17. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix


    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and

  18. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.


    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  19. Surface-Engineered Blood Adsorption Device for Hyperphosphatemia Treatment. (United States)

    Shi, Quan; Jolly, Michael; Mccord, Marian G; Joy, Melanie S


    Correspondence: Melanie S. Joy, PharmD, PhD, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, Room V20-4108, 12850 East Montview Blvd, Aurora, CO 80045. Email: Melanie.Joy@ucdenver.eduThe research employed surface engineering methods to develop, optimize, and characterize a novel textile-based hemoadsorption device for hyperphosphatemia in hemodialysis-dependent end-stage kidney disease. Phosphate adsorbent fabrics (PAFs) were prepared by thermopressing alumina powders to polyester filtration fabrics and treatment with trimesic acid (TMA). For static experiments, phosphate adsorption capacity in buffer solution, plasma, and blood were evaluated by submersing the PAFs in 100 ml. For dynamic experiments, PAFs were equipped in a device prototype and incorporated in a pump-driven circuit. Phosphates were determined by a colorimetric assay and an Ortho Clinical Diagnostics Vitros 5600 Integrated analyzer. The maximum loading amount of TMA-alumina on PAFs was approximately 35 g/m under 260°C processing temperature. Phosphate adsorption capacity increased with initial concentration. Adsorption isotherms from buffer demonstrated a maximum phosphate adsorption capacity of approximately 893 mg/m at 37.5°C, pH 7.4, with similar results from plasma and whole blood. Measured phosphate concentrations during simulations demonstrated a 42% reduction, confirming the high capacity of the PAFs for removing phosphate from whole blood. Results from the current study indicated that an alumina-TMA treated PAF can dramatically reduce phosphate concentrations from biological samples. The technology could potentially be used as a tunable adsorbent for managing hyperphosphatemia in kidney disease.

  20. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf


    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  1. Meteoroid Environment Modeling: the Meteoroid Engineering Model and Shower Forecasting (United States)

    Moorhead, Althea V.


    The meteoroid environment is often divided conceptually into meteor showers plus a sporadic background component. The sporadic complex poses the bulk of the risk to spacecraft, but showers can produce significant short-term enhancements of the meteoroid flux. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. Both MEM and the forecast are used by multiple manned spaceflight projects in their meteoroid risk evaluation, and both tools are being revised to incorporate recent meteor velocity, density, and timing measurements. MEM describes the sporadic meteoroid complex and calculates the flux, speed, and directionality of the meteoroid environment relative to a user-supplied spacecraft trajectory, taking the spacecraft's motion into account. MEM is valid in the inner solar system and offers near-Earth and cis-lunar environments. While the current version of MEM offers a nominal meteoroid environment corresponding to a single meteoroid bulk density, the next version of MEMR3 will offer both flux uncertainties and a density distribution in addition to a revised near-Earth environment. We have updated the near-Earth meteor speed distribution and have made the first determination of uncertainty in this distribution. We have also derived a meteor density distribution from the work of Kikwaya et al. (2011). The annual meteor shower forecast takes the form of a report and data tables that can be used in conjunction with an existing MEM assessment. Fluxes are typically quoted to a constant limiting kinetic energy in order to comport with commonly used ballistic limit equations. For the 2017 annual forecast, the MEO substantially revised the list of showers and their characteristics using 14 years of meteor flux measurements from the Canadian Meteor Orbit Radar (CMOR). Defunct or insignificant showers were removed and the temporal profiles of many showers

  2. Engineered telomere degradation models dyskeratosis congenita

    National Research Council Canada - National Science Library

    Hockemeyer, Dirk; Palm, Wilhelm; Wang, Richard C; Couto, Suzana S; de Lange, Titia


    .... However, mice with extensively shortened telomeres due to telomerase deficiency do not develop the characteristics of DC, raising questions about the etiology of DC and/or mouse models for human telomere dysfunction...

  3. Computational fluid dynamics modeling in yarn engineering

    CSIR Research Space (South Africa)

    Patanaik, A


    Full Text Available This chapter deals with the application of computational fluid dynamics (CFD) modeling in reducing yarn hairiness during the ring spinning process and thereby “engineering” yarn with desired properties. Hairiness significantly affects the appearance...

  4. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner


    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  5. A Mathematical Model of Marine Diesel Engine Speed Control System (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo


    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  6. A Mathematical Model of Marine Diesel Engine Speed Control System (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo


    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  7. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes


    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  8. Capability maturity models in engineering companies: case study analysis

    Directory of Open Access Journals (Sweden)

    Titov Sergei


    Full Text Available In the conditions of the current economic downturn engineering companies in Russia and worldwide are searching for new approaches and frameworks to improve their strategic position, increase the efficiency of the internal business processes and enhance the quality of the final products. Capability maturity models are well-known tools used by many foreign engineering companies to assess the productivity of the processes, to elaborate the program of business process improvement and to prioritize the efforts to optimize the whole company performance. The impact of capability maturity model implementation on cost and time are documented and analyzed in the existing research. However, the potential of maturity models as tools of quality management is less known. The article attempts to analyze the impact of CMM implementation on the quality issues. The research is based on a case study methodology and investigates the real life situation in a Russian engineering company.

  9. Semantic Web and Model-Driven Engineering

    CERN Document Server

    Parreiras, Fernando S


    The next enterprise computing era will rely on the synergy between both technologies: semantic web and model-driven software development (MDSD). The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and se

  10. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  11. Use of genome-scale microbial models for metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Åkesson, M.; Nielsen, Jens


    network structures. The major challenge for metabolic engineering in the post-genomic era is to broaden its design methodologies to incorporate genome-scale biological data. Genome-scale stoichiometric models of microorganisms represent a first step in this direction.......Metabolic engineering serves as an integrated approach to design new cell factories by providing rational design procedures and valuable mathematical and experimental tools. Mathematical models have an important role for phenotypic analysis, but can also be used for the design of optimal metabolic...

  12. Models and metrics for software management and engineering (United States)

    Basili, V. R.


    This paper attempts to characterize and present a state of the art view of several quantitative models and metrics of the software life cycle. These models and metrics can be used to aid in managing and engineering software projects. They deal with various aspects of the software process and product, including resources allocation and estimation, changes and errors, size, complexity and reliability. Some indication is given of the extent to which the various models have been used and the success they have achieved.

  13. Miscibility of polymer blends with engineering models

    DEFF Research Database (Denmark)

    Vassilis, Harismiadis; van Bergen, A. R. D.; Goncalves, Ana Saraiva


    The miscibility behavior of polymer blends that do not exhibit strong specific interactions is examined. Phase equilibrium calculations are presented with the van der Waals equation of state and three group-contribution models (UNIFAC, Entropic-FV, and GC-Flory). Performance of these models is also...... compared. The van der Waals equation of state was recently shown to accurately correlate and predict vapor-liquid and liquid-liquid equilibria for binary polymer/solvent solutions. In this work, it is demonstrated that it correlates the upper critical solution behavior of polymer blends with excellent......, the upper critical solution temperature can be predicted with an average error of less than 45 degrees C. The van der Waals equation of state can correlate the lower critical solution behavior of polymer blends, using an interaction parameter that is a linear function of temperature. The UNIFAC and Entropic...

  14. Systems Engineering Interfaces: A Model Based Approach (United States)

    Fosse, Elyse; Delp, Christopher


    Currently: Ops Rev developed and maintains a framework that includes interface-specific language, patterns, and Viewpoints. Ops Rev implements the framework to design MOS 2.0 and its 5 Mission Services. Implementation de-couples interfaces and instances of interaction Future: A Mission MOSE implements the approach and uses the model based artifacts for reviews. The framework extends further into the ground data layers and provides a unified methodology.

  15. Diluents and lean mixture combustion modeling for SI engines with a quasi-dimensional model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, W.; Davis, G.C. [Ford Motor Co., Dearborn, MI (United States); Hall, M.J.; Matthews, R.D. [Univ. of Texas, Austin, TX (United States)


    Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents have already played a key role in the reductions of emissions and fuel consumption. Lean burning modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM was used as the platform. A new strain rate model was developed with the Lewis number effect included. A 2.5L V6 4-valve engine and 4.6L V8 2-valve modular engine were used to validate the modified turbulent entrainment combustion model in GESIM. Results showed that the current GESIM can differ by as much as 10 crank angle degrees compared with test data. The modified GESIM can predict burn duration to within 1--2 CA of experimental data, which is considered very good for engine models.

  16. From requirements to Java in a snap model-driven requirements engineering in practice

    CERN Document Server

    Smialek, Michal


    This book provides a coherent methodology for Model-Driven Requirements Engineering which stresses the systematic treatment of requirements within the realm of modelling and model transformations. The underlying basic assumption is that detailed requirements models are used as first-class artefacts playing a direct role in constructing software. To this end, the book presents the Requirements Specification Language (RSL) that allows precision and formality, which eventually permits automation of the process of turning requirements into a working system by applying model transformations and co

  17. Analysis of simulated engine sounds using a psychoacoustic model (United States)

    Duvigneau, Fabian; Liefold, Steffen; Höchstetter, Marius; Verhey, Jesko L.; Gabbert, Ulrich


    The aim of the paper is the evaluation and the prediction of the perceived quality of engine sounds, which is predicted in the design process by numerical simulations. Periodic combustion sounds of the operating engine are synthesized with the help of an overall numerical simulation approach before a real prototype exists. The perceived quality of the sound is rated in hearing tests using the method of relative comparison and absolute judgment. Results are transferred into an interval scaled ranking of the stimuli. Based on the data, a psychoacoustic model for sound quality is developed using psychoacoustic parameters. Predictions of this model are used to evaluate the sound quality of several technical design modifications, for example, different engine encapsulations. The results are visualized to allow a simple qualitative analysis of the sound perception. This results in an impartial and objective decision regarding the final design of an acoustic encapsulation with a higher perceived sound quality.

  18. Modeling Spitsbergen fjords by hydrodynamic MIKE engine. (United States)

    Kosecki, Szymon; Przyborska, Anna; Jakacki, Jaromir


    Two Svalbard's fjords - Hornsund (on the western side of the most southern part of Spitsbergen island) and Kongsfjorden (also on the western side of Spitsbergen island, but in the northern part) are quite different - the first one is "cold" and second one is "warm". It is obvious that both of them are under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current detaches Hornsund. But there is also freshwater stored in Spitsbergen glaciers that have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord and there is no answer which one is the most important in each fjord. Modeling could help to solve this problem - MIKE 3D model has been implemented for both fjords. Mesh-grid of the each fjord has been extended for covering shelf area. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Hornsund and Kongsfjorden. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  19. A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

    Directory of Open Access Journals (Sweden)

    Shuai Luo


    Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.

  20. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin


    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  1. Model-driven Service Engineering with SoaML (United States)

    Elvesæter, Brian; Carrez, Cyril; Mohagheghi, Parastoo; Berre, Arne-Jørgen; Johnsen, Svein G.; Solberg, Arnor

    This chapter presents a model-driven service engineering (MDSE) methodology that uses OMG MDA specifications such as BMM, BPMN and SoaML to identify and specify services within a service-oriented architecture. The methodology takes advantage of business modelling practices and provides a guide to service modelling with SoaML. The presentation is case-driven and illuminated using the telecommunication example. The chapter focuses in particular on the use of the SoaML modelling language as a means for expressing service specifications that are aligned with business models and can be realized in different platform technologies.

  2. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, Nicholas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  3. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Journal of Modeling, Design and Management of Engineering Systems. ... Numerical investigation of heat transfer in Plastic Leaded Chip Carrier (PLCC) packages in in-line arrangement · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. M Mohamed, M.Z Abdullah, M.A Mujeebu, ...

  4. Towards Model-Driven Engineering Constraint-Based Scheduling Applications


    de Siqueira Teles, Fabrício


    de Siqueira Teles, Fabrício; Pierre Louis Robin, Jacques. Towards Model-Driven Engineering Constraint-Based Scheduling Applications. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.

  5. Applications of computational modeling in metabolic engineering of yeast. (United States)

    Kerkhoven, Eduard J; Lahtvee, Petri-Jaan; Nielsen, Jens


    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods have been developed and applied extensively. Many of these rely on balancing of intracellular metabolites, redox, and energy fluxes, using genome-scale models (GEMs) that in combination with appropriate objective functions and constraints can be used to predict potential gene targets for obtaining a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications. © FEMS 2015. All rights reserved. For permissions, please e-mail:

  6. Model-Driven Instructional Engineering to Generate Adaptable Learning Materials

    NARCIS (Netherlands)

    Dodero, Juan Manuel; Díez, David


    Please, cite this publication as: Dodero, J. M. & Díez, D. (2006). Model-Driven Instructional Engineering to Generate Adaptable Learning Materials. Proceedings of ICALT2006. July, Kerkrade, The Netherlands: IEEE. Retrieved July 30th, 2006, from

  7. Software engineering with process algebra: Modelling client / server architecures

    NARCIS (Netherlands)

    Diertens, B.


    In previous work we described how the process algebra based language PSF can be used in software engineering, using the ToolBus, a coordination architecture also based on process algebra, as implementation model. We also described this software development process more formally by presenting the

  8. Software-engineering-based model for mitigating Repetitive Strain ...

    African Journals Online (AJOL)

    The incorporation of Information and Communication Technology (ICT) in virtually all facets of human endeavours has fostered the use of computers. This has induced Repetitive Stress Injury (RSI) for continuous and persistent computer users. Proposing a software engineering model capable of enacted RSI force break ...

  9. Computer model of catalytic combustion/Stirling engine heater head (United States)

    Chu, E. K.; Chang, R. L.; Tong, H.


    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  10. A decision-making model for engineering designers

    DEFF Research Database (Denmark)

    Ahmed, S.; Hansen, Claus Thorp


    This paper describes research that combines the generic decision-making model of Hansen, together with design strategies employed by experienced engineering designers. The relationship between the six decision-making sub-activities and the eight design strategies are examined. By combining...

  11. Model based methods and tools for process systems engineering

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Process systems engineering (PSE) provides means to solve a wide range of problems in a systematic and efficient manner. This presentation will give a perspective on model based methods and tools needed to solve a wide range of problems in product-process synthesis-design. These methods and tools...

  12. Hydraulic modeling development and application in water resources engineering (United States)

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.


    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  13. Model-driven engineering of supramolecular buffering by multivalency. (United States)

    Paffen, Tim F E; Teunissen, Abraham J P; de Greef, Tom F A; Meijer, E W


    A supramolecular system in which the concentration of a molecule is buffered over several orders of magnitude is presented. Molecular buffering is achieved as a result of competition in a ring-chain equilibrium of multivalent ureidopyrimidinone monomers and a monovalent naphthyridine molecule which acts as an end-capper. While we previously only considered divalent ureidopyrimidinone monomers we now present a model-driven engineering approach to improve molecular buffering using multivalent ring-chain systems. Our theoretical models reveal an odd-even effect where even-valent molecules show superior buffering capabilities. Furthermore, we predict that supramolecular buffering can be significantly improved using a tetravalent instead of a divalent molecule, since the tetravalent molecule can form two intramolecular rings with different "stabilities" due to statistical effects. Our model predictions are validated against experimental 1H NMR data, demonstrating that model-driven engineering has considerable potential in supramolecular chemistry. Copyright © 2017 the Author(s). Published by PNAS.

  14. Requirements engineering for cross-sectional information chain models. (United States)

    Hübner, U; Cruel, E; Gök, M; Garthaus, M; Zimansky, M; Remmers, H; Rienhoff, O


    Despite the wealth of literature on requirements engineering, little is known about engineering very generic, innovative and emerging requirements, such as those for cross-sectional information chains. The IKM health project aims at building information chain reference models for the care of patients with chronic wounds, cancer-related pain and back pain. Our question therefore was how to appropriately capture information and process requirements that are both generally applicable and practically useful. To this end, we started with recommendations from clinical guidelines and put them up for discussion in Delphi surveys and expert interviews. Despite the heterogeneity we encountered in all three methods, it was possible to obtain requirements suitable for building reference models. We evaluated three modelling languages and then chose to write the models in UML (class and activity diagrams). On the basis of the current project results, the pros and cons of our approach are discussed.

  15. Thermodynamics of Paint Related Systems with Engineering Models

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios


    to solid surfaces and drying. Many engineering models have been applied over the last decades for solutions with commoditity polymers. In this work the performance of some of these models is investigated for paint-related systems, focusing on those drying by the so-called " lacquer mechanism " (evaporation......Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...... that, despite the uncertainties involved, several models yield reasonably accurate activity coefficients, even at infinite dilution. Thus, engineering models may be useful for solvent selection via semiempirical rules of thumb, which are based on thermodynamic considerations....

  16. Removal of engineered nanoparticles in drinking water treatment processes

    NARCIS (Netherlands)

    Floris, Roberto


    Nanotechnology has brought a large number of engineered nanomaterials and nanoparticles to applications in multiple daily products and in almost every sector of society. The many advantages that this relatively new science has brought to our daily life are evident, but still little is known on the

  17. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models (United States)

    Tavana, Madjid


    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  18. Sharing Research Models: Using Software Engineering Practices for Facilitation. (United States)

    Bryant, Stephanie P; Solano, Eric; Cantor, Susanna; Cooley, Philip C; Wagener, Diane K


    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems' behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations-such as nonintuitive user interface features and data input specifications-may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices- the iterative software development process, object-oriented methodology, and Unified Modeling Language-and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers.

  19. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling (United States)

    Tew, Roy C., Jr.


    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  20. A Fuel-Sensitive Reduced-Order Model (ROM) for Piston Engine Scaling Analysis (United States)


    single-cylinder moving piston case near top dead center at diesel - engine conditions. The ROM provides a real-time engineering analytical tool for liquid...length scaling that may be used toward optimizing engine performance . 15. SUBJECT TERMS reduced-order model, ROM, engine scaling, spray... diesel engine ................................... 20 Approved for public release; distribution is unlimited. 1 1. Introduction A central

  1. Key Reliability Drivers of Liquid Propulsion Engines and A Reliability Model for Sensitivity Analysis (United States)

    Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.


    This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).

  2. Applications of computational modeling in metabolic engineering of yeast

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Lahtvee, Petri-Jaan; Nielsen, Jens


    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods...... a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering......, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach...

  3. Femur Model Reconstruction Based on Reverse Engineering and Rapid Prototyping (United States)

    Tang, Tongming; Zhang, Zheng; Ni, Hongjun; Deng, Jiawen; Huang, Mingyu

    Precise reconstruction of 3D models is fundamental and crucial to the researches of human femur. In this paper we present our approach towards tackling this problem. The surface of a human femur was scanned using a hand-held 3D laser scanner. The data obtained, in the form of point cloud, was then processed using the reverse engineering software Geomagic and the CAD/CAM software CimatronE to reconstruct a digital 3D model. The digital model was then used by the rapid prototyping machine to build a physical model of human femur using 3D printing. The geometric characteristics of the obtained physical model matched that of the original femur. The process of "physical object - 3D data - digital 3D model - physical model" presented in this paper provides a foundation of precise modeling for the digital manufacturing, virtual assembly, stress analysis, and simulated surgery of artificial bionic femurs.

