WorldWideScience

Sample records for engineering test plan

  1. Test plan for engineering scale electrostatic enclosure demonstration

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1993-02-01

    This test plan describes experimental details of an engineering-scale electrostatic enclosure demonstration to be performed at the Idaho National Engineering Laboratory in fiscal year (FY)-93. This demonstration will investigate, in the engineering scale, the feasibility of using electrostatic enclosures and devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-93 experiments are included in this plan

  2. Definition study of a Variable Cycle Experimental Engine (VCEE) and associated test program and test plan

    Science.gov (United States)

    Allan, R. D.

    1978-01-01

    The Definition Study of a Variable Cycle Experimental Engine (VCEE) and Associated Test Program and Test Plan, was initiated to identify the most cost effective program for a follow-on to the AST Test Bed Program. The VCEE Study defined various subscale VCE's based on different available core engine components, and a full scale VCEE utilizing current technology. The cycles were selected, preliminary design accomplished and program plans and engineering costs developed for several program options. In addition to the VCEE program plans and options, a limited effort was applied to identifying programs that could logically be accomplished on the AST Test Bed Program VCE to extend the usefulness of this test hardware. Component programs were provided that could be accomplished prior to the start of a VCEE program.

  3. Test/QA plan for the verification testing of diesel exhaust catalysts, particulate filters and engine modification control technologies for highway and nonroad use diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  4. Test/QA plan for the verification testing of selective catalytic reduction control technologies for highway, nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  5. In Situ Vitrification Engineering-Scale Test ES-INEL-4, ES-INEL-5, ES-INEL-6, and ES-INEL-7 Test Plan

    International Nuclear Information System (INIS)

    Weidner, J.R.; Stoots, P.R.

    1990-10-01

    The In Situ Vitrification Engineering-Scale Tests ES-4, ES-5, ES-6, and ES-7 Product Characterization Test Plan describes the methods and procedures to be used or the physical and chemical characterization of the solid product(s) resulting from the Idaho National Engineering Laboratory engineering scale in situ vitrification tests ES-4, ES-5, ES-6, and ES-7. The goals of this Test Plan are to insure that the product characterization results are sufficient to meet the data needs of the In Situ Vitrification Program and are technically and legally defensible. Important issues addressed by the test plan include sampling and analysis strategy, sampling procedures, laboratory analysis, sample control and document management, equipment, data reporting and validation, quality assurance, specific routine procedures to assess data representativeness, safety and training program, and data management. 9 refs., 1 fig., 3 tabs

  6. In situ vitrification engineering-scale test ES-INEL-5 test plan

    International Nuclear Information System (INIS)

    Stoots, P.R.

    1990-06-01

    In 1952, the Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL). RWMC is located on approximately 144 acres in the southwestern corner of the INEL site and was established as a controlled area for the burial of solid low-level wastes generated by INEL operations. In 1954, the 88-acre Subsurface Disposal Area (SDA) of RWMC began accepting solid transuranic-contaminated waste. From 1954 to 1970, transuranic-contaminated waste was accepted from the Rocky Flats Plant (RFP) near Golden, CO, as well as from other US Department of Energy (DOE) locations. In 1987, the Buried Waste Program (BWP) was established by EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine applicability of ISV to remediation of waste at SDA. This In Situ Vitrification Engineering-Scale Test ES-INEL-5 Test Plan considers the data needs of engineering, regulatory, health, and safety activities for all sampling and analysis activities in support of engineering scale test ES-INEL-5. 5 refs., 3 figs., 4 tabs

  7. Definition study for variable cycle engine testbed engine and associated test program

    Science.gov (United States)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  8. Scientific investigation plan for initial engineered barrier system field tests

    International Nuclear Information System (INIS)

    Wunan Lin.

    1993-02-01

    The purpose of this Scientific Investigation Plan (SIP) is to describe tests known as Initial Engineered Barrier System Field Tests (IEBSFT) and identified by Work Breakdown Structure as WBS 1.2.2.2.4. The IEBSFT are precursors to the Engineered Barrier System Field Test (EBSFT), WBS 1.2.2.2.4, to be conducted in the Exploratory Study Facility (ESF) at Yucca Mountain. The EBSFT and IEBSFT are designed to provide information on the interaction between waste packages (simulated by heated containers) and the surrounding rock mass, its vadose water, and infiltrated water. Heater assemblies will be installed in drifts or boreholes openings and heated to measure moisture movement during heat-up and subsequent cool-down of the rock mass. In some of the tests, infiltration of water into the heated rock mass will be studied. Throughout the heating and cooling cycle, instruments installed in the rock will monitor such parameters as temperature, moisture content, concentration of some chemical species, and stress and strain. Rock permeability measurements, rock and fluid (water and gas) sampling, and fracture pattern measurements will also be made before and after the test

  9. A reliability as an independent variable (RAIV) methodology for optimizing test planning for liquid rocket engines

    Science.gov (United States)

    Strunz, Richard; Herrmann, Jeffrey W.

    2011-12-01

    The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.

  10. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  11. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  12. Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP)

  13. ORCWM test and evaluaton master plan. Revision 00

    International Nuclear Information System (INIS)

    1995-08-01

    The Office of Civilian Radioactive Waste Management (OCRWM) Test and Evaluation Master Plan (TEMP) describes the program Test and Evaluation (T ampersand E) policy, objectives, requirements, general methodology (test flow and description of each T ampersand E phase), responsibilities, and scheduling of test phases for the Civilian Radioactive Waste Management System (CRWMS). This TEMP is a program-level management planning document for al CRWMS T ampersand E activities and will be used in conjunction with Section 11 of the Quality Assurance Requirements and Description (QARD), as appropriate, as a guide for the projects in developing their T ampersand E plans. In the OCRWM document hierarchy, that is described in the OCRWM Systems Engineering Management Plan (SEMP), the TEMP is subordinate to the program SEMP. To ensure CRWMS operates as an integrated system, the plans for verifying the performance and evaluating the operational suitability and effectiveness of the overall system are also described. Test and evaluation is an integral part of the systems engineering process. Key aspects of the systems engineering process, more fully described in the OCRWM SEMP, are discussed in this TEMP to illustrate how T ampersand E supports the overall systems engineering process

  14. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  15. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  16. AFFTC Instruction 99-1, Test and Evaluation Test Plans

    National Research Council Canada - National Science Library

    Crane, Roger

    2002-01-01

    .... Test Information Sheets (TISs) are actually appendices to test plans and contain sufficient information for use by a flight test engineer to develop flight test cards and for management to discern the overall technical approach being taken...

  17. IFE chamber technology testing program in NIF and chamber development test plan

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1995-01-01

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF

  18. Solid waste operations complex engineering verification program plan

    International Nuclear Information System (INIS)

    Bergeson, C.L.

    1994-01-01

    This plan supersedes, but does not replace, the previous Waste Receiving and Processing/Solid Waste Engineering Development Program Plan. In doing this, it does not repeat the basic definitions of the various types or classes of development activities nor provide the rigorous written description of each facility and assign the equipment to development classes. The methodology described in the previous document is still valid and was used to determine the types of verification efforts required. This Engineering Verification Program Plan will be updated on a yearly basis. This EVPP provides programmatic definition of all engineering verification activities for the following SWOC projects: (1) Project W-026 - Waste Receiving and Processing Facility Module 1; (2) Project W-100 - Waste Receiving and Processing Facility Module 2A; (3) Project W-112 - Phase V Storage Facility; and (4) Project W-113 - Solid Waste Retrieval. No engineering verification activities are defined for Project W-112 as no verification work was identified. The Acceptance Test Procedures/Operational Test Procedures will be part of each project's Title III operation test efforts. The ATPs/OTPs are not covered by this EVPP

  19. In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan

    International Nuclear Information System (INIS)

    Weidner, J.R.; Stoots, P.R.

    1990-06-01

    In 1987, the Buried Waste Program (BWP) was established within EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine the applicability of ISV to remediation of waste at SDA. In examination of the ISV process for applicability to SDA waste, this In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan identifies the following: sampling and analysis strategy; sampling procedures; methods to conduct analyses; equipment; and procedures to ensure data quality. 8 refs., 2 tabs

  20. IDC Re-Engineering Phase 3 Development Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burns, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pollock, David L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    Sandia National Laboratories has prepared a project development plan that proposes how the parties interested in the IDC Re-Engineering system will coordinate its development, testing and transition to operations.

  1. IDC Re-Engineering Phase 3 Development Plan

    International Nuclear Information System (INIS)

    Harris, James M.; Burns, John F.; Pollock, David L.

    2017-01-01

    Sandia National Laboratories has prepared a project development plan that proposes how the parties interested in the IDC Re-Engineering system will coordinate its development, testing and transition to operations.

  2. Physics goals for the planned next linear collider engineering test facility

    International Nuclear Information System (INIS)

    Bohn, C.; Michelotti, L.; Ostiguy, J.-F.; Syphers, M.; Bluem, H.; Todd, A.; Gai, W.; Power, J.; Simpson, J.; Raubenheimer, T.

    2001-01-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam

  3. Physics Goals for the Planned Next Linear Collider Engineering Test Facility

    International Nuclear Information System (INIS)

    Raubenheimer, Tor O

    2001-01-01

    The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam

  4. SNF Project Engineering Process Improvement Plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    2000-01-01

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities

  5. Test Plan: WIPP bin-scale CH TRU waste tests

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs

  6. Engineering Technical Review Planning Briefing

    Science.gov (United States)

    Gardner, Terrie

    2012-01-01

    The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.

  7. Energy Systems Test Area (ESTA) Battery Test Operations User Test Planning Guide

    Science.gov (United States)

    Salinas, Michael

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Battery Test Operations. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  8. Stennis Holds Last Planned Space Shuttle Engine Test

    Science.gov (United States)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  9. Tank waste remediation system engineering plan

    International Nuclear Information System (INIS)

    Rifaey, S.H.

    1998-01-01

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ''as is'' condition of engineering practice, systems, and facilities to the desired ''to be'' configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively

  10. Business plan basics for engineers

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Rasmussen, Erik Stavnsager; Riber Hansen, Katrine

    2016-01-01

    This chapter focuses on the nature of business planning activities from an engineering entre-/intra-preneurial perspective. It is therefore not limited to technology start-ups or newly created engineering firms but equally relevant for established firms investing in projects that assemble......-driven business environments which are typical the business playground for engineering professionals, the chapter focuses on describing the two key components of the business planning process: the articulation and the development of a viable business model, and managing the scaling up and the growth...... of the business. The de-scription does not pretend to exhaust the topic and continuously refers to several excellent recent publications that could complement the learning process of young and advanced engi-neering professionals interested in knowing more about the business planning process....

  11. Uprated OMS Engine Status-Sea Level Testing Results

    Science.gov (United States)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.

  12. Software Engineering Improvement Activities/Plan

    Science.gov (United States)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  13. Space Electronic Test Engineering

    Science.gov (United States)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  14. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819. All new procedures will be issued and implemented by September 30, 1999

  15. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  16. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    International Nuclear Information System (INIS)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs

  17. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    Science.gov (United States)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  18. Site systems engineering: Systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-05-03

    The Site Systems Engineering Management Plan (SEMP) is the Westinghouse Hanford Company (WHC) implementation document for the Hanford Site Systems Engineering Policy, (RLPD 430.1) and Systems Engineering Criteria Document and Implementing Directive, (RLID 430.1). These documents define the US Department of Energy (DOE), Richland Operations Office (RL) processes and products to be used at Hanford to implement the systems engineering process at the site level. This SEMP describes the products being provided by the site systems engineering activity in fiscal year (FY) 1996 and the associated schedule. It also includes the procedural approach being taken by the site level systems engineering activity in the development of these products and the intended uses for the products in the integrated planning process in response to the DOE policy and implementing directives. The scope of the systems engineering process is to define a set of activities and products to be used at the site level during FY 1996 or until the successful Project Hanford Management Contractor (PHMC) is onsite as a result of contract award from Request For Proposal DE-RP06-96RL13200. Following installation of the new contractor, a long-term set of systems engineering procedures and products will be defined for management of the Hanford Project. The extent to which each project applies the systems engineering process and the specific tools used are determined by the project`s management.

  19. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    KELMENSON, R.L.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project (the Project) to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819 (1819). These requirements are imposed on all engineering activities performed for the Project and apply to all life-cycle stages of the Project's systems, structures and components (SSCs). This Plan describes the steps that will be taken by the Project during the transition period to ensure that new procedures are effectively integrated into the Project's work process as these procedures are issued. The consolidated procedures will be issued and implemented by September 30, 1999

  20. Engineering Task Plan for Hose-In-Hose Transfer Lines for the Interim Stabilization Program

    International Nuclear Information System (INIS)

    TORRES, T.D.

    2000-01-01

    The document is the Engineering Task Plan for the engineering, design services, planning, project integration and management support for the design, modification, installation and testing of an over ground transfer (OGT) system to support the interim stabilization of S/SX and U Tank Farms

  1. Six-Degree-of-Freedom Dynamic Test System (SDTS) User Test Planning Guide

    Science.gov (United States)

    Stokes, LeBarian

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the SDTS. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  2. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    Science.gov (United States)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  3. Engineering Task Plan for Routine Engineering Support for Core Sampler System

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    Routine engineering support is required during normal operation of the core sampler trucks and associated ancillary equipment. This engineering support consists of, but is not limited to, troubleshooting operation problems, correcting minor design problems, assistance with work package preparation, assistance with procurement, fabrication shop support, planning of engineering tasks and preparation of associated Engineering Task Plans (ETP) and Engineering Service Requests (ESR). This ETP is the management plan document for implementing routine engineering support. Any additional changes to the scope of this ETP shall require a Letter of Instruction from Lockheed Martin Hanford Corp (LMHC). This document will also be the Work Planning Document for Development Control (HNF 1999a). The scope of this task will be to provide routine engineering support for Characterization equipment as required to support Characterization Operations. A task by task decision will be made by management to determine which tasks will be done per this ETP and if additional ETPs and/or ESRs are required. Due to the unique nature of this task, the only identifiable deliverable is to provide support as requested. Deliverables will be recorded in a task logbook as activities are identified. ESRs will be generated for tasks that require more than 40 person hours to complete, per Characterization Engineering Desk Instructions (DI 1999a)

  4. Engineering Task Plan for Hose-In-Hose Transfer Lines for the Interim Stabilization Program

    International Nuclear Information System (INIS)

    RUNG, M.P.

    2000-01-01

    This document is the Engineering Task Plan for the engineering, design services, planning, project integration and management support for the design, modification, installation and testing of an over ground transfer (OGT) system to support the interim stabilization of nine tanks in the 241-S/SX Tank Farms

  5. Test plan for FY-91 alpha CAM evaluation

    International Nuclear Information System (INIS)

    Winberg, M.R.

    1991-03-01

    This report describes the test plan for evaluating the Merlin Gerin, Inc., Edgar alpha continuous air monitor (CAM) and associated analysis system to be conducted by Idaho National Engineering Laboratory (INEL) for the Department of Energy. INEL has evaluated other commercial alpha CAM systems to detect transuranic contaminants during waste handling and retrieval operations. This test plan outlines experimental methods, sampling methods, sampling and analysis techniques, and equipment needed and safety and quality requirements to test the commercial CAM. 8 refs., 3 figs

  6. Pretreatment Engineering Platform Phase 1 Final Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A.; Schonewill, Philip P.; Daniel, Richard C.; Eslinger, Paul W.; Huckaby, James L.; Billing, Justin M.; Sundar, Parameshwaran S.; Josephson, Gary B.; Toth, James J.; Yokuda, Satoru T.; Baer, Ellen BK; Barnes, Steven M.; Golovich, Elizabeth C.; Rassat, Scot D.; Brown, Christopher F.; Geeting, John GH; Sevigny, Gary J.; Casella, Amanda J.; Bontha, Jagannadha R.; Aaberg, Rosanne L.; Aker, Pamela M.; Guzman-Leong, Consuelo E.; Kimura, Marcia L.; Sundaram, S. K.; Pires, Richard P.; Wells, Beric E.; Bredt, Ofelia P.

    2009-12-23

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.

  7. Pretreatment Engineering Platform Phase 1 Final Test Report

    International Nuclear Information System (INIS)

    Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A.; Schonewill, Philip P.; Daniel, Richard C.; Eslinger, Paul W.; Huckaby, James L.; Billing, Justin M.; Sundar, Parameshwaran S.; Josephson, Gary B.; Toth, James J.; Yokuda, Satoru T.; Baer, Ellen B.K.; Barnes, Steven M.; Golovich, Elizabeth C.; Rassat, Scot D.; Brown, Christopher F.; Geeting, John G.H.; Sevigny, Gary J.; Casella, Amanda J.; Bontha, Jagannadha R.; Aaberg, Rosanne L.; Aker, Pamela M.; Guzman-Leong, Consuelo E.; Kimura, Marcia L.; Sundaram, S.K.; Pires, Richard P.; Wells, Beric E.; Bredt, Ofelia P.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes. Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.

  8. Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC

    Science.gov (United States)

    SaintCyr, William W.; Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; SaintCyr, William W.

    2010-01-01

    John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft

  9. Engineering Sciences Strategic Leadership Plan

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Heidi A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-14

    The purpose of this report is to promote the three key elements of engineering capabilities, staff and engagement in coordination with an R&D investment cycle; and establish an Engineering Steering Council to own and guide this leadership plan.

  10. Crawler Acquisition and Testing Demonstration Project Management Plan

    International Nuclear Information System (INIS)

    DEFIGH-PRICE, C.

    2000-01-01

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support final design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler

  11. R and D needs assessment for the Engineering Test Facility

    International Nuclear Information System (INIS)

    1980-10-01

    The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule

  12. Quality engineering in FFTF irradiation tests

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1980-01-01

    The design and fabrication of an irradiation test for the Fast Flux Test Facility are planned, controlled and documented in accordance with the Department of Energy standards. Tests built by Westinghouse Hanford Company are further controlled and guided by a series of increasingly specific documents, including guidelines for program control, procedures for engineering operations, standard practices and detailed operating procedures. In response to this guidance, a series of five documents is prepared covering each step of the experiment from conception through fabrication and assembly. This paper describes the quality assurance accompanying these five steps

  13. Tests to Help Plan Opportunity Moves

    Science.gov (United States)

    2005-01-01

    Rover engineers check how a test rover moves in material chosen to simulate some difficult Mars driving conditions. The scene is inside the In-Situ Instrument Laboratory at NASA's Jet Propulsion Laboratory, Pasadena, Calif. These tests in early May 2005 were designed to help plan the best way for the rover Opportunity to drive off of a soft-sand dune that the rover dug itself into the previous week. The mixture of sandy and powdery material brought in for these specific tests matched the way the soil underneath Opportunity caked onto wheels, filling the spaces between the cleats on the wheels.

  14. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  15. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double-Shell Tanks - FY 2001

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities, plan for performance demonstration testing, and a plan for field activities. Also included are a Statement of Work for contractor performance and a protocol to be followed should tank flaws that exceed the acceptance criteria are found

  16. First-wall, blanket, and shield engineering test program for magnetically confined fusion power reactors

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1980-01-01

    The key engineering areas identified for early study relate to FW/B/S system thermal-hydraulics, thermomechnics, nucleonics, electromagnetics, assembly, maintenance, and repair. Programmatic guidance derived frm planning exercises involving over thirty organizations (laboratories, industries, and universities) has indicated (1) that meaningful near term engineering testing should be feasible within the bounds of a modest funding base, (2) that there are existing facilities and expertise which can be profitably utilized in this testing, and (3) that near term efforts should focus on the measurement of engineering data and the verification/calibration of predictive methods for anticipated normal operational and transient FW/B/S conditions. The remainder of this paper discusses in more detail the planning strategies, proposed approach to near term testing, and longer range needs for integrated FW/B/S test facilities

  17. TWRS Systems Engineering Working Plan

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1994-01-01

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations

  18. Perspectives and Plans for Graduate Studies. 11, Engineering 1974-75; F. Civil Engineering.

    Science.gov (United States)

    Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.

    A series of studies carried out by the Advisory Committee on Academic Planning (ACAP) published by the Council of Ontario Universities (COU) dealt with a planning study of doctoral work in engineering that was conducted in several parts corresponding to the various disciplines within engineering. This document, which is one part of that study,…

  19. Synchronous method and engineering tool for the strategic factory planning

    OpenAIRE

    Abdul Rahman, O.; Jaeger, J.; Constantinescu, C.

    2011-01-01

    This paper presents the approach to combine two reference methods and engineering tools, for "Factory Performance and Investment Planning«as well as "Value Added Ideal Production Network Planning". The resulted synchronous method aims to support factories in the strategic planning as well as in the network planning. The corresponding engineering tool is employed for assessment planning, sales planning, capacity planning and production costs planning under the consideration of dynamic and stoc...

  20. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    Science.gov (United States)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  1. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine TestingEngines and their components are extensively static-tested in development • This

  2. National Aeronautics Research, Development, Test and Evaluation (RDT&E) Infrastructure Plan

    Science.gov (United States)

    2011-01-01

    addressed in the National Aeronautics R&D Plan, identi- fying unnecessary redundancy solely on the basis of infrastructure required to support H H13 ...near, mid, and far terms, and impact not only scramjet propulsion systems, but potential turbine-based combined cycle systems as well. Turbine Engine...Icing Test Facilities A greater understanding of the impact that icing conditions have on turbine engine opera- tions is needed to develop enhanced

  3. Role of strategic planning in engineering management

    Science.gov (United States)

    Krishen, Kumar

    1993-01-01

    Today, more than ever before, engineers are faced with uncertain and sometimes chaotic environments in which to function. The traditional roles of an engineer to design, develop, and streamline a manufacturing process for a product are still valued and relevant. However, the need for an engineer to participate in the process of identifying the product to be developed, the schedule and resources required, and the goal of satisfying the customer, has become paramount to achieving the success of the enterprise. When we include these endeavors in the functions of an engineer, management of 'engineering' takes on a new dimension. In this paper, the ramifications of the changing and increased functions of an engineer and consequent impacts on engineering management are explored. The basic principles which should be invoked in order to embrace the new environment for engineering management are outlined. The ultimate finding of this study is that the enterprise strategic plan should be developed in such a way as to allow engineering management to encompass the full spectrum of the responsibilities of engineers. A consequence of this is that the fundamental elements of the strategic process can best be implemented through a project team or group approach. The paper thus concentrates on three areas: evolving environment, strategic plan, and ways to achieve enterprise success.

  4. INEL test plan for evaluating waste assay systems

    International Nuclear Information System (INIS)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP

  5. In situ vitrification laboratory-scale test work plan

    International Nuclear Information System (INIS)

    Nagata, P.K.; Smith, N.L.

    1991-05-01

    The Buried Waste Program was established in October 1987 to accelerate the studies needed to develop a long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at Idaho Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act feasibility study format to identify methods for the long-term management of mixed buried waste. To support the overall feasibility study, the situ vitrification treatability investigations are proceeding along the three parallel paths: laboratory-scale tests, intermediate field tests, and field tests. Laboratory-scale tests are being performed to provide data to mathematical modeling efforts, which, in turn, will support design of the field tests and to the health and safety risk assessment. This laboratory-scale test work plan provides overall testing program direction to meet the current goals and objectives of the in situ vitrification treatability investigation. 12 refs., 1 fig., 7 tabs

  6. INEL test plan for evaluating waste assay systems

    Energy Technology Data Exchange (ETDEWEB)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  7. Engineering Task Plan for Water Supply for Spray Washers on the Support Trucks

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    This Engineering Task Plan (ETP) defines the task and deliverables associated with the design, fabrication and testing of an improved spray wash system for the Rotary Mode Core Sampling (RMCS) System Support Trucks

  8. Automatic Planning of External Search Engine Optimization

    Directory of Open Access Journals (Sweden)

    Vita Jasevičiūtė

    2015-07-01

    Full Text Available This paper describes an investigation of the external search engine optimization (SEO action planning tool, dedicated to automatically extract a small set of most important keywords for each month during whole year period. The keywords in the set are extracted accordingly to external measured parameters, such as average number of searches during the year and for every month individually. Additionally the position of the optimized web site for each keyword is taken into account. The generated optimization plan is similar to the optimization plans prepared manually by the SEO professionals and can be successfully used as a support tool for web site search engine optimization.

  9. Virtual Turbine Engine Test Bench Using MGET Test Device

    Science.gov (United States)

    Kho, Seonghee; Kong, Changduk; Ki, Jayoung

    2015-05-01

    Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs [1]. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded MGET test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing MGET test device that was developed and has been sold by the Company. This newly developed multi-purpose MGET test device is expected to be used for various educational and research purposes.

  10. Solar-Thermal Engine Testing

    Science.gov (United States)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  11. 118-B-1 excavation treatability test plan

    International Nuclear Information System (INIS)

    1994-07-01

    The Hanford 118-B-1 Burial Ground Treatability Study has been required by milestone change request number-sign M-15-93-04, dated September 30, 1993. The change request requires that a treatability test be conducted at the 100-B Area to obtain additional engineering information for remedial design of burial grounds receiving waste from 100 Area removal actions. This treatability study has two purposes: (1) to support development of the Proposed Plan (PP) and Record of Decision (ROD), which will identify the approach to be used for burial ground remediation, and (2) to provide specific engineering information for receiving waste generated from the 100 Area removal actions. Data generated from this test also will provide critical performance and cost information necessary for remedy evaluation in the detailed analysis of alternatives during preparation of the focused feasibility study (FFS). This treatability testing supports the following 100 Area alternatives: (1) excavation and disposal, and (2) excavation, sorting, (treatment), and disposal

  12. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  13. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  14. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  15. Test plan for Series 2 spent fuel cladding containment credit tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1984-10-01

    This test plan describes a second series of tests to be conducted by Westinghouse Hanford Company (WHC) to evaluate the effectiveness of breached cladding as a barrier to radionuclide release in the NNWSI-proposed geologic repository. These tests will be conducted at the Hanford Engineering Development Laboratory (HEDL). A first series of tests, initiated at HEDL during FY 1983, demonstrated specimen preparation and feasibility of the testing concept. The second series tests will be similar to the Series 1 tests with the following exceptions: NNWSI reference groundwater obtained from well J-13 will be used as the leachant instead of deionized water; fuel from a second source will be used; and certain refinements will be made in specimen preparation, sampling, and analytical procedures. 12 references, 5 figures, 5 tables

  16. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  17. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered

  18. Borda application of selection planning scheduling method in dock engineering consultants in Central Sulawesi province Indonesia

    Directory of Open Access Journals (Sweden)

    Siti Fatimah

    2015-04-01

    Full Text Available The aim of this paper to find out the planning scheduling method that used in dock engineering consultants as a project supervisor dock. This research use qualitative approach to find the most preferred method by engineering consultants, this research was explorative that test and find out the most preferred method. This research showed that dock engineering consultants in Palu City, Central Sulawesi most preferred curve-s method than method such as CPM, PERT, PDM, and Bar Chart. This research can help further research to determine differences and similarities the project planning scheduling method and being basic for The New Dock Engineering Consultans. This research looking for the most preferred method with limited respondents dock engineering consultans in Palu City, Central Sulawesi.