  4. Genome engineering of stem cell organoids for disease modeling

    Directory of Open Access Journals (Sweden)

    Yingmin Sun


    Full Text Available Abstract Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.

  5. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park


    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  6. Next-generation genome-scale models for metabolic engineering. (United States)

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O


    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    . This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known......Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central...

  8. Thermal barrier coating life modeling in aircraft gas turbine engines (United States)

    Nissley, David M.


    Analytical models for predicting ceramic thermal barrier coating (TBC) spalling life in aircraft gas turbine engines are presented. Electron beam-physical vapor deposited (EB-PVD) and plasma sprayed TBC systems are discussed. An overview of the following TBC spalling mechanisms is presented: metal oxidation at the ceramic-metal interface, ceramic-metal interface stress singularities at edges and corners, ceramic-metal interface stresses caused by radius of curvature and interface roughness, material properties and mechanical behavior, temperature gradients, component design features and object impact damage. TBC spalling life analytical models are proposed based on observations of TBC spalling and plausible failure theories. TBC spalling was assumed to occur when the imposed stresses exceed the material strength (at or near the ceramic-metal interface). TBC failure knowledge gaps caused by lack of experimental evidence and analytical understanding are noted. The analytical models are considered initial engineering approaches that capture observed TBC failure trends.

  9. An automation model of Effluent Treatment Plant

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque


    Full Text Available Population growth and intensification of industrial activities have increased the deterioration of natural resources. Industrial, hospital and residential wastes are dumped directly into landfills without processing, polluting soils. This action will have consequences later, because the liquid substance resulting from the putrefaction of organic material plows into the soil to reach water bodies. Cities arise without planning, industrial and household wastes are discharged into rivers, lakes and oceans without proper treatment, affecting water resources. It is well known that in the next century there will be fierce competition for fresh water on the planet, probably due to the scarcity of it. Demographic expansion has occurred without proper health planning, degrading oceans, lakes and rivers. Thus, a large percentage of world population suffers from diseases related to water pollution. Accordingly, it can be concluded that sewage treatment is essential to human survival, to preserve rivers, lakes and oceans. An Effluent Treatment Plant (ETP treats wastewater to reduce its pollution to acceptable levels before sending them to the oceans or rivers. To automate the operation of an ETP, motors, sensors and logic blocks, timers and counters are needed. These functions are achieved with programmable logic controllers (PLC and Supervisory Systems. The Ladder language is used to program controllers and is a pillar of the Automation and Control Engineering. The supervisory systems allow process information to be monitored, while the PLC are responsible for control and data acquisition. In the age we live in, process automation is used in an increasing scale in order to provide higher quality, raise productivity and improve the proposed activities. Therefore, an automatic ETP will improve performance and efficiency to handle large volumes of sewage. Considering the growing importance of environmental awareness with special emphasis

  10. Generalized Linear Models with Applications in Engineering and the Sciences

    CERN Document Server

    Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J


    Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

  11. Verification of geological/engineering model in waterflood areas

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, B.; Szpakiewicz, M.; Honarpour, M.; Schatzinger, R.A.; Tillman, R.


    The construction of a detailed geological/engineering model is the basis for development of the methodology for characterizing reservoir heterogeneity. The NIPER geological/engineering model is the subject of this report. The area selected for geological and production performance studies is a four-section area within the Powder River Basin which includes the Tertiary Incentive Project (TIP) pilot. Log, well test, production, and core data were acquired for construction of the geological model of a barrier island reservoir. In this investigation, emphasis was on the synthesis and quantification of the abundant geological information acquired from the literature and field studies (subsurface and outcrop) by mapping the geological heterogeneities that influence fluid flow. The geological model was verified by comparing it with the exceptionally complete production data available for Bell Creek field. This integration of new and existing information from various geological, geophysical, and engineering disciplines has enabled better definition of the heterogeneities that influence production during different recovery operations. 16 refs., 26 figs., 6 tabs.

  12. Model-driven engineering of gene expression from RNA replicons. (United States)

    Beal, Jacob; Wagner, Tyler E; Kitada, Tasuku; Azizgolshani, Odisse; Parker, Jordan Moberg; Densmore, Douglas; Weiss, Ron


    RNA replicons are an emerging platform for engineering synthetic biological systems. Replicons self-amplify, can provide persistent high-level expression of proteins even from a small initial dose, and, unlike DNA vectors, pose minimal risk of chromosomal integration. However, no quantitative model sufficient for engineering levels of protein expression from such replicon systems currently exists. Here, we aim to enable the engineering of multigene expression from more than one species of replicon by creating a computational model based on our experimental observations of the expression dynamics in single- and multireplicon systems. To this end, we studied fluorescent protein expression in baby hamster kidney (BHK-21) cells using a replicon derived from Sindbis virus (SINV). We characterized expression dynamics for this platform based on the dose-response of a single species of replicon over 50 h and on a titration of two cotransfected replicons expressing different fluorescent proteins. From this data, we derive a quantitative model of multireplicon expression and validate it by designing a variety of three-replicon systems, with profiles that match desired expression levels. We achieved a mean error of 1.7-fold on a 1000-fold range, thus demonstrating how our model can be applied to precisely control expression levels of each Sindbis replicon species in a system.

  13. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL


    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  14. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server


    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  15. Aspect-Oriented Model-Driven Software Product Line Engineering (United States)

    Groher, Iris; Voelter, Markus

    Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.

  16. Formal Model-Driven Engineering: Generating Data and Behavioural Components

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang


    Full Text Available Model-driven engineering is the automatic production of software artefacts from abstract models of structure and functionality. By targeting a specific class of system, it is possible to automate aspects of the development process, using model transformations and code generators that encode domain knowledge and implementation strategies. Using this approach, questions of correctness for a complex, software system may be answered through analysis of abstract models of lower complexity, under the assumption that the transformations and generators employed are themselves correct. This paper shows how formal techniques can be used to establish the correctness of model transformations used in the generation of software components from precise object models. The source language is based upon existing, formal techniques; the target language is the widely-used SQL notation for database programming. Correctness is established by giving comparable, relational semantics to both languages, and checking that the transformations are semantics-preserving.

  17. Concurrent engineering and product models in seafood companies

    DEFF Research Database (Denmark)

    Jonsdottir, Stella; Vesterager, Johan; Børresen, Torger


    Concurrent Engineering (CE) can provide an improved approach to product development for extending the lines of seafood products. Information technology (IT) support tools based on product models can provide an integrated and simultaneous approach for specifying new recipes. The seafood industry can...... techniques. It is anticipated that other food industries can also benefit from the more simultaneous development approach. (C) 1999 Elsevier Science Ltd. All rights reserved...

  18. Model-driven performance evaluation for service engineering


    Pahl, Claus; Boskovic, Marko; Hasselbring, Wilhelm


    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluat...

  19. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Porter, C.L. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Wallace, M.T. [Argonne National Lab., Idaho Falls, ID (United States)


    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications.

  20. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments. (United States)

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B


    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.

  1. Underlying finite state machine for the social engineering attack detection model

    CSIR Research Space (South Africa)

    Mouton, Francois


    Full Text Available definitions, attack frameworks, examples of attacks and detection models. In order to formally address social engineering in a broad context, this paper proposes the underlying finite state machine of the Social Engineering Attack Detection Model (SEADM...

  2. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael


    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  3. Modeling and laser-based sensing of pulsed detonation engines (United States)

    Barbour, Ethan A.

    This work is concerned with two major aspects of pulse detonation engines (PDE) research: modeling and laser-based sensing. The modeling addresses both ideal and real considerations relevant to PDE design. First, an ideal nozzle model is developed which provides a tool for choosing area ratios for fixed-geometry converging, diverging, or converging-diverging nozzles. Next, losses associated with finite-rate chemistry are investigated. It was found that PDEs can experience up to 10% reduction in specific impulse from this effect if 02 is used as the oxidizer, whereas the losses are negligible for air-breathing applications. Next, heat transfer and friction losses were investigated and found to be greater than the losses from simple straight-tube PDEs. These losses are most pronounced (˜15%) when converging nozzles are used. The second portion of this work focuses on laser-based absorption sensing for PDEs. The mid-infrared was chosen as the best way to address the challenges of signal-to-noise ratio, sensitivity, robustness, and sensor bandwidth. A water vapor sensor was developed and applied to the PDE at the Naval Postgraduate School. This sensor provided improvements in temperature accuracy, and it revealed that water (generated by the vitiator) inhibited performance of the engine. Next, a JP-10 absorption sensor was developed and applied to the same engine. This sensor provided thermometry data at a higher temporal resolution than the water sensor. The sensor also provided crucial information on equivalence ratio and fuel arrival time which enabled the engine to be successfully operated on JP-10 and air for the first time.

  4. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.


    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row...... of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies...

  5. Model-based engineering for medical-device software. (United States)

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi


    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  6. Technology-Facilitated Diagnosis and Treatment of Individuals with Autism Spectrum Disorder: An Engineering Perspective

    Directory of Open Access Journals (Sweden)

    Xiongyi Liu


    Full Text Available The rapid development of computer and robotic technologies in the last decade is giving hope to perform earlier and more accurate diagnoses of the Autism Spectrum Disorder (ASD, and more effective, consistent, and cost-conscious treatment. Besides the reduced cost, the main benefit of using technology to facilitate treatment is that stimuli produced during each session of the treatment can be controlled, which not only guarantees consistency across different sessions, but also makes it possible to focus on a single phenomenon, which is difficult even for a trained professional to perform, and deliver the stimuli according to the treatment plan. In this article, we provide a comprehensive review of research on recent technology-facilitated diagnosis and treat of children and adults with ASD. Different from existing reviews on this topic, which predominantly concern clinical issues, we focus on the engineering perspective of autism studies. All technology facilitated systems used for autism studies can be modeled as human machine interactive systems where one or more participants would constitute as the human component, and a computer-based or a robotic-based system would be the machine component. Based on this model, we organize our review with the following questions: (1 What are presented to the participants in the studies and how are the content and delivery methods enabled by technologies? (2 How are the reactions/inputs collected from the participants in response to the stimuli in the studies? (3 Are the experimental procedure and programs presented to participants dynamically adjustable based on the responses from the participants, and if so, how? and (4 How are the programs assessed?

  7. The role of technology and engineering models in transforming healthcare. (United States)

    Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey


    The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.

  8. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders. (United States)

    Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A


    Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.

  9. Career Persistence Model for Female Engineers in the Indonesian Context

    Directory of Open Access Journals (Sweden)

    Lies Dahlia


    Full Text Available Extant studies about female engineers have suggested their career persistency in the engineering career is influenced by the workplace, which is characterized by male dominated culture making them feel marginalized. In Indonesia, similar studies for reference are limited. This paper is based on an exploratory quantitative study using a questionnaire developed based on the Career Persistence Model. This paper is based on an empirical exploratory quantitative study by adopting Buse’s et al. Career Persistence Model (2013. The intention is to contribute to the literature in the context of Indonesia. It explores the Indonesian cultural dimensions and investigates their relationship to the roles of women in family, society and the workplace, and how women manage to navigate barriers to avoid taking alternative career paths. Contrary to extant studies, findings show women feel equally treated to men in the workplace, however some work demands may hinder. The strong acknowledgement of one’s roles in this collective society outdoes the opinions that the Islamic jurisprudence (fiqh has marginalized empowerment of women, resulting in gender-based injustices and discrimination. Future studies should look into social supports at the workplace in an attempt to retain and increase the share of women in the engineering career in Indonesia.

  10. Modeling and cold start in alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Markel, A.J.; Bailey, B.K.


    Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

  11. Drive Rig Mufflers for Model Scale Engine Acoustic Testing (United States)

    Stephens, David


    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  12. A new engineering model for understanding extrusion process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    A new engineering method is proposed to understand extrudate expansion and extrusion operation parameters for starch based food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. pump efficiency, water content and tempera......A new engineering method is proposed to understand extrudate expansion and extrusion operation parameters for starch based food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. pump efficiency, water content...... and temperature, are suggested to describe the extrudate expansion. Using the three dimensionless groups, an equation is derived to express the extrudate expansion. The model has been used to correlate the experimental data for whole wheat flour and fish feed extrusion cooking. The average deviations...

  13. Model Based Document and Report Generation for Systems Engineering (United States)

    Delp, Christopher; Lam, Doris; Fosse, Elyse; Lee, Cin-Young


    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  14. Model based document and report generation for systems engineering (United States)

    Delp, C.; Lam, D.; Fosse, E.; Lee, Cin-Young

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  15. Systems Engineering Model and Training Application for Desktop Environment (United States)

    May, Jeffrey T.


    Provide a graphical user interface based simulator for desktop training, operations and procedure development and system reference. This simulator allows for engineers to train and further understand the dynamics of their system from their local desktops. It allows the users to train and evaluate their system at a pace and skill level based on the user's competency and from a perspective based on the user's need. The simulator will not require any special resources to execute and should generally be available for use. The interface is based on a concept of presenting the model of the system in ways that best suits the user's application or training needs. The three levels of views are Component View, the System View (overall system), and the Console View (monitor). These views are portals into a single model, so changing the model from one view or from a model manager Graphical User Interface will be reflected on all other views.

  16. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz B.P. 220, F-38043 Grenoble Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Laboratoire Imagerie et modelisation en neurobiologie et cancerologie, UMR8165, Centre National de la Recherche Scientifique (CNRS), Universites Paris 7 et Paris 11, Bat 440., 15 rue Georges Clemenceau, F-91406 Orsay Cedex (France)


    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at

  17. Methods of the working processes modelling of an internal combustion engine by an ANSYS IC Engine module (United States)

    Kurchatkin, I. V.; Gorshkalev, A. A.; Blagin, E. V.


    This article deals with developed methods of the working processes modelling in the combustion chamber of an internal combustion engine (ICE). Methods includes description of the preparation of a combustion chamber 3-d model, setting of the finite-element mesh, boundary condition setting and solution customization. Aircraft radial engine M-14 was selected for modelling. The cycle of cold blowdown in the ANSYS IC Engine software was carried out. The obtained data were compared to results of known calculation methods. A method of engine’s induction port improvement was suggested.

  18. Semantically-Rigorous Systems Engineering Modeling Using Sysml and OWL (United States)

    Jenkins, J. Steven; Rouquette, Nicolas F.


    The Systems Modeling Language (SysML) has found wide acceptance as a standard graphical notation for the domain of systems engineering. SysML subsets and extends the Unified Modeling Language (UML) to define conventions for expressing structural, behavioral, and analytical elements, and relationships among them. SysML-enabled modeling tools are available from multiple providers, and have been used for diverse projects in military aerospace, scientific exploration, and civil engineering. The Web Ontology Language (OWL) has found wide acceptance as a standard notation for knowledge representation. OWL-enabled modeling tools are available from multiple providers, as well as auxiliary assets such as reasoners and application programming interface libraries, etc. OWL has been applied to diverse projects in a wide array of fields. While the emphasis in SysML is on notation, SysML inherits (from UML) a semantic foundation that provides for limited reasoning and analysis. UML's partial formalization (FUML), however, does not cover the full semantics of SysML, which is a substantial impediment to developing high confidence in the soundness of any conclusions drawn therefrom. OWL, by contrast, was developed from the beginning on formal logical principles, and consequently provides strong support for verification of consistency and satisfiability, extraction of entailments, conjunctive query answering, etc. This emphasis on formal logic is counterbalanced by the absence of any graphical notation conventions in the OWL standards. Consequently, OWL has had only limited adoption in systems engineering. The complementary strengths and weaknesses of SysML and OWL motivate an interest in combining them in such a way that we can benefit from the attractive graphical notation of SysML and the formal reasoning of OWL. This paper describes an approach to achieving that combination.

  19. Genetically engineered mouse models in oncology research and cancer medicine. (United States)

    Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos


    Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    Directory of Open Access Journals (Sweden)

    M. L. Rucker


    Full Text Available Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  1. Methods for model selection in applied science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.


    Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be

  2. ISO 9000 and/or Systems Engineering Capability Maturity Model? (United States)

    Gholston, Sampson E.


    For businesses and organizations to remain competitive today they must have processes and systems in place that will allow them to first identify customer needs and then develop products/processes that will meet or exceed the customers needs and expectations. Customer needs, once identified, are normally stated as requirements. Designers can then develop products/processes that will meet these requirements. Several functions, such as quality management and systems engineering management are used to assist product development teams in the development process. Both functions exist in all organizations and both have a similar objective, which is to ensure that developed processes will meet customer requirements. Are efforts in these organizations being duplicated? Are both functions needed by organizations? What are the similarities and differences between the functions listed above? ISO 9000 is an international standard of goods and services. It sets broad requirements for the assurance of quality and for management's involvement. It requires organizations to document the processes and to follow these documented processes. ISO 9000 gives customers assurance that the suppliers have control of the process for product development. Systems engineering can broadly be defined as a discipline that seeks to ensure that all requirements for a system are satisfied throughout the life of the system by preserving their interrelationship. The key activities of systems engineering include requirements analysis, functional analysis/allocation, design synthesis and verification, and system analysis and control. The systems engineering process, when followed properly, will lead to higher quality products, lower cost products, and shorter development cycles. The System Engineering Capability Maturity Model (SE-CMM) will allow companies to measure their system engineering capability and continuously improve those capabilities. ISO 9000 and SE-CMM seem to have a similar objective, which

  3. Net-Zero-Energy Model for Sustainable Wastewater Treatment. (United States)

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang


    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  4. Application of CFG Piles to Soft Soil Treatment of Municipal Engineering (United States)

    Xu, Qingli; Song, Yan; Han, Xinzhan

    With rapid development of constructional engineering, methods used for soft soil foundation treatment become increasingly diversified. Because composite foundation has the peculiar advantage that that it makes full use of earth among piles and piles and is featured by short construction period, large treatment depth and relatively good effect, it has been applied more and more widely. The engineering applies CFG pipes, utilizes high bearing capacity of piles and gives full play to carrying capacity of earth among piles by establishing a mattress layer.

  5. Model-Based Systems Engineering Pilot Program at NASA Langley (United States)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.


    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  6. Mathematical Modeling and Simulation Introduction for Scientists and Engineers

    CERN Document Server

    Velten, Kai


    This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra—all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently di

  7. Software Engineering Laboratory (SEL) relationships, models, and management rules (United States)

    Decker, William; Hendrick, Robert; Valett, Jon D.


    Over 50 individual Software Engineering Laboratory (SEL) research results, extracted from a review of published SEL documentation, that can be applied directly to managing software development projects are captured. Four basic categories of results are defined and discussed - environment profiles, relationships, models, and management rules. In each category, research results are presented as a single page that summarizes the individual result, lists potential uses of the result by managers, and references the original SEL documentation where the result was found. The document serves as a concise reference summary of applicable research for SEL managers.

  8. Human performance models for computer-aided engineering (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)


    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  9. A content-oriented model for science exhibit engineering

    DEFF Research Database (Denmark)

    Achiam, Marianne


    : as a means to operationalize the link between exhibit features and visitor activities; and as a template to transform scientists’ practices in the research context into visitors’ activities in the exhibit context. The resulting model of science exhibit engineering is presented and exemplified, and its......Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful...... implications for science exhibit design are discussed at three levels: the design product, the design process, and the design methodology....

  10. Defining New Parameters for Green Engineering Design of Treatment Reactors

    Directory of Open Access Journals (Sweden)

    Susana Boeykens


    Full Text Available This study proposes a green way to design Plug Flow Reactors (PFR that use biodegradable polymer solutions, capable of contaminant retaining, for industrial wastewater treatment. Usually, to the design of a PFR, the reaction rate is determined by tests on a Continuous Stirred-Tank Reactor (CSTR, these generate toxic effluents and also increase the cost of the design. In this work, empirical expressions (called “slip functions”, in terms of the average concentration of the contaminant, were developed through the study of the transport behaviour of CrVI into solutions of xanthan gum. “In situ” XRµF was selected as a no-invasive micro-technique to determine local concentrations. Slip functions were used with laboratory PFR experiments planned in similar conditions, to obtain useful dimensionless parameters for the industrial design. 

  11. Defect engineering by ultrasound treatment in polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Jastrzebski, L. [Univ. of South Florida, Tampa, FL (United States)


    By applying ultrasound treatment (UST) to bulk and thin film polycrystalline Si (poly-Si) we have found a dramatic improvement of recombination and transport properties. The increasing of minority carrier lifetime by as much as one order of magnitude was found in short diffusion length regions, while exhibiting a strong dispersion for entire solar-grade poly-Si wafer. Relevant mechanisms are attributed to ultrasound processing on crystallographic defects, as well as UST stimulated dissociation of Fe-B pairs followed by Fe{sub i} gettering. A spectacular improvement of hydrogenation efficiency in poly-Si thin-films on glass substrate is demonstrated by resistivity study and confirmed using spatially resolved photoluminescence and nanoscale contact potential difference mapping. By applying UST to commercial solar cells we found the increasing of cell efficiency at low light excitation.

  12. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine (United States)

    Seco, J.; Adams, E.; Bidmead, M.; Partridge, M.; Verhaegen, F.


    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  13. Nanotechnology meets 3D in vitro models: tissue engineered tumors and cancer therapies. (United States)

    da Rocha, E L; Porto, L M; Rambo, C R


    Advances in nanotechnology are providing to medicine a new dimension. Multifunctional nanomaterials with diagnostics and treatment modalities integrated in one nanoparticle or in cooperative nanosystems are promoting new insights to cancer treatment and diagnosis. The recent convergence between tissue engineering and cancer is gradually moving towards the development of 3D disease models that more closely resemble in vivo characteristics of tumors. However, the current nanomaterials based therapies are accomplished mainly in 2D cell cultures or in complex in vivo models. The development of new platforms to evaluate nano-based therapies in parallel with possible toxic effects will allow the design of nanomaterials for biomedical applications prior to in vivo studies. Therefore, this review focuses on how 3D in vitro models can be applied to study tumor biology, nanotoxicology and to evaluate nanomaterial based therapies. © 2013.

  14. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol (United States)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  15. Preclinical Animal Models for Temporomandibular Joint Tissue Engineering. (United States)

    Almarza, Alejandro J; Brown, Bryan N; Arzi, Boaz; Ângelo, David Faustino; Chung, William; Badylak, Stephen F; Detamore, Michael


    There is a paucity of in vivo studies that investigate the safety and efficacy of temporomandibular joint (TMJ) tissue regeneration approaches, in part due to the lack of established animal models. Review of disease models for study of TMJ is presented herein with an attempt to identify relevant preclinical animal models for TMJ tissue engineering, with emphasis on the disc and condyle. Although degenerative joint disease models have been mainly performed on mice, rats, and rabbits, preclinical regeneration approaches must employ larger animal species. There remains controversy regarding the preferred choice of larger animal models between the farm pig, minipig, goat, sheep, and dog. The advantages of the pig and minipig include their well characterized anatomy, physiology, and tissue properties. The advantages of the sheep and goat are their easier surgical access, low cost per animal, and its high tissue availability. The advantage of the dog is that the joint space is confined, so migration of interpositional devices should be less likely. However, each species has limitations as well. For example, the farm pig has continuous growth until about 18 months of age, and difficult surgical access due to the zygomatic arch covering the lateral aspect of joint. The minipig is not widely available and somewhat costly. The sheep and the goat are herbivores, and their TMJs mainly function in translation. The dog is a carnivore, and the TMJ is a hinge joint that can only rotate. Although no species provides the gold standard for all preclinical TMJ tissue engineering approaches, the goat and sheep have emerged as the leading options, with the minipig as the choice when cost is less of a limitation; and with the dog and farm pig serving as acceptable alternatives. Finally, naturally occurring TMJ disorders in domestic species may be harnessed on a preclinical trial basis as a clinically relevant platform for translation.

  16. Microencapsulation and tissue engineering as an alternative treatment of diabetes

    Directory of Open Access Journals (Sweden)

    Maria-Engler S.S.


    Full Text Available In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.

  17. Prediction analysis of effluent removal in a septic sludge treatment plant: a biomimetics engineering approach. (United States)

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani


    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.


    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL


    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  19. Green IT engineering concepts, models, complex systems architectures

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz


    This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors’ presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book ...


    This Engineering Issue document on treatment of mining waters is a practical guide to understanding and selecting technologies for the environmental management of waste materials and effluents at hard-rock mines. For the purposes of this discussion, hard-rock mining primarily ref...

  1. Analytical Study of Information Retrieval techniques and Modified Model of Search Engine


    Ms. Leena More


    The concept of Information Retrieval is very vast and too many models of search engines are available in the market. In this research various information retrieval techniques used in search engine were studies and modified model of search engine were developed. In web mining most of the web search engines retrieve the documents or information first without knowing the meaning of the keyword and then ask for the relevant meaning of the keyword entered by the users. That means without understan...

  2. Engineered cell and tissue models of pulmonary fibrosis. (United States)

    Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L


    Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.

  3. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)


    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  4. A modified rabbit ulna defect model for evaluating periosteal substitutes in bone engineering: a pilot study

    Directory of Open Access Journals (Sweden)

    Rania M El Backly


    Full Text Available The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane scaffold soaked in PBS and left as such (group Ia or wrapped with a tissue-engineered periosteal substitute (group Ib. For group II, an e-PTFE (GORE-TEX® membrane was inserted around the radius then the defects received either scaffold alone (group IIa or scaffold wrapped with periosteal substitute (group IIb. Animals were euthanized after 12-16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (µCT, and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX® membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  5. Engraftment of Prevascularized, Tissue Engineered Constructs in a Novel Rabbit Segmental Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Alexandre Kaempfen


    Full Text Available The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step or only after six weeks of subcutaneous “incubation” (2-step. After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed.

  6. [Genetically engineered mice: mouse models for cancer research]. (United States)

    Szymańska, Hanna


    Genetically engineered mice (GEM) have been extensively used to model human cancer. Mouse models mimic the morphology, histopathology, phenotype, and genotype of the corresponding cancer in humans. GEM mice are created by random integration of a transgene into the genome, which results in gene overexpression (transgenic mice); gene deletion (knock-out mice); or targeted insertion of the transgene in a selected locus (knock-in mice). Knock-out may be constitutive, i.e. total inactivation of the gene of interest in any cell, or conditional, i.e. tissue-specific inactivation of the gene. Gene knock-down (RNAi) and humanization of the mouse are more sophisticated models of GEM mice. RNA interference (RNAi) is a mechanism in which double-stranded RNAs inhibits the respective gene expression by inducing degradation of its mRNA. Humanization is based on replacing a mouse gene by its human counterpart. The alterations in genes in GEM have to be heritable. The opportunities provided by employing GEM cancer models are: analysis of the role of specific cancer genes and modifier genes, evaluation of conventional cancer therapies and new drugs, identification of cancer markers of tumor growth, analysis of the influence of the tumor's microenvironment on tumor formation, and the definition of the pre-clinical, discrete steps of tumorigenesis. The validation of mouse models of human cancer is the task of the MMHCC (Mouse Models of Human Cancer Consortium). The GEM models of breast, pancreatic, intestinal and colon, and prostate cancer are the most actively explored. In contrast, the models of brain tumors and ovary, cervical, and skin cancer are in the early stage of investigation.

  7. Integrated tokamak modeling: when physics informs engineering and research planning (United States)

    Poli, Francesca


    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.


    Energy Technology Data Exchange (ETDEWEB)

    W. Lynn Watney; John H. Doveton


    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays ( GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mapping of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.

  9. Modeling and Hemofiltration Treatment of Acute Inflammation

    Directory of Open Access Journals (Sweden)

    Robert S. Parker


    Full Text Available The body responds to endotoxins by triggering the acute inflammatory response system to eliminate the threat posed by gram-negative bacteria (endotoxin and restore health. However, an uncontrolled inflammatory response can lead to tissue damage, organ failure, and ultimately death; this is clinically known as sepsis. Mathematical models of acute inflammatory disease have the potential to guide treatment decisions in critically ill patients. In this work, an 8-state (8-D differential equation model of the acute inflammatory response system to endotoxin challenge was developed. Endotoxin challenges at 3 and 12 mg/kg were administered to rats, and dynamic cytokine data for interleukin (IL-6, tumor necrosis factor (TNF, and IL-10 were obtained and used to calibrate the model. Evaluation of competing model structures was performed by analyzing model predictions at 3, 6, and 12 mg/kg endotoxin challenges with respect to experimental data from rats. Subsequently, a model predictive control (MPC algorithm was synthesized to control a hemoadsorption (HA device, a blood purification treatment for acute inflammation. A particle filter (PF algorithm was implemented to estimate the full state vector of the endotoxemic rat based on time series cytokine measurements. Treatment simulations show that: (i the apparent primary mechanism of HA efficacy is white blood cell (WBC capture, with cytokine capture a secondary benefit; and (ii differential filtering of cytokines and WBC does not provide substantial improvement in treatment outcomes vs. existing HA devices.

  10. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. (United States)

    Vinatier, C; Guicheux, J


    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Improving magnetic properties of MgB{sub 2} bulk superconductors by synthetic engine oil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E., E-mail: [Department of Science Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300, Zonguldak (Turkey); Savaskan, B. [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830, Of, Trabzon (Turkey); Yanmaz, E. [Department of Mechatronics, Faculty of Engineering and Architecture, İstanbul Gelişim University, İstanbul (Turkey)


    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB{sub 2} superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB{sub 2}. • The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB{sub 2} sample. • The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB{sub 2} samples immersed in synthetic engine oil on the critical current density ( J{sub c}(H)), magnetic field dependence of the pinning force density f{sub p}(b) and T{sub c} performances of MgB{sub 2} bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB{sub 2} pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB{sub 2} samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB{sub 2} sample because of the number of the pinning centers. The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J{sub c} value for the pure sample is 2.0 × 10{sup 3} A/cm{sup 2}, whereas for the MgB{sub 2} sample immersed at 300 min standby time in engine oil the J{sub c} is enhanced to 4.8 × 10{sup 3} A/cm{sup 2} at 5 K and 3 T. The superconducting transition temperature (T{sub c}) did not change

  12. D Model Visualization Enhancements in Real-Time Game Engines (United States)

    Merlo, A.; Sánchez Belenguer, C.; Vendrell Vidal, E.; Fantini, F.; Aliperta, A.


    This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as "retopology". The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new rendering features have been added, including Direct

  13. Participatory modeling - engineering and social sciences in tandem (United States)

    Class, Holger; Kissinger, Alexander; Knopf, Stefan; Konrad, Wilfried; Noack, Vera; Scheer, Dirk


    The modeling of flow and transport processes in the context of engineering in the subsurface often takes place within a field of conflict from different interests, where societal issues are touched or involved. Carbon Capture and Storage, Fracking, or nuclear waste disposal are just a few prominent examples, where engineering (or: natural sciences) and social sciences have a common field of research. It is only consequent for both disciplines to explore methods and tools to achieve best possible mutual benefits. Participatory modeling (PM) is such an idea, where so-called stakeholders can be involved during different phases of the modeling process. This can be accomplished by very different methods of participation and for different reasons (public acceptance, public awareness, transparency, improved understanding through collective learning, etc). Therefore, PM is a generic approach, open for different methods to be used in order to facilitate early expert and stakeholder integration in science development. We have used PM recently in two examples, both in the context of Carbon Capture and Storage. The first one addressed the development and evaluation (by stakeholders) of a screening criterion for site selection. The second one deals with a regional-scale brine migration scenario where stakeholders have been involved in evaluating the general importance of brine migration, the design of a representative geological model for a case study and in the definition of scenarios to be simulated. This contribution aims at summarizing our experiences and share it with the modeling community. References: A Kissinger, V Noack, S Knopf, D Scheer, W Konrad, H Class Characterization of reservoir conditions for CO2 storage using a dimensionless gravitational number applied to the North German Basin, Sustainable Energy Technologies and Assessments 7, 209-220, 2014 D Scheer, W Konrad, H Class, A Kissinger, S Knopf, V Noack Expert involvement in science development: (re

  14. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering

    Directory of Open Access Journals (Sweden)

    Ilhan Chang


    Full Text Available Soil treatment and improvement is commonly performed in the field of geotechnical engineering. Methods and materials to achieve this such as soil stabilization and mixing with cementitious binders have been utilized in engineered soil applications since the beginning of human civilization. Demand for environment-friendly and sustainable alternatives is currently rising. Since cement, the most commonly applied and effective soil treatment material, is responsible for heavy greenhouse gas emissions, alternatives such as geosynthetics, chemical polymers, geopolymers, microbial induction, and biopolymers are being actively studied. This study provides an overall review of the recent applications of biopolymers in geotechnical engineering. Biopolymers are microbially induced polymers that are high-tensile, innocuous, and eco-friendly. Soil–biopolymer interactions and related soil strengthening mechanisms are discussed in the context of recent experimental and microscopic studies. In addition, the economic feasibility of biopolymer implementation in the field is analyzed in comparison to ordinary cement, from environmental perspectives. Findings from this study demonstrate that biopolymers have strong potential to replace cement as a soil treatment material within the context of environment-friendly construction and development. Moreover, continuing research is suggested to ensure performance in terms of practical implementation, reliability, and durability of in situ biopolymer applications for geotechnical engineering purposes.

  15. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects (United States)

    Trase, Kathryn; Fink, Eric


    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  16. Towards an ontological model defining the social engineering domain

    CSIR Research Space (South Africa)

    Mouton, F


    Full Text Available information. Although Social Engineering is an important branch of Information Security, the discipline is not well defined; a number of different definitions appear in the literature. Several concepts in the domain of Social Engineering are defined...

  17. SAFARI engineering model 50 mK cooler (United States)

    Duband, L.; Duval, J. M.; Luchier, N.


    SAFARI is an infrared instrument developed by a European based consortium to be flown in SPICA, a Japanese led mission. The SAFARI detectors are transition edge sensors (TES) and require temperatures down to 50 mK for their operation. For that purpose we have developed a hybrid architecture based on the combination of a 300 mK sorption stage and a small adiabatic demagnetization stage. An engineering model has been designed to provide net heat lifts of 0.4 and 14 μW respectively at 50 and 300 mK, with an overall cycle duration of 48 h and a duty cycle objective of over 75%. The cooler is self-contained, fits in a volume of 156 × 312 × 182 mm and is expected to weigh 5.1 kg. It has been designed to withstand static loads of 120 g and a random vibration level of 21 g RMS.

  18. Application of Process Modeling in a Software- Engineering Course

    Directory of Open Access Journals (Sweden)

    Gabriel Alberto García Mireles


    Full Text Available Coordination in a software development project is a critical issue in delivering a successful software product, within the constraints of time, functionality and budget agreed upon with the customer. One of the strategies for approaching this problem consists in the use of process modeling to document, evaluate, and redesign the software development process. The appraisal of the projects done in the Engineering and Methodology course of a program given at the Ensenada Center of Scientific Research and Higher Education (CICESE, from a process perspective, facilitated the identification of strengths and weaknesses in the development process used. This paper presents the evaluation of the practical portion of the course, the improvements made, and the preliminary results of using the process approach in the analysis phase of a software-development project.

  19. A Model of Designing: Understanding Engineering Design Activity

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Aurisicchio, Marco


    This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving a d...... solving model. An example of aerospace engineering design is used to illustrate the argument. The research contributes to an understanding of design activity.......This research describes an understanding of design activity through design questions. From a number of previous studies two types of questions have been identified: 1) reasoning questions; and 2) strategic questions. Strategic questions are part of an experienced designers approach to solving...... a design task. The paper describes how designers progress their tasks by asking questions at both a reasoning and strategic level. Transcripts of protocol analysis have been examined to identify both strategic questions and reasoning questions. These are discussed together with their relation to a problem...

  20. Simulation of Road Traffic Applying Model-Driven Engineering

    Directory of Open Access Journals (Sweden)



    Full Text Available Road traffic is an important phenomenon in modern societies. The study of its different aspects in the multiple scenarios where it happens is relevant for a huge number of problems. At the same time, its scale and complexity make it hard to study. Traffic simulations can alleviate these difficulties, simplifying the scenarios to consider and controlling their variables. However, their development also presents difficulties. The main ones come from the need to integrate the way of working of researchers and developers from multiple fields. Model-Driven Engineering (MDE addresses these problems using Modelling Languages (MLs and semi-automatic transformations to organise and describe the development, from requirements to code. This paper presents a domain-specific MDE framework for simulations of road traffic. It comprises an extensible ML, support tools, and development guidelines. The ML adopts an agent-based approach, which is focused on the roles of individuals in road traffic and their decision-making. A case study shows the process to model a traffic theory with the ML, and how to specialise that specification for an existing target platform and its simulations. The results are the basis for comparison with related work.

  1. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration. (United States)

    Youngstrom, Daniel W; Barrett, Jennifer G


    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.

  2. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration

    Directory of Open Access Journals (Sweden)

    Daniel W. Youngstrom


    Full Text Available Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems.

  3. Integrated modeling tool for performance engineering of complex computer systems (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar


    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  4. SU-E-T-785: Using Systems Engineering to Design HDR Skin Treatment Operation for Small Lesions to Enhance Patient Safety

    Energy Technology Data Exchange (ETDEWEB)

    Saw, C; Baikadi, M; Peters, C; Brereton, H [Northeast Radiation Oncology Centers, Harrisburg, PA (United States)


    Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering to this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to

  5. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis (United States)

    Kopp, H.; Trettau, R.; Zolotar, B.