  19. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1994-06-01

    The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies the close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M ampersand O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [''Program'' refers to the CRWMS-wide activity and ''project'' refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project

  20. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume II. Detailed technical plan. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    The four sections which comprise Part II describe in detail the technical basis for each of the four Program Elements (PE's) of the FWBS Engineering Technology Program (ETP). Each PE is planned to be executed in a number of phases. The purpose of the DTP's is to delineate detailed near-term research, development, and testing required to establish a FWBS engineering data base. Optimum testing strategies and construction of test facilities where needed are identified. The DTP's are based on guidelines given by Argonne National Laboratory which included the basic programmatic goals and the requirements for the types of tests and test conditions

  1. ERG and GRG review of the draft of ''preliminary test plan for in situ testing from an exploratory shaft in salt - October 1983''

    International Nuclear Information System (INIS)

    Kalia, H.N.

    1986-03-01

    The Engineering Review Group (ERG) and Geologic Review Group (GRG) were established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering- and geologic-related issues in the US Department of Energy's nuclear waste repository program. The January 1984 meeting of the ERG and GRG reviewed the In Situ Test Plan (ISTP) titled ''Preliminary Test Plan for In Situ Testing From an Exploratory Shaft in Salt - October 1983.'' This report documents the ERG's and GRG's comments and recommendations on this subject and the ONWI responses to the specific points raised by the ERG and GRG. 6 refs., 2 figs., 1 tab

  2. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  3. Systems engineering implementation plan for the liquid effluents services program

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1995-01-01

    A graded approach is being taken by the Liquid Effluents Services Program in implementing systems engineering because of the advanced state of the program. The approach is cost-effective and takes credit for related work already completed, yet retains the benefits of systems engineering. This plan describes how the Liquid Effluents Services Program will implement systems engineering so there is a common understanding. Systems engineering work to be performed and the products of that work are identified. The relation to the current planning process and integration with the sitewide systems engineering effort is described

  4. Business planning for scientists and engineers

    Energy Technology Data Exchange (ETDEWEB)

    Servo, J.C.; Hauler, P.D.

    1992-03-01

    Business Planning for Scientists and Engineers is a combination text/workbook intended for use by individuals and firms having received Phase II SBIR funding (Small Business Innovation Research). It is used to best advantage in combination with other aspects of the Commercialization Assistance Project developed by Dawnbreaker for the US Department of Energy. Although there are many books on the market which indicate the desired contents of a business plan, there are none which clearly indicate how to find the needed information. This book focuses on the how of business planning: how to find the needed information; how to keep yourself honest about the market potential; how to develop the plan; how to sell and use the plan.

  5. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  6. Engineered Barrier Testing at the INEEL Engineered Barriers Test Facility: FY-1997 and FY-1998

    International Nuclear Information System (INIS)

    Keck, K. N.; Porro, I.

    1998-01-01

    Engineered barriers of two designs are being tested at the Engineered Barriers Test Facility (EBTF) at the Idaho National Engineering and Environmental Laboratory. This report describes the test facility, barrier designs, and instruments used to monitor the test plots. Wetting tests conducted on the test plots in FY-97 are described and data collected from monitoring the test plots before, during and after the wetting tests are used to evaluate the performance of the covers during FY-97 and FY-98. Replicates of two engineered barrier designs were constructed in the EBTF cells. The first design comprises a thick, vegetated soil cover. The second design incorporates a capillary/biobarrier within the vegtated soil cover. The capillary barrier uses the textural break between an upper, fine textured soil and a lower, coarser-textured gravel layer to inhibit drainage under unsaturated conditions while increasing soil moisture storage in the root zone. Evaporation and transpiration by plants (although the test plots have not yet been vegetated) are used to recycle water stored in the soil back to the atmosphere. A geotextile fabric is used to maintain separation of the soil and gravel layers. A thick layer of cobbles beneath the gravel layer serves as a biobarrier to prevent intrusion of plant roots and burrowing animals into underlying waste (there is no waste in the test plots). Each test plot was instrumented with time domain reflectometry probes and neutron probe access tubes to measure moisture contents, tensiometers, heat dissipation sensors, and thermocouple psychrometers to measure matric potentials, thermocouples to measure soil temperature, and ion-exchange resin beads to monitor tracer movement. Each drainage sump is equipped with a tipping bucket instrument and pressure transducer to measure drainage. Precipitation is measured using a heated rain gauge located at the EBTF. Instrument calibration equation coefficients are presented, and data reduction

  7. Test plan for dig-face characterization performance testing

    International Nuclear Information System (INIS)

    Josten, N.E.

    1993-09-01

    The dig-face characterization concept has been under development at the Idaho National Engineering Laboratory (INEL) since FY 1992 through the support of the Buried Waste Integrated Demonstration Program. A Dig-face Characterization System conducts continuous subsurface characterization simultaneously with retrieval of hazardous and radioactive waste from buried waste sites. The system deploys multiple sensors at the retrieval operation dig-face and collects data that provide a basis for detecting, locating, and identifying hazardous conditions before they are disturbed by the retrieval equipment. This test plan describes initial efforts to test the dig-face characterization concept at the INEL Cold Test Pit using a simplified prototype apparatus and off-the-shelf sensors. The Cold Test Pit is a simulated waste site containing hazardous and radioactive waste surrogates at known locations. Testing will be directed toward three generic characterization problems: metal detection, plume detection, and radioactive source detection. The prototype apparatus will gather data using magnetometers, a ground conductivity meter, a trace gas analyzer, and a gamma ray sensor during simulated retrieval of the surrogate waste materials. The data acquired by a dig-face characterization system are unique because of the high precision, high data density, and multiple viewpoints attainable through the dig-face deployment approach. The test plan establishes procedures for collecting and validating a representative dig-face characterization data set. Analysis of these data will focus on developing criteria for predicting the depth, location, composition, and other characteristics of the surrogate waste materials. If successful, this proof-of-concept exercise will provide a foundation for future development of a fully-operational system that is capable of operating on an actual waste site

  8. Biodiesel Test Plan

    Science.gov (United States)

    2014-07-01

    Biodiesel Test Plan Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report No. CG-D-07-14...Appendix C) Biodiesel Test Plan ii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al. Public | July 2014 N O T I C E This...Development Center 1 Chelsea Street New London, CT 06320 Biodiesel Test Plan iii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al

  9. Systems engineering management plan for the Salt Repository Project

    International Nuclear Information System (INIS)

    Neff, J.O.

    1986-08-01

    This document presents the plan for using systems engineering in conducting and managing the technical work of the Salt Repository Project (SRP) of the US Department of Energy's Civilian Radioactive Waste Management Program. The need for preparing a Systems Engineering Management Plan (SEMP) is traced back to relevant DOE directives. These directives are interpreted as SRP requirements in the context of the Mined Geologic Disposal System. The strategy for conducting systems engineering on the SRP, including the role of the systems engineering process, is then described. The SEMP also designates who in the project organization will be responsible for carrying out the activities. Finally, the management tools that are used to implement the systems engineering process, including associated documentation on the SRP, are described

  10. Successful testing of an emergency diesel generator engine at very low load

    International Nuclear Information System (INIS)

    Killinger, A.; Loeper, St.

    2001-01-01

    For more than 30 years, the nuclear power industry has been concerned about the ability of emergency diesel generator sets (EDGs) to operate for extended periods of time at low loads (typically less than 33% of design rating) and still be capable of meeting their design safety requirement. Most diesel engine manufacturers today still caution owners and operators to avoid running their diesel engines for extended periods of time at low loads. At one nuclear power plant, the emergency electrical bus arrangement only required approximately 25% of the EDG's design rating, which necessitated that the plant operators monitor EDG operating hours and periodically increase electrical load. In order to eliminate the plant operations burden of periodically loading the EDGs, the nuclear power plant decided to conduct a low-load test of a ''spare'' diesel engine. A SACM Model UD45V16S5D diesel engine was returned to the factory in Mulhouse, France where the week long testing at rated speed and 3% of design rating was completed. The test demonstrated that the engine was capable of operating for seven days (168 hours) at very low loads, with no loss of performance and no unusual internal wear or degradation. The planning and inspections associated with preparing the diesel engine for the test, the engine monitoring performed during the test, the final test results, and the results and material condition of the engine following the test are described. The successful diesel engine low-load test resulted in the elimination of unnecessary nuclear power plant operation restrictions that were based on old concerns about long-term, low-load operation of diesel engines. The paper describes the significance of this diesel engine test to the nuclear power plant and the entire nuclear power industry. (author)

  11. Environmental Restoration Project - Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1998-06-01

    This Environmental Restoration (ER) Project Systems Engineering Management Plan (SEMP) describes relevant Environmental Restoration Contractor (ERC) management processes and shows how they implement systems engineering. The objective of this SEMP is to explain and demonstrate how systems engineering is being approached and implemented in the ER Project. The application of systems engineering appropriate to the general nature and scope of the project is summarized in Section 2.0. The basic ER Project management approach is described in Section 3.0. The interrelation and integration of project practices and systems engineering are outlined in Section 4.0. Integration with sitewide systems engineering under the Project Hanford Management Contract is described in Section 5.0

  12. Ecological aspects in civil engineering and physical planning

    International Nuclear Information System (INIS)

    Engelhardt, W.

    1983-01-01

    This book presents an introduction to aspects of ecology and has been quite purposefully restricted to the aspects of interest in connection with civil engineering and physical planning. The various chapters deal with soil, water bodies, air, plants and plant communities, trees in towns, animal life, noise and health, as well as high-energy radiation and its impact on man and environment. The book is intended to make engineers and other interested readers working in the technical professions familiar with ecologic principles and ecologically minded thinking in order to pave the way for ecology-mindedness in civil engineering and physical planning, hopefully contributing to avoiding mistakes and their harmful consequences. (orig.) [de

  13. Systems Engineering Implementation Plan for Single-Shell Tanks (SST) Retrieval Projects

    International Nuclear Information System (INIS)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-01-01

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor

  14. Systems Engineering Implementation Plan for Single Shell Tanks (SST) Retrieval Projects

    Energy Technology Data Exchange (ETDEWEB)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-11-30

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor.

  15. Spent Nuclear Fuel project systems engineering management plan

    International Nuclear Information System (INIS)

    Womack, J.C.

    1995-01-01

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  16. A test plan for an on-line whole building energy calculator

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, J.; Ferguson, A.; Mombourquette, S.; Haddad, K.; Lopez, P.; Wyndham-Wheeler, P.; Henry, S. [CANMET Energy Technology Centre, Natural Resources, Ottawa, Ont. (Canada)

    2008-04-15

    This paper presents the testing of a dynamic on-line whole-building energy calculator. The tool consists of a web-based interface for user inputs; an application to create the simulation input files from these user inputs; a simulation engine; and an application for passing the simulation engine output back to the interface and user. A detailed test protocol, composed of three parts, was developed as part of the software development process for quality assurance purposes. This paper will present the tasks specific to the development of the simulation engine, including, the definition of the required user inputs, the creation of default house archetypes, and the definition of the results to be presented to the user. It will also investigate the three parts of the test plan as well as the task automation tools developed to facilitate the testing. The use of these tools proved very useful given the large number of combinations of user inputs at the web interface and input files to the simulation engine. The findings show the importance of having a detailed and comprehensive test protocol during the software development phase. (author)

  17. Optical Methods For Automatic Rating Of Engine Test Components

    Science.gov (United States)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  18. Inspection and test planning

    International Nuclear Information System (INIS)

    Miller, T.

    1980-01-01

    Purpose of Quality Plan - arrangement of all necessary tests or inspections as far as possible filted to certain components or systems. Subject of Quality Plan - precise determination of tests or inspections and - according to the actual safety significance - the certificates to be done. Disposition of Quality Plan - accommodation of tests to the actual state of fabrication. Application of Quality Plan - to any component or system that is regarded. Supervision of Employment - by authorized personnel of manufacturer, customer or authority providing exact employment of quality plan. Overservance of Instructions - certificates given by authorized personnel. (orig./RW)

  19. Automated treatment planning engine for prostate seed implant brachytherapy

    International Nuclear Information System (INIS)

    Yu Yan; Zhang, J.B.Y.; Brasacchio, Ralph A.; Okunieff, Paul G.; Rubens, Deborah J.; Strang, John G.; Soni, Arvind; Messing, Edward M.

    1999-01-01

    Purpose: To develop a computer-intelligent planning engine for automated treatment planning and optimization of ultrasound- and template-guided prostate seed implants. Methods and Materials: The genetic algorithm was modified to reflect the 2D nature of the implantation template. A multi-objective decision scheme was used to rank competing solutions, taking into account dose uniformity and conformity to the planning target volume (PTV), dose-sparing of the urethra and the rectum, and the sensitivity of the resulting dosimetry to seed misplacement. Optimized treatment plans were evaluated using selected dosimetric quantifiers, dose-volume histogram (DVH), and sensitivity analysis based on simulated seed placement errors. These dosimetric planning components were integrated into the Prostate Implant Planning Engine for Radiotherapy (PIPER). Results: PIPER has been used to produce a variety of plans for prostate seed implants. In general, maximization of the minimum peripheral dose (mPD) for given implanted total source strength tended to produce peripherally weighted seed patterns. Minimization of the urethral dose further reduced the loading in the central region of the PTV. Isodose conformity to the PTV was achieved when the set of objectives did not reflect seed positioning uncertainties; the corresponding optimal plan generally required fewer seeds and higher source strength per seed compared to the manual planning experience. When seed placement uncertainties were introduced into the set of treatment planning objectives, the optimal plan tended to reach a compromise between the preplanned outcome and the likelihood of retaining the preferred outcome after implantation. The reduction in the volatility of such seed configurations optimized under uncertainty was verified by sensitivity studies. Conclusion: An automated treatment planning engine incorporating real-time sensitivity analysis was found to be a useful tool in dosimetric planning for prostate

  20. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  1. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  2. Trajectory Optimization and Conceptual Study of Small Test Vehicles for Hypersonic Engine Using High-Altitude Balloon

    Science.gov (United States)

    Tsuchiya, Takeshi; Takenaka, Youichi; Taguchi, Hideyuki; Sawai, Shujiro

    Japan Aerospace Exploration Agency, JAXA announced a long-term vision recently. In the vision, JAXA aims to develop hypersonic aircrafts. A pre-cooled turbojet engine has great potential as one of newly developed hypersonic air-breathing engines. We also expect the engine to be installed in space transportation vehicles in future. For combustion test in real flight condition of the engines, JAXA has an experimental plan with a small test vehicle falling from a high-altitude balloon. This paper applies numerical analysis and optimization techniques to conceptual designs of the test vehicle in order to obtain the best configuration and trajectory that can achieve the flight test. The results show helpful knowledge when we design prototype vehicles.

  3. Prototype steam generator test at SCTI/ETEC. Acoustic program test plan

    International Nuclear Information System (INIS)

    Greene, D.A.; Thiele, A.; Claytor, T.N.

    1981-10-01

    This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems

  4. Perspectives and Plans for Graduate Studies. 11. Engineering 1974. E. Industrial Engineering and Systems Design. Report No. 74-22.

    Science.gov (United States)

    Ontario Council on Graduate Studies, Toronto. Advisory Committee on Academic Planning.

    On the instruction of the Council of Ontario Universities, the Advisory Committee on Academic Planning in cooperation with the Committee of Ontario Deans of Engineering has conducted a planning assessment for doctoral work in industrial engineering and systems design. Recommendations for doctoral work in engineering studies are presented.…

  5. Results and future plans for the innovative basic research on high temperature engineering

    International Nuclear Information System (INIS)

    2001-05-01

    The High Temperature Engineering Test Reactor (HTTR) is under the rise-to-power stage at the Oarai Research Establishment of Japan Atomic Energy Research Institute (JAERI). This reactor is aimed not only at establishment of the infrastructural technology on high temperature gas-cooled reactor and its upgrading, but also at promotion of the innovative basic research on high temperature engineering. The research is a series of innovative high-temperature irradiation studies, making the best use of the characteristic of the HTTR that it provides a very wide irradiation space at high temperatures. The JAERI has been conducting preliminary tests of the innovative research since 1994, in collaboration with universities and other research institutes, in the fields of 1) new materials development, 2) high temperature radiation chemistry and fusion-related research, and 3) high temperature irradiation techniques and other nuclear research. The HTTR Utilization Research Committee has been examining the results and methodology of the preliminary tests and the future plans, as well as examining the preparatory arrangements of facilities for the HTTR irradiation and post-irradiation examinations. This report presents a summary of results of the preliminary tests and preparatory arrangements for about seven years, together with an outline of the future plans. (author)

  6. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  7. Waste feed delivery program systems engineering implementation plan

    International Nuclear Information System (INIS)

    O'Toole, S.M.; Hendel, B.J.

    1998-01-01

    This document defines the systems engineering processes and products planned by the Waste Feed Delivery Program to develop the necessary and sufficient systems to provide waste feed to the Privatization Contractor for Phase 1. It defines roles and responsibilities for the performance of the systems engineering processes and generation of products

  8. Basic plans on measures of mine site at the Ningyo-Toge Environmental Engineering Center

    International Nuclear Information System (INIS)

    2002-04-01

    At the Ningyo-Toge and its peripheries, there are some mine relating facilities and apparatuses finishing their actions such as wasted stones and slags accumulation sites, and so on formed by results of searching and mining works of uranium mine carried out from beginning of 1950s by the Nuclear Fuels Corporation and the Power Reactor and Nuclear Fuel Development Corporation, both of which are predecessors of the Japan Nuclear Cycle Development Institute (JNC). These facilities are, at present, adequately maintained and managed by the Ningyo-Toge Environmental Engineering Center, but as resource development of uranium was positioned to a disposal business on JNC, JNC has investigated on optimal measuring methods and testing plans to evaluate their safety under cooperation with other works of JNC, to summarize a draft of the basic plans on measures of mine site'. Here were described two drafts of the 'Basic plans on measures of mine site' summarized on concepts and indications of whole of measures of mine relating facilities sites and of the 'Proof test plan' summarized on testing plans containing concrete measures to obtain basic data and knowledge required for progressing the measures and a proof test. (G.K.)

  9. Detailed technical plan for Test Program Element-III (TPE-III) of the first wall/blanket shield engineering test program

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Praeg, W.F.

    1982-03-01

    The experimental requirements, test-bed design, and computational requirements are reviewed and updated. Next, in Sections 3, 4 and 5, the experimental plan, instrumentation, and computer plan, respectively, are described. Finally, Section 6 treats other considerations, such as personnel, outside participation, and distribution of results.

  10. Detailed technical plan for Test Program Element-III (TPE-III) of the first wall/blanket shield engineering test program

    International Nuclear Information System (INIS)

    Turner, L.R.; Praeg, W.F.

    1982-03-01

    The experimental requirements, test-bed design, and computational requirements are reviewed and updated. Next, in Sections 3, 4 and 5, the experimental plan, instrumentation, and computer plan, respectively, are described. Finally, Section 6 treats other considerations, such as personnel, outside participation, and distribution of results

  11. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of a large shaft development test at the Hanford site in support of the repository development program. The purpose and objective of the test plan is to obtain the information necessary to establish feasibility and to predict the performance of the drilling system used to drill large diameter shafts. The test plan is based upon drilling a 20 ft diameter shaft to a depth of 1,000 feet. The test plan specifies series of tests to evaluate the performance of the downhole assembly, the performance of the rig, and the ability of the system to cope with geologic hazards. The quality of the hole produced will also be determined. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs., 3 tabs

  12. 40 CFR 90.410 - Engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 90.410 Section 90... Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and II engines and 2-mode test cycle for Class I-A, III, IV, and V engines when testing spark-ignition engines...

  13. Test plan for FY-94 digface characterization field experiments

    International Nuclear Information System (INIS)

    Josten, N.E.; Roybal, L.G.

    1994-08-01

    The digface characterization concept has been under development at the Idaho National Engineering Laboratory (INEL) since fiscal year (FY) 1992 through the support of the Buried Waste Integrated Demonstration Program. A digface characterization system conducts continuous subsurface characterization simultaneously with retrieval of hazardous and radioactive waste from buried waste sites. The system deploys multiple sensors at the retrieval operation digface and collects data that provide a basis for detecting, locating, and classifying buried materials and hazardous conditions before they are disturbed by the retrieval equipment. This test plan describes ongoing efforts to test the digface characterization concept at the INEL's Cold Test Pit using a simplified prototype deployment apparatus and off-the-shelf sensors. FY-94 field experiments will explore problems in object detection and classification. Detection and classification of objects are fundamental to three of the four primary functions of digface characterization during overburden removal. This test plan establishes procedures for collecting and validating the digface characterization data sets. Analysis of these data will focus on testing and further developing analysis methods for object detection and classification during overburden removal

  14. Geotechnical engineering considerations in the NRC's review of uranium mill tailings remedial action plans

    International Nuclear Information System (INIS)

    Gillen, D.M.

    1985-01-01

    To reduce potential health hazards associated with inactive uranium mill tailings sites, the Department of Energy (DOE) is presently investigating and implementing remedial actions at 24 sites in the Uranium Mill Tailings Remedial Action Program (UMTRAP). All remedial actions must be selected and performed with the concurrence of the Nuclear Regulatory Commission (NRC). This paper provides a discussion of geotechnical engineering considerations during the NRC's preconcurrence review of proposed remedial action plans. In order for the NRC staff to perform an adequate geotechnical engineering review, DOE documents must contain a presentation of the properties and stability of all in-situ and engineered soil and rock which may affect the ability of the remedial action plans to meet EPA standards for long-term stability and control. Site investigations, laboratory testing, and remedial action designs must be adequate in scope and technique to provide sufficient data for the NRC staff to independently evaluate static and dynamic stability, settlement, radon attenuation through the soil cover, durability of rock for erosion protection, and other geotechnical engineering factors

  15. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  16. Engineering Task Plan for a vapor treatment system on Tank 241-C-103

    International Nuclear Information System (INIS)

    Conrad, R.B.

    1995-01-01

    This Engineering Task Plan describes tasks and responsibilities for the design, fabrication, test, and installation of a vapor treatment system (mixing system) on Tank 241-C-103. The mixing system is to be installed downstream of the breather filter and will use a mixing blower to reduce the chemical concentrations to below allowable levels

  17. Adapting planning and scheduling concepts to an engineering perspective: Key issues and successful techniques

    International Nuclear Information System (INIS)

    Finnegan, J.M.

    1986-01-01

    Traditional approaches to engineering planning are slanted toward the formats and interests of downstream implementation, and do not always consider the form and criticality of the front-end engineering development process. These processes and scopes are less defined and more subjective than most construction and operations tasks, and require flexible scheduling methods. This paper discusses the characteristics and requirement of engineering schedules, presents concepts for approaching planning in this field, and illustrates simple methods for developing and analyzing engineering plans, and evaluating schedule performance. Engineering plans are structured into a schedule hierarchy which delineates appropriate control and responsibilities, and is governed by key evaluation and decision milestones. Schedule risk analysis considers the uncertainty of engineering tasks, and critical resource constraints. Methods to evaluate schedule performance recognize that engineers and managers are responsible for adequate planning and forecasting, and quality decisions, even if they cannot control all factors influencing schedule results

  18. Planning and forecasting demand for aircraft engines airline fleet

    Directory of Open Access Journals (Sweden)

    А.Г. Кучер

    2007-03-01

    Full Text Available  The questions of air-engines supply system processes analysis on the basis of order planning and air-engine demand forecasting of airline’s air fleet with the use of imitating simulation methods are considered.

  19. Pistons and engine testing

    CERN Document Server

    GmbH, Mahle

    2012-01-01

    The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece - the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and machining processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific know-how of this kind, whether they work in the field of design, development, testing, or maintenance. This techni

  20. Remote Laboratory Collaboration Plan in Communications Engineering

    Directory of Open Access Journals (Sweden)

    Akram Ahmad Abu-aisheh

    2012-11-01

    Full Text Available Communications laboratories for electrical engineering undergraduates typically require that students perform practical experiments and document findings as part of their knowledge and skills development. Laboratory experiments are usally designed to support and reinforce theories presented in the classroom and foster independent thinking; however, the capital cost of equipment needed to sustain a viable laboratory environment is large and ongoing maintenance is an annual expense. Consequently, there is a need to identify and validate more economic solutions for engineering laboratories. This paper presents a remote laboratory collaboration plan for use in an elctrical engineering communications course.

  1. Decontamination and decommissioning of the initial engine test facility and the IET two-inch hot-waste line

    International Nuclear Information System (INIS)

    Stoll, F.E.

    1987-04-01

    The Initial Engine Test Decommissioning Project is described in this report. The Initial Engine Test facility was constructed and operated at the National Reactor Testing Station, now known as the Idaho National Engineering Laboratory, to support the Aircraft Nuclear Propulsion Program and the Systems for Nuclear Auxiliary Power Transient test program, circa 1950 through 1960s. Due to the severe nature of these nuclear test programs, a significant amount of radioactive contamination was deposited in various portions of the Initial Engine Test Facility. Characterizations, decision analyses, and plans for decontamination and decommissioning were prepared from 1982 through 1985. Decontamination and decommissioning activities were performed in such a way that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory remains. These decontamination and decommissioning activities began in 1985 and were completed in 1987. 13 figs

  2. Engineering testing and technology projects FY 1996 Site Support Program Plan, WBS 6.3.3 and 6.3.8. Revision 1

    International Nuclear Information System (INIS)

    Brown, L.C.

    1995-10-01

    The engineering laboratory services for development, assembly, testing, and evaluation to support the resolution of WHC, Hanford, and DOE complex wide engineering issues for 1996 are presented. Primary customers are: TWRS, spent nuclear fuels, transition projects, liquid effluent program, and other Hanford contractors and programs. Products and services provided include: fabrication and assembly facilities for prototype and test equipment, development testing, proof of principle testing, instrumentation testing, nondestructive examination application development and testing, prototype equipment design and assembly, chemical engineering unit operations testing, engineering test system disposal, and safety issue resolution

  3. Graceful Failure, Engineering, and Planning for Extremes: The Engineering for Climate Extremes Partnership (ECEP)

    Science.gov (United States)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.

    2015-12-01

    Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.

  4. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    Science.gov (United States)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  5. Project W-151 flexible receiver radiation detector system acceptance test plan. Revision 1

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1994-01-01

    The attached document is the Acceptance Test Plan for the portion of Project W-151 dealing with acceptance of gamma-ray detectors and associated electronics manufactured at the Idaho National Engineering Laboratory (INEL). The document provides a written basis for testing the detector system, which will take place in the 305 building (300 Area)

  6. Test plan for demonstration of Rapid Transuranic Monitoring Laboratory

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

    1993-06-01

    This plan describes tests to demonstrate the capability of the Rapid Transuranic Monitoring Laboratory (RTML) to monitor airborne alpha-emitting radionuclides and analyze soil, smear, and filter samples for alpha- and gamma-emitting radionuclides under field conditions. The RTML will be tested during June 1993 at a site adjacent to the Cold Test Pit at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Measurement systems installed in the RTML that will be demonstrated include two large-area ionization chamber alpha spectrometers, an x-ray/gamma-ray spectrometer, and four alpha continuous air monitors. Test objectives, requirements for data quality, experimental apparatus and procedures, and safety and logistics issues are described

  7. Gallium-cladding compatibility testing plan. Phases 1 and 2: Test plan for gallium corrosion tests. Revision 2

    International Nuclear Information System (INIS)

    Wilson, D.F.; Morris, R.N.