    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  6. Fault diagnosis for engine air path with neural models and classifier ...

    African Journals Online (AJOL)

    The method uses an independent radial basis function (RBF) neural network model to model engine dynamics, and the modelling errors are used to form the basis for ... The simulation results show that all the simulated faults can be clearly detected and isolated in dynamic conditions throughout the engine operating range.

  7. Progress toward life modeling of thermal barrier coatings for aircraft gas turbine engines (United States)

    Miller, R. A.


    Progress toward developing life models for simulating the behavior of thermal barrier coatings in aircraffft gas turbine engines is discussed. A preliminary laboratory model is described as are current efforts to develop engine-capable models. Current understanding of failure mechanisms is also summarized.

  8. From multiscale modeling to meso-science a chemical engineering perspective

    CERN Document Server

    Li, Jinghai; Wang, Wei; Yang, Ning; Liu, Xinhua; Wang, Limin; He, Xianfeng; Wang, Xiaowei; Wang, Junwu; Kwauk, Mooson


    Multiscale modeling is becoming essential for accurate, rapid simulation in science and engineering. This book presents the results of three decades of research on multiscale modeling in process engineering from principles to application, and its generalization for different fields. This book considers the universality of meso-scale phenomena for the first time, and provides insight into the emerging discipline that unifies them, meso-science, as well as new perspectives for virtual process engineering. Multiscale modeling is applied in areas including: multiphase flow and fluid dynamics chemical, biochemical and process engineering mineral processing and metallurgical engineering energy and resources materials science and engineering Jinghai Li is Vice-President of the Chinese Academy of Sciences (CAS), a professor at the Institute of Process Engineering, CAS, and leader of the EMMS (Energy-minimization multiscale) Group. Wei Ge, Wei Wang, Ning Yang and Junwu Wang are professors at the EMMS Group, part of th...

  9. Engineering models for low-NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Storm Pedersen, Lars


    The present Ph.D. thesis describes a theoretical investigation of NO formation in pulverised coal combustion and an experimental investigation of co-combustion of straw and pulverised coal. The theoretical work has resulted in a simplified mathematical model of a swirling pulverised coal flame able to predict the NO emission and the burnout of coal. In order to simplify the flow pattern of a confined swirling flame, the residence time distribution (RTD) in a swirling pulverised coal flame was determined. This was done by using the solution of a detailed fluid dynamic mathematical model for a 2.2 MW{sub th} and a 12 MW{sub th} pulverised coal flame. From the mathematical solution the RTD was simulated by tracing a number of fluid particles or inert particles. The RTD in the near burner zone was investigated by use of the mathematical model for the 2.2 MW{sub th} and 12 MW{sub th} flame. Results showed that the gas phase in the near burner zone may be approximated as a CSTR and that the mean residence time increased with particle size. In pulverised coal flames, the most important volatile nitrogen component forming NO{sub x} is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. In order to develop a model for HCN/NH{sub 3}/NO conversion, a systematic reduction of a detailed chemical kinetic model was performed. Based on the simplification of the flow pattern for a swirling flame and the reduced chemistry developed, a chemical engineering model of pulverised coal flame was established. The objectives were to predict the NO emission, the CO emission, and the burnout of char. The effects of co-firing straw and pulverised coal was investigated in a 2.5 MW{sub th} pilot-scale burner and a 250 MW{sub e} utility boiler. In the 2.5 MW{sub th} trial the straw was chopped and fed separately to the burner, whereas in the full-scale experiment the straw was pre-processed as pellets and pulverised with the

  10. Treatment of pathological gambling - integrative systemic model. (United States)

    Mladenović, Ivica; Lažetić, Goran; Lečić-Toševski, Dušica; Dimitrijević, Ivan


    Pathological gambling was classified under impulse control disorders within the International Classification of Diseases (ICD-10) (WHO 1992), but the most recent Diagnostic and Statistical Manual, 5th edition (DSM-V), (APA 2013), has recognized pathological gambling as a first disorder within a new diagnostic category of behavioral addictions - Gambling disorder. Pathological gambling is a disorder in progression, and we hope that our experience in the treatment of pathological gambling in the Daily Hospital for Addictions at The Institute of Mental Health, through the original "Integrative - systemic model" would be of use to colleagues, dealing with this pathology. This model of treatment of pathological gambling is based on multi-systemic approach and it primarily represents an integration of family and cognitive-behavioral therapy, with traces of psychodynamic, existential and pharmacotherapy. The model is based on the book "Pathological gambling - with self-help manual" by Dr Mladenovic and Dr Lazetic, and has been designed in the form of a program that lasts 10 weeks in the intensive phase, and then continues for two years in the form of "extended treatment" ("After care"). The intensive phase is divided into three segments: educational, insight with initial changes and analysis of the achieved changes with the definition of plans and areas that need to be addressed in the extended treatment. "Extended treatment" lasts for two years in the form of group therapy, during which there is a second order change of the identified patient, but also of other family members. Pathological gambling has been treated in the form of systemic-family therapy for more than 10 years at the Institute of Mental Health (IMH), in Belgrade. For second year in a row the treatment is carried out by the modern "Integrative-systemic model". If abstinence from gambling witihin the period of one year after completion of the intensive phase of treatment is taken as the main criterion of

  11. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies (United States)

    Wu, Xiaowu; Corona, Benjamin T.; Chen, Xiaoyu


    Abstract Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML. PMID:23515319

  12. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Francesca Sciandra


    Full Text Available In skeletal muscle, dystroglycan (DG is the central component of the dystrophin-glycoprotein complex (DGC, a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1 have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.

  13. Channel Engineering for Nanotransistors in a Semiempirical Quantum Transport Model

    Directory of Open Access Journals (Sweden)

    Ulrich Wulf


    Full Text Available One major concern of channel engineering in nanotransistors is the coupling of the conduction channel to the source/drain contacts. In a number of previous publications, we have developed a semiempirical quantum model in quantitative agreement with three series of experimental transistors. On the basis of this model, an overlap parameter 0 ≤ C ≤ 1 can be defined as a criterion for the quality of the contact-to-channel coupling: A high level of C means good matching between the wave functions in the source/drain and in the conduction channel associated with a low contact-to-channel reflection. We show that a high level of C leads to a high saturation current in the ON-state and a large slope of the transfer characteristic in the OFF-state. Furthermore, relevant for future device miniaturization, we analyze the contribution of the tunneling current to the total drain current. It is seen for a device with a gate length of 26 nm that for all gate voltages, the share of the tunneling current becomes small for small drain voltages. With increasing drain voltage, the contribution of the tunneling current grows considerably showing Fowler–Nordheim oscillations. In the ON-state, the classically allowed current remains dominant for large drain voltages. In the OFF-state, the tunneling current becomes dominant.

  14. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W


    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  15. Improving the finite element model accuracy of tissue engineering scaffolds produced by selective laser sintering. (United States)

    Lohfeld, S; Cahill, S; Doyle, H; McHugh, P E


    In bone tissue engineering, both geometrical and mechanical properties of a scaffold play a major part in the success of the treatment. The mechanical stresses and strains that act on cells on a scaffold in a physiological environment are a determining factor on the subsequent tissue formation. Computational models are often used to simulate the effect of changes of internal architectures and external loads applied to the scaffold in order to optimise the scaffold geometry for the prospective implantation site. Finite element analysis (FEA) based on computer models of the scaffold is a common technique, but would not take into account actual inaccuracies due to the manufacturing process. Image based FEA using CT scans of fabricated scaffolds can provide a more accurate analysis of the scaffold, and was used in this work in order to accurately simulate and predict the mechanical performance of bone tissue engineering scaffolds, fabricated using selective laser sintering (SLS), with a view to generating a methodology that could be used to optimise scaffold design. The present work revealed that an approach that assumes isotropic properties of SLS fabricated scaffolds will lead to inaccurate predictions of the FE model. However, a dependency of the grey value of the CT scans and the mechanical properties was discovered, which may ultimately lead to accurate FE models without the need of experimental validation.

  16. Treatment of severe chronic hypotonic hyponatremia: a new treatment model

    Directory of Open Access Journals (Sweden)

    Antonio Burgio


    Full Text Available Recommended treatment of severe hypotonic hyponatremia is based on the infusion of 3% sodium chloride solution, with a daily correction rate below 10 mEq/L of sodium concentration, according to the Adrogué and Madias formula that includes the current desired change in sodium concentrations. However, such treatment needs close monitoring of the rate of infusion and does not take into account the body weight or age of the patient. This may result in hypercorrection and neurological damage. We made an inverse calculation using the same algorithms of the Adrogué and Madias formula to estimate the number of vials of sodium chloride needed to reach a correction rate of the serum sodium concentration below 0.4 mEq/h, taking into account the body weight and age of the patient. Three tables have been produced, each containing the number of vials to be infused, according to the patient’s age and body weight, the serum sodium concentration, and the rate of correction over 24 h to avoid the risk of brain damage. We propose a new practical model to calculate the need of sodium chloride infusate to safely correct the hyponatremia. The tables make treatment easier to manage in daily clinical practice in a wide range of patient ages and body weights.

  17. Visualizing and modelling complex rockfall slopes using game-engine hosted models (United States)

    Ondercin, Matthew; Hutchinson, D. Jean; Harrap, Rob


    Innovations in computing in the past few decades have resulted in entirely new ways to collect 3d geological data and visualize it. For example, new tools and techniques relying on high performance computing capabilities have become widely available, allowing us to model rockfalls with more attention to complexity of the rock slope geometry and rockfall path, with significantly higher quality base data, and with more analytical options. Model results are used to design mitigation solutions, considering the potential paths of the rockfall events and the energy they impart on impacted structures. Such models are currently implemented as general-purpose GIS tools and in specialized programs. These tools are used to inspect geometrical and geomechanical data, model rockfalls, and communicate results to researchers and the larger community. The research reported here explores the notion that 3D game engines provide a high speed, widely accessible platform on which to build rockfall modelling workflows and to provide a new and accessible outreach method. Taking advantage of the in-built physics capability of the 3D game codes, and ability to handle large terrains, these models are rapidly deployed and generate realistic visualizations of rockfall trajectories. Their utility in this area is as yet unproven, but preliminary research shows that they are capable of producing results that are comparable to existing approaches. Furthermore, modelling of case histories shows that the output matches the behaviour that is observed in the field. The key advantage of game-engine hosted models is their accessibility to the general public and to people with little to no knowledge of rockfall hazards. With much of the younger generation being very familiar with 3D environments such as Minecraft, the idea of a game-like simulation is intuitive and thus offers new ways to communicate to the general public. We present results from using the Unity game engine to develop 3D voxel worlds

  18. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications (United States)

    Armstrong, Jeffrey B.; Simon, Donald L.


    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear


    Energy Technology Data Exchange (ETDEWEB)



    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  20. Discharge Plasma Treatment for ${NO}_x$ Reduction from Diesel Engine Exhaust: A Laboratory Investigation


    Rajanikanth, BS; Srinivasan, AD; Ravi, V


    A detailed study on the removal of oxides of nitrogen $({NO}_x)$ with and without the presence of carbonaceous soot in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/catalyst/adsorbent processes. The processes were separately studied first and then the cascaded processes namely plasma-catalyst and plasma-adsorbent were examined. To investigate the effect of carbonaceous soot on the plasma treatment process, the filtered and unfiltered exhaust was treated...

  1. Model-Based Fault Management Engineering Tool Suite Project (United States)

    National Aeronautics and Space Administration — NASA's successful development of next generation space vehicles, habitats, and robotic systems will rely on effective Fault Management Engineering. Our proposed...

  2. Performance analysis and dynamic modeling of a single-spool turbojet engine (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin


    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  3. Separation technologies for the treatment of Idaho National Engineering Laboratory Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, T.; Herbst, S.


    The Idaho National Engineering Laboratory (INEL) is collaborating with several DOE and international organizations to develop and evaluate: technologies for the treatment of acidic high-level radioactive wastes. The focus on the treatment of high-level radioactive wastes is on the removal of cesium and strontium from wastes typically 1 to 3 M in acidity. Technologies to treat groundwater contaminated with radionuclides and/or toxic metals. Technologies to remove toxic metals from hazardous or mixed waste streams, for neutral pH to 3 M acidic waste streams.

  4. Numerical modeling of some engineering heat transfer problems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel


    Engineering heat transfer problems are very often of a complex nature and most often no analytical solutions exist. One way to create solutions to such problems is to apply numerical methods. This study concerns heat transfer problems with coupled conduction, convection and thermal radiation. Five important but different engineering problems are considered. (1) The transient temperature distribution in a rotating cylinder which is exposed to a time varying incident heat flux, e.g. a nuclear burst, is determined. The cylinder is cooled by mixed convection and thermal radiation. The effects of the leading parameters, such as rotation speed, the cooling parameters and the physical properties of the shell are studied. (2) The cooling of a roll system which is transporting/casting a thin hot plastic film. The leading roll is heated by the hot film, cooled at the interior by forced convection and on the outside by forced convection, thermal radiation and contact with a support roll. The influence of the cooling parameters and the rotation are studied. (3) The heat and mass diffusion in pre-insulated district heating/cooling pipes. The task is to determine the effects of the gas mass transport through the casing of the pipes on the thermal behaviour and effects of condensed water due to the mass diffusion of water vapour. The importance of the density of the casing, the wall thickness of the casing, the thickness of the insulation and the surrounding temperature is revealed. (4) The development of a cooling system for an electrical unit in which a time dependent heat is generated due to the Joule effect. (5) The heat transfer from a rectangular fin in a confined space. The fin is cooled by turbulent forced convection. The turbulence model applied is a low Reynolds k-{epsilon}-model. Predicted results are compared with experimental ones, and a correlation for the Nusselt number is proposed. The effects of thermal radiation for non-participating as well as participating

  5. MSTAR's extensible search engine and model-based inferencing toolkit (United States)

    Wissinger, John; Ristroph, Robert; Diemunsch, Joseph R.; Severson, William E.; Fruedenthal, Eric


    The DARPA/AFRL 'Moving and Stationary Target Acquisition and Recognition' (MSTAR) program is developing a model-based vision approach to Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR). The motivation for this work is to develop a high performance ATR capability that can identify ground targets in highly unconstrained imaging scenarios that include variable image acquisition geometry, arbitrary target pose and configuration state, differences in target deployment situation, and strong intra-class variations. The MSTAR approach utilizes radar scattering models in an on-line hypothesize-and-test operation that compares predicted target signature statistics with features extracted from image data in an attempt to determine a 'best fit' explanation of the observed image. Central to this processing paradigm is the Search algorithm, which provides intelligent control in selecting features to measure and hypotheses to test, as well as in making the decision about when to stop processing and report a specific target type or clutter. Intelligent management of computation performed by the Search module is a key enabler to scaling the model-based approach to the large hypothesis spaces typical of realistic ATR problems. In this paper, we describe the present state of design and implementation of the MSTAR Search engine, as it has matured over the last three years of the MSTAR program. The evolution has been driven by a continually expanding problem domain that now includes 30 target types, viewed under arbitrary squint/depression, with articulations, reconfigurations, revetments, variable background, and up to 30% blocking occlusion. We believe that the research directions that have been inspired by MSTAR's challenging problem domain are leading to broadly applicable search methodologies that are relevant to computer vision systems in many areas.

  6. Model Based Systems Engineering on the Europa Mission Concept Study (United States)

    Bayer, Todd J.; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert; hide


    At the start of 2011, the proposed Jupiter Europa Orbiter (JEO) mission was staffing up in expectation of becoming an official project later in the year for a launch in 2020. A unique aspect of the pre-project work was a strong emphasis and investment on the foundations of Model-Based Systems Engineering (MBSE). As so often happens in this business, plans changed: NASA's budget and science priorities were released and together fundamentally changed the course of JEO. As a result, it returned to being a study task whose objective is to propose more affordable ways to accomplish the science. As part of this transition, the question arose as to whether it could continue to afford the investment in MBSE. In short, the MBSE infusion has survived and is providing clear value to the study effort. By leveraging the existing infrastructure and a modest additional investment, striking advances in the capture and analysis of designs using MBSE were achieved. In the process, the need to remain relevant in the new environment has brought about a wave of innovation and progress. The effort has reaffirmed the importance of architecting. It has successfully harnessed the synergistic relationship of architecting to system modeling. We have found that MBSE can provide greater agility than traditional methods. We have also found that a diverse 'ecosystem' of modeling tools and languages (SysML, Mathematica, even Excel) is not only viable, but an important enabler of agility and adaptability. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.


    Directory of Open Access Journals (Sweden)

    Oleksander I. Zaporozhets


    Full Text Available  Experimental measuring of air pollution inside the airport, produced by aircraft engine emission during accelaration and take-off on the runway. Measurement data were used for verification of modelling results according to complex model «PolEmiCa». It consists of the following basic components: engine emission inventory calculation; transport of the contaminants by engine jets, dispersion of the contaminants in atmosphere due to wind and atmospheric turbulence.

  8. Treatment modalities and evaluation models for periodontitis (United States)

    Tariq, Mohammad; Iqbal, Zeenat; Ali, Javed; Baboota, Sanjula; Talegaonkar, Sushama; Ahmad, Zulfiqar; Sahni, Jasjeet K


    Periodontitis is the most common localized dental inflammatory disease related with several pathological conditions like inflammation of gums (gingivitis), degeneration of periodontal ligament, dental cementum and alveolar bone loss. In this perspective, the various preventive and treatment modalities, including oral hygiene, gingival irrigations, mechanical instrumentation, full mouth disinfection, host modulation and antimicrobial therapy, which are used either as adjunctive treatments or as stand-alone therapies in the non-surgical management of periodontal infections, have been discussed. Intra-pocket, sustained release systems have emerged as a novel paradigm for the future research. In this article, special consideration is given to different locally delivered anti-microbial and anti inflammatory medications which are either commercially available or are currently under consideration for Food and Drug Administration (FDA) approval. The various in vitro dissolution models and microbiological strain investigated to impersonate the infected and inflamed periodontal cavity and to predict the in vivo performance of treatment modalities have also been thrashed out. Animal models that have been employed to explore the pathology at the different stages of periodontitis and to evaluate its treatment modalities are enlightened in this proposed review. PMID:23373002

  9. Understanding and modeling users of modern search engines

    NARCIS (Netherlands)

    Chuklin, A.


    As search is being used by billions of people, modern search engines are becoming more and more complex. And complexity does not just come from the algorithms. Richer and richer content is being added to search engine result pages: news and sports results, definitions and translations, images and

  10. Semantic Modeling of Requirements: Leveraging Ontologies in Systems Engineering (United States)

    Mir, Masood Saleem


    The interdisciplinary nature of "Systems Engineering" (SE), having "stakeholders" from diverse domains with orthogonal facets, and need to consider all stages of "lifecycle" of system during conception, can benefit tremendously by employing "Knowledge Engineering" (KE) to achieve semantic agreement among all…

  11. Empirical modeling and data analysis for engineers and applied scientists

    CERN Document Server

    Pardo, Scott A


    This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creati...