    1998-05-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water-Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The plan summarizes and updates the projected Phases 1 and 2 Gallium-Cladding compatibility corrosion testing and the following post-test examination. This work will characterize the reactions and changes, if any, in mechanical properties that occur between Zircaloy clad and gallium or gallium oxide in the temperature range 30--700 C

  8. Variable Cycle Engine Technology Program Planning and Definition Study

    Science.gov (United States)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  9. Engineering task plan for BX/BY compressor upgrade

    International Nuclear Information System (INIS)

    Strand, R.G.

    1995-01-01

    This Engineering Task Plan outlines the remaining work to be completed for the BX/BY Instrument Air upgrade. Initial work efforts were guided by Engineering Work Plan, ''BX-BY Compressor Upgrade'' dated 1-25-93 (see Attachment A) which is provided for information. The overall engineering task is to provide a permanent replacement for the instrument air supply system for the 241-BX/BY Tank Farms. The existing system consists of a 25 horsepower Worthington non-lube compressor and an Oriad air dryer. The existing equipment is dated, requires high maintenance and is located in a contaminated zone making it unusable. The BX/BY instrument air replacement unit will be one of the 100 SCFM generic air stations. This station will be permanently sited with the addition of drawing changes to provide a concrete foundation, air piping to existing lines and electrical power supply tie-ins

  10. Engineering Task Plan for simulated riser installation by use of rotary drilling

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1995-12-01

    This task is being performed to demonstrate the feasibility of the best riser installation alternative identified in the Engineering Study. This Engineering Task Plan (ETP) will be the WHC project management plan for the riser installation demonstration activities

  11. A Planning Approach of Engineering Characteristics Based on QFD-TRIZ Integrated

    Science.gov (United States)

    Liu, Shang; Shi, Dongyan; Zhang, Ying

    Traditional QFD planning method compromises contradictions between engineering characteristics to achieve higher customer satisfaction. However, this compromise trade-off can not eliminate the contradictions existing among the engineering characteristics which limited the overall customer satisfaction. QFD (Quality function deployment) integrated with TRIZ (the Russian acronym of the Theory of Inventive Problem Solving) becomes hot research recently for TRIZ can be used to solve contradictions between engineering characteristics which construct the roof of HOQ (House of quality). But, the traditional QFD planning approach is not suitable for QFD integrated with TRIZ for that TRIZ requires emphasizing the contradictions between engineering characteristics at problem definition stage instead of compromising trade-off. So, a new planning approach based on QFD / TRIZ integration is proposed in this paper, which based on the consideration of the correlation matrix of engineering characteristics and customer satisfaction on the basis of cost. The proposed approach suggests that TRIZ should be applied to solve contradictions at the first step, and the correlation matrix of engineering characteristics should be amended at the second step, and at next step IFR (ideal final result) must be validated, then planning execute. An example is used to illustrate the proposed approach. The application indicated that higher customer satisfaction can be met and the contradictions between the characteristic parameters are eliminated.

  12. Tunnel boring waste test plan

    International Nuclear Information System (INIS)

    Patricio, J.G.

    1984-03-01

    The test plan has been prepared in anticipation of the need to excavate certain repository openings by relying upon mechanical excavation techniques. The test plan proposes that specific technical issues can be resolved and key design parameters defined by excavating openings in basalt near the surface, utilizing a full face tunnel boring machine (TBM). The purpose and objective of this type of testing will define the overall feasibility and attributes of mechanical excavation in basalt. The test plan recognizes that although this technology is generally available for underground construction for some geologic settings, the current state of technology for excavation in basalt is limited and the potential for improvement is considerable. The test plan recommends that it is economically advantageous to conduct additional testing in the laboratory to allow refinement of this plan based on the laboratory results. Thus, this test plan is considered preliminary in nature, with respect to detailed testing recommendations. However, the gross design attributes and resource requirements of a near-surface TBM demonstration are considered to be valid. 15 refs., 7 figs., 3 tabs

  13. 30 CFR 282.23 - Testing Plan.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Testing Plan. 282.23 Section 282.23 Mineral... § 282.23 Testing Plan. All testing activities shall be conducted in accordance with a Testing Plan... detailed Mining Plan than is obtainable under an approved Delineation Plan, to prepare feasibility studies...

  14. Test plan for In Situ Vitrification Engineering-Scale Test No. 6, EG ampersand G Idaho, Inc., Job Number 318230

    International Nuclear Information System (INIS)

    1991-03-01

    The objectives of the test included the effects of in situ vitrification on containerized sludge contained in a simulated randomly-disposed array. From this arrangement, the test results obtained the following data applicable to Idaho National Engineering Laboratory Large Field Testing: canister burst pressure and temperature, canister depressurization rate, melt encapsulation rate of the canister and the hood area plenum temperatures, pressures, compositional analyses, and flows as affected by gas releases. 10 figs., 1 tab

  15. Software engineers and nuclear engineers: teaming up to do testing

    International Nuclear Information System (INIS)

    Kelly, D.; Cote, N.; Shepard, T.

    2007-01-01

    The software engineering community has traditionally paid little attention to the specific needs of engineers and scientists who develop their own software. Recently there has been increased recognition that specific software engineering techniques need to be found for this group of developers. In this case study, a software engineering group teamed with a nuclear engineering group to develop a software testing strategy. This work examines the types of testing that proved to be useful and examines what each discipline brings to the table to improve the quality of the software product. (author)

  16. Engineering and planning for decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Gans, G.M. Jr.

    1982-01-01

    With the publication of NUREG-0586, ''Draft Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities'' in January, 1981 the Nuclear Regulatory Commission staff has put the industry on notice that the termination of operating licenses and the final disposal of physical facilities will require the early consideration of several options and approaches and the preparation of comprehensive engineering and planning documents for the selected option at the end of useful life. This paper opens with a discussion of the options available and the principal aspects of decommissioning. The major emphasis of the composition is the nature of documents, the general approach to be followed, and special considerations to be taken into account when performing the detailed engineering and planning for decommissioning, as the end of life approaches and actual physical disposal is imminent. The author's main point of reference is on-going work by Burns and Roe, with Nuclear Energy Services, under contract to the Department of Energy's Richland Office, to perform the engineering and planning for the decommissioning of the Shippingport Atomic Power Station in Pennsylvania

  17. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  18. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers

  19. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  20. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of shaft liner tests as part of the large shaft development test proposed for the Hanford Site in support of the repository development program. The objectives of these tests are to develop techniques for measuring liner alignment (straightness), both construction assembly alignment and downhole cumulative alignment, and to assess the alignment information as a real time feedback to aid the installation procedure. The test plan is based upon installing a 16 foot ID shaft liner into a 20 foot diameter shaft to a depth of 1000 feet. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs

  1. Trajectory Optimization and Conceptual Study of Small Test Vehicles for a Hypersonic Engine Using a High-Altitude Balloon

    Science.gov (United States)

    Tsuchiya, Takeshi; Takenaka, Youichi; Taguchi, Hideyuki; Sawai, Shujiro

    The Japan Aerospace Exploration Agency, JAXA, announced a long-term vision recently. In the vision, JAXA aims to develop hypersonic aircrafts. A pre-cooled turbojet engine has great potential as one of newly developed hypersonic airbreathing engines. We also expect the engine to be installed in space transportation vehicles in the future. For combustion test in the real flight conditions of the engines, JAXA has an experimental plan where a small test vehicle is released from a high-altitude balloon. This paper applies numerical analysis and optimization techniques to conceptual designs of the test vehicle in order to obtain the best configuration and trajectory for the flight test. The results show helpful knowledge for designing prototype vehicles.

  2. Personal Study Planning in Doctoral Education in Industrial Engineering

    Science.gov (United States)

    Lahenius, K.; Martinsuo, M.

    2010-01-01

    The duration of doctoral studies has increased in Europe. Personal study planning has been considered as one possible solution to help students in achieving shorter study times. This study investigates how doctoral students experience and use personal study plans in one university department of industrial engineering. The research material…

  3. Analysis of Air Force Civil Engineering Strategic Planning

    National Research Council Canada - National Science Library

    Mondo, Francis

    2003-01-01

    Several organizations within the Department of Defense, including the Air Force Civil Engineer, are actively engaged in strategic planning in an effort to create a roadmap for future capabilities and performance...

  4. Acceptance test plan for the Waste Information Control System

    International Nuclear Information System (INIS)

    Flynn, D.F.

    1994-01-01

    This document describes the acceptance test plan for the WICS system. The Westinghouse Hanford Company (WHC) Hazardous Material Control Group (HMC) of the 222-S Laboratory has requested the development of a system to help resolve many of the difficulties associated with tracking and data collection of containers and drums of waste. This system has been identified as Waste Information and Control System (WICS). The request for developing and implementing WICS has been made to the Automation and Simulation Engineering Group (ASE)

  5. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiyuki; Sudo, Yukio

    1994-09-01

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  6. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  7. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    International Nuclear Information System (INIS)

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-01-01

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle

  8. Test plans for availability

    International Nuclear Information System (INIS)

    Rise, J.L.; Bjoerklund, O.

    1978-12-01

    In this work is developed principles for statistical test plans for availability compliance tests. Failure terminated and time terminated fixed size plans are considered as well as sequential test plans without and with failure and time truncation. The suggested methods are evaluated with respect to some important characteristics, namely the average number of failures to termination, the duration of the test and the operating characteristic function. The methods used are based on the assumption that up- and down-times can be considered gamma distributed. Simulation studies indicate that the methods are robust against reasonable deviations in distribution assumptions for the down-times. In the work is also outlined technical conditions and prerequisites applicable to availability compliance tests in general. The approach choosen seems very promising and is worth further development. It is based on the same fundamental principles as present is used in International standardization of equipment reliability testing. (author)

  9. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    Tariq, M.M.

    2006-01-01

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  10. Automatic testing devices for diesel engines for the quality control in engine production

    Energy Technology Data Exchange (ETDEWEB)

    Homann, R; Homilius, K

    1979-01-01

    A device which generates the torque for the brakes is the most important functional group in engine test stands. Hydraulic dynamometric brakes are serially produced for power ranges from 210 up to 70000 kw and maximum revolutions up to 10000 rpm. Eddy current brakes can be supplied for the power range of 40 to 3600 kW. Compared to the hydraulic dynamometric brake they have a larger rev-range for control while both have the same torque. Electric machines used as dynamometric brakes make it possible to recuperate electric energy. The properties of the individual braking devices are compared. Torque and number of revolutions are calculated digitally. Test methods are automatised as far as possible. There are four control methods: time plan, perforated strip, magnetic tape or computer.

  11. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  12. Pistons and engine testing

    CERN Document Server

    2016-01-01

    The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece—the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and manufacturing processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific expertise of this kind, whether they work in the field of design, development, testing, or maintenance. This technical book answers these questions in detail and in a very clear and comprehensible way. In this second, revised edition, every chapter has been revised and expanded. The chapter on “Engine testing”, for example, now include extensive results in the area of friction power loss measurement and lube oil consumption measurement. Contents Piston function, requirements, and types Design guidelines Simulation of the ope...

  13. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    Science.gov (United States)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  14. Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  15. Test plan for the retrieval demonstration

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1993-05-01

    This test plan describes a simulated buried waste retrieval demonstration that will be performed at the Caterpillar, Inc., Edwards Training Center located near Peoria, Illinois. The purpose of the demonstration is to determine the effectiveness of using readily available excavation equipment to retrieve, size, and handle various simulated waste forms that are similar in size, structure, and composition to those expected to be found in US Department of Energy contaminated waste pits and trenches. The objectives of this demonstration are to: meet and maintain daily production goals of 80 yd 3 /day; minimize spillage and dust generation through careful and deliberate operations; document and evaluate methods for manipulating, sizing, and/or working around large objects; and document and evaluate requirements for operator augmentation and remote operation for hot test pit excavation operations. Four conditions comprising the range of environments to be evaluated include excavation of random material from below grade; stacked boxes and barrels from below grade; random materials from at grade; and stacked boxes and barrels from at grade. Results of the retrieval demonstration will reduce unknowns in the body of knowledge about retrieval equipment and procedural options for removal of buried transuranic (TRU) waste at the Idaho National Engineering Laboratory. It is anticipated that DOE will factor this information into a remedial investigation/feasibility plan leading to a final record of decision for disposition of buried TRU waste

  16. 40 CFR 89.410 - Engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 89.410 Section 89... Procedures § 89.410 Engine test cycle. (a) Emissions shall be measured using one of the test cycles specified...) through (a)(4) of this section. These cycles shall be used to test engines on a dynamometer. (1) The 8...

  17. Small Engine & Accessory Test Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Engine and Accessories Test Area (SEATA) facilitates testaircraft starting and auxiliary power systems, small engines and accessories. The SEATA consists...

  18. Digface characterization test plan (remote testing)

    International Nuclear Information System (INIS)

    Croft, K.; Hyde, R.; Allen, S.

    1993-08-01

    The objective of the Digface Characterization (DFC) Remote Testing project is to remotely deploy a sensor head (Mini-Lab) across a digface to determine if it can characterize the contents below the surface. The purpose of this project is to provide a robotics technology that allows removal of workers from hazards, increases speed of operations, and reduces life cycle costs compared to alternate methods and technologies. The Buried Waste Integrated Demonstration (BWID) is funding the demonstration, testing, and evaluation of DFC. This document describes the test plan for the DFC remote deployment demonstration for the BWID. The purposes of the test plan are to establish test parameters so that the demonstration results are deemed useful and usable and perform the demonstration in a safe manner and within all regulatory requirements

  19. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG ampersand G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory's (INEL's) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG ampersand G Idaho is responsible concerning the INEL WETP. Even though EG ampersand G Idaho has no responsibility for the work that ANL-W is performing, EG ampersand G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and

  20. Business planning for scientists and engineers[3rd edition]; TOPICAL

    International Nuclear Information System (INIS)

    Servo, Jenny C.

    1999-01-01

    This combination text/workbook is intended for use by scientists or engineers actively engaged in developing a product or technology to commercial production. The 'how' of planning is a central theme with special emphasis on development of operational plans and strategic thinking

  1. Configuration management program plan for Hanford site systems engineering

    International Nuclear Information System (INIS)

    Hoffman, A.G.

    1994-01-01

    This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline

  2. Prototype Engineered Barrier System Field Tests (PEBSFT)

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Wilder, D.G.

    1991-02-01

    This progress report presents the interpretation of data obtained (up to November 1, 1988) from the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed for the Yucca Mountain Project (YMP) in G-Tunnel within the Nevada Test site. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for the field tests for future investigations that will be conducted in the Exploratory Shaft Facilities, at a potential high-level radioactive waste repository site in Yucca Mountain. The primary objective of the tests is to provide the basis for determining whether tests planned for Yucca Mountain have the potential to be successful. Thirteen chapters discuss the following: mapping the electromagnetic permittivity and attenuation rate of the rock mass; changes in moisture content detected by the neutron logging probe; characterization of the in-situ permeability of the fractured tuff around the heater borehole; electrical resistance heater installed in a 30-cm borehole; relative humidity measurements; the operation, design, construction, calibration, and installation of a microwave circuit that might provide partial pressure information at temperatures in excess of 200 degree C (392 degree F); pressure and temperature measurements in the G-Tunnel; the moisture collection system, which attempts to collect steam that migrates into the heater borehole; The borehole television and borescope surveys that were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes; preliminary scoping calculations of the hydrothermal conditions expected for this prototype test; the Data Acquisition System; and the results of the PEBSFT, preliminary interpretations of these results, and plans for the remainder of the test. Chapters have been indexed separately for inclusion on the data base

  3. 40 CFR 91.410 - Engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine test cycle. (a) The 5-mode cycle specified in Table 2 in appendix A to this subpart shall be followed...

  4. System Engineering Management and Implementation Plan for Project W-211, ''Initial Tank Retrieval Systems'' (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211

  5. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    Energy Technology Data Exchange (ETDEWEB)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  6. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 3, part 1: Program acquisition planning

    Science.gov (United States)

    Olsen, C. D.

    1972-01-01

    Planning documentation is presented covering the specific areas of project engineering and development, management, facilities, manufacturing, logistic support maintenance, and test and product assurance.

  7. Scope and status of the USA Engineering Test Facility including relevant TFTR research and development

    International Nuclear Information System (INIS)

    Becraft, W.R.; Reardon, P.J.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The progress toward the design and construction of the ETF will reflect the significant achievements of past, present, and future experimental tokamak devices. Some of the features of this foundation of experimental results and relevant engineering designs and operation will derive from the Tokamak Fusion Test Reactor (TFTR) Project, now nearing the completion of its construction phase. The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy (OFE) established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF and discusses some highlights of the TFTR R and D work

  8. Scope and status of the USA Engineering Test Facility including relevant TFTR research and development

    International Nuclear Information System (INIS)

    Becraft, W.R.; Reardon, P.J.

    1981-01-01

    The vehicle by which the fusion programme would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The progress toward the design and construction of the ETF will reflect the significant achievements of past, present, and future experimental tokamak devices. Some of the features of this foundation of experimental results and relevant engineering designs and operation will derive from the Tokamak Fusion Test Reactor (TFTR) Project, now nearing the completion of its construction phase. The ETF would provide a test-bed for reactor components in the fusion environment. To initiate preliminary planning for the ETF decision, the Office of Fusion Energy (OFE) established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF and discusses some highlights of the TFTR R and D work. (author)

  9. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  10. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    Energy Technology Data Exchange (ETDEWEB)

    Freese, Charlie

    2000-08-20

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  11. STUDENT PLANNING TIME IN ORAL TESTS

    Institute of Scientific and Technical Information of China (English)

    WangLei

    2004-01-01

    This paper describes the process of planning in an oral test situation. Since many researchers have studied the impact of pretask planning in the Second Language Acquisition (SLA) field and some have explored the same subject into the area of oral tests, the present study tries to make a tentative attempt to see what the test takers are actually doing in the planning time while taking an oral test. A questionnaire was designed with the effort to find out whether planning time results in an increased focus on form, particularly at the level of strategic attention to form.The result of the investigation tells us that restricted by the type of situation, test takers can only plan the framework of what they are going to say, which may differ to the results achieved by previous studies.

  12. Test plan for Tank 241-AW-101 solubility screening tests

    International Nuclear Information System (INIS)

    Person, J.C.

    1998-01-01

    Tank 241-AW-101 (101-AW) has been identified as one of the early tanks to be for retrieved for low level waste pretreatment and immobilization and retrieval of the tank waste may require dilution. This test is to determine the effects of dilution on the mass of solids and their composition. This test plan gives test instructions, example data sheets, a waste compatibility review, and a waste stream fact sheet. This test Plan is similar to tests on tanks 241-AN-102 (Person 1998a) and 241-AN-107 (Person 1998 b). The 101-AW tests will be done with composites of liquid and solids from grab samples that were taken in 1998 (Benar 1998). Future revisions of the Tank Sampling and Analysis Plan (Benar 1998) may change the details of the work performed under this test plan

  13. Altitude Testing of Large Liquid Propellant Engines

    Science.gov (United States)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  14. The Theory of Planned Behaviour Applied to Search Engines as a Learning Tool

    Science.gov (United States)

    Liaw, Shu-Sheng

    2004-01-01

    Search engines have been developed for helping learners to seek online information. Based on theory of planned behaviour approach, this research intends to investigate the behaviour of using search engines as a learning tool. After factor analysis, the results suggest that perceived satisfaction of search engine, search engines as an information…

  15. Engineering task plan for steam line ramp calculations

    International Nuclear Information System (INIS)

    DeSantis, G.N.; Freeman, R.D.

    1994-01-01

    The purpose of this document is to provide an approved work plan to perform calculations that verify the load limits of a proposed ramp over a steam line at the back side (East side) of SY Farm in support of work package 2W-94-00812/K. The objective of this supporting document is to provide Operations with a set of checked calculations that verify the ramp over the steam line at SY Farm will support a fully loaded concrete mixer truck without affecting the steam line. The calculations will be performed by an engineers from Facility Systems and independently checked and reviewed by another engineer. The calculations may then be added to the work package. If Operations decides to make any configuration changes to the steam line or surrounding area, Operations shall have these changes documented by an Engineering Change Notice (ECN). This ECN can be done by Facility Systems or any other engineering organization at the direction of Operations

  16. Riser equipment decontamination engineering task plan

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    On October 15, 1998, two Characterization Project Operations (CPO) employees were found to have contaminated clothing. An operator had 300,000-dpm/100cm2 beta/gamma, no alpha, contamination on his coat sleeve and a Radiation Control Technician (RCT) had 10,000 dpm/100cm2 beta/gamma, no alpha, on his shirt sleeve. The CPO swing shift crew was working in TX tank farm, performing sampling activities at 241-TX-113. TX tank farm is a ''clean farm'' and does not require anti-contamination clothing for entry. The CPO personnel were dressed in normal work clothes. An operator and an RCT were performing a pre-job survey that involved removing bagging around the riser equipment. When the RCT saw that the contamination readings from smear samples of the riser equipment were greater than expected, the job was suspended. Crew members were then directed to areas of lower background radiation for personnel surveys. During personnel surveys, reportable contamination was found on the coat sleeve of the operator who had been involved in the pre-job survey and on the shirt sleeve of the RCT who had been involved in the pre-job survey. No other personnel were found to be contaminated. Because of this off normal event Characterization Engineering was given the following corrective action: Examine the process methodology used for core sampling operations to determine practicality and potential long-term advantages of reducing personnel contact with contaminated equipment. This Engineering Task Plan ensures that LMHC 1998a, Corrective Action No.7 is completely addressed by Characterization Engineering. The deliverable is an Engineering Study that evaluates decontamination of riser equipment components and considers additional engineered features to reduce potential exposure to workers operating the riser equipment. This engineering study shall also address any released design features that have failed to be implemented

  17. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    Science.gov (United States)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  18. First-ever evening public engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  19. Stand for testing the electrical race car engine

    Science.gov (United States)

    Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.

    2015-11-01

    An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.

  20. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  1. Review of domestic and international experience on optimization of tests planning for safety related systems at NPP

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Komarov, Yu.A.; Kolykanov, V.N.; Kochneva, V.Yu.; Gablaya, T.V.

    2009-01-01

    There are represented the basic requirements of normative and operating documents on test periodicity of safety related systems at NPPs, sets out the theoretical methods of test optimization of the technical systems, and analyses foreign engineering methods for changing test periodicity of the NPP systems. Based on this review analyses further tasks are formulated for improvement of the methodical base of optimization of tests planning for safety related systems

  2. Engine Test Cell Aeroacoustics and Recommendations

    National Research Council Canada - National Science Library

    Tam, Christopher

    2007-01-01

    Ground testing of turbojet engines in test cells necessarily involves very high acoustic amplitudes, often enough and severe enough that testing is interrupted and facility hardware and test articles are damaged...

  3. Master planning for successful safeguard/security systems engineering

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1987-01-01

    The development and phased implementation of an overall master plan for weapons systems and facilities engaged in the complexities of high technology provides a logical road map for system accomplishment. An essential factor in such a comprehensive plan is development of an integrated systems security engineering plan. Some DOD programs use new military regulations and policy directives to mandate consideration of the safeguard/security disciplines be considered for weapons systems and facilities during the entire life cycle of the program. The emphasis is to make certain the weapon system and applicable facilities have complementary security features. Together they must meet the needs of the operational mission and, at the same time, provide the security forces practical solutions to their requirements. This paper discusses the process of meshing the safe- guards/security requirements with an overall the master plan and the challenges attendant to this activity

  4. Center Planning and Development Student Engineer

    Science.gov (United States)

    Jenkins, Kenneth T.

    2013-01-01

    This fall I was the Student Trainee (Engineering) Pathways Intern (co-op) at the Kennedy Space Center (KSC) in the Center Planning Development (CPD) Directorate. CPD works with commercial companies who are interested using KSCs unique capabilities in spaceflight, spacecraft processing, ground systems and Research Development (RD) projects that fall in line with NASAs mission and goals. CPD is divided into four (4) groups: (1) AD-A, which works on the Master Planning for center, (2) AD-B (where I am), which works on project management and integration, (3) AD-C, which works on partnership development, and (4) AD-T, which works on the RD aspects of partnerships. CPDs main goal is to one day make KSC the worlds largest spaceport and maintain the center as a leader in space exploration. CPD is a very diverse group with employees having a wide knowledge of not only the Space Shuttle, but also that of the Apollo era. Our director of CPD, Scott Colloredo, is on the advisory board for Commercial Space Operations (CSO) and has a degree at ERAU. I worked on a number of different tasks for AD-B, as well as CPD, that includes, but not limited to: reviewing and reissuing engineering drawings from the Apollo and Shuttle eras, to supporting NASA rocket launches (MAVEN), and working on actual agreementsproposals that will be used in the partnership process with multiple partners. Most of the work I have done is sensitive information and cannot be disclosed.

  5. Pre-Test pan Work Plan sebagai Strategi Pembelajaran Efektif pada Praktikum Bahan Teknik Lanjut Jurusan Pendidikan Teknik Mesin FT UNY

    Directory of Open Access Journals (Sweden)

    Nurdjito Nurdjito

    2013-09-01

    Full Text Available To find the most effective learning strategy for the practicum in the laboratory of materials of the department of Mechanical Engineering Education, Faculty of Engineering, Yogyakarta State University (YSU, a study that aims to determine the effect of applying pre-test and work plan on the learning activities and the achievement of students in the laboratory was conducted. This action research used the purposive random sampling technique. Pre-test and work plan were conducted as the treatment. The data of study was collected through a test to analyse the students’ achievement scores, then they were analyzed using t-test with SPSS. The results of this study indicated that the application of pre-test and work plan in addition to the standard module was proven to be more effective than the  normative learning using the module with t = 3.055 p = 0.003 <0.05. The implementation of the pre-test and work plan in addition to the use of standard modules is able to  improve the students’ motivation, independence and readiness to learn as well as the cooperation among the students, therefore the achievement is also improved. The mastery of competencies increased significantly proved by the increasing values of mode 66 to 85 (the experiment, and mean 73.12 into 79.32 (experiment.

  6. Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations, Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project

  7. Career choice in engineering students: its relationship with motivation, satisfaction and the development of professional plans

    Directory of Open Access Journals (Sweden)

    Iciar Pablo-Lerchundi

    2015-01-01

    Full Text Available Choosing a university degree is a relevant process for the personal, social and economic development. This study was designed to explore the students' choice for technical degrees. It is centered on the relationship between the quality of their choice and their motivation, satisfaction and development of professional plans. The inquiry involved an incidental sample of 89 students from the Universidad Politécnica de Madrid (UPM in Architecture, Computer Sciences and Forestry Engineering. After the analysis of the ad hoc adapted inventory, descriptive data and the results concerning dependence between the variables considered (analyzed with Pearson's chi-squared test are presented. Non-parametric tests were used to asses differences on satisfaction by gender and degree studied. Results show dependence between the students' motivation and satisfaction, and the later and their professional plans' content. Gender and degree are also dependent with professional plans' temporality, as well as degree with their structure. No significant differences were found for the means in satisfaction.