  12. Mass balance-based plant-wide wastewater treatment plant models ...

    African Journals Online (AJOL)


    Jul 3, 2006 ... Mass balance-based plant-wide wastewater treatment plant models – Part 3: Biodegradability of activated sludge organics under anaerobic conditions. GA Ekama*, SW Sötemann and MC Wentzel. Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch 7701, Cape, ...

  13. The challenge of musculoskeletal tissue engineering – from cell cultures to large animal models

    Directory of Open Access Journals (Sweden)

    Beier, Justus P.


    Full Text Available Engineering functional skeletal muscle tissue still remains a major challenge. So far clinically relevant sizes of functional skeletal muscle tissue could not be engineered yet. One of the obstacles to overcome is the development of a suitable scaffold for muscle tissue engineering in vivo, another is the lack of differentiation in expanded adult muscle precursor cells. Materials and different architectures of scaffolds which are used for engineering functional skeletal muscle are presented here as well as approaches to the differentiation challenge. Finally the translation from cell culture over small to large animal models for engineering axially vascularized musculoskeletal tissues will be described.

  14. Quasi-Dimensional Modelling and Parametric Studies of a Heavy-Duty HCCI Engine

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Pandey


    Full Text Available A quasi-dimensional modelling study is conducted for the first time for a heavy duty, diesel-fuelled, multicylinder engine operating in HCCI mode. This quasidimensional approach involves a zero-dimensional single-zone homogeneous charge compression ignition (HCCI combustion model along with a one-dimensional treatment of the intake and exhaust systems. A skeletal chemical kinetic scheme for n-heptane was used in the simulations. Exhaust gas recirculation (EGR and compression ratio (CR were the two parameters that were altered in order to deal with the challenges of combustion phasing control and operating load range extension. Results from the HCCI mode simulations show good potential when compared to conventional diesel performance with respect to important performance parameters such as peak firing pressure, specific fuel consumption, peak pressure rise, and combustion noise. This study shows that HCCI combustion mode can be employed at part load of 25% varying the EGR rates between 0 and 60%.

  15. Design of personalized search engine based on user-webpage dynamic model (United States)

    Li, Jihan; Li, Shanglin; Zhu, Yingke; Xiao, Bo


    Personalized search engine focuses on establishing a user-webpage dynamic model. In this model, users' personalized factors are introduced so that the search engine is better able to provide the user with targeted feedback. This paper constructs user and webpage dynamic vector tables, introduces singular value decomposition analysis in the processes of topic categorization, and extends the traditional PageRank algorithm.

  16. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    J.C.M. Baeten (Jos); J.M. van de Mortel-Fronczak (Joanna); J.E. Rooda (Jacobus)


    htmlabstractIncreasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering

  17. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    J.C.M. Baeten (Jos); J.M. van de Mortel-Fronczak (Joanna); J.E. Rooda (Jacobus)


    htmlabstractDue to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering processes can play a role here because they support system development by enabling the use of various model-based analysis

  18. 77 FR 58970 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage (United States)


    ... primary structure is metal with composite empennage and control surfaces. The Model EMB-550 airplane is... are electronically controlled using fly-by-wire (FBW) technology. The Model EMB-550 airplane... conditions are proposed: 1. For turbine-engine installations, the engine mounts, pylons, and adjacent...

  19. Increasing Engineering Students' Awareness to Environment through Innovative Teaching of Mathematical Modelling (United States)

    Klymchuk, Sergiy; Zverkova, Tatyana; Gruenwald, Norbert; Sauerbier, Gabriele


    This article presents the results of two studies on using an innovative pedagogical strategy in teaching mathematical modelling and applications to engineering students. Both studies are dealing with introducing non-traditional contexts for engineering students in teaching/learning of mathematical modelling and applications: environment and…

  20. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.


    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  1. An introduction to network modeling and simulation for the practicing engineer

    CERN Document Server

    Burbank, Jack; Ward, Jon


    This book provides the practicing engineer with a concise listing of commercial and open-source modeling and simulation tools currently available including examples of implementing those tools for solving specific Modeling and Simulation examples. Instead of focusing on the underlying theory of Modeling and Simulation and fundamental building blocks for custom simulations, this book compares platforms used in practice, and gives rules enabling the practicing engineer to utilize available Modeling and Simulation tools. This book will contain insights regarding common pitfalls in network Modeling and Simulation and practical methods for working engineers.

  2. Development of cost-effective pavement treatment selection and treatment performance models : research project capsule. (United States)


    The overall goal of this study is to develop pavement treatment performance models in support of the : cost-effective selection of pavement treatment types, project boundaries, and time of treatment. The : development of the proposed models will be b...

  3. Development of cost-effective pavement treatment selection and treatment performance models : [tech summary]. (United States)


    The overall objective of this study was to develop pavement treatment performance : models in support of cost-e ective selection of pavement treatment type, project : boundaries, and time of treatment. The development of the proposed models was ba...

  4. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort (United States)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.


    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  5. Examination of Modeling Languages to Allow Quantitative Analysis for Model-Based Systems Engineering (United States)


    used or translated use by a simulation tool for analysis. This appears to be linked to the software engineering tradition, where, in principle, recognize these mistakes is limited. This is a point for engagement with subject matter experts. They can review the logic that the model is...Experiment (DOE) techniques such as Nearly Orthogonal Latin Hypercubes (NOLH) that have space filling properties as well as genetic algorithms that

  6. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono


    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  7. Development of tissue-engineered models of oral dysplasia and early invasive oral squamous cell carcinoma. (United States)

    Colley, H E; Hearnden, V; Jones, A V; Weinreb, P H; Violette, S M; Macneil, S; Thornhill, M H; Murdoch, C


    Current organotypic models of dysplasia and oral squamous cell carcinoma (OSCC) lack the complexity that mimics in vivo tissue. Here we describe a three-dimensional in vitro model of the oral epithelium that replicates tumour progression from dysplasia to an invasive phenotype. The OSCC cell lines were seeded as a cell suspension (D20, Cal27) or as multicellular tumour spheroids (FaDu) with oral fibroblasts on to a de-epidermised acellular dermis to generate tissue-engineered models and compared with patient biopsies. The D20 and Cal27 cells generated a model of epithelial dysplasia. Overtime Cal27 cells traversed the basement membrane and invaded the connective tissue to reproduce features of early invasive OSCC. When seeded onto a model of the normal oral mucosa, FaDu spheroids produced a histological picture mimicking carcinoma in situ with severe cellular atypia juxtaposed to normal epithelium. It is possible to culture in vitro models with the morphological appearance and histological characteristics of dysplasia and tumour cell invasion seen in vivo using native dermis. Such models could facilitate study of the molecular processes involved in malignant transformation, invasion and tumour growth as well as in vitro testing of new treatments, diagnostic tests and drug delivery systems for OSCC. 2011 Cancer Research UK

  8. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. (United States)

    Liaw, Chya-Yan; Ji, Shen; Guvendiren, Murat


    There is a growing interest in engineering hydrogels for 3D tissue and disease models. The major motivation is to better mimic the physiological microenvironment of the disease and human condition. 3D tissue models derived from patients' own cells can potentially revolutionize the way treatment and diagnostic alternatives are developed. This requires development of tissue mimetic hydrogels with user defined and tunable properties. In this review article, a recent summary of 3D hydrogel platforms for in vitro tissue and disease modeling is given. Hydrogel design considerations and available hydrogel systems are summarized, followed by the types of currently available hydrogel models, such as bulk hydrogels, porous scaffolds, fibrous scaffolds, hydrogel microspheres, hydrogel sandwich systems, microwells, and 3D bioprinted constructs. Although hydrogels are utilized for a wide range of tissue models, this article focuses on liver and cancer models. This article also provides a detailed section on current challenges and future perspectives of hydrogel-based tissue models. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling and adaptive control of a camless engine using neural networks and estimation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering


    A system to control the cylinder air charge (CAC) in a camless internal combustion (IC) engine was recently developed. The performance of an IC engine connected to an adaptive artificial neural network (ANN) based feedback controller was then investigated. A control oriented model for the engine intake process was created based on thermodynamics laws and was validated against engine experimental data. Input-output data at a speed of 1500 RPM was generated and used to train an ANN model for the engine. The inputs were the intake valve lift (IVL) and closing timing (IVC). The output was the CAC. The controller consisted of a feedforward controller, CAC estimator, and on-line ANN parameter estimator. The feedforward controller provided IVL and IVC that satisfied the driver's torque demand and was the inverse of the engine ANN model. The on-line ANN used the error between the CAC measurement from the CAC estimator and its predicted value from the ANN to update the network's parameters. The feedforward controller was therefore adapted since its operation depended on the ANN model. The adaptation scheme improved the ANN prediction accuracy when the engine parts degraded, the speed changed or when modeling errors occurred. The engine controller exhibited good CAC tracking performance. Computer simulation demonstrated the capability of the camless engine controller. 17 refs., 5 figs.

  10. Improvements in Mechanical Properties of 319 Al Alloy Engine Blocks Through Cost-Effective Solution Heat Treatment (United States)

    Lombardi, A.; Ravindran, C.; MacKay, R.


    The use of Al engine blocks has increased significantly to improve vehicle fuel efficiency. However, the gray cast iron cylinder liners cause the development of large tensile residual stress along the cylinder bores which necessitates the optimization of mechanical properties in this region to prevent premature engine failure. This study compared the microstructure of T4-treated Al billet castings of varying cooling rate to that of the cylinder region of T4-treated (current production schedule) Al engine blocks. The aim of this study was to develop a cost-effective small scale heat treatment optimization method for engine block production. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy. The results suggest that the microstructure and hardness at the top, middle, and bottom of the cylinder were similar to those of each representative billet casting, indicating that heat treatment resulted in successful replication of the engine block locations. In addition, tensile testing revealed that the YS and UTS increased slightly following T4 treatment for all billet castings, which was also observed at the middle of the engine block cylinder bridge. As such, this method can be an effective forerunner for future heat treatment optimization in Al engine block production.

  11. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  12. [AIT (Adolescent Identity Treatment) - an Integrative Treatment Model for the Treatment of Personality Disorders]. (United States)

    Schlüter-Müller, Susanne


    AIT (Adolescent Identity Treatment) - an Integrative Treatment Model for the Treatment of Personality Disorders Personality disorders are patterns of maladaptive personality traits that have an impact on the individual throughout the life span. Borderline Personality Disorder (BPD) is a very severe, but treatable mental disorder. Identity disturbance is seen as the central construct for detecting severe personality pathology - and, most notably, borderline personality disorder - in adults and adolescents. Crises in the development of identity usually resolve into a normal and consolidated identity with flexible and adaptive functioning whereas identity diffusion is viewed as a lack of integration of the concept of the self and significant others. It is seen as the basis for subsequent personality pathology, including that of borderline personality disorder. Although BPD has its onset in adolescence and emerging adulthood the diagnosis is often delayed. In most cases, specific treatment is only offered late in the course of the disorder and to relatively few individuals. Adolescent Identity Treatment (AIT) is a treatment model that focuses on identity pathology as the core characteristic of personality disorders. This model integrates specific techniques for the treatment of adolescent personality pathology on the background of object-relation theories and modified elements of Transference-Focused Psychotherapy. Moreover, psychoeducation, a behavior-oriented homeplan and intensive family work is part of AIT.


    Energy Technology Data Exchange (ETDEWEB)



    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  14. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik


    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...... predict specific fuel oil consumption and NOx emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation....

  15. Model-Based Fault Diagnosis for Turboshaft Engines

    National Research Council Canada - National Science Library

    Green, Michael


    Tests are described which, when used to augment the existing periodic maintenance and pre-flight checks of T700 engines, can greatly improve the chances of uncovering a problem compared to the current practice...

  16. Common Rail System for GDI Engines Modelling, Identification, and Control

    CERN Document Server

    Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero


    Progressive reductions in vehicle emission requirements have forced the automotive industry to invest in research and development of alternative control strategies. Continual control action exerted by a dedicated electronic control unit ensures that best performance in terms of pollutant emissions and power density is married with driveability and diagnostics. Gasoline direct injection (GDI) engine technology is a way to attain these goals. This brief describes the functioning of a GDI engine equipped with a common rail (CR) system, and the devices necessary to run test-bench experiments in detail. The text should prove instructive to researchers in engine control and students are recommended to this brief as their first approach to this technology. Later chapters of the brief relate an innovative strategy designed to assist with the engine management system; injection pressure regulation for fuel pressure stabilization in the CR fuel line is proposed and validated by experiment. The resulting control scheme ...

  17. Optimal Robust Matching of Engine Models to Test Data (United States)


    CD m • £ i Q. ? CU TJ o a. < < CO n o a. CD >- 6 a, en Q- »- §1 11 m o. c CD a) .a Q. O Q. Q. CO > £ 3 S CO 2 *f E — 3... Doel , D. L., "TEMPER - A Gas Path Analysis Tool for Commercial Jet Engines," Journal of Engineering for Gas Turbines and Power, Vol. 116, pp. 82-89

  18. Reverse-Engineering MAC: A Non-Cooperative Game Model


    Lee, Jang-Won; Tang, Ao; Huang, Jianwei; Chiang, Mung; Calderbank, A. Robert


    This paper reverse-engineers backoff-based random-access MAC protocols in ad-hoc networks. We show that the contention resolution algorithm in such protocols is implicitly participating in a non-cooperative game. Each link attempts to maximize a selfish local utility function, whose exact shape is reverse-engineered from the protocol description, through a stochastic subgradient method in which the link updates its persistence probability based on its transmission success or failure. We prove...

  19. A Joint Venture Model for Teaching Required Courses in "Ethics and Engineering" to Engineering Students (United States)

    Zandvoort, H.; Van Hasselt, G. J.; Bonnet, J. A. B. A. F.


    We present our experience, spanning more than 10 years of teaching a course on "ethics and engineering" for a group of MSc programmes in applied sciences at Delft University of Technology. The course is taught by a team of teachers from the faculty of Applied Sciences and from the department of Philosophy of the Faculty of Technology,…

  20. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems (United States)

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh


    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  1. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia


    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  2. Building information modelling review with potential applications in tunnel engineering of China. (United States)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin


    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  3. Building information modelling review with potential applications in tunnel engineering of China (United States)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin


    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  4. A Bilayer Engineered Skin Substitute for Wound Repair in an Irradiation-Impeded Healing Model on Rat (United States)

    Mohd Hilmi, A.B.; Hassan, Asma; Halim, Ahmad Sukari


    Objective: An engineered skin substitute is produced to accelerate wound healing by increasing the mechanical strength of the skin wound via high production of collagen bundles. During the remodeling stage of wound healing, collagen deposition is the most important event. The collagen deposition process may be altered by nutritional deficiency, diabetes mellitus, microbial infection, or radiation exposure, leading to impaired healing. This study describes the fabrication of an engineered bilayer skin substitute and evaluates its effectiveness for the production of collagen bundles in an impaired healing model. Approach: Rats were exposed to 10 Gy of radiation. Two months postirradiation, the wounds were excised and treated with one of three skin replacement products: bilayer engineered skin substitutes, chitosan skin templates, or duoderm©. The collagen deposition was analyzed by hematoxylin and eosin staining. Results: On day 21 postwound, the irradiated wounds displayed increased collagen bundle deposition after treatment using bilayer engineered skin substitutes (3.4±0.25) and chitosan skin templates (3.2±0.58) compared with duoderm (2.0±0.63). Innovation: We provide the first report on the fabrication of bilayer engineered skin substitutes using high density human dermal fibroblasts cocultured with HFSCs on chitosan skin templates. Conclusion: The high density of fibroblasts significantly increases the penetration of cells into chitosan skin templates, contributing to the fabrication of bilayer engineered skin substitute. PMID:26005597

  5. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay


    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  6. PICASSO VISION instrument design, engineering model test results, and flight model development status (United States)

    Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe


    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.

  7. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement (United States)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung


    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  8. Animal models for fracture treatment in osteoporosis. (United States)

    Egermann, Marcus; Goldhahn, J; Schneider, E


    Demographic changes in the age structure of occidental populations are giving rise to osteoporosis and associated fractures, which are becoming a major public health burden. Various animal models have been established and used to investigate the pathogenesis of osteoporosis and to facilitate the preclinical testing of new treatment options such as antiresorptive drugs. Although osteoporosis can be induced in animals, spontaneous fractures without adequate trauma were only found in nonhuman primates. An animal model designed to investigate new ways to treat fractures of osteoporotic bone has to fulfill requirements that are very different from those of pharmacological testing. The aspects of major interest in orthopedic applications are bone fragility, efficacy of implant fixation and bone healing. Existing animal models for osteoporosis were critically reviewed focusing on these aspects. The advantages and disadvantages of the models with regard to their application in the testing of new fracture-fixation devices or biological approaches to stimulate bone healing are discussed. Ovariectomy alone does not cause the bone loss seen in osteoporotic human patients. New models to simulate fracture of osteoporotic bone need to be explored and used to address the specific aims of an experiment.

  9. Experimental validation of extended NO and soot model for advanced HD diesel engine combustion

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Somers, L.M.T.; Willems, F.P.T.


    A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50%), heavy-duty DI diesel combustion. Modeling activities have aimed at

  10. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.


    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  11. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery

    Directory of Open Access Journals (Sweden)

    Dana Haddad


    Full Text Available Despite advances in technology, the formidable challenge of treating cancer, especially if advanced, still remains with no significant improvement in survival rates, even with the most common forms of cancer. Oncolytic viral therapies have shown great promise for the treatment of various cancers, with the possible advantages of stronger treatment efficacy compared to conventional therapy due to higher tumor selectivity, and less toxicity. They are able to preferentially and selectively propagate in cancer cells, consequently destroying tumor tissue mainly via cell lysis, while leaving non-cancerous tissues unharmed. Several wild-type and genetically engineered vaccinia virus (VACV strains have been tested in both preclinical and clinical trials with promising results. Greater understanding and advancements in molecular biology have enabled the generation of genetically engineered oncolytic viruses for safer and more efficacious treatment, including arming VACVs with cytokines and immunostimulatory molecules, anti-angiogenic agents, and enzyme prodrug therapy, in addition to combining VACVs with conventional external and systemic radiotherapy, chemotherapy, immunotherapy, and other virus strains. Furthermore, novel oncolytic vaccinia virus strains have been generated that express reporter genes for the tracking and imaging of viral therapy and monitoring of therapeutic response. Further study is needed to unlock VACVs’ full potential as part of the future of cancer therapy.