  8. Engineering Work Plan for the Development of Phased Startup Initiative (PSI) Phases 3 and 4 Test Equipment

    International Nuclear Information System (INIS)

    PITNER, A.L.

    2000-01-01

    A number of tools and equipment pieces are required to facilitate planned test operations during Phases 3 and 4 of the Phased Startup Initiative (PSI). These items will be used in assessing residual canister sludge quantities on cleaned fuel assemblies, sorting coarse and fine scrap fuel pieces, assessing the size distribution of scrap pieces, loading scrap into a canister, and measuring the depth of the accumulated scrap in a canister. This work plan supercedes those previously issued for development of several of these test items. These items will be considered prototype equipment until testing has confirmed their suitability for use in K West Basin. The process described in AP-EN-6-032 will be used to qualify the equipment for facility use. These items are considered non-OCRWM for PSI Phase 3 applications. The safety classification of this equipment is General Service, with Quality Level 0 (for PSI Phase 3). Quality Control inspections shall be performed to verify basic dimensions and overall configurations of fabricated components, and any special quality control verifications specified in this work plan (Section 3.1.5). These inspections shall serve to approve the test equipment for use in K West Basin (Acceptance Tag). This equipment is for information gathering only during PSI Phases 3 and 4 activities, and will be discarded at the completion of PSI. For equipment needed to support actual production throughput, development/fabrication/testing activities would be more rigorously controlled

  9. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    1999-08-20

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e

  10. Initial testing of a variable-stroke Stirling engine

    Science.gov (United States)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  11. Integrated multi-resource planning and scheduling in engineering project

    Directory of Open Access Journals (Sweden)

    Samer Ben Issa

    2017-01-01

    Full Text Available Planning and scheduling processes in project management are carried out sequentially in prac-tice, i.e. planning project activities first without visibility of resource limitation, and then schedul-ing the project according to these pre-planned activities. This is a need to integrate these two pro-cesses. In this paper, we use Branch and Bound approach for generating all the feasible and non-feasible project schedules with/without activity splitting, and with a new criterion called “the Minimum Moments of Resources Required around X-Y axes (MMORR”, we select the best feasible project schedule to integrate plan processing and schedule processing for engineering projects. The results illustrate that this integrated approach can effectively select the best feasible project schedule among alternatives, improves the resource utilization, and shortens the project lead time.

  12. 40 CFR 1065.405 - Test engine preparation and maintenance.

    Science.gov (United States)

    2010-07-01

    ... has undergone a stabilization step (or in-use operation). If the engine has not already been... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Test engine preparation and...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065...

  13. Waste feed delivery test and evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    O' TOOLE, S.M.

    1999-09-30

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach.

  14. Waste feed delivery test and evaluation plan

    International Nuclear Information System (INIS)

    O'TOOLE, S.M.

    1999-01-01

    This plan documents the Waste Feed Delivery Program test and evaluation planning and implementation approach. The purpose of this document is to define and communicate the Waste Feed Delivery Program Test and Evaluation scope, objectives, planning and implementation approach

  15. Possible people, complaints, and the distinction between genetic planning and genetic engineering.

    Science.gov (United States)

    Delaney, James J

    2011-07-01

    Advances in the understanding of genetics have led to the belief that it may become possible to use genetic engineering to manipulate the DNA of humans at the embryonic stage to produce certain desirable traits. Although this currently cannot be done on a large scale, many people nevertheless object in principle to such practices. Most often, they argue that genetic enhancements would harm the children who were engineered, cause societal harms, or that the risks of perfecting the procedures are too high to proceed. However, many of these same people do not have serious objections to what is called 'genetic planning' procedures (such as the selection of sperm donors with desirable traits) that essentially have the same ends. The author calls the view that genetic engineering enhancements are impermissible while genetic planning enhancements are permissible the 'popular view', and argues that the typical reasons people give for the popular view fail to distinguish the two practices. This paper provides a principle that can salvage the popular view, which stresses that offspring from genetic engineering practices have grounds for complaint because they are identical to the pre-enhanced embryo, whereas offspring who are the result of genetic planning have no such grounds.

  16. 40 CFR 91.409 - Engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... at rated speed and maximum power for 25 to 30 minutes; (iv) Option. For four-stroke engines, where... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine dynamometer test run. 91.409... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.409...

  17. Construction management at the SP-100 ground engineering system test site

    International Nuclear Information System (INIS)

    Burchell, G.P.; Wilson, L.R.

    1991-01-01

    Contractors under the U.S. Department of Energy management have implemented a comprehensive approach to the management of design and construction of the complex facility modifications at the SP-100 Ground Engineering System Test Site on the Hanford Reservation. The SP-100 Test Site employs a multi-organizational integrated management approach with clearly defined responsibilities to assure success. This approach allows for thorough planning and analysis before the project kick off, thus minimizing the number and magnitude of problems which arise during the course of the project. When combined with a comprehensive cost and schedule/project management reporting system the problems which do occur are recognized early enough to assure timely intervention and resolution

  18. SWEPP gamma-ray spectrometer system software test plan and report

    International Nuclear Information System (INIS)

    Femec, D.A.

    1994-09-01

    The SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory to assist in the characterization of the radiological contents of contact-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP). In addition to determining the concentrations of gamma-ray-emitting radionuclides, the software also calculates attenuation-corrected isotopic mass ratios of specific interest, and provides controls for SGRS hardware as required. This document presents the test plan and report for the data acquisition and analysis software associated with the SGRS system

  19. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    Science.gov (United States)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  20. Physical and engineering aspects of a fusion engineering test facility based on mirror confinement

    International Nuclear Information System (INIS)

    Kawabe, T.; Hirayama, S.; Hojo, H.; Kozaki, Y.; Yoshikawa, K.

    1986-01-01

    Controlled fusion research has accomplished great progress in the field of confinement of high-density and high-temperature plasmas and breakeven experiments are expected before the end of the 1980s. Many experiments have been proposed as the next step for fusion research. Among them is the study of ignited plasmas and another is the study of fusion engineering. Some of the important studies in fusion engineering are the integrated test in a fusion reactor environment as well as tests of first-wall materials and of the reactor structures, and test for tritium breeding and blanket modules or submodules. An ideal neutron source for the study of fusion engineering is the deuterium-tritium (D-T) fusion plasma itself. A neutron facility based on a D-T-burning plasma consists of all of the components that a real fusion power reactor would have, so eventually the integrated test for fusion reactor engineering can be done as well as the tests for each engineering component

  1. Test planning and performance

    International Nuclear Information System (INIS)

    Zola, Maurizio

    2001-01-01

    Testing plan should include Safety guide Q4 - Inspection and testing - A testing plan should be prepared including following information: General information (facility name, item or system reference, procurement document reference, document reference number and status, associated procedures and drawings); A sequential listing of all testing activities; Procedure, work instruction, specification or standard to be followed in respect of each operation and test; Acceptance criteria; Identification of who is performing tests; Identification of hold points; Type of records to be prepared for each test; Persons and organizations having authority for final acceptance. Proposed activities sequence is: visual, electrical and mechanical checks; environmental tests (thermal aging, vibrations aging, radioactive aging); performance evaluation in extreme conditions; dynamic tests with functional checks; final electrical and mechanical checks The planning of the tests should always be performed taking into account an interpretative model: a very tight cooperation is advisable between experimental people and numerical people dealing with the analysis of more or less complex models for the seismic assessment of structures and components. Preparatory phase should include the choice of the following items should be agreed upon with the final user of the tests: Excitation points, Excitation types, Excitation amplitude with respect to frequency, Measuring points. Data acquisition, recording and storage, should take into account the characteristics of the successive data processing: to much data can be cumbersome to be processed, but to few data can make unusable the experimental results. The parameters for time history acquisition should be chosen taking into account data processing: for Shock Response Spectrum calculation some special requirements should be met: frequency bounded signal, high frequency sampling, shock noise. For stationary random-like excitation, the sample length

  2. Test plan using the HTTR for commercialization of GTHTR300C

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Ueta, Shohei; Aihara, Jun; Goto, Minoru; Sumita, Junya; Shibata, Taiju; Takamatsu, Kuniyoshi; Inagaki, Yoshiyuki; Kunitomi, Kazuhiko; Nishihara, Tetsuo; Hamamoto, Shimpei; Iyoku, Tatsuo

    2010-02-01

    The High Temperature Engineering Test Reactor (HTTR) is the first High Temperature Gas-cooled Reactor (HTGR) built at the Oarai Research and Development Center of JAEA with thermal power of 30 MW and the maximum reactor outlet coolant temperature of 950degC. The HTTR achieved the first criticality in 1998, the reactor outlet coolant temperature of 950degC in 2004, and 30 days continuous operation in 2007. Since 2002, safety demonstration tests including reactivity insertion tests and coolant flow reduction tests have been conducted to show inherent safety features of the HTGRs by using the HTTR. This report describes full scope of the future feasible test plan mainly using the HTTR. The test items cover fuel performance and radionuclide transport, core physics, reactor thermal hydraulics and plant dynamics, and reactor operations, maintenance, control, etc. The test results will be utilized for realization of Japan's commercial Very High Temperature Reactor (VHTR) system, GTHTR300C. (author)

  3. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  4. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  5. Basic data for surveillance test on core support graphite structures for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Kikuchi, Takayuki; Iyoku, Tatsuo; Fujimoto, Nozomu; Ishihara, Masahiro; Sawa, Kazuhiro

    2007-02-01

    Both of the visual inspection by a TV camera and the measurement of material properties by surveillance test on core support graphite structures are planned for the High Temperature Engineering Test Reactor (HTTR) to confirm their structural integrity and characteristics. The surveillance test is aimed to investigate the change of material properties by aging effects such as fast neutron irradiation and oxidation. The obtained data will be used not only for evaluating the structural integrity of the core support graphite structures of the HTTR but also for design of advanced Very High Temperature Reactor (VHTR) discussed at generation IV international forum. This report describes the initial material properties of surveillance specimens before installation and installed position of surveillance specimens in the HTTR. (author)

  6. Water NSTF Design, Instrumentation, and Test Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui; Kilsdonk, Dennis J.; Bremer, Nathan C.; Lomperski, Stephen W.; Kraus, Adam R.; Bucknor, Matthew D.; Lv, Qiuping; Farmer, Mitchell T.

    2017-08-01

    The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released for the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric

  7. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  8. Engineered Barrier Test Facility status report, 1984

    International Nuclear Information System (INIS)

    Phillips, S.J.; Adams, M.R.; Gilbert, T.W.; Meinhardt, C.C.; Mitchell, R.M.; Waugh, W.J.

    1985-02-01

    This report provides a general summary of activities completed to date at the Hanford Engineered Barrier Test Facility. This facility is used to test and compare construction practices and performance of alternative designs of engineered barrier cover systems. These cover systems are being evaluated for potential use for isolation and confinement of buried waste disposal structures

  9. Light Duty Utility Arm system pre-operational (cold test) test plan

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1995-01-01

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  10. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    International Nuclear Information System (INIS)

    Wecks, M.D.

    1998-01-01

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented

  11. Systems engineering management and implementation plan for Project W-465, immobilized low-activity waste storage

    International Nuclear Information System (INIS)

    Kaspar, J.R.; Latray, D.A.

    1998-01-01

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-465 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented

  12. Institutional Plan, FY 1993--1998, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    This document presents the plans and goals of the Idaho National Engineering Laboratory for FY 1993--1998. Areas discussed in this document include: INEL strategic view; initiatives; scientific and technical programs; environmental, safety, and health management, technology transfer, science and math education, and community affairs; human resources; site and facilities; and resource projections

  13. Center Planning and Development Student Engineer at KSC

    Science.gov (United States)

    Jenkins, Kenneth T., Jr.

    2015-01-01

    This summer I was the Student Trainee (Engineering) Pathways Intern (co-op) at the Kennedy Space Center (KSC) in the Center Planning & Development (CPD) Directorate. CPD works with commercial companies who are interested in using KSC's unique capabilities for spaceflight, spacecraft processing, ground systems and Research & Development (R&D) projects that fall in line with NASA's Mission and Vision. CPD is divided into three (3) groups: (1) AD-A, which works on the Master Planning for the center, (2) AD-B (where I am), which works on project control, management and integration, and (3) AD-C, which works on partnership development. CPD's main goal is to make KSC the world's preeminent multi-user spaceport and maintain the center as a leader in space exploration. CPD is a very diverse group of employees having a wide knowledge of not only the Space Shuttle, but also Expendable Launch Vehicles (ELV). The director of CPD, Scott Colloredo, is on the advisory board for Commercial Space Operations (CSO) and has a degree from ERAU. I worked on a number of different tasks for AD-B, as well as CPD, that includes, but not limited to: reviewing and reissuing engineering documents, weekly notes for CPD and senior management, engineering familiarizations with facilities at KSC, leading a tour for the Embry-Riddle Aeronautical University Career Services office, and working on actual agreements/proposals that will be used in the partnership process with multiple partners, along with other projects. Most of the work I have done is sensitive information and cannot be disclosed.

  14. Bentonite engineered barrier building method for radioactive waste on sub-surface disposal test project

    International Nuclear Information System (INIS)

    Mori, Takuo; Takahashi, Shinichi; Takeuchi, Kunifumi; Namiki, Kazuto

    2008-01-01

    The engineering barriers such as clay and concrete materials are planned to use for covering radioactive waste in cavern-type disposal facility. The requirement to clay barrier is very low permeability, which could be satisfied by high density Bentonite, and such a compaction method will be needed. Two methods, compaction and air shot, were tested in engineering scale for constructing a high-density clay barrier. Two types of compaction equipments, 'Teasel plate' and 'Plate compacter', were developed and engineering scale experiments were performed for compacting Bentonite only and Bentonite-sand-aggregate mixture. As a result, the Teasel plate can reach higher density Bentonite in relatively short time in comparison to other equipments. While, regarding air shot method, an air-shot machine in a tunnel construction site was tested by different water adding methods (wet, dry, and half wet). It is concluded that the dry and half wet constructing methods will achieve reasonable workability. As a result, the best construction option can be chosen according to the locations of radioactive waste facility. (author)

  15. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, to develop the waste-management system, to relate system elements to each other, and to determine how the waste-management system can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  16. Closure plan for the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units

    International Nuclear Information System (INIS)

    Smith, P.J.; Van Brunt, K.M.

    1992-11-01

    This document describes the proposed plan for closure of the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act interim status closure requirements. The location, size, capacity, and history of the units are described, and their current status is discussed. The units will be closed by treating remaining waste in storage, followed by thorough decontamination of the systems. Sufficient sampling and analysis, and documentation of all activities will be performed to demonstrate clean closure

  17. Acceptance Test Plan for ANSYS Software

    International Nuclear Information System (INIS)

    CREA, B.A.

    2000-01-01

    This plan governs the acceptance testing of the ANSYS software (Full Mechanical Release 5.5) for use on Project Word Management Contract (PHMC) computer systems (either UNIX or Microsoft Windows/NT). There are two phases to the acceptance testing covered by this test plan: program execution in accordance with the guidance provided in installation manuals; and ensuring results of the execution are consistent with the expected physical behavior of the system being modeled

  18. Riser equipment decontamination engineering task plan; TOPICAL

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    On October 15, 1998, two Characterization Project Operations (CPO) employees were found to have contaminated clothing. An operator had 300,000-dpm/100cm2 beta/gamma, no alpha, contamination on his coat sleeve and a Radiation Control Technician (RCT) had 10,000 dpm/100cm2 beta/gamma, no alpha, on his shirt sleeve. The CPO swing shift crew was working in TX tank farm, performing sampling activities at 241-TX-113. TX tank farm is a ''clean farm'' and does not require anti-contamination clothing for entry. The CPO personnel were dressed in normal work clothes. An operator and an RCT were performing a pre-job survey that involved removing bagging around the riser equipment. When the RCT saw that the contamination readings from smear samples of the riser equipment were greater than expected, the job was suspended. Crew members were then directed to areas of lower background radiation for personnel surveys. During personnel surveys, reportable contamination was found on the coat sleeve of the operator who had been involved in the pre-job survey and on the shirt sleeve of the RCT who had been involved in the pre-job survey. No other personnel were found to be contaminated. Because of this off normal event Characterization Engineering was given the following corrective action: Examine the process methodology used for core sampling operations to determine practicality and potential long-term advantages of reducing personnel contact with contaminated equipment. This Engineering Task Plan ensures that LMHC 1998a, Corrective Action No.7 is completely addressed by Characterization Engineering. The deliverable is an Engineering Study that evaluates decontamination of riser equipment components and considers additional engineered features to reduce potential exposure to workers operating the riser equipment. This engineering study shall also address any released design features that have failed to be implemented

  19. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    International Nuclear Information System (INIS)

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition

  20. Addendum to ''Test Plan: Small-Scale Seal Performance Tests (SSSPT)''

    International Nuclear Information System (INIS)

    Finley, R.E.

    1992-01-01

    This document describes activities that are intended to update the data base of fluid flow measurements made on expansive salt concrete (ESC) seals as part of the Small-Scale Seal Performance Tests (SSSPT). The original plans for the SSSPT experiments are described by Stormont (1985a and 1985b). These seals have previously been tested with brine and gas during the early stages (less than 450 days) after emplacement. The purpose of this Test Plan Addendum is to detail the activities necessary to, update the gas and brine measurements previously performed on the SSSPT Series A and Series B seals and to identify the key personnel responsible for implementing these activities. This addendum describes a limited undertaking and does NOT change the scope of the original test plan

  1. Engineering Task Plan for Hepa Filter Differential Pressure (DP) Fan Interlock Upgrades

    International Nuclear Information System (INIS)

    SIMONS, S.R.

    2000-01-01

    This document provides a plan for installation of Differential Pressure (DP) fan interlocks on the primary ventilation systems in selected Tank Farm facilities. This plan contains the engineering tasks required for installation and is summarized by the Acceptance for Beneficial Use list. Individuals responsible for each task are identified and scheduled accordingly

  2. Environmental assessment for Breeder Reprocessing Engineering Test (BRET): Revision 1

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1989-03-01

    This Environmental Assessment (EA) is for the proposed installation and operation of an integrated breeder fuel reprocessing test system in the shielded cells of the Fuels and Materials Examination Facility (FMEF) at Hanford and the associated modifications to the FMEF to accommodate BRET. These modifications would begin in FY-1986 subject to Congressional authorization. Hot operations would be scheduled to start in the early 1990's. The system, called the Breeder Reprocessing Engineering Test (BRET), is being designed to provide a test capability for developing the demonstrating fuel reprocessing, remote maintenance, and safeguards technologies for breeder reactor fuels. This EA describes (1) the action being proposed, (2) the existing environment which would be affected, (3) the potential environmental impacts from normal operations and severe accidents from the proposed action, (4) potential conflicts with federal, state, regional, and/or local plans for the area, and (5) environmental implications of alternatives considered to the proposed action. 41 refs., 10 figs., 31 tabs

  3. The Third Competition on Knowledge Engineering for Planning and Scheduling

    OpenAIRE

    Bartak, Roman; Fratini, Simone; McCluskey, Lee

    2010-01-01

    We report on the staging of the third competition on knowledge engineering for AI planning and scheduling systems, held during ICAPS-09 at Thessaloniki, Greece in September 2009. We give an overview of how the competition has developed since its first run in 2005, and its relationship with the AI planning field. This run of the competition focused on translators that when input with some formal description in an application-area-specific language, output solver-ready domain models. Despite a ...

  4. MANUFACTURING AND TESTING OF A V-TYPE STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    B. Demir

    2012-01-01

    Full Text Available In this study, a V-type Stirling engine with 163 cc total swept volume was designed and manufactured. Air was used as working fluid. Performance tests were conducted at the range of 1-3 bar charge pressure and within the range of hot source temperature 700-1050 °C. Experimental results are given. Variation of engine power and torque with hot source temperature at various air charge pressure are tested. Also variation of engine torque with engine speed for different air charge pressure are tested. According to experimental analysis, the maximum engine power was obtained as 21.334 W at 1050 ˚C hot source temperature and 1.5 bars charge pressure.

  5. Joint Integration Test Facility (JITF) Engineering II Performance Measurement Plans

    National Research Council Canada - National Science Library

    Boucher, Joanne

    2001-01-01

    ..., effectiveness, and accountability in federal programs and spending. The plan establishes six separate performance measurements, which correlate directly to customer satisfaction, Intelligence Mission Application (IMA...

  6. Prototype Engineered Barrier System Field Tests

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.

    1989-01-01

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs

  7. STEM Teachers' Planned and Enacted Attempts at Implementing Engineering Design-Based Instruction

    Science.gov (United States)

    Capobianco, Brenda M.; Rupp, Madeline

    2014-01-01

    This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design-based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education.…

  8. Environmental Testing of the NEXT PM1R Ion Engine

    Science.gov (United States)

    Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2007-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test

  9. 40 CFR 86.336-79 - Diesel engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  10. Test plan for FY-91 dust control studies

    International Nuclear Information System (INIS)

    Winberg, M.R.

    1991-03-01

    This test plan defines basic test procedures for testing commercially available vendor products as soil fixatives and dust suppression agents to determine their capability to control fugitive dust generation during transuranic waste retrieval and handling operations. A description of the test apparatus and methods are provided in this test plan. This test plan defines the sampling procedures, controls, and analytical methods for the samples collected. Data management is discussed, as well as quality assurance and safety requirements for the study. 6 refs., 5 figs

  11. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck bellows

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The Rotary Mode Core Sampling Trucks (RMSCTs) currently use a multi-sectioned bellows between the grapple box and the quill rod to compensate for drill head motion and to provide a path for purge gas. The current bellows, which is detailed on drawing H-2-690059, is expensive to procure, has a lengthy procurement cycle, and is prone to failure. Therefore, a task has been identified to design, fabricate, and install a replacement bellows. This Engineering Task Plan (ETP) is the management plan document for accomplishing the identified tasks. Any changes in scope of the ETP shall require formal direction by the Characterization Engineering manager. This document shall also be considered the work planning document for developmental control per Development Control Requirements (HNF 1999a). This Engineering Task Plan (ETP) is the management plan document for accomplishing the design, fabrication, and installation of a replacement bellows assembly for the Rotary Mode Core Sampling Trucks 3 and 4 (RMCST)

  12. Engineering task plan for the development of a high pressure water drill system for BY-105 saltwell screen installation

    International Nuclear Information System (INIS)

    RITTER, G.A.

    1999-01-01

    This engineering task plan identifies the activities required for developing an ultra high pressure water drill system for installation of a saltwell screen in Tank BY-105. A water drill system is needed to bore through the hard waste material in this tank because of the addition of Portland cement in the 1960s and/or 1970s. The activities identified in this plan include the design, procurement, and qualification testing of the water drill along with readiness preparations including developing operating procedures, training Operations personnel, and conducting an assessment of readiness

  13. Retraining the Modern Civil Engineer.

    Science.gov (United States)

    Priscoli, Jerome Delli

    1983-01-01

    Discusses why modern engineering requires social science and the nature of planning. After these conceptional discussions, 12 practical tools which social science brings to engineering are reviewed. A tested approach to training engineers in these tools is then described. Tools include institutional analysis, policy profiling, and other impact…

  14. Two methodologies for physical penetration testing using social engineering

    NARCIS (Netherlands)

    Dimkov, T.; van Cleeff, A.; Pieters, Wolter; Hartel, Pieter H.

    2010-01-01

    Penetration tests on IT systems are sometimes coupled with physical penetration tests and social engineering. In physical penetration tests where social engineering is allowed, the penetration tester directly interacts with the employees. These interactions are usually based on deception and if not

  15. Pore pressure measurement plan of near field rock used on three dimensional groundwater flow analysis in demonstration test of cavern type disposal facility

    International Nuclear Information System (INIS)

    Onuma, Kazuhiro; Terada, Kenji; Matsumura, Katsuhide; Koyama, Toshihiro; Yajima, Kazuaki

    2008-01-01

    Demonstration test of underground cavern type disposal facilities is planed though carrying out construction of full scale engineering barrier system which simulated in the underground space in full scale and under actual environment. This test consists of three part, these are construction test, performance test and measurement test. Behavior of near field rock mass is measured about hydrological behavior under and after construction to evaluate effect at test facility. To make plan of pore pressure measurement, three dimensional groundwater flow analysis has been carried out. Based on comparison of analysis before and after test, detail plan has been studied. (author)

  16. Test report for cesium powder and pellets inner container decontamination method determination test

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1998-01-01

    This report documents the decontamination method determination testing that was performed on three cesium powder and pellets inner container test specimens The test specimens were provided by B and W Hanford Company (BVMC). The tests were conducted by the Numatec Hanford Company (NHC), in the 305 Building. Photographic evidence was also provided by NHC. The Test Plan and Test Report were provided by Waste Management Federal Services, Inc., Northwest Operations. Witnesses to testing included a test engineer, a BC project engineer, and a BC Quality Assurance (QA) representative. The Test Plan was modified with the mutual decision of the test engineer, the BWHC project engineer, and the BVMC QA representative. The results of this decision were written in red (permanent type) ink on the official copy of the test procedure, Due to the extent of the changes, a summary of the test results are provided in Section 3.0 of this Test Report. In addition, a copy of the official copy field documentation obtained during testing is included in Appendix A. The original Test Plan (HNF-2945) will be revised to indicate that extensive changes were required in the field during testing, however, the test documentation will stand as is (i.e., it will not be retyped, text shaded, etc.) due to the inclusion of the test parameters and results into this Test Report

  17. 40 CFR 89.407 - Engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... supplied to the engine, the fuel temperature, the intake air humidity, and the observed barometric pressure... permitted to precondition the engine at rated speed and maximum horsepower until the oil and water... completion of the test. (3) It is permissible to change filter elements between test modes. (4) A leak check...

  18. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in... operating the engine at the higher approved load setting during cycle 1 and at the lower approved load...

  19. Prototype Engineered Barrier System Field Test (PEBSFT)

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

    1991-08-01

    This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT

  20. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    Science.gov (United States)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  1. Environmental Testing of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2008-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.

  2. Using Optimization to Improve Test Planning

    Science.gov (United States)

    2017-09-01

    OPTIMIZATION TO IMPROVE TEST PLANNING by Arlene M. Payne September 2017 Thesis Advisor: Jeffrey E. Kline Second Reader: Oleg A. Yakimenko THIS... Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 2017 3. REPORT TYPE AND DATES COVERED Master’s...thesis 4. TITLE AND SUBTITLE USING OPTIMIZATION TO IMPROVE TEST PLANNING 5. FUNDING NUMBERS 6. AUTHOR(S) Arlene M. Payne 7. PERFORMING ORGANIZATION

  3. Tests of the Daimler D-IVa Engine at a High Altitude Test Bench

    Science.gov (United States)

    Noack, W G

    1920-01-01

    Reports of tests of a Daimler IVa engine at the test-bench at Friedrichshafen, show that the decrease of power of that engine, at high altitudes, was established, and that the manner of its working when air is supplied at a certain pressure was explained. These tests were preparatory to the installation of compressors in giant aircraft for the purpose of maintaining constant power at high altitudes.