  12. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery (United States)

    Haddad, Dana


    Despite advances in technology, the formidable challenge of treating cancer, especially if advanced, still remains with no significant improvement in survival rates, even with the most common forms of cancer. Oncolytic viral therapies have shown great promise for the treatment of various cancers, with the possible advantages of stronger treatment efficacy compared to conventional therapy due to higher tumor selectivity, and less toxicity. They are able to preferentially and selectively propagate in cancer cells, consequently destroying tumor tissue mainly via cell lysis, while leaving non-cancerous tissues unharmed. Several wild-type and genetically engineered vaccinia virus (VACV) strains have been tested in both preclinical and clinical trials with promising results. Greater understanding and advancements in molecular biology have enabled the generation of genetically engineered oncolytic viruses for safer and more efficacious treatment, including arming VACVs with cytokines and immunostimulatory molecules, anti-angiogenic agents, and enzyme prodrug therapy, in addition to combining VACVs with conventional external and systemic radiotherapy, chemotherapy, immunotherapy, and other virus strains. Furthermore, novel oncolytic vaccinia virus strains have been generated that express reporter genes for the tracking and imaging of viral therapy and monitoring of therapeutic response. Further study is needed to unlock VACVs’ full potential as part of the future of cancer therapy. PMID:28589082

  13. Principles of Design And Operations Of Wastewater Treatment Pond Systems For Plant Operators, Engineers, And Managers (United States)

    Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years sinc...

  14. Denosumab is the first gene engineered agent for the treatment of osteoporosis

    Directory of Open Access Journals (Sweden)

    O A Nikitinskaya


    Full Text Available The incidence of osteoporosis (OP is growing steadily. Practitioners who long follow up patients with OP frequently ask questions about the duration of treatment with this or that drug particularly in cases of severe OP and at high risk for new fractures when these agents have been used for years and about the possibility and necessity of switching of the patient from one to other therapy. Individual drug tolerance and longterm treatment adherence are of fundamental importance in organizing care to patients with OP are of fundamental importance. Low (<80% compliance gives rise to the lower efficacy of antiosteoporotic drugs in preventing the risk of fractures, worsening the end result of treatment as compared to that obtained in the clinical trials proving the expediency of their intake. For the more qualitative prevention and treatment of OP, novel antiosteoporotic drugs are being designed and the frequency of their administration investigated. The paper gives data on denosumab, the first gene engineered drug for the treatment of postmenopausal OP, on the mechanism of its action, efficacy and safety during its long-term use, and on the possibility of switching to its usage after bisphosphonate treatment.

  15. Modeling duckweed growth in wastewater treatment systems (United States)

    Landesman, L.; Parker, N.C.; Fedler, C.B.; Konikoff, M.


    Species of the genera Lemnaceae, or duckweeds, are floating aquatic plants that show great promise for both wastewater treatment and livestock feed production. Research conducted in the Southern High Plains of Texas has shown that Lemna obscura grew well in cattle feedlot runoff water and produced leaf tissue with a high protein content. A model or mathematical expression derived from duckweed growth data was used to fit data from experiments conducted in a greenhouse in Lubbock, Texas. The relationship between duckweed growth and the total nitrogen concentration in the mediium follows the Mitscherlich Function and is similar to that of other plants. Empirically derived model equations have successfully predicted the growth response of Lemna obscura.

  16. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review. (United States)

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao


    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.


    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  18. Eliciting and characterizing students' mental models within the context of engineering design (United States)

    Dankenbring, Chelsey

    Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.

  19. Re-engineering pre-employment check-up systems: a model for improving health services. (United States)

    Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin


    The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.

  20. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj


    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  1. SE3000 Summer AY 14 Systems Engineering Colloquium, Total Ownership Cost Modeling [video


    Madachy, Raymond J.


    Naval Postgraduate School Graduate School of Engineering & Applied Sciences, Total Ownership Cost Modeling presented by Raymond J. Madachy, Associate Professor of Systems Engineering at the Naval Postgraduate School. Total Ownership Cost (TOC) is the sum cost of system acquisition, development, and operations including direct and indirect costs. In the DoD, cost modeling is needed to enable tradespace analysis of affordability with other system ilities. Parametric cost models will be overv...

  2. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo


    control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....

  3. Computational fluid dynamics in fire engineering theory, modelling and practice

    CERN Document Server

    Yuen, Kwok Kit


    Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f

  4. Domain engineering product lines, languages, and conceptual models

    CERN Document Server

    Reinhartz-Berger, Iris; Clark, Tony


    Domain engineering is a set of activities intended to develop, maintain, and manage the creation and evolution of an area of knowledge suitable for processing by a range of software systems.  It is of considerable practical significance, as it provides methods and techniques that help reduce time-to-market, development costs, and project risks on one hand, and helps improve system quality and performance on a consistent basis on the other. In this book, the editors present a collection of invited chapters from various fields related to domain engineering. The individual chapters pres

  5. Mathematical modeling of endovenous laser treatment (ELT). (United States)

    Mordon, Serge R; Wassmer, Benjamin; Zemmouri, Jaouad


    Endovenous laser treatment (ELT) has been recently proposed as an alternative in the treatment of reflux of the Great Saphenous Vein (GSV) and Small Saphenous Vein (SSV). Successful ELT depends on the selection of optimal parameters required to achieve an optimal vein damage while avoiding side effects. Mathematical modeling of ELT could provide a better understanding of the ELT process and could determine the optimal dosage as a function of vein diameter. The model is based on calculations describing the light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma Inc., Arlington, MA, USA). Damage to the vein wall for CW and single shot energy was calculated for 3 and 5 mm vein diameters. In pulsed mode, the pullback distance (3, 5 and 7 mm) was considered. For CW mode simulation, the pullback speed (1, 2, 3 mm/s) was the variable. The total dose was expressed as joules per centimeter in order to perform comparison to results already reported in clinical studies. In pulsed mode, for a 3 mm vein diameter, irrespective of the pullback distance (2, 5 or 7 mm), a minimum fluence of 15 J/cm is required to obtain a permanent damage of the intima. For a 5 mm vein diameter, 50 J/cm (15W-2s) is required. In continuous mode, for a 3 mm and 5 mm vein diameter, respectively 65 J/cm and 100 J/cm are required to obtain a permanent damage of the vessel wall. Finally, the use of different wavelengths (810 nm or 980 nm) played only a minor influence on these results. The parameters determined by mathematical modeling are in agreement with those used in clinical practice. They confirm that thermal

  6. Mathematical modeling of endovenous laser treatment (ELT

    Directory of Open Access Journals (Sweden)

    Wassmer Benjamin


    Full Text Available Abstract Background and objectives Endovenous laser treatment (ELT has been recently proposed as an alternative in the treatment of reflux of the Great Saphenous Vein (GSV and Small Saphenous Vein (SSV. Successful ELT depends on the selection of optimal parameters required to achieve an optimal vein damage while avoiding side effects. Mathematical modeling of ELT could provide a better understanding of the ELT process and could determine the optimal dosage as a function of vein diameter. Study design/materials and methods The model is based on calculations describing the light distribution using the diffusion approximation of the transport theory, the temperature rise using the bioheat equation and the laser-induced injury using the Arrhenius damage model. The geometry to simulate ELT was based on a 2D model consisting of a cylindrically symmetric blood vessel including a vessel wall and surrounded by an infinite homogenous tissue. The mathematical model was implemented using the Macsyma-Pdease2D software (Macsyma Inc., Arlington, MA, USA. Damage to the vein wall for CW and single shot energy was calculated for 3 and 5 mm vein diameters. In pulsed mode, the pullback distance (3, 5 and 7 mm was considered. For CW mode simulation, the pullback speed (1, 2, 3 mm/s was the variable. The total dose was expressed as joules per centimeter in order to perform comparison to results already reported in clinical studies. Results In pulsed mode, for a 3 mm vein diameter, irrespective of the pullback distance (2, 5 or 7 mm, a minimum fluence of 15 J/cm is required to obtain a permanent damage of the intima. For a 5 mm vein diameter, 50 J/cm (15W-2s is required. In continuous mode, for a 3 mm and 5 mm vein diameter, respectively 65 J/cm and 100 J/cm are required to obtain a permanent damage of the vessel wall. Finally, the use of different wavelengths (810 nm or 980 nm played only a minor influence on these results. Discussion and conclusion The parameters

  7. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine.

  8. The MDE Diploma: First International Postgraduate Specialization in Model-Driven Engineering (United States)

    Cabot, Jordi; Tisi, Massimo


    Model-Driven Engineering (MDE) is changing the way we build, operate, and maintain our software-intensive systems. Several projects using MDE practices are reporting significant improvements in quality and performance but, to be able to handle these projects, software engineers need a set of technical and interpersonal skills that are currently…

  9. 78 FR 50317 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation (United States)


    ... turbine fuel, or for aircraft equipped with diesel cycle engines that use turbine or diesel type fuels...--this airplane is equipped with an aircraft diesel engine; service with approved fuels only.'' The... Federal Aviation Administration 14 CFR Part 23 Special Conditions: Cessna Aircraft Company, Model J182T...

  10. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation (United States)


    ... cycle engines that use turbine or diesel type fuels, the initial temperature must be 110 F, -0 , +5 or... Test Guide for Certification of Part 23 Airplanes. 7. Powerplant--Fuel system--Fuel tank filler... Administration 14 CFR Part 23 Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine...

  11. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)


    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  12. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests (United States)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes


    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  13. Logical diagnosis model turbojet engine including double-circuit intermittent flow of his injuries

    Directory of Open Access Journals (Sweden)

    О.П. Стьопушкіна


    Full Text Available  In this article is considered question of the change quantitative and qualitative factors of the technical condition constructive element running part of jet engine. As a result called on experimental studies diagnostic sign were definite sign with provision for intermittent damages and on base this is built expert model of the turbojet double-circuit engine.

  14. 40 CFR 90.615 - Model year restrictions related to imported engines and equipment. (United States)


    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Model year restrictions related to imported engines and equipment. 90.615 Section 90.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Importation of...

  15. The Open Academic Model for the Systems Engineering Graduate Program at Stevens Institute of Technology (United States)

    Lasfer, Kahina


    The Systems Engineering Program at Stevens Institute of Technology has developed the Open Academic Model (OAM) to guide its strategic planning and operations since its founding in 2001. Guided by OAM, the Stevens Systems Engineering Program (SSEP) has grown from inception in 2001 into one of the largest in the US. The main objectives of the…

  16. Applications and issues of GIS as tool for civil engineering modeling (United States)

    Miles, S.B.; Ho, C.L.


    A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.

  17. The fate of estrogenic hormones in an engineered treatment wetland with dense macrophytes (United States)

    Gray, J.L.; Sedlak, D.L.


    Recently, the estrogenic hormones 17??-estradiol (E2) and 17??-ethinyl estradiol (EE2) have been detected in municipal wastewater effluent and surface waters at concentrations sufficient to cause feminization of male fish. To evaluate the fate of steroid hormones in an engineered treatment wetland, lithium chloride, E2, and EE 2 were added to a treatment wetland test cell. Comparison of hormone and tracer data indicated that 36% of the E2 and 41% of the EE 2 were removed during the cell's 84-h hydraulic retention time (HRT). The observed attenuation was most likely the result of sorption to hydrophobic surfaces in the wetland coupled with biotransformation. Sorption was indicated by the retardation of the hormones relative to the conservative tracer. Biotransformation was indicated by elevated concentrations of the E2 metabolite, estrone. It may be possible to improve the removal efficiency by increasing the HRT or the density of plant materials.

  18. Tissue Engineering in Animal Models for Urinary Diversion: A Systematic Review (United States)

    Sloff, Marije; de Vries, Rob; Geutjes, Paul; IntHout, Joanna; Ritskes-Hoitinga, Merel


    Tissue engineering and regenerative medicine (TERM) approaches may provide alternatives for gastrointestinal tissue in urinary diversion. To continue to clinically translatable studies, TERM alternatives need to be evaluated in (large) controlled and standardized animal studies. Here, we investigated all evidence for the efficacy of tissue engineered constructs in animal models for urinary diversion. Studies investigating this subject were identified through a systematic search of three different databases (PubMed, Embase and Web of Science). From each study, animal characteristics, study characteristics and experimental outcomes for meta-analyses were tabulated. Furthermore, the reporting of items vital for study replication was assessed. The retrieved studies (8 in total) showed extreme heterogeneity in study design, including animal models, biomaterials and type of urinary diversion. All studies were feasibility studies, indicating the novelty of this field. None of the studies included appropriate control groups, i.e. a comparison with the classical treatment using GI tissue. The meta-analysis showed a trend towards successful experimentation in larger animals although no specific animal species could be identified as the most suitable model. Larger animals appear to allow a better translation to the human situation, with respect to anatomy and surgical approaches. It was unclear whether the use of cells benefits the formation of a neo urinary conduit. The reporting of the methodology and data according to standardized guidelines was insufficient and should be improved to increase the value of such publications. In conclusion, animal models in the field of TERM for urinary diversion have probably been chosen for reasons other than their predictive value. Controlled and comparative long term animal studies, with adequate methodological reporting are needed to proceed to clinical translatable studies. This will aid in good quality research with the reduction in

  19. Assessment Engineering Task Model Maps, Task Models and Templates as a New Way to Develop and Implement Test Specifications (United States)

    Luecht, Richard M.


    Assessment engineering is a new way to design and implement scalable, sustainable and ideally lower-cost solutions to the complexities of designing and developing tests. It represents a merger of sorts between cognitive task modeling and engineering design principles--a merger that requires some new thinking about the nature of score scales, item…

  20. Ways of Thinking, Ways of Seeing Mathematical and other Modelling in Engineering and Technology

    CERN Document Server

    Dillon, Chris


    This fascinating book examines some of the characteristics of technological/engineering models that are likely to be unfamiliar to those who are interested primarily in the history and philosophy of science and mathematics, and which differentiate technological models from scientific and mathematical ones. Themes that will be highlighted include: • the role of language: the models developed for engineering design have resulted in new ways of talking about technological systems • communities of practice: related to the previous point, particular engineering communities have particular ways of sharing and developing knowledge • graphical (re)presentation: engineers have developed many ways of reducing quite complex mathematical models to more simple representations • reification: highly abstract mathematical models are turned into ‘objects’ that can be manipulated almost like components of a physical system • machines: not only the currently ubiquitous digital computer, but also older analogue dev...

  1. Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.


    A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

  2. Laboratory tests on heat treatment of ballast water using engine waste heat. (United States)

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B


    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  3. Heat engines at optimal power: Low-dissipation versus endoreversible model (United States)

    Johal, Ramandeep S.


    The low-dissipation model and the endoreversible model of heat engines are two of the most commonly studied models of machines in finite-time thermodynamics. In this paper we compare the performance characteristics of these two models under optimal power output. We point out a basic equivalence between them, in the linear response regime.

  4. On Engineering Support for Business Process Modelling and Redesign

    NARCIS (Netherlands)

    Doumeingts, G.; Franken, H.M.; de Weger, M.K.; Browne, J.; Quartel, Dick; Ferreira Pires, Luis


    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a

  5. Thermodynamic modelling of a pistons engine: Calculation of the ...

    African Journals Online (AJOL)

    The internal combustion engines are under development remarkable these last decades, but they represent, currently, a very important source of polluting gas emissions. The nitrogen oxides (NOx) form part of these polluting emissions, and have a harmful effect on human health, as well as the environment. Considering the ...

  6. Can Models Capture the Complexity of the Systems Engineering Process? (United States)

    Boppana, Krishna; Chow, Sam; de Weck, Olivier L.; Lafon, Christian; Lekkakos, Spyridon D.; Lyneis, James; Rinaldi, Matthew; Wang, Zhiyong; Wheeler, Paul; Zborovskiy, Marat; Wojcik, Leonard A.

    Many large-scale, complex systems engineering (SE) programs have been problematic; a few examples are listed below (Bar-Yam, 2003 and Cullen, 2004), and many others have been late, well over budget, or have failed: Hilton/Marriott/American Airlines system for hotel reservations and flights; 1988-1992; 125 million; "scrapped"

  7. Multilayer Network Modeling of Change Propagation for Engineering Change Management (United States)


    ation 411 PNC C ac 2 C PC Not Predicted & Propagated wI Comunication ENot Predicted & Not Propagated w ConPnCcation 04 PPC 5CPredicted & Propagated w...documentation, and product requirements. Formal change impact analysis allows an engineering firm to keep tabs on their products’ satisfaction of


    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.


    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  9. Identification of Civil Engineering Structures using Vector ARMA Models

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Kirkegaard, Poul Henning


    This paper describes the work which have been carried out in the project B.1: Damage Detection in Structures under Random Loading. The project is a part of the research programme Dynamics of Structures founded by the Danish Technical Research Council. The planned contents of and the requirements ...... Dept. of Building Technology and Structural Engineering, Aalborg University....

  10. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Author Guidelines. The journal publishes original research reports, short communications, and critical reviews in any branch of engineering and allied fields such as applied mathematics, applied physics, applied chemistry and management sciences. It has special focus on the application of physical or mathematical ...

  11. Incorporating Learning Theory into Existing Systems Engineering Models (United States)


    Jossey-Bass. Barker, B. (2003). Determining systems engineering effectiveness: Conference on systems intergration . Hoboken, NJ: Steven Institute of...measuring and predcting the degradation of aging system and how it can be achieved. Georgia Tech Research Institute, Logistic and Maintenance

  12. A Comparison of Different Engineering Models for Computation of Lightning Magnetic Field of Negative First Strokes

    Directory of Open Access Journals (Sweden)

    V. Javor


    Full Text Available A comparison of different engineering models results for a lightning magnetic field of negative first strokes is presented in this paper. A new function for representing double-peaked channel-base current is used for lightning stroke modeling. This function includes the initial and subsidiary peak in a current waveform. For experimentally measured currents, a magnetic field is calculated for the three engineering models: transmission line (TL model, TL model with linear decay (MTLL, and TL model with exponential decay (MTLE.

  13. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.


    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  14. Application for certification 1993 model year heavy-duty diesel engines - Isuzu

    Energy Technology Data Exchange (ETDEWEB)


    Each year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement or compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  15. Application for certification 1993 model year heavy-duty diesel engines - Mitsubishi Motors Corporation

    Energy Technology Data Exchange (ETDEWEB)


    Each year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement or compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  16. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. (United States)

    Gottschalk, Fadri; Sun, Tianyin; Nowack, Bernd


    Scientific consensus predicts that the worldwide use of engineered nanomaterials (ENM) leads to their release into the environment. We reviewed the available literature concerning environmental concentrations of six ENMs (TiO2, ZnO, Ag, fullerenes, CNT and CeO2) in surface waters, wastewater treatment plant effluents, biosolids, sediments, soils and air. Presently, a dozen modeling studies provide environmental concentrations for ENM and a handful of analytical works can be used as basis for a preliminary validation. There are still major knowledge gaps (e.g. on ENM production, application and release) that affect the modeled values, but over all an agreement on the order of magnitude of the environmental concentrations can be reached. True validation of the modeled values is difficult because trace analytical methods that are specific for ENM detection and quantification are not available. The modeled and measured results are not always comparable due to the different forms and sizes of particles that these two approaches target. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies

    Directory of Open Access Journals (Sweden)

    Jorge L. Escobar Ivirico


    Full Text Available Knee osteoarthritis (OA is the most common form of arthritis worldwide. The incidence of this disease is rising and its treatment poses an economic burden. Two early targets of knee OA treatment include the predominant symptom of pain, and cartilage damage in the knee joint. Current treatments have been beneficial in treating the disease but none is as effective as total knee arthroplasty (TKA. However, while TKA is an end-stage solution of the disease, it is an invasive and expensive procedure. Therefore, innovative regenerative engineering strategies should be established as these could defer or annul the need for a TKA. Several biomaterial and cell-based therapies are currently in development and have shown early promise in both preclinical and clinical studies. The use of advanced biomaterials and stem cells independently or in conjunction to treat knee OA could potentially reduce pain and regenerate focal articular cartilage damage. In this review, we discuss the pathogenesis of pain and cartilage damage in knee OA and explore novel treatment options currently being studied, along with some of their limitations.