  4. Test plan for preparing the Rapid Transuranic Monitoring Laboratory for field deployment

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

    1994-04-01

    This plan describes experimental work that will be performed during fiscal year 1994 to prepare the Rapid Transuranic Monitoring Laboratory (RTML) for routine field use by US Department of Energy (DOE) Environmental Restoration and Waste Management programs. The RTML is a mobile, field-deployable laboratory developed at the Idaho National Engineering Laboratory (INEL) that provides a rapid, cost-effective means of characterizing and monitoring radioactive waste remediation sites for low-level radioactive contaminants. Analytical instruments currently installed in the RTML include an extended-range, germanium photon analysis spectrometer with an automatic sample changer; two, large-area, ionization chamber alpha spectrometers; and four alpha continuous air monitors. The RTML was field tested at the INEL during June 1993 in conjunction with the Buried Waste Integrated Demonstration's remote retrieval demonstration. The major tasks described in this test plan are to (a) evaluate the beta detectors for use in screening soil samples for 90 Sr, (b) upgrade the alpha spectral analysis software programs, and (c) upgrade the photon spectral analysis software programs

  5. Software for Preprocessing Data from Rocket-Engine Tests

    Science.gov (United States)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  6. Engineering Task Plan to Expand the Environmental Operational Envelope of Core Sampling

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    This Engineering Task Plan authorizes the development of an Alternative Generation and Analysis (AGA). The AGA will determine how to expand the environmental operating envelope during core sampling operations

  7. Test plan for determining breathing rates in single shell tanks using tracer gases. Revision 1

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1997-01-01

    This test plan specifies the requirements and conditions for the injection of tracer gas (Helium (He)) into single shell tanks to determine breathing rates using periodic sampling. The eight tanks which have been selected at the time this Test Plan was developed are A-101, AX-102, AX-103, BY-105, C-107, U-103 (U-103 is counted twice, once during the winter months and once during the summer), and U-105. Other tanks to be sampled will be assigned by Pacific Northwest National Laboratory (PNNL) at a later date in the study process as resources allow, the document shall be revised as required. The sampling of headspace for each of these tanks shall be performed using available risers or the Standard Hydrogen Monitoring System (SHMS) cabinet as available. The tank farm vapor cognizant engineer shall assign the injection and sample testing point for each tank and document the point in the field work package. SUMMA TMI canisters, equipped in-line with dual particulate air filters and two silica gel sorbent traps will be used to collect the gas samples. The purpose of dual particulate air filters is to ensure no radioactive particulates are transferred to the SUMMA TMI canisters. The silica gel sorbent traps will effectively eliminate any tritiated water vapor that may be present in the sample gas stream. PNNL shall supply the tracer gases injection system and shall perform the analysis on the headspace samples. TWRS Characterization project shall inject the tracer gas and perform the sampling. Refer to Engineering Task Plan HNF-SD-TWR-ETP-002 for a detailed description of the responsibilities for this task

  8. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  9. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  10. Systems Engineering Plan and project record Configuration Management Plan for the Mixed Waste Disposal Initiative

    International Nuclear Information System (INIS)

    Bryan, W.E.; Oakley, L.B.

    1993-04-01

    This document summarizes the systems engineering assessment that was performed for the Mixed Waste Disposal Initiative (MWDI) Project to determine what types of documentation are required for the success of the project. The report also identifies the documents that will make up the MWDI Project Record and describes the Configuration Management Plan describes the responsibilities and process for making changes to project documentation

  11. Plan on test to failure of a prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Takumi, K.; Nonaka, A.; Umeki, K.; Nagata, K.; Soejima, M.; Yamaura, Y.; Costello, J.F.; Riesemann, W.A. von.; Parks, M.B.; Horschel, D.S.

    1992-01-01

    A summary of the plans to test a prestressed concrete containment vessel (PCCV) model to failure is provided in this paper. The test will be conducted as a part of a joint research program between the Nuclear Power Engineering Corporation (NUPEC), the United States Nuclear Regulatory Commission (NRC), and Sandia National Laboratories (SNL). The containment model will be a scaled representation of a PCCV for a pressurized water reactor (PWR). During the test, the model will be slowly pressurized internally until failure of the containment pressure boundary occurs. The objectives of the test are to measure the failure pressure, to observe the mode of failure, and to record the containment structural response up to failure. Pre- and posttest analyses will be conducted to forecast and evaluate the test results. Based on these results, a validated method for evaluating the structural behavior of an actual PWR PCCV will be developed. The concepts to design the PCCV model are also described in the paper

  12. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  13. Investigation of the loss of forced cooling test by using the high temperature engineering test reactor (HTTR) (Contract research)

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Inaba, Yoshitomo; Goto, Minoru; Tochio, Daisuke

    2007-09-01

    The three gas circulators trip test and the vessel cooling system stop test as the safety demonstration test by using the High Temperature engineering Test Reactor (HTTR) are under planning to demonstrate inherent safety features of High Temperature Gas-cooled Reactor. All three gas circulators to circulate the helium gas as the coolant are stopped to simulate the loss of forced cooling in the three gas circulators trip test. The stop of the vessel cooling system located outside the reactor pressure vessel to remove the residual heat of the reactor core follows the stop of all three gas circulators in the vessel cooling system stop test. The analysis of the reactor transient for such tests and abnormal events postulated during the test was performed. From the result of analysis, it was confirmed that the three gas circulators trip test and the vessel cooling system stop test can be performed within the region of the normal operation in the HTTR and the safety of the reactor facility is ensured even if the abnormal events would occur. (author)

  14. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.96 Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which...

  15. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  16. A test case of computer aided motion planning for nuclear maintenance operation

    International Nuclear Information System (INIS)

    Schmitzberger, E.; Bouchet, J.L.; Schmitzberger, E.

    2001-01-01

    Needs for improved tools for nuclear power plant maintenance preparation are expressed by EDF engineering. These are an easier and better management of logistics constraints such as free spaces for motions or handling tasks. The lack of generic or well suited tools and the specificity of nuclear maintenance operation have led EDF R and D to develop its own motion planning tools in collaboration with LAAS-CNRS, Utrecht University and the software publisher CADCENTRE within the framework of the three years Esprit LTR project MOLOG. EDF users needs will be summed up in the first part of the paper under the title ''Motion feasibility studies for maintenance operation'' and then compared to the current industrial offer in the ''Software's background'''s part. The definition and objectives ''Towards motion planning tools'' follows. It explains why maintenance preparation pertains to automatic motion planning and how it makes studies much simpler. The ''MOLOG's Benchmark and first result'''s part describes the test-case used to evaluate the MOLOG project and gives an outlook at the results obtained so far. (author)

  17. NASA software documentation standard software engineering program

    Science.gov (United States)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  18. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    Science.gov (United States)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  19. Integration and test planning patterns in different organizations

    NARCIS (Netherlands)

    Jong, de I.S.M.; Boumen, R.; Mortel - Fronczak, van de J.M.; Rooda, J.E.; Tretmans, J.

    2007-01-01

    Planning an integration and test phase is often done by experts in the visited organizations. These experts have a thorough knowledge about the system, integration and testing and the business drivers of an organization. An integration and test plan developedfor an airplane is different than the

  20. Space Shuttle Main Engine Public Test Firing

    Science.gov (United States)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  1. Geotechnical information as an important element when planning and designing civil engineering work Bogotá

    OpenAIRE

    Denisse Cangrejo Aljure; Carlos Gustavo Infante

    2010-01-01

    The city of Bogota provides a dynamic scenario re civil construction work; it is thereby essential to have relevant information available for the suitable planning and evaluation of engineering work from both the structural and budgetary points of view. The moisture content of soil has become a most important variable, given its great impact on placing structures in Bogota. This is why this work on city zoning aimed at orientating planning and designing civil engineering work has been done a...

  2. Methodology to improve design of accelerated life tests in civil engineering projects.

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available For reliability testing an Energy Expansion Tree (EET and a companion Energy Function Model (EFM are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  3. Methodology to improve design of accelerated life tests in civil engineering projects.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  4. Surface moisture measurement system acceptance testing work plan

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    This work plan addresses testing of the Surface Moisture Measurement System (SMMS) at the Fuels and Materials Examination Facility (FMEF). The purpose of this plan is to define the scope of work, identify organizational responsibilities, describe test control requirements, and provide estimated costs and schedule associated with acceptance testing

  5. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    Science.gov (United States)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  6. 14 CFR 33.91 - Engine system and component tests.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system and..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  7. Role of well testing in civil engineering

    International Nuclear Information System (INIS)

    Banks, D.

    1981-01-01

    Purpose of well testing is to derive a value of the permeability of the geologic medium or to measure the velocity or quantity of fluid flow. The types of tests typically employed on civil engineering projects are simple borehole tests, packer or pressure tests in boreholes, permeameter tests, well pumping tests, and in-hole tests using well flow meters or tracer tests. New problem areas which demand new approaches are mentioned

  8. Test plan for a live drum survey using the gamma-neutron sensor

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Roybal, L.G.; Thompson, D.N.

    1995-07-01

    This plan describes performance tests to be made with the Gamma/Neutron Sensor (GNS), which that was designed and built for infield assay at an excavation site. The performance tests will be performed in Building WMF-628 in the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory on stored 55-gal drums of transuranic waste from the Rocky Flats Plant. The GNS is mounted on a wooden pallet that will allow horizontal and vertical scans of the stacked drums. Scanning speed and GNS sensitivity for gamma and neutron radiation fields will be estimated. Effects of temperature, electronic, and acoustic noise will be evaluated. Two- and three-dimensional plots of radiation field as a function of position will be developed from the data

  9. Research program plan: steam generators

    International Nuclear Information System (INIS)

    Muscara, J.; Serpan, C.Z. Jr.

    1985-07-01

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  10. Site study plan for EDBH [Engineering Design Boreholes] No. 1 and 2: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This site study plan describes the Engineering Design Boreholes 1 and 2 field activities to be conducted during early stages of Site Characterization at the Deaf Smith County site, Texas. The field program has been designed to provide data useful in addressing information/data needs resulting from federal/state/local regulations and repository program requirements. A borehole will be drilled at the centerline of each of the planned exploratory shaft locations. The subsurface rock and fluids will be sampled as the boreholes are advanced to total depth of about 2600 ft. Continuous rock core will be taken below the base of the Dockum Group. Hydrologic testing will occur in units thought to be water bearing and in units of particular interest for shaft seals. Field methods/tests are chosen that provide the best or only means of obtaining the required data. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. Drilling will not begin until after site ground-water baseline conditions have been established. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 28 refs., 10 figs., 4 tabs

  11. Design and test of aircraft engine isolators for reduced interior noise

    Science.gov (United States)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  12. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rader, Jordan D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examination facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.

  13. 40 CFR 90.1204 - Maintenance, aging and testing of engines.

    Science.gov (United States)

    2010-07-01

    ... engines. 90.1204 Section 90.1204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... sample unless that engine experiences catastrophic mechanical failure or safety concerns requiring major... for engines with the amount of service and age of the test engine. (d) After aging each engine to at...

  14. Test plan for ISV laboratory-pyrolysis testing

    Energy Technology Data Exchange (ETDEWEB)

    McAtee, R.E.

    1991-09-01

    The objective of the laboratory-pyrolysis studies is to obtain information on the high temperature (< 1200{degree}C) degradation and alteration of organic chemicals and materials similar to those found in the Radioactive Waste Management Complex, Pit 9. This test plan describes experimental procedures, sampling and analysis strategy, sampling procedures, sample control, and document management. It addresses safety issues in the experimental apparatus and procedures, personal training, and hazardous waste disposal. Finally, it describes the data quality objectives using the EPA tiered approach to treatability studies to define where research/scoping tests fit into these studies and the EPA analytical levels required for the tests.

  15. 40 CFR 1048.301 - When must I test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... engines? 1048.301 Section 1048.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.301 When must I test my production-line engines? (a) If you produce engines...

  16. Test Room Stability Plan

    International Nuclear Information System (INIS)

    1993-01-01

    This plan documents the combination of designs, installations, programs, and activities that ensures that the underground excavations at the Waste Isolation Pilot Plant (WIPP), in which transuranic (TRU) waste may be emplaced during the Test Phase, will remain sufficiently stable and safe during that time. The current ground support systems installed at the WIPP are the result of over ten years of data collection from hundreds of geomechanical instruments and thousands of hours of direct observation of the changing conditions of the openings. In addition, some of the world's most respected experts on salt rock mechanics have provided input in the design process and concurrence on the suitability of the final design. The general mine rockbolt pattern and the ground support system for the test rooms are designed to specifically address the fracture and deformation geometries observed today at the WIPP. After an introductory chapter, this plan describes the general underground design, then proceeds to an account of general ground support performance, and finally focuses on the details of the special test room ground support systems. One such system already installed in Room 1, Panel 1, is described in comprehensive detail. Other test rooms in Panel 1, whether full-size or smaller, will be equipped with systems that ensure stability to the same or equivalent extent. They will benefit from the experience gained in the first test room, which in turn benefitted from the data and knowledge accumulated during previous stages (e.g., the Site and Preliminary Design Validation program) of the project

  17. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  18. Introduction to nuclear test engineering

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Paquette, D.L.

    1982-01-01

    The basic information in this report is from a vu-graph presentation prepared to acquaint new or prospective employees with the Nuclear Test Engineering Division (NTED). Additional information has been added here to enhance a reader's understanding when reviewing the material after hearing the presentation, or in lieu of attending a presentation

  19. Surface stability test plan for protective barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1989-01-01

    Natural-material protective barriers for long-term isolation of buried waste have been identified as integral components of a plan to isolate a number of Hanford defense waste sites. Standards currently being developed for internal and external barrier performance will mandate a barrier surface layer that is resistant to the eolian erosion processes of wind erosion (deflation) and windborne particle deposition (formation of sand dunes). Thus, experiments are needed to measure rates of eolian erosion processes impacting those surfaces under different surface and climatological conditions. Data from these studies will provide information for use in the evaluation of selected surface layers as a means of providing stable cover over waste sites throughout the design life span of protective barriers. The multi-year test plan described in this plan is directed at understanding processes of wind erosion and windborne particle deposition, providing measurements of erosion rates for models, and suggesting construction materials and methods for reducing the effect of long-term eolian erosion on the barrier. Specifically, this plan describes possible methods to measure rates of eolian erosion, including field and laboratory procedure. Advantages and disadvantages of laboratory (wind tunnel) tests are discussed, and continued wind tunnel tests are recommended for wind erosion studies. A comparison between field and wind tunnel erosive forces is discussed. Plans for testing surfaces are described. Guidance is also presented for studying the processes controlling sand dune and blowout formation. 24 refs., 7 figs., 3 tabs

  20. Generating custom test plans for CASE{sup *}Dictionary 5.0

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, K.D. [Boeing Computer Services, Richland, WA (United States)

    1994-04-01

    Most database development organizations use a formal software development methodology that requires a certain amount of formal testing. The amount of formal testing that will be performed will vary from methodology to methodology and from site to site. If a very detailed formal test plan is required for each module in a system, the work involved to produce the test plan can be tedious and costly. After a system has been designed and developed using Oracle*CASE, there is much useful information in the CASE*Dictionary repository. If this information could be tied to specific test requirements, a test plan could be generated automatically, saving much time and resources. This paper shows how CASE*Dictionary can be used to store test plan information that can then be used to generate a specific test plan for each module based on it`s detailed data usage.

  1. Safety demonstration test (SR-1/S1C-1) plan of HTTR (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Shigeaki; Sakaba, Nariaki; Takada, Eiji; Tachibana, Yukio; Saito, Kenji; Furusawa, Takayuki; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Safety demonstration tests in the HTTR (High Temperature Engineering Test Reactor) will be carried out in order to verify inherent safety features of the HTGR (High Temperature Gas-cooled Reactor). The first phase of the safety demonstration tests includes the reactivity insertion test by the control rod withdrawal and the coolant flow reduction test by the circulator trip. In the second phase, accident simulation tests will be conducted. By comparison of their experimental and analytical results, the prediction capability of the safety evaluation codes such as the core and the plant dynamics codes will be improved and verified, which will contribute to establish the safety design and the safety evaluation technologies of the HTGRs. The results obtained through its safety demonstration tests will be also utilised for the establishment of the safety design guideline, the safety evaluation guideline, etc. This paper describes the test program of the overall safety demonstration tests and the test method, the test conditions and the results of the pre-test analysis of the reactivity insertion test and the partial gas circulator trip test planned in March 2003. (author)

  2. Test plan for glove box testing with the real-time transuranic dust monitor

    International Nuclear Information System (INIS)

    Partin, J.K.; Fincke, J.R.

    1994-10-01

    This test plan describes the objectives, instrumentation, and testing procedures used to prove the feasibility of a real-time transuranic dust monitor (RTDM). The RTDM is under development at the Idaho National Engineering Laboratory (INEL) as a Waste Characterization Technology funded by the Buried Waste Integrated Demonstration Project. The instrument is an in situ monitor that uses optical techniques to establish particle size, particle number density, and mass and species of heavy metal contamination. US Department of Energy orders mandate the assessment of radiological exposure and contamination spread during the remediation of radioactive waste. Of particular concern is heavy metal contamination of dust, both radioactive and nonradioactive. Small particles of metal, particularly the radioactive species, tend to become electrically charged and consequently attach themselves to dust particles. This airborne activated dust is a primary means of contamination transport during remediation activities, and therefore, must be continuously monitored to protect personnel involved in the operations and to control the spread of contamination. If real-time monitoring is not available there is increased likelihood of generating unacceptably high levels of contamination and being forced to shut down costly retrieval operations to decontaminate. A series of experiments are described to determine the optimal experimental design, operational parameters, and levels of detection for the RTDM. Initial screening will be performed using monodisperse particle standards to set parameters and calibrate the instrument. Additional testing will be performed using INEL soil samples spiked with a surrogate, cerium oxide, to prove the design before transporting the apparatus to the Test Reactor Area for testing with plutonium-contaminated dusts

  3. Role of testing in requalifying Transamerica Delaval, Inc., engines for nuclear service

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Dingee, D.A.; Laity, W.W.

    1985-03-01

    This paper discusses the role of testing in requalifying Transamerica Delaval, Inc. (TDI) diesel generators for use as emergency standby power sources at nuclear power plants. ''Lead'' engine tests (to confirm the design adequacy of key engine components under conditions that could induce high-cycle fatigue) and ''following'' engine tests (for engines of the same model and equipped with the same components as the ''lead'' engine) have been conducted at several nuclear power plants. The tests conducted by Duke Power Company (Catawba Nuclear Station Unit 1) and Long Island Lighting Company (Shoreham Nuclear Power Station Unit 1) are discussed. 2 refs

  4. A test case of computer aided motion planning for nuclear maintenance operation

    Energy Technology Data Exchange (ETDEWEB)

    Schmitzberger, E.; Bouchet, J.L. [Electricite de France (EDF), Dept. Surveillance Diagnostic Maintenance, 78 - Chatou (France); Schmitzberger, E. [Institut National Polytechnique, CRAN, 54 - Vandoeuvre les Nancy (France)

    2001-07-01

    Needs for improved tools for nuclear power plant maintenance preparation are expressed by EDF engineering. These are an easier and better management of logistics constraints such as free spaces for motions or handling tasks. The lack of generic or well suited tools and the specificity of nuclear maintenance operation have led EDF R and D to develop its own motion planning tools in collaboration with LAAS-CNRS, Utrecht University and the software publisher CADCENTRE within the framework of the three years Esprit LTR project MOLOG. EDF users needs will be summed up in the first part of the paper under the title ''Motion feasibility studies for maintenance operation'' and then compared to the current industrial offer in the ''Software's background'''s part. The definition and objectives ''Towards motion planning tools'' follows. It explains why maintenance preparation pertains to automatic motion planning and how it makes studies much simpler. The ''MOLOG's Benchmark and first result'''s part describes the test-case used to evaluate the MOLOG project and gives an outlook at the results obtained so far. (author)

  5. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control Systemm (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable

  6. High-voltage engineering and testing

    CERN Document Server

    Ryan, Hugh M

    2013-01-01

    This 3rd edition of High Voltage Engineering Testing describes strategic developments in the field and reflects on how they can best be managed. All the key components of high voltage and distribution systems are covered including electric power networks, UHV and HV. Distribution systems including HVDC and power electronic systems are also considered.

  7. 40 CFR 1048.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Science.gov (United States)

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...

  8. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    Science.gov (United States)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  9. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine dynamometer... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to gasoline...

  10. Engineering task plan for flammable gas atmosphere mobile color video camera systems

    International Nuclear Information System (INIS)

    Kohlman, E.H.

    1995-01-01

    This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and testing of the mobile video camera systems. The color video camera systems will be used to observe and record the activities within the vapor space of a tank on a limited exposure basis. The units will be fully mobile and designed for operation in the single-shell flammable gas producing tanks. The objective of this tank is to provide two mobile camera systems for use in flammable gas producing single-shell tanks (SSTs) for the Flammable Gas Tank Safety Program. The camera systems will provide observation, video recording, and monitoring of the activities that occur in the vapor space of applied tanks. The camera systems will be designed to be totally mobile, capable of deployment up to 6.1 meters into a 4 inch (minimum) riser

  11. 40 CFR 1045.301 - When must I test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... engines? 1045.301 Section 1045.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.301 When must I test my production-line engines? (a) If you produce...

  12. Understanding safety and production risks in rail engineering planning and protection.

    Science.gov (United States)

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  13. Program plan for US Department of Energy support for nuclear engineering education

    International Nuclear Information System (INIS)

    Perkins, L.

    1992-01-01

    This document describes the plan developed to address the growing concern for the continued deterioration of nuclear engineering education in the United States and its ability to meet the manpower demands for this Nation's work force requiring nuclear related talent in the foreseeable future

  14. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  15. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan

  16. Nevada Test Site Resource Management Plan: Annual summary, January 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The Nevada Test Site Resource Management Plan published in December of 1998 (DOE/NV--518) describes the Nevada Test Site stewardship mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. As part of the Nevada Test Site Resource Management Plan, DOE Nevada Operations Office has committed to perform and publish an annual summary review of DOE Nevada Operations' stewardship of the Nevada Test Site. This annual summary includes a description of progress made toward the goals of the Nevada Test Site Resource Management Plan, pertinent monitoring data, actions that were taken to adapt to changing conditions, and any other changes to the Nevada Test Site Resource Management Plan.

  17. 40 CFR Appendix A to Subpart G of... - Sampling Plans for Selective Enforcement Auditing of Marine Engines

    Science.gov (United States)

    2010-07-01

    ... Enforcement Auditing of Marine Engines A Appendix A to Subpart G of Part 91 Protection of Environment...-IGNITION ENGINES Selective Enforcement Auditing Regulations Pt. 91, Subpt. G, App. A Appendix A to Subpart G of Part 91—Sampling Plans for Selective Enforcement Auditing of Marine Engines Table 1—Sampling...

  18. New engine method for biodiesel cetane number testing

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2008-01-01

    Full Text Available Substitution of fossil fuels with fuels that come from part renewable sources has been a subject of many studies and researches in the past decade. Considering the higher cost and limits of production resources, a special attention is focused on raising the energy efficiency of biofuel usage, mainly through optimization of the combustion process. Consequently, in biofuel applications, there is a need for determination of auto-ignition quality expressed by cetane number as a dominant characteristic that influences combustion parameters. The fact that the method for cetane number determination is comparative in nature has led us to try to develop substitute engine method for cetane number determination, by the use of the available laboratory equipment and serial, mono-cylinder engine with direct injection, DMB LDA 450. Description of the method, results of optimization of engine’s working parameters for conduction of the test and method’s Accuracy estimation are given in the paper. The paper also presents the results of domestic biodiesel fuels cetane number testing with the application of described engine method, developed at the Laboratory for internal combustion engines and fuels and lubricants of the Faculty of Mechanical Engineering from Kragujevac, Serbia.

  19. Engineering, installation, testing, and initial operation of the DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Andersen, P.M.; Baxi, C.B.; Reis, E.E.; Schaffer, M.J.; Smith, J.P.

    1990-09-01

    The Advanced Divertor (AD) for General Atomics tokamak, DIII-D, was installed in the summer of 1990. The AD has enabled two classes of physics experiments to be run: divertor biasing and divertor baffling. Both are new experiments for DIII-D. The AD has two principal components: (1) a continuous ring electrode; and (2) a toroidally symmetric baffle. The tokamak can be run in bias baffle or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D control system. The paper covers design, analysis, fabrication, installation, instrumentation, testing, initial operation, and future plans for the Advanced Divertor from an engineering viewpoint. 2 refs., 5 figs

  20. F-1 Engine for Saturn V Undergoing a Static Test

    Science.gov (United States)

    1964-01-01

    The flame and exhaust from the test firing of an F-1 engine blast out from the Saturn S-IB Static Test Stand in the east test area of the Marshall Space Flight Center. A Cluster of five F-1 engines, located in the S-IC (first) stage of the Saturn V vehicle, provided over 7,500,000 pounds of thrust to launch the giant rocket. The towering 363-foot Saturn V was a multistage, multiengine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  1. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  2. Engineering Task Plan for the Integrity Assessment Examination of Double-Contained Receiver Tanks (DCRT), Catch Tanks and Ancillary facilities

    International Nuclear Information System (INIS)

    BECKER, D.L.

    2000-01-01

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan

  3. The importance of pre-planning for large hydrostatic test programs

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Andrew Keith [WorleyParsons Calgary, Calgary, AB (Canada); Wong, Everett Clementi [Enbridge Pipelines Inc., Edmonton, AB (Canada)

    2010-07-01

    During the design phase of a pipeline project, large hydrostatic test programs are required to locate and secure water sources. Many companies complete hydrostatic test planning through high level desktop analysis, however this technique can result in important unplanned costs and schedule delays. The aim of this paper is to assess the cost benefits of pre-planning large hydrostatic test programs versus the costs of unplanned delays in the execution of hydrostatic testing. This comparison was based on the successful application of pre-planning of 57 mainline hydrostatic tests in the construction of the Line 4 Extension and Alberta Clipper Expansion oil pipelines by Enbridge Pipelines Inc. Results showed that costs of delays and uncertainty during construction far outweigh the costs of pre-planning. This study highlighted that pre-planning for large hydrostatic test programs should be carried out in the execution of large pipeline projects to ensure success.

  4. Site systems engineering fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.2; TOPICAL

    International Nuclear Information System (INIS)

    GRYGIEL, M.L.

    1998-01-01

    Manage the Site Systems Engineering process to provide a traceable integrated requirements-driven, and technically defensible baseline. Through the Site Integration Group(SIG), Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering's primary interfaces are with the RL Project Managers, the Project Direction Office and with the Project Major Subcontractors, as well as with the Site Planning organization. Systems Implementation: (1) Develops, maintains, and controls the site integrated technical baseline, ensures the Systems Engineering interfaces between projects are documented, and maintain the Site Environmental Management Specification. (2) Develops and uses dynamic simulation models for verification of the baseline and analysis of alternatives. (3) Performs and documents fictional and requirements analyses. (4) Works with projects, technology management, and the SIG to identify and resolve technical issues. (5) Supports technical baseline information for the planning and budgeting of the Accelerated Cleanup Plan, Multi-Year Work Plans, Project Baseline Summaries as well as performance measure reporting. (6) Works with projects to ensure the quality of data in the technical baseline. (7) Develops, maintains and implements the site configuration management system

  5. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  6. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  7. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  8. Test plan for spent fuel cladding containment credit tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-11-01

    Lawrence Livermore National Laboratory has chosen Westinghouse Hanford Company as a subcontractor to assist them in determining the requirements for successful disposal of spent fuel rods in the proposed Nevada Test Site repository. An initial scoping test, with the objective of determining whether or not the cladding of a breached fuel rod can be given any credit as an effective barrier to radionuclide release, is described in this test plan. 8 references, 2 figures, 4 tables

  9. 40 CFR Appendix A to Subpart F of... - Sampling Plans for Selective Enforcement Auditing of Nonroad Engines

    Science.gov (United States)

    2010-07-01

    ... Enforcement Auditing of Nonroad Engines A Appendix A to Subpart F of Part 89 Protection of Environment... NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing Pt. 89, Subpt. F, App. A Appendix A to Subpart F of Part 89—Sampling Plans for Selective Enforcement Auditing of Nonroad Engines Table 1—Sampling...

  10. V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.

    Science.gov (United States)

    Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae

    2018-02-01

    Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.

  11. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    International Nuclear Information System (INIS)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program

  12. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    Science.gov (United States)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  13. Reviews of the In-situ Demonstration Test of the Engineered Barrier System in Many Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many nations considering the deep geologic disposal of HLW are now planning or executing in-situ demonstration experiments on their regional EBS (Engineering barrier system) at their deep underground research facilities. The main purpose of the in-situ EBS test is the experimental confirmation of its performance, and the prediction of its long-term evolution through the modeling of EBS based on the experimental data. Additionally, the engineering feasibility for the construction of an engineering barrier system can also be checked through full scale construction of an in-situ test. KAERI is currently preparing an in-situ test at a large 1/3 scale, called IN-DEBS (In-situ Demonstration of EBS) at KURT (KAERI Underground Research Tunnel) for the generic EBS suggested in A-KRS (Advanced KAERI Reference System), which was developed to treat the HLW from pyroprocessing. As the first step for the design of IN-DEBS, the foreign in-situ demonstrations of EBS were reviewed in this paper. The demonstration projects, which were completed or are still being executed in some countries such as Sweden, France, Finland, Canada, Belgium, Switzerland, Spain, and Japan, were surveyed and summarized. In particular, hardware constitutions such as the heating element or compact bentonite, and the experimental procedures, have focused more on reviews than on experimental results in this survey, since their hardware information is very important for the design of the IN-DEBS.

  14. Reviews of the In-situ Demonstration Test of the Engineered Barrier System in Many Countries

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heui Joo

    2013-01-01

    Many nations considering the deep geologic disposal of HLW are now planning or executing in-situ demonstration experiments on their regional EBS (Engineering barrier system) at their deep underground research facilities. The main purpose of the in-situ EBS test is the experimental confirmation of its performance, and the prediction of its long-term evolution through the modeling of EBS based on the experimental data. Additionally, the engineering feasibility for the construction of an engineering barrier system can also be checked through full scale construction of an in-situ test. KAERI is currently preparing an in-situ test at a large 1/3 scale, called IN-DEBS (In-situ Demonstration of EBS) at KURT (KAERI Underground Research Tunnel) for the generic EBS suggested in A-KRS (Advanced KAERI Reference System), which was developed to treat the HLW from pyroprocessing. As the first step for the design of IN-DEBS, the foreign in-situ demonstrations of EBS were reviewed in this paper. The demonstration projects, which were completed or are still being executed in some countries such as Sweden, France, Finland, Canada, Belgium, Switzerland, Spain, and Japan, were surveyed and summarized. In particular, hardware constitutions such as the heating element or compact bentonite, and the experimental procedures, have focused more on reviews than on experimental results in this survey, since their hardware information is very important for the design of the IN-DEBS

  15. Failure-censored accelerated life test sampling plans for Weibull distribution under expected test time constraint

    International Nuclear Information System (INIS)

    Bai, D.S.; Chun, Y.R.; Kim, J.G.

    1995-01-01

    This paper considers the design of life-test sampling plans based on failure-censored accelerated life tests. The lifetime distribution of products is assumed to be Weibull with a scale parameter that is a log linear function of a (possibly transformed) stress. Two levels of stress higher than the use condition stress, high and low, are used. Sampling plans with equal expected test times at high and low test stresses which satisfy the producer's and consumer's risk requirements and minimize the asymptotic variance of the test statistic used to decide lot acceptability are obtained. The properties of the proposed life-test sampling plans are investigated

  16. DEEP VADOSE ZONE TREATABILITY TEST PLAN

    International Nuclear Information System (INIS)

    Chronister, G.B.; Truex, M.J.

    2009-01-01

    (sm b ullet) Treatability test plan published in 2008 (sm b ullet) Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) (sm b ullet) Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

  17. Variable speed gas engine-driven air compressor system

    Science.gov (United States)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  18. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE RAMGEN ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Koopman

    2003-07-01

    The research and development effort of a new kind of compressor and engine is presented. The superior performance of these two products arises from the superior performance of rotating supersonic shock-wave compression. Several tasks were performed in compliance with the DOE award objectives. A High Risk Technology review was conducted and evaluated by a team of 20 senior engineers and scientists representing various branches of the federal government. The conceptual design of a compression test rig, test rotors, and test cell adaptor was completed. The work conducted lays the foundation for the completed design and testing of the compression test rig, and the design of a supersonic shock-wave compressor matched to a conventional combustor and turbine.

  19. 40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.

    Science.gov (United States)

    2010-07-01

    ... device, the exhaust pipe must be the same diameter as found in-use for at least 4 pipe diameters upstream... Exhaust Test Procedures § 86.1327-96 Engine dynamometer test procedures; overview. (a) The engine.... The exhaust emissions are diluted with ambient air and a continuous proportional sample is collected...

  20. Gallium-cladding compatibility testing plan: Phase 3: Test plan for centrally heated surrogate rodlet test. Revision 2

    International Nuclear Information System (INIS)

    Morris, R.N.; Baldwin, C.A.; Wilson, D.F.

    1998-07-01

    The Fissile Materials Disposition Program (FMDP) is investigating the use of weapons grade plutonium in mixed oxide (MOX) fuel for light-water reactors (LWR). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons derived fuel may differ from the previous commercial fuels because of small amounts of gallium impurities. A concern presently exists that the gallium may migrate out of the fuel, react with and weaken the clad, and thereby promote loss of fuel pin integrity. Phases 1 and 2 of the gallium task are presently underway to investigate the types of reactions that occur between gallium and clad materials. This is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. This Plan summarizes the projected Phase 3 Gallium-Cladding compatibility heating test and the follow-on post test examination (PTE). This work will be performed using centrally-heated surrogate pellets, to avoid unnecessary complexities and costs associated with working with plutonium and an irradiation environment. Two sets of rodlets containing pellets prepared by two different methods will be heated. Both sets will have an initial bulk gallium content of approximately 10 ppm. The major emphasis of the PTE task will be to examine the material interactions, particularly indications of gallium transport from the pellets to the clad

  1. AJ26 rocket engine testing news briefing

    Science.gov (United States)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  2. Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

    Directory of Open Access Journals (Sweden)

    Ravindra

    2018-01-01

    Full Text Available Awareness of environmental pollution and fossil fuel depletion has necessitated the use of biofuels in engines which have a relatively cleaner emissions. Cardanol is a biofuel, abundantly available in India, which is a by-product of cashew processing industries. In this study performance of raw Cardanol blended with kerosene has been tested in diesel engine. Volumetric blend BK30 (30% kerosene and 70% Cardanol has been used for the test. The properties like flash point, viscosity and calorific value of the blend have been determined. The test was carried out in four stroke diesel engine connected with an eddy current dynamometer. Performance of the engine has been analysed by finding the brake specific fuel consumption (BSFC and brake thermal efficiency (BTE. The results showed that the brake thermal efficiency of the blend is 29.87%, with less CO and smoke emission compared to diesel. The results were also compared with the performance of Cardanol diesel blend and Cardanol camphor oil blend, which were already tested in diesel engines by other researchers. Earlier research work reveals that the blend of 30% camphor oil and 70% Cardanol performs very closer to diesel fuel with a thermal efficiency of 29.1%. Similarly, higher brake thermal efficiency was obtained for 20% Cardanol and 80% diesel blend.

  3. Doublet III construction and engineering test

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Progress during FY-78 on the construction and operation of the Doublet III is reported. Detailed discussions about the installation and testing of various components and subsystems, including the B-coil, E-coil, F-coils and support structure, vacuum vessel, vacuum pumping system, limiter, thermal insulation blanket, control system, B-coil power system, E-coil power system, F-coil power system, and motor-generator, are presented. A brief review of the engineering test operation is given

  4. SERC corporate plan 1993

    International Nuclear Information System (INIS)

    1993-03-01

    In its last Corporate Plan, the Science and Engineering Research Council (SERC) planned wide-ranging policy and programme reviews. These have been carried out and the results set the context for this plan. In addition, the SERC is responding to major changes in the higher education sector and a difficult financial climate. The Plan has been prepared before the Government's proposed White Paper on science and technology is available but is consistent with the SERC's advice on the White Paper. The SERC's ''mission statement'' recognises its dual role of strengthening the United Kingdom's capabilities in fundamental research and of developing capabilities in strategic research related to industrial and social need. Six strategic aims are identified: the funding of a portfolio of excellent research which contributes both to advancement of knowledge, and economic and social advance, the support of the training of scientists and engineers, the improvement of knowledge transfer within the ''science and engineering base'' and between this base and industry, the promotion of effective international collaboration, increasing the public awareness of research in science and engineering and improving the economy, efficiency and effectiveness of all of the SERC's operations. Within its programme expenditure, the SERC will examine whether funding should be extended to a wider range of bodies; develop new, more efficient, ways of funding higher education institutes (HEI) research; increase emphasis on output measures of research; specify service standards; and market-test scientific support activities. The SERC will make gains of at least 1.5% a year in efficiency of administration, through measures including market testing, and will extend management accounting systems. (Author)

  5. Development of GE90 engine with largest thrust. GE90 engine no kaihatsu jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Aono, H [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    The present paper explained the turbofan engine GE90 which is being developed by General Electric Co., USA. That engine is to meet the thrust (takeoff thrust) of 300 to 530kN as required for the new-generation wide-fuselage civil transport plane which is being designed for its planned operation in the 1990's. In April, 1991, the world's strongest thrust of 480kN was achieved with engine elements also confirmed through element test. Thereafter, the engine underwent a flying test on board of Boeing 747 to materialize the planned operation in 1995. Made to be 9 in by-pass ratio and about 40 in overall pressure ratio, the GE90 was given the concept that advantage could be secured in both propulsive efficiency and thermal efficiency. That concept could be materialized by the development of composite fan blade technology and energy-efficient technology which were both demonstrated with an unducted fan. In spite of its pressure ratio of 22, the GE90's high pressure compressor demonstrates its polytropic efficiency which is equal to that of the low pressure ratio compressor. 3 refs., 19 figs., 1 tab.

  6. 412th Test Engineering Group Vision for Future Knowledge Management (KM)

    Science.gov (United States)

    2018-05-17

    Presentation 3. DATES COVERED (From - To) 17 May 2018 4. TITLE AND SUBTITLE 412th Test Engineering Group Vision for Future Knowledge Management (KM... Engineering Group 307 E. Popson Ave Edwards AFB, CA 93523 8. PERFORMING ORGANIZATION REPORT NUMBER 412TW-PA...centers for the TENG test customers to allow the data to be readily available within minutes of a flight, for the data to be organized so that the engineer

  7. J-2 Engine ready to go into test stand

    Science.gov (United States)

    1965-01-01

    Two technicians watch carefully as cables prepare to lift a J-2 engine into a test stand. The J-2 powered the second stage and the third stage of the Saturn V moon rocket. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  8. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    International Nuclear Information System (INIS)

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods

  9. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    Science.gov (United States)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  10. Technical task plan for testing filter box sorbent-paint filter test

    International Nuclear Information System (INIS)

    Kilpatrick, L.L.

    1993-01-01

    At the Savannah River Plant, High Level Waste Engineering (HLWE) asked Interim Waste Technology (IWT) to choose and test a sorbent to add to the ITP filter box that meets the EPA requirement for land disposal of containerized liquid hazardous wastes per Paint Filter Liquids (PFL) test method 9095. This report outlines the process to be used in accomplishing this task

  11. 40 CFR Appendix A to Subpart F of... - Sampling Plans for Selective Enforcement Auditing of Small Nonroad Engines

    Science.gov (United States)

    2010-07-01

    ... Enforcement Auditing of Small Nonroad Engines A Appendix A to Subpart F of Part 90 Protection of Environment...-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Selective Enforcement Auditing Pt. 90, Subpt. F, App. A Appendix A to Subpart F of Part 90—Sampling Plans for Selective Enforcement Auditing of Small Nonroad Engines...

  12. Windows Calorimeter Control (WinCal) program computer software test plan

    International Nuclear Information System (INIS)

    Pertzborn, N.F.

    1997-01-01

    This document provides the information and guidelines necessary to conduct all the required testing of the Windows Calorimeter Control (WinCal) system. The strategy and essential components for testing the WinCal System Project are described in this test plan. The purpose of this test plan is to provide the customer and performing organizations with specific procedures for testing the specified system's functions

  13. Configuration management plan for Machine Interface Test System (MITS)

    International Nuclear Information System (INIS)

    O'Neill, C.K.

    1980-01-01

    The discipline required by this plan will apply from the establishment of a configuration baseline until completion of the final test in the MITS. The plan applies to configured items of hardware and software as well as to the specifications and drawings for these items. The plan encompasses establishment of the facility baseline, interface definition, classes of change, change control, change paper, organizational responsibilities and relationships, test configuration (as opposed to facility), and configuration data retention

  14. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage

  15. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  16. Repository-Based Software Engineering Program: Working Program Management Plan

    Science.gov (United States)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  17. In situ test plan for concrete materials using low alkaline cement at Horonobe URL

    International Nuclear Information System (INIS)

    Kobayashi, Yasushi; Yamada, Tsutomu; Nakayama, Masashi; Matsui, Hiroya; Matsuda, Takeshi; Konishi, Kazuhiro; Iriya, Keishiro; Noda, Masaru

    2007-03-01

    HLW (high-level radioactive waste) repository is to be constructed at depths of over three hundred meters below the surface. Shotcrete and lining will be used for safety under construction and operational period. Concrete is a kind of composite material which is constituted by aggregate, cement and additives. Low alkaline cement has been developed from the viewpoint of long term stability of the barrier systems which would be influenced by high alkaline arising from cement material. HFSC (Highly Fly-ash contained Silica-fume Cement) is one of a low alkaline cement, which contains silica fume and coal ash. It has been developed in Japan Atomic Energy Agency (JAEA). JAEA are now implementing the construction of the under ground research laboratory (URL) at Horonobe for the purpose of research in deep geological science and repository engineering technology. This report shows the in situ test plan for shotcrete using HFSC at Horonobe URL with identifying requirements for cement materials to be used in HLW repository, and also reviews major literatures of low alkaline cement. This in situ test plan is aiming to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. (author)

  18. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks Table 1—Sampling...

  19. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Curriculum Guide and Lesson Plans.

    Science.gov (United States)

    Hamlin, Larry

    This document contains a curriculum guide and lesson plans for a general mechanical repair course with three sections: minor automotive maintenance, small engine repair, and welding. The curriculum guide begins with a matrix that relates the lesson plans to essential elements of math, science, language arts, and social studies and to Texas…

  20. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ...-fueled engines are covered in § 86.340. (b) The temperature of the air supplied to the engine shall be... engine at rated speed and maximum horsepower until the oil and water temperatures are stabilized. The... segments. (4) A leak check is permitted between test segments. (5) A hang-up check is permitted between...

  1. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  2. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  3. LERF Basin 44 Process Test Plan

    International Nuclear Information System (INIS)

    LUECK, K.J.

    1999-01-01

    This document presents a plan to process a portion of the Liquid Effluent Retention Facility (LERF) Basin 44 wastewater through the 200 Area Effluent Treatment Facility (ETF). The objective of this process test is to determine the most effective/efficient method to treat the wastewater currently stored in LERF Basin 44. The process test will determine the operational parameters necessary to comply with facility effluent discharge permit limits (Ecology 1995) and the Environmental Restoration Disposal Facility (ERDF) acceptance criteria (BHI-00139), while achieving ALARA goals and maintaining the integrity of facility equipment. A major focus of the test plan centers on control of contamination due to leaks and/or facility maintenance. As a pre-startup item, all known leaks will be fixed before the start of the test. During the course of the test, a variety of contamination control measures will be evaluated for implementation during the treatment of the remaining Basin 44 inventory. Of special interest will be techniques and tools used to prevent contamination spread during sampling and when opening contaminated facility equipment/piping. At the conclusion of the test, a post ALARA review will be performed to identify lessons learned from the test run which can be applied to the treatment of the remaining Basin 44 inventory. The volume of wastewater to be treated during this test run is 500,000 gallons. This volume limit is necessary to maintain the ETF radiological inventory limits per the approved authorization basis. The duration of the process test is approximately 30 days

  4. Applying the design-build-test paradigm in microbiome engineering.

    Science.gov (United States)

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Surface-based test plan, Deaf Smith County, Texas Site: Draft

    International Nuclear Information System (INIS)

    1985-01-01

    The Surface-Based Test Plan (SBTP) is the plan which accounts for all surface-based site field work to be conducted at the Permian salt site selected for characterization. The SBTP relates data needs from program requirement documents and presents plans to satisfy the data needs. The SBTP excludes plans for construction of the Exploratory Shaft Facility (ESF) and plans for the in situ testing. The SBTP is a hierarchical plan stemming from the Technical Program Plan. The SBTP describes in detail the process by which surface-based study plans are defined, developed, and controlled. The plans hierarchy extends downward thru subordinate Site Study Plans (SSPs), which describe in detail elements of field work to be done, to detailed Procedures which document the exact methodologies to be employed in the conduct of field work. The plan is a QA level S document, although some of its elements are at lower QA levels. The plan is a controlled document, and any proposed amendments to the plan or subordinate documents can only be implemented through the specified change control procedure

  6. 40 CFR 86.1337-96 - Engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    .... Plug the canister port that is normally connected to the fuel tank. (ii) Prepare the engine... test should be performed. (2) Connect evacuated sample collection bags to the dilute exhaust and... turned off, turn off the engine cooling fan(s) if used, and the CVS blower (or disconnect the exhaust...

  7. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    Science.gov (United States)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  8. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  9. Engine testing of ceramic cam-roller followers

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. (Detroit Diesel Corp., MI (United States))

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  10. Phased Startup Initiative Phases 3 and 4 Test Plan and Test Specification (OCRWM)

    International Nuclear Information System (INIS)

    PITNER, A.L.

    2000-01-01

    Construction for the Spent Nuclear Fuel (SNF) Project facilities is continuing per the Level III Baseline Schedule, and installation of the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) in K West Basin is now complete. In order to accelerate the project, a phased start up strategy to initiate testing of the FRS and IWTS early in the overall project schedule was proposed (Williams 1999). Wilkinson (1999) expands the definition of the original proposal into four functional testing phases of the Phased Startup Initiative (PSI). Phases 1 and 2 are based on performing functional tests using dummy fuel. These tests are described in separate planning documents. This test plan provides overall guidance for Phase 3 and 4 tests, which are performed using actual irradiated N fuel assemblies. The overall objective of the Phase 3 and 4 testing is to verify how the FRS and IWTS respond while processing actual fuel. Conducting these tests early in the project schedule will allow identification and resolution of equipment and process problems before they become activities on the start-up critical path. The specific objectives of this test plan are to: (1) Define the test scope for the FRS and IWTS; (2) Provide detailed test requirements that can be used to write the specific test procedures; (3) Define data required and measurements to be taken. Where existing methods to obtain these do not exist, enough detail will be provided to define required additional equipment; and (4) Define specific test objectives and acceptance criteria

  11. Development of a test and flight engineering oriented language, phase 3

    Science.gov (United States)

    Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.

    1970-01-01

    Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.

  12. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract

  13. Software Engineering Improvement Plan

    Science.gov (United States)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  14. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  15. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  16. What scaling means in wind engineering: Complementary role of the reduced scale approach in a BLWT and the full scale testing in a large climatic wind tunnel

    Science.gov (United States)

    Flamand, Olivier

    2017-12-01

    Wind engineering problems are commonly studied by wind tunnel experiments at a reduced scale. This introduces several limitations and calls for a careful planning of the tests and the interpretation of the experimental results. The talk first revisits the similitude laws and discusses how they are actually applied in wind engineering. It will also remind readers why different scaling laws govern in different wind engineering problems. Secondly, the paper focuses on the ways to simplify a detailed structure (bridge, building, platform) when fabricating the downscaled models for the tests. This will be illustrated by several examples from recent engineering projects. Finally, under the most severe weather conditions, manmade structures and equipment should remain operational. What “recreating the climate” means and aims to achieve will be illustrated through common practice in climatic wind tunnel modelling.

  17. The Design and Testing of a Miniature Turbofan Engine

    Science.gov (United States)

    Cosentino, Gary B.; Murray, James E.

    2009-01-01

    Off-the-shelf jet propulsion in the 50 - 500 lb thrust class sparse. A true twin-spool turbofan in this range does not exist. Adapting an off-the-shelf turboshaft engine is feasible. However the approx.10 Hp SPT5 can t quite make 50 lbs. of thrust. Packaging and integration is challenging, especially the exhaust. Building on our engine using a 25 Hp turboshaft seems promising if the engine becomes available. Test techniques used, though low cost, adequate for the purpose.

  18. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  19. Light Duty Utility Arm Software Test Plan

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1995-01-01

    This plan describes how validation testing of the software will be implemented for the integrated control and data acquisition system of the Light Duty Utility Arm System (LDUA). The purpose of LDUA software validation testing is to demonstrate and document that the LDUA software meets its software requirements specification

  20. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  1. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... production-line engines? 1045.305 Section 1045.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.305 How must I prepare and test my production-line engines...

  2. 40 CFR 1048.305 - How must I prepare and test my production-line engines?

    Science.gov (United States)

    2010-07-01

    ... production-line engines? 1048.305 Section 1048.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.305 How must I prepare and test my production-line engines? This...

  3. 40 CFR 1051.301 - When must I test my production-line vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... vehicles or engines? 1051.301 Section 1051.301 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.301 When must I test my production-line vehicles or engines? (a...

  4. A Test Platform for Planned Field Operations Using LEGO Mindstorms NXT

    Directory of Open Access Journals (Sweden)

    Gareth Edwards

    2013-11-01

    Full Text Available Testing agricultural operations and management practices associated with different machinery, systems and planning approaches can be both costly and time-consuming. Computer simulations of such systems are used for development and testing; however, to gain the experience of real-world performance, an intermediate step between simulation and full-scale testing should be included. In this paper, a potential common framework using the LEGO Mindstorms NXT micro-tractor platform is described in terms of its hardware and software components. The performance of the platform is demonstrated and tested in terms of its capability of supporting decision making on infield operation planning. The proposed system represents the basic measures for developing a complete test platform for field operations, where route plans, mission plans, multiple-machinery cooperation strategies and machinery coordination can be executed and tested in the laboratory.

  5. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    A. B. Culp

    2007-01-01

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  6. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  7. Development Activities on Airbreathing Combined Cycle Engines

    Science.gov (United States)

    McArthur, J. Craig; Lyles, Garry (Technical Monitor)

    2000-01-01

    Contents include the following: Advanced reusable transportation(ART); aerojet and rocketdyne tests, RBCC focused concept flowpaths,fabricate flight weigh, test select components, document ART project, Istar (Integrated system test of an airbreathing rocket); combined cycle propulsion testbed;hydrocarbon demonstrator tracebility; Istar engine system and vehicle system closure study; and Istar project planning.

  8. Strategic Plan | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  9. Strategic Planning | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  10. Analysis and test of insulated components for rotary engine

    Science.gov (United States)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  11. NASA's Plan for SDLS Testing

    Science.gov (United States)

    Bailey, Brandon

    2015-01-01

    The Space Data Link Security (SDLS) Protocol is a Consultative Committee for Space Data Systems (CCSDS) standard which extends the known Data Link protocols to secure data being sent over a space link by providing confidentiality and integrity services. This plan outlines the approach by National Aeronautics Space Administration (NASA) in performing testing of the SDLS protocol using a prototype based on an existing NASA missions simulator.

  12. Implementation plans for buried transuranic waste and stored special-case waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bullock, M.G.; Rodriguez, R.R.

    1987-05-01

    This document presents the current implementation plans for buried transuranic waste and stored special-case waste at the Idaho National Engineering Laboratory. Information contained in this report was also included in several Department of Energy (DOE) planning documents for the Defense Transuranic Waste Program. This information can be found in the following DOE documents: Comprehensive Implementation Plan for the DOE Defense Buried TRU Waste Program; Defense Waste Management Plan for Buried Transuranic-Contaminated Waste, Transuranic-Contaminated Waste, Transuranic-Contaminated Soil, and Difficult-to-Certify Transuranic Waste; and Defense Special-Case Transuranic Waste Implementation Plan. 11 refs

  13. Fusion power by magnetic confinement: plans and the associated need for nuclear engineers

    International Nuclear Information System (INIS)

    Hirsch, R.L.; Beard, D.S.

    1975-01-01

    An essential ingredient in the fusion development plan will be the training of appropriate scientific and technical manpower. In examining the need for fusion-trained nuclear engineers, it is projected that an additional 120 to 250 engineers at the MS and PhD levels will be needed between now and 1980. To be most effective, these graduates must not only be trained in the ''classic'' physical, nuclear, mechanical, and electrical sciences, but they will need specialized training in fusion plasma physics and fusion materials science. To help develop the appropriate educational programs, close cooperation between U. S. Energy Research and Development Administration (ERDA) headquarters, ERDA laboratories, private industry, and the universities will be essential. An emerging need for a carefully structured ''fusion technology'' option in nuclear engineering departments is plainly evident and is already beginning to be developed at leading institutions

  14. In situ sampling cart development engineering task plan

    International Nuclear Information System (INIS)

    DeFord, D.K.