  18. Computer-Aided Design Methods for Model-Based Nonlinear Engine Control Systems Project (United States)

    National Aeronautics and Space Administration — Traditional design methods for aircraft turbine engine control systems have relied on the use of linearized models and linear control theory. While these controllers...

  19. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation (United States)

    National Aeronautics and Space Administration — This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are...

  20. Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing

    National Research Council Canada - National Science Library

    Qiang Yan; Stephen S. Fong


    .... However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either...

  1. A Physics-Based Starting Model for Gas Turbine Engines Project (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...

  2. IDC Re-Engineering Phase 2 Data Model to IDC Schema Mapping.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Montoya, Mark Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Rudy Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vickers, James Wallace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This initial draft document contains formative data model content for select areas of Re-Engineering Phase 2 IDC System. The purpose of this document is to facilitate discussion among the stakeholders. It is not intended as a definitive proposal.

  3. Bringing Model Checking Closer to Practical Software Engineering

    CERN Document Server

    AUTHOR|(CDS)2079681; Templon, J A; Willemse, T.A.C.

    Software grows in size and complexity, making it increasingly challenging to ensure that it behaves correctly. This is especially true for distributed systems, where a multitude of components are running concurrently, making it dicult to anticipate all the possible behaviors emerging in the system as a whole. Certain design errors, such as deadlocks and race-conditions, can often go unnoticed when testing is the only form of verication employed in the software engineering life-cycle. Even when bugs are detected in a running software, revealing the root cause and reproducing the behavior can be time consuming (and even impossible), given the lack of control the engineer has over the execution of the concurrent components, as well as the number of possible scenarios that could have produced the problem. This is especially pronounced for large-scale distributed systems such as the Worldwide Large Hadron Collider Computing Grid. Formal verication methods oer more rigorous means of determining whether a system sat...

  4. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    Diesel engine exhaust gases contain several harmful substances. The main pollutants are carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrous gases such as nitrogen oxide (NO) and nitrogen dioxide (NO2) (together NOx). Reducing the emission of these pollutants is of great...... outperformed the other control structures. The results were experimentally verified by implementing the tested controllers on a full-scale engine setup, and the results showed that coupling feedback with ANR based feedforward was yielding better performance. The PD controller showed good performance...... importance due to their effect on urban air quality, and because of new legislation. In modern heavy-duty applications, the exhaust gases are typically treated with four different catalysts: a Diesel Oxidation Catalyst (DOC) which oxidises HC and CO into H2O and CO2, and NO into NO2, a Diesel Particulate...

  5. A Model for Implementing Practical Design in the Education of Mechanical Engineers

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Mouritsen, Ole Ø.; Andersen, Torben Ole


    In this paper the PBL model used at Aalborg University in the mechanical engineering is shortly presented. A specific semester with a both theoretical and practical content that allow the students to is presented in detail. It is then used as a reference project for a subsequent discussion on three...... potential concerns with respect to the continued succes of problem and project based learning in mechanical and mechatronics engineering namely: individual assessment, bologna (student exchange) model and research based teaching....


    Directory of Open Access Journals (Sweden)

    Aldy Sefan Rezanaldy


    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Desain model basis data merupakan sebuah fase penting dalam pengembangan sebuah Aplikasi Sistem Informasi. Editor Model Data yang digunakan untuk melakukan desain basis data sangat diperlukan dalam dunia IT. Sebagian Editor yang ada saat ini belum menerapkan konsep round-trip engineering secara real time, sehingga perubahan yang terjadi pada satu data model membutuhkan event update untuk melakukan pembaharuan pada model data yang lainnya. Editor model data ini merupakan editor dengan round-trip engineering. Konversi bolak-balik dilakukan antara data model konseptual dan data model fisik. Editor ini dikembangkan dengan menggunakan C# .NET Framework dan implementasi desain pola pada Object Oriented. Dalam implementasi sebuah editor, yang merupakan bagian terpenting selain berjalannya seluruh fitur yang ada adalah tentang performa dan kenyamanan user ketika menggunakannya. Performa dan kenyamanan user menjadi penilaian tersendiri pada sebuah editor model data. Aplikasi yang dihasilkan diharapkan dapat digunakan untuk melakukan desain basis data dengan menerapkan metode konversi bolak-balik, sehingga tidak diperlukan proses perbaruan dari model data yang satu ke model data yang lain secara manual. Diharapkan dapat

  7. Selecting appropriate dynamic model for elastomeric engine mounts to approximate experimental FRF data of them

    Directory of Open Access Journals (Sweden)

    Jahani K.


    Full Text Available In this paper, the capabilities of different dynamic analytical models to approximate experimentally measured FRFs of elastomeric engine mounts of a passenger car are investigated. Artificial neural networks is used in identifying the dynamic characteristics of each model. Impact hammer test is implemented to extract measured FRFs and harmonic analysis is used to get the counterpart response of the models. Here linear and orthotropic material properties are considered for elastomeric media. The frequency response functions of updated models are compared with experimentally detected ones and advantages and limitations of each model to simulate the real dynamic behaviour of elastomeric engine mounts are discussed

  8. Role of tissue engineered buccal mucosa for treatment of urethral stricture

    Directory of Open Access Journals (Sweden)

    Vaddi S


    next challenge awaiting researchers in the urogenital tissue engineering field. Genitalia reconstruction is also possible with cell therapy. Engineered penile prosthesis can be reconstructed by culturing autologous chondrocytes which are seeded onto a Poly-glycolic acid scaffold and then implanting the scaffold into the corporal space of penis [6]. Microencapsulated Leydig cells in animal studies have been used to replace or supplement testosterone in testicular failure [7]. Cell therapy techniques are also used for treatment of urinary incontinence, vesicoureteric reflux by injecting cultured myoblasts or adipocytes [5]. The major limitation in engineering solid organs is the vascularisation of the regenerated tissue. Recent developments in angiogenesis research [8] may provide answer to this complex problem and accomplish the goal. Most of the research to date in urological tissue engineering is done in animals. Before these engineering techniques can be applied to humans, further studies need to be performed. Buccal Mucosal Epithelium for repair of the short segment urethral stricture: Urethral stricture is the narrowing of the lumen of the urethra which occurs as a terminal event secondary to many etiologies. Patients present with difficulty in voiding urine. There are endoscopic and open surgical reconstructive procedures to treat this disorder. Endoscopic treatment is often temporary and eventually results in recurrence of the disease. Many open surgical procedures have been described but none of the procedures offer permanent cure. The use of buccal mucosal grafts for stricture repair is in practice [9,10] with considerable success. However the donor site morbidity and complications like stricture recurrence with the present techniques [11,12] warrant the advent of novel techniques. The use of buccal mucosal cells which can be obtained by harvesting a 2mm x 2mm tissue bit compared to that of 5-6cm tissue usually harvested in conventional techniques for a graft

  9. An example of a diesel generator model with fluctuating engine torque for transient analysis using XTAP

    Directory of Open Access Journals (Sweden)

    Orie Sakamoto


    Full Text Available In remote site power systems with small diesel generators, weak distribution feeders with diesel generators may suffer from voltage and power fluctuations due to misfiring of the engine cylinder. An electromagnetic transient (EMT program named XTAP is considered to be useful to analyze these phenomena. In this study, a new diesel generator model with example fluctuating engine torque has been developed using XTAP for analyses of small power systems with those diesel engines. The configuration and verification results of the developed model are presented in the paper.

  10. Modelling and Implementation of QoS in Wireless Sensor Networks: A Multiconstrained Traffic Engineering Model

    Directory of Open Access Journals (Sweden)

    Bagula AntoineB


    Full Text Available This paper revisits the problem of Quality of Service (QoS provisioning to assess the relevance of using multipath routing to improve the reliability and packet delivery in wireless sensor networks while maintaining lower power consumption levels. Building upon a previous benchmark, we propose a traffic engineering model that relies on delay, reliability, and energy-constrained paths to achieve faster, reliable, and energy-efficient transmission of the information routed by a wireless sensor network. As a step forward into the implementation of the proposed QoS model, we describe the initial steps of its packet forwarding protocol and highlight the tradeoff between the complexity of the model and the ease of implementation. Using simulation, we demonstrate the relative efficiency of our proposed model compared to single path routing, disjoint path routing, and the previously proposed benchmarks. The results reveal that by achieving a good tradeoff between delay minimization, reliability maximization, and path set selection, our model outperforms the other models in terms of energy consumption and quality of paths used to route the information.

  11. Task Models and System Models as A Bridge Between Hci and Software Engineering (United States)

    Navarre, David; Palanque, Philippe; Winckler, Marco

    This chapter claims that task models per se do not contain sufficient and necessary information to permit automatic generation of interactive systems. Beyond this, we claim that they must not contain sufficient and necessary information otherwise they could no longer be considered as task models. On the contrary we propose a way of exploiting in a synergistic way task models with other models to be built during the development process. This chapter presents a set of tools supporting the development of interactive systems using two different notations. One of these notations called ConcurTaskTree (CTT) is used for task modeling. The other notation called Interactive Cooperative Objects (ICO) is used for system modeling. Even though these two kinds of models represent two different views of the same world (a user interacting with an interactive system), they are built by different people (human factors specialist for the task models and software engineer for the system models) and are used independently. The aim of this chapter is to propose the use of scenarios as a bridge between these two views. On the task modeling side, scenarios are seen as a possible trace of user’s activity. On the system side, scenarios are seen as a trace of user’s actions. This generic approach is presented on a case study in the domain of Air Traffic Control. As both CTT and ICO notations are tool supported (environments are respectively CTTE and PetShop) an integration tool based on this notion of scenarios is presented. Its use on the selected case study is also presented in detail.

  12. Model testing the two-phase scavenging system in a two-stroke petrol engine

    Energy Technology Data Exchange (ETDEWEB)

    Cudina, M. [University of Ljubljana (Slovenia). Faculty of Mechanical Engineering


    Due to an inadequate scavenging process two-stroke petrol engines suffer from substantial fuel-specific consumption, as well as from considerable emissions of toxic components in exhaust gases. This paper describes the model testing and evaluation of a new scavenging system in a small two-stroke petrol engine with internal working mixture preparation. The scavenging process is performed by two different gas media in two successive phases and is more sophisticated and effective than the conventional single-phase (Schnuerle) principle. Using the similarity principle and dimensional analysis, a new mathematical model was developed for evaluation of the effectiveness of the scavenging systems. This makes it possible to establish relationships between the most important parameters of the model engine and of the real engine, which are independent of the dimensional parameters. The effectiveness of the scavenging systems was defined by means of qualitative scavenging efficiency. A special testing device for the model engine has been developed and a liquid working media (instead of gaseous) is used. A qualitative as well as a quantitative evaluation of the predicted values and a simulation of the working medium exchange process at different working conditions is possible. A visual observation of the slowed-down scavenging process in a transparent model cylinder was also made. The mathematical model can be applied to any scavenging system of two-stroke engines or to similar periodic events in the process technique. (author)

  13. An assessment of CFD-based wall heat transfer models in piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)


    The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.


    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ


    Full Text Available Modern transport is still based on vehicles powered by internal combustion engines. Due to stricter ecological requirements, the designers of engines are continually challenged to develop more environmentally friendly engines with the same power and performance. Unfortunately, there are not any significant novelties and innovations available at present which could significantly change the current direction of the development of this type of propulsion machines. That is why the existing ones should be continually developed and improved or optimized their performance. By optimizing, we tend to minimize fuel consumption and lower exhaust emissions in order to meet the norms defined by standards (i.e. Euro standards. Those propulsion engines are actually developed to such extent that our current thinking will not be able to change their basic functionality, but possible opportunities for improvement, especially the improvement of individual components, could be introduced. The latter is possible by computational fluid dynamics (CFD which can relatively quickly and inexpensively produce calculations prior to prototyping and implementation of accurate measurements on the prototype. This is especially useful in early stages of development or at optimization of dimensional small parts of the object where the physical execution of measurements is impossible or very difficult. With advances of computational fluid dynamics, the studies on the nozzles and outlet channel injectors have been relieved. Recently, the observation and better understanding of the flow in nozzles at large pressure and high velocity is recently being possible. This is very important because the injection process, especially the dispersion of jet fuel, is crucial for the combustion process in the cylinder and consequently for the composition of exhaust gases. And finally, the chemical composition of the fuel has a strong impact on the formation of dangerous emissions, too. The

  15. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi


    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  16. Modeling the Performance of a New Speed Adjustable Compound Supercharging Diesel Engine Working under Plateau Conditions

    Directory of Open Access Journals (Sweden)

    Meng Xia


    Full Text Available In order to improve the diesel engine performance under plateau (high altitude conditions, a new Speed Adjustable Compound (SAC supercharging method is proposed. A simulation model based on a six-cylinder V-type turbocharged intercooler diesel engine is built on the GT-POWER platform, and then simulation-based research is carried out. A genetic algorithm (GA is used to identify the best operation parameters, including the supercharger speed and fuel injection quantity under steady state conditions. Transient performance is obtained through starting process simulation of a vehicle with SAC engine on the MATLAB/Simulink GT-POWER co-simulation platform. Both the steady and transient performance of the SAC engine are compared with those of the original engine. Results show that the torque of the SAC engine at full load is significantly increased when the engine speed n < 1600 r/min. The increment of the maximum torque can reach up to 31% at 1000 r/min compared to that of the original engine, while the peak torque is increased by 9%. The fuel consumption deterioration is restricted within 5%. What’s more, the SAC engine can help reducing the acceleration time by 20% during tip-in pedal events during the vehicle starting process.

  17. Engineering models of deflagration-to-detonation transition

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, J.B.; Son, S.F.


    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  18. Efficacy of Sunitinib and Radiotherapy in Genetically Engineered Mouse Model of Soft-tissue Sarcoma (United States)

    Yoon, Sam S.; Stangenberg, Lars; Lee, Yoon-Jin; Rothrock, Courtney; Dreyfuss, Jonathan M.; Baek, Kwan-Hyuck; Waterman, Peter R.; Nielsen, G. Petur; Weissleder, Ralph; Mahmood, Umar; Park, Peter J.; Jacks, Tyler; Dodd, Rebecca D.; Fisher, Carolyn J.; Ryeom, Sandra; Kirsch, David G.


    Purpose Sunitinib (SU) is a multitargeted receptor tyrosine kinase inhibitor of the vascular endothelial growth factor and platelet-derived growth factor receptors. The present study examined SU and radiotherapy (RT) in a genetically engineered mouse model of soft tissue sarcoma (STS). Methods and Materials Primary extremity STSs were generated in genetically engineered mice. The mice were randomized to treatment with SU, RT (10 Gy × 2), or both (SU+RT). Changes in the tumor vasculature before and after treatment were assessed in vivo using fluorescence-mediated tomography. The control and treated tumors were harvested and extensively analyzed. Results The mean fluorescence in the tumors was not decreased by RT but decreased 38–44% in tumors treated with SU or SU+RT. The control tumors grew to a mean of 1378 mm3 after 12 days. SU alone or RT alone delayed tumor growth by 56% and 41%, respectively, but maximal growth inhibition (71%) was observed with the combination therapy. SU target effects were confirmed by loss of target receptor phosphorylation and alterations in SU-related gene expression. Cancer cell proliferation was decreased and apoptosis increased in the SU and RT groups, with a synergistic effect on apoptosis observed in the SU+RT group. RT had a minimal effect on the tumor microvessel density and endothelial cell-specific apoptosis, but SU alone or SU+RT decreased the microvessel density by >66% and induced significant endothelial cell apoptosis. Conclusion SU inhibited STS growth by effects on both cancer cells and tumor vasculature. SU also augmented the efficacy of RT, suggesting that this combination strategy could improve local control of STS. PMID:19545786

  19. Detailed modeling of soot size distribution evolution and pollutant formation inside aircraft and diesel engines (United States)

    Moniruzzaman, Chowdhury G.

    Combustion emission of soot and pollutant gas species contributes to poor regional air quality near emission sources and to climate change. It is important to understand the formation mechanism and time evolution of these pollutants inside the combustion engine, through detailed modeling of combustion chemistry and microphysics as well as comparison with observation. In this thesis, two multi-zone gas parcel combustion engine models, one for aircraft engines and another for diesel engines, have been developed to study soot size distribution evolution and pollutant formation inside the engines as well as emissions. The models take into account size-resolved (sectional) soot aerosol dynamics (nucleation, growth, and coagulation) and detailed combustion chemistry of jet and diesel fuel. For the aircraft engine, the model considers 362 chemical species, 2657 reversible reactions and 75 aerosol size bins. The model was applied to a CFM56-2-C1 aircraft engine for idle operating conditions. This is the first model to simulate soot size distribution evolution inside an aircraft engine (to our knowledge). The simulated values for major species are generally consistent with measurements. Model simulation shows that, for idle operating conditions, concentrations of most key combustion products don't change significantly in the post-combustor, however, HONO, H2SO4, and HO 2 concentrations change by more than a factor of 10. The sulfur oxidation efficiency (SOE), ([SO3]+[H2SO4])/([SO 2]+[SO3] +[H2SO4]), was found to be 2.1% at the engine exit. For the diesel engine, the multi-zone gas parcel model has been further enhanced by including fuel injection, droplet break-up, fuel evaporation and air entrainment rate. The model considers 283 chemical species, 2137 reversible reactions, and 75 aerosol size bins. The developed model calculates the time evolution of concentrations of these chemical species and soot size distributions inside a diesel engine. This is the first model to

  20. The Validation of Computer-based Models in Engineering: Some Lessons from Computing Science

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith


    Full Text Available Questions of the quality of computer-based models and the formal processes of model testing, involving internal verification and external validation, are usually given only passing attention in engineering reports and in technical publications. However, such models frequently provide a basis for analysis methods, design calculations or real-time decision-making in complex engineering systems. This paper reviews techniques used for external validation of computer-based models and contrasts the somewhat casual approach which is usually adopted in this field with the more formal approaches to software testing and documentation recommended for large software projects. Both activities require intimate knowledge of the intended application, a systematic approach and considerable expertise and ingenuity in the design of tests. It is concluded that engineering degree courses dealing with modelling techniques and computer simulation should put more emphasis on model limitations, testing and validation.