    1995-01-01

    This Engineering Task Plan (ETP) supports the development for facility use of the next generation in situ sampling system for characterization of tank vapors. In situ sampling refers to placing sample collection devices (primarily sorbent tubes) directly into the tank headspace, then drawing tank gases through the collection devices to obtain samples. The current in situ sampling system is functional but was not designed to provide the accurate flow measurement required by today's data quality objectives (DQOs) for vapor characterization. The new system will incorporate modern instrumentation to achieve much tighter control. The next generation system will be referred to in this ETP as the New In Situ System (NISS) or New System. The report describes the current sampling system and the modifications that are required for more accuracy

  15. Conceptual studies of plasma engineering test facility

    International Nuclear Information System (INIS)

    Hiraoka, Toru; Tazima, Teruhiko; Sugihara, Masayoshi; Kasai, Masao; Shinya, Kichiro

    1979-04-01

    Conceptual studies have been made of a Plasma Engineering Test Facility, which is to be constructed following JT-60 prior to the experimental power reactor. The physical aim of this machine is to examine self-ignition conditions. This machine possesses all essential technologies for reactor plasma, i.e. superconducting magnet, remote maintenance, shielding, blanket test modules, tritium handling. Emphasis in the conceptual studies was on structural consistency of the machine and whether the machine would be constructed practically. (author)

  16. 100 Area excavation treatability test plan

    International Nuclear Information System (INIS)

    1993-08-01

    This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992f). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications. The most recent applications are excavation of the 618-9 burial ground and partial remediation of the 316-5 process trenches (DOE-RL 1992a, 1992b). Both projects included excavation of soil and dust control (using water sprays). Excavation is a well-developed technology and equipment is readily available; however, certain aspects of the excavation process require testing before use in full-scale operations. These include the following: Measurement and control of excavation-generated dust and airborne contamination; verification of field analytical system capabilities; demonstration of soil removal techniques specific to the 100 Area waste site types and configurations. The execution of this treatability test may produce up to 500 yd 3 of contaminated soil, which will be used for future treatability tests. These tests may include soil washing with vitrification of the soil washing residuals. Other tests will be conducted if soil washing is not a viable alternative

  17. Preliminary engineering specifications for a test demonstration multilayer protective barrier cover system

    International Nuclear Information System (INIS)

    Phillips, S.J.; Gilbert, T.W.; Adams, M.R.

    1985-03-01

    This report presents preliminary engineering specifications for a test protective barrier cover system and support radiohydrology facility to be constructed at the Hanford Protective Barrier Test Facility (PBTF). Construction of this test barrier and related radiohydrology facility is part of a continuing effort to provide construction experience and performance evaluation of alternative barrier designs used for long-term isolation of disposed radioactive waste materials. Design specifications given in this report are tentative, based on interim engineering and computer simulation design efforts. Final definitive design specifications and engineering prints will be produced in FY 1986. 6 refs., 10 figs., 1 tab

  18. Standard review plan for the review and evaluation of emergency plans for research and test reactors

    International Nuclear Information System (INIS)

    1983-10-01

    This document provides a Standard Review Plan to assure that complete and uniform reviews are made of research and test reactor radiological emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in American National Standard ANSI/ANS 15.16 - 1982 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady-state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix. The content of the emergency plan is as follows: the emergency plan addresses the necessary provisions for coping with radiological emergencies. Activation of the emergency plan is in response to the emergency action levels. In addition to addressing those severe emergencies that will fall within one of the standard emergency classes, the plan also discusses the necessary provisions to deal with radiological emergencies of lesser severity that can occur within the operations boundary. The emergency plan allows for emergency personnel to deviate from actions described in the plan for unusual or unanticipated conditions

  19. Resources to Support Faculty Writing Data Management Plans: Lessons Learned from an Engineering Pilot

    Directory of Open Access Journals (Sweden)

    Natsuko H. Nicholls

    2014-07-01

    Full Text Available Recent years have seen a growing emphasis on the need for improved management of research data. Academic libraries have begun to articulate the conceptual foundations, roles, and responsibilities involved in data management planning and implementation. This paper provides an overview of the Engineering data support pilot at the University of Michigan Library as part of developing new data services and infrastructure. Through this pilot project, a team of librarians had an opportunity to identify areas where the library can play a role in assisting researchers with data management, and has put forth proposals for immediate steps that the library can take in this regard. The paper summarizes key findings from a faculty survey and discusses lessons learned from an analysis of data management plans from accepted NSF proposals. A key feature of this Engineering pilot project was to ensure that these study results will provide a foundation for librarians to educate and assist researchers with managing their data throughout the research lifecycle.

  20. Engineering task plan for purged light system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    A purged, closed circuit television system is currently used to video inside of waste tanks. The video is used to support inspection and assessment of the tank interiors, waste residues, and deployed hardware. The system is also used to facilitate deployment of new equipment. A new light source has been requested by Characterization Project Operations (CPO) for the video system. The current light used is mounted on the camera and provides 75 watts of light, which is insufficient for clear video. Other light sources currently in use on the Hanford site either can not be deployed in a 4-inch riser or do not meet the ignition source controls. The scope of this Engineering Task Plan is to address all activities associated with the specification and procurement of a light source for use with the existing CPO video equipment. The installation design change to tank farm facilities is not within the scope of this ETP

  1. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  2. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  3. TWRS privatization: Phase I monitoring well engineering study and decommissioning plan

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.A.

    1996-09-11

    This engineering study evaluates all well owners and users, the status or intended use of each well, regulatory programs, and any future well needs or special purpose use for wells within the TWRS Privatization Phase I demonstration area. Based on the evaluation, the study recommends retaining 11 of the 21 total wells within the demonstration area and decommissioning four wells prior to construction activities per the Well Decommissioning Plan (WHC-SD-EN-AP-161, Rev. 0, Appendix I). Six wells were previously decommissioned.

  4. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  5. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    International Nuclear Information System (INIS)

    Susan Stacy; Hollie K. Gilbert

    2005-01-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly and Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway

  6. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  7. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    Science.gov (United States)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  8. Development of a non-engine fuel injector deposit test for alternative fuels (ENIAK-project)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Hajo; Pohland vom Schloss, Heide [OWI - Oel Waerme Institut GmbH, Herzogenrath (Germany)

    2013-06-01

    Deposit formation in and on the injectors of diesel engines may lead to injector malfunction, resulting in a loss in power, rough engine operation and poor emission levels. Poor Biodiesel quality, contamination with copper and zinc as well as undesired reactions between (several) additives and biodiesel components are known causes for nozzle fouling. Therefore, good housekeeping when using biodiesel is required, and all additives have to pass a no-harm test concerning injector fouling. The standard fouling tests are two engine tests: The XUD9-test (CEC F-23-01) and the DW-10-test (CEC DF 98-08). The XUD9 is a cost efficient, fast and proven testing method. It uses, however, an obsolete indirect injection diesel engine and cannot reproduce internal diesel injector deposits (IDID). The newer DW10 test is complex, costly and designed for high stress. This reduces the engine life and leads to a fuel consumption of approximately 1,000 1 per test, both contributing to the high costs of the test. The ENIAK-Project is funded by the FNR (''Fachagentur Nachwachsende Rohstoffe'', Agency for Renewable Resources) and conducted in cooperation with AGQM, ASG and ERC. Its main goal is the development, assembly, commissioning, and evaluation of a non-engine fuel injector test. It uses a complete common rail system. The injection takes place in a self-designed reactor instead of an engine, and the fuel is not combusted, but re-condensed and pumped in a circle, leading to a low amount of fuel required. If the test method proves to be as reliable as expected, it can be used as an alternative test method for injector fouling with low requirements regarding infrastructure on the testing site and sample volume. (orig.)

  9. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  10. NASA Glenn Research Center, Propulsion Systems Laboratory: Plan to Measure Engine Core Flow Water Vapor Content

    Science.gov (United States)

    Oliver, Michael

    2014-01-01

    This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.

  11. Evaluation of engineered barriers at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Bhatt, R.N.; Porro, I.

    1998-03-01

    Subsurface Disposal (SDA) of the Radioactive Waste Management Complex serves as the low level waste burial ground at the Idaho National Engineering and Environmental Laboratory (INEEL). The low level wastes are buried in trenches, pits, and soil vaults in surficial sediments. A closure/post-closure plan must be written prior to closure of the SDA. The closure plan for the facility must include a design for an engineered barrier closure cover that will meet all applicable regulatory requirements. This paper describes the approach being followed at the INEEL to choose an appropriate cover design for the SDA closure. Regulatory requirements and performance objectives potentially applicable to closure of the SDA were identified. Technical issues related to SDA closure were identified from a literature search of previous arid site engineered barrier studies and from previous SDA closure cover evaluations. Five engineered barrier conceptual design alternatives were identified: (1) a bio/capillary barrier cover, (2) a thin soil cover, (3) a thick soil cover, (4) a Resource Conservation and Recovery Act cover, and (5) a concrete sealed surface cover. Two of these designs were chosen for in situ hydraulic testing, rather than all five, in order to maximize the amount of information generated relative to projected project costs. Testing of these two cover designs provides data to quantify hydrologic model input parameters and for verification of site specific hydrologic models for long term closure cover performance evaluation and detailed analysis of closure cover alternatives. The specific objectives of the field tests are to determine the water balance for the two covers over several years and to determine cover soil physical and hydraulic properties

  12. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  13. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  14. Assessment of the quality of test results from selected civil engineering material testing laboratories in Tanzania

    CSIR Research Space (South Africa)

    Mbawala, SJ

    2017-12-01

    Full Text Available Civil and geotechnical engineering material testing laboratories are expected to produce accurate and reliable test results. However, the ability of laboratories to produce accurate and reliable test results depends on many factors, among others...

  15. Potential Errors and Test Assessment in Software Product Line Engineering

    Directory of Open Access Journals (Sweden)

    Hartmut Lackner

    2015-04-01

    Full Text Available Software product lines (SPL are a method for the development of variant-rich software systems. Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possible products. Different approaches exist for testing SPLs, but there is less research for assessing the quality of these tests by means of error detection capability. Such test assessment is based on error injection into correct version of the system under test. However to our knowledge, potential errors in SPL engineering have never been systematically identified before. This article presents an overview over existing paradigms for specifying software product lines and the errors that can occur during the respective specification processes. For assessment of test quality, we leverage mutation testing techniques to SPL engineering and implement the identified errors as mutation operators. This allows us to run existing tests against defective products for the purpose of test assessment. From the results, we draw conclusions about the error-proneness of the surveyed SPL design paradigms and how quality of SPL tests can be improved.

  16. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  17. Radiological effluents released from nuclear rocket and ramjet engine tests at the Nevada Test Site 1959 through 1969: Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, H.N.

    1995-06-01

    Nuclear rocket and ramjet engine tests were conducted on the Nevada Test Site (NTS) in Area 25 and Area 26, about 80 miles northwest of Las Vegas, Nevada, from July 1959 through September 1969. This document presents a brief history of the nuclear rocket engine tests, information on the off-site radiological monitoring, and descriptions of the tests.

  18. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  19. Single Event Effects (SEE) Testing: Practical Approach to Test Plans

    Science.gov (United States)

    LaBel, Kenneth A.; Pellish, Jonathan Allen; Berg, Melanie D.

    2014-01-01

    While standards and guidelines for performing SEE testing have existed for several decades, guidance for developing SEE test plans has not been as easy to find. In this presentation, the variety of areas that need to be considered ranging from resource issues (funds, personnel, schedule) to extremely technical challenges (particle interaction and circuit application), shall be discussed. Note: we consider the approach outlined here as a "living" document: Mission-specific constraints and new technology related issues always need to be taken into account.

  20. 40 CFR 1051.501 - What procedures must I use to test my vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... vehicles or engines? 1051.501 Section 1051.501 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test Procedures § 1051.501 What procedures must I use to test my vehicles or engines? This section describes test...

  1. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  2. The laboratory test rig with miniature jet engine to research aviation fuels combustion process

    Directory of Open Access Journals (Sweden)

    Gawron Bartosz

    2015-12-01

    Full Text Available This article presents laboratory test rig with a miniature turbojet engine (MiniJETRig – Miniature Jet Engine Test Rig, that was built in the Air Force Institute of Technology. The test rig has been developed for research and development works aimed at modelling and investigating processes and phenomena occurring in full scale jet engines. In the article construction of a test rig is described, with a brief discussion on the functionality of each of its main components. Additionally examples of measurement results obtained during the realization of the initial tests have been included, presenting the capabilities of the test rig.

  3. Test plan guidance for transuranic-contaminated arid landfill remedial technology development

    International Nuclear Information System (INIS)

    Evans, J.; Shaw, P.

    1995-05-01

    This document provides guidance for preparing plans to test or demonstrate buried waste assessment or remediation technologies supported by the U.S. Department of Energy's Landfill Stabilization Focus Area, Transuranic-Contaminated Arid Landfill Product Line. This document also provides guidance for development of data quality objectives, along with the necessary data to meet the project objectives. The purpose is to ensure that useful data of known quality are collected to support conclusions associated with the designated demonstration or test. A properly prepared test plan will integrate specific and appropriate objectives with needed measurements to ensure data will reflect the Department of Energy Office of Technology Development's mission, be consistent with Landfill Stabilization Focus Area test goals, and be useful for the Department of Energy Environmental Restoration and Waste Management programs and other potential partners (e.g., commercial concerns). The test plan becomes the planning and working document for the demonstration or test to be conducted ensuring procedures are followed that will allow data of sufficient quality to be collected for comparison and evaluation

  4. Mechanisms Engineering Test Loop - Phase 1 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kultgen, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hvasta, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lisowski, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Toter, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Borowski, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2016. Currently, METL is in Phase I of its design and construction. Once operational, the METL facility will test small to intermediate-scale components and systems in order to develop advanced liquid metal technologies. Testing different components in METL is essential for the future of advanced fast reactors as it will provide invaluable performance data and reduce the risk of failures during plant operation.

  5. SU-D-BRB-02: Combining a Commercial Autoplanning Engine with Database Dose Predictions to Further Improve Plan Quality

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, SP; Moore, JA; Hui, X; Cheng, Z; McNutt, TR [Johns Hopkins University, Baltimore, MD (United States); DeWeese, TL; Tran, P; Quon, H [John Hopkins Hospital, Baltimore, MD (United States); Bzdusek, K [Philips, Fitchburg, WI (United States); Kumar, P [Philips India Limited, Bangalore, Karnataka (India)

    2016-06-15

    Purpose: Database dose predictions and a commercial autoplanning engine both improve treatment plan quality in different but complimentary ways. The combination of these planning techniques is hypothesized to further improve plan quality. Methods: Four treatment plans were generated for each of 10 head and neck (HN) and 10 prostate cancer patients, including Plan-A: traditional IMRT optimization using clinically relevant default objectives; Plan-B: traditional IMRT optimization using database dose predictions; Plan-C: autoplanning using default objectives; and Plan-D: autoplanning using database dose predictions. One optimization was used for each planning method. Dose distributions were normalized to 95% of the planning target volume (prostate: 8000 cGy; HN: 7000 cGy). Objectives used in plan optimization and analysis were the larynx (25%, 50%, 90%), left and right parotid glands (50%, 85%), spinal cord (0%, 50%), rectum and bladder (0%, 20%, 50%, 80%), and left and right femoral heads (0%, 70%). Results: All objectives except larynx 25% and 50% resulted in statistically significant differences between plans (Friedman’s χ{sup 2} ≥ 11.2; p ≤ 0.011). Maximum dose to the rectum (Plans A-D: 8328, 8395, 8489, 8537 cGy) and bladder (Plans A-D: 8403, 8448, 8527, 8569 cGy) were significantly increased. All other significant differences reflected a decrease in dose. Plans B-D were significantly different from Plan-A for 3, 17, and 19 objectives, respectively. Plans C-D were also significantly different from Plan-B for 8 and 13 objectives, respectively. In one case (cord 50%), Plan-D provided significantly lower dose than plan C (p = 0.003). Conclusion: Combining database dose predictions with a commercial autoplanning engine resulted in significant plan quality differences for the greatest number of objectives. This translated to plan quality improvements in most cases, although special care may be needed for maximum dose constraints. Further evaluation is warranted

  6. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-07-21

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the Hanford 100 Areas. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at Hanford.

  7. 40 CFR 1048.410 - How must I select, prepare, and test my in-use engines?

    Science.gov (United States)

    2010-07-01

    ... my in-use engines? 1048.410 Section 1048.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.410 How must I select, prepare, and test my in-use engines? (a) You...

  8. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  9. Testing and Development of a Shrouded Gas Turbine Engine in a Freejet Facility

    National Research Council Canada - National Science Library

    Garcia, Hector

    2000-01-01

    .... The combined cycle engine (CCE) could be incorporated into a variety of applications. The building of a new freejet facility and engine test rig at the Naval Postgraduate School enabled dynamic testing of the ongoing development of a turboramjet...

  10. Accelerated testing statistical models, test plans, and data analysis

    CERN Document Server

    Nelson, Wayne B

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering.""-Dev G.

  11. Half-liter supernatant sampler system engineering work plan

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1995-01-01

    The Tank Waste Remediation System (TWRS) pretreatment facility project W-236B, known as the Initial Pretreatment Module (IPM), requires samples of supernatants and sludges from 200 Area tank farms for planned hot testing work in support of IPM design. The IPM project has proposed the development of several new sampler systems. These systems include a 0.5-l supernatant sampler, 3-l and 25-l supernatant and sludge samplers, and a 4,000-l sampler system. The 0.5-l sampler will support IPM sampling needs in the 1 to 3 l range starting in late fiscal year 1995. This sampler is intended to be used in conjunction with the existing 100 ml bottle-on-a-string. The 3-l and 25-l systems will be based on the Savannah River Site's sampler system and will support IPM sampling needs in the 3 to 100 liter range. Most of the hot testing required for design of the IPM must be accomplished in the next 3 years. This work plan defines the tasks associated with the development of a 0.5-l sampler system. This system will be referred to as the Half-Liter Supernatant Sampler System (HLSSS). Specifically, this work plan will define the scope of work, identify organizational responsibilities, identify major technical requirements, describe configuration control and verification requirements, and provide estimated costs and schedule. The sampler system will be fully operational, including trained staff and operating procedures, upon completion of this task

  12. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  13. Technical work plan for Surface Impoundments Operable Unit engineering support studies

    International Nuclear Information System (INIS)

    1995-11-01

    This document provides a comprehensive work plan which, when utilized as a data collection guide for field activities, will provide the necessary information required to complete a report on geotechnical properties of the sediments contained in the Surface Impoundments Operable Unit at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Detailed guidance is provided for the following activities: collection of samples from the impoundments; compressive strength testing of the raw sediments; compressive strength testing of the structurally modified (lime and cement additives) sediments; testing for sediment physical properties and settling rates; testing for sediment dewatering characteristics; testing for radiation activity during the field work; testing for polymer additions that may enhance settling. The work plan additionally provides guidance and examples for the preparation of documents necessary to establish readiness for safe and satisfactory performance of the field activities. An outline for the format requested for a report of these data is also provided

  14. Technical work plan for Surface Impoundments Operable Unit engineering support studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document provides a comprehensive work plan which, when utilized as a data collection guide for field activities, will provide the necessary information required to complete a report on geotechnical properties of the sediments contained in the Surface Impoundments Operable Unit at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Detailed guidance is provided for the following activities: collection of samples from the impoundments; compressive strength testing of the raw sediments; compressive strength testing of the structurally modified (lime and cement additives) sediments; testing for sediment physical properties and settling rates; testing for sediment dewatering characteristics; testing for radiation activity during the field work; testing for polymer additions that may enhance settling. The work plan additionally provides guidance and examples for the preparation of documents necessary to establish readiness for safe and satisfactory performance of the field activities. An outline for the format requested for a report of these data is also provided.

  15. Design and Implementation of the Control System of an Internal Combustion Engine Test Unit

    Directory of Open Access Journals (Sweden)

    Tufan Koç

    2014-02-01

    Full Text Available Accurate tests and performance analysis of engines are required to minimize measurement errors and so the use of the advanced test equipment is imperative. In other words, the reliable test results depend on the measurement of many parameters and recording the experimental data accurately which is depended on engine test unit. This study aims to design the control system of an internal combustion engine test unit. In the study, the performance parameters of an available internal combustion engine have been transferred to computer in real time. A data acquisition (DAQ card has been used to transfer the experimental data to the computer. Also, a user interface has been developed for performing the necessary procedures by using LabVIEW. The dynamometer load, the fuel consumption, and the desired speed can easily be adjusted precisely by using DAQ card and the user interface during the engine test. Load, fuel consumption, and temperature values (the engine inlet-outlet, exhaust inlet-outlet, oil, and environment can be seen on the interface and also these values can be recorded to the computer. It is expected that developed system will contribute both to the education of students and to the researchers’ studies and so it will eliminate a major lack.

  16. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  17. Field test plan: Buried waste technologies, Fiscal Year 1995

    International Nuclear Information System (INIS)

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management

  18. Overview of planning process at FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Gadeken, A.D.

    1986-03-01

    The planning process at the Fast Flux Test Facility (FFTF) is controlled through a hierarchy of documents ranging from a ten-year strategic plan to a weekly schedule. Within the hierarchy are a Near-Term (three-year) Operating Plan, a Cycle (six-month) Plan, and an Outage/Operating Phase Schedule. Coordination of the planning process is accomplished by a dedicated preparation team that also provides an overview of the formal planning timetable which identifies key action items required to be completed before an outage/operating phase can begin

  19. Public views evening engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Over the past year, more than 20,000 people came to Stennis Space Center to witness the 'shake, rattle and roar' of one of the world's most sophisticated engines. Stennis Space Center in south Mississippi is NASA's lead center for rocket propulsion testing. StenniSphere, the visitor center for Stennis Space Center, hosted more than 250,000 visitors in its first year of operation. Of those visitors, 26.4 percent were from Louisiana.

  20. Distributed Rocket Engine Testing Health Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  1. Distributed Rocket Engine Testing Health Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  2. Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions

    Science.gov (United States)

    1978-08-01

    A single-cylinder, four-stroke cycle diesel engine was operated on unstabilized water-in-fuel emulsions. Two prototype devices were used to produce the emulsions on-line with the engine. More than 350 test points were run with baseline diesel fuel an...

  3. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  4. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    International Nuclear Information System (INIS)

    Wittreich, C.D.

    1994-05-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume

  5. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of this...

  6. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-10-26

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site.

  7. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  8. Alternate Material Pallet, 40" x 48", MIL-STD-1660, Engineering Evaluation Tests

    National Research Council Canada - National Science Library

    Dugan, Jeffery

    2003-01-01

    The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV) conducted Engineering Evaluation Tests to determine if the Alternate Material Pallet manufactured by Hunter Paine Enterprise, Inc...

  9. Treatability test plan for the 200-ZP-1 operable unit

    International Nuclear Information System (INIS)

    1994-07-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-ZP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-ZP-1 Operable Unit. The primary contaminants of concern are carbon tetrachloride, chloroform, and trichloroethylene (TCE). The pilot-scale treatability testing has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants present in groundwater withdrawn from the contaminant plume. The overall scope of this test plan includes: description of the pump and treat system to be tested, as well as the test performance objectives and data quality objectives (DQOs) that will be used to evaluate the effectiveness of the pilot-scale treatment system; discussion of the treatment technology to be tested and supporting development activities, including process flow and conceptual design descriptions and equipment, fabrication, utility, and system startup needs; description of pilot-scale treatment system performance, operating procedures, and operational controls, as well as anticipated monitoring activities, analytes, parameters, analytical procedures, and quality assurance protocols; summaries of other related treatability testing elements, including personnel and environmental health and safety controls, process and secondary waste management and disposition, schedule, and program organization

  10. Integrated test plan for directional boring

    International Nuclear Information System (INIS)

    Volk, B.W.

    1993-01-01

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing

  11. Standard Ship Test and Inspection Plan, Procedures and Database

    National Research Council Canada - National Science Library

    1999-01-01

    ... construction schedules and increased cost is the area of test and inspection. This project investigates existing rules and regulations for testing and inspection of commercial ships and identifies differences and similarities within the requirements. The results include comparison matrices, a standard test plan, a set of standard test procedures, and a sample test database developed for a typical commercial ship.

  12. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-20

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program.

  13. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    International Nuclear Information System (INIS)

    1979-01-01

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program

  14. Development of in-service inspection system for core support graphite structures in the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Hanawa, Satoshi; Kikuchi, Takayuki; Ishihara, Masahiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Visual inspection of core support graphite structures using TV camera as in-service inspection and measurement of material characteristics using surveillance test specimens are planned in the High Temperature Engineering Test Reactor (HTTR) to confirm structural integrity of the core support graphite structures. For the visual inspection, in-service inspection system developed from September 1996 to June 1998, and pre-service inspection using the system was carried out. As the result of the pre-service inspection, it was validated that high quality of visual inspection with TV camera can be carried out, and also structural integrity of the core support graphite structures at the initial stage of the HTTR operation was confirmed. (author)

  15. Pretreatment Engineering Platform (PEP) Integrated Test B Run Report--Caustic and Oxidative Leaching in UFP-VSL-T02A

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, John GH; Bredt, Ofelia P.; Burns, Carolyn A.; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Aaberg, Rosanne L.

    2009-12-10

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  16. Test plan: Brayton Isotope Power System Ground Demonstration System (BIPS-GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of this test plan is to provide an overall outline of all testing to be accomplished on the GDS. Included in this test plan are administrative requirements, instrumentation accuracies, instrumentation, equipment definitions, system test setup, and facility installation. The test program will enable collection of sufficient data to establish material, component, and system design integrity. The data will also be used to establish and evaluate component and system performance and reliability characteristics, verification of proper system component integration prior to initiation of Phase II, and flight system (FS) development

  17. Aquifer test plan for the 100-HR-3 Operable Unit

    International Nuclear Information System (INIS)

    Swanson, L.C.; Hartman, M.J.

    1994-01-01

    This test plan directs hydrologic testing activities planned at three existing Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) wells in the 100-HR-3 Operable Unit of the Hanford Site. Three additional wells will be installed near these existing wells and used as additional testing arid observation points during the field activities. Figure 1 shows the locations of the three test sites. A primary objective of the testing program is to provide more detailed hydraulic characterization information for the unconfined aquifer and targeted test sites than provided by the initial reconnaissance-level slug testing of Vukelich. A second objective is to evaluate the applicability of slug interference and dipole flow tests for detailed hydraulic characterization in an unconfined aquifer. This aquifer testing program will also be useful for substantiating hydraulic conductivities reported from previous slug tests and evaluating the effects of filter pack volume/configuration on slug test data. Vukelich recommended additional testing to address the latter two issues

  18. Project W-314 specific test and evaluation plan 241-AN-B valve pit

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-B Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  19. In situ treatability test plan

    International Nuclear Information System (INIS)

    1996-08-01

    This document describes the plans for the in situ treatment zone (ISTZ) treatability test for groundwater contaminated with strontium-90. The treatability test is to be conducted at the Hanford Site in Richland, Washington, in a portion of the 100-N Area adjacent to the Columbia River referred to as N-Springs. The purpose of the treatability test is to evaluate the effectiveness of an innovative technology to prevent the discharge of strontium-90 contaminated groundwater into the Columbia River. The ISTZ is a passive technology that consists of placing a treatment agent in the path of the groundwater. The treatment agent must restrict target radioactive contaminants and provide time for the contaminant to decay to acceptable levels. The permeability of the treatment zone must be greater than or equal to that of the surrounding sediments to ensure that the contaminated groundwater flows through the treatment zone agent and not around the agent

  20. Preliminary results on performance testing of a turbocharged rotary combustion engine

    Science.gov (United States)

    Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.

    1982-01-01

    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.

  1. General Vehicle Test Plan (GVTP) for Urban Rail Transit Cars

    Science.gov (United States)

    1977-09-01

    The General Vehicle Test Plan provides a system for general vehicle testing and for documenting and utilizing data and information in the testing of urban rail transit cars. Test procedures are defined for nine categories: (1) Performance; (2) Power ...

  2. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    Science.gov (United States)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  3. Phase Startup Initiative Phases 3 and 4 Test Plan and Test Specification ( OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.; LANGEVIN, M.J.

    2000-08-07

    Construction for the Spent Nuclear Fuel (SNF) Project facilities is continuing per the Level III Baseline Schedule, and installation of the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) in K West Basin is now complete. In order to accelerate the project, a phased start up strategy to initiate testing of the FRS and IWTS early in the overall project schedule was proposed (Williams 1999). Wilkinson (1999) expands the definition of the original proposal into four functional testing phases of the Phased Startup Initiative (PSI). Phases 1 and 2 are based on performing functional tests using dummy fuel. This test plan provides overall guidance for Phase 3 and 4 tests, which are performed using actual irradiated N fuel assemblies. The overall objective of the Phase 3 and 4 testing is to verify how the FRS and IWTS respond while processing actual fuel. Conducting these tests early in the project schedule will allow identification and resolution of equipment and process problems before they become activities on the start-up critical path. The specific objectives of this test plan are to: Define the Phase 3 and 4 test scope for the FRS and IWTS; Provide detailed test requirements that can be used to write the specific test procedures; Define data required and measurements to be taken. Where existing methods to obtain these do not exist, enough detail will be provided to define required additional equipment; and Define specific test objectives and acceptance criteria.

  4. Phase Startup Initiative Phases 3 and 4 Test Plan and Test Specification (OCRWM)

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.; LANGEVIN, M.J.

    2000-01-01

    Construction for the Spent Nuclear Fuel (SNF) Project facilities is continuing per the Level III Baseline Schedule, and installation of the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) in K West Basin is now complete. In order to accelerate the project, a phased start up strategy to initiate testing of the FRS and IWTS early in the overall project schedule was proposed (Williams 1999). Wilkinson (1999) expands the definition of the original proposal into four functional testing phases of the Phased Startup Initiative (PSI). Phases 1 and 2 are based on performing functional tests using dummy fuel. This test plan provides overall guidance for Phase 3 and 4 tests, which are performed using actual irradiated N fuel assemblies. The overall objective of the Phase 3 and 4 testing is to verify how the FRS and IWTS respond while processing actual fuel. Conducting these tests early in the project schedule will allow identification and resolution of equipment and process problems before they become activities on the start-up critical path. The specific objectives of this test plan are to: Define the Phase 3 and 4 test scope for the FRS and IWTS; Provide detailed test requirements that can be used to write the specific test procedures; Define data required and measurements to be taken. Where existing methods to obtain these do not exist, enough detail will be provided to define required additional equipment; and Define specific test objectives and acceptance criteria

  5. 40 CFR 1048.401 - What testing requirements apply to my engines that have gone into service?

    Science.gov (United States)

    2010-07-01

    ... engines that have gone into service? 1048.401 Section 1048.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.401 What testing requirements apply to my engines that have...

  6. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  7. GRIST-2 preliminary test plan and requirements for fuel fabrication and preirradiation

    International Nuclear Information System (INIS)

    Tang, I.M.; Harmon, D.P.; Torri, A.

    1978-12-01

    The preliminary version of the GRIST-2 test plan has been developed for the planned initial 5 years (1984 to 1989) of TREAT-Upgrade in-pile tests. These tests will be employed to study the phenomenology and integral behavior of GCFR core disruptive accidents (CDAs) and to support the Final Safety Analysis Report (FSAR) CDA analyses for the demonstration plant licensing. The preliminary test plan is outlined. Test Phases I and II are for the fresh fuel (preconditioned or not) CDA behavior at the beginning-of-life (BOL) reactor state. Phase III is for the reactor state that contains irradiated fuel with a saturated content of helium and fission gas. Phase IV is for larger bundle tests and scaling effects

  8. Reliability Analysis and Test Planning using CAPO-Test for Existing Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.; Faber, Michael Havbro

    2000-01-01

    Evaluation of the reliability of existing concrete structures often requires that the compressive strength of the concrete is estimated on the basis of tests performed with concrete samples from the structure considered. In this paper the CAPO-test method is considered. The different sources...... of uncertainty related to this method are described. It is shown how the uncertainty in the transformation from the CAPO-test results to estimates of the concrete strength can be modeled. Further, the statistical uncertainty is modeled using Bayesian statistics. Finally, it is shown how reliability-based optimal...... planning of CAPO-tests can be performed taking into account the expected costs due to the CAPO-tests and possible repair or failure of the structure considered. An illustrative example is presented where the CAPO-test is compared with conventional concrete cylinder compression tests performed on cores...

  9. Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Beauheim, R.L.

    1991-03-01

    Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks

  10. Teletraffic engineering and network planning

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk

    This book covers the basic theory of teletrac engineering. The mathematical backgroundrequired is elementary probability theory. The purpose of the book is to enable engineers tounderstand ITU{T recommendations on trac engineering, evaluate tools and methods, andkeep up-to-date with new practices....... The book includes the following parts: Introduction: Chapter 1 Mathematical background: Chapter 2-3 Telecommunication loss models: Chapter 4-8 Data communication delay models: Chapter 9-12 Measurement and simulation: Chapter 13 The purpose of the book is twofold: to serve both as a handbook...... and as a textbook. Thusthe reader should, for example, be able to study chapters on loss models without studyingthe chapters on the mathematical background rst.The book is based on many years of experience in teaching the subject at the TechnicalUniversity of Denmark and from ITU training courses in developing...

  11. Reliability demonstration test planning: A three dimensional consideration

    International Nuclear Information System (INIS)

    Yadav, Om Prakash; Singh, Nanua; Goel, Parveen S.

    2006-01-01

    Increasing customer demand for reliability, fierce market competition on time-to-market and cost, and highly reliable products are making reliability testing more challenging task. This paper presents a systematic approach for identifying critical elements (subsystems and components) of the system and deciding the types of test to be performed to demonstrate reliability. It decomposes the system into three dimensions (i.e. physical, functional and time) and identifies critical elements in the design by allocating system level reliability to each candidate. The decomposition of system level reliability is achieved by using criticality index. The numerical value of criticality index for each candidate is derived based on the information available from failure mode and effects analysis (FMEA) document or warranty data from a prior system. It makes use of this information to develop reliability demonstration test plan for the identified (critical) failure mechanisms and physical elements. It also highlights the benefits of using prior information in order to locate critical spots in the design and in subsequent development of test plans. A case example is presented to demonstrate the proposed approach

  12. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  13. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  14. Project W-314 Polyurea Special Protective Coating (SPC) Test Plan Chemical Compatibility and Physical Characteristics Testing

    International Nuclear Information System (INIS)

    MAUSER, R.W.

    2001-01-01

    This Test Plan outlines the testing to be done on the Special Protective Coating (SPC) Polyurea which includes: Tank Waste Compatibility, Decontamination Factor Testing, and Adhesion Strength Testing after a sample has been exposed to Radiation

  15. Test plan/procedure for the SPM-1 shipping container system. Revision 0

    International Nuclear Information System (INIS)

    Flanagan, B.D.

    1995-01-01

    The 49 CFR 173.465 Type A packaging tests will verify that SPM-1 will provide adequate protection and pass as a Type A package. Test will determine that the handle of the Pig will not penetrate through the plywood spacer and rupture the shipping container. Test plan/procedure provides planning, pre-test, setup, testing, and post-testing guidelines and procedures for conducting the open-quotes Free Drop Testclose quotes procedure for the SPM-1 package

  16. US ITER Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    This US ITER Management Plan is the plan for conducting the Engineering Design Activities within the US. The plan applies to all design, analyses, and associated physics and technology research and development (R ampersand D) required to support the program. The plan defines the management considerations associated with these activities. The plan also defines the management controls that the project participants will follow to establish, implement, monitor, and report these activities. The activities are to be conducted by the project in accordance with this plan. The plan will be updated to reflect the then-current management approach required to meet the project objectives. The plan will be reviewed at least annually for possible revision. Section 2 presents the ITER objectives, a brief description of the ITER concept as developed during the Conceptual Design Activities, and comments on the Engineering Design Activities. Section 3 discusses the planned international organization for the Engineering Design Activities, from which the tasks will flow to the US Home Team. Section 4 describes the US ITER management organization and responsibilities during the Engineering Design Activities. Section 5 describes the project management and control to be used to perform the assigned tasks during the Engineering Design Activities. Section 6 presents the references. Several appendices are provided that contain detailed information related to the front material

  17. Test and Evaluation for Enhanced Security: A Quantitative Method to Incorporate Expert Knowledge into Test Planning Decisions.

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Davinia [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Blackburn, Mark [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-03-01

    Complex systems are comprised of technical, social, political and environmental factors as well as the programmatic factors of cost, schedule and risk. Testing these systems for enhanced security requires expert knowledge in many different fields. It is important to test these systems to ensure effectiveness, but testing is limited to due cost, schedule, safety, feasibility and a myriad of other reasons. Without an effective decision framework for Test and Evaluation (T&E) planning that can take into consideration technical as well as programmatic factors and leverage expert knowledge, security in complex systems may not be assessed effectively. Therefore, this paper covers the identification of the current T&E planning problem and an approach to include the full variety of factors and leverage expert knowledge in T&E planning through the use of Bayesian Networks (BN).

  18. Test plan, sludge retrieval, sludge packaging

    International Nuclear Information System (INIS)

    Feigenbutz, L.V.

    1994-01-01

    This document provides direction for the cold testing of tools, equipment and systems which will be installed and operated in K-East (KE) Basin in support of the sludge retrieval and packaging project. The technical uncertainties related to the effectiveness of sludge retrieval procedures and equipment require that cold testing be completed before installation in KE Basin to identify and resolve existing problems, and to optimize the efficiency of all equipment and systems used. This plan establishes the responsibilities, test requirements, and documentation requirements necessary to complete cold tests of: (1) equipment with no potential for plant use; (2) prototype equipment and systems which may be upgraded for use in K-Basin; and (3) plant equipment and systems requiring cold acceptance testing prior to plant use. Some equipment and systems may have been subject to a formal design review and safety assessment; the results of which will be included as supporting documents to the operational readiness review (ORR)

  19. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    International Nuclear Information System (INIS)

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are 99 Tc and 60 Co for underwater affected by past discharges to the 216-BY Cribs, and 90 Sr, 239/240 Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes

  20. Scoping the parameter space for demo and the engineering test

    International Nuclear Information System (INIS)

    Meier, W R.

    1999-01-01

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to define R ampersand D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R ampersand D programs must seek to meet

  1. Human factors evaluation of the engineering test reactor control room

    International Nuclear Information System (INIS)

    Banks, W.W.; Boone, M.P.

    1981-03-01

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation

  2. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  3. Single-shell tank riser resistance to ground test plan

    International Nuclear Information System (INIS)

    Kiewert, L.R.

    1996-01-01

    This Test Procedure provides the general directions for conducting Single-Shell Tank Riser to Earth Measurements which will be used by engineering as a step towards providing closure for the Lightning Hazard Issue

  4. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site.

  5. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    International Nuclear Information System (INIS)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site

  6. Standard review plan for the review and evaluation of emergency plans for research and test reactors. Technical report

    International Nuclear Information System (INIS)

    Bates, E.F.; Grimes, B.K.; Ramos, S.L.

    1982-05-01

    This document provides a Standard Review Plan for the guidance of the NRC staff to assure that complete and uniform reviews are made of research and test reactor emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in Draft II of ANSI/ANS 15.16 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix

  7. MHD program plan, FY 1991

    Science.gov (United States)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  8. Space architecture education for engineers and architects designing and planning beyond earth

    CERN Document Server

    Häuplik-Meusburger, Sandra

    2016-01-01

    This book considers two key educational tools for future generations of professionals with a space architecture background in the 21st century: (1) introducing the discipline of space architecture into the space system engineering curricula; and (2) developing space architecture as a distinct, complete training curriculum.  Professionals educated this way will help shift focus from solely engineering-driven transportation systems and “sortie” missions towards permanent off-world human presence. The architectural training teaches young professionals to operate at all scales from the “overall picture” down to the smallest details, to provide directive intention–not just analysis–to design opportunities, to address the relationship between human behavior and the built environment, and to interact with many diverse fields and disciplines throughout the project lifecycle. This book will benefit individuals and organizations responsible for planning transportation and habitat systems in space, while a...

  9. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  10. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baumgardner, Marc E. [Gonzaga University; Lakshminarayanan, Arunachalam [Colorado State University; Olsen, Daniel B. [Colorado State University; Marchese, Anthony J. [Colorado State University

    2017-10-18

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durability issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.

  11. Environmental Management Plan for the Chemical Engineering Laboratory (LIQ) of the National University of Colombia, Bogotá

    OpenAIRE

    Javier Gama Chávez; Martha Lozano García; Paulo César Narváez Rincón; Óscar Javier Suárez Medina

    2004-01-01

    An Enviromental Management Plan was formulated with the objective of improving the environmental performance of the Chemical Engineering Laboratory (LIQ). The plan was supported on the principles established by the ISO 140001 standard. In a first step, an environmental politic was proposed. Next, by means of an initial review of the laboratory, the most significant impacts related to the activities developed in the Laboratory were identified: dangerous chemical wastes accumulation, water cont...

  12. JPL Contamination Control Engineering

    Science.gov (United States)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  13. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward J.

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  14. ICF ETF and its engineering development requirements

    International Nuclear Information System (INIS)

    Blink, J.A.; Allen, W.O.; Billman, K.

    1980-10-01

    Inertial confinement fusion driver development and ICF target physics are being intensively explored both theoretically and experimentally. However, engineering considerations of harnessing the fusion energy pulses that are an ultimate product and goal of the ICF physics program are only being addressed on a small scale. Experience with development of other new technologies indicates that engineering development time will be substantial for ICF energy converters. The authors met at Livermore in July 1980 to form an ICF Reactor Technology Working Group to address this issue. This paper outlines the current state of planning for an ICF Engineering Test Facility (ETF) and the engineering development that must precede it

  15. CPAS Preflight Drop Test Analysis Process

    Science.gov (United States)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  16. Free-piston Stirling engine/linear alternator 1000-hour endurance test

    Science.gov (United States)

    Rauch, J.; Dochat, G.

    1985-01-01

    The Free Piston Stirling Engine (FPSE) has the potential to be a long lived, highly reliable, power conversion device attractive for many product applications such as space, residential or remote site power. The purpose of endurance testing the FPSE was to demonstrate its potential for long life. The endurance program was directed at obtaining 1000 operational hours under various test conditions: low power, full stroke, duty cycle and stop/start. Critical performance parameters were measured to note any change and/or trend. Inspections were conducted to measure and compare critical seal/bearing clearances. The engine performed well throughout the program, completing more than 1100 hours. Hardware inspection, including the critical clearances, showed no significant change in hardware or clearance dimensions. The performance parameters did not exhibit any increasing or decreasing trends. The test program confirms the potential for long life FPSE applications.

  17. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  18. Quality assurance: Fundamental reproducibility tests for 3D treatment‐planning systems

    Science.gov (United States)

    Able, Charles M.; Thomas, Michael D.

    2005-01-01

    The use of image‐based 3D treatment planning has significantly increased the complexity of commercially available treatment‐planning systems (TPSs). Medical physicists have traditionally focused their efforts on understanding the calculation algorithm; this is no longer possible. A quality assurance (QA) program for our 3D treatment‐planning system (ADAC Pinnacle3) is presented. The program is consistent with the American Association of Physicists in Medicine Task Group 53 guidelines and balances the cost‐versus‐benefit equation confronted by the clinical physicist in a community cancer center environment. Fundamental reproducibility tests are presented as required for a community cancer center environment using conventional and 3D treatment planning. A series of nondosimetric tests, including digitizer accuracy, image acquisition and display, and hardcopy output, is presented. Dosimetric tests include verification of monitor units (MUs), standard isodoses, and clinical cases. The tests are outlined for the Pinnacle3 TPS but can be generalized to any TPS currently in use. The program tested accuracy and constancy through several hardware and software upgrades to our TPS. This paper gives valuable guidance and insight to other physicists attempting to approach TPS QA at fundamental and practical levels. PACS numbers: 87.53.Tf, 87.53.Xd PMID:16143788

  19. Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods

    Science.gov (United States)

    Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan

    2016-01-01

    The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.

  20. Engine testing of ceramic cam-roller followers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. [Detroit Diesel Corp., MI (United States)

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  1. Monsanto may bypass NIH in microbe test.

    Science.gov (United States)

    Sun, Marjorie

    1985-01-11

    The Monsanto Company is planning to ask the Environmental Protection Agency for clearance to field test a genetically engineered microbial pesticide, bypassing the traditional approval process of the National Institutes of Health. Although only federally funded institutions are required to obtain NIH approval for genetic engineering tests, Monsanto is the first company to bypass the NIH regulatory process, which has become mired in a lawsuit brought by Jeremy Rifkin.

  2. 100 area excavation treatability test plan

    International Nuclear Information System (INIS)

    1993-05-01

    This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Development and screening of remedial alternatives for the 100 Area, using existing data, have been completed and are documented in the 100 Area Feasibility Study, Phases 1 and 2 (DOE-RL 1992a). Based on the results of the FS, the Treatability Study Program Plan (DOE-RL 1992b) identifies and prioritizes treatability studies for the 100 Area. The data from the treatability study program support future focused FS, interim remedial measures (IRM) selection, operable unit final remedy selection, remedial design, and remedial actions. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992b). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications

  3. Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype

    International Nuclear Information System (INIS)

    Link, S.O.; Cadwell, L.L.; Brandt, C.A.; Downs, J.L.; Rossi, R.E.; Gee, G.W.

    1994-04-01

    This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier

  4. Idaho National Engineering Laboratory, Test Area North, Hangar 629 -- Photographs, written historical and descriptive data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report describes the history of the Idaho National Engineering Laboratory`s Hangar 629. The hangar was built to test the possibility of linking jet engine technology with nuclear power. The history of the project is described along with the development and eventual abandonment of the Flight Engine Test hangar. The report contains historical photographs and architectural drawings.

  5. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  6. IOTA interferometer project - Plans, engineering, and laboratory results

    International Nuclear Information System (INIS)

    Reasenberg, R.D.

    1990-01-01

    The Infrared-Optical Telescope Array (IOTA) is being developed by a consortium comprising Harvard University, the MIT Lincoln Laboratory, the Smithsonian Astrophysical Observatory, the University of Massachusetts at Amherst, and the University of Wyoming. The instrument is intended to generate high-resolution images of astronomical objects by bringing together beams from widely separated telescopes and combining them at a central location. The initial configuration will consist of two 0.45 m telescopes thay may range along an L-shaped track that will permit spacings in the 5 to 38 m range, at the Smithsonian's Fred L. Whipple Observatory on Mt. Hopkins. Initial tests of this configuration are expected to be conducted during the summer of 1991 and to yield both valuable engineering data and the first scientific results including diameters of stars and artificial earth satellites and a measure of the extent of some circumstellar shells. The engineering data will be applied to the refinement of IOTA, particularly to the second IOTA configuration, in which a third telescope will be added, making it possible to obtain phase closure information. 7 refs

  7. Nupec thermal hydraulic test to evaluate post-DNB characteristics for PWR fuel assemblies (1. general test plan and results)

    International Nuclear Information System (INIS)

    Norio, Kono; Kenji, Murai; Kaichiro, Misima; Takayuki, Suemura; Yoshiei, Akiyama; Keiichi, Hori

    2001-01-01

    In the present thermal hydraulic design of Pressurized Water Reactor (PWR), a departure from nucleate boiling (DNB) under anticipated transient conditions is not allowed. However, it is recognized that the DNB dose not cause a fuel rod failure immediately, and a suitable reactor trip can prevent the core from severe damages. If the fuel rod temperature under the post-DNB conditions can be accurately evaluated, the potentially existing margin in the present design method will be quantitatively assessed. To establish the heat transfer evaluation method on post-DNB event for PWR thermal hydraulic design, Nuclear Power Engineering Corporation (NUPEC) started a program, NUPEC Thermal Hydraulic Test to Evaluate Post-DNB Characteristics for PWR Fuel Assemblies (NUPEC-TH-P), in 1995 (hereinafter the year means fiscal year) under the sponsorship of Ministry of Economy, Trade and industry (METI). This program is now under going until 2001. This paper is to show the overall plan and the status of NUPEC-TH-P. (authors)

  8. Numerical analysis of hydrogen and methane propagation during testing of combustion engines

    Directory of Open Access Journals (Sweden)

    Dvořák V.

    2007-10-01

    Full Text Available The research of gas-fuelled combustion engines using hydrogen or methane require accordingly equipped test benches which take respect to the higher dangerous of self ignition accidents. This article deals with numerical calculations of flow in laboratory during simulated leakage of gas-fuel from fuel system of tested engine. The influences of local suction and influences of roof exhausters on the flow in the laboratory and on the gas propagation are discussed. Results obtained for hydrogen and for methane are compared. Conclusions for design and performance of suction devices and test benches are deduced from these results.

  9. Testing - Smart strategy for safety and mission quality

    Science.gov (United States)

    Rodney, George A.

    The paper is concerned with the need for a comprehensive test plan for the Space Station Freedom (SST) that would fully verify specification compliance and be based on an error budget. In particular, attention is given to some lessons learned from other NASA programs and the principal challenges for SSF testing, including phase C/D/E agreements, testing parameters, phase testing, and the human element. The importance of close teamwork between the NASA/Contractor systems engineers and assurance engineers is emphasized.

  10. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, Brady [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.

  11. Physics and engineering assessments of spherical torus component test facility

    International Nuclear Information System (INIS)

    Peng, Y.-K.M.; Neumeyer, C.A.; Kessel, C.; Rutherford, P.; Mikkelsen, D.; Bell, R.; Menard, J.; Gates, D.; Schmidt, J.; Synakowski, E.; Grisham, L.; Fogarty, P.J.; Strickler, D.J.; Burgess, T.W.; Tsai, J.; Nelson, B.E.; Sabbagh, S.; Mitarai, O.; Cheng, E.T.; El-Guebaly, L.

    2005-01-01

    A broadly based study of the fusion engineering and plasma science conditions of a Component Test Facility (CTF), using the Spherical Torus or Spherical Tokamak (ST) configuration, have been carried out. The chamber systems testing conditions in a CTF are characterized by high fusion neutron fluxes Γ n > 4.4x10 13 n/s/cm 2 , over size scales > 10 5 cm 2 and depth scales > 50 cm, delivering > 3 accumulated displacement per atom (dpa) per year. The desired chamber conditions can be provided by a CTF with R 0 1.2 m, A = 1.5, elongation ∼ 3.2, I p ∼ 9 MA, B T ∼ 2.5 T, producing a driven fusion burn using 36 MW of combined neutral beam and RF power. Relatively robust ST plasma conditions are adequate, which have been shown achievable [4] without active feedback manipulation of the MHD modes. The ST CTF will test the single-turn, copper alloy center leg for the toroidal field coil without an induction solenoid and neutron shielding, and require physics data on solenoid-free plasma current initiation, ramp-up, and sustainment to multiple MA level. A new systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of lowercost CTF devices to suit a variety of fusion engineering science test missions. (author)

  12. Mercury flow tests (first report). Wall friction factor measurement tests and future tests plan

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Kinoshita, Hidetaka; Haga, Katsuhiro; Hino, Ryutaro; Sudo, Yukio

    1999-07-01

    In the neutron science project at JAERI, we plan to inject a pulsed proton beam of a maximum power of 5 MW from a high intense proton accelerator into a mercury target in order to produce high energy neutrons of a magnitude of ten times or more than existing facilities. The neutrons produced by the facility will be utilized for advanced field of science such as the life sciences etc. An urgent issue in order to accomplish this project is the establishment of mercury target technology. With this in mind, a mercury experimental loop with the capacity to circulate mercury up to 15 L/min was constructed to perform thermal hydraulic tests, component tests and erosion characteristic tests. A measurement of the wall friction factor was carried out as a first step of the mercury flow tests, while testing the characteristic of components installed in the mercury loop. This report presents an outline of the mercury loop and experimental results of the wall friction factor measurement. From the wall friction factor measurement, it was made clear that the wettability of the mercury was improved with an increase of the loop operation time and at the same time the wall friction factors were increased. The measured wall friction factors were much lower than the values calculated by the Blasius equation at the beginning of the loop operation because of wall slip caused by a non-wetted condition. They agreed well with the values calculated by the Blasius equation within a deviation of 10% when the sum of the operation time increased more than 11 hours. This report also introduces technical problems with a mercury circulation and future tests plan indispensable for the development of the mercury target. (author)

  13. 40 CFR 1051.305 - How must I prepare and test my production-line vehicles or engines?

    Science.gov (United States)

    2010-07-01

    ... production-line vehicles or engines? 1051.305 Section 1051.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.305 How must I prepare and test my production...

  14. Eddy current testing for blade edge micro cracks of aircraft engine

    Science.gov (United States)

    Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng

    2017-10-01

    Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.

  15. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  16. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  17. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  18. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  19. Reliability engineering for nuclear and other high technology systems

    International Nuclear Information System (INIS)

    Lakner, A.A.; Anderson, R.T.

    1985-01-01

    This book is written for the reliability instructor, program manager, system engineer, design engineer, reliability engineer, nuclear regulator, probability risk assessment (PRA) analyst, general manager and others who are involved in system hardware acquisition, design and operation and are concerned with plant safety and operational cost-effectiveness. It provides criteria, guidelines and comprehensive engineering data affecting reliability; it covers the key aspects of system reliability as it relates to conceptual planning, cost tradeoff decisions, specification, contractor selection, design, test and plant acceptance and operation. It treats reliability as an integrated methodology, explicitly describing life cycle management techniques as well as the basic elements of a total hardware development program, including: reliability parameters and design improvement attributes, reliability testing, reliability engineering and control. It describes how these elements can be defined during procurement, and implemented during design and development to yield reliable equipment. (author)

  20. Long-range plan for buried transuranic waste studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Low, J.O.

    1985-12-01

    This document presents a plan to perform detailed studies of alternatives considered for the long-term management of buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The studies will provide the technical basis for DOE to make a decision on the future management of that waste. Although the waste is currently being handled in an acceptable manner, new solutions are continually being researched to improve management techniques. Three alternatives are being considered: (a) leave the waste as is; (b) improve in situ confinement of the waste; and (c) retrieve, process, and certify the waste for disposal at a federal repository. Fourteen studies are described in this plan for Alternatives 2 and 3. The leave-as-is alternative involves continuing present procedures for managing the buried waste. An ongoing environmental surveillance program, a low-level-waste stabilization program, and enhanced subsurface migration studies begun in FY-1984 at the INEL will provide data for the decision-making process for the INEL buried TRU waste. These ongoing studies for the leave-as-is alternative are summarized in this plan in limited detail. The improved-confinement alternative involves leaving the waste in place, but providing additional protection against wind, water penetration, erosion, and plant and animal intrusion. Several studies proposed under this alternative will examine special techniques to immobilize or encapsulate the buried waste. An in situ grouting study was implemented at the INEL starting in FY-1985 and will be completed at the end of FY-1986 with the grouting of a simulated INEL buried TRU waste trench. Studies of the third alternative will investigate improved retrieval, processing, and certification techniques. New equipment, such as industrial manipulators and excavating machinery, will be tested in the retrieval studies. Processing and certification studies will examine rapidly changing or new technologies