  1. Evaluation of LES models for flow over bluff body from engineering ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Results are also discussed keeping in view limitations of LES methodology of modelling for practical problems and current developments. It is concluded that a one-equation model for subgrid kinetic energy is the best choice. Keywords. Subgrid scale stress models; engineering flows; flow over bluff body. 1. Introduction.

  2. Dynamic material characterization by combining ballistic testing and an engineering model

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Wal, R. van der


    At TNO several energy-based engineering models have been created for various failure mechanism occurring in ballistic testing of materials, like ductile hole growth, denting, plugging, etc. Such models are also under development for ceramic and fiberbased materials (fabrics). As the models are

  3. Evaluating Educational Software Authoring Environments Using a Model Based on Software Engineering and Instructional Design Principles. (United States)

    Collis, Betty A.; Gore, Marilyn


    This study suggests a new model for the evaluation of educational software authoring systems and applies this model to a particular authoring system, CSR Trainer 4000. The model used is based on an integrated set of software engineering and instructional design principles. (Author/LRW)

  4. The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM) (United States)


    Building Information Modeling ( BIM ) En gi ne er R es ea rc h an...Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout the planning, architecture, engineering...the Industry Foundation Class (IFC) definitions to create vendor-neutral data exchanges for use in BIM software tools. Building Information Modeling

  5. Development of braided rope seals for hypersonic engine applications: Flow modeling (United States)

    Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank


    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.

  6. Giant cell arteritis. Part III. New trends in its treatment (role of genetically engineered drugs

    Directory of Open Access Journals (Sweden)

    Azamat Makhmudovich Satybaldyev


    Full Text Available Giant cell arteritis (GCA is a well-known vasculitis sensitive to glucocorticoid (GC immuno-suppression. However, during long-term treatment there may be many adverse reactions that remain a serious problem so far. Since GCA encompasses a broad spectrum of clinical subtypes, ranging from severe visual loss and neurological deficits to isolated systemic signs, its treatment must be adjusted specially to each case. The literature contains contradicting recommendations for the therapy for GCA. The paper considers different treatment options for GCA, including that with neuro-ophthalmic and neurological complications, as well as the evidence for their possible adjuvant therapies. Although there is no randomized controlled clinical trial in GCA with ocular and neurological complications, the data available in the literature suggest that these patients are recommended to be admitted for high-dose intravenous methylprednisolone, monitoring, and prevention of GC-induced complications. It is expedient to use aspirin in these cases. The evidence supporting the use of methotrexate, as well as genetically engineered agents (GEAs, infliximab, etanercept as steroid-sparing agents is discussed. Cases of using individual GEAs (adalimumab, tocilizumab and rituximab as an alternative to GC monotherapy are described. It is concluded that there is a need for extended clinical trials evaluating the most effective and safe GC-sparing drugs.

  7. Closed loop models for analyzing engineering requirements for simulators (United States)

    Baron, S.; Muralidharan, R.; Kleinman, D.


    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  8. Aerobic treatment of explosives-contaminated soils using two engineering approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zappi, M.E.; Gunnison, D.; Fredrickson, H.L. [Army Corps of Engineers, Vicksburg, MS (United States). USAE Waterways Experiment Station


    Explosives contamination represents a widespread problem to the US Department of Defense. The potential of two aerobic engineering application approaches--bioslurry and bioagriculture systems--for aerobic biotreatment of explosives-contaminated soils was evaluated using bench-scale reactors, the results were that the addition of a commercially available surfactant dramatically improved the treatment effectiveness of both the bioslurry and bioagriculture systems. Formation and disappearance of aminonitrotoluenes (aminodinitrotoluenes and diaminonitrotoluenes) and nitrobenzenes (di- and trinitrotoluenes) were observed within both systems. The bioslurry systems had much more rapid removal kinetics than the bioagriculture systems. The rationale for this observation is believed to be the superior conditions provided in the bioslurry system over those provided within the bioagriculture system.


    Directory of Open Access Journals (Sweden)

    G. N. Skaletskaya


    Full Text Available Allotransplantation of pancreatic islets remains the most effective method of treatment of diabetes mellitus type 1 being capable under combination of favorable conditions (suffi cient number of isolated islets, effective combination of immunosuppressive drugs to reach the recipients’ insulin independence for several years. However, the overwhelming shortage of donor pancreas and limited post-transplantation islet survival do not allow increasing the number of such transplants and their effectiveness. This review presents a critical analysis of the work done by Russian and foreign authors onto creation of tissue-engineered pancreatic constructs that may lead to the resolution of the three main pancreatic islet transplantation issues: 1 lack of donor material; 2 necessity of immunosuppressive therapy; 3 limited survival and functional activity of the islet.

  10. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  11. Engineering evaluation of solids/liquids separation processes applicable to sludge treatment project

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.


    This engineering study looks at the solids/liquids separation unit operations after the acid dissolution of the K Basin sludge treatment. Unit operations considered were centrifugation, filtration (cartridge, cross flow, and high shear filtration) and gravity settling. The recommended unit operations for the solids/liquids separations are based upon the efficiency, complexity, and off-the-shelf availability and adaptability. The unit operations recommended were a Robatel DPC 900 centrifuge followed by a nuclearized 31WM cartridge filter. The Robatel DPC 900 has been successfully employed in the nuclear industry on a world wide scale. The 31WM cartridge filter has been employed for filtration campaigns in both the government and civilian nuclear arenas.

  12. Porcine wound models for skin substitution and burn treatment.

    NARCIS (Netherlands)

    Middelkoop, E.; Bogaerdt, A.J. van den; Lamme, E.N.; Hoekstra, M.J.; Brandsma, K.; Ulrich, M.M.


    Skin regeneration is an important field of tissue engineering. Especially in larger burns and chronic wounds, present treatments are insufficient in preventing scar formation and promoting healing. Initial screening of potentially interesting products for skin substitution is usually done by in

  13. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2 (United States)

    Reitz, R. D.; Rutland, C. J.


    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.


    Energy Technology Data Exchange (ETDEWEB)



    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is

  15. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai


    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynamic...... models. While literature is rich on four-stroke automotive engines, this paper considers two-stroke engines and develops a non-linear dynamic model of the exhaust gas system. Parameters are determined by system identication. The paper uses black-box nonlinear model identication and modelling from rst...

  16. Modeling a VR-type piston engine as the power plant (United States)

    Gorshkalev, A. A.; Kayukov, S. S.; Korneev, S. S.; Urlapkin, V. V.


    This article describes existing methods of internal combustion engine calculation. The developed algorithm of diesel engine modeling in ‘AVL FIRE ESE DIESEL’ and ‘LMS Imagine.Lab AMESim’ software is presented. The algorithm includes description of model preparation, boundary condition setting and calculation execution. Obtained results of the modeling show significant enhancement in accuracy in contrast with analytical calculation. The difference between results obtained in different software is caused by a simplified combustion model in ‘LMS Imagine.Lab AMESim’ and a lack of a submodel describing a refrigeration system.

  17. Diesel Engine Cold-Starting Studies: Optically Accessible Engine Experiments and Modeling

    National Research Council Canada - National Science Library

    Henein, Naeim


    .... The pre-ignition chemistry showed great sensitivity to the compressed air temperature. KIVA with a modified shell model responds accordingly to the change of inlet air temperatures and fuel injection parameters...

  18. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning


    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continous-time system excited by Gaussian white noise. This result is generalized...... for multi-variate systems to an ARMAV model. The covariance equivalent model structure is also considered when the number of channels are different from the number of degrees offreedom to be modelled. Finally, it is reviewed how to estimate an ARMAV model from sampled data....

  19. Theory of Covariance Equivalent ARMAV Models of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning

    In this paper the theoretical background for using covariance equivalent ARMAV models in modal analysis is discussed. It is shown how to obtain a covariance equivalent ARMA model for a univariate linear second order continuous-time system excited by Gaussian white noise. This result is generalized...... for multivariate systems to an ARMAV model. The covariance equivalent model structure is also considered when the number of channels are different from the number of degrees of freedom to be modelled. Finally, it is reviewed how to estimate an ARMAV model from sampled data....

  20. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver

    Energy Technology Data Exchange (ETDEWEB)

    Forristall, R.


    This report describes the development, validation, and use of a heat transfer model implemented in Engineering Equation Solver. The model determines the performance of a parabolic trough solar collector's linear receiver, also called a heat collector element. All heat transfer and thermodynamic equations, optical properties, and parameters used in the model are discussed. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

  1. Drug abuse treatment "models": Meehl's lament revisited. (United States)

    Talbott, W R


    Recalling the extensive discussions by Paul E. Meehl concerning the etiology of schizophrenia, the argument is made that the current practice by mental health professionals of invoking the postulated genetic component of chemical dependency as having implications for treatment is uninformed and ultimately--assuming that one of the goals of the chemical dependency treatment field is to improve treatment methods--counterproductive.

  2. The combination of stem cells and tissue engineering: an advanced strategy for blood vessels regeneration and vascular disease treatment. (United States)

    Wang, Ying; Yin, Pei; Bian, Guang-Liang; Huang, Hao-Yue; Shen, Han; Yang, Jun-Jie; Yang, Zi-Ying; Shen, Zhen-Ya


    Over the past years, vascular diseases have continued to threaten human health and increase financial burdens worldwide. Transplantation of allogeneic and autologous blood vessels is the most convenient treatment. However, it could not be applied generally due to the scarcity of donors and the patient's condition. Developments in tissue engineering are contributing greatly with regard to this urgent need for blood vessels. Tissue engineering-derived blood vessels are promising alternatives for patients with aortic dissection/aneurysm. The aim of this review is to show the importance of advances in biomaterials development for the treatment of vascular disease. We also provide a comprehensive overview of the current status of tissue reconstruction from stem cells and transplantable cellular scaffold constructs, focusing on the combination of stem cells and tissue engineering for blood vessel regeneration and vascular disease treatment.


    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż


    Full Text Available The paper presents CFD analysis of fuel flow in the CNG injector. The issues such a pressure drop along an injector channel, mass flow through the key sections of the injector geometry, flow rates, the impact of the needle shape on the deflection of the sprayed gas cone and the impact of the wall head are analyzed in the article. The simulation was made in the transient states conditions for full injection process, including the opening and closing of the injector. An injection time of 6 ms, velocity of 0.33 mm/ms and a lift of 0.5 mm were selected for opening and closing of injector based on experimental test. The simulation shows that the volume inside the injector is a kind of fuel accumulator, and the opening process of the needle influence the flow parameters in an inlet cross-section after a certain time, depending on a channel cross section. The calculations allowed to select the ratio of an injector duct cross sectional area to the aperture area of the injection capable of the reducing pressure loss. The unusual location of the injector in the socket of a glow plug in the Andoria ADCR engine makes a stream be impaired by a part of the head. This research result would be useful in developing an injector construction which will be used for an investigation of CNG addition into diesel engine.

  4. How to Overcome Numerical Challenges to Modeling Stirling Engines (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.


    Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.

  5. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data (United States)

    Simon, Donald L.; Rinehart, Aidan Walker


    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  6. Combining engineering and data-driven approaches: Development of a generic fire risk model facilitating calibration

    DEFF Research Database (Denmark)

    De Sanctis, G.; Fischer, K.; Kohler, J.


    are not detailed enough. Engineering risk models, on the other hand, may be detailed but typically involve assumptions that may result in a biased risk assessment and make a cost-benefit study problematic. In two related papers it is shown how engineering and data-driven modeling can be combined by developing......Fire risk models support decision making for engineering problems under the consistent consideration of the associated uncertainties. Empirical approaches can be used for cost-benefit studies when enough data about the decision problem are available. But often the empirical approaches...... a generic risk model that is calibrated to observed fire loss data. Generic risk models assess the risk of buildings based on specific risk indicators and support risk assessment at a portfolio level. After an introduction to the principles of generic risk assessment, the focus of the present paper...

  7. Computer-aided modeling for efficient and innovative product-process engineering

    DEFF Research Database (Denmark)

    Heitzig, Martina

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer......-aided methods provide. The key prerequisite of computer-aided productprocess engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging, time-consuming and therefore cost...... in chemical and biochemical engineering have been solved to illustrate the application of the generic modelling methodology, the computeraided modelling framework and the developed software tool....

  8. Journal of Modeling, Design and Management of Engineering ...

    African Journals Online (AJOL)

    Modeling And Simulation Of The Deaerator For A Seawater Injection System · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ... Modeling Of A Fluid Catalytic Cracking (Fcc) Riser Reactor - The Four-Lump Model · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  9. A 3D Geometry Model Search Engine to Support Learning (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin


    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  10. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation. (United States)

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T


    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  11. Engineering Smart Grids: Applying Model-Driven Development from Use Case Design to Deployment

    Directory of Open Access Journals (Sweden)

    Filip Pröstl Andrén


    Full Text Available The rollout of smart grid solutions has already started and new methods are deployed to the power systems of today. However, complexity is still increasing as focus is moving from a single system, to a system of systems perspective. The results are increasing engineering efforts and escalating costs. For this reason, new and automated engineering methods are necessary. This paper addresses these needs with a rapid engineering methodology that covers the overall engineering process for smart grid applications—from use case design to deployment. Based on a model-driven development approach, the methodology consists of three main parts: use case modeling, code generation, and deployment. A domain-specific language is introduced supporting the use case design according to the Smart Grid Architecture Model. It is combined with the IEC 61499 distributed control model to improve the function layer design. After a completed use case design, executable code and communication configurations (e.g., IEC 61850 are generated and deployed onto compatible field devices. This paper covers the proposed rapid engineering methodology and a corresponding prototypical implementation which is validated in a laboratory experiment. Compared to other methods the proposed methodology decreases the number of engineering steps and reduces the use case design and implementation complexity.

  12. Microbial population shift caused by sulfamethoxazole in engineered-Soil Aquifer Treatment (e-SAT) system. (United States)

    Rudrashetti, Ashwinkumar P; Jadeja, Niti B; Gandhi, Deepa; Juwarkar, Asha A; Sharma, Abhinav; Kapley, Atya; Pandey, R A


    The engineered-Soil Aquifer Treatment (e-SAT) system was exploited for the biological degradation of Sulfamethoxazole (SMX) which is known to bio-accumulate in the environment. The fate of SMX in soil column was studied through laboratory simulation for a period of 90 days. About 20 ppm SMX concentration could be removed in four consecutive cycles in e-SAT. To understand the microbial community change and biological degradation of SMX in e-SAT system, metagenomic analysis was performed for the soil samples before (A-EBD) and after SMX exposure (B-EBD) in the e-SAT. Four bacterial phyla were found to be present in both the samples, with sample B-EBD showing increased abundance for Actinobacteria, Bacteroidetes, Firmicutes and decreased Proteobacterial abundance compared to A-EBD. The unclassified bacteria were found to be abundant in B-EBD compared to A-EBD. At class level, classes such as Bacilli, Negativicutes, Deltaproteobacteria, and Bacteroidia emerged in sample B-EBD owing to SMX treatment, while Burkholderiales and Nitrosomonadales appeared to be dominant at order level after SMX treatment. Furthermore, in response to SMX treatment, the family Nitrosomonadaceae appeared to be dominant. Pseudomonas was the most dominating bacterial genus in A-EBD whereas Cupriavidus dominated in sample B-EBD. Additionally, the sulfur oxidizing bacteria were enriched in the B-EBD sample, signifying efficient electron transfer and hence organic molecule degradation in the e-SAT system. Results of this study offer new insights into understanding of microbial community shift during the biodegradation of SMX.

  13. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  14. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    Directory of Open Access Journals (Sweden)

    Hai-Wen Ge


    Full Text Available An efficient multigrid (MG model was implemented for spark-ignited (SI engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regions separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.

  15. Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease. (United States)

    Rebar, Edward J


    Gene therapies that use engineered transcription factors to regulate a patient's own endogenous genetic loci offer several advantages over cDNA-based approaches, including the capacity to upregulate all splice variants of a therapeutic gene. Currently, two engineered transcription factors are being developed for use in gene-mediated revascularisation therapies of cardiovascular disease. Both proteins target a powerful, constitutive transcriptional activation module to a defined sequence in the promoter region of vascular endothelial growth factor-A via linkage to an appropriately specific DNA-binding domain, either the basic helix-loop-helix motif of hypoxia-inducible factor-1alpha (HIF-1alpha) or a designed zinc finger protein. Both factors activate the expression of vascular endothelial growth factor-A in cellular studies and induce angiogenesis in animal models of cardiovascular disease. Phase I studies are underway for the HIF-1alpha-based factor and are expected to commence for the zinc finger protein-based factor by the second half of 2004.

  16. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans


    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  17. CAD, 3D modeling, engineering analysis, and prototype experimentation industrial and research applications

    CERN Document Server

    Zheng Li, Jeremy


    This succinct book focuses on computer aided design (CAD), 3-D modeling, and engineering analysis and the ways they can be applied effectively in research and industrial sectors including aerospace, defense, automotive, and consumer products. These efficient tools, deployed for R&D in the laboratory and the field, perform efficiently three-dimensional modeling of finished products, render complex geometrical product designs, facilitate structural analysis and optimal product design, produce graphic and engineering drawings, and generate production documentation. Written with an eye toward green energy installations and novel manufacturing facilities, this concise volume enables scientific researchers and engineering professionals to learn design techniques, control existing and complex issues, proficiently use CAD tools, visualize technical fundamentals, and gain analytic and technical skills. This book also: ·       Equips practitioners and researchers to handle powerful tools for engineering desi...

  18. CFD Modeling of Free-Piston Stirling Engines (United States)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.


    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  19. Compass & Vernier Type Models in Indo Archaeology: Engineering Heritage (United States)

    Bhattacharya, Deepak


    Two extant, dated, verifiable archaeological members are adduced to have radial type compass features, having scope for fractionation of angles (θ operators) in a constant manner with lookout facilities. The Archaeological Survey of India celebrates their apex achievements in the domain of engineering/survey devices of erstwhile societies. Possible correlation has been drawn between the representatives of the elusive Gola yantra and the Vikhyana yantra (circular instrument & looking device) as referred in Indian history and culture. Dadhi nauti (curd level) has been explained for the first time. Now, all of these are accessible to everyone. This work is the first time report, which relates to historical archaeology of lower date c. 600 AD.

  20. Robots vs animals: Establishing a culture of public engagement and female role modelling in engineering higher education


    Fogg Rogers, L.; Sardo, M.; Boushel, C.


    A widespread culture supporting public engagement activities in higher education is desirable but difficult to establish. Drawing on social cognitive theory, this science communication project aimed to enhance culture change in engineering by developing communication skillsets of early career engineers, particularly supporting female engineers as role models. Engineers received training in storytelling to present at live events, enhanced by peer group social persuasion and vicarious modelling...